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CS). Written by established leading experts and influential young re-
searchers, the first volume of this popular handbook examines the el-
ements involved in designing and implementing software, new areas 
in which computers are being used, and ways to solve computing 
problems. The book also explores our current understanding of soft-
ware engineering and its effect on the practice of software develop-
ment and the education of software professionals.

Like the second volume, this first volume describes what occurs in 
research laboratories, educational institutions, and public and private 
organizations to advance the effective development and use of com-
puters and computing in today’s world. Research-level survey articles 
provide deep insights into the computing discipline, enabling readers 
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Preface to the Computing 
Handbook Set

The purpose of the Computing Handbook Set is to provide a single, comprehensive reference for spe-
cialists in computer science, information systems, information technology, software engineering, and 
other fields who wish to broaden or deepen their understanding in a particular subfield of the comput-
ing discipline. Our goal is to provide up-to-date information on a wide range of topics in a form that is 
accessible to students, faculty, and professionals.

The discipline of computing has developed rapidly since CRC Press published the second edition of 
the Computer Science Handbook in 2004 (Tucker, 2004). Indeed, it has developed so much that this third 
edition requires repartitioning and expanding the topic coverage into a two-volume set.

The need for two volumes recognizes not only the dramatic growth of computing as a discipline but 
also the relatively new delineation of computing as a family of five separate disciplines, as described by 
their professional societies—The Association for Computing Machinery (ACM), The IEEE Computer 
Society (IEEE-CS), and The Association for Information Systems (AIS) (Shackelford et al., 2005).

These separate disciplines are known today as computer engineering, computer science, information 
systems, information technology, and software engineering. These names more or less fully encom-
pass the variety of undergraduate and graduate degree programs that have evolved around the world, 
with the exception of countries where the term informatics is used for a subset of these disciplines. The 
document “Computing curricula 2005: The overview report” describes computing this way (Shackelford 
et al., 2005, p. 9):

In a general way, we can define computing to mean any goal-oriented activity requiring, benefit-
ing from, or creating computers. Thus, computing includes designing and building hardware and 
software systems for a wide range of purposes; processing, structuring, and managing various 
kinds of information; doing scientific studies using computers; making computer systems behave 
intelligently; creating and using communications and entertainment media; finding and gathering 
information relevant to any particular purpose, and so on.

To add much flesh to the bones of this very broad definition, this handbook set describes in some 
depth what goes on in research laboratories, educational institutions, and public and private organiza-
tions to advance the effective development and utilization of computers and computing in today’s world. 
The two volumes in this set cover four of the five disciplines in the following way:*

	 1.	 Volume I: Computer Science and Software Engineering
	 2.	 Volume II: Information Systems and Information Technology

*	 The fifth discipline, computer engineering, is the subject of a separate handbook published by CRC Press in 2008.
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This set is not designed to be an easy read, as would be gained by browsing a collection of encyclope-
dia entries on computing and its various subtopics. On the contrary, it provides deep insights into the 
subject matter through research-level survey articles. Readers who will benefit most from these articles 
may be undergraduate or graduate students in computing or a related discipline, researchers in one area 
of computing aiming to expand their knowledge of another area, or other professionals interested in 
understanding the principles and practices that drive computing education, research, and development 
in the twenty-first century.

This set is designed as a professional reference that serves the interests of readers who wish to explore 
the subject matter by moving directly to a particular part and chapter of the appropriate volume. The 
chapters are organized with minimal interdependence, so that they can be read in any order. To facili-
tate rapid inquiry, each volume also contains a table of contents and a subject index, thus providing 
access to specific topics at various levels of detail.

The Preface to Volume I provides a more detailed overview of the organization and content of this 
volume. A similar overview of the coverage of information systems and information technology appears 
in the Preface to Volume II.
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Preface to Volume I: 
Computer Science and 
Software Engineering

This volume is organized to mirror the modern taxonomy of computer science and software engineering 
as described by the ACM and IEEE-CS (Joint Task Force, 2012):

Algorithms and Complexity
Architecture and Organization
Computational Science
Discrete Structures
Graphics and Visual Computing
*Human–Computer Interaction
*Security and Information Assurance
*Information Management
Intelligent Systems
Networking and Communication
Operating Systems
Platform-Based Development
Parallel and Distributed Computing
Programming Languages
Software Development Fundamentals
Software Engineering
Systems Fundamentals
Social and Professional Issues

To avoid redundancy, the three starred (*) topics in this list (Human–Computer Interaction, Security 
and Information Assurance, and Information Management) are covered in Volume II, while the remain-
ing topics are covered in this volume.

The first eight parts of this volume cover the discipline of computer science (edited by Teofilo Gonzalez), 
while the last four parts cover software engineering (edited by Jorge Díaz-Herrrera). Allen Tucker is the 
editor in chief of the two volumes.

Computer Science

Implicit in the aforementioned taxonomy (and, indeed, in all current thinking about the nature of com-
puter science) is the idea of a dynamic discipline with an increasingly broad reach. For example, the 
computational science area noted earlier emphasizes the necessity of interaction among computer scien-
tists and natural scientists in the many research and educational areas where their work now overlaps.
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A more elaborate description of this idea is expressed in the following definition of computer science, 
taken from the 2005 Joint Task Force Report (Shackelford, 2005, p. 13):

Computer science spans a wide range, from its theoretical and algorithmic foundations to cutting-
edge developments in robotics, computer vision, intelligent systems, bioinformatics, and other 
exciting areas. We can think of the work of computer scientists as falling into three categories.

	 1.	 They design and implement software. Computer scientists take on challenging program-
ming jobs. They also supervise other programmers, keeping them aware of new approaches.

	 2.	 They devise new ways to use computers. Progress in the CS areas of networking, database, 
and human-computer-interface enabled the development of the World Wide Web. Now CS 
researchers are working with scientists from other fields to make robots become practical 
and intelligent aides, to use databases to create new knowledge, and to use computers to help 
decipher the secrets of our DNA.

	 3.	 They develop effective ways to solve computing problems. For example, computer scien-
tists develop the best possible ways to store information in databases, send data over net-
works, and display complex images. Their theoretical background allows them to determine 
the best performance possible, and their study of algorithms helps them to develop new 
approaches that provide better performance.

The computer science chapters are organized into eight parts: (I) Overview of Computer Science; 
(II) Algorithms and Complexity; (III) Architecture and Organization; (IV) Computational Science and 
Graphics; (V) Intelligent Systems; (VI) Networking and Communication; (VII) Operating Systems; and 
(VIII) Programming Languages. A brief summary of what you can expect to find in each part is pro-
vided in the following.

Overview of Computer Science

Part I consists of two very important chapters. In Chapter 1, Peter Denning discusses the 50-year evolu-
tion of computer science as a discipline distinct from the fields from which it emerged: mathematics, 
science, and engineering. In Chapter 2, Valerie Barr introduces the idea of “computational thinking,” a 
relatively new term that is helping to shape modern thinking about the expanding presence of computer 
science, especially in the K-12 and undergraduate college curricula.

Algorithms and Complexity

This part discusses the algorithmic and computational complexity issues that underlie all of computer 
science. Chapter 3 covers important ways of organizing data inside computers to facilitate their retrieval. 
It discusses the time and space trade-offs for implementing the most important algorithms used in almost 
every application. The different design paradigms behind these algorithms are discussed in Chapter 4. 
The chapter covers greedy methods, divide-and-conquer, and dynamic programming, as well as other 
techniques that have been applied successfully in the design of efficient algorithms. Graphs and networks 
have been used to model a wide range of computer science problems as well as problems in different disci-
plines. Chapter 5 discusses graph and network techniques that have been devised to efficiently solve these 
problems. In some applications, computational problems can be simplified by formulating them as prob-
lems in two-dimensional space. Computational geometry problems include those that have intrinsic geo-
metric properties. Chapter 6 discusses the techniques that have been applied successfully in this domain.

Chapter 7 discusses computational complexity classes. This is a grouping of problems according to the 
time and space required to solve them. The major classes are called P and NP, and they help characterize 
most of the computational challenges that arise in practice. A fundamental problem in computer science 
is to prove or disprove whether P = NP. In fact, it is so important that a so-called “Millennium Prize” 
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consisting of $1,000,000 has been offered by the Clay Institute to anyone who solves this problem. At 
a more abstract level, Chapter 8 reviews formal methods and computability. This chapter explores the 
limits of what is computable within the most basic computing models that are equivalent to current 
computer architectures. One of the most complex areas of research is cryptography. Chapter 9 provides 
a comprehensive overview of this very important area. Since millions of private transactions take place 
on the Internet every second, we need ways to keep them secure and guarantee their integrity. Solutions 
in this area require sophisticated mathematical analysis techniques. Chapter 10 addresses the area of 
algebraic algorithms. The basic applications in this area are in science and engineering.

As the input size of most computationally complex problems continues to grow (sometimes referred to as 
the phenomenon of big data), the study of randomized algorithms has grown considerably in recent years. 
Chapter 11 discusses techniques to design such algorithms by presenting algorithms to solve some specific 
problems. Another way of dealing with computational complexity is to aim for approximations rather than 
optimal solutions. Chapter 12 discusses approximation algorithms and metaheuristics. The different meth-
odologies used in these two areas are surveyed and applied to problems from different disciplines. Algorithms 
that take advantage of the combinatorial structure of the feasible solution space are discussed in Chapter 13. 
Another important algorithmic challenge is how to visualize data and their structure. Chapter 14 covers the 
area of graph drawing, which tries to design algorithms that display information in a clear way according 
to given objective functions. In this era of big data, we also need to discover ways of storing, retrieving, and 
transmitting it efficiently. Chapter 15 covers strategies for data compression and finding patterns in data 
quickly. Chapter 16 studies computing in a landscape where the computations are distributed among many 
computers. In this scenario, we need to address the issue of fault-tolerant computing; as the number of inde-
pendent devices grows, the likely failure of at least one of the components increases substantially.

Architecture and Organization

Part III takes us closer to computing machines themselves by examining their architecture and organi-
zation. Starting at the most basic organizational level, Chapter 17 covers digital logic, how it is imple-
mented, and how logical components are designed to carry out basic computations. Chapter 18 covers 
the organization of memory and its implementation, including the different levels of memory, access 
speeds, and implementation costs. Chapter 19 extends this discussion to the treatment of secondary 
storage. A main issue here is how to store files in disks, solid state devices, and flash memories to ensure 
reliability. Chapter 20 covers computer arithmetic, including the efficient implementation of the basic 
arithmetic and logical operations that are fundamental to all computing activities. Modern input and 
output devices are discussed in Chapter 21. As the way we interact with computers has changed over the 
years, input and output design remains at the forefront of research and development.

Chapter 22 discusses performance enhancements for instruction processing, such as the use of over-
lap and low-level concurrency. Focusing on the theme of design for efficiency, Chapter 23 surveys the 
different ways of organizing parallel computers. It begins with the standard types introduced several 
decades ago and concludes with the highly successful GP-GPUs as well as cloud computing. To cir-
cumvent the memory access and sequential performance walls, modern architectures include multiple 
processors on a single chip. Chapter 24 discusses the hardware and software challenges for the design 
and use of multicore architectures. Chapter 25 explains how DNA can be used to compute some logical 
functions and perform biological tests. Currently, performing these tests takes some time because it 
requires several computational facilities and involves human intervention.

Computational Science and Graphics

Some aspects of computational science have been part of computing since its beginning. Computational 
electromagnetics (Chapter 26) basically studies the computational solution of Maxwell equations. Analytical 
solutions to Maxwell equations are usually unavailable, and the few closed-form results that exist have very 
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restrictive solutions. The use of computer-based methods for the prediction of fluid flows has seen tremen-
dous growth in the past half century. Fluid dynamics (Chapter 27) has been one of the earliest, and most 
active, fields for the application of numerical techniques. Computational astrophysics (Chapter 28) cov-
ers astrophysics, a computationally intensive discipline. Physics and astronomy make heavy use of online 
access and data retrieval. Databases, data analysis, and theoretical modeling go hand in hand in this area. 
The gravitational n-body problem and its modeling form the basis for cosmology. Chapter 29 discusses the 
rich set of computational applications in chemistry. Computational biology/bioinformatics is an area that 
has grown tremendously over the last decade. Chapter 30 discusses the interplay between the genetic analy-
sis provided by computational algorithms and the underlying biological processes. Chapter 31 on terrain 
modeling examines the computational problems and new insights arising from the analysis of GIS data.

Computer graphics provides the underlying tools for scientific visualization and animation of a wide 
variety of real and imaginary phenomena. Chapter 32 discusses the basic geometric primitives manipu-
lated by typical graphics systems. These primitives allow for the efficient representation and manipula-
tion of visual objects in a computer. Chapter 33 covers computer animation, which has become widely 
used in the production of movies and videos.

Intelligent Systems

Mathematical logic and declarative programming provide theoretical foundations for artificial intel-
ligence applications, which are called intelligent systems. Chapter 34 explores the use of logic to allow a 
system to work in spite of contradictions, dilemmas, and conflicts. Chapter 35 discusses qualitative rea-
soning, which supports reasoning with very little information. This is the first approach that one uses to 
understand a problem before developing a more formal or quantitative strategy. Machine learning, dis-
cussed in Chapter 36, is concerned with identifying and exploiting patterns in data to simulate human 
learning. Applications of machine learning to real-world problems are widely used on the Internet, 
for example, in marketing. Chapter 37 introduces explanation-based learning, which adds inferential 
domain theory to expand the reach of statistical machine learning. This theory adds expressiveness to 
statistical methods such as Bayesian or Markov models.

Chapter 38 describes searching, which is a basic operation in most computing areas and is par-
ticularly important in intelligent systems where the search domain is often complex. This chapter 
explores both blind exhaustive search methods using informed heuristics and optimal heuristics. 
Chapter  39 covers planning (the process of creating an organized set of actions) and scheduling 
(the process of assigning a set of actions to resources over time). These are basic operations arising 
in all sorts of environments and have been studied over the years in several disciplines. Chapter 40 
explores natural language processing, or developing systems to understand human languages. In 
2011, IBM’s Watson program convincingly won the popular Jeopardy game over the most highly 
skilled human competitors. This was a major accomplishment for natural language processing. 
Spoken language understanding, covered in Chapter 41, is an emerging field between the areas of 
speech processing and natural language processing. This area leverages technologies from machine 
learning to create systems that would facilitate communication with users. Chapter 42 covers neural 
networks, which have been used to solve a wide range of problems in modeling intelligent behavior. 
Chapter 43 deals with cognitive modeling and surveys the methods and models used to understand 
human cognition. The semantic basis and properties of graphic models (Bayesian Networks) are 
explored in Chapter 44. Applications to reasoning and planning are discussed in this chapter.

Networking and Communication

In the last 20 years, the use of computer networks for communication has become an integral part of our 
daily life. An incredible volume of information is transferred constantly worldwide through computer net-
works, and these must operate efficiently and reliably so that modern business and commerce can function 
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effectively. Chapter 45 examines the communications software needed to interconnect computers, serv-
ers, and all sort of devices across networks. The unique aspects of wireless networks are discussed in 
Chapter 61 in Part VII. Chapter 46 discusses the routing algorithms that manage information flow across 
networks, including the trade-offs that exist among different alternatives. Chapter 47 discusses access 
control, which is fundamental for protecting information against improper disclosure or modification.

Compression of images and videos needed for the efficient storage and transmission of these types 
of data is covered in Chapter 48. Chapter 49 introduces underwater sensor networks, whose challenges 
and techniques are very different from those in other types of networks. Chapter 50 surveys ideas for 
transforming the World Wide Web to facilitate interoperability and integration of multiauthored, mul-
tithematic, and multiperspective information services seamlessly. Chapter 51 deals with search engines, 
which have become indispensable in almost all aspects of our daily life. It discusses the fundamental 
issues involved in designing and constructing search engines that interact with enormous amounts of 
information and digest it for users.

Operating Systems

An operating system is the fundamental software that controls all aspects of a computer, its applications, 
and its user interface. Chapter 52 discusses processes, the basic software activities that an operating 
system manages, and the mechanisms needed for communication and synchronization. Chapter 53 
covers thread management, where threads are basic sequences of code that comprise a program running 
in a system. Breaking programs and systems into threads is particularly useful in multicore machines, 
the modern organization of computers. Virtual memory, discussed in Chapter 54, explains the way in 
which computer memory is organized for efficient access in computers. This chapter also discusses how 
these techniques apply to other levels of storage and systems. The organization of file systems and sec-
ondary storage is discussed in Chapter 55. The main concern is the use of secondary storage space for 
its use as long storage media.

Chapter 56 covers performance modeling of computer systems. Different computer architectures 
have different performance limits. The chapter discusses different ways to analyze computer system 
performance. Chapter 57 deals with a similar topic but for interconnected distributed computer systems 
such as clusters, grids, and clouds. An important issue here is maintaining quality of service during 
contention management. The architecture and special applications of real-time systems are discussed 
in Chapter 58. In these systems, response must occur within specific deadlines; it is a challenge for the 
operating system to schedule processes so that these deadlines are met. The design of distributed operat-
ing systems faces two main challenges: scheduling, covered in Chapter 59, and file systems, covered in 
Chapter 60. Mobile devices pose new challenges for operating system design, and these are addressed 
in Chapter 61. The proliferation of smart phones and tablets has brought this area to the forefront of 
research and development. Chapter 62 provides an introduction to service-oriented operating systems 
and concludes this part.

Programming Languages

Programming language research has a rich history, and it has remained vibrant with the development 
of modern architectures, networks, and applications. Chapter 63 covers imperative programming lan-
guages, the oldest and probably the most prolific style of programming. These types of languages are in 
widespread use and are familiar to software developers in all areas of computing. The object-oriented 
programming paradigm discussed in Chapter 64 has become popular as it facilitates modeling real-
world software systems using object decomposition. Another form of programming, logic program-
ming discussed in Chapter 65, has major applications in artificial intelligence and natural language 
processing research. Recent developments have been especially active in the areas of multiparadigm 
programming languages and scripting languages described in Chapter 66 and Chapter 67, respectively.
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Chapter 68 deals with compilers and interpreters, which provide the interface between programs 
written in higher-level programming languages and an equivalent encoding that a computer can under-
stand and carry out. Many aspects of this process have been automated, and the techniques and limita-
tions of these processes are also discussed. Every programming language has syntax and semantics. 
Syntax refers to the valid strings of characters that define valid programs in the language, and semantics 
refers to the meaning of such strings. Chapter 69 covers formal semantics for programming languages. 
Chapter 70 describes type systems, which are used in modern programming languages to guarantee 
that programs are free of type-related errors. This chapter discusses the formal underpinnings of type 
systems as well as their implementations. Chapter 71 covers formal methods, a set of notations and tools 
that provide a mathematical basis for proving the correctness of a program with regard to its formal 
specification.

Software Engineering

As an academic field of study, software engineering was introduced in the early 1970s as a specialization of 
computer science and engineering, first as master-level programs. In the 1990s, the field proliferated in North 
America, Europe, and Australia, first in the form of BS programs and, more recently, programs at the PhD 
level; that is, software engineering programs separate from computer science programs (Lethbridge et al., 
2006). What is the difference and why do we care?

Software is of critical importance in today’s world and of increasingly serious public significance in 
our daily lives for our safety and security. Although the voicing of concerns about the critical conse-
quences of not considering software development as a more rigorous profession dates back to the late 
1960s (Naur, 1969), today software engineering is still not a fully formed, mature professional discipline. 
This seems more of an elusive goal than a concrete reality or even a future possibility. Some wonder if 
trying to retrofit software engineering with the traditional engineering paradigm has hindered its accep-
tance as a professional discipline. Particularly lacking is a widespread recognition of software develop-
ers as professionals in the full sense of the word.*

Over the past decades, we have identified scientific and engineering body of knowledge needed to 
solve technical software problems that meet user requirements (functional and otherwise) and deliver 
software within budget, on time, as well as within its economic, legal, and social considerations. The 
study of engineering requires a strong background in mathematics and the physical sciences. Although 
this is not different for software engineers, the kind of mathematics and the specific science may be dif-
ferent from more traditional engineering disciplines. However, a legitimate research question remains 
on whether there could be a scientific basis for understanding the complexity of software such that it can 
be engineered to have predictable quality and behavior.

Ian Sommerville (1999) introduced the idea that software engineering is perhaps something else: “In 
essence, the type of systems which we are interested in are socio-technical software-intensive systems.… 
Systems, therefore, always include computer hardware, software which may be specially designed or 
bought-in as off-the-shelf packages, policies and procedures, and people who may be end-users and pro-
ducers/consumers of information used by the system.” Furthermore, Sommerville and his colleagues 
claim that “there is no technical solution to software complexity” (Sommerville, 2012).

The fact that computing has become a distinct branch of knowledge, that is, a discipline in its own 
right different from science and engineering—an idea first formally introduced by Denning (1998) and 
further developed by Denning and Freeman (Denning, 2009)—fits this notion as has been demonstrated 
by the creation of a unifying and enclosing academic entity that embraces the science, engineering, and 
technology of computing: the computing college, “standing alone, headed by its own dean, with the 

*	 It is a fact of life that many of the software industry professionals are graduates from computer science and related fields. 
This is of no surprise since in most advertisements for such positions, the educational requirements often listed are 
degrees in computer science. However, once hired, employers give them the title of software engineer.
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same stature as traditional colleges” [op. cit.]. In this way, computer science is a different kind of science 
and software engineering a different kind of engineering.

The chapters in the last four parts consolidate our current understanding of the discipline of software engi-
neering and its effect on the practice of software development and the education of software professionals. 
There are four main parts. (1) Discipline of Software Engineering; (2) Software Quality and Measurement; 
(3) Software Development Management: Processes and Paradigms; and (4) Software Modeling, Analysis, 
and Design (notice that programming topics were amply covered in Part VIII, programming languages).

Discipline of Software Engineering

This part includes five chapters. It starts with Chapter 72, which provides an overview of software engi-
neering. The chapter delineates the historical development of the discipline and provides an analysis of 
accepted definitions and an outline of the elements of the field. It looks at generally accepted definitions 
of engineering and shows the relation of certain elements to software development. It also points out 
important differences and demonstrates through a detailed analysis how prominent features that cut 
across all engineering disciplines can reasonably be mapped to software development. In this regard, 
the two most fundamental aspects are problem solving and engineering design. Mastery of problem 
solving involves a combination of proper judgment, experience, common sense, and know-how that 
must be used to reduce a real-world problem to such a form that science can be applied to find its solu-
tion. Engineering design, on the other hand, is the process of devising a system, component, or process 
to meet desired needs by finding technical solutions to specific practical problems, while taking into 
account economic, legal, and ecological considerations. Among the fundamental elements of this pro-
cess are the establishment of objectives and criteria, synthesis, analysis, construction, testing, and evalu-
ation, all of which have a counterpart in software engineering.

Chapters 73 and 74 deal with professionalism and certification issues and the code of ethics and profes-
sional conduct, respectively. Chapter 73 addresses software engineering as a profession from the point of 
view of the body of knowledge, accreditation of academic programs, and issues on licensure and certifi-
cation of software engineering professionals. It provides a good account of the political realities of mak-
ing software development a professional discipline and concludes that “it seems clear that the future of 
software engineering professionalism will be driven by industry and government,” although the uptake 
of credentials has been driven by practitioners’ interest (e.g., IEEE-CS CSDP).

Concomitant with the development of software engineering as a professional discipline is the intro-
duction of a code of ethics, and in late 1999 the Association for Computing Machinery and the IEEE 
Computer Society approved the Software Engineering Code of Ethics and Professional Practice. In 
Chapter 74, Gotterbarn, a principal architect of the code, provides a rich historical account of its devel-
opment and a thorough description of its purpose and principles, together with simple cases as examples 
and practical guidance for public accountability and educational purposes.

Chapters 75 and 76 address software IT business and economics and open source and governance. 
Chapter 75 provides an overview of the business of software from an IT and economics point of view, 
with a focus on the success rate of projects in terms of schedule predictability and quality, while empha-
sizing available solutions and best practices to practically implement this framework. It concludes with 
a look at business trends, naturally influenced and determined by external factors such as demand for 
value, fashion, individualism, ever-changing expectations, demand for ubiquitous services, global com-
petition, economic and ecologic behaviors, and the need for security and stability, which in turn influ-
ence trends for software and IT business.

Chapter 76 on open source and governance is an authoritative manifesto in the subject, providing a 
comprehensive set of underlying principles regarding copyright law and license terms, including the 
peculiarities of COTS (commercial off-the-shelf). It also contains numerous examples of best practices 
covering a myriad of situations in which companies “desiring to supplement and expand the capabilities 
of their existing software” can find themselves.
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Software Quality and Measurement

This part highlights an important aspect that makes software engineering a distinct computing dis-
cipline and that lends it much scientific credibility. The first two chapters focus on evidence-informed 
software engineering and empirical software engineering. Chapter 77 introduces the evidence-based par-
adigm, which originally emerged in medicine, together with a systematic literature review of its appli-
cation in software engineering. The idea, first advocated by Kitchenham et al. in 2004, suggests that 
with some adaptation to fit the nature of software engineering studies, this could be a valuable way of 
consolidating our empirical knowledge about what works, when, and where. Chapter 78 provides an 
overview of how the ideas and practices associated with empirical software engineering have evolved. 
It represents an invaluable aid for identifying suitable forms of study for a particular need and to pro-
vide enough background for software engineers to appreciate the strengths and limitations of empirical 
knowledge and practice. This is particularly relevant if software engineering is to become a professional 
discipline; in this way, its practices, methods, and tools would need to be informed by evidence from 
well-conducted empirical studies.

Chapter 79 looks at quality in general and provides a comprehensive survey and analysis of qual-
ity under the umbrella of software process improvement. It differentiates software quality attributes 
from the point of view of the end user to IT operations, through marketing and projects and technical 
concerns. It also describes five perspective approaches to quality, that is, transcendental, product, user, 
manufacturing, and value based, with corresponding mappings to ISO quality standards. The chapter 
then juxtaposes process and quality and cost and quality. It provides an overview of best practices cover-
ing the various approaches to software process maturity such as CMM and SPICE together with practi-
cal implementation implications. It also identifies issues associated with small organizations and Agile 
development, as well as measurement and the use of statistical process control.

Chapter 80 focuses on software metrics and measurements and hence follows naturally here. This 
is an important component of software engineering as a professional discipline. The chapter dem-
onstrates the value of software measurement and the role of international standards. These stan-
dards embody principles and best practices as defined and codified by experts in the field. Several 
approaches to implement measurement are discussed, including CMMI measurement and analysis 
(M&A), measurement and analysis infrastructure diagnostic (MAID), and goal–question–metric 
(GQM) among others. The chapter also covers predictive models and indicators, developing bench-
marks and heuristics and improving data quality, concluding that “software measurement is required 
to quantify quality and performance and to provide an empirical and objective foundation for deci-
sion making—a foundation that is a necessary element if software engineering is truly to be a disci-
plined field of engineering.”

Software Development Management: Processes and Paradigms

The chapters in this part address the development of software from a higher-level managerial, rather 
than code development point of view. The first three chapters deal with management and organiza-
tional issues. Chapter 81 argues that there is no one best way to develop software and manage projects 
for all kinds of applications but that there are some basic principles that can be applied to a variety of 
projects within their contexts. It takes us through a series of high-level process concepts, innovation 
and design, and architecture strategies and how they are used in different situations. It concludes with 
a brief analysis of the results of a survey on global differences in practices and performance metrics in 
different regions of the world.

Chapter 82 covers issues related to project personnel and organization such as how to put together a 
team and how to decide on the types of personnel that you will need in your team based on the differ-
ent types of roles and responsibilities. The chapter also explains the different ways you can organize 
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your personnel along with the advantages and disadvantages of each approach, as well as underlying 
principles and best practices.

Chapter 83 discusses project and process control. It makes a distinction between the project manager’s 
control activities in executing a project, that is, project control, and the control of the underlying soft-
ware development processes, or process control. Controlling a project and controlling the underlying 
processes are very different activities and, consequently, they require very different techniques to make 
them effective. The chapter describes the underlying mathematical and engineering foundations of two 
well-known control methods that can be applied to controlling software development projects and to 
their underlying software development processes. The first is closely related to traditional engineering 
methods for controlling manufacturing and communications systems using feedback. The second is 
known as statistical process control (SPC). The chapter concludes with a brief discussion of the extensive 
literature describing the application of SPC methods to software projects and the successes and failures 
that they have reported.

The last three chapters in this part address more recent development frameworks. Chapter 84 pro-
vides a thorough introduction to Agile methods, an umbrella term popularized with the publication of 
the Agile manifesto, reflecting an intention to differentiate Agile approaches from a trend in software 
development methodologies that had gained dominance in previous decades. It describes the set of 12 
principles underlying the Agile approach as provided by the Agile manifesto. Specific implementations 
of the approach are described as best practices, including extreme programming, scrum, etc., together 
with an analysis of their specific incorporation, or not, of the 12 principles. The chapter concludes with a 
discussion of plan-driven approaches’ compatibility, such as CMMIs, with Agile methods and thorough 
analyses of important research directions.

Chapter 85 presents a process for developing software based on service-oriented architectures. The 
fundamental building blocks of the approach are services, commonly viewed as self-contained software 
application modules exposed through interfaces over a distributed environment. The chapter intro-
duces related elements such as component-based development, distributed components, and web ser-
vices. The underlying principles of the approach are described together with the service infrastructure 
needed. In terms of best practices, the chapter outlines reference models and reference architectures and 
standards as well as the enterprise service bus idea and compares the specific implementations of the 
web services SOAP and REST.

Chapter 86 on software product lines (SPL) provides an introduction to the topic and a thorough anal-
ysis of its research challenges. SPL is one of the most active research areas of software engineering, and 
despite remarkable contributions, which are briefly highlighted, important technical problems remain. 
The chapter reports quantitative information, based on a secondary study and literature review, on these 
remaining problems, which slow down widespread adoption of SPL. The results provided are supported 
by a survey among longtime and active SPL researchers and practitioners. The top two reported research 
problems were variability management and evolution.

Software Modeling, Analysis, and Design

The last part of this section focuses on specific software development activities starting with require-
ments elicitation and specification, followed by model checking, design strategies, and software archi-
tecture and finally dealing with more overarching topics such human–computer interfaces and software 
assurance.

Chapter 87 covers requirements elicitation, a subprocess of requirements engineering concerned with 
gathering information about a computer-based system to be built. This is generally the first step in the 
software development life cycle regardless of the process model, whether it be waterfall, spiral, or even 
Agile. The chapter considers the different scenarios, reviews all available techniques with their pros and 
cons, and provides sound advice on what could go wrong during requirements elicitation.
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Chapter 88 focuses on specifications for software systems and the software requirements specification 
document (SRS) document capturing them. Software requirement specifications are discussed at dif-
ferent stages from a very informal description to inform users, to descriptions in unambiguous terms, 
written in a rather formal (i.e., precise and unambiguous) manner. The chapter provides an overview of 
best practices for producing an SRS possessing all the desirable quality attributes and characteristics. It 
also provides a survey of the various specification languages and lists outstanding research issues such 
as completeness, nonfunctional requirements, cost, program construction and proof, and correctness-
preserving program transformations.

Chapter 89 provides an overview of techniques and tools for analyzing the correctness of software 
systems using model checking. Two classes of techniques are covered, namely, counterexample-guided 
abstraction refinement (CEGAR) using predicate abstraction, and bounded model checking; other key 
model checking techniques that are geared toward software verification analysis are also covered. The 
chapter concludes with a brief survey of tools.

The next two chapters are about software design. Chapter 90 on design strategies leads us directly 
from requirements as “one assumption underlying any design is that the design will satisfy some set of 
requirements.” A set of underlying principles is discussed, including the notion of views, architectural 
patterns and tactics, decomposition and refinements, and code generation and testing. Design best prac-
tices are presented together with an analysis of important research concerns such as automatic/semiau-
tomatic design, the accuracy of models, and the use and appropriate place for tools.

Chapter 91 on software architecture focuses exclusively on the main product of design: an archi-
tectural design of the software system to solve a specified problem. Various architectural frameworks 
are contrasted from their specific viewpoints, as well as a survey of design methods. A metaprocess is 
described, starting with concern analysis and domain analysis and concluding with architecture design, 
evaluation, and realization. Research topics in software architectures presented include modeling qual-
ity and issues related to model-driven design.

Chapter 92 on human–computer interfaces in software engineering uses speech applications (both 
input and synthesis) from requirements to design and implementation to illustrate principles and best 
practices and describe difficult research issues that lie ahead on the implication of human–computer 
interaction on software development. The latter discusses inherent current limits in speech applications 
design.

Chapter 93 deals with software assurance. It discusses the impact of the risks associated with software 
vulnerabilities and introduces basic definitions of software assurance. It also presents modern principles 
of software assurance and identifies a number of relevant process models, frameworks, and best prac-
tices. The chapter concludes with a research framework to support and identify gaps for future research 
and includes a description of the knowledge areas for a Master of Software Assurance as mapped to 
maturity levels for building assured systems.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please contact:
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1-1

Computing is integral to science—not just as a tool for analyzing data but also as an agent of thought 
and discovery.

It has not always been this way. Computing is a relatively young discipline. It started as an academic 
field of study in the 1930s with a cluster of remarkable papers by Kurt Gödel, Alonzo Church, Emil Post, 
and Alan Turing. The papers laid the mathematical foundations that would answer the question, “what 
is computation?” and discussed schemes for its implementation. These men saw the importance of auto-
matic computation and sought its precise mathematical foundation. The various schemes they each pro-
posed for implementing computation were quickly found to be equivalent, as a computation in any one 
could be realized in any other. It is all the more remarkable that their models all led to the same conclu-
sion that certain functions of practical interest—such as whether a computational algorithm (a method 
of evaluating a function) will ever come to completion instead of being stuck in an infinite loop—cannot 
be answered computationally.

In the time that these men wrote, the terms “computation” and “computers” were already in com-
mon use but with different connotations from today. Computation was taken to be the mechanical steps 
followed to evaluate mathematical functions. Computers were people who did computations. In recog-
nition of the social changes they were ushering in, the designers of the first digital computer projects 
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all named their systems with acronyms ending in “-AC,” meaning automatic computer or something 
similar—resulting in names such as ENIAC, UNIVAC, and EDSAC.

At the start of World War II, the militaries of the United States and the United Kingdom became 
interested in applying computation to the calculation of ballistic and navigation tables and the cracking 
of ciphers. They commissioned projects to design and build electronic digital computers. Only one of the 
projects completed before the war was over. That was the top-secret project at Bletchley Park in England, 
which cracked the German Enigma cipher using methods designed by Alan Turing.

Many people involved in those projects went on to start computer companies in the early 1950s. 
The universities began offering programs of study in the new field in the late 1950s. The field and the 
industry have grown steadily into a modern behemoth whose Internet data centers are said to consume 
almost 3% of the world’s electricity.

During its youth, computing was an enigma to the established fields of science and engineering. 
At first, it looked like only the technology applications of math, electrical engineering, or science, 
depending on the observer. However, over the years, computing seemed to provide an unending 
stream of new insights, and it defied many early predictions by resisting absorption back into the 
fields of its roots. By 1980, computing had mastered algorithms, data structures, numerical methods, 
programming languages, operating systems, networks, databases, graphics, artificial intelligence, and 
software engineering. Its great technology achievements—the chip, the personal computer, and the 
Internet—brought it into many lives. These advances stimulated more new subfields, including net-
work science, web science, mobile computing, enterprise computing, cooperative work, cyberspace 
protection, user-interface design, and information visualization. The resulting commercial appli-
cations have spawned new research challenges in social networks, endlessly evolving computation, 
music, video, digital photography, vision, massive multiplayer online games, user-generated content, 
and much more.

The name of the field changed several times to keep up with the flux. In the 1940s, it was called 
automatic computation, and in the 1950s, information processing. In the 1960s, as it moved into aca-
demia, it acquired the name computer science in the United States and informatics in Europe. By the 
1980s, the computing field comprised a complex of related fields including computer science, infor-
matics, computational science, computer engineering, software engineering, information systems, 
and information technology. By 1990, the term computing became the standard for referring to this 
core group.

1.1  Computing Paradigm

Traditional scientists frequently questioned the name computer science. They could easily see an engi-
neering paradigm (design and implementation of systems) and a mathematics paradigm (proofs of 
theorems) but they could not see much of a science paradigm (experimental verification of hypotheses). 
Moreover, they understood science as a way of dealing with the natural world, and computers looked 
suspiciously artificial.

The word “paradigm” for our purposes means a belief system and its associated practices, defining 
how a field sees the world and approaches the solutions of problems. This is the sense that Thomas Kuhn 
used in his famous book, The Structure of Scientific Revolutions (1962). Paradigms can contain subpara-
digms: thus, engineering divides into electrical, mechanical, chemical, civil, etc., and science divides 
into physical, life, and social sciences, which further divide into separate fields of science. Table  1.1 
outlines the three paradigms that combined to make the early computing field.

The founders of the field came from all three paradigms. Some thought computing was a branch of 
applied mathematics, some a branch of electrical engineering, and some a branch of computational-
oriented science. During its first four decades, the field focused primarily on engineering: The chal-
lenges of building reliable computers, networks, and complex software were daunting and occupied 
almost everyone’s attention. By the 1980s, these challenges largely had been met and computing was 
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spreading rapidly into all fields, with the help of networks, supercomputers, and personal computers. 
During the 1980s, computers had become powerful enough that science visionaries could see how to 
use them to tackle the hardest, “grand challenge” problems in science and engineering. The resulting 
“computational science” movement involved scientists from all countries and culminated in the US 
Congress’s adopting the High Performance Computing and Communications (HPCC) act of 1991 to 
support research on a host of large computational problems.

Today, there is agreement that computing exemplifies science and engineering and that neither sci-
ence nor engineering characterizes computing. Then what does? What is computing’s paradigm?

The leaders of the field struggled with the paradigm question ever since the beginning. Along the 
way, there were three waves of attempts to unify views. Newell et al. (1967) led the first one. They argued 
that computing was unique among all the sciences in its study of information processes. Simon (1996), 
a Nobel laureate in Economics, went so far as to call computing a science of the artificial. Amarel (1971) 
endorsed this basic idea and added an emphasis on interactions with other fields. A catchphrase of this 
wave was that “computing is the study of phenomena surrounding computers.”

The second wave focused on programming, the art of designing algorithms that produced information 
processes. In the early 1970s, computing pioneers Edsger Dijkstra and Donald Knuth took strong stands 
favoring algorithm analysis as the unifying theme. A catchphrase of this wave was “computer science 
equals programming.” In recent times, this view has foundered because the field has expanded well beyond 
programming, whereas public understanding of a programmer has narrowed to just those who write code.

The third wave came as a result of the NSF-funded Computer Science and Engineering Research 
Study (COSERS), led by Bruce Arden in the late 1970s. Its catchphrase was “computing is the automation 
of information processes.” Although its final report successfully exposed the science of computing and 
explained many esoteric aspects to the layperson, its central view did not catch on.

An important aspect of all three definitions was the positioning of the computer as the object of atten-
tion. The computational science movement of the 1980s began to step away from that notion, adopting 
the view that computing is not only a tool for science but also a new method of thought and discovery in 
science. The process of dissociating from the computer as the focal center came to completion in the late 
1990s when leaders of the field of biology—epitomized by Nobel laureate David Baltimore (2001) and 
echoing cognitive scientist Douglas Hofstadter (1985)—said that biology had become an information 
science and DNA translation is a natural information process. Many computer scientists have joined 
biologists in research to understand the nature of DNA information processes and to discover what 
algorithms might govern them.

Take a moment to savor this distinction that biology makes. First, some information processes are 
natural. Second, we do not know whether all natural information processes are produced by algorithms. 

TABLE 1.1  Subparadigms Embedded in Computing

Math Science Engineering

1. Initiation Characterize objects 
of study (definition).

Observe a possible 
recurrence or pattern of 
phenomena 
(hypothesis).

Create statements about 
desired system actions 
and responses 
(requirements).

2. Conceptualization Hypothesize possible 
relationships among 
objects (theorem).

Construct a model that 
explains the 
observation and enables 
predictions (model).

Create formal statements 
of system functions and 
interactions 
(specifications).

3. Realization Deduce which 
relationships are 
true (proof).

Perform experiments 
and collect data 
(validate).

Design and implement 
prototypes (design).

4. Evaluation Interpret results. Interpret results. Test the prototypes.
5. Action Act on results (apply). Act on results (predict). Act on results (build).
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The second statement challenges the traditional view that algorithms (and programming) are at the 
heart of computing. Information processes may be more fundamental than algorithms.

Scientists in other fields have come to similar conclusions. They include physicists working with quan-
tum computation and quantum cryptography, chemists working with materials, economists working 
with economic systems, cognitive scientists working with brain processes, and social scientists work-
ing with networks. All have said that they discovered information processes in their disciplines’ deep 
structures. Stephen Wolfram (2002), a physicist and creator of the software program Mathematica, went 
further, arguing that information processes underlie every natural process in the universe.

All this leads us to the modern catchphrase: “Computing is the study of information processes, natu-
ral and artificial.” The computer is a tool in these studies but is not the object of study. Dijkstra once said: 
“Computing is no more about computers than astronomy is about telescopes.”

The term computational thinking has become popular to refer to the mode of thought that accompa-
nies design and discovery done with computation (Wing 2006). This term was originally called algo-
rithmic thinking in the Newell et al. (1960) and was widely used in the 1980s as part of the rationale for 
computational science. To think computationally is to interpret a problem as an information process 
and then seek to discover an algorithmic solution. It is a very powerful paradigm that has led to several 
Nobel Prizes.

All this suggests that computing has developed a paradigm all its own (Denning and Freeman 2009). 
Computing is no longer just about algorithms, data structures, numerical methods, programming 
languages, operating systems, networks, databases, graphics, artificial intelligence, and software engi-
neering, as it was prior to 1990. It now also includes exciting new subjects including Internet, web sci-
ence, mobile computing, cyberspace protection, user-interface design, and information visualization. 
The resulting commercial applications have spawned new research challenges in social networking, 
endlessly evolving computation, music, video, digital photography, vision, massive multiplayer online 
games, user-generated content, and much more.

The computing paradigm places a strong emphasis on the scientific (experimental) method to under-
stand computations. Heuristic algorithms, distributed data, fused data, digital forensics, distributed 
networks, social networks, and automated robotic systems, to name a few, are often too complex for 
mathematical analysis but yield to the scientific method. These scientific approaches reveal that dis-
covery is as important as construction or design. Discovery and design are closely linked: the behavior 
of many large designed systems (such as the web) is discovered by observation; we design simulations 
to imitate discovered information processes. Moreover, computing has developed search tools that are 
helping make scientific discoveries in many fields.

The central focus of the computing paradigm can be summarized as information processes—natural 
or constructed processes that transform information. They can be discrete or continuous.

Table 1.2 summarizes the computing paradigm with this focus. While it contains echoes of engineer-
ing, science, and mathematics, it is distinctively different because of its central focus on information 
processes (Denning and Freeman 2009). It allows engineering and science to be present together with-
out having to choose.

There is an interesting distinction between computational expressions and the normal language of 
engineering, science, and mathematics. Engineers, scientists, and mathematicians endeavor to posi-
tion themselves as outside observers of the objects or systems they build or study. Outside observers 
are purely representational. Thus, traditional blueprints, scientific models, and mathematical mod-
els are not executable. (However, when combined with computational systems, they give automatic 
fabricators, simulators of models, and mathematical software libraries.) Computational expres-
sions are not constrained to be outside the systems they represent. The possibility of self-reference 
makes for very powerful computational schemes based on recursive designs and executions and 
also for very powerful limitations on computing, such as the noncomputability of halting problems. 
Self-reference is common in natural information processes; the cell, for example, contains its own 
blueprint.
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1.2 T wo Views of Computing

Part of a scientific paradigm is a description of the knowledge of the field, often referred to as the 
“body of knowledge.” Within the computing paradigm, two descriptions of the computing body 
of knowledge have grown up. They might be called a technology interpretation and a principles 
interpretation.

Before 1990, most computing scientists would have given a technological interpretation, describing 
the field in terms of its component technologies. After 1990, the increasingly important science aspect 
began to emphasize the fundamental principles that empower and constrain the technologies.

In reality, these two interpretations are complementary. They both see the same body of knowledge, 
but in different ways. The technological view reflects the way the field has evolved around categories 
of technology; many of these categories reflect technical specialties and career paths. The science view 
reflects a deeper look at timeless principles and an experimental outlook on modeling and validation 
in computing.

These two views are discussed in Sections 1.3 and 1.4.

1.3  View 1: Technologies of Computing

Over the years, the ACM and Institute of Electrical and Electronics Engineers Computer Society 
(IEEECS) collaborated on a computing body of knowledge and curriculum recommendations for com-
puter science departments. The milestones of this process give a nice picture of the technological devel-
opment of the field.

1.3.1  First Milestone: Curriculum 68

In the mid-1960s, the ACM (with help from people in IEEECS) undertook the task to define curriculum 
recommendations for schools that wished to offer degrees in the new field of computer science (ACM 
1968). Their report said that the field consisted of three main parts:

Information structures and processes
Information processing systems
Methodologies

TABLE 1.2  The Computing Paradigm

Computing

1. Initiation Determine if the system to be built (or observed) can be 
represented by information processes, either finite 
(terminating) or infinite (continuing interactive).

2. Conceptualization Design (or discover) a computational model (e.g., an 
algorithm or a set of computational agents) that generates 
the system’s behaviors.

3. Realization Implement designed processes in a medium capable of 
executing its instructions. Design simulations and models 
of discovered processes. Observe behaviors of information 
processes.

4. Evaluation Test the implementation for logical correctness, consistency 
with hypotheses, performance constraints, and meeting 
original goals. Evolve the realization as needed.

5. Action Put the results to action in the world. Monitor for 
continued evaluation.
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The methodologies included design approaches for software and applications. The core material was 
mostly the mathematical underpinnings for the parts listed earlier:

Algorithms
Programming
Data structures
Discrete math
Logic circuits
Sequential machines
Parsing
Numerical methods

Many computer science departments adopted these recommendations.

1.3.2  Second Milestone: Computing as a Discipline

The ACM and IEEECS formally joined forces in 1987 to defend computing curricula from a bastard-
ized view that “CS = programming.” Around Donald Knuth and Edsger Dijkstra (1970) started making 
strong and eloquent cases for formal methods of software design, analysis, and construction. They said 
“we are all programmers” trying to employ powerful intellectual tools to tame complexity and enable 
correct and dependable software. Although computer scientists understood a programmer as highly 
skilled expert at these things, the public view of programmers was narrowing to low-level coders, who 
occasionally caused trouble by hacking into other people’s systems.

The committee laid out a model of the computing field that emphasized its breadth, showing that it is 
much richer than simply programming (Denning et al. 1989). Table 1.3 depicts the 9 × 3 matrix model 
of the computing field offered by the committee. Theory, abstraction, and design were used in the report 
for the mathematics, science, and engineering paradigms, respectively. The report gave details about 
what ideas and technologies fit into each of the 27 boxes in the matrix. It became the basis for a major 
ACM/IEEE curriculum revision in 1991.

Although this effort had a strong internal influence on the curriculum, it had little external influence 
on the perception that “CS=programming.” In fact, that perception was alive and well in the early 2000s 
when enrollments declined by over 50%.

1.3.3 T hird Milestone: Information Technology Profession

In 1998, the ACM launched an “IT profession” initiative, based on a widely held perception that the 
field had evolved from a discipline to a profession (Denning 1998, Denning 2001, Holmes 2000). The 
initiative responded to three trends: the growing interest in the industry for professional standards 
(especially in safety-critical systems), organized professional bodies representing various specialties, 

TABLE 1.3  Matrix Model of Computing Discipline, 1989

Topic Area Theory Abstraction Design

1. Algorithms and data structures
2. Programming languages
3. Architecture
4. Operating systems and networks
5. Software engineering
6. Databases and information retrieval
7. Artificial intelligence and robotics
8. Graphics
9. Human–computer interaction
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and a university movement to establish degree programs in information technology. The ACM leader-
ship concluded that the computing field met the basic criteria for a profession and that it was time for 
ACM to configure itself accordingly.

Table 1.4 is an inventory ACM made of the organized groups in the field. They saw IT professionals 
as a much larger and more diverse group than computer scientists and engineers, with at least 42 orga-
nized affinity groups in three categories. The first category comprises the major technical areas of IT and 
spans the intellectual core of the field. The second category comprises other well-established fields that 
are intensive users of IT; they draw heavily on IT and often make novel contributions to computing. The 
third category comprises areas of skill and practice necessary to keep and support the IT infrastructures 
that everyone uses. Allen Tucker and Peter Wegner (1996) also noted the dramatic growth and profes-
sionalization of the field and its growing influence on many other fields.

Unfortunately, the talk about “profession” led to a new round of terminological confusion. A profes-
sion is a social structure that includes many disciplines, but it is not a discipline in its own right. IT is 
not a field of research; the core disciplines (left column) and partner disciplines (middle column) attend 
to the research. To what does the term “computing field” refer in this context?

A decade later, it was clear that this interpretation of the field did not match what had actually evolved 
(Denning and Freeman 2009). The popular label IT did not reconcile the three parts of the computing 
field under a single umbrella unique to computing. IT now connotes technological infrastructure and its 
financial and commercial applications, but not the core technical aspects of computing.

1.3.4  Fourth Milestone: Computing Curriculum 2001

The ACM and IEEECS Education Boards were more cautious than ACM leadership in embracing an IT 
profession when they undertook a curriculum review and revision in 1999. They focused on the core special-
ties (first column in Table 1.2) and identified the computing discipline with these six academic specialties:

EE—Electrical engineering
CE—Computer engineering
CS—Computer science

TABLE 1.4  The Profession of Information Technology

IT-Core Disciplines IT-Intensive Disciplines IT-Supportive Occupations

Artificial intelligence Aerospace engineering Computer technician
Computer science Bioinformatics Help desk technician
Computer engineering Cognitive science Network engineer
Computational science Cryptography Professional IT trainer
Database engineering Digital library science Security specialist
Graphics E-commerce System administrator
Human–computer interaction Economics Web services designer
Network engineering Genetic engineering Web identity designer
Operating systems Information science Database administrator
Performance engineering Information systems
Robotics Public policy and privacy
Scientific computing Quantum computing
Software architecture Instructional design
Software engineering Knowledge engineering
System security Management information systems

Material science
Multimedia design
Telecommunications
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SWE—Software engineering
IS—Information systems
IT—Information technology

It was understood that students interested in hardware would enroll in an EE or CE program; students 
interested in software in a CE, CS, or SWE program; and students interested in organizational and 
enterprise aspects would enroll in IS or IT programs. Here, the term “IT” is far from what the IT pro-
fession initiative envisioned—it refers simply to a set of degree programs that focus on organizational 
applications of computing technology.

The CC2001 committee organized the body of knowledge into 14 main categories, as follows:

Algorithms and complexity
Architecture and organization
Computational science
Discrete structures
Graphics and visual computing
Human–computer interaction
Information management
Intelligent systems
Net-centric computing
Operating systems
Programming fundamentals
Programming languages
Social and professional issues
Software engineering

There were a total of 130 subcategories. The body of knowledge had 50% more categories than a decade 
before!

1.3.5  Fifth Milestone: Computing Curriculum 2013

The ACM and IEEECS again collaborated on a ten-year review of the computing curriculum. They 
learned that the field had grown from 14 to 18 knowledge areas since the 2001 review:

Algorithms and complexity
Architecture and organization
Computational science
Discrete structure
Graphics and visual computing
Human–computer interaction
Information assurance and security
Information management
Intelligent systems
Networking and communications
Operating systems
Platform-based development
Parallel and distributed computing
Programming languages
Software development fundamentals
Software engineering
Systems fundamentals
Social and professional issues
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The committee was concerned about the pressure to increase the size of the computer science core. They 
calculated that the 2001 curriculum recommended 280 core hours and an update in 2008 increased 
that to 290. The core hours to cover the list earlier would be 305. They divided the core into two parts. 
Tier 1, the “must have” knowledge, and Tier 2, the “good to have” knowledge. They recommended that 
individual departments choose at least 80% of the Tier 2 courses, for a total of 276 hours, leaving plenty 
of time for electives in a student’s specialization area.

When ACM issued Curriculum 68, most of us believed that every computer scientist should know the 
entire core. Today, that is very difficult, even for seasoned computer scientists, since the field has grown 
so much since 1968.

1.4  View 2: Great Principles of Computing

The idea of organizing the computing body of knowledge around the field’s fundamental principles is not 
new. Many of the field’s pioneers were deeply concerned about why computing seemed like a new field, not 
a subset of other fields like mathematics, engineering, or science. They spent considerable effort to explain 
what they were doing in terms of the fundamental principles they worked with. Prominent examples 
are Turing’s paper (1937); the essays of Newell et al. (1967); Simon’s book (1996); and Arden’s COSERS 
report (1971, 1983). In subsets of the field, thinkers ferreted out the fundamental principles. Examples are 
Coffman and Denning (1973) on operating systems, Kleinrock (1975) on queueing systems, Hillis (1999) 
on the nature of computing machines, and Harel (2003) on algorithms and limits of computing.

This viewpoint, however, stayed in the background. I think the reason was simply that for many 
years, we were concerned with the engineering problems of constructing computers and networks that 
worked reliably. Most computer scientists were occupied solving engineering problems. The ones most 
interested in fundamental principles were the ones interested in theory. By 1990, we had succeeded 
beyond our wildest dreams with the engineering. However, our descriptions of the field looked like 
combinations of engineering and mathematics. Many outsiders wondered what the word “science” was 
doing in our title.

When the computational science movement began in the 1980s, many computer scientists felt like 
they were being excluded. Computational scientists, for their part, did not realize that computer scien-
tists were interested in science. A growing number of us became interested in articulating the science 
side of computing. It was not easy, because many scientists agreed with Herb Simon (1996), that we are at 
best a science of the artificial, but not a real science. Real sciences, in their opinions, dealt with naturally 
occurring processes.

But by 1990, prominent scientists were claiming to have discovered natural information processes, 
such as in biology, quantum physics, economics, and chemistry. This gave new momentum to our efforts 
to articulate a science-oriented view of computing (Denning 2005, Denning 2007).

Inspired by the great principles work of James Trefil and Robert Hazen (1996) for science, my col-
leagues and I have developed the Great Principles of Computing framework to accomplish this goal 
(Denning 2003, Denning and Martell 2004). Computing principles fall into seven categories: computa-
tion, communication, coordination, recollection, automation, evaluation, and design (Table 1.5).

Each category is a perspective on computing: a window into the computing knowledge space. The 
categories are not mutually exclusive. For example, the Internet can be seen as a communication system, 
a coordination system, or a storage system. We have found that most computing technologies use prin-
ciples from all seven categories. Each category has its own weight in the mixture, but they are all there.

In addition to the principles, which are relatively static, we need to take account of the dynamics of 
interactions between computing and other fields. Scientific phenomena can affect each other in one of 
two ways: implementation and influence. A combination of existing things implements a phenomenon 
by generating its behaviors. Thus, digital hardware physically implements computation, artificial intelli-
gence implements aspects of human thought, a compiler implements a high-level language with machine 
code, hydrogen and oxygen implement water, and complex combinations of amino acids implement life.
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Influence occurs when two phenomena interact with each other. Atoms arise from the interactions 
among the forces generated by protons, neutrons, and electrons. Galaxies interact via gravitational 
waves. Humans interact with speech, touch, and computers. Interactions exist across domains as well 
as within domains. For example, computation influences physical action (electronic controls), life pro-
cesses (DNA translation), and social processes (games with outputs). Table 1.6 illustrates interactions 
between computing and each of the physical, life, and social sciences as well as within computing itself. 
There can be no question about the pervasiveness of computing in all fields of science.

1.5 R elation between the Views

The technology and the principles views discussed earlier are two different interpretations of the same 
knowledge space. They are alternatives for expressing the computing body of knowledge.

The same principle may appear in several technologies, and a particular technology likely relies on 
several principles. The set of active principles (those used in at least one technology) evolves much more 
slowly than the technologies.

TABLE 1.5  Great Principles of Computing

Category Focus Examples

Computation What can and cannot be computed Classifying complexity of problems in terms of 
the number of computational steps to achieve 
a solution. Is P=NP? Quantum computation.

Communication Reliably moving information 
between locations

Information measured as entropy. 
Compression of files, error-correcting codes, 
cryptography.

Coordination Achieving unity of operation from 
many autonomous computing 
agents

Protocols that eliminate conditions that cause 
indeterminate results. Choice uncertainty: 
cannot choose between two near 
simultaneous signals within a deadline. 
Protocols that lead the parties to common 
beliefs about each other’s system.

Recollection Representing, storing, and 
retrieving information from 
media

All storage systems are hierarchical, but no 
storage system can offer equal access time to 
all objects. Locality principle: all 
computations favor subsets of their data 
objects in any time interval. Because of 
locality, no storage system can offer equal 
access time to all objects.

Automation Discovering algorithms for 
information processes

Most heuristic algorithms can be formulated 
as searches over enormous data spaces. 
Human memory and inference are statistical 
phenomena described by Bayes Rule. Many 
human cognitive processes can be modeled 
as information processes.

Evaluation Predicting performance of complex 
systems

Most computational systems can be modeled 
as networks of servers whose fast solutions 
yield close approximations of real throughput 
and response time.

Design Structuring software systems for 
reliability and dependability

Complex systems can be decomposed into 
interacting modules and virtual machines 
following the principles of information 
hiding and least privilege. Modules can be 
stratified by layers corresponding to time 
scales of events that manipulate objects.
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While the two styles of framework are different, they are strongly connected. To see the connection, 
imagine a 2D matrix. The rows name technologies, and the columns name categories of principles. The 
interior of the matrix is the knowledge space of the field.

Imagine someone who wants to enumerate all the principles involved with a technology. If the matrix 
is already filled in, the answer is simply to read the principles from the row of the matrix. Otherwise, fill 
it in by analyzing the technology for principles in each of the seven categories. In the figure later, we see 
that the security topic draws principles from all seven categories.

Computation

Security O(.) of encryption
functions

Secrecy
authentication
covert channels

Key distr protocol
zero knowl proof

Confinement
partitioning for MLS

reference monitor

Instrusion detection
biometric id

Protocol perform
under various loads

End-to-end
layered functions
virtual machines

Communication Coordination Recollection Automation Evaluation Design

Within the principles framework, someone can enumerate all the technologies that employ a particu-
lar principle. In the example later, we see that the coordination category contributes principles to all the 
technologies listed.

TABLE 1.6  Examples of Computing Interacting with Other Domains

Physical Social Life Computing

Implemented by Mechanical, optical, 
electronic, 
quantum, and 
chemical 
computing

Wizard of Oz, 
mechanical robots, 
human cognition, 
games with inputs 
and outputs

Genomic, neural, 
immunological, 
DNA transcription, 
evolutionary 
computing

Compilers, OS, 
emulation, reflection, 
abstractions, 
procedures, 
architectures, languages

Implements Modeling, 
simulation, 
databases, data 
systems, quantum 
cryptography

Artificial intelligence, 
cognitive modeling, 
autonomic systems

Artificial life, 
biomimetics, 
systems biology

Influenced by Sensors, scanners, 
computer vision, 
optical character 
recognition, 
localization

Learning, 
programming, user 
modeling, 
authorization, speech 
understanding

Eye, gesture, 
expression, and 
movement 
tracking, 
biosensors

Networking, security, 
parallel computing, 
distributed systems, 
grids

Influences Locomotion, 
fabrication, 
manipulation, 
open-loop control

Screens, printers, 
graphics, speech 
generation, network 
science

Bioeffectors, haptics, 
sensory immersion

Bidirectional 
influence

Robots, closed-loop 
control

Human–computer 
interaction, games

Brain–computer 
interfaces
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Computation Communication Coordination

Hardware
handshake

TCP and IP
protocols

Key distr protocol
zero knowl proof

Page fault interrupt

Locking protocol

Semaphores
monitors

Programming
language

Database

Virtual
memory

Security

Internet

Architecture

Recollection Automation Evaluation Design

1.6  What Are Information Processes?

There is a potential difficulty with defining computation in terms of information. Information seems to 
have no settled definition. Claude Shannon the father of information theory, in 1948 defined informa-
tion as the expected number of yes–no questions one must ask to decide which message was sent by a 
source. This definition describes the inherent information of a source before any code is applied; all 
codes for the course contain the same information. Shannon purposely skirted the issue of the meaning 
of bit patterns, which seems to be important to defining information. In sifting through many published 
definitions, Paolo Rocchi (2010) concluded that definitions of information necessarily involve an objec-
tive component, signs and their referents or, in other words, symbols and what they stand for, and a 
subjective component, meanings. How can we base a scientific definition of information on something 
with such an essential subjective component?

Biologists have a similar problem with “life.” Life scientist Robert Hazen (2007) notes that biologists 
have no precise definition of life, but they do have a list of seven criteria for when an entity is living. The 
observable affects of life, such as chemistry, energy, and reproduction, are sufficient to ground the sci-
ence of biology. In the same way, we can ground a science of information on the observable affects (signs 
and referents) without a precise definition of meaning.

A representation is a pattern of symbols that stands for something. The association between a rep-
resentation and what it stands for can be recorded as a link in a table or database or as a memory in 
people’s brains. There are two important aspects of representations: syntax and stuff. Syntax is the 
rules for constructing patterns; it allows us to distinguish patterns that stand for something from 
patterns that do not. Stuff is measurable physical states of the world that hold representations, usually 
in media or signals. Put these two together and we can build machines that can detect when a valid 
pattern is present.

A representation that stands for a method of evaluating a function is called an algorithm. A repre-
sentation that stands for values is called data. When implemented by a machine, an algorithm controls 
the transformation of an input data representation to an output data representation. The distinction 
between the algorithm and the data representations is pretty weak; the executable code output by a 
compiler looks like data to the compiler and algorithm to the person running the code.

Even this simple notion of representation has deep consequences. For example, as Gregory Chaitin 
(2006) has shown, there is no algorithm for finding the shortest possible representation of something.
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Some scientists leave open the question of whether an observed information process is actually con-
trolled by an algorithm. DNA translation can be called an information process; if someone discovers a 
controlling algorithm, it could be also called a computation.

Some mathematicians define computation separate from implementation. They do this by treating 
computations as logical orderings of strings in abstract languages and are able to determine the logical 
limits of computation. However, to answer questions about running time of observable computations, 
they have to introduce costs representing the time or energy of storing, retrieving, or converting repre-
sentations. Many real-world problems require exponential-time computations as a consequence of these 
implementable representations. I still prefer to deal with implementable representations because they 
are the basis of a scientific approach to computation.

These notions of representation are sufficient to give us the definitions we need for computing. An 
information process is a sequence of representations. (In the physical world, it is a continuously evolv-
ing, changing representation.) A computation is an information process in which the transitions from 
one element of the sequence to the next are controlled by a representation. (In the continuous world, we 
would say that each infinitesimal time and space step is controlled by a representation.)

1.7  Where Computing Stands

Computing as a field has come to exemplify good science as well as engineering. The science is essential 
to the advancement of the field because many systems are so complex that experimental methods are the 
only way to make discoveries and understand limits. Computing is now seen as a broad field that studies 
information processes, natural and artificial.

This definition is broad enough to accommodate three issues that have nagged computing scientists 
for many years: Continuous information processes (such as signals in communication systems or analog 
computers), interactive processes (such as ongoing web services), and natural processes (such as DNA 
translation) all seemed like computation but did not fit the traditional algorithmic definitions.

The great principles framework reveals a rich set of rules on which all computation is based. These 
principles interact with the domains of the physical, life, and social sciences, as well as with computing 
technology itself.

Computing is not a subset of other sciences. None of those domains is fundamentally concerned with 
the nature of information processes and their transformations. Yet this knowledge is now essential in all 
the other domains of science. Computer scientist Paul Rosenbloom (2012) of the University of Southern 
California argued that computing is a new great domain of science. He is on to something.
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2.1  Introduction

The early twenty-first century is a time of two trends in computing. One trend is that computing tech-
nology has become less expensive and more ubiquitous. The second trend is “big data,” both the exis-
tence of extremely large amounts of data and a push to be able to process large amounts of data. For 
example, in 2012 the Big Data R&D Initiative committed six US federal agencies and departments to 
“improve our ability to extract knowledge and insights” from large quantities of digital data [1].

Concurrent with these trends, the term “computational thinking” (CT) has come into use. This fre-
quently refers to a set of computational concepts and skills that should be widely taught. These concepts 
and skills are generally seen as important and necessary additions to the mathematical, linguistic, and 
logical thinking skills already taught [2]. There have been several approaches to this in the past, includ-
ing teaching students basic computer literacy (usually identified as being able to use the computer as a 
tool), teaching programming in specific languages, or teaching programming through specific applica-
tion areas [2]. Many computer scientists, however, generally feel that these approaches do not lead to 
a clear understanding of the shifts in thinking and approach that are necessary and facilitated when 
computing technology is incorporated into problem solving. Yet with the increased use of the term 
“computational thinking,” there has arisen considerable debate about exactly what it means, who should 
be expected to do it, and in what contexts. The confusion about what CT means is even apparent in 
nontechnical discourse. An example of this is found in a March 2012 article in the New York Times [3] 
in which the author conflates “understanding of computational processes” and “the general concepts 
programming languages employ.”

In 2010, the National Research Council’s Committee for the Workshops on Computational Thinking 
identified an ongoing need in the field to “build consensus on the scope, nature, and structure of com-
putational thinking.” To some extent, the lack of consensus stems from disagreement about the level of 
granularity used in the definition. This has led to a set of questions that are at the heart of discussions 
about CT. Does CT refer to the ways in which we change our thoughts about a problem and its possible 
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solution when we know we can incorporate computing? Is CT about managing layers of abstraction 
through use of computation, or should it explicitly involve detailed computing concepts such as state 
machines, formal correctness, recursion, and optimization [2]? Is there a set of analytical skills, unique 
to computing disciplines, that all people should develop? Is there a distinction between doing CT and 
effectively applying computation to solve problems? Is CT something other than simply saying “let’s 
apply computing to solve a problem in X (e.g., biology, economics, literary analysis, etc.)”? Finally, who 
is best equipped or best suited to teach CT to those outside of computer science? Should it be computer 
scientists, or should it be disciplinary specialists?

2.2  Definitions of Computational Thinking

The term “computational thinking” was first introduced by Seymour Papert [4] in a 1996 paper about 
math education. It was next brought into use by Jeanette Wing in 2006 [5] and subsequently clarified 
by her in later work (e.g., [6,7]). Since 2006, there have been various attempts to clarify and redefine the 
term, as well as efforts to articulate the ways in which CT should shape K-12 and college level education 
and pedagogy. There is not yet consensus about what is meant by the term, especially across educational 
levels, though a wide range of activities have evolved that are enriching educational practices in com-
puter science and related fields.

In his paper, Papert [4] laid out several approaches to solving a geometric problem, all of which could 
be implemented using software packages or programming approaches: a probabilistic approach, a stan-
dard Euclidean solution, and a heuristic approach that was used to create a supporting visualization. 
This led Papert to identify two ways in which computers are typically used to contribute to problem 
solving. The first, evident in the probabilistic approach, is to use the computer as a high-speed data anal-
ysis tool, able to evaluate many values and generate an answer. The second, in the Euclidean approach, is 
to use the computer to provide an alternative to building geometric representations by hand. In both the 
cases, the computer quickly and effectively generates a solution, but does so using representations that 
have no clear connection to the original problem and do not bring clarity to the solution. Papert argued 
that a computationally thoughtful approach would allow one to address his fundamentally geometric 
problem with a combination of different kinds of computer approaches, making it possible to use the 
computer to solve problems in ways that “forge ideas,” that allow one to carry out heuristic approaches, 
and that actually help people better analyze and explain the problem, the solution, and the connection 
between them.

At her most basic, Wing defines CT as a problem-solving and system design approach that “draws 
on concepts fundamental to computing” [6] and as the “thought processes involved in formulating 
problems and their solutions so that the solutions are represented in a form that can be effectively car-
ried out by an information-processing agent” [7]. Key to CT, in Wing’s view, are the layers of symbolic 
abstractions of data, processes, and equipment that are used when problems are encoded so that they 
can be solved using a computer. She argues that the underlying computing device forces a strictly com-
putational problem-solving approach, yet she labels as computational various concepts and skills that 
predate the advent of computing and are used across numerous disciplines. By contrast, Papert argues 
that the use of computing devices, in combination with other fields of knowledge and their problem-
solving approaches, enables rich, creative problem-solving methods that are new and not merely the 
computerization of an algorithm that already exists in another discipline.

The fundamental differences between Papert’s and Wing’s definitions lie in the relationship between 
computing and the problem domain, and in the genesis of the problem-solving strategy. Wing’s is a 
unidirectional view, basically asking the question “What would I have to do to get a computer to imple-
ment an existing solution to this problem?” [6]. In this view, the computer has a set of capabilities. 
Based on these capabilities, problems are expressed algorithmically, as a set of specific instructions that 
the computer can execute. Papert’s approach is bidirectional, using computing in concert with other 
problem-solving approaches to evolve new solution methods. He interprets “computation” broadly, not 
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just numerically, and sees the computer as an agent that can provide us with useful capabilities and 
encourage new ways of viewing a problem. It is this rich bidirectional perspective that allows us to 
address problems that lie at the intersection of disciplines, and is reflected in the development of new 
fields, such as bioinformatics, computational linguistics, and lexomics [8].

It is when Wing makes a distinction between shallow and deep CT [6] that she begins to approach 
Papert’s view. While still rooted in a largely unidirectional view (choice of abstractions, modeling larger 
order-of-magnitude problems, hierarchical decomposition), she also considers that initial problem-
solving steps can prompt new questions and new ways of viewing data. However, it is not clear that 
computing is necessarily the best means for teaching concepts such as abstraction, for example. In fact, 
abstraction is used quite differently in computing than in mathematics. In computing, abstraction is 
used as a way to express details so that they are manipulable by the computer, whereas in mathematics, 
underlying detail can be completely ignored or forgotten once the abstraction is created.

Much of the discussion about CT following Wing’s 2006 article has followed a unidirectional 
approach, focusing on whether there is a set of experiences, knowledge, concepts, and skills that are 
necessary in order for people to be able to apply algorithmic solutions to problems in non-computer 
science fields. Is CT a definable set of concepts that can be taught? Are these concepts taught, by default, 
to computer science students, or is CT relevant only in the context of non-computer science disciplines? 
Should it be taught explicitly as a set of concepts and skills, or only implicitly through the combina-
tion of disciplinary knowledge and computational methods? These questions have arisen repeatedly in 
discussions of pedagogy and curriculum, particularly in K-12 where decisions ultimately depend on the 
age of the students as well as the context in which the teaching is being carried out. At the college level, 
we have to ask whether the goal is to expect a single person to have sufficient depth in both computing 
and another discipline, or whether the goal is to prepare people to bring their respective knowledge and 
skills to a conversation that can examine how computing and another discipline influence and serve 
each other. Overall, the discussion of CT has largely ignored the question of what level of exposure 
to computer science concepts and skills is necessary in order for people to achieve the bidirectional 
problem-solving insights that Papert presumed can take place.

Several writers have critiqued Wing’s original definition of CT or tried to pose definitions that will 
lead more directly to curriculum and classroom practices. In many cases, a fundamental question 
raised is whether her definition is at all different than “algorithmic thinking” or “logical thinking.” The 
critiques are summarized and expanded on by David Hemmendinger [9] who cautions against easy 
distortions of CT. Echoing Papert, he argues that computational metaphors may inspire new problem 
solutions (and the solving of new problems) in non-computer science disciplines. Hemmendinger points 
out that “thinking with computation” requires use of algorithms and a consideration of resources that 
would not be necessary if one were not planning on a computer implementation. Yet he cautions that a 
push for “computational thinking” is easily permuted into a call to make everyone think like computer 
scientists, when the goal should be to promote instances in which applications of computing facilitate 
explicative problem solutions.

At the 2012 ACM Turing Centenary [10], Turing Award recipient Dana Scott posed the question 
“Is computational thinking or algorithmic thinking something that one knows when he sees it, or can it 
be explained?” Interestingly, none of the responses delved into any distinction between computational 
and algorithmic thinking. Donald Knuth commented that algorithmic thinking has been present in 
works of past centuries, including thirteenth century Sanskrit writings about permutations in music. 
He discussed the importance of being able to fluently jump levels of abstraction, “seeing things in the 
small and the large simultaneously, and being able to go effortlessly to many levels in between.” Christos 
Papadimitriou followed Knuth by saying that algorithmic thinking meant “being comfortable with 
detail, understanding that it is detail, being able to push it away and work without it, and then come back 
to it.” Les Valiant added that we had to recognize the latent computational content of scientific objects 
and processes. This is an example of the implicit view of CT, not arguing that we should impose on a 
problem a computer science decision about the appropriate algorithmic solution, but rather suggesting 
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that we ask what data and algorithmic content is already present. This is particularly the case for biologi-
cal applications in which nature has already provided considerable data encoding.

Papert introduced CT in an education-oriented context, based on the idea that “every time you learn 
something, you learn two things, the other being the model of learning you just used” [4]. The computer 
science community has understandably embraced CT, in part because we want people to learn about 
computing by learning via computing. Wing has also discussed CT in a context of core concepts and 
tools that should be taught to children in K-12, particularly taking advantage of children’s willingness to 
explore new technology devices. Subsequent to Wing’s call for “computational thinking for everyone,” 
many efforts were undertaken to incorporate CT into the K-12 educational landscape and into the col-
lege experience. In the following sections, we discuss a number of these efforts.

Despite the lack of consensus within the community about what CT is, there does seem to be con-
sensus that students at all levels will benefit from exposure to and increased practice with computing-
related concepts and skills. Depending on the degree and type of exposure, students will better 
understand the role that computing can play in the formulation and execution of problem solutions. 
This will ultimately help them engage in collaborative problem solving across a range of disciplines, 
either as a disciplinary specialist with an understanding of computation or as a computer scientist 
who can collaborate with disciplinary specialists. Certainly, there is no denying that the increasing 
use of computational methods in many disciplines, and the development of new interdisciplinary 
fields that include computing, requires that we educate students in a manner that prepares them to 
do that work.

This still leaves open, however, the question of whether there truly are core aspects of computing that 
everyone needs to understand. The National Science Foundation (NSF), in their 2009 CPATH solici-
tation (CISE Pathways to Revitalized Undergraduate Computing Education) [11], loosely defined CT 
as “competencies in computing concepts, methods, technologies, and tools” [12]. On their FAQ site, 
they said “NSF has described a broad CT framework, but does not attempt to define the computing 
constructs. You are invited to join in the definition and articulation of the computing constructs that 
have permeated and transformed our modern world and to use these to develop methods, curricula, 
and pedagogies to assure that all students are able to think computationally.” The CPATH program 
focused primarily on college and university interventions, but also considered K-12 interventions in 
situations where they were tied to transition into an undergraduate program that involved CT. By con-
trast, the subsequent NSF CE21 solicitation (Computing Education for the twenty-first century) gives 
no definition of CT at all, simply saying that “Efforts can focus on computational thinking as taught in 
computing courses or infused across the curriculum” and will “increase … knowledge of computational 
thinking concepts and skills” [13].

2.3  College and University

There are numerous examples of the infusion of computing and computer science content into non-
computer science courses and non-computer science disciplines. While many do not explicitly mention 
CT, these efforts generally have a goal of exposing students to interdisciplinary applications of comput-
ing. We present a few examples, both individual courses at different curricular levels and efforts at larger 
programmatic or institutional change.

2.3.1  Individual Courses

2.3.1.1  Computing for Poets

Professor Mark LeBlanc of Wheaton College (Norton, MA) developed the course Computing for Poets 
[14], which focuses on the use of computers to analyze written text. It involves a number of “compu-
tational thinking skills,” including problem decomposition, algorithmic thinking, and experimental 
design. A key focus is on developing programs that can address new questions about texts, rather 
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than relying solely on existing text analysis tools. This course has been developed in the context of 
the Lexomics project [15] in which various computational and statistical methods are combined with 
existing text analysis approaches, leading to methods for answering new questions about ancient 
texts. The course is connected to two English courses, one on Anglo-Saxon Literature and another 
on J.R.R. Tolkien. This connection of courses gives students firsthand experience devising problem-
solving methods that combine traditional and computational approaches, allowing them to ask new 
questions, and then ask whether bringing the power of computing to literary analysis leads to the 
formulation of new answers.

2.3.1.2  Computational Microeconomics

Professor Vincent Conitzer of Duke University developed the course Computational Microeconomics 
[16], which was intended to introduce undergraduates to work at the intersection of economics and 
computer science. The course is usually taken by students from computer science, economics, math, and 
electrical and computer engineering. It has minimal prerequisites and starts with an introduction to lin-
ear and integer programming, along with the MathProg language and the GNU Linear Programming 
Kit. The remainder of the course focuses on economics topics such as expressive marketplaces, game 
theory, Bayesian games, and auction design. The students work on both written and programming 
assignments and do a small (possibly team) project that involves programming. This course provides 
students with firsthand experience in working at the intersection of two disciplines.

2.3.1.3 A dvanced Algorithmic Techniques for GPUs

In the context of a course on Advanced Algorithmic Techniques for GPUs (graphical processing 
units), two researchers from the visual computing technology company NVIDIA, Wen-mei Hwu and 
David Kirk, present a lengthy list of areas in which GPU computing is being used. They include a range 
of computing, business, scientific, and engineering applications such as financial analysis, digital audio 
and video processing, scientific simulation, computer vision, and biomedical informatics. The inference 
is that people from a range of backgrounds and disciplines are increasingly in a position to try to use 
GPUs, or to coordinate with computer scientists who will use GPUs. This is underscored when they 
put forward a definition of CT skills: “The ability to translate/formulate domain problems into compu-
tational models that can be solved efficiently by available computing resources” [17]. The goal of their 
course is to make commonly used many-core GPU techniques accessible to scientists and engineers, 
claiming that “computational thinking is not as hard as you may think it is.” They further define CT 
skills as

•	 Understanding the relationship between the domain problem and the computational models
•	 Understanding the strengths and limitations of the computing devices
•	 Defining problems and models to enable efficient computational solutions

2.3.2  Institutional Change

2.3.2.1  Bowdoin College

Bowdoin College is beginning to take steps toward institution-wide change, with initial discussion 
of the importance of some form of CT across the curriculum. Bowdoin’s president, Dr. Barry Mills, 
addressed this in his 2012 baccalaureate address to graduates [18]. Speaking about the role of informa-
tion and the ability to interpret information, Mills addressed CT as a “mode of inquiry” in the curricu-
lum. While citing Wing’s 2006 definition, Mills put forth that it is possible to “engage computational 
thinking and analysis” across disciplines that span the sciences, social sciences, and humanities. Rather 
than arguing for the direct application of computing, he argues for the integration of disciplines with 
“a rapidly changing landscape of data, information, and knowledge,” seeing this as an important step for 
the continued development of liberal arts education.
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The perspective put forward by Dr. Mills is an indication of the extent to which leaders of educational 
institutions are beginning to grapple with some definition of CT as an educational priority.

2.3.2.2  DePaul University: Computational Thinking across the Curriculum

Faculty at DePaul University, led by Professors Amber Settle and Ljubomir Perkovic, undertook a proj-
ect [19] designed to incorporate CT into the DePaul curriculum at all levels, using their Liberal Studies 
(general education) courses as the vehicle to accomplish this. The DePaul project leaders recognized 
that Wing’s original definition of CT was problematic, in part because she gave no examples from 
outside the sciences and quantitative social sciences. They began their project by defining CT as “the 
intellectual and reasoning skills that a professional needs to master in order to apply computational 
techniques or computer applications to the problems and projects in their field.” This definition hews 
closely to Wing’s approach, though they argue in their project documents that hers is not a new way of 
thinking, pointing to a number of examples that significantly predate her article. However, they make a 
distinction between the implicit use of CT within various fields and the explicit recognition of the use 
of computationally oriented reasoning skills. The underlying principle of the DePaul project was that 
it could only be successful if faculty across disciplines agreed on a useful framework for implementing 
CT in their courses.

In order to convince faculty from other fields to participate, the project leaders developed a set of 
examples from a range of disciplines, based on categories of CT that they defined using Peter Denning’s 
“Great Principles of Computing” [20]. Denning, preceding Wing’s article by several years, put forward 
a set of principles with the goal of showing people in other disciplines “how to map the principles into 
their own fields.” The DePaul project offered definitions of each principle (computation, communica-
tion, coordination, recollection, automation, evaluation, and design) and gave examples of how CT has 
been used in a number of disciplines. Ultimately, the project included 18 faculty at DePaul who modified 
19 Liberal Studies courses. The project leaders also collaborated with six teachers at the University of 
Chicago Lab Schools in order to also explore middle school and high school course modifications [21].

2.3.2.3  Union College: Creating a Campus-Wide Computation Initiative

Union College [22], with NSF funding, carried out a five-year project to create a campus-wide com-
putation initiative. The goal of the project was to provide an appropriate foundation in computing for 
non-computer science students who are or should be using computing in the context of their discipline. 
There were two key elements:

	 1.	 Provide engaging introductory computer science courses, open to all students on campus. The 
department offers six theme-based courses: big data, robotics, game development, artificial intel-
ligence, media computation, and programming for engineers.

	 2.	 Support infusion of a computing component into non-computer science courses.

To date, 24 faculty from 15 disciplines, working with summer research students, have developed 
computational components for over two dozen courses. These efforts were also extended to three 
other undergraduate institutions, with faculty–student teams at Mount Holyoke College (Music), 
Denison College (Geology), and Bard College (Computer Science and Literature). The nature of the 
computational modules is quite varied, with no common set of key concepts or skills across all of 
the courses. The key result, however, is that a majority of students taking the infused courses have 
reported that the computational component helped them understand the disciplinary material. In 
addition, in line with Papert’s definition of CT, faculty and students alike have been able to move 
forward with new research efforts and new class exercises because incorporating a computational 
element allows them to ask new questions and combine data in new ways. Very few of the infused 
courses, however, have an explicit programming component, or any explicit discussion of concepts 
such as abstraction, problem decomposition, etc., beyond what would normally take place in the 
context of that discipline.
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2.4  K-12

Considerable effort has been made to address content and pedagogy issues regarding CT in K-12. Despite 
the lack of consensus about exactly what CT is, numerous attempts have been made to bring component 
elements into the K-12 classroom. Each K-12 effort reflects an inherent definition of CT, with a result-
ing view of what should be introduced and how it should be incorporated into the classroom setting (as 
separate content, or integrated with existing curricular content). Concepts often considered part of CT 
that have been introduced across the array of K-12 activities include iterative refinement, problem decom-
position, connections between social systems and physical systems, modeling of abstraction, continu-
ous versus discrete data, Boolean operations, causal relationships, searching for patterns, data mining, 
and complexity. These concepts are introduced either through general subject areas or through domain-
specific content, including scientific models (simple models of physical phenomena for younger children; 
more complex models for older students), visualization and large data sets, computational media, game 
development, genetics, and environmental simulations. Throughout the K-12 work, an important issue 
is the role of age and grade level in determining what students can do, and the transition from prebuilt 
examples and models to independent building or programming. Of course, competing pedagogies lead to 
different approaches based on how accessible the pedagogy makes different concepts and skills.

K-12 projects that are focused on teaching computer science can effectively sidestep the issue of how 
to define CT. Such courses (e.g., see Section 2.4.4) will cover concepts frequently considered part of CT 
because those are part and parcel of computer science. The Computer Science Teachers Association 
(CSTA) addresses grade level and implementation issues through a comprehensive set of curricular 
standards for K-12 computer science education [23]. These standards, divided into three levels, cover the 
introduction of fundamental concepts of computing at all levels, as well as additional secondary-level 
computer science courses. The curriculum is built around five complementary strands, one of which is 
CT (the others are collaboration; computing practice; computers and communication devices; and com-
munity, global, and ethical impacts).

The focus of the CT strand is to promote problem solving, system design, knowledge creation, and 
improved understanding of the power and limitations of computing. The CSTA uses the definition 
developed during a joint project with the International Society for Technology in Education (ISTE) 
(Section 2.4.1). The interdisciplinary view that CT is important for combining computer science with all 
disciplines can actually facilitate teaching it in lower grades since it does not necessitate specific detailed 
knowledge of computing on the part of teachers. For example, in grades K-3, the standard for CT is met 
if students can use certain technology resources to solve age-appropriate problems, use various tools 
to illustrate stories, and understand how to sort information. In grades 3–6, the standards are met by 
students understanding and using the basic steps of algorithmic problem solving, developing a simple 
understanding of an algorithm, and making a list of subproblems that contribute to the solution of a 
larger problem. These abilities continue to scale up for grades 6–9 and 9–12 so that eventually students 
can describe the software development process, understand sequence, selection, iteration, and recur-
sion, compare techniques for analyzing massive data collections, etc.

2.4.1  CSTA and ISTE

The CSTA and the ISTE, with support from the NSF, undertook development of an operational (rather 
than formal) definition of CT for K-12 [24]. This effort, involving K-12 teachers, college faculty, and edu-
cational administrators, focused on a set of questions relevant to the K-12 setting (from [24]):

•	 What would CT look like in the classroom?
•	 What are the skills that students would demonstrate?
•	 What would a teacher need in order to put CT into practice?
•	 What are teachers already doing that could be modified and extended?
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The consensus reached was that CT, in the K-12 setting, involves solving problems such that the solu-
tion can be implemented with a computer. Students will use concepts such as abstraction, recursion, 
and iteration, applying these across many subjects. This led to the identification of key concepts and 
capabilities, with examples of how these could be embedded in activities across the K-12 curriculum. 
This effort addresses an issue raised by Lu and Fletcher [25]. While agreeing with Wing’s basic definition 
of CT, they argue for the gradual introduction of CT concepts through consistent terminology. Lu and 
Fletcher propose a computational thinking language of vocabulary and symbols that can be used from 
grades 3–12 to refer to computation, abstraction, information, execution, etc. Many disciplines involve 
problem solving and promote logical and algorithmic thinking, so active engagement of these practices 
across the disciplines will reinforce students’ developing capabilities (such as designing solutions to 
problems, implementing designs, testing and debugging, etc.). In this sense, linguistic analysis of sen-
tences in a Language Arts class may not seem inherently computational, but it will reinforce patterns of 
thinking that can be applied to problem solving in other fields. The full set of concepts and capabilities 
identified in the CSTA–ISTE effort includes data collection, data analysis, data representation, problem 
decomposition, abstraction, algorithms and procedures, automation, parallelization, and simulation. 
Examples are provided from computer science, math, science, social studies, and language arts. Finally, 
a set of resources provide concrete examples for classroom teachers [26,27].

2.4.2  UK Computing: A Curriculum for Schools

In 2012, the British Computing at School Working Group published the report Computer Science: A cur-
riculum for schools [28]. The purpose of the report was to address the question of what constitutes computer 
science as a school subject. The authors present the following definition of CT, very much based on Wing: 
“a mode of thought that goes well beyond software and hardware, and that provides a framework within 
which to reason about systems and problems.” As might be expected in a document focused on computer 
science learning requirements, they see CT in the unidirectional way, as “the process of recognising aspects 
of computation in the world that surrounds us, and applying tools and techniques from computing to 
understand and reason about … systems and processes.” They further argue that students are empowered 
by the combination of CT, computing principles, and a computational approach to problem solving.

Like the CSTA–ISTE project, the Computing at School group presents a detailed breakdown of what 
students should know about computing and computer science, and what they should be able to do at 
each academic level (roughly equivalent to grades K-2, 2–5, 5–8, and 8–10). The set of concepts is roughly 
equivalent to the CSTA–ISTE set, focusing on algorithms, programs, data, computers, and communica-
tion. Whereas the CSTA–ISTE project identifies ways in which the key concepts and capabilities could 
be addressed in non-computing disciplines, the Computing at School group does not address how the 
material should be taught. They do, however, provide a very clear set of “attainment targets” for each 
level student, demonstrating increased mastery as students progress.

2.4.3  Computational Science and Computational Science Thinking

The slogan of the Shodor Foundation [29] is “Transforming Learning Through Computational Thinking.” 
Their focus is on computational science, combining quantitative reasoning, analogical thinking, algo-
rithmic thinking, and multiscale modeling. They want students to develop the math and computing 
knowledge and skills necessary to generate and understand computational results across a number of 
disciplines. (Part IV of this volume describes advances in computational science, including computa-
tional biology, bioinformatics, astrophysics, chemistry, scientific visualization, and other areas.) The 
Shodor Foundation provides resources for both faculty and students, including free online workshop 
materials that focus on model building, simulation, and model-based reasoning in various math and 
science disciplines (such as astronomy and astrophysics, biomedical science, computational chemistry, 
environmental science, forensic science, and physics). Without an overt emphasis on CT, Shodor also 
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provides instructional materials for various levels of K-12 that support student facility with underlying 
math and technology (databases and spreadsheets, graphics and visualization, and scientific comput-
ing, for example). Given the nature of their materials, much can be used either inside the classroom in a 
formal setting or outside the classroom in an informal education setting.

For college and university faculty, Shodor provides discipline-specific workshops that focus on the 
use of computation (e.g., computational biology, computational chemistry) as well as workshops that 
focus more generally on the use of parallel and cluster computing in computational science. A related 
effort is found in the INSTANCES project, Incorporating Computational Scientific Thinking Advances 
into Education and Science Courses [30]. The focus of this project is to introduce K-12 teachers, through 
a series of modules, to computing in the context of scientific problems, viewing computational sci-
ence as the solution of scientific and engineering problems using the “combination of techniques, tools, 
and knowledge from multiple disciplines,” combined with computer simulations. Like the Shodor 
Foundation (part of the INSTANCES project), they argue that the problems that are central to compu-
tational science form an important core for science, math, and computer science education. They define 
computational science thinking (CST) as “using simulation and data processing to augment the scien-
tific method’s search for scientific truth for the realities hidden within data and revealed by abstrac-
tions.” Each module details the learning goal and objectives, activities, products that will be generated 
by students, and discussion of the embedded CST. The modules cover areas such as exponential sponta-
neous decay, exponential biological growth, bug population dynamics, and projectile drag.

2.4.4  Exploring Computer Science, CS Principles

A number of efforts are aimed at increasing high school–level interest in computer science, particularly 
in ways that will encourage students to continue with computer science study in college. These efforts 
address CT to the extent that a student just learning about computer science would be encouraged to 
consider applications of computing to other disciplines.

Exploring Computer Science (ECS) [31] is a one-year college-preparatory course that evolved out of 
efforts to involve in computer science a larger number of underrepresented students in the Los Angeles 
Unified School District. The course is focused on computer science concepts, with the following key 
instructional units:

•	 Human Computer Interaction
•	 Problem Solving
•	 Web Design
•	 Introduction to Programming
•	 Data Analysis
•	 Robotics

The course is designed to address “real world, socially relevant, interdisciplinary, and creative applica-
tions of computing” [31]. In that context, the developers identify three CT practices: algorithm develop-
ment, problem solving, and programming (specifically related to real-life problems faced by students).

The goal of the CS Principles project [32] is the development of a new Advanced Placement Computer 
Science course. A set of six CT practices are listed as part of the Principles project, including analyz-
ing problems and artifacts, communicating, and collaborating. The three practices that most directly 
involve computing are

	 1.	 Connecting computing, specifically identifying its impacts, describing connections between peo-
ple and computing, and explaining connections between computing concepts

	 2.	 Developing computational artifacts, using appropriate techniques and appropriate algorithmic 
and information management principles

	 3.	 Abstracting, which involves representation, identification of and use of abstractions in computa-
tion or modeling
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These are reasonable, and not unexpected, practices to incorporate into a computer science course, and 
will be taught to students who are already committed to studying at least introductory computer science.

2.5  Changes to Computer Science

As discussed earlier, a bidirectional view of CT has led to the development of new disciplines, and it 
has also led to changes in computer science as a field. Computer science has become a driving force 
of innovative practices and new knowledge. The combination of computing power, existing and new 
computing techniques, and disciplinary knowledge leads to the identification of new problems and the 
development of new solution methods. An early example (1988) of this is the Human Genome Project, 
when computer science was faced with a “big data” problem. This led to efforts to build parallel sequence 
analysis algorithms, better visualization tools, mechanisms to distribute databases, new pattern rec-
ognition algorithms, and gene modeling algorithms. Today, we may think of this work within the dis-
ciplines of genomics or computational biology, but its origins were in efforts to determine how best to 
combine computing with biological knowledge and methods to solve a new problem. Similarly, data 
mining and information retrieval methods were advanced in the context of the genome project, and 
today are employed to solve problems relevant to a host of disciplines.

Beyond the above connections, the relationship between biology and computer science is extremely 
bidirectional. Initially, there were two separate efforts, with computational methods to solve biologi-
cal problems and the study of biological systems to derive new optimization methods for computing. 
Increasingly, however, computing and biology have supported each other in new ways, based on a view of 
biological processes as algorithms and information processing systems that solve real-world problems. In 
an extensive survey [33], Navlakha and Bar-Joseph focus on coordination, networks, tracking, and vision 
as examples of areas in which an information processing view has led to better understanding of biologi-
cal properties and led to the improvement of computational systems. They report on research on prob-
lems that can be addressed both computationally and biologically. A model constructed for the biological 
problem can then be used to improve the solution to the computational problem. For example, they cite 
research in visual processing computational neuroscience that is leading to new models of human visual 
processing, which in turn is leading to better algorithms for computer vision. The bidirectional connec-
tions between biology and computer science demonstrate that commonalities between computational 
and biological processes allow solutions to problems in one area to apply to problems in the other.

Terrain analysis (see Chapter 46) is another domain in which new computer science methods had to 
be developed if computing was to be used effectively as part of new problem-solving approaches. Terrain 
analysis involves applying computational models to very large global positioning system (GPS) data sets 
(replacing surveyor data) in order to analyze terrain features, particularly important for environmental 
modeling and land use management. The use of digital, remotely acquired, data for terrain analysis 
allows for the analysis of very remote, relatively unexplored areas for which actual on-site surveying 
would be prohibitive. The use of digital data for terrain analysis, however, has necessitated evolution of 
interpolation methods, visualization of the relevant GPS data, animation, and other areas of computer 
graphics. In general, the sizable number of tools available ([34] gives examples) is a clear indication of 
the extent to which the analysis of geographic information system data has become a critical part of 
certain fields, and computer science has developed the techniques necessary to meet the analysis needs.

There are also humanities disciplines and humanities research that present opportunities for com-
puting to support research and for the demands of research to push developments in computing. 
One such area, underscored by a NSF and National Endowment for the Humanities (NEH) grant 
program, is documenting endangered languages [35]. The goal is to “exploit advances in information 
technology to build computational infrastructure for endangered language research.” The solicita-
tion is explicit that funding can support fieldwork efforts related to the recording, documenting, 
and archiving of languages, but also will support preparation of “lexicons, grammars, text samples, 
and databases,” with an interest in data management and archiving. This is clear recognition that the 
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necessary computing infrastructure to address the problem of endangered languages may not yet 
exist. Therefore, the aggregate of projects in this area have to address both the humanities side and 
the computing side of the problem, and that work on both sides will be informed by understanding 
and knowledge of the other.

2.6  Summary

The increasing ubiquity of computing and increased focus on “big data” make it possible for almost 
every discipline to consider new questions or address longstanding problems. In some instances, the 
methods for solving those problems are already clear, requiring straightforward applications of com-
puting in order to implement existing algorithms. In other situations both disciplinary and computing 
knowledge, the bidirectional form of CT, must be utilized to develop new solutions. This will continue 
to lead to changes in existing fields, and to the formulation of new disciplines. There is not yet agree-
ment on a single set of CT concepts and skills that all students should be taught. There is clearly increas-
ing interest, however, in broadening student exposure to elements of computing, preparing those in 
computer science and those in other fields to better contribute to interdisciplinary applications.
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A data structure is a method for organizing large amounts of data so that it can be accessed efficiently. 
Any piece of software will almost certainly make use of fundamental data structures, and proper choices 
of data structures can have a significant impact on the speed of an application, while poor choices can 
make the application impractical for even modest-sized inputs. Consequently, the study of data struc-
tures is one of the classic topics in computer science. Most data structures can be viewed as containers 
that store collections of items.

3.1 T ypes of Containers

All basic containers support retrieving, inserting, and removing an item, and the basic containers differ 
in which items can be efficiently accessed. Containers also often provide a mechanism for viewing every 
item; in languages such as C++, C#, and Java, this is implemented with an iterator and a language for 
loop construct.

A sequence container stores items in a linear order, and an item is inserted at a specified position. 
Examples of sequence containers include fixed-sized arrays, variable-length arrays, and linked lists. 
Typically, retrieval is based on finding an item given a position; testing whether some item present in 
the list is likely to devolve into a sequential search and be inefficient.
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A set container stores items without linear order and thus can provide for more efficient retrieval. Some 
sets will guarantee that items can be viewed in sorted order; others provide no such guarantees. Examples 
of sets include search trees, skip lists, and hash tables. In some languages, sets can have duplicates.

A map container allows searching for key/value pairs by key. Although the interface is different from 
the set container, the underlying data structures used for efficient implementation are the same.

A priority queue container provides access only to the minimum item. An efficient implementation of 
a priority queue is the binary heap.

Some containers are designed specifically for searching of text. Examples include suffix trees and 
radix search trees [1–3].

3.2  Organization of the Chapter

The remainder of this chapter focuses primarily on the fundamental container types, namely, the sequence 
containers, ordered and unordered sets, and the priority queue. We also discuss one data structure that 
is not a container: the union/find data structure. After examining the fundamental data structures, we 
discuss the recurring themes and interesting research challenges seen in the design of data structures.

3.2.1  Sequence Containers

A sequence container stores items in a linear order, and an item is inserted at a specified position. 
Typically, retrieval is based on finding an item given a position; testing whether some item present in 
the list is likely to devolve into a sequential search and be inefficient. If items can be accessed, inserted, 
and removed from only one end, the container is a stack. If items can be inserted at one end (typically 
the back) and removed only from the other end (the front), then the container is a queue. If all operations 
are allowed at both ends, the container is a double-ended queue [4].

3.2.1.1  Fixed-Size Arrays

A fixed-sized array is usually a language primitive array, as in C++ or Java. Items are accessed by the array-
indexing operator, and the fixed-size array is often used as a building block for resizable arrays. In many cases, 
particularly when insertions and deletions are rare, fixed-sized arrays are the fastest sequence container.

3.2.1.2 R esizable Arrays

Resizable arrays allow efficient access to an item by specifying its position (an array index) and also 
efficient adding and removal of an item, provided that the position is at or very close to the high index. 
Inserting new items near the low index is inefficient because it requires pushing all the subsequent items 
one index higher in the array; similar logic applies for removing items near the front. Resizable arrays 
are often implemented by using a primitive array and maintaining a current size; the primitive array is 
replaced with a larger array if capacity is reached. If the array size is increased by a multiplicative factor 
(e.g., it is doubled) then the amortized overhead incurred by the expansion is constant time. The C++ 
vector and Java ArrayList are examples of resizable arrays.

3.3  Linked Lists

In a linked list, items are not maintained in (logically) contiguous order; this potentially avoids the 
problem of having to move large numbers of items during an insertion or deletion. In a singly linked list, 
a node stores an item along with a link to the next node in the list. Additionally, the size of the list and 
a link to the first item are stored. This gives O(1) access time for adding, removing, or accessing the first 
item. If a link to the last item is also stored, we obtain O(1) access time for adding or accessing the last 
item. If each node contains both the next and previous item in the list, we obtain a doubly linked list. 
Although the doubly linked list uses more space than the singly linked list, it supports the removal of 
the last item in O(1) time and allows bidirectional traversal of the list.
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Figure 3.1 shows how a new node is spliced into a doubly linked list (the reverse process also shows 
the removal).

Accessing of an item by specifying its index position is inefficient if the index is not near one of the 
list ends because the item can only be reached by sequentially following links.

Items can be inserted into the middle of a linked list with only a constant amount of data movement by 
splicing in a new node. However, an insertion based on providing an index is inefficient; rather these kinds of 
insertions are usually done by providing a link to the node itself using some form of an iterator mechanism.

Figure 3.2 summarizes the cost of the basic operations on the sequential containers.

3.4  Ordered Sets and Maps (Search Trees)

An ordered set stores a collection of unique items and allows for their efficient insertion, removal, and 
access. Iteration over the set is expected to view the items in their sorted order. An implementation using 
a sorted array allows for access of an item by using binary search. In a binary search, we compare the 
target item x with the item in the middle of the array. This either locates x or reduces to a search in either 
the lower or upper half of the array that can be resolved recursively. Since the recursion reaches a base 
case after in approximately log N steps,* the cost of an access is in O(log N) time; however, adding or 
removing items will take O(N) time, because all items larger than the item being manipulated will need 
to be shifted one position in the array. Using a sorted linked list appears problematic because binary 
search requires accessing the middle item, and that operation is not efficiently supported by linked lists. 
Most set implementation use a different linked structure based on trees; typically, these are binary trees.

*	 Throughout, log N means log2N.

a b

1 4
2 c3

x

FIGURE 3.1  Insertion into a doubly linked list.

Resizable Array Singly-Linked List Doubly-Linked List

addFront O(N) O(1) O(1)
addBack O(1) O(1) O(1)
addAtIndex O(N) O(N) O(N)
addAfterIterator O(N) O(1) O(1)
addBeforeIterator O(N) O(N) O(1)
removeFront O(N) O(1) O(1)
removeBack O(1) O(N) O(1)
removeAtIndex O(N) O(N) O(N)
removeIterator O(N) O(1)* O(1)
getByIndex O(1) O(N) O(N)
advanceIterator O(1) O(1) O(1)
retreatIterator O(1) O(N) O(1)
contains O(N) O(N) O(N)
remove O(N) O(N) O(N)

FIGURE 3.2  Running times for operations on sequential containers. * represents constant time if we are pre-
sented with the node prior to the one actually being removed; O(N) otherwise.
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3.4.1  Binary Search Trees

In a binary search tree, each node stores an item and also contains a link to a left subtree and a right 
subtree. All items in the left subtree are smaller than the value in the node; all items in the right subtree 
are larger than the item in the node. The size of the tree and a link to the root node are also stored.

Figure 3.3a shows a binary search tree (the root is the node with item 15). Searching in a binary search 
tree starts at the root and branches either left or right depending on whether the item in a node is smaller 
or larger than the target. Either the target is found or we eventually reach the bottom. Thus, the search 
for 9 in the binary search tree in Figure 3.3a reports that 9 is not present, after visiting nodes containing 
15, 6, and 12 in that order. Insertion of item x into a binary search tree proceeds in the same manner, by 
searching for x. If the item is found, the insertion will fail because duplicates are not allowed. Otherwise, 
the new item can be inserted at the exact point at which the search terminated, as shown in the insertion 
of 9 in Figure 3.3b. Removal of an item is slightly more complicated. If the item to remove is at the bot-
tom of the tree (i.e., it is a leaf, having no children), it can be removed from the tree. If the item to remove 
has only one child (e.g., node 12 in Figure 3.3a), then it can be bypassed, as would be the case in a singly 
linked list. If the item to remove has two children, we leave the node in place and replace its value with 
the smallest value in the right subtree. This preserves the binary search tree order but creates a duplicate. 
The removal can be completed by removing the smallest value from the right subtree recursively.

The cost of any of insertion, removal, or access is dependent on the depth of the tree. If the tree is 
created by random insertions, the depth is O(log N) on average. However, for nonrandom insertion 
sequences, such as 1, 2, 3, 4, …, N that typically arise, the depth is O(N), and thus, binary search trees 
are not suitable for general-purpose library implementations. Instead, slightly more advanced tech-
niques are required in order to assure O(log N) behavior, which can be either a worst-case bound (bal-
anced binary search trees), an expected-time bound (skip lists), or an amortized bound (splay trees).

3.4.2  Balanced Binary Search Trees

A balanced binary search tree is a binary search tree with a balance condition that guarantees that the 
depth of the tree is O(log N). With this balance condition in force, searching of a balanced binary search 
tree is identical to searching of a binary search tree but has an O(log N) worst-case guarantee. Insertion 
and removal in a balanced binary search tree are also identical to operations on a binary search tree, except 
that all nodes on the path from the accessed node back to the root must have their balance maintained and 
possibly restored. Examples of balanced binary search trees include AVL trees and red–black trees.

3.4.2.1 A VL Trees

The first balanced search tree was the AVL tree [5], and it is also one of the simplest to describe and imple-
ment. In an AVL tree, each node stores balance information (for instance its height), and the balancing prop-
erty is that for every node, its left and right subtrees must have heights that differ from each other by at most 1.

15 15

6 6

3 312 12

9

18 18

13 13

21 21

(a) (b)

FIGURE 3.3  Binary search tree (a) before and (b) after insertion of 9.
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The balancing property implies that the height of an AVL tree is at most approximately logφN, 
where φ = 1.618 is the golden ratio, though in practice it is much closer to the optimal log N.

Insertion of a new value x proceeds in the usual fashion as a binary search tree. This step will be 
O(log N) worst case, since the depth of the tree is now guaranteed. However, it potentially changes 
the height information of all nodes on the path from x to the root, and it may also violate the balance 
requirement. Thus, we follow the path from x back to the root, updating height information. If at any 
point a balance violation is detected, we repair the node by using a local rotation of tree nodes. Let α 
be the first node on the return path to the root whose balance is violated. There are four possible cases:

	 1.	 x was inserted into the left subtree of the left child of α.
	 2.	 x was inserted into the right subtree of the right child of α.
	 3.	 x was inserted into the right subtree of the left child of α.
	 4.	 x was inserted into the left subtree of the right child of α.

Note that cases 1 and 2 are mirror-image symmetries, as are cases 3 and 4. Hence, we focus on cases 
1 and 3 only.

Case 1 is repaired with a single rotation as shown in Figure 3.4
Here, k2’s left subtree is two levels deeper than k2’s right subtree. By changing two links (k2’s left child 

and k1’s right child), the subtree becomes balanced. Once this subtree is reattached to the parent, the 
heights for the parent and all other nodes on the path to the root are all guaranteed to be unchanged 
from prior to the insertion of x.

Case 3 is repaired with a double rotation as shown in Figure 3.5
In this case, x is inserted into either subtree B or C, and one of those trees is two levels deeper than 

D (possibly both subtrees are deeper in the special case that all of A, B, C, and D are empty). B and C are 

B B CA

C

k1

k1k2

k2

A

(a) (b)

k2

k2k1

k1

6
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24 24

21

15

2115 12

5

3 5

3

6

9 9
A

A

B B

C

C

(c)

FIGURE 3.4  Single rotation (case 1) to fix an AVL tree. (a) Generic case before rotation, (b) generic case after rota-
tion, and (c) rotation applied after insertion of 5.
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drawn 1½ levels deeper, to signify this uncertainty, but the rotation shows that regardless of which tree 
is the deeper tree, the balance is repaired. Deletion in an AVL tree uses the same types of rotations, with 
more cases. Unlike insertion, a deletion may require a logarithmic number of rotations.

3.4.2.2 R ed–Black Trees

Red–black trees [6] are currently used in both the C++ and Java libraries to implement ordered sets. Like 
AVL trees, they are balanced binary search trees with logarithmic depth that must be rebalanced after 
insertions or deletions. In a red–black tree,

	 1.	 Every node is colored either red or black.
	 2.	 The root is black.
	 3.	 If a node is red, its children must be black.
	 4.	 Every path from a node to a null link must contain the same number of black nodes.

The balancing rules guarantee that the depth of a red–black tree is at most 2log(N + 1), though in practice 
it is much closer to the optimal log N. Rebalancing is done by rotations and color changes, and red–black 
trees have the advantage that they can be implemented nonrecursively, with one top-down pass that 
incorporates rebalancing. The number of rotations needed for red–black trees is bounded by a constant.

3.4.3  Multiway Search Trees

In a multiway tree, each node can have k children, with the branching based on k − 1 keys per node. 
Examples of multiway trees include structures such as radix search trees and suffix trees (see Chapter 15) 
and B-trees [7,8], which we discuss briefly.

In a B-tree of order m, each non-leaf node has between ⌈m/2⌉ and m children (except that the root can 
have between 2 and m children if it is not a leaf) and all leaves are at the same level. Special cases of m = 3 
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FIGURE 3.5  Double rotation (case 3) to fix an AVL tree. (a) Generic case before rotation, (b) generic case after 
rotation, and (c) rotation applied after insertion of 7.
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and m = 4 are 2–3 trees and 2–3–4 trees. Interestingly, 2–3–4 trees are equivalent to red–black trees: a 
four-node is replaced with a black node and two red children; a three-node is replaced with a black node 
and one red child, and a two-node is replaced with a black node. If insertion of a new node would create 
an (m + 1)th child for the node’s potential parent, that parent is split into two nodes containing ⌈m/2⌉ and 
⌊m/2⌋ children. As this adds a new child to the grandparent, the splitting process can potentially repeat all 
the way up until the root, in the worst case resulting in the creation of a new root with only two children. 
Deletion works in a similar manner by combining nodes. B-trees are widely used in the implementation of 
databases because large values of m will yield very shallow trees and minimize disk accesses.

3.4.3.1  Skip Lists

A skip list [9] implements an ordered set using a randomization strategy. As we described earlier in the 
section, binary search on a singly linked list does not work because it is difficult to get to the middle of 
the list. In a skip list, each node potentially stores many links. A level k node has k links, each storing 
a link to the next level i node for 1 ≤ i ≤ k. As shown in the top of Figure 3.6, nodes 3, 9, 15, and 21 are 
level 1 nodes; nodes 6 and 18 are level 2 nodes; node 12 is a level 3 node; and there are currently no level 
4 nodes. A header node is also provided, large enough to store the largest level.

To search the skip list, we use the highest levels to advance quickly, dropping down to lower levels 
when it is apparent that we have advanced too far. If levels are randomly assigned, and the probability 
that a node’s level k is 2−k, then on average there will be O(log N) levels, and we will spend only a constant 
amount of time on any level, yielding O(log N) expected performance for a search (here, the expectation 
is based on the randomness of the creating a level, not the particular input; see Chapter 11 for a discus-
sion of randomized algorithms). Insertion is straightforward; as shown in the bottom of Figure 3.6, we 
create a new node with a randomly chosen level (level k is selected with probability 2−k) and then it is 
spliced in at the points where search switched levels.

The primary advantage of the skip list is that it can be efficiently implemented in a multithreaded 
environment [10] and it is used in the standard Java library.

3.4.3.2  Splay Trees

A splay tree [11] is a binary search tree that stores no balance information yet provides a guarantee of 
O(log N) amortized cost per basic operation of insertion, removal, or access. In a splay tree, after a node x is 
accessed, it is repeatedly rotated toward the root until it becomes the root, a process that is called splay-
ing. If the node is a child of the root, this is accomplished with a single rotation, which we call a zig rota-
tion and which terminates the splaying step. Otherwise, let the node’s parent be p, and its grandparent 
be g. Then we have four cases that are similar to an AVL tree:

	 1.	 x is the left child of p and p is the left child of g.
	 2.	 x is the right child of p and p is the right child of g.
	 3.	 x is the right child of p and p is the left child of g.
	 4.	 x is the left child of p and p is the right child of g.

3

3 6 9 12 15 17 18 21

6 9 12 15 18 21

FIGURE 3.6  Insertion into a skip list.
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In cases 1 and 2, which are symmetric, we rotate p with g and then x with p. This is a zig–zig rotation. 
In cases 3 and 4, which are also symmetric, we rotate x with p and then x with g (this is a basic double 
rotation, known as a zig–zag rotation for splay trees). If this makes x the root, we are done; otherwise, 
we continue the splaying step.

Figure 3.7 shows the three types of rotations that can be involved in splaying, and Figure 3.8 
shows how node 1 is splayed to the root. Splaying has the effect of roughly halving the length of long 
access paths.

A search in a splay tree is performed by a usual binary search tree search followed by a splay of the 
last accessed node. An insertion is performed by a usual binary search tree insertion, and then the 
inserted node is splayed to the root. A deletion is performed by first performing a search. This brings 
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FIGURE 3.7  Rotations in a splay tree: zig (top, a basic single rotation), zig–zag (middle, a basic double rotation), 
and zig–zig (bottom, unique to the splay tree).
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the item to delete to the root, at which point it can be removed, leaving just a left subtree and a right 
subtree. If either is empty, the deletion is easy to complete. Otherwise, the largest item in the left subtree 
can be accessed, bringing it to the root by a splay, and the right subtree can be attached to the new root 
of the left subtree.

The proof that splay trees take O(log N) amortized cost per operation is one of the classic results in 
amortized analysis.

3.5  Unordered Sets and Maps (Hashing)

An unordered set stores a collection of unique items and allows for their efficient insertion, removal, 
and access. Unlike an ordered set, iteration over the set is not expected to view the items in their sorted 
order, and thus, the items do not require the ability to be comparison ordered. Because the operations 
required for an unordered set are a subset of the ordered set operations, it is reasonable to expect that it 
can be implemented more efficiently.

3.5.1  Separate Chaining

The most common implementation of an unordered set is a separate chaining hash table [12]. In a sepa-
rate chaining hash table, we maintain a collection of M buckets and provide a hash function that maps 
any item into a bucket index. If the hash function is reasonably chosen, then each bucket will have only 
N/M items on average. If N is O(M), then each bucket will have constant size on average, and can be 
searched sequentially, and then updated as needed, all in constant average time. The items in the bucket 
will typically be maintained in a singly linked list.

3.5.2  Linear Probing

An alternative to separate chaining is linear probing [13]; we maintain a larger table (typically of size 
roughly 2N) but only allow one item per bucket, thus avoiding the need to maintain linked lists. Let 
p be the position computed by the hash function for item x. When inserting, if position p is already 
occupied, we sequentially probe positions p + 1, p + 2, etc., until a vacant position is found (wrapping 
around to the start of the bucket array if needed). The average number of probes is determined by the 
load factor λ= N/M and is approximately (1 + 1/(1 − λ))/2 for a successful search and (1 + 1/(1 − λ)2)/2 
for an insertion (or unsuccessful search) [14]. This is higher than the naïve estimate of 1/(1 − λ) that one 
would obtain if each probe was an independent random event, and translates to an average of 2.5 rather 
than 2.0 probes for insertion of an item into a half-full hash table, but significantly worse performance 
at higher load factors. This phenomenon is known as primary clustering: items that probe to different 
array slots (e.g., slots 6, 7, and 8) nonetheless attempt to resolve collisions in the same manner, thus 
creating long chains of occupied slots. Primary clustering was long thought to make linear probing a 
poor choice for hash tables, but it has recently reemerged as a popular choice due to its excellent local-
ity of reference.

3.5.3  Quadratic Probing

Quadratic probing avoids the primary clustering of linear probing by using positions p + 12, p + 22, etc., 
again wrapping around as needed. Since p + i2 = (p + (i − 1)2) + (2i − 1), the ith position can be computed 
from the (i − 1)th position with two additions and a bit shift and, possibly, a subtraction if a wraparound 
calculation is needed [15,16]. Although quadratic probing has not been fully analyzed, its observed per-
formance is similar to what would be expected without primary clustering, it is easy to implement, and 
it has locality properties that are similar to linear probing.
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3.5.4 A lternative Hashing Schemes

Perfect hash tables [17] provide guarantees of constant access time, assuming that the items are known 
in advance. Using a random hash function, a primary hash table is constructed with N buckets; however, 
for each bucket i, if the bucket contains bi items, the items will be stored in a secondary hash table of size 
bi

2, using a randomly generated hash function (each secondary hash table will use its own random hash 
function). This two-level scheme is shown in Figure 3.9.

If the total size of all the secondary hash tables exceeds 4N, then we have picked an unlucky (pri-
mary) random hash function, and we simply pick a different hash function until the total size is no 
larger than 4N. This will require only a constant number of attempts on average. In each secondary 
hash table, since there are bi items and bi

2 buckets, a collision occurs with probability less than ½. Hence, 
only a constant number of attempts are needed to choose each secondary hash function until we obtain 
a collision-free secondary hash table. Once all this is done, at total cost of O(N) to build all the tables, 
an access can be done in two table lookups. The perfect hash table can be extended to support insertions 
and deletions [18].

Cuckoo hash tables [19] provide O(1) worst-case access using a relatively simple algorithm. In cuckoo 
hashing, we maintain two tables, each more than half empty, and we have two independent hash func-
tions that can assign each item to one position in each table. Cuckoo hashing maintains the invariant 
that an item is always stored in one of its two hash locations. Consequently, the cost of a search is guar-
anteed to be O(1), and the remove operation is likewise very simple. There are several alternative algo-
rithms to insert an item x, all use the same basic concepts. If either of x’s valid locations is empty, then 
we are done. Otherwise, place x in one of the occupied locations, displacing some other element a. Then 
place a in a’s other valid location; if that other valid location was empty we are done; otherwise, we have 
displaced another element b, and we continue the same process until either we are able to place the most 
recently displaced item or we detect a cycle (or reach a threshold of displacement that indicates a high 
probability of a cycle). In this case, we choose a different random hash function and rebuild the table. If 
the tables are less than half empty, it is unlikely that a new random hash function is needed; however, 
the hash functions must be carefully chosen.

FIGURE 3.9  Perfect hash table.
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3.5.5  Hash Functions

All implementations of hash tables presume the existence of a hash function that returns a suitable array 
index, which in modern languages will range from 0 to M − 1. Any hash function should satisfy basic 
properties:

	 1.	 If x = y, then hash(x) = hash(y).
	 2.	 If x ≠ y, then the collision probability that hash(x) = hash(y) should be approximately 1/M.

The hash function should be relatively easy to compute, since if it is a good function, the cost of comput-
ing the hash function will be a significant cost of any hash table operation.

Normally, the input values can be considered to be a long sequence of bits, so hash functions can be 
modeled as a mathematical operation on large integers. In such a case, hash(x) = x mod M generates a 
hash code with the desired properties if the input values have a significantly larger range than 0 to M − 1 
and if they are randomly distributed in that range. However, this hash function can be an unsuitable 
choice if, for example, M is a power of 2 and the low-order bits of all inputs are likely to be similar.

When random functions are needed, an alternative is to use a universal hash function, which provides 
the needed hash properties for all pairs x and y, where the collision probability for any pair (x, y) is taken 
over all choices of random functions [17]. One set of universal hash functions can be obtained by choos-
ing a prime p ≥ M and then any random pair (a,b) such that 1 ≤ a < p and 0 ≤ b < p, yielding

	 hash x ax b p Ma b( , )( ) (( )mod )mod= +

An alternative scheme that is more efficient in practice is the multiply shift in [20].
An important use case for hash tables is storing strings. There have been many different hash 

functions proposed. The simplest that provides very good performance is the algorithm shown in 
Figure 3.10, implemented in C++. This function returns an unsigned integral type that can be brought 
into the proper range with a mod operation by the hash table implementation. Many choices of 
(a, h0) have been used including (31, 0) used in both the Java library and in [21]; other implementa-
tions replace addition with a bitwise-exclusive OR, some implementations perform the addition (or 
bitwise-exclusive OR) before the multiply, and implementations on 64-bit machines are likely to use 
large prime numbers for a.

Hash functions that are used in hash tables are generally reversible in the sense that it is possible to 
produce several inputs that map to the same output. Cryptographic hash functions are used to authenti-
cate documents and store passwords; for these hash functions, it is infeasible to modify x without chang-
ing hash(x), it is infeasible to produce an input y such that hash(y) is some specified value, it is infeasible 
to recover x from hash(x) even if a large number of x’s bits are known, and it is infeasible to produce a 
pair of inputs that compute the same output. Because cryptographic hash functions are expensive to 
compute, their use is primarily in computer security.

Chapter 11, which discusses randomized algorithms, has other material related to hashing (e.g., tabu-
lation hashing, hashing with choices, and the analysis of cuckoo hashing).

1. size_t hash ( const string & key )
2. {
3.     size_t hashVal = h0;
4.
5.     for ( char ch : key )
6.     hashVal = a * hashVal + ch;
7.
8.     return hashVal;
9. }

FIGURE 3.10  Simple C++ hash function.
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3.6  Priority Queues

A priority queue stores a collection of items and allows for their efficient insertion but allows removal 
(deleteMin) and access (findMin) of the minimum item only. Alternatively, sometimes priority queues are 
defined to allow removal and access of the maximum item only. Priority queues are used in diverse appli-
cations such as job scheduling, discrete-event simulation, sorting, and graph algorithms. As an example, 
suppose we want to merge k sorted lists containing a total of N items into one sorted list of N items. We can 
place the first item of each list in a priority queue and use deleteMin to select the smallest. We then insert 
the next item from the appropriate list in the priority queue, and repeat. After N insert and N deleteMin 
operations in a priority queue that never contains more than k items, we have successfully merged all 
sorted lists into one. This algorithm takes O(N log k) if priority queue operations are logarithmic.

In fact, priority queues can be implemented with a balanced binary search tree at logarithmic worst-
case cost per operation. An alternative implementation that is likely to be faster and more space efficient 
is the binary heap.

3.6.1  Binary Heaps

A binary heap [22] stores items in a complete binary tree. In a complete binary tree, all levels are full 
except possibly the last level, which is filled in left to right with no missing nodes. A complete binary tree 
has at most ⌈log(N + 1)⌉ nodes on the path from the root to a bottom leaf and can be easily represented 
without using the normal links associated with a binary tree. Specifically, if we store the nodes in level 
order in an array whose index begins with 1, then the root is stored at index 1, and a node that is stored 
at index i will have its left child, right child, and parent stored at indices 2i, 2i + 1, and ⌊i/2⌋, respectively.

The items in the binary heap will also satisfy heap order: the value stored in any node is never smaller 
than the value stored in its parent. Figure 3.11 shows a binary heap and its representation in an array.

In a binary heap, the minimum item must be at the root. We can insert a new item x by creating an 
empty new node at the next available position and then placing x in the sorted position along the path 
from the newly created node to the root. Algorithmically, this involves moving the vacant node’s parent 
into the vacant node until x can be placed into the vacant node without violating heap order and is easily 
seen to require at most log N comparisons. In this step, the vacant node moves up toward the root until 
x is finally placed in it. Figure 3.12 shows the insertion of 13 into a binary heap.

Figure 3.13 shows that removing the minimum item follows a similar process. The minimum item, which is 
at the root, is removed from the heap, thus vacating the root. The last node in the binary heap is removed, thus 
leaving one value, x, homeless. x is placed in the sorted position along the path from the root through smaller 
children. Algorithmically, this involves moving the vacant node’s smaller child into the vacant node until x 
can be placed into the vacant node without violating heap order and requires at most 2log N comparisons.
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FIGURE 3.11  Binary heap and an array representation.
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A binary heap can also be constructed in linear time by placing the items in the binary tree without 
heap order and then repairing the heap order bottom-up [23].

If the position of an item is known, the item’s value can be either increased or decreased by gen-
eralizing the deletion or insertion algorithm; decreasing a value (decreaseKey) involves moving it 
up the tree toward the root, whereas increasing a value involves moving it down the tree through a 
path of minimum children; this operation takes O(log N) time. In some algorithms that use priority 
queues, such as computation of shortest paths, implementing the decreaseKey operation in o(log N) 
yields a faster running time. Thus, alternative priority queue schemes have been proposed, and most 
use linked heap-ordered tree structures that can be easily merged. Several examples include leftist 
heaps, Fibonacci heaps, and pairing heaps.
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FIGURE 3.13  Initial binary heap; removing the minimum (12) vacates the root and displaces last item (23) path 
of minimum children is shown; 23 is placed by following path of minimum children.
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3.6.2  Mergeable Heaps

The first mergeable heap was the leftist heap, invented in 1972 [24]. A leftist heap is a heap-ordered tree with 
the “imbalance requirement” that for each node, the left subtree is at least as deep as the right subtree. The 
requirement forces the tree to lean left (hence its name); however, this property is easily seen to imply that the 
rightmost path has at most log (N + 1) nodes. Merging two leftist heaps simply involves merging right paths 
together and swapping left and right children of any node on the resulting right path that violates the leftist 
heap imbalance requirement and thus takes O(log N) time by virtue of the bound on the right path length. 
Insertion can be implemented as a merge with a one-node tree and is thus also O(log N). Removing the min-
imum is easily implemented in O(log N) by deleting the root node and merging its left and right subtrees.

Binomial queues [25] introduce the idea of using a heap-ordered tree that is not binary but of a 
restricted form known as a binomial tree and maintaining a priority queue as a collection of these heap-
ordered binomial trees.

Fibonacci heaps [26] achieve O(log N) amortized cost for merge and deleteMin and O(1) amortized 
cost for decreaseKey. This performance produces more efficient worst-case bounds for several graph 
algorithms, including Dijkstra’s shortest-path algorithm, but in general, Fibonacci heaps have overhead 
that limits its usefulness in practice. Fibonacci heaps introduce the idea of implementing decreaseKey 
by cutting a tree into two and also introduce the idea that there can be as many as Θ(N) trees while 
maintaining amortized efficiency.

Pairing heaps [27] were designed in the hope of matching Fibonacci heaps theoretical performance 
bounds while being simple to implement, and thus practical. A pairing heap is a single heap-ordered 
tree that is implemented by having each node store a link to its leftmost child and then having all 
siblings doubly linked. The leftmost child also stores a link back to its parent. Thus, in the bottom of 
Figure 3.14, each line between nodes represents one link in each direction. The advantage of the pair-
ing heap is that it maintains no balance information, uses only two links per node, and is only one tree.

To merge two pairing heaps, the larger root is made the new first child of the smaller root. We can treat 
an insertion as a merge of a one-node tree. To perform a decreaseKey of node p, we cut the subtree rooted at 
p from the tree and then merge the two resulting trees. Observe that all these operations take constant time.

Deleting the minimum, however, is more difficult. When the minimum is removed, what is left is a 
collection of subtrees (there could be N subtrees) that must all be combined back into one heap-ordered 
tree. There are several strategies, the best of which appears to be two-pass merging [28]. In the first pass, 
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FIGURE 3.14  (a) Pairing heap as a tree, and (b) pairing heap in left child, right sibling representation, using bidi-
rectional links everywhere.
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we merge each pair of heaps (see Figure 3.15b); then we work backward, merging the last two trees, then 
that result with the next tree, and so on (Figure 3.15c and d) until we obtain only one tree.

Although the performance of the pairing heap is excellent, the analysis of the pairing heap is still unre-
solved. It has been shown that if the amortized cost of merge and deleteMin are O(log N), decreaseKey is 
not O(1). For a wide range of merging strategies, decrease Key’s amortized cost will be Ω(log log N) and 
for two-pass merging, the cost has recently been bounded by O N22 log log( ) [29,30].

3.7  Union/Find Data Structure

The union/find data structure is a classic solution to the problem of maintaining a partition of {1, 2, 3, …, N} 
under the following operations:

•	 initialize: Creates N single element sets.
•	 union(s1, s2): Combines two sets s1 and s2, destroying the original (thus maintaining the partition).
•	 find(x): Returns the set containing x (at the time of the query); most importantly, find(x) and 

find(y) return the same result if and only if x and y are in the same set.
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FIGURE 3.15  (a) Trees resulting from removal of root in Figure 3.14, (b) after first pass halves the number of trees, 
(c) first merge of the second pass, and (d) second merge of the second pass.
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The union/find operations can be used to maintain the connected components in an undirected graph 
and thus is a fundamental data structure in the implementation of spanning tree algorithms.

The most elegant approach to maintaining the partition represents each set as its own tree, with the 
root of the tree denoting the set name [31]. Each set also stores its size. Each node in the tree maintains a 
link to its parent only; thus, it is easy to provide an implicit implementation of this structure in a single 
array in which each entry that is not a root stores its parent and each entry that is a root stores its size 
information as a negative number.

To perform a union given two tree roots, we make the smaller tree a child of the larger tree and 
update the larger tree’s size. This is clearly a constant-time operation. To perform a find, we simply 
follow parent links until we reach a root. The cost per operation is the number of nodes on the path 
to the root, which will be O(log N) if the union is done by size (because a node gets one level deeper 
only when its tree is combined into a larger tree, the size of the node’s tree doubles every time it gets 
one level deeper). A simple optimization on the find known as path compression changes the par-
ent of every node on the find search path to be the eventual root. With this optimization and union 
using the size rule (or a similar height rule), the amortized cost of a find operation is nearly constant 
and bounded by O(α(N)), where α(N) is the exceptionally slow-growing inverse Ackermann function 
[32–34]. Figure 3.16 shows a complete C++ implementation (minus error checking) of the union/find 
data structure.

3.8 R ecurring Themes and Ongoing Research

The study of data structures involves many recurring issues, most of which are still being actively 
researched, many of which lead into each other. We briefly discuss some of these, pointing especially to 
examples that we have already seen.

 1. class DisjointSets
 2. {
 3.   private:
 4.     vector<int> p;
 5.
 6.   public:
 7.     DisjointSets( int n ) : p( n, -1 ) // Size n, all -1s
 8.       { }
 9.
10.     void unionSets( int root1, int root2 )
11.     {
12.         if( p[ root2 ] < p[ root1 ] )  // More negative means larger root
13.             swap( root1, root2 );      // Make sure root1 is larger (or same)
14.
15.         p[ root1 ] += p[ root2 ];      // Update root1 size
16.         p[ root2 ] = root1;            // Update root2 parent
17.     }
18.
19.     int find( int x )
20.     {
21.         if( p[ x ] < 0 )
22.             return x;
23.         else
24.             return p[ x ] = find( p[ x ] );
25.     }
26. };

FIGURE 3.16  Implementation of union by size with path compression.



3-17Data Structures

3.8.1  Static, Dynamic, and Persistent Structures

Static data structures restrict operations to access on the data and do not support updates. Examples 
in this chapter include the binary search and perfect hash table. Dynamic data structures sup-
port updates and are thus more complex; most of the data structures we have seen are of this type. 
Advanced data structures have been designed to maintain connected components and shortest paths 
in graphs even as the underlying structure of the graph can change. Persistent data structures sup-
port updates and allow operations on prior versions of the data structure. We have not examined any 
persistent data structures.

3.8.2  Implicit versus Explicit Structures

An implicit data structure stores the data using little extra memory, in such a way that the structure 
of the items can be implied without the need for extra storage for links between the items. Examples 
of implicit data structures include the binary heap and the union/find data structure. An explicit data 
structure is more typical and uses extra memory to link items together structurally.

3.8.3  Space versus Time Considerations

A recurring theme in data structures and algorithm design is the ability to trade space for time. The hash 
table is an example of a data structure in which the ability to use more space can save time; similarly, a 
doubly linked list will use more space than a singly linked list but has the advantage that some opera-
tions can be made faster because of the additional links.

3.8.4 T heory versus Practice

Although most data structures have theoretical asymptotic performance guarantees, usually expressed 
in Big-Oh notation, it is sometimes the case that the constants hidden in the Big-Oh notation can make 
it difficult to compare data structures with identical Big-Oh running times. Additionally, some bounds 
such as worst-case bounds can be overly pessimistic, leading to situations in which a theoretically infe-
rior data structure performs better in practice than its counterpart with better run time guarantees. 
Examples include hash tables that are very difficult to compare based on the O(1) run time per operation 
and also priority queues, in which the Fibonacci heap despite having the best time bound is generally 
outperformed by the pairing heap and binary heap (e.g., see [35]).

3.8.5  Modern Architecture Considerations

Because of many advances in computer hardware including multilevel memories and CPU design, 
experimental results for data structures can be very machine dependent, often requiring the designer to 
have several competitive alternatives to benchmark. For example, linear probing performs much better 
relative to other hash table algorithm on modern machines than on older computers. Multicore CPUs 
will require a reexamination of fundamental data structures that for the most part have been designed 
for single threaded efficiency (e.g., see [36]).

3.8.6  Data Structures for Specialized Types

Containers that work on types such as integers and strings have for many years been an active area of 
research. In particular, there has been much work designing priority queues for integers and containers 
for strings [37].
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Key Terms

AVL tree: The first balanced binary search tree. Has a balance requirement that each node’s left and 
right subtrees can have heights that differ by at most 1.

Balanced binary search tree: A binary search tree that adds a balance requirement to every node that 
guarantees the tree has O(log N) depth. Typically, this means that insertions and deletions 
must provide algorithms to maintain the balance requirement.

Binary heap: An implementation of a priority queue that uses only a simple array and supports inser-
tion and deleteMin in logarithmic time.

Binary search: An algorithm to search a sorted array in O(log N) time by searching in the middle and 
recursing.

Binary search tree: An implementation of an ordered sequence collection that generally uses two links per 
node; without balancing, performance can be linear in the worst case but logarithmic on average.

B-tree: A multiway search tree often used for database systems.
Complete binary tree: A binary tree in which all levels are full, except possibly for the last level that is 

left-filled with no missing nodes. Used in the binary heap.
Container: Stores a collection of items.
Cuckoo hash table: A hash table implementation that uses two tables and two hash functions and sup-

ports constant worst-case access.
Double-ended queue: A sequence container in which operations are restricted to the front and back.
Fibonacci heap: An implementation of a priority queue that provides O(1) amortized cost for decreaseKey.
Hash function: Maps items to array indices, with the property that if x = y, then hash(x) = hash(y) and if 

x≠y, then the collision probability that hash(x) = hash(y) should be approximately 1/M.
Hash table: An implementation of an unordered sequence collection that typically provides constant 

time search and update on average.
Heap order: In a priority queue that allows access to the minimum item, heap order means that every 

node's value is at least as large as its parent's value.
Leftist heap: The first efficient mergeable priority queue.
Linear probing: A hash table implementation that uses only a simple table and tries array slots sequen-

tially starting from the hash value position until an empty slot is found.
Linked list: A sequence container in which the items are linked; can be singly linked, storing a link to 

the next item, or doubly linked, storing links to both the previous and next items.
Map: Stores key value pairs.
Pairing heap: An implementation of a priority queue that provides o(log N) amortized cost for decreaseKey, 

uses two links per node, does not require balance information, and performs very well in practice.
Path compression: In the union/find data structure, the process of changing the parent of every node 

on a find path to the root.
Perfect hash table: A hash table scheme that supports constant time access by using hash tables to 

resolve hash table collisions.
Primary clustering: A phenomena in linear probing in which keys with different hash values attempt to 

resolve to similar alternate locations, potentially resulting in poor performance.
Priority queue: A container in which only the minimum can be accessed and removed.
Quadratic probing: A hash table implementation that uses only a simple table and tries slots sequentially 

starting from the hash value position plus i2 (starting with i = 0), until an empty slot is found.
Queue: A sequence container in which insertions are restricted to the back and access and removal is 

restricted to the front.
Red–black tree: A balanced search tree currently used in both the C++ and Java library.
Rotation: A process by which parent/child relations among a few nodes are changed, while retaining 

binary search tree order. Examples include single and double rotations for AVL trees and a 
zig–zig rotation for splay trees.
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Search tree: An implementation of an ordered sequence collection that generally uses either binary 
trees or multiway trees.

Separate chaining hash table: A hash table scheme in which collisions are resolved by singly linked lists.
Sequence container: Stores items in a linear order, with items inserted at specified positions.
Skip list: An ordered container that uses linked lists with multiple forward pointers per node. A concur-

rent version is implemented as part of the Java library.
Splay tree: A binary search tree that maintains no balance information but that has O(log N) amortized 

cost per operation.
Splaying: The process in splay trees by which a node is rotated toward the root using zig, zig–zig, or 

zig–zag rotations.
Stack: A sequence container in which operations are restricted to one end.
Union/find data structure: Maintains a partition of {1, 2, …, N} under a sequence of union and find 

operations at only slightly more than constant cost per find.
Universal hash function: A collection of hash functions such that for any specific x ≠ y, only O(1/M) of 

the hash functions in the collection yield hash(x) = hash(y).

Further Information

Material in this chapter is based on the presentations in Weiss [15,16]. Other popular textbooks on data 
structures and algorithms include Cormen et al. [38], Sahni [39], and Sedgewick and Wayne [40].
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We outline the basic methods of algorithm design and analysis that have found application in the 
manipulation of discrete objects such as lists, arrays, sets, and graphs, and geometric objects such as 
points, lines, and polygons. We begin by discussing recurrence relations and their use in the analysis of 
algorithms. Then we discuss some specific examples in algorithm analysis, sorting, and priority queues. 
In the final three sections, we explore three important techniques of algorithm design—divide-and-
conquer, dynamic programming, and greedy heuristics.

4.1 A nalyzing Algorithms

It is convenient to classify algorithms based on the relative amount of time they require: how fast does 
the time required grow as the size of the problem increases? For example, in the case of arrays, the “size 
of the problem” is ordinarily the number of elements in the array. If the size of the problem is measured 
by a variable n, we can express the time required as a function of n, T(n). When this function T(n) grows 
rapidly, the algorithm becomes unusable for large n; conversely, when T(n) grows slowly, the algorithm 
remains useful even when n becomes large.

We say an algorithm is Θ(n2) if the time it takes quadruples when n doubles; an algorithm is Θ(n) 
if the time it takes doubles when n doubles; an algorithm is Θ(log n) if the time it takes increases by 
a constant, independent of n, when n doubles; an algorithm is Θ(1) if its time does not increase at all 
when n increases. In general, an algorithm is Θ(T(n)) if the time it requires on problems of size n grows 
proportionally to T(n) as n increases. Table 4.1 summarizes the common growth rates encountered in 
the analysis of algorithms.

The analysis of an algorithm is often accomplished by finding and solving a recurrence relation that 
describes the time required by the algorithm. The most commonly occurring families of recurrences in 
the analysis of algorithms are linear recurrences and divide-and-conquer recurrences. In the following 
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subsection, we describe the “method of operators” for solving linear recurrences; in the next subsection, 
we describe how to transform divide-and-conquer recurrences into linear recurrences by substitution 
to obtain an asymptotic solution.

4.1.1  Linear Recurrences

A linear recurrence with constant coefficients has the form

	 c a c a c a c a f nn n n k n k0 1 1 2 2+ + + + =− − −� ( ), 	 (4.1)

for some constant k, where each ci is constant. To solve such a recurrence for a broad class of functions f 
(i.e., to express an in closed form as a function of n) by the method of operators, we consider two basic opera-
tors on sequences: S, which shifts the sequence left,

	 S〈 …〉 = 〈 …〉a a a a a a0 1 2 1 2 3, , , , , , ,

and C, which, for any constant C, multiplies each term of the sequence by C:

	 C a a a Ca Ca Ca〈 …〉 = 〈 …〉0 1 2 0 1 2, , , , , , .

Then, given operators A and B, we define the sum and product

	 ( ) , , , , , , , , , ,A B a a a A a a a B a a a+ 〈 …〉 = 〈 …〉 + 〈 …〉0 1 2 0 1 2 0 1 2

	 ( ) , , , ( , , , ).AB a a a A B a a a〈 …〉 = 〈 …〉0 1 2 0 1 2

Thus, for example,

	 ( ) , , , , , , ,S2
0 1 2 2 0 3 1 4 24 4 4 4− 〈 …〉 = 〈 − − − …〉a a a a a a a a a

TABLE 4.1  Common Growth Rates of Times of Algorithms

Rate of Growth Comment Examples

Θ(1) Time required is constant, independent of problem size Expected time for hash searching
Θ(log log n) Very slow growth of time required Expected time of interpolation search
Θ(log n) Logarithmic growth of time required—doubling the problem 

size increases the time by only a constant amount
Computing xn; binary search of an 

array
Θ(n) Time grows linearly with problem size—doubling the problem 

size doubles the time required
Adding/subtracting n-digit numbers; 

linear search of an n-element array
Θ(n log n) Time grows worse than linearly, but not much worse—doubling 

the problem size more than doubles the time required
Merge sort; heapsort; lower bound 

on comparison-based sorting
Θ(n2) Time grows quadratically—doubling the problem size 

quadruples the time required
Simple-minded sorting algorithms

Θ(n3) Time grows cubically—doubling the problem size results in an 
eight-fold increase in the time required

Ordinary matrix multiplication

Θ(cn) Time grows exponentially—increasing the problem size by 1 
results in a c-fold increase in the time required; doubling the 
problem size squares the time required

Traveling salesman problem
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which we write more briefly as

	 ( ) .S2
24 4− 〈 〉 = 〈 − 〉+a a ai i i

With the operator notation, we can rewrite Equation 4.1 as

	 P a f ii( ) ( ) ,S 〈 〉 = 〈 〉

where

	 P c c c ck k k
k( )S S S S= + + + +− −

0 1
1

2
2 �

is a polynomial in S.
Given a sequence 〈ai〉, we say that the operator P(S) annihilates 〈ai〉 if P(S)〈ai〉 = 〈0〉. For example, S2 − 4 

annihilates any sequence of the form 〈u2i + v(−2)i〉, with constants u and v. In general,

The product of two annihilators annihilates the sum of the sequences annihilated by each of the 
operators—that is, if A annihilates 〈ai〉 and B annihilates 〈bi〉, then AB annihilates 〈ai + bi〉. Thus, 
determining the annihilator of a sequence is tantamount to determining the sequence; moreover, it is 
straightforward to determine the annihilator from a recurrence relation.

For example, consider the Fibonacci recurrence

	

F

F

F F Fi i i

0

1

2 1

0

1

=

=

= ++ +

,

,

.

The last line of this definition can be rewritten as Fi+2 − Fi+1 − Fi = 0, which tells us that 〈Fi〉 is annihilated 
by the operator

	
S S S

S2 1
1− − = − +






( ) ,φ

φ

where φ = +( )1 5 2/ . Thus we conclude that

	 F u vi
i i= + − −φ φ( ) ,

for some constants u and v. We can now use the initial conditions F0 = 0 and F1 = 1 to determine u 
and v. These initial conditions mean that

	

u v

u v

φ φ

φ φ

0 0

1 1

0

1

+ − =

+ − =

−

−

( )

( )

and these linear equations have the solution

	
u v= = 1

5
,

The operator Sk+1 − c annihilates 〈ci × a polynomial in i of degree k〉.
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and hence

	
Fi

i i

= + − −φ φ
5 5

( )
.

In the case of the similar recurrence,

	

G

G

G G G ii i i

0

1

2 1

0

1

=

=

= + ++ +

,

,

,

the last equation tells us that

	 ( ) ,S S2 1− − 〈 〉 = 〈 〉G ii

so the annihilator for 〈Gi〉 is (S2 − S − 1)(S − 1)2 since (S − 1)2 annihilates 〈i〉 (a polynomial of degree 1 
in i) and hence the solution is

	 G u v ii
i i= + − +−φ φ( ) ( ),a polynomial of degree 1 in

that is,

	 G u v wi zi
i i= + − + +−φ φ( ) .

Again, we use the initial conditions to determine the constants u, v, w, and x.
In general, then, to solve the recurrence (4.1), we factor the annihilator

	 P c c c ck k k
k( ) ,S S S S= + + + +− −

0 1
1

2
2 �

multiply it by the annihilator for 〈f(i)〉, write down the form of the solution from this product (which is 
the annihilator for the sequence 〈ai〉), and use the initial conditions for the recurrence to determine the 
coefficients in the solution.

4.1.2  Divide-and-Conquer Recurrences

The divide-and-conquer paradigm of algorithm construction that we discuss in Section 4.3 leads natu-
rally to divide-and-conquer recurrences of the type

	 T n g n uT n v( ) ( ) ( / ),= +

for constants u and v, v > 1, and sufficient initial values to define the sequence 〈T(0), T(1), T(2), …〉. 
The growth rates of T(n) for various values of u and v are given in Table 4.2. The growth rates in this 
table are derived by transforming the divide-and-conquer recurrence into a linear recurrence for a sub-
sequence of 〈T(0), T(1), T(2), …〉.

To illustrate this method, we derive the penultimate line in Table 4.2. We want to solve

	 T n n v T n v( ) ( / ),= +2 2
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so we want to find a subsequence of 〈T(0), T(1), T(2), …〉 that will be easy to handle. Let nk = vk; then,

	
T n n v T

n
vk k

k( ) ,= + 





2 2

or

	 T v v v T vk k k( ) ( ).= + −2 2 1

Defining tk = T(vk),

	 t v v tk
k

k= + −
2 2

1.

The annihilator for tk is then (S − v2)2 and thus

	 t v ak bk
k= +2 ( ),

for constants a and b. Expressing this in terms of T(n),

	 T n t v a n b an n bnv
v

n
n

v v( ) ( log ) log ,log
log≈ = + = +2 2 2

or

	 T n n n( ) ( log ).= Θ 2

4.2  Some Examples of the Analysis of Algorithms

In this section, we introduce the basic ideas of analyzing algorithms by looking at some data structure 
problems that occur commonly in practice, problems relating to maintaining a collection of n objects 
and retrieving objects based on their relative size. For example, how can we determine the smallest of 
the elements? Or, more generally, how can we determine the kth largest of the elements? What is the 
running time of such algorithms in the worst case? Or, on the average, if all n! permutations of the input 
are equally likely? What if the set of items is dynamic—that is, the set changes through insertions and 
deletions—how efficiently can we keep track of, say, the largest element?

TABLE 4.2  Rate of Growth of the Solution 
to the Recurrence T(n) = g(n) + uT(n/v), the 
Divide-and-Conquer Recurrence Relations

g(n) u, v Growth Rate of T(n)

Θ(1) u = 1
u ≠ 1

Θ(log n)
Θ( )logn v u

Θ(log n) u = 1
u ≠ 1

Θ[(log n)2]
Θ( )logn v u

Θ(n) u < v
u = v
u > v

Θ(n)
Θ(n log n)
Θ( )logn v u

Θ(n2) u < v2

u = v2

u > v2

Θ(n2)
Θ(n2 log n)
Θ( )logn v u

Note:	 u and v are positive constants, indepen-
dent of n, and v > 1.
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4.2.1  Sorting

The most demanding request that we can make of an array of n values x[1], x[2], …, x[n] is that they be 
kept in perfect order so that x[1] ≤ x[2] ≤ … ≤ x[n]. The simplest way to put the values in order is to 
mimic what we might do by hand: take item after item and insert each one into the proper place among 
those items already inserted:

1	 void insert (float x[], int i, float a) {
2	   // Insert a into x[1] ... x[i]
3	   // x[1] ... x[i−1] are sorted; x[i] is unoccupied
4	   if (i == 1 || x[i−1] <= a)
5	     x[i] = a;
6	   else {
7	     x[i] = x[i−1];
8	     insert(x, i−1, a);
9	   }
10	 }
11
12	 void insertionSort (int n, float x[]) {
13	   // Sort x[1] ... x[n]
14	   if (n > 1) {
15	     insertionSort(n−1, x);
16	     insert(x, n, x[n]);
17	   }
18	 }

To determine the time required in the worst case to sort n elements with insertionSort, we let tn 
be the time to sort n elements and derive and solve a recurrence relation for tn. We have,

	
t

n

t s
n

n n

Θ
Θ

( ) ,

( )

1 1

11 1

if

otherwise,

=
+ +



 − −

where sm is the time required to insert an element in place among m elements using insert. The value 
of sm is also given by a recurrence relation:

	
s

m

s
m

m

Θ
Θ

( ) ,

( )

1 1

11

if

otherwise.

=
+



 −

The annihilator for 〈si〉 is (S − 1)2, so sm = Θ(m). Thus the annihilator for 〈ti〉 is (S − 1)3, so tn = Θ(n2). The 
analysis of the average behavior is nearly identical; only the constants hidden in the Θ-notation change.

We can design better sorting methods using the divide-and-conquer idea of the next section. These algo-
rithms avoid Θ(n2) worst-case behavior, working in time Θ(nlog n). We can also achieve time Θ(nlog n) by 
using a clever way of viewing the array of elements to be sorted as a tree: consider x[1] is the root of the 
tree and, in general, x[2*i] is the root of the left subtree of x[i] and x[2*i + 1] is the root of the right 
subtree of x[i]. If we further insist that parents be greater than or equal to children, we have a heap; Figure 
4.1 shows a small example.

A heap can be used for sorting by observing that the largest element is at the root, that is, x[1]; thus 
to put the largest element in place, we swap x[1] and x[n]. To continue, we must restore the heap prop-
erty which may now be violated at the root. Such restoration is accomplished by swapping x[1] with 
its larger child, if that child is larger than x[1], and the continuing to swap it downward until either it 
reaches the bottom or a spot where it is greater or equal to its children. Since the tree-cum-array has 
height Θ(log n), this restoration process takes time Θ(log n). Now, with the heap in x[1] to x[n−1] and 
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x[n] the largest value in the array, we can put the second largest element in place by swapping x[1] and 
x[n−1]; then we restore the heap property in x[1] to x[n−2] by propagating x[1] downward—this 
takes time Θ(log(n − 1)). Continuing in this fashion, we find we can sort the entire array in time

	 Θ Θ(log log( ) log ) ( log ).n n n n+ − + + =1 1�

The initial creation of the heap from an unordered array is done by applying the restoration process suc-
cessively to x[n/2], x[n/2−1], …, x[1] which takes time Θ(n).

Hence we have the following Θ(nlog n) sorting algorithm:

1	 void heapify (int n, float x[], int i) {
2	   // Repair heap property below x[i] in x[1] … x[n]
3	   int largest = i; // largest of x[i], x[2*i], x[2*i+1]
4	   if (2*i <= n && x[2*i] > x[i])
5	     largest = 2*i;
6	   if (2*i+1 <= n && x[2*i+1] > x[largest])
7	     largest = 2*i+1;
8	   if (largest != i) {
9	     // swap x[i] with larger child and repair heap below
10	     float t = x[largest]; x[largest] = x[i]; x[i] = t;
11	     heapify(n, x, largest);
12	   }
13	 }
14
15	 void makeheap (int n, float x[]) {
16	   // Make x[1] ... x[n] into a heap
17	   for (int i=n/2; i>0; i––)
18	     heapify(n, x, i);
19	 }
20
21	 void heapsort (int n, float x[]) {
22	   // Sort x[1] ... x[n]
23	   float t;
24	   makeheap(n, x);
25	   for (int i=n; i>1; i––) {
26	     // put x[1] in place and repair heap
27	     t = x[1]; x[1] = x[i]; x[i] = t;
28	     heapify(i−1, x, 1);
29	   }
30	 }

Can we find sorting algorithms that take time less than Θ(n log n)? The answer is no if we are restricted 
to sorting algorithms that derive their information from comparisons between the values of elements. 

x[1]=100

x[2]=95

x[4]=81 x[5]=51

x[3]=7

x[6]=1 x[7]=2

x[8]=75 x[9]=14 x[10]=3

FIGURE 4.1  A heap—that is, an array, interpreted as a binary tree.
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The flow of control in such sorting algorithms can be viewed as binary trees in which there are n! leaves, 
one for every possible sorted output arrangement. Because a binary tree with height h can have at most 
2h leaves, it follows that the height of a tree with n! leaves must be at least log2n! = Θ(n log n). Since the 
height of this tree corresponds to the longest sequence of element comparisons possible in the flow of 
control, any such sorting algorithm must, in its worst case, use time proportional to n log n.

4.2.2  Priority Queues

Aside from its application to sorting, the heap is an interesting data structure in its own right. In par-
ticular, heaps provide a simple way to implement a priority queue—a priority queue is an abstract data 
structure that keeps track of a dynamically changing set of values allowing the operations

create: Create an empty priority queue.
insert: Insert a new element into a priority queue.
decrease: Decrease an element in a priority queue.
minimum: Report the minimum element in a priority queue.
deleteMinimum: Delete the minimum element in a priority queue.
delete: Delete an element in a priority queue.
merge: Merge two priority queues.

A heap can implement a priority queue by altering the heap property to insist that parents are less than 
or equal to their children, so that the smallest value in the heap is at the root, that is, in the first array 
position. Creation of an empty heap requires just the allocation of an array, an Θ(1) operation; we assume 
that once created, the array containing the heap can be extended arbitrarily at the right end. Inserting 
a new element means putting that element in the (n + 1)st location and “bubbling it up” by swapping it 
with its parent until it reaches either the root or a parent with a smaller value. Since a heap has logarith-
mic height, insertion to a heap of n elements thus requires worst-case time O(log n). Decreasing a value 
in a heap requires only a similar O(log n) “bubbling up.” The minimum element of such a heap is always 
at the root, so reporting it takes Θ(1) time. Deleting the minimum is done by swapping the first and last 
array positions, bubbling the new root value downward until it reaches its proper location, and truncat-
ing the array to eliminate the last position. Delete is handled by decreasing the value so that it is the least 
in the heap and then applying the deleteMinimum operation; this takes a total of O(log n) time.

The merge operation, unfortunately, is not so economically accomplished—there is little choice but 
to create a new heap out of the two heaps in a manner similar to the makeheap function in heap sort. 
If there are a total of n elements in the two heaps to be merged, this recreation will require time O(n).

There are better data structures than a heap for implementing priority queues, however. In particular, 
the Fibonacci heap provides an implementation of priority queues in which the delete and deleteMi-
nimum operations take O(log n) time and the remaining operations take Θ(1) time, provided we con-
sider the times required for a sequence of priority queue operations, rather than individual times. That is, 
we must consider the cost of the individual operations amortized over the sequence of operations: Given 
a sequence of n priority queue operations, we will compute the total time T(n) for all n operations. In 
doing this computation, however, we do not simply add the costs of the individual operations; rather, 
we subdivide the cost of each operation into two parts, the immediate cost of doing the operation and 
the long-term savings that result from doing the operation—the long-term savings represent costs not 
incurred by later operations as a result of the present operation. The immediate cost minus the long-
term savings give the amortized cost of the operation.

It is easy to calculate the immediate cost (time required) of an operation, but how can we measure 
the long-term savings that result? We imagine that the data structure has associated with it a bank 
account; at any given moment, the bank account must have a nonnegative balance. When we do an 
operation that will save future effort, we are making a deposit to the savings account and when, later on, 
we derive the benefits of that earlier operation, we are making a withdrawal from the savings account. 
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Let B(i) denote the balance in the account after the ith operation, B(0) = 0. We define the amortized 
cost of the ith operation to be

	

amortized cost of th operation immediate cost of th operationi i= +( ) (( )

( ) ( ( )

change in bank account

immediate cost of th operation= +i iB −− −B( )).i 1

Since the bank account B can go up or down as a result of the ith operation, the amortized cost may be 
less than or more than the immediate cost. By summing the previous equation, we get

	

( ) (amortized cost of th operation immediate cost of th operi i
i

n

=
∑ =

1

aation

total cost of all operations

) ( ( ) ( ))

( ) ( )

i

n

n

n n

=
∑ + −

= +

≥

1

0B B

B

ttotal cost of all operationsn

T n ,= ( )

because B(i) is nonnegative. Thus defined, the sum of the amortized costs of the operations gives us an 
upper bound on the total time T(n) for all n operations.

It is important to note that the function B(i) is not part of the data structure, but is just our way to 
measure how much time is used by the sequence of operations. As such, we can choose any rules for B, 
provided B(0) = 0 and B(i) ≥ 0 for i ≥ 1. Then the sum of the amortized costs defined by

	 amortized cost of th operation immediate cost of th operationi i= +( ) (( ( ) ( ))B Bi i− −1

bounds the overall cost of the operation of the data structure.
Now, we apply this method to priority queues. A Fibonacci heap is a list of heap-ordered trees (not 

necessarily binary); since the trees are heap ordered, the minimum element must be one of the roots 
and we keep track of which root is the overall minimum. Some of the tree nodes are marked. We define

	

B( ) ( )

(

i i=

+ ×

number of trees after the th operation

number of marked2 nnodes after the th operationi ).

The clever rules by which nodes are marked and unmarked, and the intricate algorithms that manipu-
late the set of trees, are too complex to present here in their complete form, so we just briefly describe the 
simpler operations and show the calculation of their amortized costs:

create: To create an empty Fibonacci heap, we create an empty list of heap-ordered trees. The 
immediate cost is Θ(1); since the numbers of trees and marked nodes are zero before and after 
this operation, B(i) − B(i − 1) is zero, and the amortized time is Θ(1).

insert: To insert a new element into a Fibonacci heap, we add a new one-element tree to 
the list of trees constituting the heap and update the record of what root is the overall 
minimum. The immediate cost is Θ(1). B(i) − B(i − 1) is also 1 since the number of trees 
has increased by 1, while the number of marked nodes is unchanged. The amortized time 
is thus Θ(1).

decrease: Decreasing an element in a Fibonacci heap is done by cutting the link to its parent, 
if any, adding the item as a root in the list of trees, and decreasing its value. Furthermore, the 
marked parent of a cut element is itself cut, propagating upward in the tree. Cut nodes become 
unmarked, and the unmarked parent of a cut element becomes marked. The immediate cost of 
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this operation is Θ(c), where c is the number of cut nodes. If there were t trees and m marked 
elements before this operation, the value of B before the operation was t + 2m. After the opera-
tion, the value of B is (t + c) + 2(m − c + 2) so B(i) − B (i − 1) = 4 − c. The amortized time is thus 
Θ(c) + 4 − c = Θ(1) by changing the definition of B by a multiplicative constant large enough to 
dominate the constant hidden in Θ(c).

minimum: Reporting the minimum element in a Fibonacci heap takes time Θ(1) and does not 
change the numbers of trees and marked nodes; the amortized time is thus Θ(1).

deleteMinimum: Deleting the minimum element in a Fibonacci heap is done by deleting that 
tree root, making its children roots in the list of trees. Then, the list of tree roots is “consoli-
dated” in a complicated O(log n) operation that we do not describe. The result takes amortized 
time O(log n).

delete: Deleting an element in a Fibonacci heap is done by decreasing its value to −∞ and then 
doing a deleteMinimum. The amortized cost is the sum of the amortized cost of the two 
operations, O(log n).

merge: Merging two Fibonacci heaps is done by concatenating their lists of trees and updating 
the record of which root is the minimum. The amortized time is thus Θ(1).

Notice that the amortized cost of each operation is Θ(1) except deleteMinimum and delete, both 
of which are O(log n).

4.3  Divide-and-Conquer Algorithms

One approach to the design of algorithms is to decompose a problem into subproblems that resemble the 
original problem, but on a reduced scale. Suppose, for example, that we want to compute xn. We reason 
that the value we want can be computed from x└n/2┘ because
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This recursive definition can be translated directly into

1	 int power (float x, int n) {
2	  // Compute the n-th power of x
3	   if (n == 0)
4	     return 1;
5	   else {
6	     int t = power(x, floor(n/2));
7	     if ((n % 2) == 0)
8	      return t*t;
9	     else
10	      return x*t*t;
11	   }
12	 }

To analyze the time required by this algorithm, we notice that the time will be proportional to the 
number of multiplication operations performed in lines 8 and 10, so the divide-and-conquer recurrence

	
T n T n( ) ,= +  ( )2 2/
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with T(0) = 0, describes the rate of growth of the time required by this algorithm. By considering the 
subsequence nk = 2k, we find, using the methods of the previous section, that T(n) = Θ(log n). Thus above 
algorithm is considerably more efficient than the more obvious

1	 int power (int k, int n) {
2	  // Compute the n-th power of k
3	   int product = 1;
4	   for (int i = 1; i <= n; i++)
5	     // at this point power is k*k*k*...*k (i times)
6	     product = product * k;
7	   return product;
8	 }

which requires time Θ(n).
An extremely well-known instance of the divide-and-conquer algorithm is binary search of an 

ordered array of n elements for a given element—we “probe” the middle element of the array, continuing 
in either the lower or upper segment of the array, depending on the outcome of the probe:

1	 int binarySearch (int x, int w[], int low, int high) {
2	  // Search for x among sorted array w[low..high]. The integer returned
3	  // is either the location of x in w, or the location where x belongs.
4	  if (low > high) // Not found
5	     return low;
6	  else {
7	     int middle := (low+high)/2;
8	     if (w[middle] < x)
9	       return binarySearch(x, w, middle+1, high);
10	     else if (w[middle] == x)
11	       return middle;
12	     else
13	       return binarySearch(x, w, low, middle−1);
14	   }
15	 }

The analysis of binary search in an array of n elements is based on counting the number of probes used 
in the search, since all remaining work is proportional to the number of probes. But, the number of 
probes needed is described by the divide-and-conquer recurrence

	
T n T

n
( ) ,= + 



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1
2

with T(0) = 0, T(1) = 1. We find from Table 4.2 (the top line) that T(n) = Θ(log n). Hence binary search is 
much more efficient than a simple linear scan of the array.

To multiply two very large integers x and y, assume that x has exactly l ≥ 2 digits and y has at most l 
digits. Let x0, x1, x2, …, xl−1 be the digits of x and y0, y1,…, yl−1 be the digits of y (some of the significant 
digits at the end of y may be zeros, if y is shorter than x), so that

	 x x x x xl
l= + + + + −
−0 1

2
2

1
110 10 10� ,

and

	 y y y y yl
l= + + + + −
−0 1

2
2

1
110 10 10� .
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We apply the divide-and-conquer idea to multiplication by chopping x into two pieces, the leftmost n 
digits and the remaining digits:

	 x x xn= +left right10 ,

where n = l/2. Similarly, chop y into two corresponding pieces:

	 y y yn= +left right10 ,

because y has at most the number of digits that x does, yright might be 0. The product x × y can be now 
written

	

x y x x y y

x y x

n n

n

× = + × +

= × +

( ) ( ),

(

left right left right

left left

10 10

10 rright left left right right right× + × + ×y x y x yn) .102

If T(n) is the time to multiply two n-digit numbers with this method, then

	
T n kn T

n
( ) ;= + 





4
2

the kn part is the time to chop up x and y and to do the needed additions and shifts; each of these tasks 
involves n-digit numbers and hence Θ(n) time. The 4T(n/2) part is the time to form the four needed 
subproducts, each of which is a product of about n/2 digits.

The line for g(n) = Θ(n), u = 4 > v = 2 in Table 4.2 tells us that T n n n( ) ( ) ( )log= =Θ Θ2 4 2 , so the divide-
and-conquer algorithm is no more efficient than the elementary-school method of multiplication. 
However, we can be more economical in our formation of subproducts:
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The recurrence for the time required changes to

	
T n kn T

n
( ) .= + 


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3
2

The kn part is the time to do the two additions that form x × y from A, B, and C and the two addi-
tions and the two subtractions in the formula for C; each of these six additions/subtractions involves 
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n-digit numbers. The 3T(n/2) part is the time to (recursively) form the three needed products, each of 
which is a product of about n/2 digits. The line for g(n) = Θ(n), u = 3 > v = 2 in Table 4.2 now tells us that

	 T n n( ) ( ).log= Θ 2 3

Now,

	
log

log

log
. ,2

10

10

3
3

2
1 5849625= ≈ �

which means that this divide-and-conquer multiplication technique will be faster than the straightfor-
ward Θ(n2) method for large numbers of digits.

Sorting a sequence of n values efficiently can be done using the divide-and-conquer idea. Split the n 
values arbitrarily into two piles of n/2 values each, sort each of the piles separately, and then merge the 
two piles into a single sorted pile. This sorting technique, pictured in Figure 4.2, is called merge sort. 
Let T(n) be the time required by merge sort for sorting n values. The time needed to do the merging is 
proportional to the number of elements being merged, so that

	 T n cn T n( ) ( / ),= + 2 2

because we must sort the two halves (time T(n/2) each) and then merge (time proportional to n). We see 
by Table 4.2 that the growth rate of T(n) is Θ(n log n), since u = v = 2 and g(n) = Θ(n).

Split into two
nearly equal piles

Sort recursively Sort recursively

Merge the two sorted piles

FIGURE 4.2  Schematic description of merge sort.
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4.4  Dynamic Programming

In the design of algorithms to solve optimization problems, we need to make the optimal (lowest cost, 
highest value, shortest distance, and so on) choice from among a large number of alternative solutions; 
dynamic programming is an organized way to find an optimal solution by systematically exploring all 
possibilities without unnecessary repetition. Often, dynamic programming leads to efficient, poly-
nomial-time algorithms for problems that appear to require searching through exponentially many 
possibilities.

Like the divide-and-conquer method, dynamic programming is based on the observation that many 
optimization problems can be solved by solving similar subproblems and composing the solutions of 
those subproblems into a solution for the original problem. In addition, the problem is viewed as a 
sequence of decisions, each decision leading to different subproblems; if a wrong decision is made, a 
suboptimal solution results, so all possible decisions need to be accounted for.

As an example of dynamic programming, consider the problem of constructing an optimal search 
pattern for probing an ordered sequence of elements. The problem is similar to searching an array—in 
the previous section, we described binary search in which an interval in an array is repeatedly bisected 
until the search ends. Now, however, suppose we know the frequencies with which the search will seek 
various elements (both in the sequence and missing from it). For example, if we know that the last few 
elements in the sequence are frequently sought—binary search does not make use of this information—
it might be more efficient to begin the search at the right end of the array, not in the middle. Specifically, 
we are given an ordered sequence x1 < x2 < ⋯ < xn and associated frequencies of access β1, β2, …, βn, 
respectively; furthermore, we are given α0, α1, …, αn where αi is the frequency with which the search will 
fail because the object sought, z, was missing from the sequence, xi < z < xi+1 (with the obvious meaning 
when i = 0 or i = n). What is the optimal order to search for an unknown element z? In fact, how should 
we describe the optimal search order?

We express a search order as a binary search tree, a diagram showing the sequence of probes made 
in every possible search. We place at the root of the tree the sequence element at which the first probe 
is made, say xi; the left subtree of xi is constructed recursively for the probes made when z < xi and 
the right subtree of xi is constructed recursively for the probes made when z > xi. We label each item 
in the tree with the frequency that the search ends at that item. Figure 4.3 shows a simple example. 
The search of sequence x1 < x2 < x3 < x4 < x5 according to the tree of Figure 4.3 is done by comparing 
the unknown element z with x4 (the root); if z = x4, the search ends. If z < x2, z is compared with x2 

x1

x2

x4

β1 
x3
β3 

β4 

β2 
x5
β5 

α4 α5

α1α0 α2 α3

FIGURE 4.3  A binary search tree.
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(the root of the left subtree); if z = x2, the search ends. Otherwise, if z < x2, z is compared with x1 (the 
root of the left subtree of x2); if z = x1, the search ends. Otherwise, if z < x1, the search ends unsuccess-
fully at the leaf labeled α0. Other results of comparisons lead along other paths in the tree from the 
root downward. By its nature, a binary search tree is lexicographic in that for all nodes in the tree, the 
elements in the left subtree of the node are smaller and the elements in the right subtree of the node 
are larger than the node.

Because we are to find an optimal search pattern (tree), we want the cost of searching to be mini-
mized. The cost of searching is measured by the weighted path length of the tree:

	
β β α αi

i

n

i i

i

n

i

= =
∑ ∑× + + ×

1 0

1[ ( )] ( ),level level

defined formally as

	

where the summations αi∑  and βi∑  are over all αi and βi in T. Since there are exponentially many 
possible binary trees, finding the one with minimum weighted path length could, if done naïvely, take 
exponentially long.

The key observation we make is that a principle of optimality holds for the cost of binary search 
trees: subtrees of an optimal search tree must themselves be optimal. This observation means, for 
example, if the tree shown in Figure 4.3 is optimal, then its left subtree must be the optimal tree for 
the problem of searching the sequence x1 < x2 < x3 with frequencies β1, β2, β3 and α0, α1, α2, α3. (If a 
subtree in Figure 4.3 were not optimal, we could replace it with a better one, reducing the weighted 
path length of the entire tree because of the recursive definition of weighted path length.) In general 
terms, the principle of optimality states that subsolutions of an optimal solution must themselves 
be optimal.

The optimality principle, together with the recursive definition of weighted path length, means 
that we can express the construction of an optimal tree recursively. Let Ci,j, 0 ≤ i ≤ j ≤ n, be the 
cost of an optimal tree over xi+1 < xi+2 < ⋯ < xj with the associated frequencies βi+1, βi+2, …, βj and 
αi, αi+1, …, αj. Then,

	 Ci i, ,= 0

	
C C C Wi j

i k j
i k k j i j, , , ,min( ) ,= + +
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where

	 Wi i i, ,= α

	 W Wi j i j j j, , .= + +−1 β α
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These two recurrence relations can be implemented directly as recursive functions to compute C0,n, the 
cost of the optimal tree, leading to the following two functions:

1	 int W (int i, int j) {
2	   if (i == j)
3	     return alpha[j];
4	   else
5	     return W(i,j−1) + beta[j] + alpha[j];
6	 }
7
8	 int C (int i, int j) {
9	   if (i == j)
10	     return 0;
11	   else {
12	     int minCost = MAXINT;
13	     int cost;
14	     for (int k = i+1; k <= j; k++) {
15	       cost = C(i,k−1) + C(k,j) + W(i,j);
16	       if (cost < minCost)
17	         minCost = cost;
18	     }
19	     return minCost;
20	   }
21	 }

These two functions correctly compute the cost of an optimal tree; the tree itself can be obtained by stor-
ing the values of k when cost < minCost in line 16.

However, the above functions are unnecessarily time-consuming (requiring exponential time) 
because the same subproblems are solved repeatedly. For example, each call W(i, j) uses time 
Θ(j − i) and such calls are made repeatedly for the same values of i and j. We can make the process 
more efficient by caching the values of W(i, j) in an array as they are computed and using the cached 
values when possible:

1	 int W[n][n];
2	 for (int i = 0; i < n; i++)
3	   for (int j = 0; j < n; j++)
4	     W[i][j] = MAXINT;
5
6	 int W (int i, int j) {
7	   if (W[i][j] = MAXINT)
8	     if (i == j)
9	         W[i][j] = alpha[j];
10	     else
11	       W[i][j] = W(i,j−1) + beta[j] + alpha[j];
12	   return W[i][j];
13	 }

In the same way, we should cache the values of C(i, j) in an array as they are computed:

1	 int C[n][n];
2	 for (int i = 0; i < n; i++)
3	   for (int j = 0; j < n; j++)
4	     C[i][j] = MAXINT;
5
6	 int C (int i, int j) {
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7	   if (C[i][j] == MAXINT)
8	     if (i == j)
9	         C[i][j] = 0;
10	     else {
11	       int minCost = MAXINT;
12	       int cost;
13	       for (int k = i+1; k <= j; k++) {
14	         cost = C(i,k−1) + C(k,j) + W(i,j);
15	         if (cost < minCost)
16	           minCost = cost;
17	       }
18	       C[i][j] = minCost;
19	     }
20	   return C[i][j];
21	 }

The idea of caching the solutions to subproblems is crucial to making the algorithm efficient. In this 
case, the resulting computation requires time Θ(n3); this is surprisingly efficient, considering that an 
optimal tree is being found from among exponentially many possible trees.

By studying the pattern in which the arrays C and W are filled in, we see that the main diagonal 
C[i][i] is filled in first, then the first upper super-diagonal C[i][i + 1], then the second upper super-
diagonal C[i][i + 2], and so on until the upper right corner of the array is reached. Rewriting the code 
to do this directly, and adding an array R[][] to keep track of the roots of subtrees, we obtain

1	 int W[n][n];
2	 int R[n][n];
3	 int C[n][n];
4
5	 // Fill in main diagonal
6	 for (int i = 0; i < n; i++) {
7	   W[i][i] = alpha[i];
8	   R[i][i] = 0;
9	   C[i][i] = 0;
10	 }
11
12	 int minCost, cost;
13	 for (int d = 1; d < n; d++)
14	   // Fill in d-th upper super-diagonal
15	   for (i = 0; i < n−d; i++) {
16	     W[i][i+d] = W[i][i+d−1] + beta[i+d] + alpha[i+d];
17	     R[i][i+d] = i+1;
18	     C[i][i+d] = C[i][i] + C[i+1][i+d] + W[i][i+d];;
19	     for (int k = i+2; k <= i+d; k++) {
20	       cost = C[i][k−1] + C[k][i+d] + W[i][i+d];
21	       if (cost < C[i][i+d]) {
22	         R[i][i+d] = k;
23	         C[i][i+d] = cost;
24	       }
25	     }
26	   }

which more clearly shows the Θ(n3) behavior.
As a second example of dynamic programming, consider the traveling salesman problem in 

which a salesman must visit n cities, returning to his starting point, and is required to minimize 
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the cost of the trip. The cost of going from city i to city j is Ci,j. To use dynamic programming, we 
must specify an optimal tour in a recursive framework, with subproblems resembling the overall 
problem. Thus we define
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The principle of optimality tells us that
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where, by definition,

	 T i j C Ci j j( ; ) ., ,= + 1

We can write a function T that directly implements the above recursive definition, but as in the 
optimal search tree problem, many subproblems would be solved repeatedly, leading to an algorithm 
requiring time Θ(n!). By caching the values T(i; j1, j2, …, jk), we reduce the time required to Θ(n22n), still 
exponential, but considerably less than without caching.

4.5  Greedy Heuristics

Optimization problems always have an objective function to be minimized or maximized, but it is 
not often clear what steps to take to reach the optimum value. For example, in the optimum binary 
search tree problem of the previous section, we used dynamic programming to examine systemati-
cally all possible trees; but perhaps there is a simple rule that leads directly to the best tree—say 
by choosing the largest βi to be the root and then continuing recursively. Such an approach would 
be less time-consuming than the Θ(n3) algorithm we gave, but it does not necessarily give an opti-
mum tree (if we follow the rule of choosing the largest βi to be the root, we get trees that are no 
better, on the average, than a randomly chosen trees). The problem with such an approach is that 
it makes decisions that are locally optimum, though perhaps not globally optimum. But, such a 
“greedy” sequence of locally optimum choices does lead to a globally optimum solution in some 
circumstances.

Suppose, for example, βi = 0 for 1 ≤ i ≤ n, and we remove the lexicographic requirement of the tree; 
the resulting problem is the determination of an optimal prefix code for n + 1 letters with frequen-
cies α0, α1, …, αn. Because we have removed the lexicographic restriction, the dynamic programming 
solution of the previous section no longer works, but the following simple greedy strategy yields an 
optimum tree: Repeatedly combine the two lowest-frequency items as the left and right subtrees of a 
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newly created item whose frequency is the sum of the two frequencies combined. Here is an example 
of this construction; we start with five leaves with weights

α0 = 25

α0 = 25

α0 = 25

α1 = 34 α2 = 38 α3 = 58 α4 = 95

α1 = 34 α2 = 38

α1 = 34

α1 = 34

α2 = 38

α2 = 38

α3 = 58 α4 = 95

α3 = 58

α3 = 58

α4 = 95

α4 = 95

α5 = 21

α5 = 21

α5 = 21

25 + 21 = 45

25 + 21 = 45 34 + 38 = 72

45 + 58 = 103

25 + 21 = 45

34 + 38 = 72

First, combine leaves α0 = 25 and α5 = 21 into a subtree of frequency 25 + 21 =  45:

�en combine leaves α1 = 34 and α2 = 38 into a subtree of frequency 34 + 38 = 72:

Next, combine the subtree of frequency α0 + α5 = 45 with α3 = 58:

α0 = 25 α5 = 21

�en, combine the subtree of frequency α1 + α4 = 72 with α4 = 95:

45 + 58 = 103

25 + 21 = 45

72 + 95 = 167

34 + 38 = 72
α3 = 58 α4 = 95

α0 = 25 α1 = 34 α2 = 38α5 = 21
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Finally, combine the only two remaining subtrees:

103+167=270

45+58=103

25+21=45

72+95=167

34+38=72
α3=58 α4=95

α1=34 α2=38α0=25 α5=21

How do we know that the above-outlined process leads to an optimum tree? The key to proving that 
the tree is optimum is to assume, by way of contradiction, that it is not optimum. In this case, the greedy 
strategy must have erred in one of its choices, so let’s look at the first error this strategy made. Since all 
previous greedy choices were not errors, and hence lead to an optimum tree, we can assume that we have 
a sequence of frequencies α0, α1, …, αn such that the first greedy choice is erroneous—without loss of 
generality assume that α0 and α1 are two smallest frequencies, those combined erroneously by the greedy 
strategy. For this combination to be erroneous, there must be no optimum tree in which these two leaves 
are siblings, so consider an optimum tree, the locations of α0 and α1, and the location of the two deepest 
leaves in the tree, αi and αj:

α0

α1

αi αj

By interchanging the positions of α0 and αi and α1 and αj (as shown), we obtain a tree in which α0 and α1 
are siblings. Because α0 and α1 are the two lowest frequencies (because they were the greedy algorithm’s 
choice) α0 ≤ αi and α1 ≤ αj, thus the weighted path length of the modified tree is no larger than before 
the modification since level(α0) ≥ level(αi), level(α1) ≥ level(αj) and hence

	 level( ) level( ) level( ) level( ) .α α α α α α α αi j× + × ≤ × + ×0 1 0 0 1 1

In other words, the first so-called mistake of the greedy algorithm was in fact not a mistake since there 
is an optimum tree in which α0 and α1 are siblings. Thus we conclude that the greedy algorithm never 
makes a first mistake—that is, it never makes a mistake at all!

The greedy algorithm above is called Huffman’s algorithm. If the subtrees are kept on a priority queue 
by cumulative frequency, the algorithm needs to insert the n + 1 leaf frequencies onto the queue, and 
repeatedly remove the two least elements on the queue, unite those to elements into a single subtree, and 
put that subtree back on the queue. This process continues until the queue contains a single item, the 
optimum tree. Reasonable implementations of priority queues will yield O(n log n) implementations of 
Huffman’s greedy algorithm.

The idea of making greedy choices, facilitated with a priority queue, works to find optimum solutions 
to other problems too. For example, a spanning tree of a weighted, connected, undirected graph G = (V, E) 
is a subset of |V| − 1 edges from E connecting all the vertices in G; a spanning tree is minimum if the 
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sum of the weights of its edges is as small as possible. Prim’s algorithm uses a sequence of greedy choices 
to determine a minimum spanning tree: Start with an arbitrary vertex v ∈ V as the spanning-tree-to-be. 
Then, repeatedly add the cheapest edge connecting the spanning-tree-to-be to a vertex not yet in it. If the 
vertices not yet in the tree are stored in a priority queue implemented by a Fibonacci heap, the total time 
required by Prim’s algorithm will be O(|E| + |V|log |V|). But why does the sequence of greedy choices 
lead to a minimum spanning tree?

Suppose Prim’s algorithm does not result in a minimum spanning tree. As we did with Huffman’s algo-
rithm, we ask what the state of affairs must be when Prim’s algorithm makes its first mistake; we will see 
that the assumption of a first mistake leads to a contradiction, proving the correctness of Prim’s algorithm. 
Let the edges added to the spanning tree be, in the order added, e1, e2, e3, …, and let ei be the first mistake. In 
other words, there is a minimum spanning tree Tmin containing e1, e2, …, ei − 1, but no minimum spanning 
tree contains e1, e2, …, ei. Imagine what happens if we add the edge ei to Tmin: since Tmin is a spanning tree, 
the addition of ei causes a cycle containing ei. Let emax be the highest-cost edge on that cycle. Because Prim’s 
algorithm makes a greedy choice—that is, chooses the lowest-cost available edge—the cost of emax is at least 
that of ei, so the cost of the spanning Tmin − {emax} ∪ {ei} is at most that of Tmin; in other words, Tmin − {emax} ∪ {ei} 
is also a minimum spanning tree, contradicting our assumption that the choice of ei is the first mistake. 
Therefore, the spanning tree constructed by Prim’s algorithm must be a minimum spanning tree.

We can apply the greedy heuristic to many optimization problems, and even if the results are not 
optimal, they are often quite good. For example, in the n-city traveling salesman problem, we can get 
near-optimal tours in time O(n2) when the intercity costs are symmetric (Ci,j = Cj,i for all i and j) and 
satisfy the triangle inequality(Ci,j ≤ Ci,k + Ck,j for all i, j, and k). The closest insertion algorithm starts with 
a “tour” consisting of a single, arbitrarily chosen city, and successively inserts the remaining cities to the 
tour, making a greedy choice about which city to insert next and where to insert it: the city chosen for 
insertion is the city not on the tour but closest to a city on the tour; the chosen city is inserted adjacent 
to the city on the tour to which it is closest.

Given an n × n symmetric distance matrix C that satisfies the triangle inequality, let In be th\e tour of 
length |In| produced by the closest insertion heuristic and let On be an optimal tour of length |On|. Then,

	

| |

| |
.
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n
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This bound is proved by an incremental form of the optimality proofs for greedy heuristics we have seen 
above: we ask not where the first error is, but by how much we are in error at each greedy insertion to the 
tour—we establish a correspondence between edges of the optimal tour and cities inserted on the closest 
insertion tour. We show that at each insertion of a new city to the closest insertion tour, the cost of that 
insertion is at most twice the cost of corresponding edge of the optimal tour.

To establish the correspondence, imagine the closest insertion algorithm keeping track not only of 
the current tour, but also of a spiderlike configuration including the edges of the current tour (the body 
of the spider) and pieces of the optimal tour (the legs of the spider). We show the current tour in solid 
lines and the pieces of optimal tour as dotted lines:

m
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Initially, the spider consists of the arbitrarily chosen city with which the closest insertion tour begins 
and the legs of the spider consist of all the edges of the optimal tour except for one edge eliminated arbi-
trarily. As each city is inserted into the closest insertion tour, the algorithm will delete from the spider-
like configuration one of the dotted edges from the optimal tour. When city k is inserted between cities 
l and m, the edge deleted is the one attaching spider to the leg containing the city inserted (from city x to 
city y), shown here in bold:

x
l m

y k

Now,

	 C Ck m x y, , ,≤

because of the greedy choice to add city k to the tour and not city y. By the triangle inequality,

	 C C Cl k l m m k, , , ,≤ +

and by symmetry we can combine these two inequalities to get

	 C C Cl k l m x y, , , .≤ +

Adding this last inequality to the first one,

	 C C C Cl k k m l m x y, , , , ,+ ≤ + 2

that is,

	 C C C Cl k k m l m x y, , , , .+ − ≤ 2

Thus, adding city k between cities l and m adds no more to In than 2Cx,y. Summing these incremental 
amounts over the cost of the entire algorithm tells us

	 I On n≤ 2 ,

as we claimed.
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5.1  Introduction

Graphs are useful in modeling many problems from different scientific disciplines because they capture 
the basic concept of objects (vertices) and relationships between objects (edges). Indeed, many optimi-
zation problems can be formulated in graph-theoretic terms. Hence, algorithms on graphs have been 
widely studied. In this chapter, a few fundamental graph algorithms are described. For a more detailed 
treatment of graph algorithms, the reader is referred to textbooks on graph algorithms (Cormen et al. 
2001, Even 1979, Gibbons 1985, Tarjan 1983).

An undirected graph G = (V, E) is defined as a set V of vertices and a set E of edges. An edge e = (u, v) is 
an unordered pair of vertices. A directed graph is defined similarly, except that its edges are ordered pairs 
of vertices; that is, for a directed graph, E ⊆ V × V. The terms nodes and vertices are used interchangeably.

In this chapter, it is assumed that the graph has neither self-loops, edges of the form (v, v), nor multiple 
edges connecting two given vertices. A graph is a sparse graph if |E| ≪ |V|2.
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Bipartite graphs form a subclass of graphs and are defined as follows. A graph G = (V, E) is bipartite if 
the vertex set V can be partitioned into two sets X and Y such that E ⊆ X × Y. In other words, each edge 
of G connects a vertex in X with a vertex in Y. Such a graph is denoted by G = (X, Y, E). Because bipartite 
graphs occur commonly in practice, algorithms are often specially designed for them.

A vertex w is adjacent to another vertex v if (v, w) ∈ E. An edge (v, w) is said to be incident on vertices 
v and w. The neighbors of a vertex v are all vertices w ∈ V such that (v, w) ∈ E. The number of edges inci-
dent to a vertex v is called the degree of vertex v. For a directed graph, if (v, w) is an edge, then we say that 
the edge goes from v to w. The out-degree of a vertex v is the number of edges from v to other vertices. 
The in-degree of v is the number of edges from other vertices to v.

A path p = [v0, v1, …, vk] from v0 to vk is a sequence of vertices such that (vi, vi+1) is an edge in the graph 
for 0 ≤ i < k. Any edge may be used only once in a path. A cycle is a path whose end vertices are the same, 
that is, v0 = vk. A path is simple if all its internal vertices are distinct. A cycle is simple if every node has 
exactly two edges incident to it in the cycle. A walk w = [v0, v1, …, vk] from v0 to vk is a sequence of verti-
ces such that (vi, vi+1) is an edge in the graph for 0 ≤ i < k, in which edges and vertices may be repeated. 
A walk is closed if v0 = vk· A graph is connected if there is a path between every pair of vertices. A directed 
graph is strongly connected if there is a path between every pair of vertices in each direction. An acyclic, 
undirected graph is a forest, and a tree is a connected forest. A directed graph without cycles is known as 
a directed acyclic graph (DAG). Consider a binary relation C between the vertices of an undirected graph 
G such that for any two vertices u and v, uCv if and only if there is a path in G between u and v. It can be 
shown that C is an equivalence relation, partitioning the vertices of G into equivalence classes, known 
as the connected components of G.

There are two convenient ways of representing graphs on computers. We first discuss the adjacency 
list representation. Each vertex has a linked list: there is one entry in the list for each of its adjacent 
vertices. The graph is thus represented as an array of linked lists, one list for each vertex. This rep-
resentation uses O(|V| + |E|) storage, which is good for sparse graphs. Such a storage scheme allows 
one to scan all vertices adjacent to a given vertex in time proportional to its degree. The second rep-
resentation, the adjacency matrix, is as follows. In this scheme, an n × n array is used to represent 
the graph. The [i, j] entry of this array is 1 if the graph has an edge between vertices i and j, and 0 
otherwise. This representation permits one to test if there is an edge between any pair of vertices in 
constant time. Both these representation schemes can be used in a natural way to represent directed 
graphs. For all algorithms in this chapter, it is assumed that the given graph is represented by an 
adjacency list.

Section 5.2 discusses various types of tree traversal algorithms. Sections 5.3 and 5.4 discuss depth-
first search (DFS) and breadth-first search (BFS) techniques. Section 5.5 discusses the single-source 
shortest path problem. Section 5.6 discusses minimum spanning trees (MSTs). Section 5.7 discusses the 
bipartite matching problem and the single commodity maximum-flow problem. Section 5.8 discusses 
some traversal problems in graphs, and the Further Information section concludes with some pointers 
to current research on graph algorithms.

5.2 T ree Traversals

A tree is rooted if one of its vertices is designated as the root vertex and all edges of the tree are oriented 
(directed) to point away from the root. In a rooted tree, there is a directed path from the root to any 
vertex in the tree. For any directed edge (u, v) in a rooted tree, u is v’s parent and v is u’s child. The descen-
dants of a vertex w are all vertices in the tree (including w) that are reachable by directed paths starting 
at w. The ancestors of a vertex w are those vertices for which w is a descendant. Vertices that have no 
children are called leaves. A binary tree is a special case of a rooted tree in which each node has at most 
two children, namely, the left child and the right child. The trees rooted at the two children of a node are 
called the left subtree and right subtree.
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In this section, we study techniques for processing the vertices of a given binary tree in various 
orders. We assume that each vertex of the binary tree is represented by a record that contains fields to 
hold attributes of that vertex and two special fields left and right that point to its left and right subtree, 
respectively.

The three major tree traversal techniques are preorder, inorder, and postorder. These techniques are 
used as procedures in many tree algorithms where the vertices of the tree have to be processed in a spe-
cific order. In a preorder traversal, the root of any subtree has to be processed before any of its descen-
dants. In a postorder traversal, the root of any subtree has to be processed after all of its descendants. 
In an inorder traversal, the root of a subtree is processed after all vertices in its left subtree have been 
processed but before any of the vertices in its right subtree are processed. Preorder and postorder tra-
versals generalize to arbitrary rooted trees. In the example to follow, we show how postorder can be used 
to count the number of descendants of each node and store the value in that node. The algorithm runs 
in linear time in the size of the tree:

Postorder Algorithm. PostOrder (T):

     1    if T ≠ nil then
     2        lc ← PostOrder (left[T]).
     3        rc ← PostOrder (right[T]).
     4        desc[T] ← lc + rc + 1.
     5        return desc[T].
     6    else
     7        return 0.
     8    end-if
     end-proc

5.3  Depth-First Search

DFS is a fundamental graph searching technique (Hopcroft and Tarjan 1973, Tarjan 1972). Similar graph 
searching techniques were given earlier by Tremaux (see Fraenkel 1970, Lucas 1882). The structure of 
DFS enables efficient algorithms for many other graph problems such as biconnectivity, triconnectivity, 
and planarity (Even 1979).

The algorithm first initializes all vertices of the graph as being unvisited. Processing of the graph 
starts from an arbitrary vertex, known as the root vertex. Each vertex is processed when it is first dis-
covered (also referred to as visiting a vertex). It is first marked as visited, and its adjacency list is then 
scanned for unvisited vertices. Each time an unvisited vertex is discovered, it is processed recursively 
by DFS. After a node’s entire adjacency list has been explored, that invocation of the DFS procedure 
returns. This procedure eventually visits all vertices that are in the same connected component of the 
root vertex. Once DFS terminates, if there are still any unvisited vertices left in the graph, one of them is 
chosen as the root and the same procedure is repeated.

The set of edges such that each one led to the discovery of a new vertex form a maximal forest of the 
graph, known as the DFS forest; a maximal forest of a graph G is an acyclic subgraph of G such that 
the addition of any other edge of G to the subgraph introduces a cycle. The algorithm keeps track of 
this forest using parent pointers. In each connected component, only the root vertex has a nil parent 
in the DFS tree.

5.3.1  Depth-First Search Algorithm

DFS is illustrated using an algorithm that labels vertices with numbers 1, 2, … in such a way 
that vertices in the same component receive the same label. This labeling scheme is a useful 
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preprocessing step in many problems. Each time the algorithm processes a new component, it num-
bers its vertices with a new label.

Depth-First Search Algorithm. DFS-Connected Component (G):

       1   c ← 0.
       2   for all vertices v in G do
       3         visited[v] ← false.
       4         finished[v] ← false.
       5         parent[v] ← nil.
       6   end-for
       7   for all vertices v in G do
       8         if not visited[v] then
       9               c ← c + 1.
     10               DFS (v, c).
     11         end-if
     12   end-for
      end-proc

      DFS (v, c):
      1   visited[v] ← true.
      2   component[v] ← c.
      3   for all vertices w in adj[v] do
      4         if not visited[w] then
      5               parent[w] ← v.
      6               DFS (w, c).
      7         end-if
      8   end-for
      9   finished[v] ← true.
      end-proc

5.3.2  Sample Execution

Figure 5.1 shows a graph having two connected components. DFS was started at vertex a, and the 
DFS forest is shown on the right. DFS visits the vertices b, d, c, e, and f, in that order. DFS then 
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FIGURE 5.1  Sample execution of DFS on a graph having two connected components: (a) graph and (b) DFS 
forest.
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continues with vertices g, h, and i. In each case, the recursive call returns when the vertex has no 
more unvisited neighbors. Edges (d, a), (c, a), (  f, d), and (i, g) are called back edges (these do not 
belong to the DFS forest).

5.3.3 A nalysis

A vertex v is processed as soon as it is encountered, and therefore at the start of DFS (v), visited[v] is false. 
Since visited[v] is set to true as soon as DFS starts execution, each vertex is visited exactly once. DFS pro-
cesses each edge of the graph exactly twice, once from each of its incident vertices. Since the algorithm 
spends constant time processing each edge of G, it runs in O (|V| + |E|) time.

Remark 5.1

In the following discussion, there is no loss of generality in assuming that the input graph is connected. 
For a rooted DFS tree, vertices u and v are said to be related, if either u is an ancestor of v, or vice versa.

DFS is useful due to the special way in which the edges of the graph may be classified with respect 
to a DFS tree. Notice that the DFS tree is not unique, and which edges are added to the tree depends 
on the order in which edges are explored while executing DFS. Edges of the DFS tree are known as tree 
edges. All other edges of the graph are known as back edges, and it can be shown that for any edge (u, v), 
u and v must be related. The graph does not have any cross edges, edges that connect two vertices that 
are unrelated. This property is utilized by a DFS-based algorithm that classifies the edges of a graph into 
biconnected components, maximal subgraphs that cannot be disconnected by the removal of any single 
vertex (Even 1979).

5.3.4  Directed Depth-First Search

The DFS algorithm extends naturally to directed graphs. Each vertex stores an adjacency list of its outgo-
ing edges. During the processing of a vertex, first mark it as visited, and then scan its adjacency list for 
unvisited neighbors. Each time an unvisited vertex is discovered, it is processed recursively. Apart from 
tree edges and back edges (from vertices to their ancestors in the tree), directed graphs may also have 
forward edges (from vertices to their descendants) and cross edges (between unrelated vertices). There 
may be a cross edge (u, v) in the graph only if u is visited after the procedure call DFS (v) has completed 
execution.

5.3.5  Sample Execution

A sample execution of the directed DFS algorithm is shown in Figure 5.2. DFS was started at vertex 
a, and the DFS forest is shown on the right. DFS visits vertices b, d, f, and c in that order. DFS then 
returns and continues with e and then g. From g, vertices h and i are visited in that order. Observe that 
(d, a) and (i, g) are back edges. Edges (c, d), (e, d), and (e, f ) are cross edges. There is a single forward 
edge (g, i).

5.3.6 A pplications of Depth-First Search

Directed DFS can be used to design a linear-time algorithm that classifies the edges of a given directed 
graph into strongly connected components: maximal subgraphs that have directed paths connecting 
any pair of vertices in them, in each direction. The algorithm itself involves running DFS twice, once 
on the original graph and then a second time on GR, which is the graph obtained by reversing the 
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direction of all edges in G. During the second DFS, we are able to obtain all of the strongly connected 
components. The proof of this algorithm is somewhat subtle, and the reader is referred to Cormen et al. 
(2001) for details.

Checking if a graph has a cycle can be done in linear time using DFS. A graph has a cycle if and 
only if there exists a back edge relative to any of its DFS trees. A directed graph that does not have any 
cycles is known as a DAG. DAGs are useful in modeling precedence constraints in scheduling problems, 
where nodes denote jobs/tasks, and a directed edge from u to v denotes the constraint that job u must 
be completed before job v can begin execution. Many problems on DAGs can be solved efficiently using 
dynamic programming.

A useful concept in DAGs is that of a topological order: a linear ordering of the vertices that is 
consistent with the partial order defined by the edges of the DAG. In other words, the vertices can 
be labeled with distinct integers in the range [1 … |V|] such that if there is a directed edge from a 
vertex labeled i to a vertex labeled j, then i < j. The vertices of a given DAG can be ordered topologi-
cally in linear time by a suitable modification of the DFS algorithm. We keep a counter whose initial 
value is |V|. As each vertex is marked finished, we assign the counter value as its topological number 
and decrement the counter. Observe that there will be no back edges and that for all edges (u, v), v 
will be marked finished before u. Thus, the topological number of v will be higher than that of u. 
Topological sort has applications in diverse areas such as project management, scheduling, and cir-
cuit evaluation.

5.4  Breadth-First Search

BFS is another natural way of searching a graph. The search starts at a root vertex r. Vertices are added 
to a queue as they are discovered and processed in first-in–first-out (FIFO) order.

Initially, all vertices are marked as unvisited, and the queue consists of only the root vertex. The 
algorithm repeatedly removes the vertex at the front of the queue and scans its neighbors in the graph. 
Any neighbor not visited is added to the end of the queue. This process is repeated until the queue is 
empty. All vertices in the same connected component as the root are scanned and the algorithm outputs 
a spanning tree of this component. This tree, known as a breadth-first tree, is made up of the edges that 
led to the discovery of new vertices. The algorithm labels each vertex v by d [v], the distance (length of 
a shortest path) of v from the root vertex, and stores the BFS tree in the array p, using parent pointers. 
Vertices can be partitioned into levels based on their distance from the root. Observe that edges not in 
the BFS tree always go either between vertices in the same level or between vertices in adjacent levels. 
This property is often useful.
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FIGURE 5.2  Sample execution of DFS on a directed graph: (a) graph and (b) DFS forest.
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Breadth-First Search Algorithm. BFS-Distance (G, r):

   1  MakeEmptyQueue (Q).
   2   for all vertices v in G do
   3        visited[v] ← false.
   4        d[v] ← ∞.
   5        p[v] ← nil.
   6   end-for
   7   visited[r] ← true.
   8   d[r] ← 0.
   9   Enqueue (Q, r).
  10   while not Empty (Q) do
  11        v ← Dequeue (Q).
  12        for all vertices w in adj[v] do
  13              if not visited[w] then
  14                    visited[w] ← true.
  15                    p[w] ← v.
  16                    d[w] ← d[v] + 1.
  17                    Enqueue (Q, w).
  18              end-if
  19        end-for
  20   end-while
      end-proc

5.4.1  Sample Execution

Figure 5.3 shows a connected graph on which BFS was run with vertex a as the root. When a is processed, 
vertices b, d, and c are added to the queue. When b is processed, nothing is done since all its neighbors 
have been visited. When d is processed, e and f are added to the queue. Finally c, e, and f are processed.

5.4.2 A nalysis

There is no loss of generality in assuming that the graph G is connected, since the algorithm can be 
repeated in each connected component, similar to the DFS algorithm. The algorithm processes each 
vertex exactly once and each edge exactly twice. It spends a constant amount of time in processing each 
edge. Hence, the algorithm runs in O(|V| + |E|) time.

5.5  Single-Source Shortest Paths

A natural problem that often arises in practice is to compute the shortest paths from a specified node 
to all other nodes in an undirected graph. BFS solves this problem if all edges in the graph have the 
same length. Consider the more general case when each edge is given an arbitrary, nonnegative length, 
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FIGURE 5.3  Sample execution of BFS on a graph: (a) graph and (b) BFS tree.
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and one needs to calculate a shortest-length path from the root vertex to all other nodes of the graph, 
where the length of a path is defined to be the sum of the lengths of its edges. The distance between two 
nodes is the length of a shortest path between them.

5.5.1  Dijkstra’s Algorithm

Dijkstra’s algorithm (Dijkstra 1959) provides an efficient solution to this problem. For each vertex v, the 
algorithm maintains an upper bound to the distance from the root to vertex v in d[v]; initially d[v] is set 
to infinity for all vertices except the root. The algorithm maintains a set S of vertices with the property 
that for each vertex v ∈ S, d[v] is the length of a shortest path from the root to v. For each vertex u in V 
− S, the algorithm maintains d[u], the shortest known distance from the root to u that goes entirely within 
S, except for the last edge. It selects a vertex u in V − S of minimum d[u], adds it to S, and updates the 
distance estimates to the other vertices in V − S. In this update step, it checks to see if there is a shorter 
path to any vertex in V − S from the root that goes through u. Only the distance estimates of vertices that 
are adjacent to u are updated in this step. Because the primary operation is the selection of a vertex with 
minimum distance estimate, a priority queue is used to maintain the d-values of vertices. The priority 
queue should be able to handle a DecreaseKey operation to update the d-value in each iteration. The next 
algorithm implements Dijkstra’s algorithm.

Dijkstra’s Algorithm. Dijkstra-Shortest Paths (G, r):

       1   for all vertices v in G do
       2         visited[v] ← false.
       3         d[v] ← ∞.
       4         p[v] ← nil.
       5   end-for
       6   d[r] ← 0.
       7   BuildPQ (H, d).
       8   while not Empty (H) do
       9         u ← DeleteMin (H).
     10         visited[u] ← true.
     11         for all  vertices v in adj[u] do
     12              Relax (u, v).
     13         end-for
     14   end-while
     end-proc

     Relax (u, v)
     1   if not visited[v] and d[v] > d[u] + w(u, v) then
     2         d[v] ← d[u] + w(u, v).
     3         p[v] ← u.
     4         DecreaseKey (H, v, d[v]).
     5   end-if
     end-proc

5.5.1.1  Sample Execution

Figure 5.4 shows a sample execution of the algorithm. The column titled Iter specifies the number of 
iterations that the algorithm has executed through the while loop in step 8. In iteration 0, the initial val-
ues of the distance estimates are ∞. In each subsequent line of the table, the column marked u shows the 
vertex that was chosen in step 9 of the algorithm and the change to the distance estimates at the end of 
that iteration of the while loop. In the first iteration, vertex r was chosen, after that a was chosen because 
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it had the minimum distance label among the unvisited vertices, and so on. The distance labels of the 
unvisited neighbors of the visited vertex are updated in each iteration.

5.5.1.2 A nalysis

The running time of the algorithm depends on the data structure that is used to implement the priority 
queue H. The algorithm performs |V| DeleteMin operations and, at most, |E| DecreaseKey operations. If 
a binary heap is used to update the records of any given vertex, each of these operations runs in O(log |V|) 
time. There is no loss of generality in assuming that the graph is connected. Hence, the algorithm runs 
in O(|E| log |V|). If a Fibonacci heap is used to implement the priority queue, the running time of the 
algorithm is O(|E| + |V| log |V|). Although the Fibonacci heap gives the best asymptotic running time, the 
binary heap implementation is likely to give better running times for most practical instances.

5.5.2  Bellman–Ford Algorithm

The shortest path algorithm described earlier directly generalizes to directed graphs, but it does not 
work correctly if the graph has edges of negative length. For graphs that have edges of negative length, 
but no cycles of negative length, there is a different algorithm due to Bellman (1958) and Ford and 
Fulkerson (1962) that solves the single-source shortest paths problem in O(|V||E|) time.

The key to understanding this algorithm is the RELAX operation applied to an edge. In a single scan 
of the edges, we execute the RELAX operation on each edge. We then repeat the step |V| − 1 times. No 
special data structures are required to implement this algorithm, and the proof relies on the fact that a 
shortest path is simple and contains at most |V| − 1 edges (see Cormen et al. 2001 for a proof).

This problem also finds applications in finding a feasible solution to a system of linear equations, 
where each equation specifies a bound on the difference of two variables. Each constraint is modeled by 
an edge in a suitably defined directed graph. Such systems of equations arise in real-time applications.

5.6  Minimum Spanning Trees

The following fundamental problem arises in network design. A set of sites needs to be connected by a 
network. This problem has a natural formulation in graph-theoretic terms. Each site is represented by 
a vertex. Edges between vertices represent a potential link connecting the corresponding nodes. Each 
edge is given a nonnegative cost corresponding to the cost of constructing that link. A tree is a minimal 
network that connects a set of nodes. The cost of a tree is the sum of the costs of its edges. A minimum-
cost tree connecting the nodes of a given graph is called a minimum-cost spanning tree, or simply an 
MST. The problem of computing an MST arises in many areas and as a subproblem in combinatorial 
and geometric problems. MSTs can be computed efficiently using algorithms that are greedy in nature, 
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FIGURE 5.4  Dijkstra’s shortest path algorithm.
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and there are several different algorithms for finding an MST. One of the first algorithms was due to 
Boruvka (1926). The two algorithms that are popularly known as Prim’s algorithm and Kruskal’s algo-
rithm are described here. (Prim’s algorithm was first discovered by Jarnik [1930].)

5.6.1  Prim’s Algorithm

Prim’s (1957) algorithm for finding an MST of a given graph is one of the oldest algorithms to solve the 
problem. The basic idea is to start from a single vertex and gradually grow a tree, which eventually spans 
the entire graph. At each step, the algorithm has a tree that covers a set S of vertices and looks for a good 
edge that may be used to extend the tree to include a vertex that is currently not in the tree. All edges 
that go from a vertex in S to a vertex in V − S are candidate edges. The algorithm selects a minimum-
cost edge from these candidate edges and adds it to the current tree, thereby adding another vertex to S.

As in the case of Dijkstra’s algorithm, each vertex u ∈ V − S can attach itself to only one vertex in the 
tree (so that cycles are not generated in the solution). Because the algorithm always chooses a minimum-
cost edge, it needs to maintain a minimum-cost edge that connects u to some vertex in S as the candi-
date edge for including u in the tree. A priority queue of vertices is used to select a vertex in V − S that is 
incident to a minimum-cost candidate edge.

Prim’s Algorithm. Prim-MST (G, r):

       1   for all vertices v in G do
       2         visited[v] ← false.
       3         d[v] ← ∞.
       4         p[v] ← nil.
       5   end-for
       6   d[r] ← 0.
       7   BuildPQ (H, d).
       8   while not Empty (H) do
       9         u ← DeleteMin (H).
     10        visited[u] ← true.
     11        for all vertices v in adj[u] do
     12             if not visited[v] and d[v] > w(u, v) then
     13                   d[v] ← w(u, v).
     14                   p[v] ← u.
     15                   DecreaseKey (H, v, d[v]).
     16             end-if
     17         end-for
     18   end-while
     end-proc

5.6.1.1 A nalysis

First observe the similarity between Prim’s and Dijkstra’s algorithms. Both algorithms start building 
the tree from a single vertex and grow it by adding one vertex at a time. The only difference is the rule for 
deciding when the current label is updated for vertices outside the tree. Both algorithms have the same 
structure and therefore have similar running times. Prim’s algorithm runs in O(|E| log |V|) time if the 
priority queue is implemented using binary heaps, and it runs in O(|E| + |V| log |V|) if the priority queue 
is implemented using Fibonacci heaps.

5.6.2  Kruskal’s Algorithm

Kruskal’s (1956) algorithm for finding an MST of a given graph is another classical algorithm for the 
problem and is also greedy in nature. Unlike Prim’s algorithm, which grows a single tree, Kruskal’s 
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algorithm grows a forest. First, the edges of the graph are sorted in nondecreasing order of their costs. The 
algorithm starts with the empty spanning forest (no edges). The edges of the graph are scanned in sorted 
order, and if the addition of the current edge does not generate a cycle in the current forest, it is added to 
the forest. The main test at each step is: does the current edge connect two vertices in the same connected 
component? Eventually, the algorithm adds |V| − 1 edges to make a spanning tree in the graph.

The main data structure needed to implement the algorithm is for the maintenance of connected com-
ponents, to ensure that the algorithm does not add an edge between two nodes in the same connected 
component. An abstract version of this problem is known as the union–find problem for a collection of 
disjoint sets. Efficient algorithms are known for this problem, where an arbitrary sequence of UNION 
and FIND operations can be implemented to run in almost linear time (Cormen et al. 2001, Tarjan 1983).

Kruskal’s Algorithm. Kruskal-MST (G):

    1   T ← ϕ.
    2   for all vertices v in G do
    3         Makeset(v).
    4   Sort the edges of G by nondecreasing order of costs.
    5   for all edges e = (u, v) in G in sorted order do
    6        if Find (u) ≠ Find (v) then
    7             T ← T ∪ (u, v).
    8             Union (u, v).
    9   end-proc

5.6.2.1 A nalysis

The running time of the algorithm is dominated by step 4 of the algorithm in which the edges of the graph 
are sorted by nondecreasing order of their costs. This takes O(|E| log |E|) [which is also O(|E| log |V|)] 
time using an efficient sorting algorithm such as heapsort. Kruskal’s algorithm runs faster in the follow-
ing special cases: if the edges are presorted, if the edge costs are within a small range, or if the number of 
different edge costs is bounded by a constant. In all of these cases, the edges can be sorted in linear time, 
and the algorithm runs in near-linear time, O(|E| α (|E|, |V|)), where α(m, n) is the inverse Ackermann 
function (Tarjan 1983).

Remark 5.2

The MST problem can be generalized to directed graphs. The equivalent of trees in directed graphs are 
called arborescences or branchings; and because edges have directions, they are rooted spanning trees. An 
incoming branching has the property that every vertex has a unique path to the root. An outgoing branch-
ing has the property that there is a unique path from the root to each vertex in the graph. The input is a 
directed graph with arbitrary costs on the edges and a root vertex r. The output is a minimum-cost branch-
ing rooted at r. The algorithms discussed in this section for finding MSTs do not directly extend to the prob-
lem of finding optimal branchings. There are efficient algorithms that run in O(|E| + |V| log |V|) time using 
Fibonacci heaps for finding minimum-cost branchings (Gabow et al. 1986, Gibbons 1985). These algorithms 
are based on techniques for weighted matroid intersection (Lawler 1976). Almost linear-time deterministic 
algorithms for the MST problem in undirected graphs are also known (Fredman and Tarjan 1987).

5.7  Matchings and Network Flows

Networks are important both for electronic communication and for transporting goods. The problem 
of efficiently moving entities (such as bits, people, or products) from one place to another in an underly-
ing network is modeled by the network flow problem. The problem plays a central role in the fields of 
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operations research and computer science, and much emphasis has been placed on the design of efficient 
algorithms for solving it. Many of the basic algorithms studied earlier in this chapter play an important 
role in developing various implementations for network flow algorithms.

First, the matching problem, which is a special case of the flow problem, is introduced. Then, the 
assignment problem, which is a generalization of the matching problem to the weighted case, is studied. 
Finally, the network flow problem is introduced and algorithms for solving it are outlined.

The maximum matching problem is studied here in detail only for bipartite graphs. Although this 
restricts the class of graphs, the same principles are used to design polynomial time algorithms for 
graphs that are not necessarily bipartite. The algorithms for general graphs are complex due to the 
presence of structures called blossoms, and the reader is referred to Papadimitriou and Steiglitz (1982, 
Chapter 10) or Tarjan (1983, Chapter 9) for a detailed treatment of how blossoms are handled. Edmonds 
(see Even 1979) gave the first algorithm to solve the matching problem in polynomial time. Micali and 
Vazirani (1980) obtained an O V E( ) algorithm for nonbipartite matching by extending the algo-
rithm by Hopcroft and Karp (1973) for the bipartite case.

5.7.1  Matching Problem Definitions

Given a graph G = (V, E), a matching M is a subset of the edges such that no two edges in M share a 
common vertex. In other words, the problem is that of finding a set of independent edges that have no 
incident vertices in common. The cardinality of M is usually referred to as its size.

The following terms are defined with respect to a matching M. The edges in M are called matched 
edges and edges not in M are called free edges. Likewise, a vertex is a matched vertex if it is incident to 
a matched edge. A free vertex is one that is not matched. The mate of a matched vertex v is its neighbor 
w that is at the other end of the matched edge incident to v. A matching is called perfect if all vertices 
of the graph are matched in it. The objective of the maximum matching problem is to maximize |M| 
the size of the matching. If the edges of the graph have weights, then the weight of a matching is 
defined to be the sum of the weights of the edges in the matching. A path p = [v1, v2, …, vk] is called 
an alternating path if the edges (v2j−1, v2j), j = 1, 2, …, are free and the edges (v2j, v2j+1), j = 1, 2, …, are 
matched. An augmenting path p = [v1, v2, …, vk] is an alternating path in which both v1 and vk are 
free vertices.

Observe that an augmenting path is defined with respect to a specific matching. The symmetric dif-
ference of a matching M and an augmenting path P, M ⊕ P, is defined to be (M − P) ∪ (P − M). The 
operation can be generalized to the case when P is any subset of the edges.

5.7.2 A pplications of Matching

Matchings are the underlying basis for many optimization problems. Problems of assigning workers to 
jobs can be naturally modeled as a bipartite matching problem. Other applications include assigning a 
collection of jobs with precedence constraints to two processors, such that the total execution time is 
minimized (Lawler 1976). Other applications arise in chemistry, in determining structure of chemical 
bonds, matching moving objects based on a sequence of photographs, and localization of objects in 
space after obtaining information from multiple sensors (Ahuja et al. 1993).

5.7.3  Matchings and Augmenting Paths

The following theorem gives necessary and sufficient conditions for the existence of a perfect matching 
in a bipartite graph.
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Theorem 5.1  (Hall’s Theorem)

A bipartite graph G = (X, Y, E) with |X| = |Y| has a perfect matching if and only if ∀S ⊆ X, |N(S)| ≥ |S|, 
where N(S) ⊆ Y is the set of vertices that are neighbors of some vertex in S.

Although Theorem 5.1 captures exactly the conditions under which a given bipartite graph has a 
perfect matching, it does not lead directly to an algorithm for finding maximum matchings. The follow-
ing lemma shows how an augmenting path with respect to a given matching can be used to increase the 
size of a matching. An efficient algorithm that uses augmenting paths to construct a maximum match-
ing incrementally is described later.

Lemma 5.1

Let P be the edges on an augmenting path p = [v1, …, vk] with respect to a matching M. Then, M′ = M 
⊕ P is a matching of cardinality |M| + 1.

Proof  Since P is an augmenting path, both v1 and vk are free vertices in M. The number of free edges in P 
is one more than the number of matched edges. The symmetric difference operator replaces the matched 
edges of M in P by the free edges in P. Hence, the size of the resulting matching, |M′|, is one more than |M|.

The following theorem provides a necessary and sufficient condition for a given matching M to be a 
maximum matching.

Theorem 5.2

A matching M in a graph G is a maximum matching if and only if there is no augmenting path in G with 
respect to M.

Proof  If there is an augmenting path with respect to M, then M cannot be a maximum matching, since 
by Lemma 5.1 there is a matching whose size is larger than that of M. To prove the converse, we show that 
if there is no augmenting path with respect to M, then M is a maximum matching. Suppose that there is 
a matching M′ such that |M′| > |M|. Consider the set of edges M ⊕ M′. These edges form a subgraph in G. 
Each vertex in this subgraph has degree at most two, since each node has at most one edge from each match-
ing incident to it. Hence, each connected component of this subgraph is either a path or a simple cycle. For 
each cycle, the number of edges of M is the same as the number of edges of M′. Since |M′| > |M|, one of the 
paths must have more edges from M′ than from M. This path is an augmenting path in G with respect to 
the matching M, contradicting the assumption that there were no augmenting paths with respect to M.

5.7.4  Bipartite Matching Algorithm

5.7.4.1  High-Level Description

The algorithm starts with the empty matching M = ∅ and augments the matching in phases. In each 
phase, an augmenting path with respect to the current matching M is found, and it is used to increase 
the size of the matching. An augmenting path, if one exists, can be found in O(|E|) time, using a proce-
dure similar to BFS described in Section 5.4.
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The search for an augmenting path proceeds from the free vertices. At each step when a vertex in X is 
processed, all its unvisited neighbors are also searched. When a matched vertex in Y is considered, only 
its matched neighbor is searched. This search proceeds along a subgraph referred to as the Hungarian tree.

Initially, all free vertices in X are placed in a queue that holds vertices that are yet to be processed. 
The vertices are removed one by one from the queue and processed as follows. In turn, when vertex v 
is removed from the queue, the edges incident to it are scanned. If it has a neighbor in the vertex set 
Y that is free, then the search for an augmenting path is successful; procedure AUGMENT is called to 
update the matching, and the algorithm proceeds to its next phase. Otherwise, add the mates of all of 
the matched neighbors of v to the queue if they have never been added to the queue, and continue the 
search for an augmenting path. If the algorithm empties the queue without finding an augmenting path, 
its current matching is a maximum matching and it terminates.

The main data structure that the algorithm uses consists of the arrays mate and free. The array mate is 
used to represent the current matching. For a matched vertex v ∈ G, mate[v] denotes the matched neighbor of 
vertex v. For v ∈ X, free[v] is a vertex in Y that is adjacent to v and is free. If no such vertex exists, then free[v] = 0.

Bipartite Matching Algorithm. Bipartite Matching (G = (X, Y, E)):

       1   for all vertices v in G do
       2         mate[v] ← 0.
       3    end-for
       4    found ← false.
       5    while not found do
       6              Initialize.
       7              MakeEmptyQueue (Q).
       8              for all vertices x ∈ X do
       9                   if mate[x] = 0 then
     10                       Enqueue (Q, x).
     11                       label[x] ← 0.
     12                   endif
     13              end-for
     14              done ← false.
     15              while not done and not Empty (Q) do
     16                    x ← Dequeue (Q).
     17                    if free[x] ≠ 0 then
     18                       Augment (x).
     19                       done ← true.
     20                   else
     21                       for all edges (x, x′) ∈ A do
     22                            if label[x′] = 0 then
     23                                label[x′] ← x.
     24                                Enqueue (Q, x′).
     25                            end-if
     26                      end-for
     27                  end-if
     28                  if Empty (Q) then
     29                      found ← true.
     30                  end-if
     31              end-while
     32   end-while
     end-proc
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     Initialize:
     1   for all vertices x ∈ X do
     2        free[x] ← 0.
     3   end-for
     4   A ← ∅.
     5   for all edges (x, y) ∈ E do
     6        if mate[y] = 0 then free[x] ← y
     7        else if mate[y] ≠ x then A ← A ∪ (x, mate[y]).
     8        end-if
     9   end-for
     end-proc

     Augment(x):
     1   if label[x] = 0 then
     2       mate[x] ← free[x].
     3       mate[ free[x]] ← x
     4   else
     5       free[label[x]] ← mate[x]
     6       mate[x] ← free[x]
     7       mate[free[x]] ← x
     8       Augment (label[x])
     9   end-if
     end-proc

5.7.4.2  Sample Execution

Figure 5.5 shows a sample execution of the matching algorithm. We start with a partial matching and 
show the structure of the resulting Hungarian tree. An augmenting path from vertex b to vertex u is 
found by the algorithm.

5.7.4.3 A nalysis

If there are augmenting paths with respect to the current matching, the algorithm will find at least one 
of them. Hence, when the algorithm terminates, the graph has no augmenting paths with respect to 
the current matching and the current matching is optimal. Each iteration of the main while loop of the 
algorithm runs in O(|E|) time. The construction of the auxiliary graph A and computation of the array 
free also take O(|E|) time. In each iteration, the size of the matching increases by one and thus there are, 
at most, min(|X|, |Y|) iterations of the while loop. Therefore, the algorithm solves the matching problem 
for bipartite graphs in time O(min(|X|, |Y|)|E|). Hopcroft and Karp (1973) showed how to improve the 
running time by finding a maximal set of shortest disjoint augmenting paths in a single phase in O(|E|) 
time. They also proved that the algorithm runs in only O V( ) phases.

5.7.5 A ssignment Problem

We now introduce the assignment problem, which is that of finding a maximum-weight matching in a given 
bipartite graph in which edges are given nonnegative weights. There is no loss of generality in assuming that 
the graph is complete, since zero-weight edges may be added between pairs of vertices that are nonadjacent 
in the original graph without affecting the weight of a maximum-weight matching. The minimum-weight 
perfect matching can be reduced to the maximum-weight matching problem as follows: choose a con-
stant M that is larger than the weight of any edge. Assign each edge a new weight of w′(e) = M − w(e). 
Observe that maximum-weight matchings with the new weight function are minimum-weight perfect 
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matchings with the original weights. We restrict our attention to the study of the maximum-weight match-
ing problem for bipartite graphs. Similar techniques have been used to solve the maximum-weight matching 
problem in arbitrary graphs (see Lawler 1976, Papadimitriou and Steiglitz 1982).

The input is a complete bipartite graph G = (X, Y, X × Y) and each edge e has a nonnegative weight 
of w(e). The following algorithm, known as the Hungarian method, was first given by Kuhn (1955). The 
method can be viewed as a primal–dual algorithm in the linear programming framework (Papadimitriou 
and Steiglitz 1982). No knowledge of linear programming is assumed here.

A feasible vertex-labeling ℓ is defined to be a mapping from the set of vertices in G to the real numbers 
such that for each edge (xi, yj) the following condition holds:

	 � �( ) ( ) ( , )x y w x yi j i j+ ≥

The following can be verified to be a feasible vertex labeling. For each vertex yj ∈ Y, set ℓ(yj) to be 0; and 
for each vertex xi ∈ X, set ℓ(xi) to be the maximum weight of an edge incident to xi:
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The equality subgraph, Gℓ, is defined to be the subgraph of G, which includes all vertices of G but only 
those edges (xi, yj) that have weights such that

	 � �( ) ( ) ( , )x y w x yi j i j+ =

The connection between equality subgraphs and maximum-weighted matchings is established by the 
following theorem.
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FIGURE 5.5  Sample execution of matching algorithm.
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Theorem 5.3

If the equality subgraph, Gℓ, has a perfect matching, M*, then M* is a maximum-weight matching in G.

Proof  Let M* be a perfect matching in Gℓ. By definition,
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Let M be any perfect matching in G. Then,
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Hence, M* is a maximum-weight perfect matching.

5.7.5.1  High-Level Description

Theorem 5.3 is the basis of the algorithm for finding a maximum-weight matching in a complete 
bipartite graph. The algorithm starts with a feasible labeling and then computes the equality sub-
graph and a maximum cardinality matching in this subgraph. If the matching found is perfect, by 
Theorem 5.3, the matching must be a maximum-weight matching and the algorithm returns it as its 
output. Otherwise, more edges need to be added to the equality subgraph by revising the vertex labels. 
The revision keeps edges from the current matching in the equality subgraph. After more edges are 
added to the equality subgraph, the algorithm grows the Hungarian trees further. Either the size of the 
matching increases because an augmenting path is found or a new vertex is added to the Hungarian 
tree. In the former case, the current phase terminates and the algorithm starts a new phase, because 
the matching size has increased. In the latter case, new nodes are added to the Hungarian tree. In n 
phases, the tree includes all of the nodes, and therefore there are at most n phases before the size of 
the matching increases.

It is now described in more detail how the labels are updated and which edges are added to the 
equality subgraph Gℓ. Suppose M is a maximum matching in Gℓ found by the algorithm. Hungarian 
trees are grown from all the free vertices in X. Vertices of X (including the free vertices) that are 
encountered in the search are added to a set S, and vertices of Y that are encountered in the search are 
added to a set T. Let S– = X − S and T– = Y − T. Figure 5.6 illustrates the structure of the sets S and T. 
Matched edges are shown in bold; the other edges are the edges in Gℓ. Observe that there are no edges 
in the equality subgraph from S to T–, although there may be edges from T to S–. Let us choose δ to 
be the smallest value such that some edge of G − Gℓ enters the equality subgraph. The algorithm now 
revises the labels as follows. Decrease all of the labels of vertices in S by δ and increase the labels of the 
vertices in T by δ. This ensures that edges in the matching continue to stay in the equality subgraph. 
Edges in G (not in Gℓ) that go from vertices in S to vertices in T– are candidate edges to enter the equal-
ity subgraph, since one label is decreasing and the other is unchanged. Suppose this edge goes from 
x ∈ S to y ∈ T–. If y is free, then an augmenting path has been found. On the other hand, if y is matched, 
the Hungarian tree is grown by moving y to T and its matched neighbor to S, and the process of revis-
ing labels continues.

5.7.6  B-Matching Problem

The b-matching problem is a generalization of the matching problem. In its simplest form, given an inte-
ger b ≥ 1, the problem is to find a subgraph H of a given graph G such that the degree of each vertex is 
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exactly equal to b in H (such a subgraph is called a b-regular subgraph). The problem can also be formu-
lated as an optimization problem by seeking a subgraph H with most edges, with the degree of each ver-
tex to be at most b in H. Several generalizations are possible, including different degree bounds at each 
vertex, degrees of some vertices unspecified, and edges with weights. All variations of the b-matching 
problem can be solved using the techniques for solving the matching problem.

In this section, we show how the problem can be solved for the unweighted b-matching problem in 
which each vertex v is given a degree bound of b[v], and the objective is to find a subgraph H in which the 
degree of each vertex v is exactly equal to b[v]. From the given graph G, construct a new graph Gb as fol-
lows. For each vertex v ∈ G, introduce b[v] vertices in Gb, namely, v1, v2, …, vb[v]. For each edge e = (u, v) 
in G, add two new vertices eu and ev to Gb, along with the edge (eu, ev). In addition, add edges between vi 
and ev, for 1 ≤ i ≤ b[v] (and between uj and eu, for 1 ≤ j ≤ b[u]). We now show that there is a natural one-
to-one correspondence between b-matchings in G and perfect matchings in Gb.

Given a b-matching H in G, we show how to construct a perfect matching in Gb. For each edge 
(u, v) ∈ H, match eu to the next available uj and ev to the next available vi. Since u is incident to exactly 
b[u] edges in H, there are exactly enough nodes u1, u2… ub[v] in the previous step. For all edges e = (u, v) ∈ 
G − H, we match eu and ev. It can be verified that this yields a perfect matching in Gb.

We now show how to construct a b-matching in G, given a perfect matching in Gb. Let M be a perfect 
matching in Gb. For each edge e = (u, v) ∈ G, if (eu, eb) ∈ M, then do not include the edge e in the b-matching. 
Otherwise, eu is matched to some uj and ev is matched to some vi in M. In this case, we include e in our 
b-matching. Since there are exactly b[u] vertices u1, u2, … ub[u], each such vertex introduces an edge into 
the b-matching, and therefore the degree of u is exactly b[u]. Therefore, we get a b-matching in G.

S T

–δ +δ

S T

FIGURE 5.6  Sets S and T as maintained by the algorithm. Only edges in Gℓ are shown.
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5.7.7  Network Flows

A number of polynomial time flow algorithms have been developed over the past two decades. The 
reader is referred to Ahuja et al. (1993) for a detailed account of the historical development of the 
various flow methods. Cormen et al. (2001) review the preflow push method in detail; and to comple-
ment their coverage, an implementation of the blocking flow technique of Malhotra et al. (1978) is 
discussed here.

5.7.8  Network Flow Problem Definitions

First, the network flow problem and its basic terminology are defined.

Flow network: A flow network G = (V, E) is a directed graph, with two specially marked nodes, namely, 
the source s and the sink t. There is a capacity function c: E ↦ R+ that maps edges to positive real numbers.

Max-flow problem: A flow function f: E ↦ R maps edges to real numbers. For an edge e = (u, v), f(e) refers 
to the flow on edge e, which is also called the net flow from vertex u to vertex v. This notation is extended to 

sets of vertices as follows: If X and Y are sets of vertices, then f(X, Y) is defined to be f x y
y Yx X

( , ).
∈∈ ∑∑  

A flow function is required to satisfy the following constraints:

•	 Capacity constraint. For all edges e, f(e) ≤ c(e).
•	 Skew symmetry constraint. For an edge e = (u, v), f(u, v) = −f(v, u).

•	 Flow conservation. For all vertices u ∈ V − {s, t}, f u v
v V

( , ) .=
∈

∑ 0

The capacity constraint says that the total flow on an edge does not exceed its capacity. The skew sym-
metry condition says that the flow on an edge is the negative of the flow in the reverse direction. The flow 
conservation constraint says that the total net flow out of any vertex other than the source and sink is zero.

The value of the flow is defined as

	
f f s v

v V

=
∈
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In other words, it is the net flow out of the source. In the maximum-flow problem, the objective is to find 
a flow function that satisfies the three constraints and also maximizes the total flow value | f |.

Remark 5.3

This formulation of the network flow problem is powerful enough to capture generalizations where 
there are many sources and sinks (single commodity flow) and where both vertices and edges have 
capacity constraints.

First, the notion of cuts is defined, and the max-flow min-cut theorem is introduced. Then, residual 
networks, layered networks, and the concept of blocking flows are introduced. Finally, an efficient algo-
rithm for finding a blocking flow is described.

An s–t cut of the graph is a partitioning of the vertex set V into two sets S and T = V − S such that 
s ∈ S and t ∈ T. If f is a flow, then the net flow across the cut is defined as f (S, T). The capacity of the cut 
is similarly defined as c S T c x y

y Yx X
( , ) ( , ).=

∈∈ ∑∑  The net flow across a cut may include negative net 

flows between vertices, but the capacity of the cut includes only nonnegative values, that is, only the 
capacities of edges from S to T.
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Using the flow conservation principle, it can be shown that the net flow across an s–t cut is exactly 
the flow value | f |. By the capacity constraint, the flow across the cut cannot exceed the capacity 
of the cut. Thus, the value of the maximum flow is no greater than the capacity of a minimum s–t 
cut. The well-known max-flow min-cut theorem (Elias et al. 1956, Ford and Fulkerson 1962) proves 
that the two numbers are actually equal. In other words, if f * is a maximum flow, then there is some 
cut (X, X-) such that | f *| = c(X, X-). The reader is referred to Cormen et al. (2001) and Tarjan (1983) 
for further details.

The residual capacity of a f low f is defined to be a function on vertex pairs given by c′(v, w) = 
c(v, w) − f(v, w). The residual capacity of an edge (v, w), c′(v, w), is the number of additional units of 
f low that can be pushed from v to w without violating the capacity constraints. An edge e is satu-
rated if c(e) = f(e), that is, if its residual capacity, c′(e), is zero. The residual graph GR( f ) for a f low f 
is the graph with vertex set V, source and sink s and t, respectively, and those edges (v, w) for which 
c′(v, w) > 0.

An augmenting path for f is a path P from s to t in GR( f ). The residual capacity of P, denoted by c′(P), 
is the minimum value of c′(v, w) over all edges (v, w) in the path P. The flow can be increased by c′(P), by 
increasing the flow on each edge of P by this amount. Whenever f(v, w) is changed, f(w, v) is also corre-
spondingly changed to maintain skew symmetry.

Most flow algorithms are based on the concept of augmenting paths pioneered by Ford and Fulkerson 
(1956). They start with an initial zero flow and augment the flow in stages. In each stage, a residual 
graph GR( f ) with respect to the current flow function f is constructed and an augmenting path in GR( f ) 
is found to increase the value of the flow. Flow is increased along this path until an edge in this path is 
saturated. The algorithms iteratively keep increasing the flow until there are no more augmenting paths 
in GR( f ) and return the final flow f as their output.

The following lemma is fundamental in understanding the basic strategy behind these algorithms.

Lemma 5.2

Let f be any flow and f * a maximum flow in G, and let GR( f ) be the residual graph for f. The value of a 
maximum flow in GR( f ) is | f *| − | f |.

Proof  Let f′ be any flow in GR( f ). Define f + f′ to be the flow defined by the flow function f(v, w) + 
f′(v, w) for each edge (v, w). Observe that f + f′ is a feasible flow in G of value | f | + | f′|. Since f * is the 
maximum flow possible in G, | f′| ≤ | f *| − | f |. Similarly define f * − f to be a flow in GR( f ) defined by 
f *(v, w) − f(v, w) in each edge (v, w), and this is a feasible flow in GR( f ) of value | f *| − | f |, and it is a 
maximum flow in GR( f ).

Blocking flow: A flow f is a blocking flow if every path in G from s to t contains a saturated edge.
It is important to note that a blocking flow is not necessarily a maximum flow. There may be augment-

ing paths that increase the flow on some edges and decrease the flow on other edges (by increasing the 
flow in the reverse direction).

Layered networks: Let GR( f ) be the residual graph with respect to a flow f. The level of a vertex v is 
the length of a shortest path (using the least number of edges) from s to v in GR( f ). The level graph L 
for f is the subgraph of GR( f ) containing vertices reachable from s and only the edges (v, w) such that 
dist(s, w) = 1 + dist(s, v). L contains all shortest-length augmenting paths and can be constructed in 
O(|E|) time.

The maximum-flow algorithm proposed by Dinitz (1970) starts with the zero flow and iteratively 
increases the flow by augmenting it with a blocking flow in GR( f ) until t is not reachable from s in GR( f ). 
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At each step, the current flow is replaced by the sum of the current flow and the blocking flow. Since in 
each iteration the shortest distance from s to t in the residual graph increases, and the shortest path from 
s to t is at most |V| − 1, this gives an upper bound on the number of iterations of the algorithm.

An algorithm to find a blocking flow that runs in O|V|2 time is described here, and this yields an 
O(|V|3) max-flow algorithm. There are a number of O(|V|2) blocking flow algorithms available (Karzanov 
1974, Malhotra et al. 1978, Tarjan 1983), some of which are described in detail in Tarjan (1983).

5.7.9  Blocking Flows

Dinitz’s algorithm to find a blocking flow runs in O(|V||E|) time (Dinitz 1970). The main step is to find 
paths from the source to the sink and saturate them by pushing as much flow as possible on these paths. 
Every time the flow is increased by pushing more flow along an augmenting path, one of the edges on 
this path becomes saturated. It takes O(|V|) time to compute the amount of flow that can be pushed on 
the path. Since there are |E| edges, this yields an upper bound of O(|V∥E|) steps on the running time of 
the algorithm.

Malhotra–Kumar–Maheshwari Blocking Flow Algorithm. The algorithm has a current flow function f 
and its corresponding residual graph GR( f ). Define for each node v ∈ GR( f ), a quantity tp[v] that speci-
fies its maximum throughput, that is, either the sum of the capacities of the incoming arcs or the sum of 
the capacities of the outgoing arcs, whichever is smaller. tp[v] represents the maximum flow that could 
pass through v in any feasible blocking flow in the residual graph. Vertices for which the throughput is 
zero are deleted from GR( f ).

The algorithm selects a vertex u for which its throughput is a minimum among all vertices with 
nonzero throughput. It then greedily pushes a flow of tp[u] from u toward t, level by level in the layered 
residual graph. This can be done by creating a queue, which initially contains u and which is assigned 
the task of pushing tp[u] out of it. In each step, the vertex v at the front of the queue is removed and the 
arcs going out of v are scanned one at a time, and as much flow as possible is pushed out of them until 
v’s allocated flow has been pushed out. For each arc (v, w) that the algorithm pushed flow through, it 
updates the residual capacity of the arc (v, w) and places w on a queue (if it is not already there) and incre-
ments the net incoming flow into w. Also, tp[v] is reduced by the amount of flow that was sent through 
it now. The flow finally reaches t, and the algorithm never comes across a vertex that has incoming flow 
that exceeds its outgoing capacity since u was chosen as a vertex with the smallest throughput. The 
preceding idea is again repeated to pull a flow of tp[u] from the source s to u. Combining the two steps 
yields a flow of tp[u] from s to t in the residual network that goes through u. The flow f is augmented 
by this amount. Vertex u is deleted from the residual graph, along with any other vertices that have 
zero throughput.

This procedure is repeated until all vertices are deleted from the residual graph. The algorithm has 
a blocking flow at this stage since at least one vertex is saturated in every path from s to t. In the algo-
rithm, whenever an edge is saturated, it may be deleted from the residual graph. Since the algorithm 
uses a greedy strategy to send flows, at most O(|E|) time is spent when an edge is saturated. When find-
ing flow paths to push tp[u], there are at most n times, one each per vertex, when the algorithm pushes 
a flow that does not saturate the corresponding edge. After this step, u is deleted from the residual 
graph. Hence, in O(|E| + |V|2) = O(|V|2) steps, the algorithm to compute blocking flows terminates.

Goldberg and Tarjan (1988) proposed a preflow push method that runs in O(|V∥E|log|V|2/|E|) time 
without explicitly finding a blocking flow at each step.

5.7.10 A pplications of Network Flow

There are numerous applications of the maximum-flow algorithm in scheduling problems of various 
kinds. See Ahuja et al. (1993) for further details.
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5.8 T our and Traversal Problems

There are many applications for finding certain kinds of paths and tours in graphs. We briefly discuss 
some of the basic problems.

The traveling salesman problem (TSP) is that of finding a shortest tour that visits all of the vertices in 
a given graph with weights on the edges. It has received considerable attention in the literature (Lawler 
et al. 1985). The problem is known to be computationally intractable (NP-hard). Several heuristics are 
known to solve practical instances. Considerable progress has also been made for finding optimal solu-
tions for graphs with a few thousand vertices.

One of the first graph-theoretic problems to be studied, the Euler tour problem, asks for the existence 
of a closed walk in a given connected graph that traverses each edge exactly once. Euler proved that 
such a closed walk exists if and only if each vertex has even degree (Gibbons 1985). Such a graph is 
known as an Eulerian graph. Given an Eulerian graph, an Euler tour in it can be computed using DFS 
in linear time. Given an edge-weighted graph, the Chinese postman problem is that of finding a shortest 
closed walk that traverses each edge at least once. Although the problem sounds very similar to the TSP 
problem, it can be solved optimally in polynomial time by reducing it to the matching problem (Ahuja 
et al. 1993).

Key Terms

Assignment problem: That of finding a perfect matching of maximum (or minimum) total weight.
Augmenting path: An alternating path that can be used to augment (increase) the size of a matching.
Biconnected graph: A graph that cannot be disconnected by the removal of any single vertex.
Bipartite graph: A graph in which the vertex set can be partitioned into two sets X and Y, such that each 

edge connects a node in X with a node in Y.
Blocking flow: A flow function in which any directed path from s to t contains a saturated edge.
Branching: A spanning tree in a rooted graph, such that the root has a path to each vertex.
Chinese postman problem: Asks for a minimum length tour that traverses each edge at least once.
Connected: A graph in which there is a path between each pair of vertices.
Cycle: A path in which the start and end vertices of the path are identical.
Degree: The number of edges incident to a vertex in a graph.
DFS forest: A rooted forest formed by DFS.
Directed acyclic graph: A directed graph with no cycles.
Eulerian graph: A graph that has an Euler tour.
Euler tour problem: Asks for a traversal of the edges that visits each edge exactly once.
Forest: An acyclic graph.
Leaves: Vertices of degree one in a tree.
Matching: A subset of edges that do not share a common vertex.
Minimum spanning tree: A spanning tree of minimum total weight.
Network flow: An assignment of flow values to the edges of a graph that satisfies flow conservation, skew 

symmetry, and capacity constraints.
Path: An ordered list of edges such that any two consecutive edges are incident to a common vertex.
Perfect matching: A matching in which every node is matched by an edge to another node.
Sparse graph: A graph in which |E| ≪ |V|2.
s–t cut: A partitioning of the vertex set into S and T such that s ∈ S and t ∈ T.
Strongly connected: A directed graph in which there is a directed path in each direction between each 

pair of vertices.
Topological order: A linear ordering of the edges of a DAG such that every edge in the graph goes from 

left to right.
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Traveling salesman problem: Asks for a minimum length tour of a graph that visits all of the vertices 
exactly once.

Tree: An acyclic graph with |V| − 1 edges.
Walk: An ordered sequence of edges (in which edges could repeat) such that any two consecutive edges 

are incident to a common vertex.
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Further Information

The area of graph algorithms continues to be a very active field of research. There are several journals 
and conferences that discuss advances in the field. Here, we name a partial list of some of the impor-
tant meetings: ACM Symposium on Theory of Computing, IEEE Conference on Foundations of Computer 
Science, ACM–SIAM Symposium on Discrete Algorithms, the International Colloquium on Automata, 
Languages and Programming, and the European Symposium on Algorithms. There are many other 
regional algorithms/theory conferences that carry research papers on graph algorithms. The journals 
that carry articles on current research in graph algorithms are the Journal of the ACM, SIAM Journal 
on Computing, SIAM Journal on Discrete Mathematics, Journal of Algorithms, Algorithmica, Journal 
of Computer and System Sciences, Information and Computation, Information Processing Letters, and 
Theoretical Computer Science.

To find more details about some of the graph algorithms described in this chapter, we refer the reader 
to the books by Cormen et al. (2001), Even (1979), and Tarjan (1983). For network flows and matching, 
a more detailed survey regarding various approaches can be found in Tarjan (1983). Papadimitriou and 
Steiglitz (1982) discuss the solution of many combinatorial optimization problems using a primal–dual 
framework.

Current research on graph algorithms focuses on approximation algorithms (Hochbaum 1996), 
dynamic algorithms, and in the area of graph layout and drawing (DiBattista et al. 1994).
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6.1  Introduction

Computational geometry is the branch of algorithms research that deals with problems that are geo-
metric in nature. Its goal is to develop algorithms that are always correct and efficient. Theoretically, 
efficiency refers to the scaling behavior of an algorithm when the input size gets larger and larger. 
Furthermore, we are interested in worst-case analysis, where an upper bound on the scaling behavior is 
to be determined irrespective of the specific input values. The basic problem of sorting a set of values can 
be seen as a one-dimensional problem. Although computational geometry includes one-dimensional 
problems, its emphasis is on two-, three-, and higher-dimensional problems. In most cases, the dimen-
sion is constant.

Typical geometric objects involved in geometric computations are sets of points, line segments, lines 
or hyperplanes, sets of circles or spheres, sets of triangles or simplices, or simple polygons or polyhedra. 
Relationships between these objects include distances, intersections, and angles.

Geometric problems that require computation show up in many different application areas. In robot 
motion planning, a path must be determined that avoids walls and other obstacles. In automated cartog-
raphy, text labels must be placed on a map next to the corresponding feature without overlapping other 
labels or other important map information. In data analysis, clusters of objects from a collection must be 
formed using similarity measures that involve distance in some space. To form a complex between two 
proteins, a good local geometric fit is required. The list of examples of such questions where geometric 
computations on data are necessary is endless.
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6.1.1  Basic Algorithmic Problems

To get a quick feel of which problems belong to computational geometry, we list a number of these prob-
lems in this section; see also Figure 6.1.

Convex hull: Given a set P of n points in the plane or d-dimensional space, compute a representation 
of the boundary of the minimum convex set that contains these points.

x − y x − y

s

t

s

t

V = {1, 2, 3, 4, 5, 6}

E = {(1, 2), (1, 3)

(3, 5), (4, 5)
(1, 6), (5, 6)}

(2, 3), (3, 4)

12

3

4 5

6

Convex hull Voronoi diagram

Arrangement to lines Linear programming

Line segment intersection reporting Delaunay triangulation

Shortest path Polygon triangulation

Polygon guarding Graph embedding

FIGURE 6.1  Ten basic problems in computational geometry. To the left the input is shown in black, and to the 
right the computed output is shown in black.
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This problem can be solved in O(n log n) time when d = 2 [6,38,56,86] or d = 3 [35,38,86], and in 
O(n⌊d/2⌋) time when d ≥ 4 [24].

Voronoi diagram: Given a set P of n points in the plane or d-dimensional space, compute a subdivision 
into cells so that any single cell represents exactly that part of the space where a single point is closest, 
among the points in P.

This problem can be solved in O(n log n) time when d = 2 [38,50,95], and in O(n⌈d/2⌉) time when 
d ≥ 3 [22,35,94].

Arrangement of hyperplanes: Given a set H of n hyperplanes in d-dimensional space (lines in 
the plane, planes in three-dimensional space, etc.), compute a representation of the subdivision 
they induce.

This problem can be solved in O(nd) time [42,43].
Linear programming: Given a set H of n half-spaces in d-dimensional space and a linear function 

in the d coordinates, determine if the common intersection of the half-spaces of H is nonempty, and 
if so, determine a point that minimizes the linear function or report that arbitrarily low values can 
be realized.

This problem can be solved in O(n) time [34,76,94] when d is a constant.
Intersection reporting: Given a set of n objects (line segments, rectangles, circles) in the plane, report 

every intersection point or every pair of intersecting objects.
This problem can be solved in O(n log n + k) time, where k is the number of pairs of intersecting 

objects [25,35,79].
Delaunay triangulation: Given a set P of n points in the plane or d-dimensional space, compute a 

maximal subdivision into triangles (simplices) whose vertices come from P such that no two triangles 
(simplices) intersect in their interior and the circumcircle of each triangle (circumsphere of each sim-
plex) does not have any points of P in its interior.

This problem can be solved in O(n log n) time when d = 2 [38,50,95], and in O(n⌈d/2⌉) time when 
d ≥ 3 [22,35,94].

Shortest path: Given a set P of disjoint polygons in the plane with n vertices in total and two points s 
and t, determine a shortest path between s and t that does not intersect the interior of any polygon of P 
or report that none exists.

This problem can be solved in O(n log n) time [63]. The three-dimensional version is NP-hard [19].
Polygon triangulation: Given a simple polygon P with n vertices, partition its interior into triangles 

using edges that connect pairs of vertices, lie inside the polygon, and do not mutually intersect.
This problem can be solved in O(n) time [23], although a much simpler algorithm exists that is only 

slightly less efficient [93]. The three-dimensional problem is tetrahedralizing a simple polyhedron. Not 
all simple polyhedra can be tetrahedralized without using extra vertices, and as many as Ω(n2) of these 
may be necessary for some polyhedra [21].

Polygon guarding: Given a simple polygon P with n vertices, determine a minimum-size set S of points 
such that any point in the interior of P can be connected to at least one point of P with a line segment 
that does not intersect the exterior of P.

No polynomial-time algorithm for this problem is known. The Art Gallery Theorem states that ⌊n/3⌋ 
point guards are always sufficient and sometimes necessary [32,82].

Graph embedding: Given a graph G = (V, E), compute an embedding in the plane by assigning coordi-
nates to each vertex, such that no two vertices have the same location, no edge has a vertex in its interior, 
and no pair of edges intersect in their interiors, or decide that this is not possible.

This problem can be solved in O(n) time, where n is the size of the graph [12,39]. The vertices can be 
placed on an integer grid of size 2n − 4 by n − 2.

The problems listed in the preceding text are all of the single computation type. Within computa-
tional geometry, geometric data structures have also been developed. These structures are either used 
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to represent a subdivision of the plane or higher-dimensional space or to allow efficient query answer-
ing. A common data structure of the former type is the doubly-connected edge list [38,78]. It records 
incidences of edges with vertices, faces, and other edges in a pointer-based structure, and allows easy 
traversal of the boundary of a face or the edges incident to some vertex. In higher dimensions we can 
store facets of all dimensionalities and the incidences among them [17,40].

We list a few basic data structuring problems for efficient query answering. The most important 
properties of the structures are the amount of storage they require and the time needed to answer 
a query.

Planar point location: Given a planar subdivision S represented by n vertices and edges, where each 
face has a label, store S in a data structure so that the following type of query can be answered efficiently: 
for a query point p, report the label of the face that contains p.

This problem can be solved with a data structure that uses O(n) storage and answers queries in 
O(log n) time [37,41,66,79,91].

Orthogonal range searching: Given a set P of n points in the plane, store them in a data structure so 
that the following type of query can be answered efficiently: for an axis-aligned query rectangle, report 
all points of P that lie inside it.

This problem can be solved with a kd-tree, which requires O(n) storage and can answer queries in 
O n k( )+  time, where k is the number of points reported [13]. The range tree requires O(n log n) storage 
and answers queries in O(log n + k) time [72,109].

The d-dimensional version of the problem is solved by a kd-tree with O(n) storage and query time 
O n kd( ),

1 1− +  and by a range tree with O(n logd−1 n) storage and O(logd−1 n + k) query time.
Simplex range searching: Given a set P of n points in the plane or d-dimensional space, store them in 

a data structure so that the following type of query can be answered efficiently: for a query triangle or 
simplex, report all points of P that lie inside it.

This problem can be solved with O(n) storage and query time O n k( )+  [73]. Alternatively, it can be 
solved with O(nd) storage and query time O(logd+1 n + k) [73].

Algorithms for many of the problems listed in the preceding text and their running time analyses can 
be found in textbooks in the area of computational geometry [38,83,87]. Many more results and refer-
ences can be found in the Handbook of Discrete and Computational Geometry [54].

6.1.2  Brief Historical Overview

There are examples of geometric algorithms developed before the 1970s, but it was in the 1970s when 
most of the basic geometric problems were solved in an algorithmically efficient manner. This is true for 
many of the problems just listed, although some, like the shortest path problem, defied an efficient solu-
tion until the 1990s. In 1985 the first textbook on computational geometry was published, and that same 
year the annual ACM Symposium on Computational Geometry was held for the first time. It was realized 
early that implementing geometric algorithms is highly nontrivial, since robust computation tends to be 
much harder than for graph algorithms, for example, or for one-dimensional problems. Another early 
realization was that efficiency analyses of geometric algorithms often depend on combinatorial results 
in geometry. For this reason, combinatorial geometry has always been considered an integral part of 
computational geometry.

While the range of geometric problems under consideration continues to expand to this day, much 
effort has also been directed to putting the theory to use in the application areas. Researchers from 
computational geometry have contributed to areas like computer graphics, motion planning, pattern 
recognition, and geographic information systems (GISs) for a long time now. Involvement in three-
dimensional reconstruction and computational biology are of a more recent date, where the recent trend 
toward computational topology has played an important role.
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6.2  Underlying Principles

Computational geometry revolves around approaches to develop geometric algorithms, analysis of 
these algorithms in computational models, optimization of geometric problems, and applications and 
software development. In this section, we treat the first three aspects; applications and software develop-
ment follow in the next section.

6.2.1 A lgorithmic Approaches

Several algorithmic approaches used in computational geometry are also standard approaches in other 
algorithmic areas. For example, incremental algorithms, divide-and-conquer algorithms, brute-force 
algorithms, greedy algorithms, randomized algorithms, and dynamic programming are all used to 
solve geometric problems.

6.2.1.1  Plane-Sweep Algorithms

One very important and typically geometric algorithmic approach is plane sweep. It is an incremental 
approach, but one with a specific structure that we explain next.

A plane-sweep algorithm takes a set of objects in the plane as its input. The idea is to use an imagi-
nary line—the sweep line—that moves over all objects in the plane and computes whatever is necessary 
when it reaches special situations. For example, the sweep line could be a horizontal line that starts 
above all objects and moves downward until it is below all objects. The sweep line stops only at certain 
positions (y-coordinates) where something of interest happens. These positions are called events. At the 
same time, the algorithm must maintain certain essential information to be able to generate the desired 
output. This information changes with the position of the sweep line and is called the status (Figure 6.2).

In the example of computing the intersecting pairs among a set of line segments in the plane, the 
events occur when the sweep line starts to intersect a line segment (at the y-coordinate of its upper 
endpoint), when the sweep line stops intersecting a line segment (at the y-coordinate of its lower 
endpoint), and when two line segments intersect (at the y-coordinate of the intersection point). In 
a plane-sweep algorithm the sweep line moves only in one direction, so the events will occur in the 
order of decreasing y-coordinate. Note that the events coming from line segment endpoints can be 
obtained easily from the input, but the events coming from intersection points are not known yet. 
In fact, the whole purpose of the algorithm is to determine these intersection points (and report the 
intersecting pairs).

s1

s2

s3s4

s5 s6

FIGURE 6.2  Plane-sweep algorithm. Positions where the sweep line has stopped are shown in gray. If the current 
position is the gray, bold line, then the status is 〈s4, s1, s3, s5, s2〉, and s1 will be deleted at this event. Also, s4 and s3 
become horizontally adjacent; their intersection is detected and inserted in the event structure.
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The status is the situation at the current position of the sweep line. For our example, it is the set of line 
segments that intersect the sweep line, ordered from left to right. Observe that the status changes exactly 
at the events that we just listed.

The events and the status are each stored in a suitable data structure. In our example we use balanced 
binary search trees. The event structure stores the (known) events by y-coordinate in the tree. The sta-
tus structure stores the intersected line segments by x-coordinate (valid for the current position of the 
sweep line) in the tree. Initially, the status structure is empty because the sweep line starts above all line 
segments. The event structure is initialized with all endpoints of the line segments.

The core of a plane-sweep algorithm is the handling of the events. This is where the algorithm actually 
does its work. The imaginary sweep line jumps from event to event and handles each one by updating 
the status, detecting new events that were not known yet, and generating output.

We must detect intersection point events before the sweep line reaches them. As soon as the algo-
rithm finds out that two line segments will intersect later, the event can be inserted in the event struc-
ture. The basic idea that makes the algorithm work is the following: before two line segments can 
intersect, they must become horizontally adjacent first. Two line segments can become horizontally 
adjacent only at other, higher events (recall that the sweep line goes from top to bottom). So during 
the handling of any event, we also check if there are new horizontal adjacencies caused by that event, if 
the involved line segments intersect below the sweep line, and if so, insert the intersection point in the 
event structure.

The scheme described in the preceding text solves the line segment intersection reporting problem 
by a sequence of binary search tree operations and geometric tests. Any event is handled by a small, 
constant number of binary search tree operations. If the input consists of n line segments and there 
are k intersecting pairs that will be reported, then the algorithm runs in O((n + k) log n) time, because 
there are O(n + k) events [14]. Unless there are many intersecting pairs, this compares favorably with the 
brute-force approach of testing each pair for intersection (taking O(n2) time).

Plane-sweep algorithms have been developed for computing Voronoi diagrams, Delaunay triangula-
tions, the area of the union of a set of axis-parallel rectangles, as a step in simple polygon triangulation, 
and many other problems. The three-dimensional version, space sweep with a sweep plane, also exists.

6.2.1.2 R andomized Incremental Construction

Another well-known technique is randomized incremental construction. We illustrate this technique by 
two-dimensional linear programming: Given a set of n half-planes in the plane, determine a point in the 
common intersection of these half-planes with the lowest y-coordinate, if such a point exists. There are 
two reasons why such a point would not exist. Firstly, the common intersection of the half-planes may 
be empty. Secondly, points with arbitrarily low y-coordinates may exist in the common intersection: we 
say that the linear program is unbounded.

To initialize, we find two half-planes bounded from below such that the intersection point of their 
bounding lines is the solution to the linear program consisting of these two half-planes only. A straight-
forward scan over the half-planes achieves this. If no two half-planes exist with this property, there is no 
solution to the linear program. Otherwise, we proceed by putting all other n − 2 half-planes in random 
order and handling them one-by-one in this order. We always maintain the solution to the half-planes 
handled so far, which is some point p in the plane.

To handle the next half-plane, we test whether p lies inside this half-plane. If so, then p is the solution 
to the linear program with one more half-plane and we simply proceed with the next half-plane. If not, 
then we must find a new solution p′ or decide that no solution exists. We can argue that if a solution 
exists, then it must lie on the line bounding the half-plane that we are handling. Hence, we can search 
for p′ on this line, which is a one-dimensional problem that can be solved by considering all previously 
handled half-planes once more.

The algorithm outlined earlier takes O(n) expected time in the worst case. “Worst case” refers to 
the fact that the time holds for any set of half-planes. “Expected” refers to the fact that the time bound 
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depends on the random choices made during the algorithm execution. If these choices are unlucky, then 
the algorithm may take quadratic time, but this is very unlikely.

The argument to prove the running time bound is as follows. We observe that if the next half-plane 
contains p, then this half-plane is handled in O(1) time, but if it does not, then this half-plane is handled 
in time proportional to the number of half-planes that have been handled before. Suppose we are con-
sidering the ith half-plane. We ask ourselves what the probability is that it does not contain point p. 
This probability is the same as the following: after adding the ith half-plane we may have a solution p′, 
what is the probability that p′ is no longer the solution when we remove a random half-plane from the 
i − 2 half-planes (the two initial half-planes were not put in random order so we cannot remove them). 
This probability is at most 2/(i − 2), which can be shown by studying a few geometric situations. If the 
probability of the expensive case, requiring us to do O(i) work, is at most 2/(i − 2), then the expected 
time for handling the ith half-plane is O(1). In short, every one of the n − 2 half-planes that is handled 
requires O(1) expected time, so O(n) time is expected to be used overall. This argument is called back-
ward analysis [94].

Other geometric problems that can be solved efficiently with randomized incremental construction 
include computing the smallest enclosing disk, Voronoi diagram, Delaunay triangulation, convex hull, 
constructing a planar point location structure, deciding on red–blue point set separability, and many 
more [54,79,107].

6.2.1.3  Using Data Structures

Many computational-geometry problems can be solved by using data structures and querying them. As 
an example, we study the problem of computing the Hausdorff distance between a set R of n red points 
and a set B of n blue points in the plane.

The Hausdorff distance H(R, B) between sets R and B is defined as follows:

	
H R B d r b d b r

r R b B b B r R
( , ) max{max(min ( , )), max(min ( , ))}.=

∈ ∈ ∈ ∈

Intuitively, it is the maximum among all closest point distances from one set to the other or vice 
versa. The Hausdorff distance is used as a similarity measure between two point sets or simple 
polygons.

An algorithm to compute the Hausdorff distance between R and B is easy to describe, using the 
results given before. We first build the Voronoi diagram of R and preprocess it for efficient planar point 
location. Then we query with each point of B to find the closest point of R, and keep the maximum of 
these distances. Then we do the same but with the roles of R and B reversed. The overall maximum is 
the Hausdorff distance.

It takes O(n log n) time to build the Voronoi diagram of a set of n points. The Voronoi diagram 
consists of O(n) line segments, and preprocessing it for planar point location takes O(n log n) time as 
well. We query with each point of the other set, taking n times O(log n) time. So this is O(n log n) total 
query time as well. Hence, we can compute the Hausdorff distance of two sets of n points in the plane 
in O(n log n) time.

6.2.1.4  Dynamic Programming

Dynamic programming is an important algorithmic technique for optimization problems. It can often 
be used if the problem has the optimal substructure property: an optimal solution of any subproblem 
is composed of optimal solutions to smaller subproblems. We discuss the problem of triangulating a 
simple polygon with minimum total edge length [67].

Let P be a simple polygon with vertices v0, …, vn−1 listed clockwise. We make a table T of size n × n 
with an entry for each ordered pair (vi, vj) of vertices. This entry will store (i) whether v vi j  is interior to 
P and does not intersect any of its edges. If the answer is yes we mark the pair valid and we also store 
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(ii) how many vertices Nij, the subpolygon of P bounded by v vi j  and to the left of v vi j

� ���
, has, and (iii) the 

minimum total edge length Lij required to triangulate this subpolygon, excluding v vi j .
For the pairs (vi, vj) where j = i + 1 (mod n) we also mark them valid with Nij = 2 and Lij = 0. For the 

pairs (vj, vi) where j = i + 1 (mod n) we also mark them valid with Nji = n and initially we set Lji = +∞. 
At the end of the algorithm, all such Lji will contain the total edge length of the optimal triangulation.

The first and second pieces of information can be precomputed easily in O(n3) time overall, for all 
O(n2) pairs. The third piece is initialized to +∞. Next we sort the ordered pairs by the value of (ii) in 
increasing order, ties broken arbitrarily. We treat the ones with Nij > 2 only.

We iterate over all pairs of edges in the sorted order. Suppose we are treating a pair (vi, vj), see 
Figure 6.3.

	
L L L v v v v v v v vij

k n
ik kj i k k j i k k j= + + +
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and aree valid and N N Nik kj ij, }.<

The recurrence above defines the optimal substructure that polygon triangulation with minimum total 
edge length has. If (vi, vj) is valid, then there must be a triangle in the triangulation to the left of v vi j

� ���
. The 

recurrence optimizes over all choices of such triangles and selects the one that yields a minimum total 
edge length. If this triangle is Δvivjvk, then the optimal triangulation of the polygon left of v vi j

� ���
 always 

uses optimal triangulations of the polygons left of v vi k

� ���
 and v vk j

� ���
, and these are polygons with fewer 

vertices.
The algorithm essentially fills in the L-values of the table T in the order of increasing Nij. To determine 

Lij we simply read for each k the information in the entries for pairs (vi, vk) and (vk, vj) in table T. The 
optimal triangulation length can be found in any Lji where j = i + 1 (mod n).

Filling one entry takes O(n) time, and hence the whole algorithm takes O(n3) time.
Other applications of dynamic programming in geometric algorithms include optimization or 

approximation for label placement, packing and covering, simplification, and matching.

6.2.1.5  Other Algorithmic Techniques in Computational Geometry

There are several other techniques that can be employed to develop algorithms for geometric prob-
lems. These include random sampling, prune-and-search, divide-and-conquer, and parametric 
search. Other techniques of importance are geometric transformations to relate problems to other 
problems. These include geometric duality, inversion, and Plücker coordinates. For geometric data 
structures, the technique of fractional cascading can help to make queries more efficient [26,27], 
while the topics of dynamization [30,31,84] and kinetic data structures [60,101] are also important 
research areas.

vk

vj

vivi

vj

FIGURE 6.3  To compute Lij, there are four valid choices for vk. The optimal choice of vk and the optimal triangula-
tion to the left of v vi j  are shown to the right.
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6.2.2  Complexity

6.2.2.1  Machine Model

The standard model of computation assumed in computational geometry is the real RAM. In the real 
RAM model, a real number can be stored in O(1) storage space, and any basic operation or analytic 
function can be applied to real numbers in O(1) time. Obviously, we can evaluate a polynomial for any 
real value in O(1) time only if the polynomial has constant degree.

Since algorithms that handle large amounts of data are typically slowed down by disk accesses, the 
I/O complexity model may sometimes be more appropriate [3,106].

6.2.2.2  Hardness and Reductions

Hardness of a computational problem refers to the (im)possibility of solving that problem efficiently or 
solving it at all. Hardness results may be lower bounds on the time complexity to solve a problem. These 
can be proved directly in a model of computation or obtained using a reduction from another problem 
for which a lower bound is already known. It is essential to specify the model of computation in which a 
lower bound holds. Many models do not allow rounding of reals to the nearest integer, for example, and 
algorithms that make use of rounding can be more efficient than what a lower bound claims is possible 
(in a model without rounding).

Lower bounds on the time complexity of computational problems can be proved using algebraic 
decision trees [88,89]. Branches of such a tree represent comparisons that an algorithm might make 
based on the input. The longest path in a decision tree corresponds to the worst-case running time of 
an algorithm. Therefore, a lower bound on the depth of a decision tree for any algorithm that solves a 
problem is a lower bound for that problem in the decision tree model. Algebraic decision trees give an 
Ω(n log n)-time lower bound for the very basic one-dimensional problem of deciding whether a set of real 
numbers has two elements that are the same.

A two-dimensional problem that has an Ω(n2)-time lower bound is the following [48]: Given a set of 
n points in the plane, are there three of them that lie on a line? In higher dimensions, the problem of 
deciding whether a set of n points contains a subset of d + 1 points that lie on a common hyperplane has 
a lower bound of Ω(nd) time.

Another type of hardness is referred to as numerical nonrobustness. Let P be a set of n points in the 
plane. To solve the facility location problem of computing a point that minimizes the sum of distances 
to the points of P, we must minimize an expression that is the sum of n terms with square roots. This is 
not possible in the usual model of computation, and hence we can only approximate the solution [10,16]. 
If  we were interested in minimizing the sum of squared distances, then it would have been easy to 
compute the optimal location: its coordinates are the mean x and mean y values of the input point set P.

A number of geometric optimization problems are NP-hard. Some well-known examples are 
Euclidean traveling salesperson in the plane [53], Euclidean minimum Steiner tree in the plane [53], 
minimum-weight triangulation of a planar point set [80], and shortest path in three-dimensional space 
amid tetrahedra [19]. There are many more examples. Proofs of NP-hardness may use reductions from 
any of the known NP-hard problems. It turns out that planar 3-sat is one of the more useful problems 
to reduce from. Planar 3-sat is a special case of the satisfiability problem where a formula has three 
literals per clause, and the bipartite graph that has a node for every variable and for every clause, and an 
edge between them if the variable occurs in the clause, is planar. See Figure 6.4.

Reductions from other problems establish that a geometric problem is at least as hard. For example, 
the sorting problem can be reduced to planar convex hull computation, and hence any algorithm must 
take Ω(n log n) time to compute a planar convex hull in the algebraic decision tree model [110]. The 
3sum-problem is the problem of deciding, for a given set of n integers, whether it contains three elements 
that sum up to zero. No algorithm is known for 3sum that is more efficient than quadratic time. It turns 
out that many geometric problems can be used to solve 3sum—in other words, a reduction from 3sum 
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to such geometric problems exists—and therefore these geometric problems are unlikely to be solvable 
more efficiently than in quadratic time [52]. Examples of such problems include deciding whether a pla-
nar point set contains three points that are collinear, deciding whether a line segment can be moved with 
translations and rotations to a given position without colliding with obstacles, and deciding whether a 
set of triangles in three-dimensional space occludes another triangle for a given viewpoint [52].

6.2.2.3 R ealistic Input Models

It is possible that the union of a set of n triangles in the plane has descriptive complexity Θ(n2); see 
Figure 6.5. Therefore, any algorithm that computes the union of n triangles must take at least quadratic 
time because it may have to report a shape of quadratic complexity. Now consider the problem of decid-
ing whether a set of n triangles in the plane cover the unit square [0:1] × [0:1] completely. This problem 
has constant output size (yes or no), but still all known algorithms take quadratic time or more. The 
problem is as difficult as 3sum [52].

In practice, however, unions of n triangles hardly ever have quadratic complexity. It is known that if 
there is some constant α > 0, and all triangles have their three angles at least α, then the union complex-
ity cannot be quadratic but always is O(n log log n) [75]. Such triangles are called fat. The problem of 
deciding whether n fat triangles cover the unit square can be solved much faster than quadratic time. We 
have made an assumption on the input that (possibly) corresponds to real-world situations and stated 
a worst-case running time that is valid if the assumption holds. Such an assumption is called a realistic 
input model.

Other realistic input models may refer to relative sizes of the objects in the input. We could assume, 
for example, that a constant c > 0 exists so that the largest diameter of an input object is no more than c 
times the smallest diameter of an input object. Yet another realistic input model is the bounded spread 
of a point set: the distance between the closest two points is at least f(n) times the diameter of the point 
set, where f(n) is some function of n. With a packing argument, one can show that any d-dimensional 
point set has spread Ω(n1/d), so we cannot assume f(n) to be constant.

Realistic input models are important to explain the complexity of structures or running times of 
problems in practice, since it is often different from the worst-case situation. For example, it is known 
that a three-dimensional point set may have a Delaunay tetrahedrilization of size Θ(n2), although 

x1 x2 x3 x4 x5 x6

x1 x2 x3 x1 x4 x5 x2 x5 x6 x1 x3 x6

FIGURE 6.4  Planar layout of the 3-sat expression (x1 ∨ x–2 ∨ x3) ∧ (x–1 ∨ x–4 ∨ x5) ∧ (x2 ∨ x–5 ∨ x6) ∧ (x1 ∨ x–3 ∨ x–6).

FIGURE 6.5  The union of n triangles can have Ω(n2) vertices and edges in its boundary.



6-11Computational Geometry

three-dimensional point sets that occur in practice often have a Delaunay tetrahedrilization of linear 
size or slightly more. It has been shown that for three-dimensional point sets with spread O(n1/3), the 
Delaunay tetrahedrilization has size O(n) in the worst case [46,47].

6.2.3 A pproximation

Geometric algorithms where optimization of a measure appears inefficient may be tackled using 
approximation algorithms. This is the case for NP-hard problems, but approximation algorithms have 
also been developed to improve on quadratic running times, or even to reduce O(n log n) time bounds 
to linear.

An algorithm for a minimization problem A is a c-approximation algorithm for some c > 1 if the 
algorithm outputs a solution for any instance I whose value is at most c times larger than the mini-
mum possible for instance I. For a maximization problem a c-approximation algorithm always gives 
a solution that has value at least the maximum divided by c. Approximation algorithms occur in all 
algorithms areas, but for geometric problems the proofs of approximation typically use geometric argu-
ments involving distances or areas (packing arguments).

A geometric setting often makes a problem easier to approximate. For example, consider traveling 
salesperson on a graph and on a set of points in the plane. Both versions are NP-hard. Traveling sales-
person on a graph cannot be approximated within a constant factor in polynomial time (unless P = NP), but 
for Euclidean traveling salesperson a simple O(n log n)-time 2-approximation algorithm exists (polynomial-
time approximation schemes exist as well [7,77]).

Similarly, when a graph is induced by a geometric configuration, approximation is often simpler 
than on general graphs. The maximum independent set problem cannot be approximated within a 
constant factor, while for a graph that is the intersection graph of a set of disks in the plane, a simple 
5-approximation algorithm exists. The algorithm selects the smallest disk D and puts it into the inde-
pendent set, then removes all disks that intersect D and D itself from consideration, and then iterates 
until no disks remain. The reason why this gives a 5-approximation is the following. The smallest disk 
D can intersect many disks of the set, but it can intersect no more than five disks that mutually do not 
intersect each other because these are at least as large as D, and the kissing number of disks implies this 
fact. So we may have chosen one disk in the independent set while five were possible, but it cannot be 
worse. The kissing number argument is an example of a packing argument.

Approximation can also be used to deal with numerical nonrobustness. For example, the facility loca-
tion problem of computing a point that minimizes the distance to the input points can be approximated 
well: for any ε > 0, one can compute a point in O(n) time whose sum of distances to the input points 
is at most 1 + ε times as large as the minimum possible [16]. The idea of this solution is to replace the 
Euclidean distance by a different distance function that does not have algebraic hardness, and in which 
all distances are within a factor 1 + ε of the Euclidean distance (we use a polygonal convex distance 
function).

When approximate solutions are allowed to certain queries, data structuring problems may have 
much more efficient solutions. Two examples are approximate range searching and approximate nearest 
neighbor searching. In approximate range searching, points that lie close to the boundary of the range 
may or may not be reported, where “close” is related to the size of the range [8]. An approximate nearest 
neighbor searching data structure may return a point that is a factor 1 + ε further than the real nearest 
neighbor [9].

6.2.4  Combinatorial Geometry

Combinatorial bounds relating to geometric situations can help to prove efficiency bounds on geometric 
algorithms. For this reason, many combinatorial geometric results have been published in the area of 
computational geometry. We discuss some of the main results.
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The number of faces of all dimensions in an arrangement of n hyperplanes in d-dimensional space is 
Θ(nd) in the worst case. The total complexity of all faces incident to a single hyperplane in an arrange-
ment is O(nd−1), which is the most important result upon which the optimal algorithm to construct an 
arrangement relies [43].

The convex hull of a set of n points in d-dimensional space obviously has at most n vertices, but the 
total number of faces of all dimensions is O(n⌊d/2⌋). This result is known as the Upper Bound Theorem.

The maximum complexity of a single cell in an arrangement of n line segments in the plane is Θ(nα(n)) 
in the worst case, where α(n) is the extremely slowly growing functional inverse of the Ackermann 
function [59]. The upper bound proof makes use of Davenport–Schinzel sequences: an (n, s)-Davenport–
Schinzel sequence is a sequence of symbols from an alphabet of size n such that for any two symbols 
a, b, there is no subsequence of the form …, a, …, b, …, a, …, b, … (with symbols a and b alternating; in 
total s + 2 symbols a or b), and no two equal symbols are adjacent. The concept is purely combinatorial, 
but one can show that the total complexity of a face in an arrangement of line segments is bounded by 
a function linear in the maximum length of an (n, 3)-Davenport–Schinzel sequence [97]. Since such a 
sequence has length O(nα(n)), the upper bound on the complexity of a face follows. The matching lower 
bound is obtained by a clever construction [108].

The maximum number of ways to divide a set of n points in the plane by a line into a set of k points 
and a set of n − k points is Ω(n log k) and O(nk1/3) in the worst case; the true bound is unknown (a slightly 
better lower bound, Ω( ),logn c k2  is known [102]). This is known as the k-set problem. The maximum 
number of ways to separate at least one and at most k points, the (≤k)-sets, is Θ(nk) in the worst case.

For a set of n points in the plane, each moving with constant speed along some line, the maximum 
number of times the Voronoi diagram (or Delaunay triangulation) changes structurally is Ω(n2) and 
O(n32α(n)) [4].

6.2.5  Computational Topology

In topology, metric aspects of geometry like distances, angles, areas, and volumes are not relevant. 
Computational topology deals with algorithms for problems relating to incidence structures and other 
objects that are invariant under continuous deformations. It is often the combination of geometry and 
topology that leads to new, practically relevant approaches.

As an example of such an approach, we consider α-complexes. Given a set of points in the plane, we 
can imagine growing a disk centered on each point. At first the disks will not intersect, but when they 
do we can imagine a subdivision inside the union of the disks that is the Voronoi diagram of the points. 
For any radius of the disks we have such a subdivision, revealing more and more of the Voronoi diagram 
(Figure 6.6).

We can define a structure dual to the Voronoi diagram inside the union of disks for any given radius 
1/α. This structure is the α-complex and consists of vertices, edges, and triangles. The vertices are sim-
ply the points of the set. Two vertices are connected by an edge in the α-complex if the union of disks 

FIGURE 6.6  Two α-complexes for the same points but different values of α.
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contains a part of their bisector in the Voronoi diagram. Three vertices form a triangle in the α-complex 
if their points define a Voronoi vertex in the union of the disks.

When the radius of the disks grows from 0 to ∞, the α-complex changes from the Delaunay trian-
gulation to a set of isolated points. At certain critical radii, new edges and new triangles appear in the 
complex. The changes to the α-complex are topological, but they are induced by a geometric process.

The boundary of the α-complex—known as α-shape—is a simple and good shape descriptor for a set 
of points that could have been samples from that shape. The radius of the disks corresponds to the level 
of detail at which we regard the shape. A high level of detail can be realized only if the sampling density 
is sufficiently high.

6.2.6 R obustness

Nonrobustness is caused by using fixed-precision numbers and computations when an algorithm designed 
for the real RAM is implemented. It can cause an algorithm to produce a slightly incorrect value, but it can 
also cause inconsistent results and program crashes. Geometric algorithms appear to be more susceptible 
to nonrobustness than other algorithmic areas [112].

For example, when computing the Delaunay triangulation of a planar point set P, the most important 
test is deciding whether the circle through three points p, q, r contains any other points of the set P, 
because p, q, r define a Delaunay triangle if and only if this circle does not contain any other points. If P 
contains four points p, q, r, s that are nearly cocircular and the computation is not exact, then the test for 
emptiness of the circle may return true for the triples (p, q, r), (q, r, s), (r, s, p), and (s, p, q). This means that 
the quadrilateral p, q, r, s is covered by two pairs of triangles that overlap, and the computed Delaunay 
triangulation will not be a proper triangulation. It will not even be a planar graph. Other algorithms 
that rely on the planarity of the Delaunay triangulation may crash due to this robustness problem.

One approach to obtain robustness is using fixed precision [55,57,61]. Points and other objects must 
be represented using grid points with a fixed precision in some special way. For example, when snap-
rounding a set of line segments [62,85], their endpoints and intersections must all lie on the grid. Each 
line segment becomes a polygonal line whose vertices lie on the grid. A caveat is that a geometric object 
is moved or deformed.

Another approach is exact geometric computation [51,70,111]. Here a number may be represented 
implicitly by constructs that use several numbers and operations like . Any comparison that influ-
ences a branching decision in the algorithm must be exact. Since branching typically depends on com-
parisons using an inequality, we may achieve this by incrementally computing bits of the values on the 
left-hand side and right-hand side of the inequality until we can evaluate the comparison correctly.

6.3  Impact on Practice

Geometric computation is needed in many areas of science, and the range of applications is large. 
Fortunately, there are structures and concepts of general use for which geometric algorithms have been 
developed. However, due to their generality, such structures are hardly ever directly useful in a practical 
situation. To transfer general, theoretical results to applications, domain knowledge of the application is 
needed to understand when abstraction is allowed and when it would make the result lose its relevance.

We overview a number of research areas where computational geometry has made important con-
tributions and highlight these. We also discuss the development of a general purpose, geometric algo-
rithms library called cgal.

6.3.1  Computer Graphics

When three-dimensional scenes that are represented in models must be displayed on a two-dimensional 
screen, one must compute what is visible from a given viewpoint. In the end, every pixel gets a color 
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based on what object is visible “beyond” that pixel and how it is illuminated. Scenes are often composed 
of many triangles that represent the boundaries of the objects in the scene. One of the main tasks in 
computer graphics is rendering, which is the process of getting the objects in a three-dimensional scene 
onto a two-dimensional image display for a given viewpoint. The operations needed are done partly 
in the three-dimensional object space and partly in the two-dimensional image space. Computational 
geometry is involved in those tasks that occur in object space.

Since graphics processors have become a lot more powerful and allow massive parallelization, there 
has been a trend in computer graphics to do more and more in image space. The z-buffer method is 
clearly the most popular method for deciding which parts of a scene are visible, especially in dynamic 
or interactive situations.

On the other hand, object-space computations allow a more realistic visualization via ray tracing [99], 
and object-space computations may still be important to reduce the number of objects to be rendered, 
using simplification algorithms [33]. Furthermore, morphing between two shapes can be done better in 
object space [36].

6.3.2  Motion Planning and Robotics

In motion planning, a robot has a number of degrees of freedom depending on its motions. For example, 
a robot may move around and rotate in the plane, giving it three degrees of freedom. A robot arm with 
four angular joints and one telescoping piece has five degrees of freedom. The different states of such a 
robot or robot arm can be described by a number of real values equal to the number of degrees of free-
dom. In an environment with other objects—referred to as obstacles—some states may not be possible 
because the robot would intersect an obstacle. We can capture this situation in the configuration space, 
whose dimensionality is the same as the number of degrees of freedom. A point in the configuration 
space is a potential state of the robot, which may be possible or impossible. All possible states form a set 
of points called the free configuration space.

Bringing a robot from one position or state to another comes down to determining a path between 
two points that lies completely in the free configuration space. To decide if this is possible, we can com-
pute the cell of the configuration space that contains the starting configuration, and test whether the 
end configuration lies inside that cell as well.

In the case of two-dimensional translational motion planning for a polygonal robot amid polygo-
nal obstacles, we need to solve the computational-geometry problem of computing a single cell in an 
arrangement of line segments [59,96]. If we want to compute the full free configuration space, we need 
to solve the well-known problems of computing the Minkowski sum of two polygons and computing the 
union of a set of polygonal regions [65,96].

6.3.3  Geographic Information Systems

Many computations that are done in a GIS are geometric [103]. One example is the map overlay 
operation, which is possibly the most important operation in a GIS. Map overlay takes two or more 
different thematic map layers covering the same region and performs a “spatial join.” For example, 
if the one map layer is current landuse and the other layer soil type (sand, clay, …), then the over-
lay is a subdivision where map space is partitioned into regions with some landuse on some soil 
type. The standard map layer representation in GIS is similar to the doubly-connected edge list, 
and the standard algorithm for map overlay is based on the plane-sweep paradigm as explained in 
Section 6.2.1.1.

Spatial interpolation is needed when a type of data is acquired using point measurements, and we 
are also interested in the values at places in between where no measurements were taken. Think of data 
like depth to groundwater obtained from bore holes, temperature obtained from thermometers, and 
ground pollution obtained from soil samples. Spatial interpolation between point-based measurements 
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can be based on a triangulation of the points, where we can use linear interpolation over each triangle. 
Alternatively, one can use natural neighbor interpolation based on Voronoi diagrams [100].

6.3.4  Information Visualization

Information visualization is about how graphs, maps, charts, and diagrams can communicate infor-
mation effectively to humans. Graph visualization occurs in workflow diagrams and VLSI design, for 
example. The area of graph drawing is concerned with the drawings of all types of graphs in theory and 
practice. Quality criteria like few edge–edge intersections, no very long edges, and large enough angles 
between edges incident to the same vertex determine how good a drawing of a graph is. To draw a graph, 
we must choose a position and shape for each vertex and edge, and methods from computational geom-
etry are often applied.

Specialized maps like metro maps and flow maps require a highly schematized representation of carto-
graphic information that satisfies certain conventions associated with the type of map [18,81]. The com-
putation of these schematized representations while keeping some degree of spatial correctness requires 
geometric algorithms that often have a multiobjective flavor. The same is true for map annotation, also 
called label placement [2]. Here, text must be placed with features on a map, diagram, or graph without 
creating confusion as to which text belongs to which feature and without overlaps of the different texts.

Other types of information visualization involve hierarchical or clustered representations. The final 
geometry of the visualization should highlight the hierarchy or clustering, so again geometric computa-
tions are needed.

6.3.5  Data Analysis and Statistics

In data analysis, the objective is to find dependencies or structure in large sets of data. One of the main 
types of structure in data are clusters. For example, for a set of epicenters of earthquakes, one can 
wonder if there are subsets of epicenters that are close together, closer than would occur by a random 
process. Similarly, one could be interested in clusters of motion paths of hurricanes in the Atlantic. Since 
clustering in general involves distance in some space, it requires geometric computations, and since data 
sets can be large, efficient geometric algorithms are needed. Given a distance measure, there are several 
well-known clustering algorithms, like single-link clustering, complete-link clustering, and k-means 
clustering [64].

Outliers are data elements that are significantly different from the rest of the data. Outliers may be of 
special interest because of this, but they may also be due to erroneous measurements. In any case, it is 
important to be able to detect outliers, which again requires a notion of distance.

Instead of detecting and eliminating outliers, one can also devise robust statistics. The best-known 
example is the median of a set of numbers. A few erratic values in the set do not influence the value of 
the median much, so it is a robust statistic for the concept of center. For multivariate statistics, robust 
methods can often be seen as geometric tasks for which efficient algorithms need to be developed [90].

6.3.6 T hree-Dimensional Modeling

Several data acquisition methods yield three-dimensional point clouds. These could come from an object 
scanned by a three-dimensional scanner or from an urban environment scanned by LiDAR methods. 
The construction of a three-dimensional model from such a point cloud uses geometric algorithms of 
various sorts. For free-form shapes, approaches may use the medial axis and prove reconstruction cor-
rectness by relating the sampling density to the curvature [5]. Often, techniques from computational 
topology are applied, like persistence [20].

In urban reconstruction, one can use the fact that shape information is known. In urban environ-
ments many points are approximately coplanar because they were sampled from the same facade or roof. 
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This makes detection of planes that lie close to many points, one of the basic steps in reconstruction [92]. 
Once these planes are found they must be connected where appropriate, and remaining gaps should be 
filled to obtain a good three-dimensional model [11,104].

6.3.7  Finite Element Methods

The finite element method is used to approximately solve partial differential equations, which is useful 
for computing and visualizing air flow around an airplane wing, stress of an object when forces are 
applied, heat distribution on a printed circuit board, and similar situations. One of the main ingredi-
ents for finite element methods is a subdivision of the space of interest into elements of a simple shape 
(triangles or convex quadrilaterals in the plane). This subdivision should respect the environment (the 
airplane wing for air flow, the conductive tracks on a printed circuit board, etc.), meaning that no ele-
ment intersects any boundary of the environment. This subdivision is called a mesh, and the process is 
called mesh generation [15,98]. The quality of a mesh for the finite element method depends on the shape 
of its elements. Very small or large angles should be avoided. Hence, mesh generation is concerned with 
producing meshes with such geometric quality criteria.

6.3.8 R etrieval

Both database search and information retrieval have a geometric version of the problem domain. To 
search in multimedia databases of shapes, the query object may be a shape as well, and a full or partial 
similarity matching of the query shape and all stored shapes determines which shapes are returned and 
in what order [69]. The similarity measure used may be the Hausdorff distance, Fréchet distance, or Earth 
movers distance, for instance [105]. In geographic information retrieval the spatial component of infor-
mation, often distance, is used to decide which documents or web pages are most relevant to a query [68].

6.3.9  Computational Biology

Within the area of computational biology, molecular simulation is concerned with the modeling of 
three-dimensional molecules and proteins, and their interactions [44]. Molecules and proteins are made 
up of atoms, and a standard geometric model is to take a ball for each atom and the union of these balls 
for the molecule or protein. The radii of the balls are often chosen to be the van der Waals radii. The 
shape of proteins determines for a large part its function. In particular, accessibility for solvents and 
docking mechanisms of proteins depend on their shape.

6.3.10  Implementation

Providing correct implementations of geometric algorithms has proved to be a challenge in the past, 
and it still is. This is due to two main issues. Firstly, implementations should also handle all degenerate 
cases, while algorithm descriptions often ignore these, and secondly, robustness of the computations 
should always be considered to avoid that rounding errors dramatically influence the outcome of an 
implementation.

In the mid-1990s, a considerable effort has been made to develop a computational-geometry algo-
rithms library called cgal, which allows robust number types and includes many basic operations that 
are necessary in algorithms (compute the intersection point of two line segments, construct the circle 
through three given points, etc.). In a layer on top of these basic operations, many data structures and 
algorithms are implemented in the library. These include Voronoi diagrams, Delaunay triangulations, 
smallest enclosing circle, the doubly-connected edge list, arrangement construction, α-shapes, and 
much more. The library is made accessible by extensive documentation, including manuals, tutorials, 
and books [49].
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6.4 R esearch Issues

Although computational geometry deals with constant-dimensional computational problems, the curse 
of dimension is still an issue. Most problems are considerably harder in three-dimensional space than 
in the plane, and higher-dimensional problems are even harder and their solutions less well understood. 
It should be mentioned that they are less common in applications, and therefore the research focus has 
been on two- and three-dimensional problems.

A major open problem is developing a d-dimensional linear programming method that runs in time 
O( f(d) · n), where n is the number of constraints and f is a polynomial function in d. A solution exists 
where f is subexponential but superpolynomial [74].

There are many planar and three-dimensional problems whose algorithmic solutions are not known 
to be optimal. In computational geometry, there is an ongoing quest to improve existing running time 
bounds of algorithms, while providing better lower bounds is of equal interest but apparently much harder.

One can expect that realistic input models for three-dimensional data can lead to more results that 
are provable and useful; it is an important area for future research.

In combinatorial geometry, two very important open problems are finding tight bounds on the num-
ber of k-sets in the plane and on the number of changes in the Voronoi diagram or Delaunay triangula-
tion of moving points. There are several other interesting open problems where better combinatorial 
upper bounds lead to more efficient algorithms.

A research direction with a lot of potential is computational topology [45]. In the last years, the inter-
est in the area has been growing steadily, also because it provides new insight into many different appli-
cation areas.

Computational geometry has not been involved much in the computations necessary in various pro-
cesses or simulations. Some exceptions are forest growth simulation [1], bird flocking behavior [28,29], 
and docking mechanisms in computational biology [44]. An expansion of the research in this direction 
is challenging and exciting.

There are many challenges in the technology transfer of the ideas and methods developed in com-
putational geometry into practice. This goes much further than making practitioners aware of existing 
ideas and methods in computational geometry. Similarly, there are challenges in the right formaliza-
tions of practical problems into versions that can be addressed by computational geometry but are still 
relevant to practice.

A general concern from practice is data imprecision. It is important to know to what extent data 
imprecision influences further processing, and hence a computational model of data imprecision is 
needed. Such a model can be statistical or combinatorial [71]. Both offer opportunities for important 
research to which computational geometry can contribute.

6.5  Summary

The area of computational geometry is a challenging and useful research area that includes both funda-
mental and applied questions. It plays a role whenever geometric data is present and methods are needed 
to deal with such data. Since geometric data appears in many application areas, and new functionality 
is needed in these applications, a need remains for new, advanced methods to supply this functionality. 
At the same time, much research within computational geometry is motivated by curiosity from within, 
and a search for the best algorithmic solution for any geometric problem.

The overview given in this chapter is just a small sample of all known results and research directions. 
The Handbook of Discrete and Computational Geometry [54] provides a much more extensive list of 
concepts and results, while the textbook by de Berg et al. [38] provides a good introduction in the area. 
The annual Symposium on Computational Geometry is the main event where the latest trends and results 
are published. Several dozens of other conferences—algorithmic and applied—regularly publish papers 
on computational geometry as well.
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Key Terms

α-complex: Structure with vertices, edges, and simplicial facets of all dimensions whose adjacencies are 
defined by a disk of radius 1/α.

α-shape: Structure with vertices and edges (for the planar case) defined for a point set, where the points 
are the vertices and two points are connected by an edge if and only if there is a disk of radius 
1/α through both points, and with no points of the set inside it.

Algebraic decision tree: Tree representing the flow of a program or algorithm where nodes represent 
conditional statements or tests, which determine which branch under the node is taken next. 
These tests are algebraic equations.

Backward analysis of a randomized incremental algorithm: Argument used to prove the expected 
cost of an incremental step by considering the situation after that step and thinking backwards 
(What could have led to this situation?).

Configuration space: Space in a robot motion planning problem that has one coordinate axis for every 
degree of freedom of the robot.

Convex hull: Smallest convex set that contains a given set of points or other objects.
Davenport–Schinzel sequence: Sequence of symbols over an alphabet where no two adjacent symbols 

may be equal, and any two different symbols can occur in alternation in a limited manner.
Delaunay triangulation of a set of points: Maximal planar subdivision of the plane where the points 

are the vertices and all bounded faces are triangles, such that the circumcircle of the three 
vertices of any triangle does not have any of the input points inside.

Doubly-connected edge list: Structure to represent planar subdivisions that allows navigation to inci-
dent features (e.g., from an edge to the incident faces and vertices).

Dynamic programming: Algorithmic design paradigm that exploits the fact that some optimization 
problems have solutions that are composed of optimal solutions to smaller problems. These 
optimal solutions to smaller problems are often stored in tables.

Graph embedding: Layout of a graph where the nodes and arcs are represented as geometric objects; 
nodes are often points specified by their coordinates.

Greedy algorithm: Algorithmic design paradigm for optimization problems where locally optimal 
choices are made repeatedly.

Hausdorff distance of two subsets of the plane: Maximum distance from any point in one subset to the 
nearest point in the other subset.

Minkowski sum: Binary operator that takes two geometric objects and returns the object composed of 
the union of all vectors that are the sum of a vector to a point in the one object and a vector to 
a point in the other object.

NP-hardness: Informally, feature of a computational problem describing that any algorithm that solves it 
requires more than polynomially many operations in the worst case. However, there is no proof 
known that algorithms with polynomially many operations for NP-hard problems do not exist.

Numerical nonrobustness: Issue appearing in the design of an implementation due to the fact that 
computers cannot store real numbers exactly.

Planar 3-SAT: Satisfiability expression with three literals per clause that allows a planar layout of the 
graph where literals and clauses are nodes and occurrences of a literal in a clause are arcs.

Plane sweep: Algorithmic design paradigm where a computational problem is solved by imagining the 
sweep of a line over the plane.

Randomized incremental construction: Algorithmic design paradigm where a problem is solved 
incrementally using a randomized order.

Real RAM: Model of computation that allows the storage of any real number in a constant amount of 
memory and that has random access memory.

Realistic input model: Assumption or set of assumptions that rules out pathological input situations, in 
order to prove better complexity bounds.
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Simple polygon: Bounded planar shape whose boundary consists of a cyclic sequence of line segments 
where adjacent line segments meet in a common endpoint, and no other line segments have 
any point in common.

Simple polyhedron: Bounded solid shape in three-dimensional space with linear boundaries that is a 
generalization of a simple polygon.

Simplex: Polytope in d-dimensional space that is the convex hull of d + 1 linearly independent points. 
In the plane, it is a triangle and in three-dimensional space it is a tetrahedron.

Spread of a point set: Ratio of the largest and smallest point-to-point distance.
Sweep line: Imaginary line that sweeps over the plane, for instance a horizontal line that goes from top 

to bottom, while computing a solution to a problem.
Upper Bound Theorem: Combinatorial result that states that the maximum number of facets of all 

dimensions of a d-dimensional polytope bounded by n hyperplanes is O(n⌊d/2⌋).

Acknowledgments

The author thanks Maarten Löffler and Teofilo Gonzalez for comments that helped to improve the pre-
sentation of this chapter.

References

	 1.	 P. K. Agarwal, T. Mølhave, H. Yu, and J. S. Clark. Exploiting temporal coherence in forest dynamics 
simulation. In: Proceedings of the 27th ACM Symposium on Computational Geometry, Paris, France, 
pp. 77–86, 2011.

	 2.	 P. K. Agarwal, M. J. van Kreveld, and S. Suri. Label placement by maximum independent set in rect-
angles. Comput. Geom., 11(3–4):209–218, 1998.

	 3.	 A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Commun. 
ACM, 31(9):1116–1127, 1988.

	 4.	 G. Albers, L. J. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi diagrams of moving points. Int. J. 
Comput. Geom. Appl., 8(3):365–380, 1998.

	 5.	 N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial axis trans-
form. Comput. Geom., 19(2–3):127–153, 2001.

	 6.	 A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Inform. Process. 
Lett., 9(5):216–219, 1979.

	 7.	 S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geo-
metric problems. J. ACM, 45(5):753–782, 1998.

	 8.	 S. Arya and D. M. Mount. Approximate range searching. Comput. Geom., 17(3–4):135–152, 2000.
	 9.	 S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for 

approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891–923, 1998.
	 10.	 C. L. Bajaj. The algebraic degree of geometric optimization problems. Discrete Comput. Geom., 

3:177–191, 1988.
	 11.	 G. Barequet and M. Sharir. Filling gaps in the boundary of a polyhedron. Comput. Aided Geom. 

Design, 12(2):207–229, 1995.
	 12.	 G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization 

of Graphs. Prentice Hall, Upper Saddle River, NJ, 1999.
	 13.	 J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM, 

18(9):509–517, 1975.
	 14.	 J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. 

IEEE Trans. Comput., C-28:643–647, 1979.
	 15.	 M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. J. Comput. Syst. Sci., 

48:384–409, 1994.



6-20 Algorithms and Complexity

	 16.	 P. Bose, A. Maheshwari, and P. Morin. Fast approximations for sums of distances, clustering and the 
Fermat–Weber problem. Comput. Geom., 24(3):135–146, 2003.

	 17.	 E. Brisson. Representing geometric structures in d dimensions: Topology and order. Discrete 
Comput. Geom., 9:387–426, 1993.

	 18.	 K. Buchin, B. Speckmann, and K. Verbeek. Flow map layout via spiral trees. IEEE Trans. Vis. Comput. 
Graph., 17(12):2536–2544, 2011.

	 19.	 J. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1987.
	 20.	 F. Chazal and S. Oudot. Towards persistence-based reconstruction in Euclidean spaces. In 

Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, 
pp. 232–241, 2008.

	 21.	 B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-case optimal algorithm. 
SIAM J. Comput., 13:488–507, 1984.

	 22.	 B. Chazelle. An optimal convex hull algorithm and new results on cuttings. In Proceedings of the 
32nd Annual IEEE Symposium on Foundations of Computer Science, San Juan, pp. 29–38, 1991.

	 23.	 B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6:485–524, 
1991.

	 24.	 B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom., 
10:377–409, 1993.

	 25.	 B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. 
J. ACM, 39:1–54, 1992.

	 26.	 B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica, 
1:133–162, 1986.

	 27.	 B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1:163–191, 
1986.

	 28.	 B. Chazelle. Natural algorithms. In Proceedings of the 20th Annual ACM-SIAM Symposium on 
Discrete Algorithms, SODA 2009, New York, pp. 422–431, 2009.

	 29.	 B. Chazelle. A geometric approach to collective motion. In Proceedings of the 26th ACM Symposium 
on Computational Geometry, Snowbird, UT, pp. 117–126, 2010.

	 30.	 Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A unified approach to dynamic point location, ray 
shooting, and shortest paths in planar maps. SIAM J. Comput., 25:207–233, 1996.

	 31.	 Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proc. IEEE, 
80(9):1412–1434, 1992.

	 32.	 V. Chvátal. A combinatorial theorem in plane geometry. J. Combin. Theory Ser. B, 18:39–41, 1975.
	 33.	 P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification algorithms. Comput. 

Graph., 22(1):37–54, 1998.
	 34.	 K. L. Clarkson. Las vegas algorithms for linear and integer programming when the dimension is 

small. J. ACM, 42:488–499, 1995.
	 35.	 K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. 

Discrete Comput. Geom., 4:387–421, 1989.
	 36.	 D. Cohen-Or, A. Solomovici, and D. Levin. Three-dimensional distance field metamorphosis. ACM 

Trans. Graph., 17(2):116–141, 1998.
	 37.	 R. Cole. Searching and storing similar lists. J. Algorithm, 7:202–220, 1986.
	 38.	 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms 

and Aplications, 3rd edn. Springer, Berlin, Germany, 2008.
	 39.	 H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 

10(1):41–51, 1990.
	 40.	 D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. 

Algorithmica, 4(1):3–32, 1989.
	 41.	 H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision. SIAM 

J. Comput., 15:317–340, 1986.



6-21Computational Geometry

	 42.	 H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes 
with applications. SIAM J. Comput., 15:341–363, 1986.

	 43.	 H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for hyperplane arrangements. SIAM 
J. Comput., 22(2):418–429, 1993.

	 44.	 H. Edelsbrunner. Biological applications of computational topology. In: J. E. Goodman and 
J.  O’Rourke, eds., Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1395–1412. 
Chapman & Hall/CRC, Boca Raton, FL, 2004.

	 45.	 H. Edelsbrunner and J. L. Harer. Computational Topology—An Introduction. American Mathematical 
Society, Providence, RI, 2010.

	 46.	 J. Erickson. Nice point sets can have nasty Delaunay triangulations. Discrete Comput. Geom., 
30(1):109–132, 2003.

	 47.	 J. Erickson. Dense point sets have sparse Delaunay triangulations or “… but not too nasty”. Discrete 
Comput. Geom., 33(1):83–115, 2005.

	 48.	 J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical degeneracies. 
Discrete Comput. Geom., 13:41–57, 1995.

	 49.	 E. Fogel, D. Halperin, and R. Wein. CGAL Arrangements and Their Applications—A Step-by-Step 
Guide, Geometry and Computing, Vol. 7. Springer, Berlin, Germany, 2012.

	 50.	 S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.
	 51.	 S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for computational geometry. In Proceedings 

of the 9th Annual ACM Symposium on Computational Geometry, San Diego, CA, pp. 163–172, 1993.
	 52.	 A. Gajentaan and M. H. Overmars. On a class of o(n2) problems in computational geometry. Comput. 

Geom., 5:165–185, 1995.
	 53.	 M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San Francisco, CA, 1979.
	 54.	 J. E. Goodman and J. O’Rourke, eds. Handbook of Discrete and Computational Geometry, 2nd edn. 

Chapman & Hall/CRC, Boca Raton, FL 2004.
	 55.	 M. T. Goodrich, L. J. Guibas, J. Hershberger, and P. J. Tanenbaum. Snap rounding line segments 

efficiently in two and three dimensions. In Proceedings of the 13th Annual ACM Symposium on 
Computational Geometry, Nice, France, pp. 284–293, 1997.

	 56.	 R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform. 
Process. Lett., 1:132–133, 1972.

	 57.	 D. H. Greene and F. F. Yao. Finite-resolution computational geometry. In Proceedings of the 27th Annual 
Symposium on Foundations of Computer Science, Toronto, Ontario, Canada, pp. 143–152, 1986.

	 58.	 L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and 
Voronoi diagrams. Algorithmica, 7:381–413, 1992.

	 59.	 L. J. Guibas, M. Sharir, and S. Sifrony. On the general motion planning problem with two degrees of 
freedom. Discrete Comput. Geom., 4:491–521, 1989.

	 60.	 L. J. Guibas. Modelling motion. In: J. E. Goodman and J. O’Rourke, eds., Handbook of Discrete and 
Computational Geometry, 2nd edn., pp. 1117–1134. Chapman & Hall/CRC, Boca Raton, FL, 2004.

	 61.	 L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: Building robust algorithms from imprecise 
computations. In: Symposium on Computational Geometry, pp. 208–217. ACM Press, Saarbrücken, 
Germany, 1989.

	 62.	 J. Hershberger. Stable snap rounding. In: F. Hurtado and M. J. van Kreveld, eds., Symposium on 
Computational Geometry, Paris, France, pp. 197–206. ACM Press, New York, 2011.

	 63.	 J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. 
Comput., 28(6):2215–2256, 1999.

	 64.	 A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surv., 
31(3):264–323, 1999.

	 65.	 K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles. Discrete Comput. Geom., 1:59–71, 1986.

	 66.	 D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28–35, 1983.



6-22 Algorithms and Complexity

	 67.	 G. T. Klincsek. Optimal triangulations of polygonal domains. Discrete Math., 9:121–123, 1980.
	 68.	 R. R. Larson and P. Frontiera. Spatial ranking methods for geographic information retrieval (gir) 

in digital libraries. In: Research and Advanced Technology for Digital Libraries, 8th European 
Conference, ECDL 2004, Lecture Notes in Computer Science, Vol. 3232. Springer, Berlin, Germany, 
pp. 45–56. 2004.

	 69.	 M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia information retrieval: State 
of the art and challenges. TOMCCAP, 2(1):1–19, 2006.

	 70.	 C. Li, S. Pion, and C. K. Yap. Recent progress in exact geometric computation. J. Log. Algebr. 
Program., 64(1):85–111, 2005.

	 71.	 M. Löffler. Data Imprecision in Computational Geometry. PhD thesis, Department of Information 
and Computing Sciences, Utrecht University, Utrecht, The Netherlands, 2009.

	 72.	 G. S. Lueker. A data structure for orthogonal range queries. In Proceedings of the 19th Annual IEEE 
Symposium on Foundations of Computer Science, Ann Arbor, MI, pp. 28–34, 1978.

	 73.	 J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom., 
10(2):157–182, 1993.

	 74.	 J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica, 
16:498–516, 1996.

	 75.	 J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine linearly many holes. 
SIAM J. Comput., 23:154–169, 1994.

	 76.	 N. Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM, 31:114–127, 
1984.

	 77.	 J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-
time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput., 
28(4):1298–1309, 1999.

	 78.	 D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theor. Comput. 
Sci., 7:217–236, 1978.

	 79.	 K. Mulmuley. A fast planar partition algorithm, I. J. Symb. Comput., 10:253–280, 1990.
	 80.	 W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. J. ACM, 55(2), 2008.
	 81.	 M. Nöllenburg and A. Wolff. Drawing and labeling high-quality metro maps by mixed-integer pro-

gramming. IEEE Trans. Vis. Comput. Graph., 17(5):626–641, 2011.
	 82.	 J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York, 1987.
	 83.	 J. O’Rourke. Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge, NY, 

1998.
	 84.	 M. H. Overmars. The Design of Dynamic Data Structures, Lecture Notes in Computer Science, 

Vol. 156. Springer-Verlag, Heidelberg, Germany, 1983.
	 85.	 E. Packer. Iterated snap rounding with bounded drift. Comput. Geom., 40(3):231–251, 2008.
	 86.	 F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions. 

Commun. ACM, 20:87–93, 1977.
	 87.	 F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New 

York, 1985.
	 88.	 M. O. Rabin. Proving simultaneous positivity of linear forms. J. Comput. Syst. Sci., 6(6):639–650, 

1972.
	 89.	 E. M. Reingold. On the optimality of some set algorithms. J. ACM, 19(4):649–659, 1972.
	 90.	 P. J. Rousseeuw and A. Struyf. Computation of robust statistics. In: J. E. Goodman and J. O’Rourke, 

eds., Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1279–1292. Chapman & 
Hall/CRC, Boca Raton, FL, 2004.

	 91.	 N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun. ACM, 
29:669–679, 1986.

	 92.	 R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for point-cloud shape detection. Comput. 
Graph. Forum, 26(2):214–226, 2007.



6-23Computational Geometry

	 93.	 R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decom-
positions and for triangulating polygons. Comput. Geom. Theory Appl., 1:51–64, 1991.

	 94.	 R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete Comput. 
Geom., 6:423–434, 1991.

	 95.	 M. I. Shamos and D. Hoey. Closest-point problems. In: Proceedings of the 16th Annual IEEE 
Symposium on Foundations of Computer Science, Berkeley, CA, pp. 151–162, 1975.

	 96.	 M. Sharir. Algorithmic motion planning. In: Goodman and O’Rourke [54], chapter 47.
	 97.	 M. Sharir and P. K. Agarwal. Davenport–Schinzel Sequences and Their Geometric Applications. 

Cambridge University Press, Cambridge, NY, 1995.
	 98.	 J. R. Shewchuck. Delaunay refinement algorithms for for triangular mesh generation. Comput. 

Geom. Theory Appl., 22:21–74, 2002.
	 99.	 P. Shirley and R. K. Morley. Realistic Ray Tracing, 2nd edn. A.K. Peters, Natick, MA, 2003.
	100.	 R. Sibson. A brief description of natural neighbour interpolation. In: Vic Barnet, ed., Interpreting 

Multivariate Data, pp. 21–36. John Wiley & Sons, Chichester, U.K., 1981.
	101.	 B. Speckmann. Kinetic data structures. In: M.-Y. Kao, ed., Encyclopedia of Algorithms, pp. 417–419. 

Springer, New York, 2008.
	102.	 G. Tóth. Point sets with many k-sets. Discrete Comput. Geom., 26(2):187–194, 2001.
	103.	 M. van Kreveld. Geographic information systems. In: J. E. Goodman and J. O’Rourke, eds., Handbook 

of Discrete and Computational Geometry, 2nd edn., pp. 1293–1314. Chapman & Hall/CRC, Boca 
Raton, FL, 2004.

	104.	 M. J. van Kreveld, T. van Lankveld, and R. C. Veltkamp. On the shape of a set of points and lines in 
the plane. Comput. Graph. Forum, 30(5):1553–1562, 2011.

	105.	 R. C. Veltkamp. Shape matching: Similarity measures and algorithms. In: Shape Modeling 
International, Los Alamitos, CA, pp. 188–197. IEEE Press, Genova, Italy, 2001.

	106.	 J. S. Vitter. External memory algorithms and data structures. ACM Comput. Surv., 33(2):209–271, 
2001.

	107.	 E. Welzl. Smallest enclosing disks (balls and ellipsoids). In: H. Maurer, ed., New Results and New 
Trends in Computer Science, Lecture Notes in Computer Science, Vol. 555. Springer-Verlag, New York, 
pp. 359–370, 1991.

	108.	 A. Wiernik and M. Sharir. Planar realizations of nonlinear Davenport–Schnitzel sequences by seg-
ments. Discrete Comput. Geom., 3:15–47, 1988.

	109.	 D. E. Willard. Predicate-oriented Database Search Algorithms. PhD. thesis, Aiken Comput. Lab., 
Harvard Univ., Cambridge, MA, 1978. Report TR-20-78.

	110.	 A. C. Yao. A lower bound to finding convex hulls. J. ACM, 28:780–787, 1981.
	111.	 C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1):3–23, 1997.
	112.	 C. K. Yap. Robust geometric computation. In: J. E. Goodman and J. O’Rourke, eds., Handbook of 

Discrete and Computational Geometry, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL, 2004.





7-1

7.1  Introduction

Computational complexity is the study of the difficulty of solving computational problems, in terms of 
the required computational resources, such as time and space (memory). Whereas the analysis of algo-
rithms focuses on the time or space requirements of an individual algorithm for a specific problem (such 
as sorting), complexity theory focuses on the complexity class of problems solvable in the same amount 
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of time or space. Most common computational problems fall into a small number of complexity classes. 
Two important complexity classes are P, the set of problems that can be solved in polynomial time, and 
NP, the set of problems whose solutions can be verified in polynomial time.

By quantifying the resources required to solve a problem, complexity theory has profoundly affected our 
thinking about computation. Computability theory establishes the existence of undecidable problems, which 
cannot be solved in principle regardless of the amount of time invested. However, computability theory fails 
to find meaningful distinctions among decidable problems. In contrast, complexity theory establishes the 
existence of decidable problems that, although solvable in principle, cannot be solved in practice, because 
the time and space required would be larger than the age and size of the known universe (Stockmeyer and 
Chandra, 1979). Thus, complexity theory characterizes the computationally feasible problems.

The quest for the boundaries of the set of feasible problems has led to the most important unsolved 
question in all of computer science: Is P different from NP? Hundreds of fundamental problems, includ-
ing many ubiquitous optimization problems of operations research, are NP-complete; they are the 
hardest problems in NP. If someone could find a polynomial-time algorithm for any one NP-complete 
problem, then there would be polynomial-time algorithms for all of them. Despite the concerted 
efforts of many scientists over several decades, no polynomial-time algorithm has been found for any 
NP-complete problem. Although we do not yet know whether P is different from NP, showing that a 
problem is NP-complete provides strong evidence that the problem is computationally infeasible and 
justifies the use of heuristics for solving the problem.

In this chapter, we define P, NP, and related complexity classes. We illustrate the use of diagonaliza-
tion and padding techniques to prove relationships between classes. Next, we define NP-completeness, 
and we show how to prove that a problem is NP-complete. Finally, we define complexity classes for 
probabilistic and interactive computations.

Throughout this chapter, all numeric functions take integer arguments and produce integer values. 
All logarithms are taken to base 2. In particular, log n means ⌈log2n⌉.

7.2  Models of Computation

To develop a theory of the difficulty of computational problems, we need to specify precisely what a problem 
is, what an algorithm is, and what a measure of difficulty is. For simplicity, complexity theorists have chosen 
to represent problems as languages (i.e., as sets of strings of symbols), model algorithms by off-line multi-
tape Turing machines, and measure computational difficulty by the time and space required by a Turing 
machine. To justify these choices, some theorems of complexity theory show how to translate statements 
about, say, the time complexity of language recognition by Turing machines into statements about com-
putational problems on more realistic models of computation. These theorems imply that the principles of 
complexity theory are not artifacts of Turing machines, but instead are intrinsic properties of computation.

This section defines different kinds of Turing machines. The deterministic Turing machine models 
actual computers. The nondeterministic Turing machine is not a realistic model, but it helps classify the 
complexity of important computational problems. The alternating Turing machine models a form of 
parallel computation, and it helps elucidate the relationship between time and space.

7.2.1  Computational Problems and Languages

Computer scientists have invented many elegant formalisms for representing data and control struc-
tures. Fundamentally, all representations are patterns of symbols. Therefore, we represent an instance of 
a computational problem as a sequence of symbols.

Let Σ be a finite set, called the alphabet. A word over Σ is a finite sequence of symbols from Σ. Sometimes 
a word is called a string. Let Σ* denote the set of all words over Σ. For example, if Σ = {0, 1}, then

	 Σ* { , }= …λ 0, 1, 00, 01, 10, 11, 000,
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is the set of all binary words, including the empty word λ. The length of a word w, denoted by |w|, is the 
number of symbols in w. A language over Σ is a subset of Σ*.

A decision problem is a computational problem whose answer is simply yes or no. For example: Is 
the input graph connected? or Is the input a sorted list of integers? A decision problem can be expressed 
as a membership problem for a language A: for an input x, does x belong to A? For a language A that 
represents connected graphs, the input word x might represent an input graph G, and x ∈ A if and only 
if G is connected.

For every decision problem, the representation should allow for easy parsing, to determine whether 
a word represents a legitimate instance of the problem. Furthermore, the representation should be con-
cise. In particular, it would be unfair to encode the answer to the problem into the representation of an 
instance of the problem; for example, for the problem of deciding whether an input graph is connected, 
the representation should not have an extra bit that tells whether the graph is connected. A set of inte-
gers S = {x1,…, xm} is represented by listing the binary representation of each xi, with the representations 
of consecutive integers in S separated by a nonbinary symbol. A graph is naturally represented by giving 
either its adjacency matrix or a set of adjacency lists, where the list for each vertex v specifies the vertices 
adjacent to v.

Whereas the solution to a decision problem is yes or no, the solution to an optimization problem 
is more complicated; for example, determine the shortest path from vertex u to vertex v in an input 
graph G. Nevertheless, for every optimization (minimization) problem, with objective function g, 
there is a corresponding decision problem that asks whether there exists a feasible solution z such that 
g(z) ≤ k, where k is a given target value. Clearly, if there is an algorithm that solves an optimization 
problem, then that algorithm can be used to solve the corresponding decision problem. Conversely, 
if algorithm solves the decision problem, then with a binary search on the range of values of g, we 
can determine the optimal value. Moreover, using a decision problem as a subroutine often enables 
us to construct an optimal solution; for example, if we are trying to find a shortest path, we can use 
a decision problem that determines if a shortest path starting from a given vertex uses a given edge. 
Therefore, there is little loss of generality in considering only decision problems, represented as lan-
guage membership problems.

7.2.2 T uring Machines

This section and the next three give precise, formal definitions of Turing machines and their variants. 
These sections are intended for reference. For the rest of this chapter, the reader need not understand 
these definitions in detail, but may generally substitute “program” or “computer” for each reference to 
“Turing machine.”

A k-worktape Turing machine M consists of the following:

•	 A finite set of states Q, with special states q0 (initial state), qA (accept state), and qR (reject state).
•	 A finite alphabet Σ, and a special blank symbol ◽ ∉ Σ.
•	 The k + 1 linear tapes, each divided into cells. Tape 0 is the input tape, and tapes 1, …, k are 

the worktapes. Each tape is infinite to the left and to the right. Each cell holds a single symbol from 
Σ ∪ {◽}. By convention, the input tape is read only. Each tape has an access head, and at every 
instant, each access head scans one cell. See Figure 7.1.

•	 A finite transition table δ, which comprises tuples of the form

	 ( , , , , , , , , , , , , )q s s s q s s d d dk k k0 1 1 0 1… ′ ′ … ′ …

where q, q′ ∈ Q, each s si i, ′∈ ∪Σ  {◽}, and each di ∈ {−1, 0, +1}.
A tuple specifies a step of M: if the current state is q, and s0, s1, …, sk are the symbols in the cells 

scanned by the access heads, then M replaces si by ′si  for i = 1, …, k simultaneously, changes state to q′, and 
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moves the head on tape i one cell to the left (di = −1) or right (di = +1) or not at all (di = 0) for i = 0, …, k. 
Note that M cannot write on tape 0, that is, M may write only on the worktapes, not on the input tape.

•	 No tuple contains qA or qR as its first component. Thus, once M enters state qA or state qR, it stops.
•	 Initially, M is in state q0, an input word in Σ* is inscribed on contiguous cells of the input tape, the 

access head on the input tape is on the leftmost symbol of the input word, and all other cells of all 
tapes contain the blank symbol ◽.

The Turing machine M that we have defined is nondeterministic: δ may have several tuples with the 
same combination of state q and symbols s0, s1, …, sk as the first k + 2 components, so that M may have 
several possible next steps. A machine M is deterministic if for every combination of state q and symbols 
s0, s1, …, sk, at most one tuple in δ contains the combination as its first k + 2 components. A deterministic 
machine always has at most one possible next step.

A configuration of a Turing machine M specifies the current state, the contents of all tapes, and the 
positions of all access heads.

A computation path is a sequence of configurations C0, C1, …, Ct, …, where C0 is the initial configura-
tion of M, and each Cj+1 follows from Cj in one step by applying the changes specified by a tuple in δ. If 
no tuple is applicable to Ct, then Ct is terminal, and the computation path is halting. If M has no infinite 
computation paths, then M always halts.

A halting computation path is accepting if the state in the last configuration Ct is qA; otherwise it is 
rejecting. By adding tuples to the program if needed, we can ensure that every rejecting computation 
ends in state qR. This leaves the question of computation paths that do not halt. In complexity theory we 
rule this out by considering only machines whose computation paths always halt. M accepts an input 
word x if there exists an accepting computation path that starts from the initial configuration in which 
x is on the input tape. For nondeterministic M, it does not matter if some other computation paths 
end at qR. If M is deterministic, then there is at most one halting computation path, hence at most one 
accepting path.

The language accepted by M, written L(M), is the set of words accepted by M. If A = L(M), and M 
always halts, then M decides A.

In addition to deciding languages, deterministic Turing machines can compute functions. Designate 
tape 1 to be the output tape. If M halts on input word x, then the nonblank word on tape 1 in the 
final configuration is the output of M. A function f is computable if there exists a deterministic Turing 
machine M that always halts such that for each input word x, the output of M is the value of f(x).

Access head

1

1 0 0

0 1 0

Tape 0
(input tape)

Access head Access head

Finite
state

control

Tape 1 Tape 2

FIGURE 7.1  A two-tape Turing machine.
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Almost all results in complexity theory are insensitive to minor variations in the underlying compu-
tational models. For example, we could have chosen Turing machines whose tapes are restricted to be 
only one-way infinite or whose alphabet is restricted to {0, 1}. It is straightforward to simulate a Turing 
machine as defined by one of these restricted Turing machines, one step at a time: each step of the origi-
nal machine can be simulated by O(1) steps of the restricted machine.

7.2.3  Universal Turing Machines

Chapter 8 states that there exists a universal Turing machine U, which takes as input a string 〈M, x〉 
that encodes a Turing machine M and a word x, and simulates the operation of M on x, and U accepts 
〈M, x〉 if and only if M accepts x. For our purposes here, we also need that U simulates M efficiently: A 
theorem of Hennie and Stearns (1966) implies that the machine U can be constructed to have only two 
worktapes, such that U can simulate any t steps of M in only O(t log t) steps of its own, using only O(1) 
times the worktape cells used by M. The constants implicit in these big-O bounds may depend on M.

We can think of U with a fixed M as a machine UM and define L(UM) = {x : U accepts 〈M, x〉}. Then 
L(UM) = L(M). If M always halts, then UM always halts, and if M is deterministic, then UM is deterministic.

7.2.4 A lternating Turing Machines

By definition, a nondeterministic Turing machine M accepts its input word x if there exists an accepting 
computation path, starting from the initial configuration with x on the input tape. Let us call a configu-
ration C accepting if there is a computation path of M that starts in C and ends in a configuration whose 
state is qA. Equivalently, a configuration C is accepting if either the state in C is qA or there exists an 
accepting configuration C′ reachable from C by one step of M. Then, M accepts x if the initial configura-
tion with input word x is accepting.

The alternating Turing machine generalizes this notion of acceptance. In an alternating Turing 
machine M, each state is labeled either existential or universal. (Do not confuse the universal state in 
an alternating Turing machine with the universal Turing machine.) A nonterminal configuration C is 
existential (respectively, universal) if the state in C is labeled existential (universal). A terminal con-
figuration is accepting if its state is qA. A nonterminal existential configuration C is accepting if there 
exists an accepting configuration C′ reachable from C by one step of M. A nonterminal universal con-
figuration C is accepting if for every configuration C′ reachable from C by one step of M, the configura-
tion C′ is accepting. Finally, M accepts x if the initial configuration with input word x is an accepting 
configuration.

A nondeterministic Turing machine is thus a special case of an alternating Turing machine in which 
every state is existential.

The computation of an alternating Turing machine M alternates between existential states and uni-
versal states. Intuitively, from an existential configuration, M guesses a step that leads toward accep-
tance; from a universal configuration, M checks whether each possible next step leads toward 
acceptance—in a sense, M checks all possible choices in parallel. An alternating computation 
captures  the essence of a two-player game: player 1 has a winning strategy if there exists a move 
for player 1 such that for every move by player 2, there exists a subsequent move by player 1, etc., such 
that player 1 eventually wins.

7.2.5  Oracle Turing Machines

Complexity theoreticians have found it very useful to have a mechanism to describe when it is helpful to 
have a subroutine for some problem A, when trying to solve another problem. The language A is called 
an oracle. Conceptually, an algorithm queries the oracle whether a word w is in A, and it receives the 
correct answer in one step.
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An oracle Turing machine is a Turing machine M with a special oracle tape and special states query, 
yes, and no. The computation of the oracle Turing machine MA, with oracle language A, is the same as 
that of an ordinary Turing machine, except that when M enters the query state with a word w on the 
oracle tape, in one step, M enters either the yes state if w ∈ A or the no state if w ∉ A. Furthermore, dur-
ing this step, the oracle tape is erased, so that the time for setting up each query is accounted separately.

7.3 R esources and Complexity Classes

In this section, we define the measures of difficulty of solving computational problems. We introduce 
complexity classes, which enable us to classify problems according to the difficulty of their solution.

7.3.1 T ime and Space

We measure the difficulty of a computational problem by the running time and the space (memory) 
requirements of an algorithm that solves the problem.

We express the complexity of a problem, in terms of the growth of the required time or space, as a 
function of the length n of the input word that encodes a problem instance. We consider the worst-case 
complexity, that is, for each n, the maximum time or space required among all inputs of length n.

Let M be a Turing machine that always halts. The time taken by M on input word x, denoted by 
TimeM(x), is defined as follows:

•	 If M accepts x, then TimeM(x) is the number of steps in the shortest accepting computation path 
for x.

•	 If M rejects x, then TimeM(x) is the number of steps in the longest computation path for x.

For a deterministic machine M, for every input x, there is at most one halting computation path, and its 
length is TimeM(x). For a nondeterministic machine M, if x ∈ L(M), then M can guess the correct steps 
to take toward an accepting configuration, and TimeM(x) measures the length of the path on which M 
always makes the best guess.

The space used by a Turing machine M on input x, denoted SpaceM(x), is defined as follows. The space 
used by a halting computation path is the number of worktape cells visited by the worktape heads of M 
during the computation path. Because the space occupied by the input word is not counted, a machine 
can use a sublinear (o(n)) amount of space.

•	 If M accepts x, then SpaceM(x) is the minimum space used among all accepting computation paths 
for x.

•	 If M rejects x, then SpaceM(x) is the maximum space used among all computation paths for x.

The time complexity of a machine M is the function

	 t n x x nM( ) max{ ( ) : | | }= =Time

We assume that M reads all of its input word and the blank symbol after the right end of the input word, 
so t(n) ≥ n + 1. The space complexity of M is the function

	 s n x x nM( ) max{ ( ) : | | }= =Space

Because few interesting languages can be decided by machines of sublogarithmic space complexity, we 
henceforth assume that s(n) ≥ log n.

A function f(x) is computable in polynomial time if there exists a deterministic Turing machine M of 
polynomial-time complexity such that for each input word x, the output of M is f(x).
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7.3.2  Complexity Classes

Having defined the time complexity and space complexity of individual Turing machines, we now 
define classes of languages with particular complexity bounds. These definitions will lead to definitions 
of P and NP.

Let t(n) and s(n) be numeric functions. Define the following classes of languages:

•	 DTIME[t(n)] is the class of languages decided by deterministic Turing machines of time complex-
ity O(t(n)).

•	 NTIME[t(n)] is the class of languages decided by nondeterministic Turing machines of time com-
plexity O(t(n)).

•	 DSPACE[s(n)] is the class of languages decided by deterministic Turing machines of space com-
plexity O(s(n)).

•	 NSPACE[s(n)] is the class of languages decided by nondeterministic Turing machines of space 
complexity O(s(n)).

We sometimes abbreviate DTIME[t(n)] to DTIME[t] (and so on) when t is understood to be a function, 
and when no reference is made to the input length n.

The following are the canonical complexity classes:

•	 L = DSPACE[log n] (deterministic log space)
•	 NL = NSPACE[log n] (nondeterministic log space)
•	 P = DTIME[nO(1)] = ⋃k≥1 DTIME[nk] (polynomial time)
•	 NP = NTIME[nO(1)] = ⋃k≥1 NTIME[nk] (nondeterministic polynomial time)
•	 PSPACE = DSPACE[nO(1)] = ⋃k≥1 DSPACE[nk] (polynomial space)
•	 E = DTIME[2O(n)] = ⋃k≥1 DTIME[kn]
•	 NE = NTIME[2O(n)] = ⋃k≥1 NTIME[kn]
•	 EXP DTIME= =[ ]2

1nO( )

 ⋃k≥1 DTIME[ ]2nk

(deterministic exponential time)

•	 NEXP NTIME= =[ ]
( )

2
1nO

 ⋃k≥1 NTIME[ ]2nk

 (nondeterministic exponential time)

The class PSPACE is defined in terms of the DSPACE complexity measure. By Savitch’s Theorem (see 
Theorem 7.2), the NSPACE measure with polynomial bounds also yields PSPACE.

The class P contains many familiar problems that can be solved efficiently, such as (decision prob-
lem versions of) finding shortest paths in networks, parsing for context-free languages, sorting, matrix 
multiplication, and linear programming. Consequently, P has become accepted as representing the set 
of computationally feasible problems. Although one could legitimately argue that a problem whose best 
algorithm has time complexity Θ(n99) is really infeasible, in practice, the time complexities of the vast 
majority of natural polynomial-time problems have low degrees: they have algorithms that run in O(n4) 
time or less. Moreover, P is a robust class: though defined by Turing machines, P remains the same when 
defined by other models of sequential computation. For example, random-access machines (RAMs) 
(a more realistic model of computation defined in Chapter 8) can be used to define P, because Turing 
machines and RAMs can simulate each other with polynomial-time overhead.

The class NP can also be defined by means other than nondeterministic Turing machines. NP equals 
the class of problems whose solutions can be verified quickly, by deterministic machines in polynomial 
time. Equivalently, NP comprises those languages whose membership proofs can be checked quickly.

For example, one language in NP is the set of satisfiable Boolean formulas, called SAT. A Boolean 
formula ϕ is satisfiable if there exists a way of assigning true or false to each variable such that 
under this truth assignment, the value of ϕ is true. For example, the formula x ∧ (x– ∨ y) is satisfiable, 
but x ∧ y– ∧ (x– ∨ y) is not satisfiable. A nondeterministic Turing machine M, after checking the syntax 
of ϕ and counting the number n of variables, can nondeterministically write down an n-bit 0-1 string 
a on its tape, and then deterministically (and easily) evaluate ϕ for the truth assignment denoted by a. 
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The computation path corresponding to each individual a accepts if and only if ϕ(a) = true, and so M 
itself accepts ϕ if and only if ϕ is satisfiable; that is, L(M) = SAT. Again, this checking of given assign-
ments differs significantly from trying to find an accepting assignment.

Another language in NP is the set of undirected graphs with a Hamiltonian circuit, that is, a path of 
edges that visits each vertex exactly once and returns to the starting point. If a solution exists and is 
given, its correctness can be verified quickly. Finding such a circuit, however, or proving one does not 
exist, appears to be computationally difficult.

The characterization of NP as the set of problems with easily verified solutions is formalized 
as follows: A ∈ NP if and only if there exist a language A′ ∈ P and a polynomial p such that for every 
x, x ∈ A if and only if there exists a y such that |y| ≤ p(|x|) and (x, y) ∈ A′. Here, whenever x belongs 
to A, y is interpreted as a positive solution to the problem represented by x, or equivalently, as a proof 
that x belongs to A. The difference between P and NP is that between solving and checking, or between 
finding a proof of a mathematical theorem and testing whether a candidate proof is correct. In essence, 
NP represents all sets of theorems with proofs that are short (i.e., of polynomial length) and check-
able quickly (i.e., in polynomial time), while P represents those statements that can proved or refuted 
quickly from scratch.

Further motivation for studying L, NL, and PSPACE comes from their relationships to P and NP. 
Namely, L and NL are the largest space-bounded classes known to be contained in P, and PSPACE is 
the smallest space-bounded class known to contain NP. (It is worth mentioning here that NP does not 
stand for “nonpolynomial time”; the class P is a subclass of NP.) Similarly, EXP is of interest primarily 
because it is the smallest deterministic time class known to contain NP. The closely related class E is not 
known to contain NP.

7.4 R elationships between Complexity Classes

The P vs. NP question asks about the relationship between these complexity classes: Is P a proper subset 
of NP, or does P = NP? Much of complexity theory focuses on the relationships between complexity 
classes, because these relationships have implications for the difficulty of solving computational prob-
lems. In this section, we summarize important known relationships. We demonstrate two techniques 
for proving relationships between classes: diagonalization and padding.

7.4.1  Constructibility

The most basic theorem that one should expect from complexity theory would say, “If you have more 
resources, you can do more.” Unfortunately, if we are not careful with our definitions, then this claim 
is false:

Theorem 7.1  (Gap Theorem)

There is a computable, strictly increasing time bound t(n) such that DTIME DTIME[ [ ]t n
t n

( )]
( )

= 22  
(Borodin, 1972).

That is, there is an empty gap between time t(n) and time doubly exponentially greater than t(n), in the 
sense that anything that can be computed in the larger time bound can already be computed in the 
smaller time bound. That is, even with much more time, you cannot compute more. This gap can be 
made much larger than doubly exponential; for any computable r, there is a computable time bound t 
such that DTIME[t(n)] = DTIME[r(t(n))]. Exactly analogous statements hold for the NTIME, DSPACE, 
and NSPACE measures.
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Fortunately, the gap phenomenon cannot happen for time bounds t that anyone would ever be inter-
ested in. Indeed, the proof of the Gap Theorem proceeds by showing that one can define a time bound t 
such that no machine has a running time that is between t(n) and 22t n( )

. This theorem indicates the need 
for formulating only those time bounds that actually describe the complexity of some machine.

A function t(n) is time-constructible if there exists a deterministic Turing machine that halts after 
exactly t(n) steps for every input of length n. A function s(n) is space-constructible if there exists a 
deterministic Turing machine that uses exactly s(n) worktape cells for every input of length n. (Most 
authors consider only functions t(n) ≥ n + 1 to be time-constructible, and many limit attention to 
s(n) ≥ log n for space bounds. There do exist sublogarithmic space-constructible functions, but we prefer 
to avoid the tricky theory of o(log n) space bounds.)

For example, t(n) = n + 1 is time-constructible. Furthermore, if t1(n) and t2(n) are time-constructible, 
then so are the functions t1 + t2, t1t2, t t

1
2, and c t1 for every integer c > 1. Consequently, if p(n) is a polyno-

mial, then p(n) = Θ(t(n)) for some time-constructible polynomial function t(n). Similarly, s(n) = log n is 
space-constructible, and if s1(n) and s2(n) are space-constructible, then so are the functions s1 + s2, s1s2, 
s s

1
2, and c s1 for every integer c > 1. Many common functions are space-constructible: for example, n log n, 

n3, 2n, n!
Constructibility helps eliminate an arbitrary choice in the definition of the basic time and space 

classes. For general time functions t, the classes DTIME[t] and NTIME[t] may vary depending on whether 
machines are required to halt within t steps on all computation paths or just on those paths that accept. 
If t is time-constructible and s is space-constructible, however, then DTIME[t], NTIME[t], DSPACE[s], 
and NSPACE[s] can be defined without loss of generality in terms of Turing machines that always halt.

As a general rule, any function t(n) ≥ n + 1 and any function s(n) ≥ log n that one is interested in as a 
time or space bound is time- or space-constructible, respectively. As we have seen, little of interest can 
be proved without restricting attention to constructible functions. This restriction still leaves a rich class 
of resource bounds.

7.4.2  Basic Relationships

Clearly, for all time functions t(n) and space functions s(n), DTIME[t(n)] ⊆ NTIME[t(n)] and DSPACE[s(n)] ⊆ 
NSPACE[s(n)], because a deterministic machine constitutes a special case of a nondeterministic 
machine. Furthermore, DTIME[t(n)] ⊆ DSPACE[t(n)] and NTIME[t(n)] ⊆ NSPACE[t(n)], because at 
each step, a k-tape Turing machine can write on at most k = O(1) previously unwritten cells. The next 
theorem presents additional important relationships between classes.

Theorem 7.2

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function, s(n) ≥ log n.

	 (a)	 NTIME[t(n)] ⊆ DTIME[2O(t(n))].
	 (b)	 NSPACE[s(n)] ⊆ DTIME[2O(s(n))].
	 (c)	 NTIME[t(n)] ⊆ DSPACE[t(n)].
	 (d)	 (Savitch’s Theorem) NSPACE[s(n)] ⊆ DSPACE[s(n)2] (Savitch, 1970).

As a consequence of the first part of this theorem, NP ⊆ EXP. No better general upper bound on 
deterministic time is known for languages in NP. See Figure 7.2 for other known inclusion relationships 
between canonical complexity classes.

Although we do not know whether allowing nondeterminism strictly increases the class of languages 
decided in polynomial time, Savitch’s Theorem says that for space classes, nondeterminism does not 
help by more than a polynomial amount.
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7.4.3  Complementation

For a language A over an alphabet Σ, define A– to be the complement of A in the set of words over Σ: that 
is, A– = Σ* − A. For a class of languages C, define co-C = {A– : A ∈ C}. If C = co-C, then C is closed under 
complementation.

In particular, co-NP is the class of languages that are complements of languages in NP. For the lan-
guage SAT of satisfiable Boolean formulas, SAT is essentially the set of unsatisfiable formulas, whose 
value is false for every truth assignment, together with the syntactically incorrect formulas. A closely 
related language in co-NP is the set of Boolean tautologies, namely, those formulas whose value is 
true for every truth assignment. The question of whether NP equals co-NP comes down to whether 
every tautology has a short (i.e., polynomial-sized) proof. The only obvious general way to prove a tau-
tology ϕ in m variables is to verify all 2m rows of the truth table for ϕ, taking exponential time. Most 
complexity theorists believe that there is no general way to reduce this time to polynomial, hence that 
NP ≠ co-NP.

Questions about complementation bear directly on the P vs. NP question. It is easy to show that P is 
closed under complementation (see Theorem 7.3). Consequently, if NP ≠ co-NP, then P ≠ NP.

Theorem 7.3  (Complementation Theorems)

Let t be a time-constructible function, and let s be a space-constructible function, with s(n) ≥ log n for 
all n. Then,

	 1.	DTIME[t] is closed under complementation.
	 2.	DSPACE[s] is closed under complementation.
	 3.	NSPACE[s] is closed under complementation (Immerman, 1988; Szelepcsényi, 1988).

The Complementation Theorems are used to prove the Hierarchy Theorems in the next section.

NL

NP

E

NE

PSPACE

EXP

NEXP

P

L

FIGURE 7.2  Inclusion relationships among the canonical complexity classes.
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7.4.4  Hierarchy Theorems and Diagonalization

A hierarchy theorem is a theorem that says “If you have more resources, you can compute more.” As 
we saw in Section 7.4.1, this theorem is possible only if we restrict attention to constructible time and 
space bounds. Next, we state hierarchy theorems for deterministic and nondeterministic time and space 
classes. In the following, ⊂ denotes strict inclusion between complexity classes.

Theorem 7.4  (Hierarchy Theorems)

Let t1 and t2 be time-constructible functions, and let s1 and s2 be space-constructible functions, with 
s1(n), s2(n) ≥ log n for all n.

	 (a)	 If t1(n)log t1(n) = o(t2(n)), then DTIME[t1] ⊂ DTIME[t2].
	 (b)	 If t1(n + 1) = o(t2(n)), then NTIME[t1] ⊂ NTIME[t2] (Seiferas et al., 1978).
	 (c)	 If s1(n) = o(s2(n)), then DSPACE[s1] ⊂ DSPACE[s2].
	 (d)	 If s1(n) = o(s2(n)), then NSPACE[s1] ⊂ NSPACE[s2].

As a corollary of the Hierarchy Theorem for DTIME,

	 P DTIME EDTIME⊆ ⊂ ⊆[ ] [ ]logn n n2

hence we have the strict inclusion P ⊂ E. Although we do not know whether P ⊂ NP, there exists a prob-
lem in E that cannot be solved in polynomial time. Other consequences of the Hierarchy Theorems are 
NE ⊂ NEXP and NL ⊂ PSPACE.

In the Hierarchy Theorem for DTIME, the hypothesis on t1 and t2 is t1(n)log t1(n) = o(t2(n)), instead of 
t1(n) = o(t2(n)), for technical reasons related to the simulation of machines with multiple worktapes by a 
single universal Turing machine with a fixed number of worktapes. Other computational models, such 
as RAMs, enjoy tighter time hierarchy theorems.

All proofs of the Hierarchy Theorems use the technique of diagonalization. For example, the proof 
for DTIME constructs a Turing machine M of time complexity t2 that considers all machines M1, M2,… 
whose time complexity is t1; for each i, the proof finds a word xi that is accepted by M if and only if 
xi ∉ L(Mi), the language decided by Mi. Consequently, L(M), the language decided by M, differs from 
each L(Mi), hence L(M) ∉ DTIME[t1]. The diagonalization technique resembles the classic method 
used to prove that the real numbers are uncountable, by constructing a number whose jth digit differs 
from the jth digit of the jth number on the list. To illustrate the diagonalization technique, we outline 
the proof of the Hierarchy Theorem for DSPACE. In this section, 〈i, x〉 stands for the string 0i1x, and 
zeroes(y) stands for the number of 0’s that a given string y starts with. Note that zeroes(〈i, x〉) = i.

Proof.  (of the DSPACE Hierarchy Theorem)
We construct a deterministic Turing machine M that decides a language A such that A ∈ 

DSPACE[s2] − DSPACE[s1].
Let U be a deterministic universal Turing machine, as described in Section 7.2.3. On input x of 

length n, machine M performs the following:

	 1.	 Lay out s2(n) cells on a worktape.
	 2.	 Let i = zeroes(x).
	 3.	 Simulate the universal machine U on input 〈i, x〉. Accept x if U tries to use more than s2 work-

tape cells. (We omit some technical details, such as the way in which the constructibility of s2 
is used to ensure that this process halts.)

	 4.	 If U accepts 〈i, x〉, then reject; if U rejects 〈i, x〉, then accept.

Clearly, M always halts and uses space O(s2(n)). Let A = L(M).
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Suppose A ∈ DSPACE[s1(n)]. Then there is some Turing machine Mj accepting A using space at most 
s1(n). Since the space used by U is O(1) times the space used by Mj, there is a constant k depending only 
on j (in fact, we can take k = |j|), such that U, on inputs z of the form z = 〈j, x〉, uses at most ks1(|x|) space.

Since s1(n) = o(s2(n)), there is an n0 such that ks1(n) ≤ s2(n) for all n ≥ n0. Let x be a string of length 
greater than n0 such that the first j + 1 symbols of x are 0 j1. Note that the universal Turing machine U, 
on input 〈j, x〉, simulates Mj on input x and uses space at most ks1(n) ≤ s2(n). Thus, when we consider the 
machine M defining A, we see that on input x the simulation does not stop in step 3 but continues on to 
step 4, and thus x ∈ A if and only if U rejects 〈j, x〉. Consequently, Mj does not accept A, contrary to our 
assumption. Thus A ∉ DSPACE[s1(n)]. ◽

Although the diagonalization technique successfully separates some pairs of complexity classes, 
diagonalization does not seem strong enough to separate P from NP (see Theorem 7.11).

7.4.5  Padding Arguments

A useful technique for establishing relationships between complexity classes is the padding argument. 
Let A be a language over alphabet Σ, and let # be a symbol not in Σ. Let f be a numeric function. The 
f-padded version of L is the language

	 ′ = ∈ =A x x A n xf n{ # : | |}( ) and

That is, each word of A′ is a word in A concatenated with f(n) consecutive # symbols. The padded version 
A′ has the same information content as A, but because each word is longer, the computational complex-
ity of A′ is smaller.

The proof of the next theorem illustrates the use of a padding argument.

Theorem 7.5

If P = NP, then E = NE (Book, 1974).

Proof.  Since E ⊆ NE, we prove that NE ⊆ E.
Let A ∈ NE be decided by a nondeterministic Turing machine M in at most t(n) = kn time for some con-

stant integer k. Let A′ be the t(n)-padded version of A. From M, we construct a nondeterministic Turing 
machine M′ that decides A′ in linear time: M′ checks that its input has the correct format, using the time-
constructibility of t; then M′ runs M on the prefix of the input preceding the first # symbol. Thus, A′ ∈ NP.

If P = NP, then there is a deterministic Turing machine D′ that decides A′ in at most p′(n) time for 
some polynomial p′. From D′, we construct a deterministic Turing machine D that decides A, as follows. 
On input x of length n, since t(n) is time-constructible, machine D constructs x#t(n), whose length is n + 
t(n), in O(t(n)) time. Then D runs D′ on this input word. The time complexity of D is at most O(t(n)) + 
p′(n + t(n)) = 2O(n). Therefore, NE ⊆ E. ◽

A similar argument shows that the E = NE question is equivalent to the question of whether NP − P 
contains a subset of 1*, that is, a language over a single-letter alphabet.

7.5 R educibility and Completeness

In this section, we discuss relationships between problems: informally, if one problem reduces to another 
problem, then, in a sense, the second problem is harder than the first. The hardest problems in NP are the 
NP-complete problems. We define NP-completeness precisely, and we show how to prove that a problem is 
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NP-complete. The theory of NP-completeness, together with the many known NP-complete problems, is 
perhaps the best justification for interest in the classes P and NP. All of the other canonical complexity classes 
listed earlier have natural and important problems that are complete for them; we give some of these as well.

7.5.1 R esource-Bounded Reducibilities

In mathematics, as in everyday life, a typical way to solve a new problem is to reduce it to a previously solved 
problem. Frequently, an instance of the new problem is expressed completely in terms of an instance of 
the prior problem, and the solution is then interpreted in the terms of the new problem. For example, the 
maximum matching problem for bipartite graphs reduces to the network flow problem (see Chapter 5). 
This kind of reduction is called many-one reducibility and is defined after the next paragraph.

A different way to solve the new problem is to use a subroutine that solves the prior problem. For 
example, we can solve an optimization problem whose solution is feasible and maximizes the value of an 
objective function g by repeatedly calling a subroutine that solves the corresponding decision problem 
of whether there exists a feasible solution x whose value g(x) satisfies g(x) ≥ k. This kind of reduction is 
called Turing reducibility and is also defined after the next paragraph.

Let A1 and A2 be languages. A1 is many-one reducible to A2, written A1 ≤m A2, if there exists a comput-
able function f such that for all x, x ∈ A1 if and only if f(x) ∈ A2. The function f is called the transforma-
tion function. A1 is Turing reducible to A2, written A1 ≤T A2, if A1 can be decided by a deterministic oracle 
Turing machine M using A2 as its oracle, that is, A L M A

1
2= ( ). (Computable functions and oracle Turing 

machines are defined in Section 7.2.) The oracle for A2 models a hypothetical efficient subroutine for A2.
If f or M above consumes too much time or space, the reductions they compute are not helpful. 

To study complexity classes defined by bounds on time and space resources, it is natural to consider 
resource-bounded reducibilities. Let A1 and A2 be languages.

•	 A1 is Karp reducible to A2, written A Am
p

1 2≤ , if A1 is many-one reducible to A2 via a transforma-
tion function that is computable deterministically in polynomial time.

•	 A1 is log-space reducible to A2, written A Am1 2≤log , if A1 is many-one reducible to A2 via a transfor-
mation function that is computable deterministically in O(log n) space.

•	 A1 is Cook reducible to A2, written A AT
p

1 2≤ , if A1 is Turing reducible to A2 via a deterministic 
oracle Turing machine of polynomial-time complexity.

The term “polynomial-time reducibility” usually refers to Karp reducibility. If A Am
p

1 2≤  and A Am
p

2 1≤ , then 
A1 and A2 are equivalent under Karp reducibility. Equivalence under Cook reducibility is defined similarly.

Karp and Cook reductions are useful for finding relationships between languages of high complexity, 
but they are not useful at all for distinguishing between problems in P, because all problems in P are 
equivalent under Karp (and hence Cook) reductions. (Here and later we ignore the special cases A1 = ∅ 
and A1 = Σ*, and consider them to reduce to any language.) Since there are interesting distinctions to be 
made among problems in P, it is useful to have a more restrictive notion of reducibility.

Log-space reducibility (Jones, 1975) is just such a notion. Although it is not known whether log-space 
reducibility is different from Karp reducibility (just as it is not known whether L is a proper subset 
of P), this is widely believed to be true. (However, in practice, most problems that can be shown to be 
NP-complete under Karp reductions remain complete under log-space reductions.)

Theorem 7.6

Log-space reducibility implies Karp reducibility, which implies Cook reducibility:

	 1.	 If A Am1 2≤log , then A Am
p

1 2≤ .
	 2.	 If A Am

p
1 2≤ , then A AT

p
1 2≤ .
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Theorem 7.7

Log-space reducibility, Karp reducibility, and Cook reducibility are transitive:

	 1.	 If A Am1 2≤log  and A Am2 3≤log , then A Am1 3≤log .
	 2.	 If A Am

p
1 2≤  and A Am

p
2 3≤ , then A Am

p
1 3≤ .

	 3.	 If A AT
p

1 2≤  and A AT
p

2 3≤ , then A AT
p

1 3≤ .

The key property of Cook and Karp reductions is that they preserve polynomial-time feasibility. 
Suppose A Am

p
1 2≤  via a transformation f. If M2 decides A2, and Mf computes f, then to decide whether an 

input word x is in A1, we may use Mf to compute f(x), and then run M2 on input f(x). If the time com-
plexities of M2 and Mf are bounded by polynomials t2 and tf , respectively, then on each input x of length 
n = |x|, the time taken by this method of deciding A1 is at most tf(n) + t2(tf(n)), which is also a polynomial 
in n. In summary, if A2 is feasible, and there is an efficient reduction from A1 to A2, then A1 is feasible. 
Although this is a simple observation, this fact is important enough to state as a theorem (Theorem 7.8). 
First, though, we need the concept of “closure.”

A class of languages C  is closed under a reducibility ≤r if for all languages A1 and A2, whenever 
A1 ≤r A2 and A2 ∈ C, necessarily A1 ∈ C.

Theorem 7.8

	 1.	P is closed under log-space reducibility, Karp reducibility, and Cook reducibility.
	 2.	NP is closed under log-space reducibility and Karp reducibility.
	 3.	L and NL are closed under log-space reducibility.

We shall see the importance of closure under a reducibility in conjunction with the concept of com-
pleteness, which we define in the next section.

7.5.2  Complete Languages

Let C be a class of languages that represent computational problems. A language A0 is C-hard under a 
reducibility ≤r if for all A in C, A ≤r A0. A language A0 is C-complete under ≤r if A0 is C-hard, and A0 ∈ C. 
Informally, if A0 is C-hard, then A0 represents a problem that is at least as difficult to solve as any problem 
in C. If A0 is C-complete, then in a sense, A0 is one of the most difficult problems in C.

There is another way to view completeness. Completeness provides us with tight lower bounds on the 
complexity of problems. If a language A is complete for complexity class C, then we have a lower bound 
on its complexity. Namely, A is as hard as the most difficult problem in C, assuming that the complexity 
of the reduction itself is small enough not to matter. The lower bound is tight because A is in C; that is, 
the upper bound matches the lower bound.

In the case C = NP, the reducibility ≤r is usually taken to be Karp reducibility unless otherwise stated. 
Thus we say

•	 A language A0 is NP-hard if A0 is NP-hard under Karp reducibility.
•	 A0 is NP-complete if A0 is NP-complete under Karp reducibility.

Note, however, that some sources use the term “NP-hard” to refer to Cook reducibility.
Many important languages are now known to be NP-complete. Before we get to them, let us discuss 

some implications of the statement “A0 is NP-complete,” and also some things this statement does not mean.
The first implication is that if there exists a deterministic Turing machine that decides A0 in polynomial 

time—that is, if A0 ∈ P—then because P is closed under Karp reducibility (Theorem 7.8) it would follow 
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that NP ⊆ P, hence P = NP. In essence, the question of whether P is the same as NP comes down to the 
question of whether any particular NP-complete language is in P. Put another way, all of the NP-complete 
languages stand or fall together: if one is in P, then all are in P; if one is not, then all are not. Another 
implication, which follows by a similar closure argument applied to co-NP, is that if A0 ∈ co-NP then 
NP = co-NP. It is also believed unlikely that NP = co-NP, as was noted in Section 7.4.3 in connection 
with whether all tautologies have short proofs.

A common misconception is that the above property of NP-complete languages is actually their defini-
tion, namely: if A ∈ NP, and A ∈ P implies P = NP, then A is NP-complete. This “definition” is wrong 
if P ≠ NP. A theorem due to Ladner (1975) shows that P ≠ NP if and only if there exists a language A′ in 
NP − P such that A′ is not NP-complete. Thus, if P ≠ NP, then A′ is a counterexample to the “definition.”

Another common misconception arises from a misunderstanding of the statement “If A0 is 
NP-complete, then A0 is one of the most difficult problems in NP.” This statement is true on one level: if 
there is any problem at all in NP that is not in P, then the NP-complete language A0 is one such problem. 
However, note that there are NP-complete problems in NTIME[n]—and these problems are, in some 
sense, much simpler than many problems in NTIME[ ]n10500

.

7.5.3  Cook–Levin Theorem

Interest in NP-complete problems started with a theorem of Cook (1971), proved independently by 
Levin (1973). Recall that SAT is the language of Boolean formulas ϕ(z1,…, zr) such that there exists a 
truth assignment to the variables z1,…, zr that makes ϕ true.

Theorem 7.9  (Cook–Levin Theorem)

SAT is NP-complete.

Proof.  We know already that SAT is in NP, so to prove that SAT is NP-complete, we need to take an 
arbitrary given language A in NP and show that A m

p≤ SAT. Take N to be a nondeterministic Turing 
machine that decides A in polynomial time. Then the relation R(x, y) = “y is a computation path of N 
that leads it to accept x” is decidable in deterministic polynomial time depending only on n = |x|. We 
can assume that the length m of possible y’s encoded as binary strings depends only on n and not on 
a particular x.

It is straightforward to show that there is a polynomial p and for each n a Boolean circuit Cn
R with 

p(n) wires, with n + m input wires labeled x1,…, xn, y1,…, ym and one output wire w0, such that C x yn
R( , ) 

outputs 1 if and only if R(x, y) holds. (We describe circuits in more detail in the following text, and state 
a theorem for this principle as Part 1 of Theorem 7.15) Importantly, Cn

R itself can be designed in time 
polynomial in n, and – by the universality of NAND – may be composed entirely of binary NAND gates. 
Label the wires by variables x1,…, xn, y1,…, ym, w0, w1,…, wp(n)−n−m−1. These become the variables of our 
Boolean formulas. For each NAND gate g with input wires u and v, and for each output wire w of g, write 
down the subformula

	 φg w u w v w u v w, ( ) ( ) ( ).= ∨ ∧ ∨ ∧ ∨ ∨

This subformula is satisfied by precisely those assignments to u, v, w that give w = u NAND v. The con-
junction ϕ0 of ϕg,w over the polynomially many gates g and their output wires w thus is satisfied only by 
assignments that set every gate’s output correctly given its inputs. Thus for any binary strings x and y 
of lengths n, m respectively, the formula ϕ1 = ϕ0 ∧ w0 is satisfiable by a setting of the wire variables w0, 
w1,…, wp(n)−n−m−1 if and only if C x yn

R( , ) = 1—that is, if and only if R(x, y) holds.
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Now given any fixed x and taking n = |x|, the Karp reduction computes ϕ1 as mentioned earlier and 
finally outputs the Boolean formula ϕ obtained by substituting the bit-values of x into ϕ1. This ϕ has 
variables y1,…, ym, w0, w1,…, wp(n)−n−m−1, and the computation of ϕ from x runs in deterministic polyno-
mial time. Then x ∈ A if and only if N accepts x, if and only if there exists y such that R(x, y) holds, if 
and only if there exists an assignment to the variables w0, w1,…, wp(n)−n−m−1, and y1,…, ym that satisfies ϕ, 
if and only if ϕ ∈ SAT. This shows A m

p≤ SAT. ◽

We have actually proved that SAT remains NP-complete even when the given instances ϕ are restricted 
to Boolean formulas that are a conjunction of clauses, where each clause consists of (here, at most three) 
disjuncted literals. Such formulas are said to be in conjunctive normal form. Theorem 7.9 is also com-
monly known as Cook’s Theorem.

7.5.4  Proving NP-Completeness

After one language has been proved complete for a class, others can be proved complete by constructing 
transformations. For NP, if A0 is NP-complete, then to prove that another language A1 is NP-complete, 
it suffices to prove that A1 ∈ NP and to construct a polynomial-time transformation that estab-
lishes A Am

p
0 1≤ . Since A0 is NP-complete, for every language A in NP, A Am

p≤ 0, hence, by transitivity 
(Theorem 7.7), A Am

p≤ 1.
Beginning with Cook (1971) and Karp (1972), hundreds of computational problems in many fields of 

science and engineering have been proved to be NP-complete, almost always by reduction from a prob-
lem that was previously known to be NP-complete. The following NP-complete decision problems are 
frequently used in these reductions—the language corresponding to each problem is the set of instances 
whose answers are yes.

•	 3-Satisfiability (3SAT)
Instance: A Boolean expression ϕ in conjunctive normal form with three literals per clause [e.g., 
(w ∨ x ∨ y–) ∧ (x– ∨ y ∨ z)]
Question: Is ϕ satisfiable?

•	 Vertex Cover
Instance: A graph G and an integer k
Question: Does G have a set W of k vertices such that every edge in G is incident on a vertex of W?

•	 Clique
Instance: A graph G and an integer k
Question: Does G have a set U of k vertices such that every two vertices in U are adjacent in G?

•	 Independent Set
Instance: A graph G and an integer k
Question: Does G have a set U of k vertices such that no two vertices in U are adjacent in G?

•	 Hamiltonian Circuit
Instance: A graph G
Question: Does G have a circuit that includes every vertex exactly once?

•	 Three-Dimensional Matching
Instance: Sets W, X, Y with |W| = |X| = |Y| = q and a subset S ⊆ W × X × Y
Question: Is there a subset S′ ⊆ S of size q such that no two triples in S′ agree in any coordinate?

•	 Partition
Instance: A set S of positive integers
Question: Is there a subset S′ ⊆ S such that the sum of the elements of S′ equals the sum of the 
elements of S − S′?
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Note that our ϕ in the above proof of the Cook–Levin Theorem already meets a form of the definition 
of 3SAT relaxed to allow “at most 3 literals per clause.” Padding ϕ with some extra variables to bring 
up the number in each clause to exactly three, while preserving whether the formula is satisfiable or 
not, is not difficult and establishes the NP-completeness of 3SAT. Below we use this in showing the 
NP-completeness of Independent Set.

Some NP-completeness proofs require only “minor adjustments” even between different-looking prob-
lems. Consider Clique, Independent Set, and Vertex Cover. A graph G has a clique of size k if and only if 
its complementary graph G′ has an independent set of size k. It follows that the function f defined by f(G, k) = 
(G′, k) is a Karp reduction from Independent Set to Clique. To forge a link to the Vertex Cover problem, 
note that all vertices not in a given vertex cover form an independent set, and vice versa. Thus a graph G on n 
vertices has a vertex cover of size at most k if and only if G has an independent set of size at least n − k. Hence 
the function g(G, k) = (G, n − k) is a Karp reduction from Independent Set to Vertex Cover.

Here is another example of an NP-completeness proof, for the following decision problem:

•	 Traveling Salesman Problem (TSP)
Instance: A set of m “cities” C1,…, Cm, with an integer distance d(i, j) between every pair of cities 
Ci and Cj, and an integer D.
Question: Is there a tour of the cities whose total length is at most D, that is, a permutation c1,…, cm 
of {1,…, m}, such that

	 d c c d c c d c c Dm m m( , ) ( , ) ( , ) ?1 2 1 1+ + + ≤−�

First, it is easy to see that TSP is in NP: a nondeterministic Turing machine simply guesses a tour and 
checks that the total length is at most D.

Next, we construct a reduction from Hamiltonian Circuit to TSP. (The reduction goes from the 
known NP-complete problem, Hamiltonian Circuit, to the new problem, TSP, not vice versa.)

From a graph G on m vertices v1,…, vm, define the distance function d as follows:

	
d i j

v v G

m

i j
( , )

( , )
=

+




1

1

if is an edge in

otherwise

Set D = m. Clearly, d and D can be computed in polynomial time from G. Each vertex of G corresponds 
to a city in the constructed instance of TSP.

If G has a Hamiltonian circuit, then the length of the tour that corresponds to this circuit is exactly m. 
Conversely, if there is a tour whose length is at most m, then each step of the tour must have distance 1, 
not m + 1. Thus, each step corresponds to an edge of G, and the corresponding sequence of vertices in G 
is a Hamiltonian circuit.

7.5.5  NP-Completeness by Combinatorial Transformation

The following example shows how the combinatorial mechanism of one problem (here, 3SAT) can be 
transformed by a reduction into the seemingly much different mechanism of another problem.

Theorem 7.10

Independent Set is NP-complete. Hence also Clique and Vertex Cover are NP-complete.

Proof.  We have remarked already that the languages of these three problems belong to NP and shown 
already that I S CNDEPENDENT ET LIQUE≤m

p  and I S V CNDEPENDENT ET ERTEX OVER≤m
p . It suffices to show 

that 3SAT I SNDEPENDENT ET≤m
p .
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Construction. Let the Boolean formula ϕ be a given instance of 3SAT with variables x1,…, xn and clauses 
C1,…, Cm. The graph Gϕ we build consists of a “ladder” on 2n vertices labeled x1, x–1,…, xn, x–n, with edges 
(xi, x–i) for 1 ≤ i ≤ n forming the “rungs,” and m “clause components.” Here the component for each 
clause Cj has one vertex for each literal xi or x–i in the clause, and all pairs of vertices within each clause 
component are joined by an edge. Finally, each clause-component node with a label xi is connected by a 
“crossing edge” to the node with the opposite label x–i in the ith “rung,” and similarly each occurrence of 
x–i in a clause is joined to the rung node xi. This finishes the construction of Gϕ. See Figure 7.3.

Also set k = n + m. Then the reduction function f is defined for all arguments ϕ by f(ϕ) = (Gϕ, k).

Complexity. It is not hard to see that f is computable in polynomial time given (a straightforward encod-
ing of) ϕ.

Correctness. To complete the proof, we need to argue that ϕ is satisfiable if and only if Gϕ has an indepen-
dent set of size n + m. To see this, first note that any independent set I of that size must contain exactly 
one of the two nodes from each “rung,” and exactly one node from each clause component—because 
the edges in the rungs and the clause component prevent any more nodes from being added. And if I 
selects a node labeled xi in a clause component, then I must also select xi in the ith rung. If I selects x–j in 
a clause component, then I must also select x–j in the rung. In this manner I induces a truth assignment 
in which xi = true and xj = false, and so on for all variables. This assignment satisfies ϕ, because the 
node selected from each clause component tells how the corresponding clause is satisfied by the assign-
ment. Going the other way, if ϕ has a satisfying assignment, then that assignment yields an independent 
set I of size n + m in like manner. ◽

7.5.6  Complete Problems for Other Classes

Besides NP, the following canonical complexity classes have natural complete problems. The three prob-
lems now listed are complete for their respective classes under log-space reducibility.

•	 NL: Graph Accessibility Problem
Instance: A directed graph G with nodes 1,…, N
Question: Does G have a directed path from node 1 to node N?

•	 P: Circuit Value Problem
Instance: A Boolean circuit (see Section 7.9) with output node u, and an assignment I of {0, 1} to 
each input node
Question: Is 1 the value of u under I?

I

I

Ix1

x1

x1

x2

x1

x3

I x2

x3

x2

x2

x3

x3

I

FIGURE 7.3  Construction in the proof of NP-completeness of Independent Set for the formula (x1 ∨ x2 ∨ x–3) ∧ 
(x1 ∨ x–2 ∨ x3). The independent set of size 5 corresponding to the satisfying assignment x1 = false, x2 = true, and 
x3 = true is shown by nodes marked I.
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•	 PSPACE: Quantified Boolean Formulas
Instance: A Boolean expression with all variables quantified with either ∀ or ∃ [e.g., 
∀x∀y∃z(x ∧ (y– ∨ z))]
Question:  Is the expression true?

These problems can be used to prove that other problems are NL-complete, P-complete, and PSPACE-
complete, respectively.

Stockmeyer and Meyer (1973) defined a natural decision problem that they proved to be complete for 
NE. If this problem were in P, then by closure under Karp reducibility (Theorem 7.8), we would have 
NE ⊆ P, a contradiction of the hierarchy theorems (Theorem 7.4). Therefore, this decision problem is 
infeasible: it has no polynomial-time algorithm. In contrast, decision problems in NEXP − P that have 
been constructed by diagonalization are artificial problems that nobody would want to solve anyway. 
Although diagonalization produces unnatural problems by itself, the combination of diagonalization 
and completeness shows that natural problems are intractable.

The next section points out some limitations of current diagonalization techniques.

7.6 R elativization of the P vs. NP Problem

Let A be a language. Define PA (respectively, NPA) to be the class of languages accepted in polynomial 
time by deterministic (nondeterministic) oracle Turing machines with oracle A.

Proofs that use the diagonalization technique on Turing machines without oracles generally carry 
over to oracle Turing machines. Thus, for instance, the proof of the DTIME hierarchy theorem also 
shows that, for any oracle A, DTIMEA[n2] is properly contained in DTIMEA[n3]. This can be seen as a 
strength of the diagonalization technique, since it allows an argument to “relativize” to computation 
carried out relative to an oracle. In fact, there are examples of lower bounds (for deterministic, “unrela-
tivized” circuit models) that make crucial use of the fact that the time hierarchies relativize in this sense.

But it can also be seen as a weakness of the diagonalization technique. The following important theo-
rem demonstrates why.

Theorem 7.11

There exist languages A and B such that PA = NPA, and PB ≠ NPB (Baker et al., 1975).

This shows that resolving the P vs. NP question requires techniques that do not relativize, that is, that 
do not apply to oracle Turing machines too. Thus, diagonalization as we currently know it is unlikely to 
succeed in separating P from NP, because the diagonalization arguments we know (and in fact most of 
the arguments we know) relativize. Important nonrelativizing proof techniques were discovered in the 
early 1990s, in connection with interactive proof systems (Section 7.12.1).

7.7 T he Polynomial Hierarchy

Let C be a class of languages. Define

•	 NPC = ⋃A∈CNPA

•	 Σ Π0 0
P P= =P

and for k ≥ 0, define

•	 Σ Σ
k
P k

P

+ =1 NP
•	 Π Σk

P
k
P

+ +=1 1co-
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Observe that Σ1
P = =NP NPP , because each of polynomially many queries to an oracle language in P 

can be answered directly by a (nondeterministic) Turing machine in polynomial time. Consequently, 
Π1

P = co-NP. For each k, 1 1k
P

k
P

k
P

k
P∪ ∩Σ Π Σ Π+ + , but this inclusion is not known to be strict.

The classes Σk
P and Πk

P constitute the polynomial hierarchy. Define

	
PH =

≥

Σk
P

k 0
∪

It is straightforward to prove that PH ⊆ PSPACE, but it is not known whether the inclusion is strict. In 
fact, if PH = PSPACE, then the polynomial hierarchy collapses to some level, that is, PH = Σm

P  for 
some m. In the next section, we define the polynomial hierarchy in two other ways, one of which is in 
terms of alternating Turing machines.

7.8 A lternating Complexity Classes

In this section, we define time and space complexity classes for alternating Turing machines, and we 
show how these classes are related to the classes introduced already. The possible computations of an 
alternating Turing machine M on an input word x can be represented by a tree Tx in which the root is the 
initial configuration, and the children of a nonterminal node C are the configurations reachable from 
C by one step of M. For a word x in L(M), define an accepting subtree S of Tx to be a subtree of Tx with 
the following properties:

•	 S is finite.
•	 The root of S is the initial configuration with input word x.
•	 If S has an existential configuration C, then S has exactly one child of C in Tx; if S has a universal 

configuration C, then S has all children of C in Tx.
•	 Every leaf is a configuration whose state is the accepting state qA.

Observe that each node in S is an accepting configuration.
We consider only alternating Turing machines that always halt. For x ∈ L(M), define the time taken by M 

to be the height of the shortest accepting tree for x, and the space to be the maximum number of worktape 
cells visited along any path in an accepting tree that minimizes this number. For x ∉ L(M), define the time to 
be the height of Tx, and the space to be the maximum number of worktape cells visited along any path in Tx.

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function. Define the 
following complexity classes:

•	 ATIME[t(n)] is the class of languages decided by alternating Turing machines of time complexity 
O(t(n)).

•	 ASPACE[s(n)] is the class of languages decided by alternating Turing machines of space complex-
ity O(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing machine, for 
every t(n) and s(n), NTIME[t] ⊆ ATIME[t] and NSPACE[s] ⊆ ASPACE[s]. The next theorem states further 
relationships between computational resources used by alternating Turing machines and resources used 
by deterministic and nondeterministic Turing machines.

Theorem 7.12  (Alternation Theorems)

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function, s(n) ≥ log n 
(Chandra et al., 1981).
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	 (a)	 NSPACE[s(n)] ⊆ ATIME[s(n)2].
	 (b)	 ATIME[t(n)] ⊆ DSPACE[t(n)].
	 (c)	 ASPACE[s(n)] ⊆ DTIME[2O(s(n))].
	 (d)	 DTIME[t(n)] ⊆ ASPACE[log t(n)].

In other words, space on deterministic and nondeterministic Turing machines is polynomially 
related to time on alternating Turing machines. Space on alternating Turing machines is exponen-
tially related to time on deterministic Turing machines. The following corollary is immediate.

Theorem 7.13

	 (a)	 ASPACE[O(log n)] = P.
	 (b)	 ATIME[nO(1)] = PSPACE.
	 (c)	 ASPACE[nO(1)] = EXP.

In Section 7.7, we defined the classes of the polynomial hierarchy in terms of oracles, but we can also 
define them in terms of alternating Turing machines with restrictions on the number of alternations 
between existential and universal states. Define a k-alternating Turing machine to be a machine such 
that on every computation path, the number of changes from an existential state to a universal state, or 
from a universal state to an existential state, is at most k − 1. Thus, a nondeterministic Turing machine, 
which stays in existential states, is a 1-alternating Turing machine.

Theorem 7.14

For any language A, the following are equivalent (Stockmeyer, 1976; Wrathall, 1976):

	 1.	 A k
P∈Σ .

	 2.	 A is decided in polynomial time by a k-alternating Turing machine that starts in an existential 
state.

	 3.	 There exists a language B in P and a polynomial p such that for all x, x ∈ A if and only if

	 ( : | | (| |))( : | | (| |)) ( : | | (| |))[( ,∃ ≤ ∀ ≤ ≤y y p x y y p x Qy y p x x yk k1 1 2 2 1� ,, , ) ]… ∈y Bk

where the quantifier Q is ∃ if k is odd, ∀ if k is even.

Alternating Turing machines are closely related to Boolean circuits, which are defined in Section 7.9.

7.9  Circuit Complexity

The hardware of electronic digital computers is based on digital logic gates, connected into combina-
tional circuits (see Chapter 17). Here, we specify a model of computation that formalizes the combi-
national circuit.

A Boolean circuit on n input variables x1,…, xn is a directed acyclic graph with exactly n input nodes 
of indegree 0 labeled x1,…, xn and other nodes of indegree 1 or 2, called gates, labeled with the Boolean 
operators in {∧, ∨, ¬}. One node is designated as the output of the circuit. See Figure 7.4. Without loss of 
generality, we assume that there are no extraneous nodes; there is a directed path from each node to the 
output node. The indegree of a gate is also called its fan-in.

An input assignment is a function I that maps each variable xi to either 0 or 1. The value of each gate g 
under I is obtained by applying the Boolean operation that labels g to the values of the immediate predeces-
sors of g. The function computed by the circuit is the value of the output node for each input assignment.
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A Boolean circuit computes a finite function: a function of only n binary input variables. To decide 
membership in a language, we need a circuit for each input length n.

A circuit family is an infinite set of circuits C = {c1, c2,…} in which each cn is a Boolean circuit on 
n inputs. C decides a language A ⊆ {0, 1}* if for every n and every assignment a1,…, an of {0, 1} to the 
n inputs, the value of the output node of cn is 1 if and only if the word a1 ⋯ an ∈ A. The size complexity 
of C is the function z(n) that specifies the number of nodes in each cn. The depth complexity of C is the 
function d(n) that specifies the length of the longest directed path in cn. Clearly, since the fan-in of each 
gate is at most 2, d(n) ≥ log z(n) ≥ log n. The class of languages decided by polynomial-size circuits is 
denoted by P/poly.

With a different circuit for each input length, a circuit family could solve an undecidable problem 
such as the halting problem (see Chapter 8). For each input length, a table of all answers for machine 
descriptions of that length could be encoded into the circuit. Thus, we need to restrict our circuit fami-
lies. The most natural restriction is that all circuits in a family should have a concise, uniform descrip-
tion, to disallow a different answer table for each input length. Several uniformity conditions have been 
studied; the following is the easiest to present:

A circuit family {c1, c2,…} of size complexity z(n) is log-space uniform if there exists a deterministic 
Turing machine M such that on each input of length n, machine M produces a description of cn, using 
space O(log z(n)).

Now we define complexity classes for uniform circuit families and relate these classes to previously 
defined classes. Define the following complexity classes:

•	 SIZE[z(n)] is the class of languages decided by log-space uniform circuit families of size complex-
ity O(z(n)).

•	 DEPTH[d(n)] is the class of languages decided by log-space uniform circuit families of depth com-
plexity O(d(n)).

In our notation, SIZE[nO(1)] equals P, which is a proper subclass of P/poly.

Theorem 7.15

	 1.	 If t(n) is a time-constructible function, then DTIME[t(n)] ⊆ SIZE[t(n)log t(n)] (Pippenger and 
Fischer, 1979).

	 2.	SIZE[z(n)] ⊆ DTIME[z(n)O(1)].
	 3.	 If s(n) is a space-constructible function and s(n) ≥ log n, then NSPACE[s(n)] ⊆ DEPTH[s(n)2] 

(Borodin, 1977).
	 4.	 If d(n) ≥ log n, then DEPTH[d(n)] ⊆ DSPACE[d(n)] (Borodin, 1977).

The next theorem shows that size and depth on Boolean circuits are closely related to space and time 
on alternating Turing machines, provided that we permit sublinear running times for alternating Turing 
machines, as follows. We augment alternating Turing machines with a random-access input capability. 

x1

x2

Output node

FIGURE 7.4  A Boolean circuit.
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To access the cell at position j on the input tape, M writes the binary representation of j on a special tape, 
in log j steps, and enters a special reading state to obtain the symbol in cell j.

Theorem 7.16

(Ruzzo, 1979). Let t(n) ≥ log n and s(n) ≥ log n be such that the mapping n ↦ (t(n), s(n)) (in binary) is 
computable in time s(n).

	 1.	 Every language decided by an alternating Turing machine of simultaneous space complexity 
s(n) and time complexity t(n) can be decided by a log-space uniform circuit family of simulta-
neous size complexity 2O(s(n)) and depth complexity O(t(n)).

	 2.	 If d(n) ≥ (log z(n))2, then every language decided by a log-space uniform circuit family of 
simultaneous size complexity z(n) and depth complexity d(n) can be decided by an alternating 
Turing machine of simultaneous space complexity O(log z(n)) and time complexity O(d(n)).

The correspondence between time on alternating Turing machines and depth on log-space uniform 
circuits breaks down for time and depth less than log2n, primarily because L is not known to be con-
tained in ATIME(o(log2n)). This has motivated the adoption of more restrictive notions of uniformity 
(see, e.g., Ruzzo, 1981; Vollmer, 1999). When researchers mention small uniform circuit classes, they 
usually are referring to these more restrictive notions of uniformity. (For depths at least log n, the com-
plexity classes obtained via these different notions of uniformity coincide.)

In a sense, the Boolean circuit family is a model of parallel computation, because all gates compute 
independently, in parallel. For each k ≥ 0, NCk denotes the class of languages decided by uniform 
bounded-fan-in circuits of polynomial size and depth O((log n)k), and ACk is defined analogously for 
unbounded fan-in circuits. In particular, ACk is the same as the class of languages decided by a parallel 
machine model called the CRCW PRAM with polynomially many processors in parallel time O((log n)k) 
(Stockmeyer and Vishkin, 1984).

7.10  Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems (see 
Chapter 11), complexity theorists have placed randomized algorithms on a firm intellectual foundation. 
In this section, we outline some basic concepts in this area.

A probabilistic Turing machine M can be formalized as a nondeterministic Turing machine with 
exactly two choices at each step. During a computation, M chooses each possible next step with inde-
pendent probability 1/2. Intuitively, at each step, M flips a fair coin to decide what to do next. The prob-
ability of a computation path of t steps is 1/2t. The probability that M accepts an input string x, denoted 
by pM(x), is the sum of the probabilities of the accepting computation paths.

Throughout this section, we consider only machines whose time complexity t(n) is time-construct-
ible. Without loss of generality, we may assume that every computation path of such a machine halts in 
exactly t steps.

Let A be a language. A probabilistic Turing machine M decides A with

for all x ∈ A for all x ∉ A

Unbounded two-sided error if pM(x) > 1/2 pM(x) ≤ 1/2
Bounded two-sided error if pM(x) > 1/2 + ε pM(x) < 1/2 − ε

for some positive constant ε

One-sided error if pM(x) > 1/2 pM(x) = 0.
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Many practical and important probabilistic algorithms make one-sided errors. For example, in the 
primality testing algorithm of Solovay and Strassen (1977), when the input x is a prime number, the 
algorithm always says “prime”; when x is composite, the algorithm usually says “composite,” but may 
occasionally say “prime.” Using the definitions above, this means that the Solovay–Strassen algorithm 
is a one-sided error algorithm for the set A of composite numbers. It also is a bounded two-sided error 
algorithm for A–, the set of prime numbers.

These three kinds of errors suggest three complexity classes:

•	 PP is the class of languages decided by probabilistic Turing machines of polynomial-time 
complexity with unbounded two-sided error.

•	 BPP is the class of languages decided by probabilistic Turing machines of polynomial-time 
complexity with bounded two-sided error.

•	 RP is the class of languages decided by probabilistic Turing machines of polynomial-time 
complexity with one-sided error.

In the literature, RP has also sometimes been called R.
A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an RP-machine) 

if M has polynomial-time complexity, and M decides with two-sided error (bounded two-sided error, 
one-sided error).

Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines and 
RP-machines arbitrarily small, as stated in the following theorem. (Among other things, this theorem 
implies that RP ⊆ BPP.)

Theorem 7.17

If A ∈ BPP, then for every polynomial q(n), there exists a BPP-machine M such that pM(x) > 1 − 1/2q(n) 
for every x ∈ A, and pM(x) < 1/2q(n) for every x ∉ A.

If L ∈ RP, then for every polynomial q(n), there exists an RP-machine M such that pM(x) > 1 − 1/2q(n) 
for every x in L.

It is important to note just how minuscule the probability of error is (provided that the coin flips 
are truly random). If the probability of error is less than 1/25000, then it is less likely that the algorithm 
produces an incorrect answer than that the computer will be struck by a meteor. An algorithm whose 
probability of error is 1/25000 is essentially as good as an algorithm that makes no errors. For this 
reason, many computer scientists consider BPP to be the class of practically feasible computational 
problems.

Next, we define a class of problems that have probabilistic algorithms that make no errors. Define

•	 ZPP = RP ∩ co-RP.

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose A ∈ ZPP. Here is 
an algorithm that checks membership in A. Let M be an RP-machine that decides A, and let M′ be an 
RP-machine that decides A–. For an input string x, alternately run M and M′ on x, repeatedly, until a 
computation path of one machine accepts x. If M accepts x, then accept x; if M′ accepts x, then reject x. 
This algorithm works correctly because when an RP-machine accepts its input, it does not make a mis-
take. This algorithm might not terminate, but with very high probability, the algorithm terminates after 
a few iterations.

The next theorem expresses some known relationships between probabilistic complexity classes 
and other complexity classes, such as classes in the polynomial hierarchy. See Section 7.7 and 
Figure 7.5.
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Theorem 7.18

	 (a)	 P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP ⊆ PSPACE (Gill, 1977).
	 (b)	 RP ⊆ NP ⊆ PP (Gill, 1977).
	 (c)	 BPP⊆ ∩Σ Π2 2

P P  (Lautemann, 1983; Sipser, 1983).
	 (d)	 BPP ⊂ P/poly.
	 (e)	 PH ⊆ PPP (Toda, 1991).

An important recent research area called de-randomization studies whether randomized algorithms 
can be converted to deterministic ones of the same or comparable efficiency. For example, if there is a 
language in E that requires Boolean circuits of size 2Ω(n) to decide it, then BPP = P (Impagliazzo and 
Wigderson, 1997).

7.11  Quantum Computation

A probabilistic computer enables one to sample efficiently over exponentially many possible computa-
tion paths. However, if BPP = P then the added capability is weak. A quantum computer, however, can 
harness parallelism and randomness in ways that appear theoretically to be much more powerful, ways 
that are able to solve problems believed not to lie in BPP. A key difference is that by quantum interfer-
ence, opening up new computation paths may cause the probabilities of some other paths to vanish, 
whereas for a BPP-machine those probabilities would remain positive.

•	 BQP is the class of languages decided by quantum machines of polynomial-time complexity with 
bounded two-sided error.

A prime motivation for studying BQP is that it includes language versions of the integer factoring and 
discrete logarithm problems, which are not known to belong to BPP. The public-key cryptosystems in 
common use today rely on the presumed intractability of these problems and are theoretically breakable 
by eavesdroppers armed with quantum computers. This is one of several reasons why the interplay of 
quantum mechanics and computational complexity is important to cryptographers.

PSPACE

PPP

PP PH

NPBPP

RP

ZPP

P

FIGURE 7.5  Probabilistic complexity classes.
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In terms of the complexity classes depicted in Figure 7.5, the only inclusions that are known involving 
BQP are

	 .BPP BQP PP

In particular, it is important to emphasize that it is not generally believed that quantum computers can 
solve NP-complete problems quickly.

7.12  Interactive Models and Complexity Classes

7.12.1  Interactive Proofs

In Section 7.3.2, we characterized NP as the set of languages whose membership proofs can be 
checked quickly, by a deterministic Turing machine M of polynomial-time complexity. A different 
notion of proof involves interaction between two parties, a prover P and a verifier V, who exchange 
messages. In an interactive proof system (Goldwasser et al., 1989), the prover is an all-powerful 
machine, with unlimited computational resources, analogous to a teacher. The verifier is a computa-
tionally limited machine, analogous to a student. Interactive proof systems are also called “Arthur–
Merlin games”: the wizard Merlin corresponds to P and the impatient Arthur corresponds to V 
(Babai and Moran, 1988).

Formally, an interactive proof system comprises the following:

•	 A read-only input tape on which an input string x is written.
•	 A verifier V, which is a probabilistic Turing machine augmented with the capability to send and 

receive messages. The running time of V is bounded by a polynomial in |x|.
•	 A prover P, which receives messages from V and sends messages to V.
•	 A tape on which V writes messages to send to P, and a tape on which P writes messages to send to V. 

The length of every message is bounded by a polynomial in |x|.

A computation of an interactive proof system (P, V) proceeds in rounds, as follows. For j = 1, 2,…, 
in round j, V performs some steps, writes a message mj, and temporarily stops. Then P reads mj and 
responds with a message ′mj, which V reads in round j + 1. An interactive proof system (P, V) accepts an 
input string x if the probability of acceptance by V satisfies pV(x) > 1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a statement with-
out exhibiting an entire proof, as the following example illustrates.

Consider the graph nonisomorphism problem: the input consists of two graphs G and H, and the 
decision is yes if and only if G is not isomorphic to H. Although there is a short proof that two graphs 
are isomorphic (namely: the proof consists of the isomorphism mapping G onto H), nobody has found 
a general way of proving that two graphs are not isomorphic that is significantly shorter than listing all n! 
permutations and showing that each fails to be an isomorphism. (That is, the graph nonisomorphism 
problem is in co-NP but is not known to be in NP.) In contrast, the verifier V in an interactive proof 
system is able to take statistical evidence into account, and determine “beyond all reasonable doubt” 
that two graphs are nonisomorphic, using the following protocol.

In each round, V randomly chooses either G or H with equal probability; if V chooses G, then V 
computes a random permutation G′ of G, presents G′ to P, and asks P whether G′ came from G or 
from H (and similarly H′ if V chooses H). If G and H are nonisomorphic, then P always answers 
correctly. If G and H are isomorphic, then after k consecutive rounds, the probability that P always 
answers correctly is 1/2k. (To see this, it is important to understand that the prover P does not see 
the coins that V flips in making its random choices; P sees only the graphs G′ and H′ that V sends as 
messages.) V accepts the interaction with P as “proof” that G and H are nonisomorphic if P is able to 
pick the correct graph for 100 consecutive rounds. Note that V has ample grounds to accept this as a 



7-27Complexity Theory

convincing demonstration: if the graphs are indeed isomorphic, the prover P would have to have an 
incredible streak of luck to fool V.

It is important to comment that de-randomization techniques applied to these proof systems have 
shown that under plausible hardness assumptions, proofs of nonisomorphism of subexponential length 
(or even polynomial length) do exist (Klivans and van Melkebeek, 2002). Thus many complexity theore-
ticians now conjecture that the graph isomorphism problem lies in NP ∩ co-NP.

The complexity class IP comprises the languages A for which there exists a verifier V and a positive 
ε such that

•	 There exists a prover P̂ such that for all x in A, the interactive proof system (P̂, V) accepts x with 
probability greater than 1/2 + ε

•	 For every prover P and every x ∉ A, the interactive proof system (P, V) rejects x with probability 
greater than 1/2 + ε

By substituting random choices for existential choices in the proof that ATIME(t) ⊆ DSPACE(t) 
(Theorem 7.12), it is straightforward to show that IP ⊆ PSPACE. It was originally believed likely that 
IP was a small subclass of PSPACE. Evidence supporting this belief was the construction of an oracle 
language B for which co-NPB − IPB ≠ ∅ (Fortnow and Sipser, 1988), so that IPB is strictly included in 
PSPACEB. Using a proof technique that does not relativize, however, Shamir (1992) proved that in fact, 
IP and PSPACE are the same class.

Theorem 7.19

IP = PSPACE (Shamir, 1992).

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 7.19 says that interactive proof 
systems can decide a larger class of languages than NP.

7.12.2  Probabilistically Checkable Proofs

In an interactive proof system, the verifier does not need a complete conventional proof to become con-
vinced about the membership of a word in a language, but uses random choices to query parts of a proof 
that the prover may know. This interpretation inspired another notion of “proof”: a proof consists of a 
(potentially) large amount of information that the verifier need only inspect in a few places in order to 
become convinced. The following definition makes this idea more precise.

A language A has a probabilistically checkable proof if there exists an oracle BPP-machine M such 
that

•	 For all x ∈ A, there exists an oracle language Bx such that M Bx accepts x with probability 1.
•	 For all x ∉ A, and for every language B, machine MB accepts x with probability strictly less than 

1/2.

Intuitively, the oracle language Bx represents a proof of membership of x in A. Notice that Bx can be 
finite since the length of each possible query during a computation of M Bx on x is bounded by the run-
ning time of M. The oracle language takes the role of the prover in an interactive proof system—but in 
contrast to an interactive proof system, the prover cannot change strategy adaptively in response to the 
questions that the verifier poses. This change results in a potentially stronger system, since a machine M 
that has bounded error probability relative to all languages B might not have bounded error probability 
relative to some adaptive prover. Although this change to the proof system framework may seem mod-
est, it leads to a characterization of a class that seems to be much larger than PSPACE.
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Theorem 7.20

A has a probabilistically checkable proof if and only if A ∈ NEXP (Babai et al., 1991).

Although the notion of probabilistically checkable proofs seems to lead us away from feasible com-
plexity classes, by considering natural restrictions on how the proof is accessed, we can obtain impor-
tant insights into familiar complexity classes.

Let PCP[r(n), q(n)] denote the class of languages with probabilistically checkable proofs in which the 
probabilistic oracle Turing machine M makes r(n) random binary choices and queries its oracle q(n) 
times. (For this definition, we assume that M has either one or two choices for each step.) It follows from 
the definitions that BPP = PCP[nO(1), 0], and NP = PCP[0, nO(1)].

Theorem 7.21  (The PCP Theorem)

NP = PCP[O(log n), O(1)] (Arora et al., 1998).

Theorem 7.21 asserts that for every language A in NP, a proof that x ∈ A can be encoded so that the 
verifier can be convinced of the correctness of the proof (or detect an incorrect proof) by using only 
O(log n) random choices and inspecting only a constant number of bits of the proof.

7.13  Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and space used by 
Turing machines. Kolmogorov complexity is a static complexity measure that captures the difficulty 
of describing a string. For example, the string consisting of three million zeroes can be described with 
fewer than three million symbols (as in this sentence). In contrast, for a string consisting of three mil-
lion randomly generated bits, with high probability there is no shorter description than the string itself.

Our goal will be to equate the complexity of a string with the length of its shortest “description”—but 
this raises the question of what class of “descriptions” should be considered. Given any Turing machine 
M, one can define a measure CM(x) to be the length of the shortest input d (the “description”) such 
that M(d) = x. At first, this might not seem to be a very promising approach, because using different 
machines M1 and M2 will yield measures CM1 and CM2 that differ wildly (or worse, are undefined for 
those x that are never produced as output). Fortunately, the next theorem shows that if one chooses a 
universal Turing machine U to define a measure CU(x) in this way, the resulting measure is roughly the 
same as that obtained by using any other universal machine.

Theorem 7.22  (Invariance Theorem)

There exists a universal Turing machine U such that for every universal Turing machine U′, there is a 
constant c such that for all y, C y C y cU U( ) ( )≤ +′ .

Henceforth, let C be defined by the universal Turing machine of Theorem 7.22. For every integer n 
and every binary string y of length n, because y can be described by giving itself explicitly, C(y) ≤ n + c′ 
for a constant c′. Call y incompressible if C(y) ≥ n. Since there are 2n binary strings of length n and only 
2n − 1 possible shorter descriptions, there exists an incompressible string for every length n.
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Kolmogorov complexity gives a precise mathematical meaning to the intuitive notion of “random-
ness.” If someone flips a coin 50 times and it comes up “heads” each time, then intuitively, the sequence 
of flips is not random—although from the standpoint of probability theory the all-heads sequence is 
precisely as likely as any other sequence. Probability theory does not provide the tools for calling one 
sequence “more random” than another; Kolmogorov complexity theory does.

Kolmogorov complexity provides a useful framework for presenting combinatorial arguments. For 
example, when one wants to prove that an object with some property P exists, then it is sufficient to 
show that any object that does not have property P has a short description; thus any incompressible (or 
“random”) object must have property P. This sort of argument has been useful in proving lower bounds 
in complexity theory.

7.14 R esearch Issues and Summary

The core research questions in complexity theory are expressed in terms of separating complexity 
classes:

•	 Is L different from NL?
•	 Is P different from RP or BPP?
•	 Is P different from NP?
•	 Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the power of 
nondeterminism, randomization, and interaction. In these studies, researchers have gone well beyond 
the theory presented in this chapter:

•	 Beyond Turing machines and Boolean circuits, to restricted and specialized models in which 
nontrivial lower bounds on complexity can be proved

•	 Beyond deterministic reducibilities, to nondeterministic and probabilistic reducibilities, and 
refined versions of the reducibilities considered here

•	 Beyond worst-case complexity, to average case complexity

Recent research in complexity theory has had direct applications to other areas of computer science and 
mathematics. Probabilistically checkable proofs were used to show that obtaining approximate solutions 
to some optimization problems is as difficult as solving them exactly. Complexity theory has provided new 
tools for studying questions in finite model theory, a branch of mathematical logic. Fundamental questions 
in complexity theory are intimately linked to practical questions about the use of cryptography for com-
puter security, such as the existence of one-way functions and the strength of public-key cryptosystems.

This last point illustrates the urgent practical need for progress in computational complexity theory. 
Many popular cryptographic systems in current use are based on unproven assumptions about the dif-
ficulty of computing certain functions (such as the factoring and discrete logarithm problems). All of 
these systems are thus based on wishful thinking and conjecture. Research is needed to resolve these 
open questions and replace conjecture with mathematical certainty.

Key Terms

Complexity class: A set of languages that are decided within a particular resource bound. For 
example, NTIME(n2 log n) is the set of languages decided by nondeterministic Turing 
machines within O(n2 log n) time.

Constructibility: A function f(n) is time (respectively, space) constructible if there exists a deterministic 
Turing machine that halts after exactly f(n) steps [after using exactly f(n) worktape cells] for 
every input of length n.
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Diagonalization: A technique for constructing a language A that differs from every L(Mi) for a list of 
machines M1, M2,….

NP-complete: A language A0 is NP-complete if A0 ∈ NP and A Am
p≤ 0 for every A in NP; that is, for every 

A in NP, there exists a function f computable in polynomial time such that for every x, x ∈ A 
if and only if f(x) ∈ A0.

Oracle: An oracle is a language A to which a machine presents queries of the form “Is w in A” and 
receives each correct answer in one step.

Padding: A technique for establishing relationships between complexity classes that uses padded ver-
sions of languages, in which each word is padded out with multiple occurrences of a new 
symbol—the word x is replaced by the word x#f(|x|) for a numeric function f—in order to artifi-
cially lower the complexity of the language.

Reduction: A language A reduces to a language B if a machine that decides B can be used to decide A 
efficiently.

Time and space complexity: The time (respectively, space) complexity of a deterministic Turing 
machine M is the maximum number of steps taken (worktape cells visited) by M among all 
input words of length n.

Turing machine: A Turing machine M is a model of computation with a read-only input tape and 
multiple worktapes. At each step, M reads the tape cells on which its access heads are located, 
and depending on its current state and the symbols in those cells, M changes state, writes 
new symbols on the worktape cells, and moves each access head one cell left or right or not 
at all.
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Further Information

This chapter is a short version of three chapters written by the same authors for the Algorithms and 
Theory of Computation Handbook (Allender et al., 1999).

The formal theoretical study of computational complexity began with the paper of Hartmanis and 
Stearns (1965), who introduced the basic concepts and proved the first results. For historical perspectives 
on complexity theory, see Stearns (1990), Sipser (1992), Hartmanis (1994), Wigderson (2006), Allender 
(2009), and Fortnow (2009).

Contemporary textbooks on complexity theory are by Moore and Mertens (2011), Homer and Selman 
(2011), Arora and Barak (2009), Goldreich (2008), while venerable texts include Sipser (2005), Hopcroft 
et al. (2000), Hemaspaandra and Ogihara (2002), and Papadimitriou (1994). A good general reference is 
the Handbook of Theoretical Computer Science (van Leeuwen, 1990), volume A.

The text by Garey and Johnson (1979) explains NP-completeness thoroughly, with examples of 
NP-completeness proofs, and a collection of hundreds of NP-complete problems. Li and Vitányi (2008) 
provide a comprehensive scholarly treatment of Kolmogorov complexity, with many applications.

Five organizations and mainstay websites that promote research in computational complexity online 
sources are the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT), the 
European Association for Theoretical Computer Science (EATCS), the annual IEEE Conference on 
Computational Complexity, the “Complexity Zoo,” and the theory section of StackExchange:

http://sigact.org/
http://www.eatcs.org/
http://www.computationalcomplexity.org/
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http://www.complexityzoo.com/
http://cstheory.stackexchange.com/
The Electronic Colloquium on Computational Complexity maintained at the University of Trier, 

Germany at http://eccc.hpi-web.de/ and http://arxiv.org/ run by Cornell University include download-
able current research papers in the field, often with updates and revisions. Most individual researchers 
have websites with their work, and some also write blogs where news and ideas can be found. Among 
the most prominent blogs are:

Computational Complexity, http://blog.computationalcomplexity.org/, by Lance Fortnow and 
William Gasarch.

Shtetl-Optimized, http://www.scottaaronson.com/blog/, by Scott Aaronson.
Gödel’s Lost Letter and P=NP, http://rjlipton.wordpress.com/, by Richard Lipton and the third 

author of this chapter.

Research papers on complexity theory are presented at several annual conferences, including the 
ACM Symposium on Theory of Computing (STOC); the IEEE Symposium on Foundations of Computer 
Science (FOCS), the International Colloquium on Automata, Languages, and Programming (ICALP) 
sponsored by EATCS, and the Symposium on Theoretical Aspects of Computer Science (STACS). The 
annual Conference on Computational Complexity (formerly Structure in Complexity Theory), also 
sponsored by the IEEE, is entirely devoted to complexity theory. Journals in which complexity research 
often appears include: Chicago Journal on Theoretical Computer Science, Computational Complexity, 
Information and Computation, Journal of the ACM, Journal of Computer and System Sciences, 
SIAM Journal on Computing, Theoretical Computer Science, Theory of Computing Systems (formerly 
Mathematical Systems Theory), ACM Transactions on Computation Theory, and Theory of Computing. 
Each issue of ACM SIGACT News and Bulletin of the EATCS contains a column on complexity theory.
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8.1  Introduction

The concept of algorithms is perhaps almost as old as human civilization. The famous Euclid algorithm 
is more than 2000 years old. Angle trisection, solving Diophantine equations, and finding polyno-
mial roots in terms of radicals of coefficients are some well-known examples of algorithmic questions. 
However, until the 1930s, the notion of algorithms was used informally (or rigorously but in a limited 
context). It was a major triumph of logicians and mathematicians of the last century to offer a rigorous 
definition of this fundamental concept. The revolution that resulted in this triumph was a collective 
achievement of many mathematicians, notably Church, Gödel, Kleene, Post, and Turing. Of particular 
interest is a machine model proposed by Turing (1936), which has come to be known as the Turing 
machine (TM).

This particular achievement had numerous significant consequences. It led to the concept of a general-
purpose computer or universal computation, a revolutionary idea originally anticipated by Babbage in 
the 1800s. It is widely acknowledged that the development of a universal TM was prophetic of the mod-
ern all-purpose digital computer and played a key role in the thinking of pioneers in the development 
of modern computers such as von Neumann (Davis 1980). From a mathematical point of view, however, 
a more interesting consequence was that it was now possible to show the nonexistence of algorithms, 
hitherto impossible due to their elusive nature. In addition, many apparently different definitions of 
an algorithm proposed by different researchers in different continents turned out to be equivalent 
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(in a precise technical sense, explained later). This equivalence led to the widely held hypothesis known 
as the Church–Turing thesis that mechanical solvability is the same as solvability on a TM.

Formal languages are closely related to algorithms. They were introduced as a way to convey math-
ematical proofs without errors. Although the concept of a formal language dates back at least to the time 
of Leibniz, a systematic study of them did not begin until the beginning of the last century. It became 
a vigorous field of study when Chomsky formulated simple grammatical rules to describe the syntax of 
a language (Chomsky 1956). Grammars and formal languages entered into computability theory when 
Chomsky and others found ways to use them to classify algorithms.

The main theme of this chapter is about formal models, which include TMs (and their variants) as 
well as grammars. In fact, the two concepts are intimately related. Formal computational models are 
aimed at providing a framework for computational problem solving, much as electromagnetic theory 
provides a framework for problems in electrical engineering. Thus, formal models guide the way to build 
computers and the way to program them. At the same time, new models are motivated by advances in 
the technology of computing machines. In this chapter, we will discuss only the most basic computa-
tional models and use these models to classify problems into some fundamental classes. In doing so, we 
hope to provide the reader with a conceptual basis with which to read other chapters in this handbook.

8.2  Computability and a Universal Algorithm

Turing’s notion of mechanical computation was based on identifying the basic steps of such computations. 
He reasoned that an operation such as multiplication is not primitive because it can be divided into more 
basic steps such as digit-by-digit multiplication, shifting, and adding. Addition itself can be expressed in 
terms of more basic steps such as add the lowest digits, compute, carry, and move to the next digit. Turing 
thus reasoned that the most basic features of mechanical computation are the abilities to read and write 
on a storage medium (which he chose to be a linear tape divided into cells or squares) and to make some 
simple logical decisions. He also restricted each tape cell to hold only one among a finite number of sym-
bols (which we call the tape alphabet).* The decision step enables the computer to control the sequence of 
actions. To make things simple, Turing restricted the next action to be performed on a cell neighboring 
the one on which the current action occurred. He also introduced an instruction that told the computer 
to stop. In summary, Turing proposed a model to characterize mechanical computation as being carried 
out as a sequence of instructions of the following form: write a symbol (such as 0 or 1) on the tape cell, 
move to the next cell, observe the symbol currently scanned and choose the next step accordingly, or stop.

These operations define a language we call the GOTO language.† Its instructions are

PRINT i (i is a tape symbol)
GO RIGHT
GO LEFT
GO TO STEP j IF i IS SCANNED
STOP

A program in this language is a sequence of instructions (written one per line) numbered 1 − k. To run 
a program written in this language, we should provide the input. We will assume that the input is a 
string of symbols from a finite input alphabet (which is a subset of the tape alphabet), which is stored 
on the tape before the computation begins. How much memory should we allow the computer to use? 
Although we do not want to place any bounds on it, allowing an infinite tape is not realistic. This prob-
lem is circumvented by allowing expandable memory. In the beginning, the tape containing the input 
defines its boundary. When the machine moves beyond the current boundary, a new memory cell will 

*	 This bold step of using a discrete model was perhaps the harbinger of the digital revolution that was soon to follow.
†	 Turing’s original formulation is closer to our presentation in Section 8.5. But the GOTO language presents an equivalent 

model.
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be attached with a special symbol B (blank) written on it. Finally, we define the result of computation as 
the contents of the tape when the computer reaches the STOP instruction.

We will present an example program written in the GOTO language. This program accomplishes 
the simple task of doubling the number of 1s (Figure 8.1). More precisely, on the input containing k 1s, 
the program produces 2k 1s. Informally, the program achieves its goal as follows. When it reads a 1, it 
changes the 1 to 0, moves left looking for a new cell, writes a 1 in the cell, returns to the starting cell and 
rewrites as 1, and repeats this step for each 1. Note the way the GOTO instructions are used for repeti-
tion. This feature is the most important aspect of programming and can be found in all of the imperative 
style programming languages.

The simplicity of the GOTO language is rather deceptive. There is strong reason to believe that it is pow-
erful enough that any mechanical computation can be expressed by a suitable program in the GOTO lan-
guage. Note also that the programs written in the GOTO language may not always halt, that is, on certain 
inputs, the program may never reach the STOP instruction. In this case, we say that the output is undefined.

We can now give a precise definition of what an algorithm is. An algorithm is any program written 
in the GOTO language with the additional property that it halts on all inputs. Such programs will be 
called halting programs. Throughout this chapter, we will be interested mainly in computational prob-
lems of a special kind called decision problems that have a yes/no answer. We will modify our language 
slightly when dealing with decision problems. We will augment our instruction set to include ACCEPT 
and REJECT (and omit STOP). When the ACCEPT (REJECT) instruction is reached, the machine will 
output yes or 1 (no or 0) and halt.

8.2.1  Some Computational Problems

We will temporarily shift our focus from the tool for problem solving (the computer) to the problems 
themselves. Throughout this chapter, a computational problem refers to an input/output relationship. 
For example, consider the problem of squaring an integer input. This problem assigns to each integer 
(such as 22) its square (in this case 484). In technical terms, this input/output relationship defines a 
function. Therefore, solving a computational problem is the same as computing the function defined 
by the problem. When we say that an algorithm (or a program) solves a problem, what we mean is that, 
for all inputs, the program halts and produces the correct output. We will allow inputs of arbitrary size 
and place no restrictions. A reader with primary interest in software applications is apt to question the 
validity (or even the meaningfulness) of allowing inputs of arbitrary size because it makes the set of all 
possible inputs infinite, and thus unrealistic, in real-world programming. But there are no really good 
alternatives. Any finite bound is artificial and is likely to become obsolete as the technology and our 
requirements change. Also, in practice, we do not know how to take advantage of restrictions on the size 
of the inputs. (See the discussion about nonuniform models in Section 8.5.) Problems (functions) that 
can be solved by an algorithm (or a halting GOTO program) are called computable.

1 PRINT 0
2 GO LEFT
3 GO TO STEP 2 IF 1 IS SCANNED
4 PRINT 1
5 GO RIGHT
6 GO TO STEP 5 IF 1 IS SCANNED
7 PRINT 1
8 GO RIGHT
9 GO TO STEP 1 IF 1 IS SCANNED

10 STOP

FIGURE 8.1  The doubling program in the GOTO language.



8-4 Algorithms and Complexity

As already remarked, we are interested mainly in decision problems. A decision problem is said to be 
decidable if there is a halting GOTO program that solves it correctly on all inputs. An important class of 
problems called partially decidable decision problems can be defined by relaxing our requirement a little 
bit; a decision problem is partially decidable if there is a GOTO program that halts and outputs 1 on all 
inputs for which the output should be 1 and either halts and outputs 0 or loops forever on the other inputs.

This means that the program may never give a wrong answer but is not required to halt on negative 
inputs (i.e., inputs with 0 as output).

We now list some problems that are fundamental either because of their inherent importance or 
because of their historical roles in the development of computation theory:

Problem 1 (halting problem). The input to this problem is a program P in the GOTO language and a binary 
string x. The expected output is 1 (or yes) if the program P halts when run on the input x, 0 (or no) otherwise.

Problem 2 (universal computation problem). A related problem takes as input a program P and an 
input x and produces as output what (if any) P would produce on input x. (Note that this is a decision 
problem if P is restricted to a yes/no program.)

Problem 3 (string compression). For a string x, we want to find the shortest program in the GOTO 
language that when started with the empty tape (i.e., tape containing one B symbol) halts and prints x. 
Here shortest means the total number of symbols in the program is as small as possible.

Problem 4 (tiling). A tile* is a square card of unit size (i.e., 1 × 1) divided into four quarters by two 
diagonals, each quarter colored with some color (selected from a finite set of colors). The tiles have 
fixed orientation and cannot be rotated. Given some finite set T of such tiles as input, the program is to 
determine if finite rectangular areas of all sizes (i.e., k × m for all positive integers k and m) can be tiled 
using only the given tiles such that the colors on any two touching edges are the same. It is assumed that 
an unlimited number of basic tiles of each type are available. Figure 8.2b shows how the base set of tiles 
given in Figure 8.2a can be used to tile a 5 × 5 square area.

Problem 5 (linear programming). Given a system of linear inequalities (called constraints), such as 
3x − 4y ≤ 13 with integer coefficients, the goal is to find if the system has a solution satisfying all of the 
constraints.

*	 More precisely, a Wang tile, after Hao Wang, who wrote the first research paper on it.

(a) (b)

FIGURE 8.2  An example of tiling. (a) Basic tiles and (b) 5 × 5 square composed of basic tiles.
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Some remarks must be made about the preceding problems. The problems in our list include non-
numerical problems and meta-problems, which are problems about other problems. The first two 
problems are motivated by a quest for reliable program design. An algorithm for problem 1 (if it 
exists) can be used to test if a program contains an infinite loop. Problem 2 is motivated by an attempt 
to design a universal algorithm, which can simulate any other. This problem was first attempted by 
Babbage, whose analytical engine had many ingredients of a modern electronic computer (although 
it was based on mechanical devices). Problem 3 is an important problem in information theory and 
arises in the following setting. Physical theories are aimed at creating simple laws to explain large 
volumes of experimental data. A famous example is Kepler’s laws, which explained Tycho Brahe’s huge 
and meticulous observational data. Problem 3 asks if this compression process can be automated. 
When we allow the inference rules to be sufficiently strong, this problem becomes undecidable. We 
will not discuss this problem further in this section but will refer the reader to some related formal 
systems discussed in Li and Vitányi (1993). The tiling problem is not merely an interesting puzzle. It 
is an art form of great interest to architects and painters. Tiling has recently found applications in 
crystallography. Linear programming is a problem of central importance in economics, game theory, 
and operations research.

In the remainder of the section, we will present some basic algorithm design techniques and sketch 
how these techniques can be used to solve some of the problems listed (or their special cases). The main 
purpose of this discussion is to present techniques for showing the decidability (or partial decidability) 
of these problems. The reader can learn more advanced techniques of algorithm design in some later 
sections of this chapter as well as in many other chapters of this volume.

8.2.1.1 T able Lookup

The basic idea is to create a table for a function f, which needs to be computed by tabulating in one 
column an input x and the corresponding f (x) in a second column. Then the table itself can be used as 
an algorithm. This method cannot be used directly because the set of all inputs is infinite. Therefore, 
it is not very useful, although it can be made to work in conjunction with the technique described 
subsequently.

8.2.1.2  Bounding the Search Domain

The difficulty of establishing the decidability of a problem is usually caused by the fact that the object 
we are searching for may have no known upper limit. Thus, if we can place such an upper bound (based 
on the structure of the problem), then we can reduce the search to a finite domain. Then table lookup 
can be used to complete the search (although there may be better methods in practice). For example, 
consider the following special case of the tiling problem: Let k be a fixed integer, say 1000. Given a set 
of tiles, we want to determine whether all rectangular rooms of shape k × n can be tiled for all n. (Note 
the difference between this special case and the general problem. The general one allows k and n both 
to have unbounded value. But here we allow only n to be unbounded.) It can be shown (see Section 8.5 
for details) that there are two bounds n0 and n1 (they depend on k) such that if there is at least one tile of 
size k × t that can be tiled for some n0 ≤ t ≤ n1, then every tile of size k × n can be tiled. If no k × t tile can 
be tiled for any t between n0 and n1, then obviously the answer is no. Thus, we have reduced an infinite 
search domain to a finite one.

As another example, consider the linear programming problem. The set of possible solutions to 
this problem is infinite, and thus a table search cannot be used. But it is possible to reduce the search 
domain to a finite set using the geometric properties of the set of solutions of the linear program-
ming problem. The fact that the set of solutions is convex makes the search especially easy.

8.2.1.3  Use of Subroutines

This is more of a program design tool than a tool for algorithm design. A central concept of program-
ming is repetitive (or iterative) computation. We already observed how GOTO statements can be used 
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to perform a sequence of steps repetitively. The idea of a subroutine is another central concept of pro-
gramming. The idea is to make use of a program P itself as a single step in another program Q. Building 
programs from simpler programs is a natural way to deal with the complexity of programming tasks. 
We will illustrate the idea with a simple example. Consider the problem of multiplying two positive 
integers i and j. The input to the problem will be the form 11 … 1011 … 1 (i 1s followed by a 0, followed 
by j 1s) and the output will be i × j 1s (with possibly some 0s on either end). We will use the notation 1i 01j 
to denote the starting configuration of the tape. This just means that the tape contains i 1s followed by 
a 0 followed by j 1s.

The basic idea behind a GOTO program for this problem is simple; add j 1s on the right end of tape 
exactly i − 1 times and then erase the original sequence of i 1s on the left. A little thought reveals that the 
subroutine we need here is to duplicate a string of 1s so that if we start with x 02k 1j a call to the subrou-
tine will produce x 02k+j 1j. Here x is just any sequence of symbols. Note the role played by the symbol 2. 
As new 1s are created on the right, the old 1s change to 2s. This will ensure that there are exactly j 1s on 
the right end of the tape all of the time. This duplication subroutine is very similar to the doubling pro-
gram, and the reader should have very little difficulty writing this program. Finally, the multiplication 
program can be done using the copy subroutine (i − 1) times.

8.2.2 A  Universal Algorithm

We will now present in some detail a (partial) solution to problem 2 by arguing that there is a program U 
written in the GOTO language, which takes as input a program P (also written using the GOTO lan-
guage) and an input x and produces as output P (x), the output of P on input x. For convenience, we will 
assume that all programs written in the GOTO language use a fixed alphabet containing just 0, 1, and B. 
Because we have assumed this for all programs in the GOTO language, we should first address the issue 
of how an input to program U will look. We cannot directly place a program P on the tape because 
the alphabet used to write the program P uses letters G, O, T, O, etc. This minor problem can be easily 
circumvented by coding. The idea is to represent each instruction using only 0 and 1. One such coding 
scheme is shown in Table 8.1.

To encode an entire program, we simply write down in order (without the line numbers) the code for 
each instruction as given in the table. For example, here is the code for the doubling program shown in 
Figure 8.1:

	 0001001011110110001101001111111011000110100111011100

Note that the encoded string contains all of the information about the program so that the encoding 
is completely reversible. From now on, if P is a program in the GOTO language, then code(P) will 
denote its binary code as just described. When there is no confusion, we will identify P and code(P). 

TABLE 8.1  Coding the GOTO Instructions

Instruction Code

PRINT i 0001i+1

GO LEFT 001
GO RIGHT 010
GO TO j IF i IS SCANNED 0111j 01i+1

STOP 100
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Before proceeding further, the reader may want to test his/her understanding of the encoding/decoding 
process by decoding the following string: 010011101100.

The basic idea behind the construction of a universal algorithm is simple, although the details 
involved in actually constructing one are enormous. We will present the central ideas and leave out the 
actual construction. Such a construction was carried out in complete detail by Turing himself and was 
simplified by others.* U has as its input code(P) followed by the string x. U simulates the computational 
steps of P on input x. It divides the input tape into three segments, one containing the program P, the 
second one essentially containing the contents of the tape of P as it changes with successive moves, and 
the third one containing the line number in program P of the instruction being currently simulated 
(similar to a program counter in an actual computer).

We now describe a cycle of computation by U, which is similar to a central processing unit (CPU) 
cycle in a real computer. A single instruction of P is implemented by U in one cycle. First, U should know 
which location on the tape that P is currently reading. A simple artifact can handle this as follows: U uses 
in its tape alphabet two special symbols 0′ and 1′. U stores the tape of P in the tape segment alluded to 
in the previous paragraph exactly as it would appear when the program P is run on the input x with one 
minor modification. The symbol currently being read by program P is stored as the primed version (0′ is 
the primed version of 0). For example, suppose after completing 12 instructions P is reading the fourth 
symbol (from left) on its tape containing 01001001. Then, the tape region of U after 12 cycles looks like 
0100′1001. At the beginning of a new cycle, U uses a subroutine to move to the region of the tape that 
contains the ith instruction of program P where i is the value of the program counter. It then decodes 
the ith instruction. Based on what type it is, U proceeds as follows: If it is a PRINT i instruction, then U 
scans the tape until the unique primed symbol in the tape region is reached and rewrites it as instructed. 
If it is a GO LEFT or GO RIGHT symbol, U locates the primed symbol, unprimes it, and primes its left 
or right neighbor, as instructed. In both cases, U returns to the program counter and increments it. If 
the instruction is GO TO i IF j IS SCANNED, U reads the primed symbol, and if it is j′, U changes the 
program counter to i. This completes a cycle. Note that the three regions may grow and contract while U 
executes the cycles of computation just described. This may result in one of them running into another. 
U must then shift one of them to the left or right and make room as needed.

It is not too difficult to see that all of the steps described can be done using the instructions of the 
GOTO language. The main point to remember is that these actions will have to be coded as a single 
program, which has nothing whatsoever to do with program P. In fact, the program U is totally indepen-
dent of P. If we replace P with some other program Q, it should simulate Q as well. The preceding argu-
ment shows that problem 2 is partially decidable. But it does not show that this problem is decidable. 
Why? It is because U may not halt on all inputs; specifically, consider an input consisting of a program P 
and a string x such that P does not halt on x. Then, U will also keep executing cycle after cycle the moves 
of P and will never halt. In fact, in Section 8.3, we will show that problem 2 is not decidable.

8.3  Undecidability

Recall the definition of an undecidable problem. In this section, we will establish the undecidability of 
problem 2, Section 8.2. The simplest way to establish the existence of undecidable problems is as fol-
lows: There are more problems than there are programs, the former set being uncountable, whereas the 
latter is countably infinite.† But this argument is purely existential and does not identify any specific 
problem as undecidable. In what follows, we will show that problem 2 introduced in Section 8.2 is one 
such problem.

*	 A particularly simple exposition can be found in Robinson (1991).
†	 The reader who does not know what countable and uncountable infinities are can safely ignore this statement; the rest of 

the section does not depend on it.
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8.3.1  Diagonalization and Self-Reference

Undecidability is inextricably tied to the concept of self-reference, and so we begin by looking at this 
rather perplexing and sometimes paradoxical concept. The idea of self-reference seems to be many cen-
turies old and may have originated with a barber in ancient Greece who had a sign board that read: 
“I shave all those who do not shave themselves.” When the statement is applied to the barber himself, 
we get a self-contradictory statement. Does he shave himself? If the answer is yes, then he is one of 
those who shaves himself, and so the barber should not shave him. The contrary answer no is equally 
untenable. So neither yes nor no seems to be the correct answer to the question; this is the essence of 
the paradox. The barber’s paradox has made entry into modern mathematics in various forms. We will 
present some of them in the next few paragraphs.*

The first version, called Berry’s paradox, concerns English descriptions of natural numbers. For 
example, the number 7 can be described by many different phrases: seven, six plus one, the fourth 
smallest prime, etc. We are interested in the shortest of such descriptions, namely, the one with the few-
est letters in it. Clearly, there are (infinitely) many positive integers whose shortest descriptions exceed 
100 letters. (A simple counting argument can be used to show this. The set of positive integers is infinite, 
but the set of positive integers with English descriptions in fewer than or equal to 100 letters is finite.) 
Let D denote the set of positive integers that do not have English descriptions with fewer than 100 letters. 
Thus, D is not empty. It is a well-known fact in set theory that any nonempty subset of positive integers 
has a smallest integer. Let x be the smallest integer in D. Does x have an English description with fewer 
than or equal to 100 letters? By the definition of the set D and x, we have the following: x is “the small-
est positive integer that cannot be described in English in fewer than 100 letters.” This is clearly absurd 
because part of the last sentence in quotes is a description of x and it contains fewer than 100 letters in it. 
A similar paradox was found by the British mathematician Bertrand Russell when he considered the 
set of all sets that do not include themselves as elements, that is, S = {x | x ∉ x}. The question “Is S ∈ S ?” 
leads to a similar paradox.

As a last example, we will consider a charming self-referential paradox due to mathematician William 
Zwicker. Consider the collection of all two-person games (such as chess, tic-tac-toe) in which players make 
alternate moves until one of them loses. Call such a game normal if it has to end in a finite number of 
moves, no matter what strategies the two players use. For example, tic-tac-toe must end in at most nine 
moves and so it is normal. Chess is also normal because the 50-move rule ensures that the game cannot 
go forever. Now here is hypergame. In the first move of the hypergame, the first player calls out a normal 
game, and then the two players go on to play the game, with the second player making the first move. 
The question is: “Is hypergame normal?” Suppose it is normal. Imagine two players playing hypergame. 
The first player can call out hypergame (since it is a normal game). This makes the second player call out the 
name of a normal game; hypergame can be called out again and they can keep saying hypergame without 
end, and this contradicts the definition of a normal game. On the other hand, suppose it is not a normal 
game. But now in the first move, player 1 cannot call out hypergame and would call a normal game instead, 
and so the infinite move sequence just given is not possible and so hypergame is normal after all!

In the rest of the section, we will show how these paradoxes can be modified to give nonparadoxical 
but surprising conclusions about the decidability of certain problems. Recall the encoding we presented 
in Section 8.2 that encodes any program written in the GOTO language as a binary string. Clearly this 
encoding is reversible in the sense that if we start with a program and encode it, it is possible to decode it 
back to the program. However, not every binary string corresponds to a program because there are many 
strings that cannot be decoded in a meaningful way, for example, 11010011000110. For the purposes 

*	 The most enchanting discussions of self-reference are due to the great puzzlist and mathematician R. Smullyan who 
brings out the breadth and depth of this concept in such delightful books as What is the name of this book? published by 
Prentice–Hall in 1978 and Satan, Cantor, and Infinity published by Alfred A. Knopf in 1992. We heartily recommend 
them to anyone who wants to be amused, entertained, and, more importantly, educated on the intricacies of mathemati-
cal logic and computability.
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of this section, however, it would be convenient if we can treat every binary string as a program. 
Thus, we will simply stipulate that any undecodable string be decoded to the program containing the 
single statement.

1. REJECT

In the following discussion, we will identify a string x with a GOTO program to which it decodes. Now 
define a function fD as follows: fD (x) = 1 if x, decoded into a GOTO program, does not halt when started with 
x itself as the input. Note the self-reference in this definition. Although the definition of fD seems artificial, 
its importance will become clear in the next section when we use it to show the undecidability of problem 2. 
First, we will prove that fD is not computable. Actually, we will prove a stronger statement, namely, that fD is 
not even partially decidable. [Recall that a function is partially decidable if there is a GOTO program (not 
necessarily halting) that computes it. An important distinction between computable and semicomputable 
functions is that a GOTO program for the latter need not halt on inputs with output = 0.]

Theorem 8.1

Function fD is not partially decidable

The proof is by contradiction. Suppose a GOTO program P′ computes the function fD. We will modify 
P′ into another program P in the GOTO language such that P computes the same function as P′ but has 
the additional property that it will never terminate its computation by ending up in a REJECT state-
ment.* Thus, P is a program with the property that it computes fD and halts on an input y if and only if 
fD (y) = 1. We will complete the proof by showing that there is at least one input in which the program 
produces a wrong output, that is, there is an x such that fD (x) ≠ P (x).

Let x be the encoding of program P. Now consider the following question: Does P halt when given 
x as input? Suppose the answer is yes. Then, by the way we constructed P, here P (x) = 1. On the other 
hand, the definition of fD implies that fD (x) = 0. (This is the punch line in this proof. We urge the reader 
to take a few moments and read the definition of fD a few times and make sure that he or she is convinced 
about this fact!) Similarly, if we start with the assumption that P (x) = 0, we are led to the conclusion 
that fD (x) = 1. In both cases, fD (x) ≠ P (x) and thus P is not the correct program for fD. Therefore, P′ is 
not the correct program for fD either because P and P′ compute the same function. This contradicts the 
hypothesis that such a program exists, and the proof is complete.

Note the crucial difference between the paradoxes we presented earlier and the proof of this theorem. 
Here, we do not have a paradox because our conclusion is of the form fD (x) = 0 if and only if P (x) = 1 and 
not fD (x) = 1 if and only if fD (x) = 0. But in some sense, the function fD was motivated by Russell’s para-
dox. We can similarly create another function fZ (based on Zwicker’s paradox of hypergame). Let f be any 
function that maps binary strings to {0, 1}. We will describe a method to generate successive functions 
f1, f2, etc., as follows: Suppose f (x) = 0 for all x. Then we cannot create any more functions, and the 
sequence stops with f. On the other hand, if f (x) = 1 for some x, then choose one such x and decode it as a 
GOTO program. This defines another function; call it f1 and repeat the same process with f1 in the place 
of f. We call f a normal function if no matter how x is selected at each step the process terminates after 
a finite number of steps. A simple example of a nonnormal function is as follows: Suppose P (Q) = 1 for 
some program P and input Q and at the same time Q(P) = 1 (note that we are using a program and its code 
interchangeably), then it is easy to see that the functions defined by both P and Q are not normal. Finally, 
define fZ (X) = 1 if X is a normal program, 0 if it is not. We leave it as an instructive exercise to the reader 

*	 The modification needed to produce P from P′ is straightforward. If P ′ did not have any REJECT statements at all, then 
no modification would be needed. If it had, then we would have to replace each one by a looping statement, which keeps 
repeating the same instruction forever.
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to show that fZ is not semicomputable. A perceptive reader will note the connection between Berry’s 
paradox and problem 3 in our list (string compression problem) just as fZ is related to Zwicker’s paradox. 
Such a reader should be able to show the undecidability of problem 3 by imitating Berry’s paradox.

8.3.2 R eductions and More Undecidable Problems

Theory of computation deals not only with the behavior of individual problems but also with relations 
among them. A reduction is a simple way to relate two problems so that we can deduce the (un)decid-
ability of one from the (un)decidability of the other. Reduction is similar to using a subroutine. Consider 
two problems A and B. We say that problem A can be reduced to problem B if there is an algorithm for 
B provided that A has one. To define the reduction (also called a Turing reduction) precisely, it is conve-
nient to augment the instruction set of the GOTO programming language to include a new instruction 
CALL X, i, j where X is a (different) GOTO program and i and j are line numbers. In detail, the execu-
tion of such augmented programs is carried out as follows: When the computer reaches the instruc-
tion CALL X, i, j, the program will simply start executing the instructions of the program from line 1, 
treating whatever is on the tape currently as the input to the program X. When (if at all) X finishes the 
computation by reaching the ACCEPT statement, the execution of the original program continues at 
line number i and, if it finishes with REJECT, the original program continues from line number j.

We can now give a more precise definition of a reduction between two problems. Let A and B be two 
computational problems. We say that A is reducible to B if there is a halting program Y in the GOTO 
language for problem A in which calls can be made to a halting program X for problem B. The algorithm 
for problem A described in the preceding reduction does not assume the availability of program X and 
cannot use the details behind the design of this algorithm. The right way to think about a reduction is as 
follows: Algorithm Y, from time to time, needs to know the solutions to different instances of problem B. 
It can query an algorithm for problem B (as a black box) and use the answer to the query for making 
further decisions. An important point to be noted is that the program Y actually can be implemented 
even if program X was never built as long as someone can correctly answer some questions asked by 
program Y about the output of problem B for certain inputs. Programs with such calls are sometimes 
called oracle programs. Reduction is rather difficult to assimilate at the first attempt, and so we will try to 
explain it using a puzzle. How do you play two chess games, one each with Kasparov and Anand (two of 
the world’s best players), and ensure that you get at least one point? (You earn one point for a win, 0 for a 
loss, and 1/2 for a draw.) Because you are a novice and are pitted against two Goliaths, you are allowed a 
concession. You can choose to play white or black on either board. The well-known answer is the follow-
ing: Take white against one player, say Anand, and black against the other, namely, Kasparov. Watch the 
first move of Kasparov (as he plays white) and make the same move against Anand, get his reply and play 
it back to Kasparov, and keep playing back and forth like this. It takes only a moment’s thought that you 
are guaranteed to win (exactly) 1 point. The point is that your game involves taking the position of one 
game, applying the algorithm of one player, getting the result, and applying it to the other board, and 
you do not even have to know the rules of chess to do this. This is exactly how algorithm Y is required 
to use algorithm X.

We will use reductions to show the undecidability as follows: Suppose A can be reduced to B as in the 
preceding definition. If there is an algorithm for problem B, it can be used to design a program for A 
by essentially imitating the execution of the augmented program for A (with calls to the oracle for B) as 
just described. But we will turn it into a negative argument as follows: If A is undecidable, then so is B. 
Thus, a reduction from a problem known to be undecidable to problem B will prove B’s undecidability.

First we define a new problem, problem 2′, which is a special case of problem 2. Recall that in prob-
lem 2 the input is (the code of) a program P in GOTO language and a string x. The output required is 
P (x). In problem 2′, the input is (only) the code of a program P and the output required is P (P), that is, 
instead of requiring P to run on a given input, this problem requires that it be run on its own code. This 
is clearly a special case of problem 2. The reader may readily see the self-reference in problem 2′ and 
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suspect that it may be undecidable; therefore, the more general problem 2 may be undecidable as well. 
We will establish these claims more rigorously as follows.

We first observe a general statement about the decidability of a function f (or problem) and its comple-
ment. The complement function is defined to take value 1 on all inputs for which the original function 
value is 0 and vice versa. The statement is that a function f is decidable if and only if the complement f

–
 is 

decidable. This can be easily proved as follows. Consider a program P that computes f. Change P into 
P– by interchanging all of the ACCEPT and REJECT statements. It is easy to see that P– actually com-
putes f

–
. The converse also is easily seen to hold. It readily follows that the function defined by problem 2′ 

is undecidable because it is, in fact, the complement of fD.
Finally, we will show that problem 2 is uncomputable. The idea is to use a reduction from problem 

2′ to problem 2. (Note the direction of reduction. This always confuses a beginner.) Suppose there is 
an algorithm for problem 2. Let X be the GOTO language program that implements this algorithm. X 
takes as input code(P) (for any program P) followed by x, produces the result P (x), and halts. We want 
to design a program Y that takes as input code(P) and produce the output P (P) using calls to program 
X. It is clear what needs to be done. We just create the input in proper form code(P) followed by code (P) 
and call X. This requires first duplicating the input, but this is a simple programming task similar to the 
one we demonstrated in our first program in Section 8.2. Then a call to X completes the task. This shows 
that problem 2′ reduces to problem 2, and thus the latter is undecidable as well.

By a more elaborate reduction (from fD), it can be shown that tiling is not partially decidable. We will 
not do it here and refer the interested reader to Harel (1992). But we would like to point out how the unde-
cidability result can be used to infer a result about tiling. This deduction is of interest because the result is 
an important one and is hard to derive directly. We need the following definition before we can state the 
result. A different way to pose the tiling problem is whether a given set of tiles can tile an entire plane in 
such a way that all of the adjacent tiles have the same color on the meeting quarter. (Note that this question 
is different from the way we originally posed it: Can a given set of tiles tile any finite rectangular region? 
Interestingly, the two problems are identical in the sense that the answer to one version is yes if and only if 
it is yes for the other version.) Call a tiling of the plane periodic if one can identify a k × k square such that 
the entire tiling is made by repeating this k × k square tile. Otherwise, call it aperiodic. Consider the fol-
lowing question: Is there a (finite) set of unit tiles that can tile the plane but only aperiodically? The answer 
is yes and it can be shown from the total undecidability of the tiling problem. Suppose the answer is no. 
Then, for any given set of tiles, the entire plane can be tiled if and only if the plane can be tiled periodically. 
But a periodic tiling can be found, if one exists, by trying to tile a k × k region for successively increasing 
values of k. This process will eventually succeed (in a finite number of steps) if the tiling exists. This will 
make the tiling problem partially decidable, which contradicts the total undecidability of the problem. 
This means that the assumption that the entire plane can be tiled if and only if some k × k region can be 
tiled is wrong. Thus, there exists a (finite) set of tiles that can tile the entire plane but only aperiodically.

8.4  Formal Languages and Grammars

The universe of strings is probably the most general medium for the representation of information. 
This section is concerned with sets of strings called languages and certain systems generating these lan-
guages such as grammars. Every programming language including Pascal, C, or Fortran can be precisely 
described by a grammar. Moreover, the grammar allows us to write a computer program (called the lexi-
cal analyzer in a compiler) to determine if a piece of code is syntactically correct in the programming 
language. Would not it be nice to also have such a grammar for English and a corresponding computer 
program that can tell us what English sentences are grammatically correct?* The focus of this brief 

*	 Actually, English and the other natural languages have grammars; but these grammars are not precise enough to tell 
apart the correct and incorrect sentences with 100% accuracy. The main problem is that there is no universal agreement 
on what are grammatically correct English sentences.
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exposition is the formalism and mathematical properties of various languages and grammars. Many of 
the concepts have applications in domains including natural language and computer language process-
ing and string matching. We begin with some standard definitions about languages.

Definition 8.1

An alphabet is a finite nonempty set of symbols, which are assumed to be indivisible.

For example, the alphabet for English consists of 26 uppercase letters A, B, …, Z and 26 lowercase 
letters a, b, …, z. We usually use the symbol Σ to denote an alphabet.

Definition 8.2

A string over an alphabet Σ is a finite sequence of symbols of Σ.

The number of symbols in a string x is called its length, denoted |x|. It is convenient to introduce an 
empty string, denoted ε, which contains no symbols at all. The length of ε is 0.

Definition 8.3

Let x = a1 a2 … an and y = b1 b2 … bm be two strings. The concatenation of x and y, denoted xy, is the 
string a1 a2 … an b1 b2 … bm.

Thus, for any string x, εx = xε = x. For any string x and integer n ≥ 0, we use xn to denote the string 
formed by sequentially concatenating n copies of x.

Definition 8.4

The set of all strings over an alphabet Σ is denoted Σ* and the set of all nonempty strings over Σ is 
denoted Σ+. The empty set of strings is denoted ∅.

Definition 8.5

For any alphabet Σ, a language over Σ is a set of strings over Σ. The members of a language are also called 
the words of the language.

Example 8.1

The sets L1 = {01, 11, 0110} and L2 = {0n 1n | n ≥ 0} are two languages over the binary alphabet 
{0, 1}. The string 01 is in both languages, whereas 11 is in L1 but not in L2.

Because languages are just sets, standard set operations such as union, intersection, and 
complementation apply to languages. It is useful to introduce two more operations for lan-
guages: concatenation and Kleene closure.
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Definition 8.6

Let L1 and L2 be two languages over Σ. The concatenation of L1 and L2, denoted L1 L2, is the language 
{xy | x ∈ L1, y ∈ L2}.

Definition 8.7

Let L be a language over Σ. Define L0 = {ε} and Li = LLi−1 for i ≥ 1. The Kleene closure of L, denoted L*, 
is the language

	
L Li

i

* =
≥0
∪

and the positive closure of L, denoted L+, is the language

	
L Li

i

+

≥

=
1

∪

In other words, the Kleene closure of language L consists of all strings that can be formed by concat-
enating some words from L. For example, if L = {0, 01}, then LL = {00, 001, 010, 0101} and L* includes all 
binary strings in which every 1 is preceded by a 0. L+ is the same as L* except it excludes ε in this case. 
Note that, for any language L, L* always contains ε and L+ contains ε if and only if L does. Also note that 
Σ* is in fact the Kleene closure of the alphabet Σ when viewed as a language of words of length 1, and Σ+ 
is just the positive closure of Σ.

8.4.1 R epresentation of Languages

In general, a language over an alphabet Σ is a subset of Σ*. How can we describe a language rigorously 
so that we know if a given string belongs to the language or not? As shown in the preceding paragraphs, 
a finite language such as L1 in Example 8.1 can be explicitly defined by enumerating its elements, and 
a simple infinite language such as L2 in the same example can be described using a rule characterizing 
all members of L2. It is possible to define some more systematic methods to represent a wide class of 
languages. In the following, we will introduce three such methods: regular expressions, pattern sys-
tems, and grammars. The languages that can be described by this kind of system are often referred to 
as formal languages.

Definition 8.8

Let Σ be an alphabet. The regular expressions over Σ and the languages they represent are defined induc-
tively as follows:

	 1.	 The symbol ∅ is a regular expression, denoting the empty set.
	 2.	 The symbol ε is a regular expression, denoting the set {ε}.
	 3.	 For each a ∈ Σ, a is a regular expression, denoting the set {a}.
	 4.	 If r and s are regular expressions denoting the languages R and S, then (r + s), (rs), and (r*) are 

regular expressions that denote the sets R ∪ S, RS, and R*, respectively.
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For example, ((0(0 + 1)*) + ((0 + 1)*0)) is a regular expression over {0, 1}, and it represents the language 
consisting of all binary strings that begin or end with a 0. Because the set operations union and concat-
enation are both associative, many parentheses can be omitted from regular expressions if we assume 
that the Kleene closure has higher precedence than concatenation and concatenation has higher pre-
cedence than union. For example, the preceding regular expression can be abbreviated as 0(0 + 1)* + 
(0 + 1)*0. We will also abbreviate the expression rr* as r+. Let us look at a few more examples of regular 
expressions and the languages they represent.

Example 8.2

The expression 0(0 + 1)*1 represents the set of all strings that begin with a 0 and end with a 1.

Example 8.3

The expression 0 + 1 + 0(0 + 1)*0 + 1(0 + 1)*1 represents the set of all nonempty binary strings 
that begin and end with the same bit.

Example 8.4

The expressions 0*, 0*10*, and 0*10*10* represent the languages consisting of strings that contain 
no 1, exactly one 1, and exactly two 1s, respectively.

Example 8.5

The expressions (0 + 1)*1(0 + 1)*1(0 + 1)*, (0 + 1)*10*1(0 + 1)*, 0*10*1(0 + 1)*, and (0 + 1)*10*10* 
all represent the same set of strings that contain at least two 1s.

For any regular expression r, the language represented by r is denoted as L (r). Two regular 
expressions representing the same language are called equivalent. It is possible to introduce 
some identities to algebraically manipulate regular expressions to construct equivalent expres-
sions, by tailoring the set identities for the operations union, concatenation, and Kleene closure 
to regular expressions. For more details, see Salomaa (1966). For example, it is easy to prove that 
the expressions r (s + t) and rs + rt are equivalent and (r*)* is equivalent to r*.

Example 8.6

Let us construct a regular expression for the set of all strings that contain no consecutive 0s. 
A string in this set may begin and end with a sequence of 1s. Because there are no consecutive 
0s, every 0 that is not the last symbol of the string must be followed by at least a 1. This gives us 
the expression 1*(01+)*1*(ε + 0). It is not hard to see that the second 1* is redundant, and thus the 
expression can in fact be simplified to 1*(01+)*(ε + 0).

Regular expressions were first introduced in Kleene (1956) for studying the properties of neural nets. 
The preceding examples illustrate that regular expressions often give very clear and concise representa-
tions of languages. Unfortunately, not every language can be represented by regular expressions. For 
example, it will become clear that there is no regular expression for the language {0n 1n | n ≥ 1}. The 
languages represented by regular expressions are called the regular languages. Later, we will see that 
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regular languages are exactly the class of languages generated by the so-called right-linear grammars. 
This connection allows one to prove some interesting mathematical properties about regular languages 
as well as to design an efficient algorithm to determine whether a given string belongs to the language 
represented by a given regular expression.

Another way of representing languages is to use pattern systems (Angluin 1980, Jiang et al. 1995).

Definition 8.9

A pattern system is a triple (Σ, V, p), where Σ is the alphabet, V is the set of variables with Σ ∩ V = ∅, and 
p is a string over Σ ∪ V called the pattern.

An example pattern system is ({0, 1}, {v1, v2}, v1 v1 0v2).

Definition 8.10

The language generated by a pattern system (Σ, V, p) consists of all strings over Σ that can be obtained 
from p by replacing each variable in p with a string over Σ.

For example, the language generated by ({0, 1}, {v1, v2}, v1 v1 0v2) contains words 0, 00, 01, 000, 001, 
010, 011, 110, etc., but does not contain strings, 1, 10, 11, 100, 101, etc. The pattern system ({0, 1}, {v1}, v1 v1) 
generates the set of all strings, which is the concatenation of two equal substrings, that is, the set {xx | x ∈ 
{0, 1}*}. The languages generated by pattern systems are called the pattern languages.

Regular languages and pattern languages are really different. One can prove that the pattern lan-
guage {xx | x ∈ {0, 1}*} is not a regular language and the set represented by the regular expression 0*1* is 
not a pattern language. Although it is easy to write an algorithm to decide if a string is in the language 
generated by a given pattern system, such an algorithm most likely would have to be very inefficient 
(Angluin 1980).

Perhaps the most useful and general system for representing languages is based on grammars, which 
are extensions of the pattern systems.

Definition 8.11

A grammar is a quadruple (Σ, N, S, P), where

	 1.	 Σ is a finite nonempty set called the alphabet. The elements of Σ are called the terminals
	 2.	 N is a finite nonempty set disjoint from Σ. The elements of N are called the nonterminals or 

variables
	 3.	 S ∈ N is a distinguished nonterminal called the start symbol
	 4.	 P is a finite set of productions (or rules) of the form

	 α → β

where α ∈ (Σ ∪ N)* N(Σ ∪ N)* and β ∈ (Σ ∪ N)*, that is, α is a string of terminals and nonterminals 
containing at least one nonterminal and α is a string of terminals and nonterminals.
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Example 8.7

Let G1 = ({0, 1}, {S, T, O, I}, S, P), where P contains the following productions:
	 S → OT

	 S → OI
	 T → SI
	 O → 0
	 I → 1

As we shall see, the grammar G1 can be used to describe the set {0n 1n | n ≥ 1}.

Example 8.8

Let G2 = ({0, 1, 2}, {S, A}, S, P), where P contains the following productions:
	 S → 0S A2
	 S → ε
	 2A → A2
	 0A → 01
	 1A → 11

This grammar G2 can be used to describe the set {0n 1n 2n | n ≥ 0}.

Example 8.9

To construct a grammar G3 to describe English sentences, the alphabet Σ contains all words in 
English.

N would contain nonterminals, which correspond to the structural components in an 
English sentence, for example, 〈sentence〉, 〈subject〉, 〈predicate〉, 〈noun〉, 〈verb〉, and 〈article〉. 
The start symbol would be 〈sentence〉. Some typical productions are

	 〈sentence〉 → 〈subject〉〈predicate〉
	 〈subject〉 → 〈noun〉
	 〈predicate〉 → 〈verb〉〈article〉〈noun〉
	 〈noun〉 → mary
	 〈noun〉 → algorithm
	 〈verb〉 → wrote
	 〈article〉 → an

The rule 〈sentence〉 → 〈subject〉〈predicate〉 follows from the fact that a sentence consists of a 
subject phrase and a predicate phrase. The rules 〈noun〉 → mary and 〈noun〉 → algorithm mean 
that both mary and algorithms are possible nouns.

To explain how a grammar represents a language, we need the following concepts.

Definition 8.12

Let (Σ, N, S, P) be a grammar. A sentential form of G is any string of terminals and nonterminals, that 
is, a string over Σ ∪ N.

Definition 8.13

Let (Σ, N, S, P) be a grammar and γ1 and γ2 two sentential forms of G. We say that γ1 directly derives γ2, 
denoted γ1 ⇒ γ2, if γ1 = σ∝τ, γ2 = σβτ, and α → β is a production in P.
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For example, the sentential form 00S11 directly derives the sentential form 00OT11 in grammar G1, 
and A2A2 directly derives AA22 in grammar G2.

Definition 8.14

Let γ1 and γ2 be two sentential forms of a grammar G. We say that γ1 derives γ2, denoted γ1 ⇒*  γ2, if there 
exists a sequence of (zero or more) sentential forms σ1, …, σn such that

	 γ1 ⇒ σ1 ⇒ … ⇒ σn ⇒ γ2

The sequence γ1 ⇒ σ1 ⇒ … ⇒ σn ⇒ γ2 is called a derivation from γ1 to γ2 . For example, in grammar G1, 
S ⇒*  0011 because

	 S ⇒ OT ⇒ 0T ⇒ 0SI ⇒ 0S1 ⇒ 0OI1 ⇒ 00I1 ⇒ 0011

and in grammar G2, S ⇒*  001122 because

	 S ⇒ 0SA2 ⇒ 00SA2A2 ⇒ 00A2A2 ⇒ 0012A2 ⇒ 0011A22 ⇒ 001122

Here the left-hand side of the relevant production in each derivation step is underlined for clarity.

Definition 8.15

Let (Σ, N, S, P) be a grammar. The language generated by G, denoted L (G), is defined as

	 L (G) = {x | x ∈ Σ*, S ⇒*  x}

The words in L (G) are also called the sentences of L (G).

Clearly, L (G1) contains all strings of the form 0n 1n, n ≥ 1, and L (G2) contains all strings of the form 
0n 1n 2n, n ≥ 0. Although only a partial definition of G3 is given, we know that L (G3) contains sen-
tences such as “mary wrote an algorithm” and “algorithm wrote an algorithm” but does not contain 
sentences such as “an wrote algorithm.”

The introduction of formal grammars dates back to the 1940s (Post 1943), although the study of 
rigorous description of languages by grammars did not begin until the 1950s (Chomsky 1956). In the 
Section 8.4.2, we consider various restrictions on the form of productions in a grammar and see how 
these restrictions can affect the power of a grammar in representing languages. In particular, we will 
know that regular languages and pattern languages can all be generated by grammars under different 
restrictions.

8.4.2  Hierarchy of Grammars

Grammars can be divided into four classes by gradually increasing the restrictions on the form of 
the productions. Such a classification is due to Chomsky (1956, 1963) and is called the Chomsky 
hierarchy.
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Definition 8.16

Let G = (Σ, N, S, P) be a grammar.

	 1.	 G is also called a type-0 grammar or an unrestricted grammar.
	 2.	 G is type-1 or context sensitive if each production α → β in P either has the form S → ε or satis-

fies |α| ≤ |β|.
	 3.	 G is type-2 or context-free if each production α → β in P satisfies |α| = 1, that is, α is a nonterminal.
	 4.	 G is type-3 or right linear or regular if each production has one of the following three forms:

	 A → aB,  A → a,  A → ε

where A and B are nonterminals and a is a terminal.

The language generated by a type-i grammar is called a type-i language, i = 0, 1, 2, 3. A type-1 lan-
guage is also called a context-sensitive language and a type-2 language is also called a context-free lan-
guage. It turns out that every type-3 language is in fact a regular language, that is, it is represented by 
some regular expression and vice versa. See the Section 8.4.3 for the proof of the equivalence of type-3 
(right-linear) grammars and regular expressions.

The grammars G1 and G3 given in the last subsection are context-free and the grammar G2 is context 
sensitive. Now we give some examples of unrestricted and right-linear grammars.

Example 8.10

Let G4 = ({0, 1}, {S, A, O, I, T}, S, P), where P contains
	 S → AT
	 A → 0AO	 A → 1AI
	 O0 → 0O	 O1 → 1O
	 I0 → 0I	 I1 → 1I
	 OT → 0T	 IT → 1T
	 A → ε	 T → ε

Then G4 generates the set {xx | x ∈ {0, 1}*}. For example, we can derive the word 0101 from S as follows:

	 S ⇒ AT ⇒ 0AOT ⇒ 01AIOT ⇒ 01IOT ⇒ 01I0T ⇒ 010IT ⇒ 0101T ⇒ 0101

Example 8.11

We give a right-linear grammar G5 to generate the language represented by the regular expres-
sion in Example 8.3, that is, the set of all nonempty binary strings beginning and ending with 
the same bit. Let G5 = ({0, 1}, {S, O, I}, S, P), where P contains

	 S → 0O	 S → 1I
	 S → 0	 S → 1
	 O → 0O	 O → 1O
	 I → 0I	 I → 1I
	 O → 0	 I → 1

The following theorem is due to Chomsky (1956, 1963).

Theorem 8.2

For each i = 0, 1, 2, the class of type-i languages properly contains the class of type-(i + 1) languages.
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For example, one can prove by using a technique called pumping that the set {0n 1n | n ≥ 1} is con-
text-free but not regular, and the sets {0n 1n 2n | n ≥ 0} and {xx | x ∈ {0, 1}*} are context sensitive but 
not context-free (Hopcroft and Ullman 1979). It is, however, a bit involved to construct a language 
that is of type-0 but not context sensitive. See, for example, Hopcroft and Ullman (1979) for such 
a language.

The four classes of languages in the Chomsky hierarchy also have been completely characterized in 
terms of TMs and their restricted versions. We have already defined a TM in Section 8.2. Many restricted 
versions of it will be defined in the next section. It is known that type-0 languages are exactly those 
recognized by TMs, context-sensitive languages are those recognized by TMs running in linear space, 
context-free languages are those recognized by TMs whose work tapes operate as pushdown stacks 
[called pushdown automata (PDA)], and regular languages are those recognized by TMs without any 
work tapes (called finite-state machine or finite automata) (Hopcroft and Ullman 1979).

Remark 8.1

Recall our definition of a TM and the function it computes from Section 8.2. In the preceding 
paragraph, we refer to a language recognized by a TM. These are two seemingly different ideas, 
but they are essentially the same. The reason is that the function f, which maps the set of strings 
over a finite alphabet to {0, 1}, corresponds in a natural way to the language Lf over Σ defined as: 
Lf = {x | f (x) = 1}. Instead of saying that a TM computes the function f, we say equivalently that it 
recognizes Lf.

Because {xx | x ∈ {0, 1}*} is a pattern language, the preceding discussion implies that the class of pat-
tern languages is not contained in the class of context-free languages. The next theorem shows that the 
class of pattern languages is contained in the class of context-sensitive languages.

Theorem 8.3

Every pattern language is context sensitive.

The theorem follows from the fact that every pattern language is recognized by a TM in linear space 
(Angluin 1980) and linear space-bounded TMs recognize exactly context-sensitive languages. To show 
the basic idea involved, let us construct a context-sensitive grammar for the pattern language {xx | 
x ∈ {0, 1}*}. The grammar G4 given in Example 8.10 for this language is almost context sensitive. We just 
have to get rid of the two ε-productions: A → ε and T → ε. A careful modification of G4 results in the 
following grammar: G6 = ({0, 1}, {S, A0, A1, O, I, T0, T1}, S, P), where P contains

	 S → ε
	 S → A0T0	 S → A1T1

	 A0 → 0A0O	 A0 → 1A0I
	 A1 → 0A1O	 A1 → 1A1I
	 A0 → 0	 A1 → 1
	 O0 → 0O	 O1 → 1O
	 I0 → 0I	 I1 → 1I
	 OT0 → 0T0	 IT0 → 1T0

	 OT1 → 0T1	 IT1 → 1T1

	 T0 → 0	 T1 → 1,
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which is context sensitive and generates {xx | x ∈ {0, 1}*}. For example, we can derive 011011 as

	 ⇒ A1T1 ⇒ 0A1OT1 ⇒ 01A1IOT1

	 ⇒ 011IOT1 ⇒ 011I0T1 ⇒ 0110IT1 ⇒ 01101T1 ⇒ 011011

For a class of languages, we are often interested in the so-called closure properties of the class.

Definition 8.17

A class of languages (e.g., regular languages) is said to be closed under a particular operation (e.g., union, 
intersection, complementation, concatenation, Kleene closure) if each application of the operation on 
language(s) of the class results in a language of the class.

These properties are often useful in constructing new languages from existing languages as well 
as proving many theoretical properties of languages and grammars. The closure properties of the 
four types of languages in the Chomsky hierarchy are now summarized (Gurari 1989, Harrison 
1978, Hopcroft and Ullman 1979).

Theorem 8.4

	 1.	 The class of type-0 languages is closed under union, intersection, concatenation, and Kleene 
closure but not under complementation.

	 2.	 The class of context-free languages is closed under union, concatenation, and Kleene closure 
but not under intersection or complementation.

	 3.	 The classes of context-sensitive and regular languages are closed under all five of the operations.

For example, let L1 = {0m 1n 2p | m = n or n = p}, L2 = {0m 1n 2p | m = n}, and L3 = {0m 1n 2p | n = p}. It is easy 
to see that all three are context-free languages. (In fact, L1 = L2 ∪ L3.) However, intersecting L2 with L3 
gives the set {0m 1n 2p | m = n = p}, which is not context-free.

We will look at context-free grammars more closely in the Section 8.4.3 and introduce the concept of 
parsing and ambiguity.

8.4.3  Context-Free Grammars and Parsing

From a practical point of view, for each grammar G = (Σ, N, S, P) representing some language, the fol-
lowing two problems are important:

	 1.	 (Membership) Given a string over Σ, does it belong to L (G)?
	 2.	 (Parsing) Given a string in L (G), how can it be derived from S?

The importance of the membership problem is quite obvious: given an English sentence or computer 
program, we wish to know if it is grammatically correct or has the right format. Parsing is important 
because a derivation usually allows us to interpret the meaning of the string. For example, in the case of 
a Pascal program, a derivation of the program in Pascal grammar tells the compiler how the program 
should be executed. The following theorem illustrates the decidability of the membership problem for 
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the four classes of grammars in the Chomsky hierarchy. The proofs can be found in Chomsky (1963), 
Harrison (1978), and Hopcroft and Ullman (1979).

Theorem 8.5

The membership problem for type-0 grammars is undecidable in general and is decidable for any con-
text-sensitive grammar (and thus for any context-free or right-linear grammars).

Because context-free grammars play a very important role in describing computer programming lan-
guages, we discuss the membership and parsing problems for context-free grammars in more detail. 
First, let us look at another example of context-free grammar. For convenience, let us abbreviate a set of 
productions with the same left-hand side nonterminal

	 A → α1, …, A → αn

as

	 A → α1 | … | αn

Example 8.12

We construct a context-free grammar for the set of all valid Pascal real values. In general, a real 
constant in Pascal has one of the following forms:

	 m.n,	 meq,	 m.neq,

where m and q are signed or unsigned integers and n is an unsigned integer. Let Σ = {0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, e, +, −, .}, N = {S, M, N, D}, and the set P of the productions contain

S → M.N | MeM | M.NeM
M → N | +N | −N
N → DN | D
D → 0 | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9

Then the grammar generates all valid Pascal real values (including some absurd ones like 
001.200e000). The value 12.3e − 4 can be derived as

	 S ⇒ M.NeM ⇒ N.NeM ⇒ DN.NeM ⇒ 1N.NeM ⇒ 1D.NeM

	 ⇒ 12.NeM ⇒ 12.DeM ⇒ 12.3eM ⇒ 12.3e−N ⇒ 12.3e−D ⇒ 12.3e−4

Perhaps the most natural representation of derivations for a context-free grammar is a derivation tree or 
a parse tree. Each internal node of such a tree corresponds to a nonterminal and each leaf corresponds to 
a terminal. If A is an internal node with children B1, …, Bn ordered from left to right, then A → B1 … Bn 
must be a production. The concatenation of all leaves from left to right yields the string being derived. For 
example, the derivation tree corresponding to the preceding derivation of 12.3e−4 is given in Figure 8.3. 
Such a tree also makes possible the extraction of the parts 12, 3, and −4, which are useful in the storage 
of the real value in a computer memory.
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Definition 8.18

A context-free grammar G is ambiguous if there is a string x ∈ L (G), which has two distinct derivation 
trees. Otherwise G is unambiguous.

Unambiguity is a very desirable property to have as it allows a unique interpretation of each 
sentence in the language. It is not hard to see that the preceding grammar for Pascal real values 
and the grammar G1 defined in Example 8.7 are all unambiguous. The following example shows an 
ambiguous grammar.

Example 8.13

Consider a grammar G7 for all valid arithmetic expressions that are composed of unsigned 
positive integers and symbols +, *, (,). For convenience, let us use the symbol n to denote any 
unsigned positive integer.

This grammar has the productions

	 S → T + S | S + T | T

	 T → F * T | T * F | F

	 F → n | (S)

Two possible different derivation trees for the expression 1 + 2 * 3 + 4 are shown in Figure 8.4. 
Thus, G7 is ambiguous. The left tree means that the first addition should be done before the sec-
ond addition and the right tree says the opposite.

Although in the preceding example different derivations/interpretations of any expression 
always result in the same value because the operations addition and multiplication are associa-
tive, there are situations where the difference in the derivation can affect the final outcome. 
Actually, the grammar G7 can be made unambiguous by removing some (redundant) produc-
tions, for example, S → T + S and T → F * T.

This corresponds to the convention that a sequence of consecutive additions (or multi-
plications) is always evaluated from left to right and will not change the language generated 
by G7. It is worth noting that there are context-free languages that cannot be generated by any 
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unambiguous context-free grammar (Hopcroft and Ullman 1979). Such languages are said to be 
inherently ambiguous. An example of inherently ambiguous languages is the set

	 {0mlm2n3n | m, n > 0} ∪ {0mln2m3n | m, n > 0}

We end this section by presenting an efficient algorithm for the membership problem for 
context-free grammars. The algorithm is due to Cocke, Younger, and Kasami (Hopcroft and 
Ullman 1979) and is often called the CYK algorithm. Let G = (Σ, N, S, P) be a context-free 
grammar. For simplicity, let us assume that G does not generate the empty string ε and that G is 
in the so-called Chomsky normal form (Chomsky 1963), that is, every production of G is either 
in the form A → BC where B and C are nonterminals, or in the form A → a where a is a terminal. 
An example of such a grammar is G1 given in Example 8.7. This is not a restrictive assumption 
because there is a simple algorithm that can convert every context-free grammar that does not 
generate ε into one in the Chomsky normal form.

Suppose that x = a1 … an is a string of n terminals. The basic idea of the CYK algorithm, 
which decides if x ∈ L (G), is dynamic programming. For each pair i, j, where 1 ≤ i ≤ j ≤ n, define 
a set Xi, j ⊆ N as

	 Xi, j = {A | A ⇒*  ai … aj}

Thus, x ∈ L (G) if and only if S ∈ X1,n. The sets Xi, j can be computed inductively in the ascending 
order of j − i. It is easy to figure out Xi,i for each i because Xi,i = {A | A → ai ∈ P}. Suppose that we 
have computed all Xi, j where j − i < d for some d > 0. To compute a set Xi, j, where j − i = d, we just 
have to find all of the nonterminals A such that there exist some nonterminals B and C satisfy-
ing A → BC ∈ P and for some k, i ≤ k < j, B ∈ Xi,k, and C ∈ Xk+1,j. A rigorous description of the 
algorithm in a Pascal-style pseudocode is given as follows.

Algorithm CYK(x = a1 … an ):

	 1.	 for i ← 1 to n do
	 2.	 Xi,i ← {A | A → ai ∈ P}
	 3.	 for d ← 1 to n − 1 do
	 4.	 for i ← 1 to n − d do
	 5.	 Xi,i+d ← ∅
	 6.	 for t ← 0 to d − 1 do
	 7.	 Xi,i+d ← Xi,i+d ∪ {A | A → BC ∈ P for some B ∈ Xi,i+t and C ∈ Xi+t+1,i+d}

Table 8.2 shows the sets Xi,j for the grammar G1 and the string x = 000111. It just so happens 
that every Xi,j is either empty or a singleton. The computation proceeds from the main diagonal 
toward the upper-right corner.

S

S

S S

S

S+

+ +

+

T T

T

T

F F

F

F

* *

3

3

4

41

T

T

T T

F

F

FF

1

2

2

FIGURE 8.4  Different derivation trees for the expression 1 + 2 * 3 + 4.



8-24 Algorithms and Complexity

8.5  Computational Models

In this section, we will present many restricted versions of TMs and address the question of what kinds 
of problems they can solve. Such a classification is a central goal of computation theory. We have already 
classified problems broadly into (totally) decidable, partially decidable, and totally undecidable. Because 
the decidable problems are the ones of most practical interest, we can consider further classification of 
decidable problems by placing two types of restrictions on a TM. The first one is to restrict its structure. 
This way we obtain many machines of which a finite automaton and a pushdown automaton are the 
most important. The other way to restrict a TM is to bound the amount of resources it uses, such as the 
number of time steps or the number of tape cells it can use. The resulting machines form the basis for 
complexity theory.

8.5.1  Finite Automata

The finite automaton (in its deterministic version) was first introduced by McCulloch and Pitts (1943) 
as a logical model for the behavior of neural systems. Rabin and Scott (1959) introduced the nondeter-
ministic version of the finite automaton and showed the equivalence of the nondeterministic and deter-
ministic versions. Chomsky and Miller (1958) proved that the set of languages that can be recognized 
by a finite automaton is precisely the regular languages introduced in Section 8.4. Kleene (1956) showed 
that the languages accepted by finite automata are characterized by regular expressions as defined in 
Section 8.4.

In addition to their original role in the study of neural nets, finite automata have enjoyed great 
success in many fields such as sequential circuit analysis in circuit design (Kohavi 1978), asyn-
chronous circuits (Brzozowski and Seger 1994), lexical analysis in text processing (Lesk 1975), and 
compiler design. They also led to the design of more efficient algorithms. One excellent example 
is the development of linear-time string-matching algorithms, as described in Knuth et al. (1977). 
Other applications of finite automata can be found in computational biology (Searls 1993), natural 
language processing, and distributed computing.

A finite automaton, as in Figure 8.5, consists of an input tape that contains a (finite) sequence of 
input symbols such as aabab ···, as shown in the figure, and a finite-state control. The tape is read by 
the one-way read-only input head from left to right, one symbol at a time. Each time the input head 
reads an input symbol, the finite control changes its state according to the symbol and the current 
state of the machine. When the input head reaches the right end of the input tape, if the machine is 
in a final state, we say that the input is accepted; if the machine is not in a final state, we say that the 
input is rejected. The following is the formal definition.

TABLE 8.2  An Example Execution 
of the CYK Algorithm

0 0 0 1 1 1

j →

1 2 3 4 5 6

1 O S
2 O S T

i ↓ 3 O S T
4 I
5 I
6 I
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Definition 8.19

A nondeterministic finite automaton (NFA) is a quintuple (Q, Σ, δ, q0, F), where

•	 Q is a finite set of states
•	 Σ is a finite set of input symbols
•	 δ, the state transition function, is a mapping from Q × Σ to subsets of Q
•	 q0 ∈ Q is the initial state of the NFA
•	 F ⊆ Q is the set of final states

If δ maps Q × Σ to singleton subsets of Q, then we call such a machine a deterministic finite automa-
ton (DFA).

When an automaton, M, is nondeterministic, then from the current state and input symbol, it may 
go to one of several different states. One may imagine that the device goes to all such states in parallel. 
The DFA is just a special case of the NFA; it always follows a single deterministic path. The device M 
accepts an input string x if, starting with q0 and the read head at the first symbol of x, one of these parallel 
paths reaches an accepting state when the read head reaches the end of x. Otherwise, we say M rejects x. 
A language, L, is accepted by M if M accepts all of the strings in L and nothing else, and we write L = L(M). 
We will also allow the machine to make ε-transitions, that is, changing state without advancing the read 
head. This allows transition functions such as δ(s, ε) = {s1}. It is easy to show that such a generalization 
does not add more power.

Remark 8.2

The concept of a nondeterministic automaton is rather confusing for a beginner. But there is a simple 
way to relate it to a concept that must be familiar to all of the readers. It is that of a solitaire game. 
Imagine a game like Klondike. The game starts with a certain arrangement of cards (the input) and there 
is a well-defined final position that results in success; there are also dead ends where a further move is 
not possible; you lose if you reach any of them. At each step, the precise rules of the game dictate how 
a new arrangement of cards can be reached from the current one. But the most important point is that 
there are many possible moves at each step. (Otherwise, the game would be no fun!) Now consider the 
following question: What starting positions are winnable? These are the starting positions for which 
there is a winning move sequence; of course, in a typical play, a player may not achieve it. But that is 
beside the point in the definition of what starting positions are winnable. The connection between such 
games and a nondeterministic automaton should be clear. The multiple choices at each step are what 
make it nondeterministic. Our definition of winnable positions is similar to the concept of acceptance 
of a string by a nondeterministic automaton. Thus, an NFA may be viewed as a formal model to define 
solitaire games.

Read-only
input tape

1-way input head

Finite
control

a a ab b

FIGURE 8.5  A finite automaton.
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Example 8.14

We design a DFA to accept the language represented by the regular expression 0(0 + 1)*1 as in 
Example 8.2, that is, the set of all strings in {0, 1} that begin with a 0 and end with a 1. It is usually 
convenient to draw our solution as in Figure 8.6. As a convention, each circle represents a state; 
the state a, pointed at by the initial arrow, is the initial state. The darker circle represents the 
final states (state c). The transition function δ is represented by the labeled edges. For example, 
δ(a, 0) = {b}. When a transition is missing, for example, on input 1 from a and on inputs 0 and 
1 from c, it is assumed that all of these lead to an implicit nonaccepting trap state, which has 
transitions to itself on all inputs.

The machine in Figure 8.6 is nondeterministic because from b on input 1 the machine has 
two choices: stay at b or go to c.

Figure 8.7 gives an equivalent DFA, accepting the same language.

Example 8.15

The DFA in Figure 8.8 accepts the set of all strings in {0, 1}* with an even number of 1s. The cor-
responding regular expression is (0*10*1)*0*.

Example 8.16

As a final example, consider the special case of the tiling problem that we discussed in Section 8.2. 
This version of the problem is as follows: Let k be a fixed positive integer. Given a set of unit tiles, 
we want to know if they can tile any k × n area for all n. We show how to deal with the case k = 1 
and leave it as an exercise to generalize our method for larger values of k. Number the quarters 
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FIGURE 8.6  An NFA accepting 0(0 + 1)*1.
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FIGURE 8.7  A DFA accepting 0(0 + 1)*1.
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FIGURE 8.8  A DFA accepting (0*10*1)*0*.
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of each tile as in Figure 8.9. The given set of tiles will tile the area if we can find a sequence of the 
given tiles T1, T2, …, Tm such that (1) the third quarter of T1 has the same color as the first quarter 
of T2 and the third quarter of T2 has the same color as the first quarter of T3, etc., and (2) the third 
quarter of Tm has the same color as T1. These conditions can be easily understood as follows. The 
first condition states that the tiles T1, T2, etc., can be placed adjacent to each other along a row in 
that order. The second condition implies that the whole sequence T1 T2 … Tm can be replicated 
any number of times. And a little thought reveals that this is all we need to answer yes on the 
input. But if we cannot find such a sequence, then the answer must be no. Also note that in the 
sequence no tile needs to be repeated and so the value of m is bounded by the number of tiles in 
the input. Thus, we have reduced the problem to searching a finite number of possibilities and 
we are done.

How is the preceding discussion related to finite automata? To see the connection, define an alphabet 
consisting of the unit tiles and define a language L = {T1 T2 … Tm | T1 T2 … Tm is a valid tiling, m ≥ 0}. 
We will now construct an NFA for the language L. It consists of states corresponding to distinct colors 
contained in the tiles plus two states, one of them the start state and another state called the dead state. 
The NFA makes transitions as follows: From the start state, there is an ε-transition to each color state, 
and all states except the dead state are accepting states. When in the state corresponding to color i, sup-
pose it receives input tile T. If the first quarter of this tile has color i, then it moves to the color of the 
third quarter of T; otherwise, it enters the dead state. The basic idea is to remember the only relevant 
piece of information after processing some input. In this case, it is the third quarter color of the last tile 
seen. Having constructed this NFA, the question we are asking is if the language accepted by this NFA 
is infinite. There is a simple algorithm for this problem (Hopcroft and Ullman 1979).

The next three theorems show a satisfying result that all the following language classes are identical:

•	 The class of languages accepted by DFAs
•	 The class of languages accepted by NFAs
•	 The class of languages generated by regular expressions, as in Definition 8.8
•	 The class of languages generated by the right-linear, or type-3, grammars, as in Definition 8.16

Recall that this class of languages is called the regular languages (see Section 8.4).

Theorem 8.6

For each NFA, there is an equivalent DFA.

Proof  An NFA might look more powerful because it can carry out its computation in parallel with 
its nondeterministic branches.

1
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3

4

FIGURE 8.9  Numbering the quarters of a tile.
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But because we are working with a finite number of states, we can simulate an
NFA M = (Q, Σ, δ, q0, F) by a DFA M′ = (Q′, Σ, δ′, ′q0, F′), where

•	 Q′ = {[S] : S ⊆ Q}
•	 ′q0 = [{q0}]
•	 δ′([S], a) = [S′] = [∪ql∈S δ(ql, a)]
•	 F′ is the set of all subsets of Q containing a state in F

It can now be verified that L(M) = L(M′).

Example 8.17

Example 8.1 contains an NFA and an equivalent DFA accepting the same language. In fact, the 
proof provides an effective procedure for converting an NFA to a DFA. Although each NFA can 
be converted to an equivalent DFA, the resulting DFA might be exponentially large in terms of 
the number of states, as we can see from the previous procedure. This turns out to be the best 
thing one can do in the worst case. Consider the following language: Lk = {x: x ∈ {0, 1}* and the 
kth letter from the right of x is a 1}. An NFA of k + 1 states (for k = 3) accepting Lk is given in 
Figure 8.10. A counting argument shows that any DFA accepting Lk must have at least 2k states.

Theorem 8.7

L is generated by a right-linear grammar if it is accepted by an NFA.

Proof  Let L be accepted by a right-linear grammar G = (Σ, N, S, P). We design an NFA M = (Q, Σ, δ, 
q0, F) where Q = N ∪ { f }, q0 = S, F = { f }. To define the δ function, we have C ∈ δ(A, b) if A → bC. For 
rules A → b, δ(A, b) = { f }. Obviously, L(M) = L(G).

Conversely, if L is accepted by an NFA M = (Q, Σ, δ, q0, F), we define an equivalent right-linear gram-
mar G = (Σ, N, S, P), where N = Q, S = q0, qi → aqj ∈ N if qj ∈ δ(qi, a), and qj → ε if qj ∈ F. Again it is 
easily seen that L(M) = L(G).

Theorem 8.8

L is generated by a regular expression if it is accepted by an NFA.

Proof (Idea) Part 1.  We inductively convert a regular expression to an NFA that accepts the language 
generated by the regular expression as follows:

•	 Regular expression ε converts to ({q}, Σ, ∅, q, {q}).
•	 Regular expression ∅ converts to ({q}, Σ, ∅, q, ∅).
•	 Regular expression a, for each a ∈ Σ converts to ({q, f }, Σ, δ(q, a) ={ f }, q, { f }).
•	 If α and β are regular expressions, converting to NFAs Mα and Mβ, respectively, then the regu-

lar expression α ∪ β converts to an NFA M, which connects Mα and Mβ in parallel: M has an 

0,1

0,1

1 0,1

FIGURE 8.10  An NFA accepting L3.
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initial state q0 and all of the states and transitions of Mα and Mβ; by ε-transitions, M goes from 
q0 to the initial states of Mα and Mβ.

•	 If α and β are regular expressions, converting to NFAs Mα and Mβ, respectively, then the regu-
lar expression α ∪ β converts to NFA M, which connects Mα and Mβ sequentially: M has all of 
the states and transitions of Mα and Mβ, with Mα’s initial state as M’s initial state, ε-transition 
from the final states of Mα to the initial state of Mβ, and Mβ’s final states as M’s final states.

•	 If α is a regular expression, converting to NFA Mα, then connecting all of the final states of Mα 
to its initial state with ε-transitions gives α+. Union of this with the NFA for ε gives the NFA 
for α*.

Part 2. We now show how to convert an NFA to an equivalent regular expression. The idea used here 
is based on Brzozowski and McCluskey (1963); see also Brzozowski and Seger (1994) and Wood (1987).

Given an NFA M, expand it to M′ by adding two extra states i, the initial state of M′, and t, the only 
final state of M′, with ε-transitions from i to the initial state of M and from all final states of M to t. 
Clearly, L(M) = L(M′). In M′, remove states other than i and t one by one as follows. To remove state p, 
for each triple of states q, p, q′ as shown in Figure 8.11a, add the transition as shown in Figure 8.11b. If 
p does not have a transition leading back to itself, then β = ε. After we have considered all such triples, 
delete state p and transitions related to p. Finally, we obtain Figure 8.12 and L(α) = L(M).

Apparently, DFAs cannot serve as our model for a modern computer. Many extremely simple lan-
guages cannot be accepted by DFAs. For example, L = {xx : x ∈ {0, 1}*} cannot be accepted by a DFA. One 
can prove this by counting or using the so-called pumping lemmas; one can also prove this by arguing 
that x contains more information than a finite-state machine can remember. We refer the interested 
readers to textbooks such as Hopcroft and Ullmann (1979), Gurari (1989), Wood (1987), and Floyd and 
Beigel (1994) for traditional approaches and to Li and Vitányi (1993) for a nontraditional approach. One 
can try to generalize the DFA to allow the input head to be two way but still read only. But such machines 
are not more powerful; they can be simulated by normal DFAs. The next step is apparently to add storage 
space such that our machines can write information in.

8.5.2 T uring Machines

In this section, we will provide an alternative definition of a TM to make it compatible with our 
definitions of a DFA, PDA, etc. This also makes it easier to define a nondeterministic TM. But 
this formulation (at least the deterministic version) is essentially the same as the one presented in 
Section 8.2.

A TM, as in Figure 8.13, consists of a finite control, an infinite tape divided into cells, and a read/
write head on the tape. We refer to the two directions on the tape as left and right. The finite control 
can be in any one of a finite set Q of states, and each tape cell can contain a 0, a 1, or a blank B. Time is 
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FIGURE 8.11  Converting an NFA to a regular expression.
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FIGURE 8.12  The reduced NFA.
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discrete and the time instants are ordered 0, 1, 2, … with 0 the time at which the machine starts its 
computation. At any time, the head is positioned over a particular cell, which it is said to scan. At 
time 0, the head is situated on a distinguished cell on the tape called the start cell, and the finite 
control  is in the initial state q0. At time 0, all cells contain Bs, except a contiguous finite sequence 
of cells, extending from the start cell to the right, which contain 0s and 1s. This binary sequence is 
called the input.

The device can perform the following basic operations:

	 1.	 It can write an element from the tape alphabet Σ = {0, 1, B} in the cell it scans.
	 2.	 It can shift the head one cell left or right.

Also, the device executes these operations at the rate of one operation per time unit (a step). At the con-
clusion of each step, the finite control takes on a state in Q. The device operates according to a finite set 
P of rules.

The rules have format (p, s, a, q) with the meaning that if the device is in state p and s is the symbol 
under scan, then write a if a ∈ {0, 1, B} or move the head according to a if a ∈ {L, R} and the finite con-
trol changes to state q. At some point, if the device gets into a special final state qf , the device stops and 
accepts the input.

If every pair of distinct quadruples differs in the first two elements, then the device is deterministic. 
Otherwise, the device is nondeterministic. Not every possible combination of the first two elements 
has to be in the set; in this way, we permit the device to perform no operation. In this case, we say 
the device halts. In this case, if the machine is not in a final state, we say that the machine rejects 
the input.

Definition 8.20

A TM is a quintuple M = (Q, Σ, P, q0, qf), where each of the components has been described previously.

Given an input, a deterministic TM carries out a uniquely determined succession of operations, 
which may or may not terminate in a finite number of steps. If it terminates, then the nonblank symbols 
left on the tape are the output. Given an input, a nondeterministic TM behaves much like an NFA. One 
may imagine that it carries out its computation in parallel. Such a computation may be viewed as a (pos-
sibly infinite) tree. The root of the tree is the starting configuration of the machine. The children of each 
node are all possible configurations one step away from this node. If any of the branches terminates in 
the final state qf, we say the machine accepts the input. The reader may want to test understanding this 

Finite control
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FIGURE 8.13  A Turing machine.
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new formulation of a TM by redoing the doubling program on a TM with states and transitions (rather 
than a GOTO program).

A TM accepts a language L if L = {w : M accepts w}. Furthermore, if M halts on all inputs, then we 
say that L is Turing decidable or recursive. The connection between a recursive language and a decidable 
problem (function) should be clear. It is that function f is decidable if and only if Lf is recursive. (Readers 
who may have forgotten the connection between function f and the associated language Lf should review 
Remark 8.1.)

Theorem 8.9

All of the following generalizations of TMs can be simulated by a one-tape deterministic TM defined in 
Definition 8.20.

•	 Larger tape alphabet Σ
•	 More work tapes
•	 More access points, read/write heads, on each tape
•	 2D or more dimensional tapes
•	 Nondeterminism

Although these generalizations do not make a TM compute more, they do make a TM more efficient and 
easier to program. Many more variants of TMs are studied and used in the literature. Of all simulations 
in Theorem 8.9, the last one needs some comments. A nondeterministic computation branches like a 
tree. When simulating such a computation for n steps, the obvious thing for a deterministic TM to do 
is to try all possibilities; thus, this requires up to cn steps, where c is the maximum number of nondeter-
ministic choices at each step.

Example 8.18

A DFA is an extremely simple TM. It just reads the input symbols from left to right. TMs natu-
rally accept more languages than DFAs can. For example, a TM can accept

L = {xx : x ∈ {0, 1}*} as follows:

•	 Find the middle point first: It is trivial by using two heads; with one head, one can mark 
one symbol at the left and then mark another on the right and go back and forth to even-
tually find the middle point.

•	 Match the two parts: With two heads, this is again trivial; with one head, one can again 
use the marking method matching a pair of symbols each round; if the two parts match, 
accept the input by entering qf.

There are types of storage media other than a tape:

•	 A pushdown store is a semi-infinite work tape with one head such that each time the head 
moves to the left, it erases the symbol scanned previously; this is a last-in first-out storage.

•	 A queue is a semi-infinite work tape with two heads that move only to the right, the lead-
ing head is write only and the trailing head is read only; this is a first-in first-out storage.

•	 A counter is a pushdown store with a single-letter alphabet (except its one end, which 
holds a special marker symbol). Thus, a counter can store a nonnegative integer and can 
perform three operations.

A queue machine can simulate a normal TM, but the other two types of machines are not power-
ful enough to simulate a TM.
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Example 8.19

When the TM tape is replaced by a pushdown store, the machine is called a pushdown autom-
aton. Pushdown automata have been thoroughly studied because they accept the class of 
context-free languages defined in Section 8.4. More precisely, it can be shown that if L is 
a context-free language, then it is accepted by a PDA, and if L is accepted by a PDA, then there 
is a CFG generating L. Various types of PDAs have fundamental applications in compiler 
design.

The PDA is more restricted than a TM. For example, L = {xx : x ∈ {0, 1}*} cannot be accepted by a 
PDA, but it can be accepted by a TM as in Example 8.18. But a PDA is more powerful than a DFA. For 
example, a PDA can accept the language L′ = {0k 1k : k ≥ 0} easily. It can read the 0s and push them into 
the pushdown store; then, after it finishes the 0s, each time the PDA reads a 1, it removes a 0 from the 
pushdown store; at the end, it accepts if the pushdown store is empty (the number of 0s matches that 
of 1s). But a DFA cannot accept L′, because after it has read all of the 0s, it cannot remember k when k 
has higher information content than the DFA’s finite control.

Two pushdown stores can be used to simulate a tape easily. For comparisons of powers of pushdown 
stores, queues, counters, and tapes, see van Emde Boas (1990) and Li and Vitányi (1993).

The idea of the universal algorithm was introduced in Section 8.2. Formally, a universal TM, U, takes 
an encoding of a pair of parameters (M, x) as input and simulates M on input x . U accepts (M, x) if M 
accepts x. The universal TMs have many applications. For example, the definition of the Kolmogorov 
complexity (Li and Vitányi 1993) fundamentally relies on them.

Example 8.20

Let Lu = {〈M, w〉 : M accepts w}. Then, Lu can be accepted by a TM, but it is not Turing decidable. 
The proof is omitted.

If a language is Turing acceptable but not Turing decidable, we call such a language recur-
sively enumerable (r.e.). Thus, Lu is r.e. but not recursive. It is easily seen that if both a language 
and its complement are r.e., then both of them are recursive. Thus, L–u is not r.e.

8.5.2.1 T ime and Space Complexity

With TMs, we can now formally define what we mean by time and space complexities. Such a formal 
investigation by Hartmanis and Stearns (1965) marked the beginning of the field of computational com-
plexity. We refer the readers to Hartmanis’ Turing Award lecture (Hartmanis 1994) for an interesting 
account of the history and the future of this field.

To define the space complexity properly (in the sublinear case), we need to slightly modify the TM 
of Figure 8.13. We will replace the tape containing the input by a read-only input tape and give the 
TM some extra work tapes.

Definition 8.21

Let M be a TM. If, for each n, for each input of length n, and for each sequence of choices of moves 
when M is nondeterministic M makes at most T(n) moves, we say that M is of time complexity T(n); 
similarly, if M uses at most S(n) tape cells of the work tape, we say that M is of space complexity S(n).
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Theorem 8.10

Any TM using s(n) space can be simulated by a TM, with just one work tape, using s(n) space. If a 
language is accepted by a k-tape TM running in time t(n) [space s(n)], then it also can be accepted by 
another k-tape TM running in time ct(n) [space cs(n)], for any constant c > 0.

To avoid writing the constant c everywhere, we use the standard big-O notation: we say f(n) is O(g(n)) 
if there is a constant c such that f(n) ≤ cg(n) for all but finitely many n. The preceding theorem is called 
the linear speedup theorem; it can be proved easily by using a larger tape alphabet to encode several cells 
into one and hence compress several steps into one. It leads to the following definitions.

Definition 8.22

DTIME[t(n)] is the set of languages accepted by multitape deterministic TMs in time O(t(n)).
NTIME[t(n)] is the set of languages accepted by multitape nondeterministic TMs in time O(t(n)).
DSPACE[s(n)] is the set of languages accepted by multitape deterministic TMs in space O(s(n)).
NSPACE[s(n)] is the set of languages accepted by multitape nondeterministic TMs in space O(s(n)).
P is the complexity class Uc∈N DTIME[nc].
NP is the complexity class Uc∈N NTIME[nc].
PSPACE is the complexity class Uc∈N DSPACE[nc].

Example 8.21

We mentioned in Example 8.18 that L = {xx : x ∈ {0, 1}*} can be accepted by a TM. The procedure 
we have presented in Example 8.18 for a one-head one-tape TM takes O (n2) time because the 
single head must go back and forth marking and matching. With two heads, or two tapes, L can 
be easily accepted in O(n) time.

It should be clear that any language that can be accepted by a DFA, an NFA, or a PDA can be accepted by a 
TM in O(n) time. The type-1 grammar in Definition 8.16 can be accepted by a TM in O(n) space. Languages 
in P, that is, languages acceptable by TMs in polynomial time, are considered as feasibly computable. It is 
important to point out that all generalizations of the TM, except the nondeterministic version, can all be 
simulated by the basic one-tape deterministic TM with at most polynomial slowdown. The class NP repre-
sents the class of languages accepted in polynomial time by a nondeterministic TM. The nondeterministic 
version of PSPACE turns out to be identical to PSPACE (Savitch 1970). The following relationships are true:

	 P ⊆ NP ⊆ PSPACE

Whether or not either of the inclusions is proper is one of the most fundamental open questions in 
computer science and mathematics. Research in computational complexity theory centers around these 
questions. To solve these problems, one can identify the hardest problems in NP or PSPACE. These 
topics will be discussed in Chapter 8. We refer the interested reader to Gurari (1989), Hopcroft and 
Ullman (1979), Wood (1987), and Floyd and Beigel (1994).

8.5.2.2  Other Computing Models

Over the years, many alternative computing models have been proposed. With reasonable complexity 
measures, they can all be simulated by TMs with at most a polynomial slowdown. The reference van 
Emde Boas (1990) provides a nice survey of various computing models other than TMs. Because of 
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limited space, we will discuss a few such alternatives very briefly and refer our readers to van Emde Boas 
(1990) for details and references.

Random Access Machines. The random access machine (RAM) (Cook and Reckhow 1973) consists of 
a finite control where a program is stored, with several arithmetic registers and an infinite collection of 
memory registers R[1], R[2], .… All registers have an unbounded word length. The basic instructions for 
the program are LOAD, ADD, MULT, STORE, GOTO, ACCEPT, REJECT, etc. Indirect addressing is 
also used. Apparently, compared to TMs, this is a closer but more complicated approximation of mod-
ern computers. There are two standard ways for measuring time complexity of the model:

•	 The unit-cost RAM: in this case, each instruction takes one unit of time, no matter how big the oper-
ands are. This measure is convenient for analyzing some algorithms such as sorting. But it is unre-
alistic or even meaningless for analyzing some other algorithms, such as integer multiplication.

•	 The log-cost RAM: each instruction is charged for the sum of the lengths of all data manipulated implic-
itly or explicitly by the instruction. This is a more realistic model but sometimes less convenient to use.

Log-cost RAMs and TMs can simulate each other with polynomial overheads. The unit-cost RAM 
might be exponentially (but unrealistically) faster when, for example, it uses its power of multiplying 
two large numbers in one step.

Pointer Machines. The pointer machines were introduced by Kolmogorov and Uspenskii (1958) (also 
known as the Kolmogorov–Uspenskii machine) and by Schönhage in 1980 (also known as the stor-
age modification machine, see Schönhage [1980]). We informally describe the pointer machine here. A 
pointer machine is similar to a RAM but differs in its memory structure. A pointer machine operates on a 
storage structure called a ∆ structure, where ∆ is a finite alphabet of size greater than one. A ∆-structure S 
is a finite directed graph (the Kolmogorov–Uspenskii version is an undirected graph) in which each node 
has k = |∆| outgoing edges, which are labeled by the k symbols in ∆. S has a distinguished node called the 
center, which acts as a starting point for addressing, with words over ∆, other nodes in the structure. The 
pointer machine has various instructions to redirect the pointers or edges and thus modify the storage 
structure. It should be clear that turning machines and pointer machines can simulate each other with 
at most polynomial delay if we use the log-cost model as with the RAMs. There are many interesting 
studies on the efficiency of the preceding simulations. We refer the reader to van Emde Boas (1990) for 
more pointers on the pointer machines.

Circuits and Nonuniform Models. A Boolean circuit is a finite, labeled, directed acyclic graph. Input 
nodes are nodes without ancestors; they are labeled with input variables x1, …, xn. The internal nodes 
are labeled with functions from a finite set of Boolean operations, for example, {and, or, not} or {⊕}. The 
number of ancestors of an internal node is precisely the number of arguments of the Boolean function 
that the node is labeled with. A node without successors is an output node. The circuit is naturally evalu-
ated from input to output: at each node, the function labeling the node is evaluated using the results of 
its ancestors as arguments. Two cost measures for the circuit model are the following:

•	 Depth: the length of a longest path from an input node to an output node
•	 Size: the number of nodes in the circuit

These measures are applied to a family of circuits {Cn : n ≥ 1} for a particular problem, where Cn solves 
the problem of size n. If Cn can be computed from n (in polynomial time), then this is a uniform measure. 
Such circuit families are equivalent to TMs. If Cn cannot be computed from n, then such measures are 
nonuniform measures, and such classes of circuits are more powerful than TMs because they simply can 
compute any function by encoding the solutions of all inputs for each n. See van Emde Boas (1990) for 
more details and pointers to the literature.
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Key Terms

Algorithm: A finite sequence of instructions that is supposed to solve a particular problem.
Ambiguous context-free grammar: For some string of terminals, the grammar has two distinct deriva-

tion trees.
Chomsky normal form: Every rule of the context-free grammar has the form A → BC or A → a, where 

A, B, and C are nonterminals and a is a terminal.
Computable or decidable function/problem: A function/problem that can be solved by an algorithm 

(or equivalently, a TM).
Context-free grammar: A grammar whose rules have the form A → B, where A is a nonterminal and B 

is a string of nonterminals and terminals.
Context-free language: A language that can be described by some context-free grammar.
Context-sensitive grammar: A grammar whose rules have the form α → β, where α and β are strings of 

nonterminals and terminals and | α | ≤ | β |.
Context-sensitive language: A language that can be described by some context-sensitive grammar.
Derivation or parsing: An illustration of how a string of terminals is obtained from the start symbol by 

successively applying the rules of the grammar.
Finite automaton or finite-state machine: A restricted TM where the head is read only and shifts only 

from left to right.
(Formal) grammar: A description of some language typically consisting of a set of terminals, a set of 

nonterminals with a distinguished one called the start symbol, and a set of rules (or produc-
tions) of the form α → β, depicting what string α of terminals and nonterminals can be rewrit-
ten as another string β of terminals and nonterminals.

(Formal) language: A set of strings over some fixed alphabet.
Halting problem: The problem of deciding if a given program (or TM) halts on a given input.
Nondeterministic TM: A TM that can make any one of a prescribed set of moves on a given state and 

symbol read on the tape.
Partially decidable decision problem: There exists a program that always halts and outputs 1 for every 

input expecting a positive answer and either halts and outputs 0 or loops forever for every 
input expecting a negative answer.

Program: A sequence of instructions that is not required to terminate on every input.
Pushdown automaton: A restricted TM where the tape acts as a pushdown store (or a stack).
Reduction: A computable transformation of one problem into another.
Regular expression: A description of some language using operators union, concatenation, and Kleene 

closure.
Regular language: A language that can be described by some right-linear/regular grammar (or equiva-

lently by some regular expression).
Right-linear or regular grammar: A grammar whose rules have the form A → aB or A → a, where A, 

B are nonterminals and a is either a terminal or the null string.
Time/space complexity: A function describing the maximum time/space required by the machine on 

any input of length n.
Turing machine: A simplest formal model of computation consisting of a finite-state control and a 

semi-infinite sequential tape with a read/write head. Depending on the current state and sym-
bol read on the tape, the machine can change its state and move the head to the left or right.

Uncomputable or undecidable function/problem: A function/problem that cannot be solved by any 
algorithm (or equivalently, any TM).

Universal algorithm: An algorithm that is capable of simulating any other algorithms if properly 
encoded.
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Further Information

The fundamentals of the theory of computation, automata theory, and formal languages can be found 
in many text books including Floyd and Beigel (1994), Gurari (1989), Harel (1992), Harrison (1978), 
Hopcroft and Ullman (1979), and Wood (1987). The central focus of research in this area is to under-
stand the relationships between the different resource complexity classes. This work is motivated in part 
by some major open questions about the relationships between resources (such as time and space) and 
the role of control mechanisms (nondeterminism/randomness). At the same time, new computational 
models are being introduced and studied. One such recent model that has led to the resolution of a num-
ber of interesting problems is the interactive proof systems. They exploit the power of randomness and 
interaction. Among their applications are new ways to encrypt information as well as some unexpected 
results about the difficulty of solving some difficult problems even approximately. Another new model 
is the quantum computational model that incorporates quantum-mechanical effects into the basic move 
of a TM. There are also attempts to use molecular or cell-level interactions as the basic operations of a 
computer. Yet another research direction motivated in part by the advances in hardware technology is 
the study of neural networks, which model (albeit in a simplistic manner) the brain structure of mam-
mals. The following chapters of this volume will present state-of-the-art information about many of 
these developments. The following annual conferences present the leading research work in computa-
tion theory: Association of Computer Machinery (ACM) Annual Symposium on Theory of Computing; 
Institute of Electrical and Electronics Engineers (IEEE) Symposium on the Foundations of Computer 
Science; IEEE Conference on Structure in Complexity Theory; International Colloquium on Automata, 
Languages and Programming; Symposium on Theoretical Aspects of Computer Science; Mathematical 
Foundations of Computer Science; and Fundamentals of Computation Theory. There are many related 
conferences such as Computational Learning Theory and ACM Symposium on Principles of Distributed 
Computing, where specialized computational models are studied for a specific application area. Concrete 
algorithms is another closely related area in which the focus is to develop algorithms for specific prob-
lems. A number of annual conferences are devoted to this field. We conclude with a list of major journals 
whose primary focus is in theory of computation: The Journal of the Association of Computer Machinery, 
SIAM Journal on Computing, Journal of Computer and System Sciences, Information and Computation, 
Mathematical Systems Theory, Theoretical Computer Science, Computational Complexity, Journal of 
Complexity, Information Processing Letters, International Journal of Foundations of Computer Science, 
and ACTA Informatica.
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9.1  Introduction

Cryptography is a vast subject, addressing problems as diverse as e-cash, remote authentication, fault-
tolerant distributed computing, and more. We cannot hope to give a comprehensive account of the 
field here. Instead, we will narrow our focus to those aspects of cryptography most relevant to the 
problem of secure communication. Broadly speaking, secure communication encompasses two com-
plementary goals: the secrecy and integrity of communicated data. These terms can be illustrated 
using the simple example of a user A attempting to transmit a message m to a user B over a public 
channel. In the simplest sense, techniques for data secrecy ensure that an eavesdropping adversary 
(i.e., an adversary who sees all communication occurring on the channel) cannot learn any informa-
tion about the underlying message m. Viewed in this way, such techniques protect against a pas-
sive adversary who listens to—but does not otherwise interfere with—the parties’ communication. 
Techniques for data integrity, on the other hand, protect against an active adversary who may arbi-
trarily modify the information sent over the channel or may inject new messages of his own. Security 
in this setting requires that any such modifications or insertions performed by the adversary will be 
detected by the receiving party.

In the cases of both secrecy and integrity, two different assumptions regarding the initial setup of 
the communicating parties can be considered. In the private-key setting (also known as the “shared-
key,” “secret-key,” or “symmetric-key” setting), which was the setting used exclusively for cryptography 
until the mid-1970s, parties A and B are assumed to have shared some secret information—a key—in 
advance. This key, which is completely unknown to the adversary, is then used to secure their future 
communication. (We do not comment further on how such a key might be generated and shared; for 
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our purposes, it is simply an assumption of the model.) Techniques for secrecy in this setting are called 
private-key encryption schemes, and those for data integrity are termed message authentication 
codes (MACs).

In the public-key setting, one (or both) of the parties generate a pair of keys: a public key that is widely 
disseminated, and an associated private key which is kept secret. The party generating these keys may 
now use them as a receiver to ensure message secrecy using a public-key encryption scheme, or as a 
sender to provide data integrity using a digital signature scheme. Table 9.1 gives an overview of these 
different cryptographic tools.

In addition to showcasing the above primitives, and explaining how they should be used and how 
they can be constructed, the treatment here will also introduce a bit of the methodology of modern 
(i.e., post-1980s) cryptography. This includes an emphasis on formal definitions of security that pin down 
exactly what goals a scheme is intended to achieve; precisely stated assumptions (if needed) regarding 
the hardness of certain mathematical problems; and rigorous proofs of security that a cryptographic 
construction meets some definition of security given a particular assumption. This approach to design-
ing and analyzing cryptosystems is much preferred to the heuristic, “ad-hoc” approach used in the past.

We warn the reader in advance that it is not the intention of this survey to cover the precise details 
of schemes used in practice today, nor will the survey be comprehensive. Rather, the aim of the survey 
is to provide the reader with an appreciation for the problem of secure communication along with an 
explanation of the core techniques used to address it. The reader seeking further details is advised to 
consult the references listed at the end of this chapter.

9.2  Private-Key Setting and Private-Key Encryption

We begin by discussing the private-key setting, where two parties share a random, secret key k that will 
be used to secure their future communication. Let us jump right in by defining the syntax of private-key 
encryption. Formally, a private-key encryption scheme consists of a pair of algorithms (Enc, Dec). The 
encryption algorithm Enc takes as input a key k and a message m (sometimes also called the plain-
text), and outputs an encrypted version of the message called the ciphertext that will be denoted by c. 
The decryption algorithm Dec takes as input a key and a ciphertext, and outputs a message. The basic 
correctness requirement is that for every key k and message m (in some allowed set of messages) we 
have m = Deck(Enck(m)). Since it will come up later, we mention here that Enc may be a randomized 
algorithm, so that multiple ciphertexts can potentially be output when encrypting a given message with 
some key, in which case the preceding correctness condition is required to hold with probability 1. 
Without loss of generality, we may assume Dec is deterministic.

A private-key encryption scheme is used in the following way. Let k be the key shared by two parties 
A and B. For A to send a message m to B, she first encrypts the message by computing c ← Enck(m) (we 
use “←” to explicitly indicate that Enc may be randomized); the ciphertext c is then transmitted over 
the public channel to B. Upon receiving this ciphertext, B decrypts the ciphertext to recover the message 
by computing m := Deck(c).

A private-key encryption scheme can also be used by a single party A to encrypt data (say, on a hard 
drive) that will be accessed by A herself at a later point in time. Here, A encrypts the data using a key 
k that she stores securely somewhere else. When A later wants to read the data, she can recover it by 
decrypting using k. Here, the “channel” is the hard drive itself and, rather than being separated in space, 
encryption and decryption are now separated in time. Everything we say in what follows will apply to 

TABLE 9.1  Overview of the Topics Covered in This Survey

Private-Key Setting Public-Key Setting

Secrecy Private-key encryption (Section 9.2) Public-key encryption (Section 9.4)
Integrity Message authentication codes (Section 9.3) Digital signature schemes (Section 9.5)
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either usage of private-key encryption. (Message authentication codes, discussed in Section 9.3, can also 
be used for either of these canonical applications.)

The above discussion says nothing about the security provided by the encryption scheme. We con-
sider this aspect in the following sections.

9.2.1  Perfect Secrecy

The goal of a private-key encryption scheme is to ensure the secrecy of m from an eavesdropping adver-
sary A who views c, but does not know k. How should secrecy be defined formally?

A natural first attempt would be to say that an encryption scheme is secure if A cannot recover the 
message m in its entirety (assuming, say, m is chosen uniformly). A little thought shows that such a defini-
tion is inadequate: What if the distribution of m is not uniform? And surely we would not consider secure 
a scheme that always leaks the first bit of the message (without revealing anything about the rest of m)!

A better definition, introduced by Shannon [38] and termed perfect secrecy, is that the ciphertext c 
should leak no information whatsoever about m, regardless of its distribution. This is formalized by 
requiring that the a posteriori distribution of m (after A observes the ciphertext) should be equivalent 
to the a priori distribution of m (reflecting the adversary’s prior knowledge about the distribution of the 
message). Namely, a scheme (Enc, Dec) is perfectly secret if for any distribution M over the space of 
possible messages, any message m, and any ciphertext c, it holds that

	 Pr[ | ] Pr[ ],M m C c M m= = = =

where M (respectively, C) denotes the random variable taking the value of the actual message of the 
sender (respectively, actual ciphertext transmitted).

Before giving an example of a scheme satisfying the above definition, we stress that the adversary 
(implicit in the above) is assumed to know the full details of the encryption scheme being used by the 
honest parties. (This is called Kerckhoffs’s principle [29].) It is a mistake to require the details of a crypto-
system scheme to be hidden in order for it to be secure, and modern schemes are designed to be secure 
even when the full details of all algorithms are publicly known. The only thing unknown to the adver-
sary is the key itself. This highlights the necessity of choosing the key at random, and the importance of 
keeping it completely secret.

Perfect secrecy can be achieved by the one-time pad encryption scheme, which works as follows. Let 
ℓ be the length of the message to be transmitted, where the message is viewed as a binary string. (Note 
that all potential messages are assumed to have the same length.) The parties share in advance a uni-
formly distributed, ℓ-bit key k ∈ {0, 1}ℓ. To encrypt message m the sender computes c := m ⊕ k, where 
⊕ represents bit-wise exclusive-or. Decryption is performed by setting m := c ⊕ k. Clearly, decryption 
always recovers the original message.

To see that this scheme is perfectly secret, fix any initial distribution over messages and let K be the 
random variable denoting the key. For any message m and observed ciphertext c, we have

	

Pr[ | ]
Pr[ | ]Pr[ ]

Pr[ ]

Pr[ | ]Pr[ ]

Pr[ | ] Pr[ ]
,M m C c C c M m M m

C c
C c M m M m
C c M m M m

m∑
= = = = = =

=
= = = =

= = ′ ⋅ = ′
′

	 (9.1)

where the summation is over all possible messages m′. Moreover, for any c, m′ (including m′ = m) 
we have

	 Pr[ | ] Pr[ ] 2 ,C c M m K c m �= = ′ = = ′ = −

since k is a uniform ℓ-bit string. Substituting into (9.1), we have Pr[M = m | C = c] = Pr[M = m] as desired.
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Although the one-time pad is perfectly secret, it is of limited value in practice. For one, the length of 
the shared key is equal to the length of the message. Thus, the scheme becomes impractical when long 
messages are to be sent. Second, it is easy to see that the scheme provides secrecy only when a given key 
is used to encrypt a single message (hence the name “one-time pad”). This will not do in typical scenarios 
where A and B wish to share a single key that they can use to send multiple messages. Unfortunately, it 
can be shown that both these limitations are inherent for schemes achieving perfect secrecy.

9.2.2  Computational Secrecy

At the end of the previous section, we observed some fundamental limitations of perfect secrecy. To 
obtain reasonable solutions, we thus need to (slightly) relax our definition of secrecy. This is not too bad, 
however, since perfect secrecy may be considered to be unnecessarily strong: it requires absolutely no 
information about m to be leaked, even to an all-powerful eavesdropper. Arguably, it would be sufficient 
to leak a tiny amount of information and to restrict attention to eavesdroppers having some bounded 
amount of computing power. To take some concrete numbers, we may be satisfied with an encryp-
tion scheme that leaks a most 2−60 bits of information (on average) to any eavesdropper that invests 
at most 100 years of computational effort (on a standard desktop PC, for instance). Definitions of this 
latter sort are termed computational, to distinguish them from notions (like perfect secrecy) that are 
information-theoretic in nature. As initiated in the work of [11,36,33,35,44,9,22] and others, computa-
tional security is now the default way security is defined for cryptographic primitives.

A drawback of computational notions of security is that, given the current state of our knowledge, 
proofs that a given scheme satisfies any such definition must necessarily rely on (unproven) assump-
tions regarding the computational hardness of certain problems. Our confidence in the security of a 
particular scheme can be no better than our confidence in the underlying assumption(s) it is based on.

We illustrate the above by introducing a basic definition of computational secrecy. Fix some t, ε ≥ 0. 
Private-key encryption scheme (Enc, Dec) is (t, ε)-indistinguishable if for every eavesdropper A running 
in time at most t, and for all (equal-length) messages m0, m1, we have

	
Pr ( ( )) .A Enck bm b=[ ] − ≤1

2
ε

The probability above is taken over uniform choice of the key k and the bit b, as well as any randomness 
used by Enc. In words: we choose a random key k, encrypt one of m0 or m1 (each with equal probability), 
and give the resulting ciphertext to A; the scheme is indistinguishable if any A  running in time t cannot 
determine which message was encrypted with probability ε-better than a random guess.

Perfect secrecy can be shown to be equivalent to (∞, 0)-indistinguishability, and so the above is a 
natural relaxation of perfect secrecy. Taking t bounded and ε strictly positive exactly corresponds to 
our intuitive idea of relaxing perfect secrecy by placing a bound t on the running time of A, and being 
content with possibly allowing a tiny amount ε of “information leakage.”

9.2.3  Security against Chosen-Plaintext Attacks

Rather than give a construction satisfying the above definition, we immediately introduce an even 
stronger definition that is better suited for practical applications. Thus far, our security definitions have 
been restricted to consideration of an adversary who eavesdrops on a single ciphertext and, as we have 
mentioned, this restriction is essential in the context of perfect secrecy. As noted earlier, however, the 
honest parties would prefer to encrypt multiple messages using the same shared key; we would like to 
guarantee secrecy in this setting as well. Moreover, it may be the case that the adversary already knows 
some of the messages being encrypted; in fact, the adversary might even be able to influence some of 
the messages the parties send. This latter scenario, where the adversary can cause the parties to encrypt 
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plaintexts of the adversary’s choice, is termed a chosen-plaintext attack. The one-time pad is trivially 
insecure against a chosen-plaintext attack: given a ciphertext c = k ⊕ m for a known message m, the 
adversary can easily recover the key k.

To capture the above attack scenarios, we modify the previous definition by additionally giving A 
access to an encryption oracle Enck(·). This oracle allows the adversary to obtain the encryption of 
any message(s) of its choice using the key k shared by the parties. This oracle is meant to model the 
real-world capabilities of an adversary who can control what messages get encrypted by the parties; 
of course, if the adversary has only partial control over what messages get encrypted, then this only 
makes the adversary weaker. We say that an encryption scheme (Enc, Dec) is (t, ε)-indistinguishable 
against a chosen-plaintext attack (or (t, ε)-CPA secure) if for every adversary A running in time at 
most t

	
Pr ( ( )) ,( )AEnc Enck

k bm b⋅ =  − ≤1

2
ε

where the probability space is as before.
It is not entirely obvious that CPA-security implies security when multiple messages are encrypted, 

but this can be shown to be the case [27].
Any easy, but important, observation is that any CPA-secure encryption scheme must have random-

ized encryption. This is true even if only security for multiple encrypted messages is desired: if the 
encryption scheme is deterministic, then given any two ciphertexts the adversary can tell whether or not 
they are encryptions of the same message, an undesirable leakage of information.

9.2.4  Block Ciphers

As a step toward constructing a CPA-secure private-key encryption scheme, we first introduce an 
important primitive for this application. A keyed function F : {0, 1}n × {0, 1}ℓ → {0, 1}ℓ is an efficiently 
computable function that maps two inputs to a single output; we treat the first input to F as a key that 
will be chosen at random and then fixed, and define Fk(x) = F(k, x). (We have assumed for simplicity 
that the input and output of Fk have the same length ℓ, but this is not essential.) We call n the key length 
and ℓ the block length. Informally, F is pseudorandom if the function Fk, for a randomly chosen k, is 
“indistinguishable” from a completely random function f with the same domain and range. That is, 
consider an adversary A who can send inputs to and receive outputs from a box that contains either 
Fk (for a random k ∈ {0, 1}n) or f (for a random function f); the keyed function F is pseudorandom if A 
cannot tell which is the case with probability significantly better than random guessing. Formally, F is a 
(t, ε)-pseudorandom function [20] if for any adversary A running in time t

	
Pr[ ] Pr[ ] ,( ) ( )A AF fk ⋅ ⋅= − = ≤1 1 ε

where in the first case k is chosen uniformly from {0, 1}n and in the second case f is a completely random 
function.

If, for all k, the function Fk is a permutation (i.e., bijection) over {0, 1}ℓ and moreover the inverse Fk
−1 

can be computed efficiently (given the key k), then F is called a keyed permutation. A pseudorandom 
function that is also a keyed permutation is called a pseudorandom permutation or a block cipher. 
(Technically, in this case Fk should be indistinguishable from a random permutation, but for large 
enough ℓ this is equivalent to being indistinguishable from a random function.)

A long sequence of theoretical results culminating in [20,24,31] shows that pseudorandom functions 
and block ciphers can be constructed from rather minimal cryptographic assumptions, and thus in 
particular from the cryptographic assumptions we will introduce in Section 9.4. Such constructions are 
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rather inefficient. In practice, dedicated and highly efficient block ciphers are used instead; although the 
security of these block ciphers cannot be cleanly reduced to a concise mathematical assumption, several 
design principles used in their construction can be given theoretical justification. More importantly, 
such block ciphers have been subjected to intense scrutiny by the cryptographic community for several 
years, and thus it is not unreasonable to view the assumption that these block ciphers are secure as being 
on par with other assumptions used in cryptography.

The most popular block cipher today is the Advanced Encryption Standard (AES) [10], which was 
standardized by NIST in 2001 after a multi-year, public competition. AES supports 128-, 192-, or 256-bit 
keys, and has a 128-bit block length. It superseded the Data Encryption Standard (DES) [13], which had 
been standardized by the US government in 1977. DES is still in wide use, but is considered insecure due 
to its relatively short key length (56 bits) and block length (64 bits). Further details and additional block 
ciphers are discussed in [30].

9.2.5 A  CPA-Secure Scheme

Given any pseudorandom function F : {0, 1}n × {0, 1}ℓ → {0, 1}ℓ with ℓ sufficiently long, it is possible 
to construct a private-key encryption scheme (Enc, Dec) that is CPA-secure [21]. To encrypt a mes-
sage m ∈ {0, 1}ℓ using a key k, first choose a random string r ∈ {0, 1}ℓ; then output the ciphertext 
⟨r, Fk(r) ⊕ m⟩. Note that encryption here is randomized, and there are many possible ciphertexts asso-
ciated with a given key and message. Decryption of a ciphertext c = ⟨c1, c2⟩ using key k is performed 
by computing m: = c2 ⊕ Fk(c1). It can be verified that correctness holds.

Intuitively, the sender and receiver are using Fk(r) as a “one-time pad” to encrypt m. Although 
Fk(r) is not random, it is pseudorandom and one can show that this is enough for security to hold. 
In a bit more detail: say the sender encrypts multiple messages m1, m2, …, mq using random strings 
r1, r2 , …, rq, respectively. The facts that F is a pseudorandom function and k is unknown to the adver-
sary imply that Fk(r1), Fk(r2), …, Fk(rq) are indistinguishable from independent, uniform strings of 
length ℓ unless ri = rj for some i ≠ j (in which case, Fk(ri) and Fk(rj) are, of course, equal). Assuming 
this does not occur, then, usage of the encryption scheme is equivalent to using the one-time pad 
encryption scheme with q independent keys, and is thus secure. The probability that there exist dis-
tinct i, j with ri = rj can be bounded by q2/2ℓ, which is small for typical values of q, ℓ. A full proof can 
be found in [27, Chapter 3].

The scheme described above can be applied to messages of arbitrary length by encrypting in a block-
by-block fashion. This results in a ciphertext whose length is twice that of the original plaintext. More 
efficient modes of encryption [14,27] are used in practice to encrypt long messages. As an example, 
counter mode (CTR-mode) encryption of a message m = ⟨m1, …, mt⟩ (with mi ∈ {0, 1}ℓ) using a key k is 
done by choosing a random r as above, and then computing the ciphertext

	 〈 + ⊕ + ⊕ … + ⊕ 〉r F r m F r m F r t mk k k t, ( ) , ( ) , , ( ) .1 21 2

(A proof of security for this scheme follows along similar lines as above.) The ciphertext is now only a 
single block longer than the plaintext.

9.2.6  Stronger Security Notions

Even the notion of CPA security considers only a passive adversary who eavesdrops on the public chan-
nel, but not an active adversary who interferes with the communication between the parties. (Although 
we will treat active attacks in the next section, there our concern will primarily be integrity rather than 
secrecy.) Encryption schemes providing security against an active adversary are available; see Section 
9.3.2 and Section 9.3.7 [27] for further discussion.
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9.3  Message Authentication Codes

The preceding section discussed how to achieve secrecy; we now discuss techniques for ensuring integ-
rity (sometimes also called authenticity). Here, the problem is as follows: parties A and B share a key k 
in advance, and then communicate over a channel that is under the complete control of an adversary. 
When B receives a message, he wants to ensure that this message indeed originated from A and was not, 
for example, injected by the adversary, or generated by modifying the real message sent by A.

Secrecy and integrity are incomparable goals, and it is possible to achieve either one without the 
other. In particular, the one-time pad—which achieves perfect secrecy—provides no integrity whatso-
ever since any ciphertext c of the appropriate length decrypts to some valid message. Even worse, if c 
represents the encryption of some (possibly unknown) message m, then flipping the first bit of c has the 
predictable effect of flipping the first bit of the resulting decrypted message. This illustrates that integrity 
is not implied by secrecy, and if integrity is required then specific techniques to achieve it must be used.

In the private-key setting, the right tool in this context is a MAC. We first define the syntax. A MAC con-
sists of two algorithms (Mac, Vrfy). The tag-generation algorithm Mac takes as input a key k and a message 
m, and outputs a tag tag; although it is possible for this algorithm to be randomized, there is not much loss 
of generality in assuming that it is deterministic, and so we write this as tag := Mack(m). The verification 
algorithm Vrfy takes as input a key, a message, and a tag; it outputs a single bit b with the intention that b = 
1 denotes “validity” and b = 0 indicates “invalidity.” (If Vrfyk(m, tag) = 1, then we say that tag is a valid 
tag for message m with respect to key k.) An honestly generated tag on a message m should be accepted as 
valid, and so correctness requires that for any key k and message m, we have Vrfyk(m, Mack(m)) = 1.

Defining security for MACs is relatively simple, and there is only one widely accepted definition [3,23]. 
At a high level, the goal is to prevent an adversary from generating a valid tag on a message that was never 
previously authenticated by one of the honest parties. This should hold even if the adversary observes valid 
tags on several other messages of its choice. Formally, consider an adversary A who is given access to an 
oracle Mack(·); the adversary can submit messages of its choice to this oracle and obtain the corresponding 
valid tags. A succeeds if it can then output (m, tag) such that (1) m was not one of the messages m1,… 
that A had previously submitted to its oracle, and (2) tag is a valid tag for m; that is, Vrfyk(m, tag) = 1. 
A MAC is (t, ε)-secure if for all A running in time at most t, the probability with which A succeeds in this 
experiment (where the probability is taken over random choice of k) is at most ε. This security notion is 
also called existential unforgeability under adaptive chosen-message attack.

One attack not addressed in the above discussion is a replay attack, whereby an adversary resends 
an honestly generated message m along with its valid tag. The receiver, in general, has no way of know-
ing whether the legitimate sender has simply sent m again, or whether this second instance of m was 
injected by the adversary. MACs, as defined, are stateless and so are unable to prevent such an attack. 
This is by choice: since repeated messages may be legitimate in some contexts, any handling of replay 
attacks must be taken care of at a higher level.

We now show a simple construction of a secure MAC based on any pseudorandom function/block 
cipher F : {0, 1}n × {0, 1}ℓ → {0, 1}ℓ with ℓ sufficiently long [21]. To generate a tag on a message m ∈ {0, 1}ℓ 
using key k, simply compute tag := Fk(m). Verification is done in the obvious way: Vrfyk(m, tag) 
outputs 1 if and only if tag=? ( )F mk . We sketch the proof of security for this construction. Let m1, … 
denote those messages for which adversary A has requested a tag. Since F is a pseudorandom function, 
Mack(m) = Fk(m) “looks random” for any m ∉ {m1, …}, the probability with which A can correctly pre-
dict the value of Fk(m), then, is roughly 2−ℓ. For ℓ large enough, the probability of a successful forgery is 
very small.

9.3.1  MACs for Long Messages

The construction in the previous section assumed that messages to be authenticated had length ℓ, the 
block length of the underlying pseudorandom function. Practical block ciphers have relatively short 
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block length (e.g., ℓ ≈ 128 bits), which means that only very short messages can be authenticated by this 
construction. In this section, we explore two approaches for doing better.

The first approach is a specific construction called the cipher-block chaining MAC (CBC-MAC), which 
can be based on any pseudorandom function/block cipher F as before. Here, we assume that the length 
of the messages to be authenticated is some fixed multiple of the block length ℓ. The tag on a message 
M = ⟨m1, m2, …, mL⟩ (with mi ∈ {0, 1}ℓ) using key k is computed as follows:

tag0 = 0ℓ

For i = 1 to L:
   tagi = Fk(mi ⊕ tagi−1)
Output tagL

Verification of a tag tag on a message M = ⟨m1, …, mL⟩ is done by recomputing tagL as above and out-
putting 1 if and only if tag = tagL.

CBC-MAC is known to be secure if F is a pseudorandom function [3]. This is true only as long 
as fixed-length messages (i.e., when the number of message blocks L is fixed) are authenticated, and 
there are several known attacks on the basic CBC-MAC presented above when this is not the case. 
Subsequent work has shown how to extend basic CBC-MAC to allow authentication of arbitrary-length 
messages [8,25,34].

A second approach to authenticating arbitrary-length messages is generic, in that it gives a way to 
modify any MAC for short messages so as to handle longer messages. As we will present it here, however, 
this approach requires an additional cryptographic primitive called a collision-resistant hash func-
tion. Although hash functions play an important role in cryptography, our discussion will be brief and 
informal since they are used sparingly in the remainder of this survey.

A hash function H is a function that compresses an arbitrary-length input to a short, fixed-length 
string. Hash functions are widely used in many areas of computer science, but cryptographic hash 
functions have some special requirements that are typically not needed for other applications. The 
most important such requirement, and the only one we will discuss, is collision resistance. Informally, 
H is collision resistant if it is infeasible for an efficient adversary to find a collision in H, where a col-
lision is a pair of distinct inputs x, x′ with H(x) = H(x′). If H is collision resistant, then the hash of 
a long message serves as a “secure digest” of that message, in the following sense: for any value y 
(whether produced by an adversary or not), an adversary can come up with at most one x such that 
H(x) = y. The output length of a hash function fixes an upper bound on the computational difficulty 
of finding a collision: if H has output length ℓ, then a collision can always be found in O(2ℓ/2) steps 
(see [27]).

As in the case of block ciphers, collision-resistant hash functions can be constructed from 
number-theoretic assumptions but such constructions are inefficient. (Interestingly, the precise 
assumptions needed to construct collision-resistant hash functions appear to be stronger than 
what is necessary to construct block ciphers.) Several dedicated, efficient constructions of hash 
functions are known; the most popular ones are currently given by the SHA family of hash func-
tions [15], which have output lengths ranging from 160 to 512 bits. As of the time of this writing, 
however, NIST is running a public competition to choose a replacement (see http://www.nist.gov/
hash-competition).

Returning to our discussion of MACs, let H : {0, 1}* → {0, 1}ℓ be a collision-resistant hash function, and 
let (Mac, Vrfy) be a secure MAC for messages of length ℓ. Then we can construct a message authentica-
tion code (Mac′, Vrfy′) for arbitrary-length messages as follows. To authenticate m, first hash it to an 

ℓ-bit digest, and then authenticate the digest using the original MAC, that is, Mac Mac′ =k km H m( ) ( ( )). 
def

 
Verification is done in the natural way, with Vrfy tag Vrfy tag′ =k km H m( , ) ( ( ), )

def

. It is not difficult to 
show that this construction is secure. The standardized HMAC message authentication code [2,17] can 
be viewed as following the above paradigm.
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9.3.2  Joint Secrecy and Integrity

When communicating over a public channel, it is usually the case that both secrecy and integrity are 
required. Schemes achieving both these properties are called authenticated encryption schemes [4,28]. 
The natural way to achieve both these properties is to combine a private-key encryption scheme with a 
MAC; there are a number of subtleties in doing so, and the reader is referred elsewhere for a more in-
depth treatment [4,27]. More efficient constructions of authenticated encryption schemes are also known.

9.4  Public-Key Setting and Public-Key Encryption

The private-key setting we have been considering until now requires the honest parties to share a secret 
key in advance in order to secure their communication. Historically, the private-key setting was the only 
one considered in cryptography. In the mid-1970s [11,33,35,36], however, the field of cryptography was 
revolutionized by the development of public-key cryptography which can enable secure communication 
between parties who share no secret information in advance and carry out all their communication over 
a public channel. The only requirement is that there is a way for one party to reliably send a copy of their 
public key to the other.

In the setting of public-key cryptography, any party A generates a pair of keys (pk, sk) on its 
own; the private key sk is held privately by A, while the public key pk must be obtained by any other 
party B who wishes to communicate with A. The first party can either send a copy of its public key 
directly to B, if an authenticated (but not necessarily private!) channel is available between A and 
B; alternately, A can place a copy of its public key in a public directory (or on her webpage) and B 
can then obtain pk when needed. Regardless of which method is used, when we analyze security of 
public-key cryptosystems we simply assume that parties are able to obtain authentic copies of each 
others’ public keys. (In practice, certification authorities and a public-key infrastructure are used 
to reliably distribute public keys; a discussion is outside the scope of this chapter.) We assume the 
adversary also knows all parties’ public keys; this makes sense since parties make no effort to keep 
their public keys secret.

Public-key cryptography has a number of advantages relative to private-key cryptography. As we have 
already discussed, the use of public-key cryptography can potentially simplify key distribution since 
a private channel between the communicating users is not needed (as it is in the private-key setting). 
Public-key cryptography can also simplify key management in large systems. For example, consider 
a company with N employees where each employee should be able to communicate securely with any 
other employee. Using a private-key solution would require each user to share a (unique) key with every 
other user, requiring each employee to store N − 1 secret keys. In contrast, with a public-key solution, 
each user would need to know their own private key and the N − 1 public keys of the other employees; 
these public keys, however, could be stored in a public directory or other nonprivate storage. Finally, 
public-key cryptography is more suitable for “open systems” such as the Internet where the parties who 
need to communicate securely may have no prior trust relationship, as is the case when a (new) customer 
wants to encrypt their credit card prior to sending it to an online merchant.

The primary disadvantage of public-key cryptography is that it is less efficient than private-key cryp-
tography. An exact comparison depends on many factors, but as a rough estimate, when encrypting 
“short” messages (say, less than 10 kB) public-key cryptosystems are 500–1000 times slower than com-
parable private-key cryptosystems and use roughly a factor of 10 more bandwidth. The power con-
sumption needed to use public-key cryptography can also be an issue when cryptography is used in 
low-power devices (sensors, RFID tags, etc.). Thus, when private-key cryptography is an option, it is 
preferable to use it.

Let us formalize the syntax of public-key encryption. A public-key encryption scheme is composed 
of three algorithms (Gen, Enc, Dec). The key-generation algorithm Gen is a randomized algorithm 
that outputs a pair of keys (pk, sk) as described earlier. The encryption algorithm Enc takes as input a 
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public key pk and a message m, and outputs a ciphertext c. The decryption algorithm Dec takes as input a 
private key sk and a ciphertext c, and outputs a message m. (We highlight here that the decryption algo-
rithm and the encryption algorithm use different keys.) Correctness requires that for all (pk, sk) output 
by Gen, and any message m, we have Decsk(Encpk(m)) = m.

Our definition of security is patterned on the earlier definition given for private-key encryption 
schemes; in fact, the only difference is that the adversary is given the public key. That is, public-key 
encryption scheme (Gen, Enc, Dec) is (t, ε)-indistinguishable if for every (probabilistic) eavesdropper 
A running in time at most t, and for all (equal-length) messages m0, m1, we have

	
Pr ( , ( )) ,A pk m bpk bEnc =  − ≤1

2
ε

where the probability is taken over random generation of (pk, sk) by Gen, uniform choice of b, and any 
randomness used by the encryption algorithm itself.

Interestingly, in the public-key setting, the above definition implies security against chosen-
plaintext attacks (and hence also security when multiple messages are encrypted) and for this reason 
we will also use the above as our definition of CPA-security; this is in contrast to the private-key 
setting where security against chosen-plaintext attacks is stronger than indistinguishability. A bit of 
reflection shows why: in the public-key setting access to an encryption oracle is superfluous, since an 
adversary who is given the public key can encrypt any messages it likes by itself. A consequence is 
that, in order to meet even a minimal notion of security in the public-key setting, encryption must 
be randomized.

In contrast to the private-key setting, public-key cryptography seems to inherently rely on number-
theoretic techniques. The two most commonly used techniques are explored in the following two sub-
sections. These sections assume some basic mathematical background on the part of the reader; the 
necessary background is covered in [27].

9.4.1 R SA Encryption

We discuss the general case of RSA cryptography, followed by its application to the particular case of 
public-key encryption.

Rivest et al. [36] introduced the concept of RSA-based cryptography in 1978. Security here is ulti-
mately based on (though not equivalent to) the assumption that factoring large numbers is hard, even 
though multiplying large numbers is easy. This, in turn, gives rise to problems that are easy if the fac-
torization of some modulus N is known, but that are believed to be hard when the factors of N are 
unknown. This asymmetry can be exploited to construct public-key cryptosystems.

Specifically, let N = pq be the product of two large primes p and q. (For concreteness, one may take p 
and q to be 1000-bit integers.) Let ZN

*  denote the set of integers between 1 and N − 1 that are invertible 
modulo N; that is, x N∈Z*  if there exists an integer x−1 such that x · x−1 = 1 mod N. It is known that ZN

*  
consists precisely of those integers between 1 and N − 1 that are relatively prime to (i.e., have no factor in 
common with) N. Using this, one can show that

	 | | ( ) ( ).ZN p q* = − ⋅ −1 1

Define ϕ( ) | |N N=
def

Z* . Basic group theory implies that for any integers e, d with ed = 1 mod φ(N) and any 
x N∈Z* , it holds that

	 ( ) mod ;x x Ne d = 	 (9.2)
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in particular, this means that the function fN e N N, : Z Z* *→  defined by

	 f x x NN e
e

, ( ) mod=

is a bijection. Anyone given N, e, and x can easily compute fN,e(x) using standard algorithms for efficient 
modular exponentiation. The RSA problem is the problem of inverting this function: namely, given N, e, 
y with y N∈Z* , to find a value x N∈Z*  such that xe = y mod N.

If the factors of N are known, then it is easy to compute φ(N) and hence for any e relatively prime to 
φ(N) the value d e N= −

def
1 mod ( )ϕ  can be efficiently computed. This value d can then be used to invert fN,e 

using Equation 9.2, and so in this case the RSA problem is easily solved. On the other hand, there is no 
known efficient algorithm for inverting fN,e given only N and e (and, in particular, without the factoriza-
tion of N). The RSA assumption formalizes the apparent computational difficulty of solving the RSA 
problem. Let RSAGen be a randomized algorithm that outputs (N, e, d) where N is a product of two ran-
dom, large primes and ed = 1 mod φ(N). (We do not discuss how such an algorithm can be constructed; 
suffice it to say that efficient algorithms with the required behavior are known.) We say the RSA problem 
is (t, ε)-hard for RSAGen if, for all algorithms A running in time at most t,

	 Pr[ ( , , ) . mod ] ,A N e y x x y Ne= = ≤s.t ε

where the probability is taken over the randomness of RSAGen as well as uniform choice of y N∈Z* . It is 
clear that if the RSA problem is hard for RSAGen, then factoring moduli N output by RSAGen must be 
hard; the converse is not known, but hardness of the RSA problem for moduli generated appropriately 
(i.e., the RSA assumption) is widely believed to hold.

The above discussion should naturally motivate our first candidate public-key encryption scheme 
that we call “textbook RSA encryption.” For this scheme, the key-generation algorithm runs RSAGen 
to obtain (N, e, d); the public key consists of (N, e), while the private key contains (N, d). To encrypt a 
message m N∈Z*  using the public key (N, e), the sender computes c := me mod N. Given a ciphertext c thus 
computed, the message can be recovered by using the corresponding private key to compute

	 c N m m Nd e d mod ( ) mod .= =

It follows directly from the RSA assumption that if m is chosen uniformly from ZN
* , then an adversary 

who observes the ciphertext c cannot compute m in its entirety. But this, alone, is not a very satisfying 
guarantee! For one thing, a real-life message is unlikely to be random; in particular, it may very well 
correspond to some structured text. Furthermore, even in the case that m is random, the textbook RSA 
scheme provides no assurance that an adversary cannot deduce some partial information about m (and 
in fact, recovering some partial information about m is known to be possible). Finally, this scheme does 
not have randomized encryption; textbook RSA encryption thus cannot possibly be CPA-secure.

Randomized variants of textbook RSA, however, are used extensively in practice. For simplicity, we 
describe here a variant that roughly corresponds to the RSA PKCS #1 v1.5 standard [37]. (This stan-
dard has since been superseded by a later version which should be used instead.) Here, the message is 
randomly padded during encryption. That is, if N is a 2000-bit modulus, then encryption of an 800-bit 
message m can be done by choosing a random 200-bit string r and then computing

	 ( || ) mod ;c r m Ne=

decryption is done in the natural way. It is conjectured that this scheme is CPA-secure, though no proof 
based on the RSA assumption is known.
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9.4.2  El Gamal Encryption

A second class of problems that can be used for public-key cryptography is related to the presumed 
hardness of the discrete logarithm problem in certain groups. This idea was introduced, in somewhat dif-
ferent form, by Diffie and Hellman in 1976 [11]. Our treatment will be abstract, though after introducing 
the basic ideas we will discuss some concrete instantiations.

Let G be a finite, cyclic group of large prime order q, and let g ∈ G be a generator of G. The fact that g 
is a generator implies that for any element h ∈ G there exists an x ∈ {0,…, q − 1} = Zq such that gx = h. By 
analogy with logarithms over the real numbers, in this case we write x = logg h. The discrete logarithm 
problem in G is to compute logg h given h. For many groups (see below), this problem appears to be 
computationally infeasible. We may formalize this, the discrete logarithm assumption in G, as follows: 
the discrete logarithm problem in G is (t, ε)-hard if for all algorithms A running in time at most t it 
holds that

	 Pr[ ( ) . ] ,A h x g hx= = ≤s.t ε

where the probability is taken over uniform choice of h ∈ G.
For cryptographic applications, a stronger assumption is often needed. The decisional Diffie–Hellman 

problem is to distinguish tuples of the form (gx, gy, gxy) (where x, y are chosen uniformly from Zq) from 
tuples of the form (gx, gy, gz) (where x, y, z are chosen uniformly from Zq). We say the decisional Diffie–
Hellman problem is (t, ε)-hard in G if for all algorithms A running in time at most t we have

	
Pr[ ( , , ) ] Pr[ ( , , ) ] ,A Ag g g g g gx y xy x y z= − = ≤1 1 ε

where the probability space in each case is as described earlier. One way to solve the decisional Diffie–
Hellman problem given a candidate tuple (g1, g2, g3) is to compute x = logg g1 and then check whether 
g g x

3 2=? . We thus see that the decisional Diffie–Hellman problem in some group G is no harder than the 
discrete logarithm problem in the same group. The converse is not, in general, true as there are candi-
date groups in which the discrete logarithm problem is hard but the decisional Diffie–Hellman problem 
is not. Nevertheless, for the groups discussed below, the stronger decisional Diffie–Hellman problem is 
widely believed to hold.

A classical example of a class of groups for which the above assumptions are believed to hold is given 
by large prime-order subgroups of Zp

* for p prime. As one concrete example, let p = 2q + 1, where both p 
and q are prime. Then the set of quadratic residues modulo p (namely, elements of Zp

* that can be written 
as squares of other elements) constitutes a subgroup G Zp* of order q. Another important example is 
given by the group of points over certain elliptic curves [43].

In their initial paper [11], Diffie and Hellman suggested a key-exchange protocol based on (what 
would later come to be called) the decisional Diffie–Hellman problem. This protocol was later adapted 
[12] to give the El Gamal encryption scheme that we describe now. Fix a group G of prime order q, and 
generator g ∈ G as above. The key-generation algorithm simply chooses a random x ∈ Zq which will be 
the private key; the public key is h = gx. To encrypt a message m ∈ G with respect to the public key h, the 
sender chooses a random y ∈ Zq and outputs the ciphertext ⟨gy, hy · m⟩. Decryption of a ciphertext ⟨c1, c2⟩ 
using the private key x is done by computing c c x

2 1/ . This recovers the correct result since

	

c

c

h m

g

g m

g

g m

g
m

x

y

y x

x y

yx

xy

yx
2

1

= ⋅ = ⋅ = ⋅ =
( )

( )
.

It can be shown that the El Gamal encryption scheme is CPA-secure if the decisional Diffie–Hellman 
problem is hard in the underlying group G.
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9.4.3  Hybrid Encryption

In contrast to private-key encryption, which can be based on highly efficient block ciphers, current 
public-key encryption schemes involve arithmetic operations with “very large” integers. (Appropriate 
choice of parameters depends on numerous factors; the reader can think of operations on ≈1000-bit 
numbers though that need not always be the case.) As a consequence, naive public-key encryption is 
orders of magnitude slower than private-key encryption.

When encrypting very long messages, however, hybrid encryption can be used to obtain the func-
tionality of public-key encryption with the (asymptotic) efficiency of private-key encryption. Let Enc 
denote the encryption algorithm for some public-key scheme, and let Enc′ denote the encryption algo-
rithm for a private-key scheme using keys of length n. Hybrid encryption works as follows: to encrypt 
a (long) message m, the sender first chooses a random secret key k ∈ {0, 1}n, encrypts k using Enc 
and the public key pk, and then encrypts m using Enc′ and the key k. That is, the entire ciphertext is 
〈 ′ 〉Enc Encpk kk m( ), ( ) . Decryption is done in the natural way, by recovering k from the first component 
of the ciphertext and then using k to decrypt the second part of the ciphertext. Note that the public-key 
scheme Enc is used only to encrypt a short key, while the bulk of the work is done using the more effi-
cient private-key scheme.

One can show that hybrid encryption is CPA-secure if (1) the underlying public-key encryption 
scheme is CPA-secure and (2) the underlying private-key encryption scheme is indistinguishable. (CPA-
security of the private-key encryption scheme is not necessary; intuitively, this is because the key k is 
generated freshly at random each time encryption is done, so any particular key is used only once.)

9.4.4  Stronger Security Notions

Our treatment of public-key encryption has only focused on security against passive attacks. As in the 
case of private-key encryption, however, in many scenarios security against an active adversary is also 
required. In fact, active attacks are arguably an even greater concern in the public-key setting where 
a recipient uses the same public key pk to communicate with multiple senders, some of whom may be 
malicious. (We refer to [27] for examples of some potential attacks.) To defend against this possibility, 
public-key encryption schemes satisfying stronger notions of security should be used; see [27] for details.

9.5  Digital Signature Schemes

As public-key encryption is to private-key encryption, so are digital signature schemes to MACs. That 
is, signature schemes allow a signer who has established a public key to “sign” messages in a way which 
is verifiable to anyone who knows the signer’s public key. Furthermore (by analogy with MACs), no 
adversary can forge a valid signature on any message that was not explicitly authenticated (i.e., signed) 
by the legitimate signer.

Formally, a signature scheme is comprised of three algorithms (Gen, Sign, Vrfy). The key-gener-
ation algorithm Gen is a probabilistic algorithm that outputs a pair of public and private keys (pk, sk) 
exactly as in the case of public-key encryption. The signing algorithm Sign takes as input a private key 
sk and a message m, and outputs a signature σ; we denote this by σ := Signsk(m). (One may assume this 
algorithm is deterministic without loss of generality.) Finally, the verification algorithm Vrfy takes as 
input a public key, a message, and a signature and outputs 0 or 1. If Vrfypk(m, σ) = 1, then we say that σ 
is a valid signature on m (with respect to pk). Analogous to the case of MACs, the correctness require-
ment is that for every (pk, sk) output by Gen, and for any message m, an honestly generated signature 
Signsk(m) is always a valid signature on m.

A signature scheme can be used in the following way. User A locally generates (pk, sk) and widely pub-
licizes her public key pk. She can then authenticate any desired message m by computing σ := Signsk(m). 
Any other user B who has obtained a legitimate copy of A’s public key can then verify that this message 
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was indeed certified by A by checking that Vrfypk m( , )σ =? 1. Note that in this case, in contrast to the 
case of public-key encryption, the owner of the public key acts as the sender rather than as the receiver.

Security for digital signature schemes is defined in a manner completely analogous to that of MACs. 
As there, we consider an adversary A who is given access to an oracle Signsk(·); the adversary can sub-
mit messages of its choice to this oracle and obtain the corresponding valid signatures. In addition, here 
the adversary is also given the public key pk. Adversary A succeeds if it can then output (m, σ) such that 
(1) m was not one of the messages m1, … that A had previously submitted to its oracle, and (2) σ is a 
valid signature on m; that is, Vrfypk(m, σ) = 1. A signature scheme is (t, ε)-secure if for all A running in 
time at most t, the probability with which A succeeds in this experiment (where the probability is taken 
over generation of (pk, sk)) is at most ε. This security notion is also called existential unforgeability under 
adaptive chosen-message attack [23].

Signature schemes offer several advantages relative to MACs. A basic advantage is that, once a signer’s 
public key is widely distributed, that signer’s signatures can be verified by anyone. (Contrast this to 
MACs, where a tag can only be verified by the party who shares the key with the sender.) As a result, sig-
nature schemes are suitable when “one-to-many” communication is required, with a canonical example 
being a software company releasing signed updates of its software. The very fact that signatures are 
publicly verifiable also implies their usefulness for nonrepudiation. That is, once a signer has issued a 
signature on a message, a recipient can prove that fact to someone else (a judge, say) by simply showing 
them the signature. (This makes digital signatures a potential replacement for handwritten signatures 
on legally binding documents.) On the other hand, for authenticating “short” messages, a signature 
scheme may be orders of magnitude less efficient than a MAC.

In the following sections, we briefly discuss two signature schemes in wide use today. Other schemes, 
some with better theoretical properties that those discussed here, can be found in [26]. Note that it suf-
fices to construct a signature scheme for “short” messages; collision-resistant hashing can then be used, 
as in Section 9.3.1, to extend any such scheme for signing arbitrary-length messages.

9.5.1 R SA Signatures

We can use the RSA assumption introduced in Section 9.4.1 to construct signature schemes. We begin 
with a simple scheme that is insecure, and then discuss how to adapt it so as to make it resistant to attack.

At an intuitive level, signing a message must involve some operation that is “easy” for the signer who 
knows the private key corresponding to its own public key, but “difficult” for anyone who does not know 
the signer’s private key. At the same time, the signature thus computed must be easy to verify for any-
one knowing only the signer’s public key. The RSA problem discussed earlier provides exactly this. Key 
generation is exactly the same as for RSA public-key encryption; that is, the algorithm runs RSAGen to 
obtain (N, e, d), and outputs (N, e) and the public key, and (N, d) as the private key. To sign a message 
m N∈Z*  using its private key, the signer computes σ := md mod N. Verification of a purported signa-
ture σ on a message m with respect to a public key (N, e) is done by checking whether σe m N=

?
mod . 

Correctness holds for an honestly generated signature since

	 σe d em m N= =( ) mod .

Hardness of the RSA problem implies that it is infeasible for an adversary who knows only the signer’s 
public key to generate a valid signature on a random message m N∈Z* . But this is insufficient for security! 
In fact, the “textbook RSA” signature scheme just described is not secure. Here are two attacks:

	 1.	 An adversary knowing only the public key can easily construct a forgery by choosing an arbi-
trary σ∈ZN

*  and outputting this as the signature on the message m = σe mod N. Although m 
computed in this way may not be “meaningful,” this attack is already enough to violate the 
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security definition. (In fact, the definition of what constitutes a “meaningful” message is con-
text-dependent and so such an attack may be problematic in practice. Moreover, by repeatedly 
choosing random σ and following the same steps, the adversary may end up hitting upon a 
meaningful message.)

	 2.	 Perhaps even worse, an adversary can forge a valid signature on an arbitrary message m̂ if it can 
get the signer to sign a single (different) message of the adversary’s choice. This attack begins 
by first having the adversary compute (m, σ) as above. Assume the adversary can then obtain a 
signature σ′ (from the legitimate signer) on the message m′ = (m̂/m) mod N. The adversary then 
computes the signature σ̂ = σ · σ′ mod N on m̂. Note that σ̂ is a valid signature on m̂ since

	
ˆ ( ) ( ) ˆ mod .σ σ σ σ σe e e e m m m N= ⋅ ′ = ⋅ ′ = ⋅ ′ =

		  The above shows that textbook RSA signatures are not secure. Fortunately, a simple modification 
prevents the above attacks: hash the message before signing it. That is, the signature on a message 
m ∈ {0, 1}* is now

	 σ = H m Nd( ) mod ,

		  where H is a hash function mapping arbitrary-length inputs to ZN
* . Verification is done in the 

natural way. It can be shown [6] that this scheme is secure if the RSA problem is hard and if, 
in addition, H “acts like a random function” in a sense we do not define here; see [5,27] for 
further discussion.

9.5.2 T he Digital Signature Standard

The Digital Signature Algorithm (DSA), included as part of the Digital Signature Standard (DSS) [1,16], 
is another widely used signature scheme. Its security is related (though not known to be equivalent) 
to the hardness of computing discrete logarithms in a specific group G. Specifically, G is taken to be a 
subgroup of Zp

∗ of order q where both p and q are large primes. Let g be a generator of G, and let H be a 
cryptographic hash function that, for simplicity, we view as mapping arbitrary-length inputs to Zq. (As 
will be clear, for security to hold H must at least be collision resistant.) Key generation works by choosing 
a random x ∈ Zq and setting y = gx mod p; the public key is y and the private key is x. To sign a message 
m ∈ {0, 1}*, the signer generates a random k ∈ Zq and computes

	

r g p q

s H m xr k q

k=

= + ⋅ −

( mod ) mod

( ( ) ) mod ;1

the signature is (r, s). Verification of signature (r, s) on message m with respect to public key y is done by 
checking that r s q, ∈Z* and

	 r g y p qH m s rs= ⋅
− −? ( )( mod ) mod .

1 1

No proof of security for DSA is known; we refer the reader to a survey article by Vaudenay [42] for 
further discussion. See [26] and references therein for other signature schemes whose security can be 
proved equivalent to the discrete logarithm or Diffie–Hellman problems.
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Key Terms

Block cipher: An efficient instantiation of a pseudorandom function that has the additional property of 
being efficiently invertible.

Chosen-plaintext attack: An attack on an encryption scheme in which an adversary causes the sender 
to encrypt messages of the adversary’s choice.

Ciphertext: The result of encrypting a message.
Collision-resistant hash function: A hash function for which it is infeasible to find two different inputs 

mapping to the same output.
Computational security: Provides security against computationally bounded adversaries, assuming 

the computational hardness of some problem.
Data integrity: Ensuring that modifications to a communicated message are detected.
Data secrecy: Hiding the contents of a communicated message.
Decrypt: To recover the original message from the ciphertext.
Digital signature scheme: A method for providing data integrity in the public-key setting.
Encrypt: To apply an encryption scheme to a plaintext message.
Hash function: A cryptographic function mapping arbitrary-length inputs to fixed-length outputs.
Information-theoretic security: Provides security even against computationally unbounded adversaries.
Key: The secret shared by parties in the private-key setting. Also used for the public and private values 

generated by a party in the public-key setting.
Message authentication code: A method for providing data integrity in the private-key setting.
Mode of encryption: A method for using a block cipher to encrypt arbitrary-length messages.
One-time pad: A private-key encryption scheme achieving perfect secrecy.
Plaintext: The communicated data, or message.
Private-key encryption: Technique for ensuring data secrecy in the private-key setting.
Private-key setting: Setting in which communicating parties share a secret in advance of their 

communication.
Pseudorandom function: A keyed function which is indistinguishable from a truly random function.
Public-key encryption: Technique for ensuring data secrecy in the public-key setting.
Public-key setting: Setting in which parties generate public/private keys and widely disseminate their 

public key.
RSA cryptography: Cryptography based on the hardness of computing eth roots modulo a number N 

that is the product of two large primes.

Further Information

The textbook by this author and Yehuda Lindell [27] covers the material of this survey, and more, in 
extensive detail. The online notes of Bellare and Rogaway [7] are also quite useful. The books by Smart 
[39] and Stinson [41] give slightly different perspectives on the material. Readers looking for a more 
advanced treatment may consult the texts by Goldreich [18,19]. More applied aspects of cryptography 
can be found in the book by Stallings [40] or the comprehensive (though now somewhat outdated) 
Handbook of Applied Cryptography [32].

The International Association for Cryptologic Research (IACR) sponsors the Journal of Cryptology along 
with a number of conferences, with Crypto and Eurocrypt being the best known. Proceedings of these 
conferences (dating, in some cases, to the early 1980s) are published as part of Springer-Verlag’s Lecture 
Notes in Computer Science. Research in theoretical cryptography often appears at the ACM Symposium 
on Theory of Computing, the IEEE Symposium on Foundations of Computer Science, and elsewhere; 
more applied aspects of cryptography are frequently published in security conferences including the ACM 
Conference on Computer and Communications Security. Articles on cryptography also appear in the 
Journal of Computer and System Sciences, the Journal of the ACM, and the SIAM Journal on Computing.
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10.1  Introduction

Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal power series, expo-
nential and differential polynomials, rational functions, algebraic sets, curves, and surfaces. In this 
vast area, manipulation with matrices and polynomials is fundamental for modern computations in 
sciences and engineering. The list of the respective computational problems includes the solution of 
a polynomial equation and linear and polynomial systems of equations, univariate and multivariate 
polynomial evaluation, interpolation, factorization and decompositions, rational interpolation, com-
puting matrix factorization and decompositions (which in turn include various triangular and orthogo-
nal factorizations such as LU, PLU, QR, QRP, QLP, CS, LR, Cholesky factorizations, and eigenvalue and 
singular value decompositions), computation of the matrix characteristic and minimal polynomials, 
determinants, Smith and Frobenius normal forms, ranks, and (generalized) inverses, univariate and 

10
Algebraic Algorithms*

10.1	 Introduction..................................................................................... 10-1
10.2	 Matrix Computations..................................................................... 10-2

Dense, Sparse, and Structured Matrices: Their Storage and 
Multiplication by Vectors  •  Matrix Multiplication, Factorization, 
and Randomization  •  Solution of Linear Systems of 
Equations  •  Symbolic Matrix Computations  •  Computing the Sign 
and the Value of a Determinant

10.3	 Polynomial Root-Finding and Factorization..............................10-8
Computational Complexity Issues  •  Root-Finding via 
Functional Iterations  •  Matrix Methods for Polynomial 
Root-Finding  •  Extension to Approximate Polynomial 
GCDs  •  Univariate Real Root Isolation and Approximation

10.4	 Systems of Nonlinear Equations................................................. 10-12
Resultant of Univariate Systems  •  Resultants of 
Multivariate Systems  •  Polynomial System Solving by Using 
Resultants  •  Gröbner Bases

10.5	 Research Issues and Summary.................................................... 10-18
Key Terms................................................................................................... 10-18
Further Information.................................................................................. 10-19
References...................................................................................................10-20

Ioannis Z. Emiris
University of Athens

Victor Y. Pan
The City University 
of New York

Elias P. Tsigaridas
Université Pierre 
and Marie Curie
and
Institut National de 
Recherche en Informatique 
et en Automatique 
Paris-Rocquencourt

*	 This material is based on work supported in part by the European Union through Marie-Curie Initial Training Network 
“SAGA” (ShApes, Geometry, Algebra), with FP7-PEOPLE contract PITN-GA-2008-214584 (Ioannis Z. Emiris), by NSF 
Grant CCF-1116736 and PSC CUNY Awards 63153–0041 and 64512–0042 (Victor Y. Pan), by the Danish Agency for 
Science, Technology and Innovation (postdoctoral grant), Danish NRF and NSF of China (grant 61061130540), CFEM, 
and the Danish Strategic Research Council (Elias P. Tsigaridas). Sections 10.3.5, 10.5, and “Further information” have 
been written jointly by all authors, Section 10.4 has been contributed essentially by the first author, the other sections by 
the second author.



10-2 Algorithms and Complexity

multivariate polynomial resultants, Newton’s polytopes, greatest common divisors (GCDS), and least 
common multiples as well as manipulation with truncated series and algebraic sets.

Such problems can be solved by using the error-free symbolic computations with infinite precision. 
Computer algebra systems such as Maple and Mathematica compute the solutions based on various non-
trivial computational techniques such as modular computations, the Euclidean algorithm and continu-
ous fraction approximation, Hensel’s and Newton’s lifting, Chinese remainder algorithm, elimination 
and resultant methods, and Gröbner bases computation. The price to achieve perfect accuracy is the 
substantial memory space and computer time required to support the computations.

The alternative numerical methods rely on operations with binary or decimal numbers truncated 
or rounded to a fixed precision. Operating with the IEEE standard floating point numbers represented 
with single or double precision enables much faster computations using much smaller memory but 
requires theoretical and/or experimental study of the impact of rounding errors on the output. The 
study involves forward and backward error analysis, linear and nonlinear operators, and advanced tech-
niques from approximation and perturbation theories. Solution of some problems involves more costly 
computations with extended precision. The resulting algorithms support high performance libraries 
and packages of subroutines such as those in Matlab, NAG SMP, LAPACK, ScaLAPACK, ARPACK, 
PARPACK, MPSolve, and EigenSolve.

In this chapter, we cover both approaches, whose combination frequently increases their power and 
enables more effective computations. We focus on the algebraic algorithms in the large, popular, and 
highly important fields of matrix computations and root-finding for univariate polynomials and sys-
tems of multivariate polynomials. We cover part of these huge subjects and include basic bibliography 
for further study. To meet space limitation we cite books, surveys, and comprehensive articles with 
pointers to further references, rather than including all the original technical papers. Our expositions 
in Sections 10.2 and 10.3 follow the line of the first surveys in this area in [163,168,173–175].

We state the complexity bounds under the RAM (random access machine) model of computation 
[1,96]. In most cases we assume the arithmetic model, that is we assign a unit cost to addition, subtrac-
tion, multiplication, and division of real numbers, as well as to reading or writing them into a memory 
location. This model is realistic for computations with a fixed (e.g., the IEEE standard single or double) 
precision, which fits the size of a computer word, and then the arithmetic model turns into the word 
model [96]. In other cases we allow working with extended precision and assume the Boolean or bit 
model, assigning a unit cost to every Boolean or bitwise operation. This accounts for both arithmetic 
operations and the length (precision) of the operands. We denote the bounds for this complexity by 
�OB(·). We explicitly specify whether we use the arithmetic, word, or Boolean model unless this is clear 

from the context.
We write ops for “arithmetic operations,” “log” for “log2” unless specified otherwise, and �OB(·) to show 

that we are ignoring logarithmic factors.

10.2  Matrix Computations

Matrix computations are the most popular and a highly important area of scientific and engineering 
computing. Most frequently they are performed numerically, with values represented using the IEEE 
standard single or double precision. In the chapter of this size we must omit or just barely touch on 
many important subjects of this field. The reader can find further material and bibliography in the 
surveys [163,168] and the books [6,8,21,56,62,64,103,110,178,222,227,239] and for more specific subject 
areas in [6,103,222,227,237,239] on eigendecomposition and SVD, [8,56,62,103,110,222,227] on other 
numerical matrix factorizations, [23,130] on the over- and underdetermined linear systems, their least-
squares solution, and various other numerical computations with singular matrices, [106] on random-
ized matrix computations, [114,178] on structured matrix computations, [21,103,172,210] on parallel 
matrix algorithms, and [43,47,66,67,96,97,115,116,169,172,183,202,226,238] on “Error-free Rational 
Matrix Computations,” including computations over finite fields, rings, and semirings that produce 
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solutions to linear systems of equations, matrix inverses, ranks, determinants, characteristic and mini-
mal polynomials, and Smith and Frobenius normal forms.

10.2.1 � Dense, Sparse, and Structured Matrices: Their Storage 
and Multiplication by Vectors

An m × n matrix A = [ai, j, i = 1,…, m; j = 1,…, n] is also denoted [ ], ,
,ai j i j

m n
=1 and [A1 | … | Am]; it is a two-

dimensional array with the (i, j)th entry [A]i,j = ai,j and the jth column Aj. AT is the transpose of A. Matrix 
A is a column vector if n = 1 and a row vector if m = 1. Vector v = =[ ]vi i

n
1 is an nth dimensional column 

vector. The straightforward algorithm computes the product Av by performing (2n − 1)m ops; this is 
optimal for general (dense unstructured) m × n matrices, represented with their entries, but numerous 
applications involve structured matrices represented with much fewer than mn scalar values. A matrix 
is singular if its product by some vectors vanish; they form its null space.

An m × n matrix is sparse if it is filled mostly with zeros, having only ϕ = o(mn) nonzero entries. An 
important class is the matrices associated with graphs that have families of small separators [102,134]. 
This includes banded matrices [bi,j]i,j with small bandwidth 2w + 1 such that bi,j = 0 unless |i − j| ≤ w. 
A sparse matrix can be stored economically by using appropriate data structures and can be multiplied 
by a vector fast, in 2ϕ − m ops. Sparse matrices arise in many important applications, for example, to 
solving ordinary and partial differential equations (ODEs and PDEs) and graph computations.

Dense structured n × n matrices are usually defined by O(n) parameters, and one can apply FFT to 
multiply such matrix by a vector by using O(n log n) or O(n log2 n) ops [178]. Such matrices are omni-
present in applications in signal and image processing, coding, ODEs, PDEs, particle simulation, and 
Markov chains. Most popular among them are the Toeplitz matrices T ti j i j

m n= =[ ], ,
,

1 and the Hankel matrices 
H hi j i j

m n= =[ ], ,
,

1 where ti, j = ti+1, j+1 and hi, j = hi+1, j−1 for all i and j in the range of their definition. Each such 
matrix is defined by m + n − 1 entries of its first row and first or last column. Products Tv and Hv can 
be equivalently written as polynomial products or vector convolutions; their FFT-based computation 
takes O((m + n) log (m + n)) ops per product [1,21,178]. Many other fundamental computations with 
Toeplitz and other structured matrices can be linked to polynomial computations enabling acceleration 
in both areas of computing [17–21,24,81,85,150–152,168,172,178,187,207,208]. Similar properties hold 

for Vandermonde matrices V vi
j

i j
m n= =
− −[ ] ,

,
0

1 1 and Cauchy matrices C s t i j i j

m n

i j
= 



−

=

1

1, ,

,

 where si and tj denote 
m + n distinct scalars.

One can extend the structures of Hankel, Bézout, Sylvester, Frobenius (companion), Vandermonde, 
and Cauchy matrices to more general classes of matrices by associating linear displacement operators. 
(See [21,178] for the details and the bibliography.) The important classes of semiseparable, quasisepa-
rable, and other rank structured m × n matrices generalize banded matrices and their inverses; they are 
expressed by O(m + n) parameters and can be multiplied by vectors by performing O(m + n) ops [68, 231].

10.2.2  Matrix Multiplication, Factorization, and Randomization

The straightforward algorithm computes the m × p product AB of m × n by n × p matrices by using 
2mnp − mp ops, which is 2n3 − n2 if m = n = p. This upper bound is not sharp. Strassen decreased it 
to O(n2.81) ops in 1969. His result was first improved in [162] and 10 times afterward, most recently by 
Coppersmith and Winograd in [48], Stothers in [224], and Vasilevska Williams in [233], who use Cnω 
ops for ω < 2.376, ω < 2.374, and ω < 2.3727, respectively. Due to the huge overhead constants C, however, 
we have that Cnω < 2n3 only for enormous values n. The well-recognized group-theoretic techniques [44] 
enable a distinct description of the known matrix multiplication algorithms, but so far have only sup-
ported the same upper bounds on the complexity as the preceding works. References [224,233] extend 
the algorithms given in Reference [48], which in turn combines arithmetic progression technique with 
the previous advanced techniques. Each technique, however, contributes to a dramatic increase of the 
overhead constant that makes the resulting algorithms practically noncompetitive.
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The only exception is the trilinear aggregating technique of [161] (cf. [163]), which alone supports the 
exponent 2.7753 [128] and together with the any precision approximation techniques of [163] was an indis-
pensable ingredient of all algorithms that have beaten Strassen’s exponent 2.81 of 1969. The triple product 
property, which is the basis of [44], may very well have a natural link to trilinear aggregating, although 
the descriptions available for the two approaches are distinct. For matrices of realistic sizes the numerical 
algorithms in [118], relying on trilinear aggregating, use about as many ops as the algorithms of Strassen 
1969 and Winograd 1971 but need substantially less memory space and are more stable numerically.

The exponent ω of matrix multiplication is fundamental for the theory of computing because O(nω) 
or O(nω log n) bounds the complexity of many important matrix computations such as the computa-
tion of det A, the determinant of an n × n matrix A; its inverse A−1 (where det A ≠ 0); its characteristic 
polynomial cA(x) = det(xI − A) and minimal polynomial mA(x), for a scalar variable x; the Smith and 
Frobenius normal forms; the rank, rank A; a submatrix of A having the maximal rank, the solu-
tion vector x = A−1 v to a nonsingular linear system of equations A x = v, and various orthogonal 
and triangular factorizations of the matrix A, as well as various computations with singular matrices 
and seemingly unrelated combinatorial and graph computations, for example, pattern recognition or 
computing all pair shortest distances in a graph [21, p. 222] or its transitive closure [1]. Consequently, 
all these operations use O(nω) ops where theoretically ω < 2.3727 [1, Chapter 6], [21, Chapter 2]. In 
practice, however, the solution of all these problems takes order of n3 ops, because of the huge overhead 
constant C of all known algorithms that multiply n × n matrices in Cnω ops for ω < 2.775, the overhead 
of the reduction to a matrix multiplication problem, the memory space requirements, and numerical 
stability problems [103].

Moreover, the straightforward algorithm for matrix multiplication remains the users’ choice because 
it is highly effective on parallel and pipeline architectures [103,210]; on many computers it supersedes 
even the so-called “superfast” algorithms, which multiply a pair of n × n structured matrices in nearby 
linear arithmetic time, namely, by using O(n log n) or O(n log2 n) ops, where both input and output 
matrices are represented with their short generator matrices having O(n) entries [178].

Numerous important practical problems have been reduced to matrix multiplication because it is so 
effective. This has also motivated the development of block matrix algorithms (called level-three BLAS, 
which is the acronym for Basic Linear Algebra Subprograms).

Devising asymptotically fast matrix multipliers, however, had independent technical interest. For 
example, trilinear aggregating was a nontrivial decomposition of the three-dimensional tensor associ-
ated with matrix multiplication, and [161] was the first of now numerous examples where nontrivial 
tensor decompositions enable dramatic acceleration of important matrix computations [124,137,160].

The two basic techniques below extend matrix multiplication. Hereafter O denotes matrices filled 
with zeros; I is the square identity matrices, with ones on the diagonal and zeros elsewhere.

Suppose we seek the Krylov sequence or Krylov matrix [ ]Bi
i
kv =
−
0
1 for an n × n matrix B and an n-dimen-

sional vector v [103,104,238]; in block Krylov computations the vector v is replaced by a matrix. The 
straightforward algorithm uses (2n − 1)n(k − 1) ops, that is about 2n3 for k = n. An alternative algorithm 
first computes the matrix powers

	 B B B B s k
s2 4 8 2 1, , , , , log…  = −

and then the products of n × n matrices B
i2  by n × 2i matrices, for i = 0, 1,…, s:

	

vv

vv vv vv vv

vv vv vv vv vv vv vv vv

,

[ , ] [ , ] ,

[ , , , ] [ , , , ]

2 2 3

4 2 3 4 5 6 7

B

B B B B

B B B B B B B B
�

=

=
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The last step completes the evaluation of the Krylov sequence in 2s + 1 matrix multiplications, by using 
O(nω log k) ops overall.

Special techniques for parallel computation of Krylov sequences for sparse and/or structured matri-
ces A can be found in [170]. According to these techniques, Krylov sequence is recovered from the solu-
tion to the associated linear system (I − A) x = v, which is solved fast in the case of a special matrix A.

Another basic idea of matrix algorithms is to represent the input matrix A as a block matrix and to 
operate with its blocks rather than with its entries. For example, one can compute det A and A−1 by first 
factorizing A as a 2 × 2 block matrix,

	
A

I O

A A

A O

O

I A A

OI S I
=


























−

−

1 0 0 0
1

0 0 0 0
1

0 1

, ,

, , , 	 (10.1)

where S A A A A= − −
1 1 1 0 0 0

1
0 1, , , , . The 2 × 2 block triangular factors are readily invertible, det A = (det A0,0)det 

S and (BCD)−1 = D−1C−1B−1, and so the cited tasks for the input A are reduced to the same tasks for the 
half-size matrices A0,0 and S. It remains to factorize them recursively. The northwestern blocks (such as 
A0,0), called leading principal submatrices, must be nonsingular throughout the recursive process, but 
this property holds for the highly important class of symmetric positive definite matrices A = CTC, det 
C ≠ 0, and can be also achieved by means of symmetrization, pivoting, or randomization [1, Chapter 6], 
[21, Chapter 2], [178, Sections 5.5 and 5.6]). Recursive application of (10.1) should produce the LDU 
factorization A = LDU where the matrices L and UT are lower triangular and D diagonal. Having this 
factorization computed, we can readily solve linear systems Axi = bi for various vectors bi, by using 
about 2n2 ops for each i, rather than 2

3
3 2n O n+ ( ) in Gaussian elimination.

Factorizations (including PLU, QR, QRP, QLP, CS, LR, Cholesky factorizations, and eigenvalue 
and singular value decompositions) are the most basic tool of matrix computations (see, e.g., [222]), 
recently made even more powerful with randomization (see [106,186,188,193–196,198], and the bibli-
ography therein). It is well known that random matrices tend to be nonsingular and well conditioned 
(see, e.g., [217]), that is they lie far from singular matrices and therefore [103,110,222] are not sensitive 
to rounding errors and are suitable for numerical computations. The solution x = A−1b of a nonsin-
gular linear system Ax = b of n equations can be obtained with a precision pout in OB

~(n3p + n2pout) 
Boolean time for a fixed low precision p provided the matrix A is well conditioned; that accelerates 
Gaussian elimination by an order of magnitude for large n + pout. Recent randomization techniques in 
[106,186,188,193–196,198] extend this property to much larger class of linear systems and enhance the 
power of various other matrix computations with singular or ill-conditioned matrices, for example, 
their approximation by low-rank matrices, computing a basis for the null space of a singular matrix, 
and approximating such bases for nearly singular matrices. Similar results have been proved for rect-
angular and Toeplitz matrices.

We refer the reader to [99,106,217] on impressive progress achieved in many other areas of matrix 
computations by means of randomization techniques.

10.2.3  Solution of Linear Systems of Equations

The solution of a linear system of n equations, Ax = b, is the most frequent operation in scientific and 
engineering computations and is highly important theoretically. Gaussian elimination solves such a 
system by applying (2/3)n3 + O(n2) ops.

Both Gaussian elimination and (Block) Cyclic Reduction use O(nw2) ops for banded linear systems 
with bandwidth O(w). One can solve rank structured linear systems in O(n) ops [68,231]; generalized 
nested dissection uses O(n1.5) flops for the inputs associated with small separator families [134,169,202].

Likewise, we can dramatically accelerate Gaussian elimination for dense structured input 
matrices represented with their short generators, defined by the associated displacement operators. 
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This includes Toeplitz, Hankel, Vandermonde, and Cauchy matrices as well as matrices with sim-
ilar structures. The MBA divide-and-conquer “superfast” algorithm (due to Morf 1974/1980 and 
Bitmead and Anderson 1980) solves nonsingular structured linear systems of n equations in 
O(n  log2  n) ops by applying the recursive 2 × 2 block factorization (10.1) and preserving matrix 
structure [21,178,191,205]. In the presence of rounding errors, however, Gaussian elimination, the 
MBA and Cyclic Reduction algorithms easily fail unless one applies pivoting, that is interchanges the 
equations (and sometimes unknowns) to avoid divisions by absolutely small numbers. A by-product 
is the factorization A = PLU or A = PLUP′, for lower triangular matrices L and UT and permutation 
matrices P and P′.

Pivoting, however, takes its toll. It “usually degrades the performance” [103, p. 119] by interrupting the 
string of arithmetic computations with the foreign operations of comparisons, is not friendly to block 
matrix algorithms and updating input matrices, hinders parallel processing and pipelining, and tends 
to destroy structure and sparseness, except for the inputs that have Cauchy-like and Vandermonde-like 
structure. The latter exceptional classes have been extended to the inputs with structures of Toeplitz/
Hankel type by means of displacement transformation [167,178]. The users welcome this numerical sta-
bilization, even though it slows down the MBA algorithm by a factor of n/log2 n, that is from “superfast” 
to “fast,” which is still by a factor of n faster than the solution for general unstructured inputs, which 
takes order n3 ops.

Can we avoid pivoting in numerical algorithms with rounding for general, sparse and structured lin-
ear systems to achieve both numerical stability and superfast performance? Yes, for the important classes 
where the input matrices A = (aij)i, j are diagonally dominant, that is | | | |a aii ij

i j
>

≠∑  or | | | |a aii ij
j i

>
≠∑  

for all i, or symmetric positive definite, that is A = CT C for a nonsingular matrix C. To these input classes 
Gaussian elimination, cyclic reduction, and the MBA algorithm can be safely applied with rounding and 
with no pivoting. For some other classes of sparse and positive definite linear systems, pivoting has been 
modified into nested dissection, Markowitz heuristic rule, and other techniques that preserve sparseness 
during the elimination yielding faster solution without causing numerical problems [62,101,134,169,202]. 
Can we extend these benefits to other input matrix classes?

Every nonsingular linear system Ax = b is equivalent to the symmetric positive definite ones AT Ax = 
ATb and A ATy = b where x = Ay, but great caution is recommended in such symmetrizations because 
the condition number κ(A) = ║A║2║A−1║2 ≥ 1 is squared in the transition to the matrices AT A and AAT, 
which means growing propagation and magnification of rounding errors.

There are two superior directions. The algorithms of [195,196,199] avoid pivoting for general and 
structured linear systems by applying randomization. These techniques are recent, proposed in [186, 
Section 12.2], but their effectiveness has formal and experimental support.

A popular classical alternative to Gaussian elimination is the iterative solution, for example, by 
means of the conjugate gradient and GMRES algorithms [10,103,104,232]. They compute sufficiently 
long Krylov sequences (defined in the previous section) and then approximate the solution with linear 

combinations c Ai
i

i∑ b or c A A Ai
i

T i T∑ ( ) b for proper coefficients ci. The cost of computing the product 
of the matrix A or AT A by a vector is dominant, but it is small for structured and sparse matrices A. One 
can even call a matrix sparse or structured if and only if it can be multiplied by a vector fast.

Fast convergence to the solution is critical. It is not generally guaranteed but proved for some impor-
tant classes of input matrices. The major challenges are the extension of these classes and the design of 
powerful methods for special input classes, notably multilevel methods (based on the algebraic multi-
grid) [140,149,201] and tensor decompositions [124,160], highly effective for many linear systems arising 
in discretization of ODEs, PDEs, and integral equations.

Preconditioning of the input matrices at a low computational cost accelerates convergence of 
iterations for many important classes of sparse and structured linear systems [10,104], and more 
recently, based on randomized preconditioning, for quite general as well as structured linear systems 
[186,188,193–196,198].
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One can iteratively approximate the inverse or pseudoinverse of a matrix [103, Section 5.5.4] by means 
of Newton’s iteration Xi+1 = 2Xi − XiMXi, i = 0, 1, …. We have I MX I MX I MXi i

i

− = − = −+
+

1
2

0
2 1

( ) ( ) ; 
therefore, the residual norm ║I − MXi║ is squared in every iteration step, || || || ||I MX I MXi

i

− ≤ − 0
2  for 

i = 1, 2,…, and so convergence is very fast unless ║I − MX0║ ≥ 1 or is near 1. The cost of two matrix 
multiplications is dominant per an iteration step; this makes the computation fast on multiprocessors 
as well as in the case of structured matrices M and Xi. See more on Newton’s iteration, including the 
study of its initialization, convergence, and preserving displacement matrix structure, in [178, Chapters 
4 and 6], [182,185,189,200,203,204].

10.2.4  Symbolic Matrix Computations

Rational matrix computations for a rational or integer input (such as the solution of a linear system 
and computing the determinant of a matrix) can be performed with no errors. To decrease the com-
putational cost, one should control the growth of the precision of computing. Some special techniques 
achieve this in rational Gaussian elimination [7,97]. As a more fundamental tool one can reduce the 
computations modulo a sufficiently large integer m to obtain the rational or integer output values 
z = p/q (e.g., the solution vector for a linear system) modulo m. Then we can recover z from two inte-
gers m and z mod m by applying the continued fraction approximation algorithm, in other contexts 
called Euclidean algorithm [96,236]. Instead we can readily obtain z = z mod m if z mod m < r or z = 
−m + z mod m if z mod m < r otherwise, provided we know that the integer z lies in the range [−r, r] 
and if m > 2r.

Computing the determinant of an integer matrix, we can choose the modulus m based on Hadamard’s 
bound. A nonsingular linear system Ax = v can become singular after the reduction modulo a prime p 
but only with a low probability for a random choice of a prime p in a fixed sufficiently large interval as 
well as for a reasonably large power of two and a random integer matrix [205].

One can choose m = m1m2 ⋯ mk for pairwise relatively prime integers m1, m2,…, mk (we call them 
coprimes), then compute z modulo all these coprimes, and finally recover z by applying the Chinese 
remainder algorithm [1,96]. The error-free computations modulo mi require the precision of log mi bits; 
the cost of computing the values z mod mi for i = 1, …, k dominates the cost of the subsequent recovery 
of the value z mod m.

Alternatively one can apply p-adic (Newton–Hensel) lifting [96]. For solving linear systems of equa-
tions and matrix inversion they can be viewed as the symbolic counterparts to iterative refinement and 
Newton’s iteration of the previous section, both well known in numerical linear algebra [183].

Newton’s lifting begins with a prime p, a larger integer k, an integer matrix M, and its inverse 
Q = M−1 mod p, such that I − QM mod p = 0. Then, one writes X0 = Q, recursively computes the matrices 
X X X MX pj j j j

j

= −− − −2 1 1 1
2mod( ), notes that I X M pj

j

− = 0 2mod ( ) for j = 1, 2, …, k, and finally recovers 
the inverse matrix M−1 from Xk = M−1 mod p

k2 .
Hensel’s lifting begins with the same input complemented with an integer vector b. Then one writes 

r(0) = b, recursively computes the vectors

	 u r r r u( ) ( ) ( ) ( ) ( )mod , ( ) , , , ,i i i i iQ p M p i k= = − = … −+1 0 1 1/

and x u( ) ( )k i i

i

k

p=
=

−∑ 0

1

 such that Mx(k) = b mod (pk), and finally recovers the solution x to the linear sys-
tem Mx = b from the vector x(k) = x mod (pk).

Newton’s and Hensel’s lifting are particularly powerful where the input matrices M and M−1 are 
sparse and/or structured, for example, Toeplitz, Hankel, Vandermonde, Cauchy. Hensel’s lifting enables 
the solution in nearly optimal time under both Boolean and word models [183]. We can choose p being 
a power of two and use computations in the binary mode. Reference [69] discusses lifting for sparse 
linear systems.
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10.2.5  Computing the Sign and the Value of a Determinant

The value or just the sign of det A, the determinant of a square matrix A, is required in some fun-
damental geometric and algebraic/geometric computations such as the computation of convex hulls, 
Voronoi diagrams, algebraic curves and surfaces, multivariate and univariate resultants, and Newton’s 
polytopes. Faster numerical methods are preferred as long as the correctness of the output can be certi-
fied. In the customary arithmetic filtering approach, one applies fast numerical methods as long as they 
work and, in the rare cases when they fail, shifts to the slower symbolic methods. For fast numerical 
computation of det A one can employ factorizations A = PLUP′ (see Section 10.2.2) or A = QR [45,103], 
precondition the matrix A [186], and then certify the output sign [206].

If A is a rational or integer matrix, then the Chinese remainder algorithm of the previous subsec-
tion is highly effective, particularly using heuristics for working modulo m for m much smaller than 
Hadamard’s bound on |det A| [26].

Alternatively [70,165,166], one can solve linear systems Ay(i) = b(i) for random vectors b(i) and then 
apply Hensel’s lifting to recover det A as a least common denominator of the rational components of 
all y(i).

Storjohann in [223] advanced randomized Newton’s lifting to yield det A more directly in the optimal 
asymptotic Boolean time �OB(nω+1) for ω < 2.3727. Wiedemann in 1986, Coppersmith in 1994, and a num-
ber of their successors compute det A by extending the Lanczos and block Lanczos classical algorithms. 
This is particularly effective for sparse or structured matrices A and in further extension to multivariate 
determinants and resultants (cf. [85,86,117,180]).

10.3  Polynomial Root-Finding and Factorization

10.3.1  Computational Complexity Issues

Approximate solution of an nth degree polynomial equation,

	
p x p x p x z p

i

n

i
i

n j

j

n

n( ) ( ) ,= = − = ≠
= =
∑ ∏

0 1

0 0 	 (10.2)

that is the approximation of the roots z1,…, zn for given coefficients p0,…, pn, is a classical problem 
that has greatly influenced the development of mathematics and computational mathematics through-
out four millennia, since the Sumerian times [173,174]. The problem remains highly important for the 
theory and practice of the present day algebraic and algebraic/geometric computation, and new root-
finding algorithms appear every year [141–144].

To approximate even a single root of a monic polynomial p(x) within error bound 2−b we must process 
at least (n + 1)nb/2 bits of the input coefficients p0,…, pn−1. Indeed perturb the x-free coefficient of the 
polynomial (x − 6/7)n by 2−bn. Then the root x = 6/7 jumps by 2−b, and similarly if we perturb the coef-
ficients pi by 2(i−n)b for i = 1,…, n − 1. Thus to ensure the output precision of b bits, we need an input preci-
sion of at least (n − i)b bits for each coefficient pi, i = 0, 1,…, n − 1. We need at least ⌈(n + 1)nb/4⌉ bitwise 
operations to process these bits, each operation having at most two input bits.

It can be surprising, but we can approximate all n roots within 2−b by using bn2 Boolean (bit) opera-
tions up to a polylogarithmic factor for b of order n log n or higher, that is we can approximate all roots 
about as fast as we write down the input. We achieve this by applying the divide-and-conquer algorithms 
in [171,173,179] (see [123,157,218] on the related works). The algorithms first compute a sufficiently wide 
root-free annulus A on the complex plane, whose exterior and interior contain comparable numbers of 
the roots, that is the same numbers up to a fixed constant factor. Then the two factors of p(x) are numeri-
cally computed, that is F(x), having all its roots in the interior of the annulus, and G(x) = p(x)/F(x), 
having no roots there. Then the polynomials F(x) and G(x) are recursively factorized until factorization 
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of p(x) into the product of linear factors is computed numerically. From this factorization, approxima-
tions to all roots of p(x) are obtained. For approximation of a single root see the competitive algorithms 
of [177].

It is interesting that, up to polylog factors, both lower and upper bounds on the Boolean time decrease 
to bn [179] if we only seek the factorization of p(x), that is, if instead of the roots zj, we compute scalars 
aj and bj such that

	
� � � �p x a x c p xj j

j

n
b( ) ( ) ( )− − <

=

−∏
1

2 	 (10.3)

for the polynomial norm q x qi
i

i
i

i∑ ∑= .

The isolation of the zeros of a polynomial p(x) of (10.2) having integer coefficients and simple zeros is 
the computation of n disjoint discs, each containing exactly one root of p(x). This can be a bottleneck 
stage of root approximation because one can contract such discs by performing a few subdivisions and 
then apply numerical iterations (such as Newton’s) that would very rapidly approximate the isolated 
zeros within a required tolerance. Reference [184] yields even faster refinement by extending the tech-
niques of [171,173,179].

Based on the classical gap theorem (recently advanced in [84]), Schönhage in [218, Section 20] the 
isolation problem has been reduced to computing factorization (10.3) for b = ⌈(2n + 1)(l + 1 + log(n + 1))⌉ 
where l is the maximal coefficient length, that is the minimum integer such that |ℜ(pj)| < 2l and |ℑ(pj)| < 
2l for j = 0, 1, …, n. Combining the cited algorithms of [171,173,179] with this reduction yields

Theorem 10.1

Let polynomial p(x) of (10.2) have n distinct simple zeros and integer coefficients in the range [−2τ, 2τ]. 
Then one can isolate the n zeros of p(x) from each other at the Boolean cost �OB(n2τ).

The algorithms of [171,173,179] incorporate the techniques of [157,218], but advance them and support 
substantially smaller upper bounds on the computational complexity. In particular these algorithms 
decrease by a factor of n the estimates of [218, Theorems 2.1, 19.2 and 20.1] on the Boolean complexity of 
polynomial factorization, root approximation, and root isolation.

10.3.2 R oot-Finding via Functional Iterations

About the same record complexity estimates for root-finding would be also supported by some func-
tional iteration algorithms if one assumes their convergence rate defined by ample empirical evidence, 
although never proved formally. The users accept such an evidence instead of the proof and prefer the 
latter algorithms because they are easy to program and have been carefully implemented; like the algo-
rithms of [171,173,177,179] they allow tuning the precision of computing to the precision required for 
every output root, which is higher for clustered and multiple roots than for single isolated roots.

For approximating a single root z, the current practical champions are modifications of Newton’s 
iteration, z(i + 1) = z(i) − a(i)p(z(i))/p′(z(i)), a(i) being the step-size parameter [136], Laguerre’s method 
[94,107], and the Jenkins–Traub algorithm [112]. One can deflate the input polynomial via its numeri-
cal division by x − z to extend these algorithms to approximating a small number of other roots. If one 
deflates many roots, the coefficients of the remaining factor can grow large as, for example, in the divisor 
of the polynomial p(x) = x1000 + 1 that has degree 498 and shares with p(x) all its roots having positive 
real parts.



10-10 Algorithms and Complexity

For the approximation of all roots, a good option is the Weierstrass–Durand–Kerner’s (hereafter 
WDK) algorithm, defined by the recurrence
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It has excellent empirical global convergence. Reference [208] links it to polynomial factorization and 
adjusts it to approximating a single root in O(n) ops per step.

A customary choice of n initial approximations zj(0) to the n roots of the polynomial p(x) (see [16] for 
a heuristic alternative) is given by z r t n j nj ( ) exp , , , .0 2 1 1= −( ) = …π /   Here, t > 1 is a fixed scalar and 
r is an upper bound on the root radius, such that all roots zj lie in the disc {x : |x| = r} on the complex 
plane. This holds, for example, for

	
r p p

i n
i n n i=

<
−2
1

max / 	 (10.5)

For a fixed l and for all j the computation in (10.4) uses O(n2) ops. We can use just O(n log2 n) ops if we 
apply fast multipoint polynomial evaluation algorithms based on fast FFT-based polynomial division 
[1,21,25,178,190], but then we would face numerical stability problems.

As with Newton’s, Laguerre’s, Jenkins–Traub’s algorithms and the inverse power iteration in [17,207], 
one can employ this variant of the WDK to approximate many or all roots of p(x) without deflation. 
Toward this goal, one can concurrently apply the algorithm at sufficiently many distinct initial points 
z r t N j N nj ( ) exp , , ,0 2 1 1= −( ) = … ≥π /   (on a large circle for large t) or according to [16]. The work can 
be distributed among processors that do not need to interact with each other until they compute the 
roots.

See [141–144,173] and references therein on this and other effective functional iteration algorithms. 
Reference [16] covers MPSolve, the most effective current root-finding subroutines, based on Ehrlich–
Aberth’s algorithm.

10.3.3  Matrix Methods for Polynomial Root-Finding

By cautiously avoiding numerical problems [103, Section 7.4.6], one can approximate the roots of p(x) as 
the eigenvalues of the associated (generalized) companion matrices, that is matrices having characteris-
tic polynomial p(x). Then one can employ numerically stable methods and the excellent software avail-
able for matrix computations, such as the QR celebrated algorithm. For example, Matlab’s subroutine 
roots applies it to the companion matrix of a polynomial. Malek and Vaillancourt (1995), and Fortune 
[93] and in his root-finding package EigenSolve, apply it to other generalized companion matrices and 
update them when the approximations to the roots are improved.

The algorithms of [15,17–19,181,197,207,230] exploit the structure of (generalized) companion matri-
ces, for example, where they are diagonal plus rank-one (hereafter DPR1) matrices, to accelerate the 
eigenvalue computations. The papers [17,207] apply and extend the inverse power method [103, Section 
7.6.1]; they exploit matrix structure, simplify the customary use of Rayleigh quotients for updating 
approximate eigenvalues, and apply special preprocessing techniques. For both companion and DPR1 
inputs the resulting algorithms use linear space and linear arithmetic time per iteration step, enable 
dramatic parallel acceleration, and deflate the input in O(n) ops; for DPR1 matrices repeated deflation 
can produce all n roots with no numerical problems.

The algorithms of [15,18,19,230] employ the QR algorithm but decrease the arithmetic time per iter-
ation step from quadratic to linear by exploiting the rank matrix structure of companion matrices. 
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Substantial further refinement of these techniques is required to make them competitive with MPSolve. 
See [243] on recent progress.

The papers [181,197] advance Cardinal’s polynomial root-finders of 1996, based on repeated squaring. 
Each squaring is reduced to performing a small number of FFTs and thus uses order n log n ops. One 
can weigh potential advantage of convergence to nonlinear factors of p(x), representing multiple roots 
or root clusters, at the price of increasing the time per step by a factor of log n versus the inverse power 
method, advanced for root-finding in [17,207].

10.3.4  Extension to Approximate Polynomial GCDs

Reference [176] combines polynomial root-finders with algorithms for bipartite matching to compute 
approximate univariate polynomial GCD of two polynomials, that is, the GCD of the maximum degree 
for two polynomials of the same or smaller degrees lying in the ϵ-neighborhood of the input polynomi-
als for a fixed positive ϵ. Approximate GCDs are required in computer vision, algebraic geometry, com-
puter modeling, and control. For a single example, GCD defines the intersection of two algebraic curves 
defined by the two input polynomials, and approximate GCD does this under input perturbations of 
small norms. See [14] in the bibliography on approximate GCDs, but see [167,178,195] on the structured 
matrix algorithms involved.

10.3.5  Univariate Real Root Isolation and Approximation

In some algebraic and geometric computations, the input polynomial p(x) has real coefficients, and 
only its real roots must be approximated. One of the fastest real root-finders in the current practice is 
still MPSolve, which uses almost the same running time for real roots as for all complex roots. This 
can be quite vexing, because very frequently the real roots make up only a small fraction of all roots 
[77]. Recently, however, the challenge was taken in the papers [197,207], whose numerical iterations are 
directed to converge to real and nearly real roots. This promises acceleration by a factor of d/r where the 
input polynomial has d roots, of which r roots are real or nearly real. In the rest of this section we cover 
an alternative direction, that is real root-finding by means of isolation of the real roots of a polynomial.

We write p(x) = ad xd + ⋯ + a1 x + a0, assume integral coefficients with the maximum bit size τ = 1 + 
maxi≤d{lg|ai|}, and seek isolation of real roots, that is seek real line intervals with rational endpoints, 
each containing exactly one real root. We may seek also the root’s multiplicity. We assume rational 
algorithms, that is, error-free algorithms that operate with rational numbers.

If all roots of p(x) are simple, then the minimal distance between them, the separation bound, is at 
most b = d−(d+2)/2(d + 1)(1−d)/22τ(1−d), or roughly 2− τ�O( )d  (e.g., [147]), and we isolate real roots as soon as we 
approximate them within less than b/2. Effective solution algorithms rely on continued fractions (see 
the following text), having highly competitive implementation in synaps [109,153] and its descendant 
realroot, a package of mathemagix, on the Descartes’ rule of signs, and the Sturm or Sturm–Habicht 
sequences.

Theorem 10.2

The rational algorithms discussed in the sequel isolate all r real roots of p(x) in �OB(d4τ2) bitwise ops. 
Under certain probability distributions for the coefficients, they are expected to use �OB(d3τ) or �OB(rd2τ).

The bounds exceed those of Theorem 10.1, has changed this, by closing the gap. Moreover rational 
solvers are heavily in use [245], have long and respected history, and are of independent technical 
interest. Most popular are the subdivision algorithms, such as sturm, descartes, and bernstein. 
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By mimicking binary search, they repeatedly subdivide an initial interval that contains all real roots 
until every tested interval contains at most one real root. They differ in the way of counting the real 
roots in an interval.

The algorithm sturm (due to Sturm 1835) is the closest to binary search; it produces isolating inter-
vals and root multiplicities at the cost �OB(d4τ2) [63,83]; see [77] on the decrease of the expected cost to 
�OB(rd2τ).

The complexity of both algorithms descartes and bernstein is �OB(d4τ2) [72,83]. Both rely on 
Descartes’ rule of sign, but the bernstein algorithm also employs the Bernstein basis polynomial rep-
resentation. See [2,234] on the theory and history of descartes, [46,71,146,215,216] on its modern ver-
sions, and [83,156] and the references therein on the bernstein algorithm.

The continued fraction algorithm, cf, computes the continued fraction expansions of the real roots 
of the polynomial. The first formulation of the algorithm is due to Vincent. By Vincent’s theorem 
repeated transforms x c x� + 1  eventually yield a polynomial with zero or one sign variation and thus 
(by Descartes’ rule) with zero or resp. one real root in (0, ∞). In the latter case the inverse transformation 
computes an isolating interval. Moreover, the c’s in the transform correspond to the partial quotients 
of the continued fraction expansion of the real root. Variants differ in the way they compute the partial 
quotients.

Recent algorithms control the growth of coefficient bit-size and decrease the bit-complexity from expo-
nential (of Vincent) to �OB(d3τ) expected and �OB(d4τ2) worst-case bit complexity. See [145,219,228,229] 
and the references therein on these results, history, and variants of CP algorithms.

10.4  Systems of Nonlinear Equations

Given a system {p1(x1, …, xn),…, pr(x1, …, xn)} of nonlinear polynomials with rational coefficients, the 
n-tuple of complex numbers (a1, …, an) is a solution of the system if pi(a1, …, an) = 0, 1 ≤ i ≤ r. Each 
pi(x1, …, xn) is said to be an element of Q[x1, …, xn], the ring of polynomials in x1, …, xn over the field 
of rational numbers. In this section, we explore the problem of solving a well-constrained system of 
nonlinear equations, namely when r = n, which is the typical case in applications. We also indicate how 
an initial phase of exact algebraic computation leads to certain numerical methods that can approxi-
mate all solutions; the interaction of symbolic and numeric computation is currently an active domain 
of research, for example [22,82,125]. We provide an overview and cite references to different symbolic 
techniques used for solving systems of algebraic (polynomial) equations. In particular, we describe 
methods involving resultant and Gröbner basis computations.

Resultants, as explained in the following text, formally express the solvability of algebraic systems 
with r = n + 1; solving a well-constrained system reduces to a resultant computation as illustrated in 
the sequel. The Sylvester resultant method is the technique most frequently utilized for determining a 
common root of two polynomial equations in one variable. However, using the Sylvester method suc-
cessively to solve a system of multivariate polynomials proves to be inefficient.

It is more efficient to eliminate n variables together from n + 1 polynomials, thus, leading to the notion 
of the multivariate resultant. The three most commonly used multivariate resultant matrix formulations 
are those named after Sylvester or Macaulay [36,38,135], those named after Bézout or Dixon [33,60,121], 
or the hybrid formulation [57,113,122]. Extending the Sylvester–Macaulay type, we shall emphasize also 
sparse resultant formulations [37,98,225]. For a unified treatment, see [81].

The theory of Gröbner bases provides powerful tools for performing computations in multivariate 
polynomial rings. Formulating the problem of solving systems of polynomial equations in terms of 
polynomial ideals, we will see that a Gröbner basis can be computed from the input polynomial set, 
thus, allowing for a form of back substitution in order to compute the common roots.

Although not discussed, it should be noted that the characteristic set algorithm can be utilized for 
solving polynomial systems. Although introduced for studying algebraic differential equations [213], the 
method was converted to ordinary polynomial rings when developing an effective method for automatic 
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theorem proving [241]. Given a polynomial system P, the characteristic set algorithm computes a new 
system in triangular form, such that the set of common roots of P is equivalent to the set of roots of the 
triangular system [120]. Triangular systems have k1 polynomials in a specific variable, k2 polynomials 
in this and one more variable, k3 polynomials in these two and one more variable, and so on, for a total 
number of k1 + ⋯ + kn polynomials.

10.4.1 R esultant of Univariate Systems

The question of whether two polynomials f(x), g(x) ∈ Q[x],
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have a common root leads to a condition that has to be satisfied by the coefficients of f, g. Using a deri-
vation of this condition due to Euler, the Sylvester matrix of f, g (which is of dimension m + n) can be 
formulated. The vanishing of the determinant of the Sylvester matrix, known as the Sylvester resultant, 
is a necessary and sufficient condition for f, g to have common roots in the algebraic closure of the coef-
ficient ring.

As a running example, let us consider the following bivariate system [131]:

	

f x xy x y

g x x y y

= + + + − =
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3 2 1 0

Without loss of generality, the roots of the Sylvester resultant of f and g treated as polynomials in y, 
whose coefficients are polynomials in x, are the x-coordinates of the common roots of f, g. More specifi-
cally, the Sylvester resultant with respect to y is given by the following determinant:
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An alternative matrix of order max{m, n}, named after Bézout, yields the same determinant.
The roots of the Sylvester determinant are {−3, 0, 1}. For each x value, one can substitute the x value 

back into the original polynomials yielding the solutions (−3, 1), (0, 1), (1, −1). More practically, one can 
use the Sylvester matrix to reduce system solving to the computation of eigenvalues and eigenvectors as 
explained in Section 10.4.3.

The Sylvester formulations have led to a subresultant theory, which produced an efficient algorithm for 
computing the GCD of univariate polynomials and their resultant, while controlling intermediate expres-
sion swell [133,212]. Subresultant theory has been generalized to several variables, for example [32,53].

10.4.2 R esultants of Multivariate Systems

The solvability of a set of nonlinear multivariate polynomials is determined by the vanishing of a gener-
alization of the resultant of two univariate polynomials. We examine two generalizations: the classical 
and the sparse resultants. Both generalize the determinant of n + 1 linear polynomials in n variables.

The classical resultant of a system of n + 1 polynomials with symbolic coefficients in n variables 
vanishes exactly when there exists a common solution in the projective space over the algebraic closure 
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of the coefficient ring [50]. The sparse (or toric) resultant characterizes solvability of the same overcon-
strained system over a smaller space, which coincides with affine space under certain genericity con-
ditions [51,98,225]. The main algorithmic question is to construct a matrix whose determinant is the 
resultant or a nontrivial multiple of it.

Cayley, and later Dixon, generalized Bézout’s method to a set

	 p x x p x xn n n1 1 1 1( ) ( ), , , , , ,… … …{ }+

of n + 1 polynomials in n variables. The vanishing of the determinant of the Bézout–Dixon matrix is 
a necessary and sufficient condition for the polynomials to have a nontrivial projective common root 
and also a necessary condition for the existence of an affine common root [33,60,81,121]. A nontrivial 
resultant multiple, known as the projection operator, can be extracted via a method discussed in [41, 
Theorem 3.3.4]. This article, along with [73], explains the correlation between residue theory and the 
Bézout–Dixon matrix; the former leads to an alternative approach for studying and approximating all 
common solutions.

Macaulay [135] constructed a matrix whose determinant is a multiple of the classical resultant; he 
stated his approach for a well-constrained system of n homogeneous polynomials in n variables. The 
Macaulay matrix simultaneously generalizes the Sylvester matrix and the coefficient matrix of a system 
of linear equations. Like the Dixon formulation, the Macaulay determinant is a multiple of the resul-
tant. Macaulay, however, proved that a certain minor of his matrix divides the matrix determinant to 
yield the exact resultant in the case of generic coefficients. To address arbitrary coefficients, Canny [36] 
proposed a general method that perturbs any polynomial system and extracts a nontrivial projection 
operator from Macaulay’s construction.

By exploiting the structure of polynomial systems by means of sparse elimination theory, a matrix 
formula for computing the sparse resultant of n + 1 polynomials in n variables was given in [37] and 
consequently improved in [40,76]. Like the Macaulay and Dixon matrices, the determinant of the sparse 
resultant matrix, also known as Newton matrix, only yields a projection operation. However, in certain 
cases of bivariate and multihomogeneous systems, determinantal formulae for the sparse resultant have 
been derived [57,80,122]. To address degeneracy issues, Canny’s perturbation has been extended in the 
sparse context [54]. D’Andrea [52] extended Macaulay’s rational formula for the resultant to the sparse 
setting, thus defining the sparse resultant as the quotient of two determinants; see [79] for a simplified 
algorithm in certain cases.

Here, sparsity means that only certain monomials in each of the n + 1 polynomials have nonzero 
coefficients. Sparsity is measured in geometric terms, namely, by the Newton polytope of the poly-
nomial, which is the convex hull of the exponent vectors corresponding to nonzero coefficients. The 
mixed volume of the Newton polytopes of n polynomials in n variables is defined as an integer-valued 
function that bounds the number of toric common roots of these polynomials [13]. This remarkable 
bound is the cornerstone of sparse elimination theory. The mixed volume bound is significantly smaller 
than the classical Bézout bound for polynomials with small Newton polytopes but they coincide for 
polynomials whose Newton polytope is the unit simplex multiplied by the polynomial’s total degree. 
Since these bounds also determine the degree of the sparse and classical resultants, respectively, the 
latter has larger degree for sparse polynomials. Last, but not least, the classical resultant can identically 
vanish over sparse systems, whereas the sparse resultant can still yield the desired information about 
their common roots [51].

10.4.3  Polynomial System Solving by Using Resultants

Suppose we are asked to find the common roots of a set of n polynomials in n variables {p1(x1, …, xn), …, 
pn(x1, …, xn)}. By augmenting this set by a generic linear polynomial [36,51], we construct the u-resultant 
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of a given system of polynomials. The u-resultant is named after the indeterminates u, traditionally used 
to represent the generic coefficients of the additional linear polynomial. The u-resultant factors into lin-
ear factors over the complex numbers, providing the common roots of the given polynomials equations. 
The method relies on the properties of the multivariate resultant, and hence, can be constructed using 
either Macaulay’s, Dixon’s, or sparse formulations. An alternative approach is to hide a variable in the 
coefficient field [74,81,138].

Consider the previous example augmented by a generic linear form:
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As described in [38], the following (transposed) Macaulay matrix M corresponds to the u-resultant of 
the above system of polynomials:
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It should be noted that

	 det( ) ( )( )( )( )M u v w u v w v w u v= − + − + + + −3

corresponds to the affine solutions (1, −1), (−3, 1), (0, 1), whereas one solution at infinity corresponds to 
the last factor.

Resultant matrices can also reduce polynomial system solving to a regular or generalized eigen-
problem (cf. “Matrix Eigenvalues and Singular Values Problems”), thus, transforming the nonlinear 
question to a problem in linear algebra. This is a classical technique that enables us to numerically 
approximate all solutions [4,39,41,74,81]. For demonstration, consider the previous system and its 
resultant matrix M. The matrix rows are indexed by the following row vector of monomials in the 
eliminated variables:

	
v =  x x y x xy xy x y y y3 2 2 2 3 2 1, , , , , , , , ,

Vector vM expresses the polynomials indexing the columns of M, which are multiples of the three input 
polynomials by various monomials. Let us specialize variables u and v to random values. Then, M con-
tains a single variable w and is denoted M(w). Solving the linear system vM(w) = 0 in vector v and in 
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scalar w is a generalized eigenproblem, since M(w) can be represented as M0 + wM1, where M0 and M1 
have numeric entries. If, moreover, M1 is invertible, we arrive at the following eigenproblem:

	
v 0 v 0 v v( )M wM M M wI M M w0 1 1

1
0 1

1
0+ = ⇔ − −( ) = ⇔ −( ) =− −

For every solution (a, b) of the original system, there is a vector v among the computed eigenvectors, 
which we evaluate at x = a, y = b and from which the solution can be recovered by division [74]. As for 
the eigenvalues, they correspond to the values of w at the solutions; see [75] on numerical issues and an 
implementation.

An alternative method for approximating or isolating all real roots of the system is to use the so-
called rational univariate representation (RUR) of algebraic numbers [35,214]. This allows us to express 
each root coordinate as the value of a univariate polynomial, evaluated over an algebraic number, which 
is specified as a solution of a single polynomial equation. All polynomials involved in this approach are 
derived from the resultant.

The resultant matrices are sparse and have quasi Toeplitz/Hankel structure (also called multilevel 
Toeplitz/Hankel structure), which enables their fast multiplication by vectors. By combining the latter 
property with various advanced nontrivial methods of multivariate polynomial root-finding, substan-
tial acceleration of the construction and computation of the resultant matrices and approximation of the 
system’s solutions was achieved in [24,85,86,150–152].

A comparison of the resultant formulations can be found, for example, in [81,120,138]. The multivari-
ate resultant formulations have been used for diverse applications such as algebraic and geometric rea-
soning [41,59,138], including separation bounds for the isolated roots of arbitrary polynomial systems 
[84], robot kinematics [55,138,211], and nonlinear computational geometry, computer-aided geometric 
design and, in particular, implicitization [32,42,78,87,111].

10.4.4  Gröbner Bases

Solving systems of nonlinear equations can be formulated in terms of polynomial ideals [50,105,127]. The 
ideal generated by a system of polynomials p1,…, pr over Q[x1,…, xn] is the set of all linear combinations

	 ( , , ) { | , , [ , , ]}1 1 1 1 1p p h p h p h h x xr r r r nQ�… = + + … ∈ …

The algebraic variety of p1,…, pr ∈ Q[x1,…, xn] is the set of their common roots,

	 ( , , ) {( , , ) | ( , , ) ( , , ) 0}1 1 1 1 1V p p a a p a a p a ar n
n

n r nC… = … ∈ … =…= … =

A version of the Hilbert Nullstellensatz states that

	 V p p p p x xr r n( , , ) ( , , ) [ , , ]1 1 11… = ∅⇔ ∈ … …the empty set over Q

which relates the solvability of polynomial systems to the ideal membership problem.
A term t x x xe e

n
en= …1 2

1 2  of a polynomial is a product of powers with deg(t) = e1 + ⋯ + en. In order 
to add needed structure to the polynomial ring we will require that the terms in a polynomial be 
ordered in an admissible fashion [50,97]. Two of the most common admissible orderings are the 
lexicographic order (≺l), where terms are ordered as in a dictionary, and the degree order (≺d), 
where terms are first compared by their degrees with equal degree terms compared lexicographically. 
A  variation to the lexicographic order is the reverse lexicographic order, where the lexicographic 
order is reversed.
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Much like a polynomial remainder process, the process of polynomial reduction involves subtracting 
a multiple of one polynomial from another to obtain a smaller degree result [50,105,127]. A polynomial 
g is said to be reducible with respect to a set P = {p1,…, pr} of polynomials if it can be reduced by one or 
more polynomials in P. When g is no longer reducible by the polynomials in P, we say that g is reduced 
or is a normal form with respect to P.

For an arbitrary set of basis polynomials, it is possible that different reduction sequences applied to a 
given polynomial g could reduce to different normal forms. A basis G ⊆ Q[x1,…, xn] is a Gröbner basis 
if and only if every polynomial in Q[x1,…, xn] has a unique normal form with respect to G. Buchberger 
[27–29] showed that every basis for an ideal (p1,…, pr) in Q[x1,…, xn] can be converted into a Gröbner 

basis p p GB p ps r1 1
*, , * ( , , ),…{ } = …  concomitantly designing an algorithm that transforms an arbitrary 

ideal basis into a Gröbner basis. Another characteristic of Gröbner bases is that by using the abovemen-
tioned reduction process we have

	 g p p g p pr s∈ … ⇔ …( ) =( , ) *, , *
1 1 0mod

Further, by using the Nullstellensatz it can be shown that p1…, pr viewed as a system of algebraic equa-
tions is solvable if and only if 1 ∉ GB(p1,…, pr).

Depending on which admissible term ordering is used in the Gröbner bases construction, an ideal 
can have different Gröbner bases. However, an ideal cannot have different (reduced) Gröbner bases 
for the same term ordering. Any system of polynomial equations can be solved using a lexicographic 
Gröbner basis for the ideal generated by the given polynomials. It has been observed, however, that 
Gröbner bases, more specifically lexicographic Gröbner bases, are hard to compute [139]. In the case 
of zero-dimensional ideals, those whose varieties have only isolated points, a change of basis algorithm 
was outlined in [90], which can be utilized for solving: one computes a Gröbner basis for the ideal gener-
ated by a system of polynomials under a degree ordering. The so-called change of basis algorithm can 
then be applied to the degree ordered Gröbner basis to obtain a Gröbner basis under a lexicographic 
ordering. Significant progress has been achieved in the algorithmic realm by Faugère [88,89].

Another way to finding all common real roots is by means of RUR; see the previous section. All poly-
nomials involved in this approach can be derived from the Gröbner basis. A rather recent development 
concerns the generalization of Gröbner bases to border bases, which contain all information required 
for system solving but can be computed faster and seem to be numerically more stable [127,154,155,221].

Turning to Lazard’s example in form of a polynomial basis,

	

p x xy x y

p x x y y

1
2

2
2 2

2 1

3 2 1

= + + + −
= + − + −

one obtains (under lexicographical ordering with x≺ly) a Gröbner basis in which the variables are trian-
gulated such that the finitely many solutions can be computed via back substitution:

	

p x x y

p xy x y

p y

1
2

2

3
2

3 2 2

1

1

*

*

*

= + + −
= − − +
= −

The final univariate polynomial has minimal degree, whereas the polynomials used in the back substitu-
tion have total degree no larger than the number of roots. As an example, x2y2 is reduced with respect 
to the previously computed Gröbner basis p p p GB p p1 2 3 1 2

*, *, * ( , ){ } =  along two distinct reduction paths, 
both yielding −3x − 2y + 2 as the normal form.
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There is a strong connection between lexicographic Gröbner bases and the previously mentioned 
resultant techniques. For some types of input polynomials, the computation of a reduced system via 
resultants might be much faster than the computation of a lexicographic Gröbner basis.

Gröbner bases can be used for many polynomial ideal theoretic operations [29,49]. Other applica-
tions include computer-aided geometric design [111], polynomial interpolation [129], coding and cryp-
tography [92], and robotics [91].

10.5 R esearch Issues and Summary

Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal power series, expo-
nential and differential polynomials, rational functions, algebraic sets, curves, and surfaces. In this vast 
area, manipulations with matrices and polynomials, in particular the solution of a polynomial equation 
and linear and polynomial systems of equations, are most fundamental in modern computations in sci-
ences, engineering, and signal and image processing. We reviewed the state of the art for the solution of 
these three tasks and gave pointers to the extensive bibliography.

Among numerous interesting and important research directions of the topics in Sections 10.2 and 
10.3, we wish to cite computations with structured matrices, including their applications to polyno-
mial root-finding, currently of growing interest, and new techniques for randomized preprocessing for 
matrix computations, evaluation of resultants and polynomial root-finding.

Section 10.4 of this chapter has briefly reviewed polynomial system solving based on resultant matri-
ces as well as Gröbner bases. Both approaches are currently active. This includes practical applications 
to small and medium-size systems. Efficient implementations that handle the nongeneric cases, includ-
ing multiple roots and nonisolated solutions, are probably the most crucial issues today in relation to 
resultants. The latter are also studied in relation to a more general object, namely the discriminant of 
a well-constrained system, which characterizes the existence of multiple roots. Another interesting 
current direction is algorithmic improvement by exploiting the structure of the polynomial systems, 
including sparsity, or the structure of the encountered matrices, for both resultants and Gröbner bases.

Key Terms

Characteristic polynomial: Shift an input matrix A by subtracting the identity matrix xI scaled by 
variable x. The determinant of the resulting matrix is the characteristic polynomial of the 
matrix A. Its roots coincide with the eigenvalues of the shifted matrix A − xI.

Condition number of a matrix is a scalar κ which grows large as the matrix approaches a singular 
matrix; then numeric inversion becomes an ill-conditioned problem. κ OUTPUT ERROR 
NORM ≈ INPUT ERROR NORM.

Degree order: An order on the terms in a multivariate polynomial; for two variables x and y with x ≺ y 
the ascending chain of terms is 1 ≺ x ≺ y ≺ x2 ≺ xy ≺ y2….

Determinant: A polynomial in the entries of a square matrix whose value is invariant in adding to a 
row (resp. column) any linear combination of other rows (resp. columns). det (AB) = det A · 
det B for a pair of square matrices A and B, det B = − det A if the matrix B is obtained by inter-
changing a pair of adjacent rows or columns of a matrix A, det A ≠ 0 if and only if a matrix A 
is invertible. Determinant of a block diagonal or block triangular matrix is the product of the 
diagonal blocks, and so det A = (det A0.0) det S under (10.1). One can compute a determinant 
by using these properties and matrix factorizations, for example, recursive factorization (10.1).

Gröbner basis: Given a term ordering, the Gröbner basis of a polynomial ideal is a generating set of 
this ideal, such that the (multivariate) division of any polynomial by the basis has a unique 
remainder.

Lexicographic order: An order on the terms in a multivariate polynomial; for two variables x and y with 
x ≺ y the ascending chain of terms is 1 ≺ x ≺ x2 ≺ ⋯ ≺ y ≺ xy ≺ x2y ⋯ ≺ y2 ≺ xy2….
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Matrix eigenvector: A column vector v such that Av = λv, for a square matrix A and the associated 
eigenvalue λ. A generalized eigenvector v satisfies the equation Av = λBv for two square matri-
ces A and B and the associated eigenvalue λ. Both definitions extend to row vectors that pre-
multiply the associated matrices.

Mixed volume: An integer-valued function of n convex polytopes in n-dimensional Euclidean space. 
Under proper scaling, this function bounds the number of toric complex roots of a well-
constrained polynomial system, where the convex polytopes are defined to be the Newton 
polytopes of the given polynomials.

Newton polytope: The convex hull of the exponent vectors corresponding to terms with nonzero coef-
ficients in a given multivariate polynomial.

Ops: Arithmetic operations, that is, additions, subtractions, multiplications, or divisions; as in flops, 
that is, floating point operations.

Resultant: A polynomial in the coefficients of a system of n polynomials with n + 1 variables, whose 
vanishing is the minimal necessary and sufficient condition for the existence of a solution of 
the system.

Separation bound: The minimum distance between two (complex) roots of a univariate polynomial.
Singularity: a square matrix is singular if its product with some nonzero matrix is the zero matrix. 

Singular matrices do not have inverses.
Sparse matrix: a matrix whose zero entries are much more numerous than its nonzero entries.
Structured matrix: A matrix whose every entry can be derived by a formula depending on a smaller 

number of parameters, typically on O(m + n) parameters for an m × n matrix, as opposed to its 

mn entries. For instance, an m × n Cauchy matrix has 
1

s ti j−  as the entry in row i and column j 

and is defined by m + n parameters si and tj, i = 1,…, m; j = 1,…, n. Typically a structured matrix 
can be multiplied by a vector in nearly linear arithmetic time.

Further Information

The books and special issues of journals [1,5,21,25,31,58,82,97,178,221,244] provide a broader introduc-
tion to the general subject and further bibliography.

There are well-known libraries and packages of subroutines for the most popular numerical matrix 
computations, in particular, [61] for solving linear systems of equations, [95,220], ARPACK, and 
PARPACK for approximating matrix eigenvalues, and [3] for both of the two latter computational prob-
lems. Comprehensive treatment of numerical matrix computations and extensive bibliography can be 
found in [103,222], and there are many more specialized books on them [6,8,62,100,104,110,209,227,239] 
as well as many survey articles [108,159,168] and thousands of research articles. Further applications to the 
graph and combinatorial computations related to linear algebra are cited in “Some Computations Related 
to Matrix Multiplication” and [169].

On parallel matrix computations, see [101,103,115,116,192] assuming general input matrices, 
[101,108,169,202] assuming sparse inputs, [62] assuming banded inputs, and [21,172,178] assum-
ing dense structured inputs. On Symbolic-Numeric algorithms, see the books [21,178,235], surveys 
[168,173,175], special issues [22,82,125,126], and the bibliography therein. For the general area of exact 
computation and the theory behind algebraic algorithms and computer algebra, see [9,30,50,51,58,96,
97,147,148,240,242,244].

There is a lot of generic software packages for exact computation, synaps [253], a C++ open source 
library devoted to symbolic and numeric computations with polynomials, algebraic numbers, and poly-
nomial systems, which has been evolving into the realroot package of the open source computer 
algebra system mathemagix; ntl a high-performance C++ library providing data structures and algo-
rithms for vectors, matrices, and polynomials over the integers and finite fields, and exacus [11], a C++ 
library for curves and surfaces that provides exact methods for solving polynomial equations. A highly 



10-20 Algorithms and Complexity

efficient tool is FGb for Gröbner basis, and RS for the rational univariate representation, and real solu-
tions of systems of polynomial equations and inequalities. Finally, Lin Box [65] is a C++ library that 
provides exact high-performance implementations of linear algebra algorithms.

This chapter does not cover the area of polynomial factorization. We refer the interested reader to 
[96,132,158], and the bibliography therein.

The SIAM Journal on Matrix Analysis and Applications and Linear Algebra and Its Applications are 
specialized on Matrix Computations, Mathematics of Computation and Numerische Mathematik are 
leading among numerous other good journals on numerical computing.

The Journal of Symbolic Computation and the Foundations of Computational Mathematics specialize 
on topics in Computer Algebra, which are also covered in the Journal of Computational Complexity, the 
Journal of Pure and Applied Algebra and, less regularly, in the Journal of Complexity. Mathematics for 
Computer Science and Applicable Algebra in Engineering, Communication and Computing are currently 
dedicated to the subject of the chapter as well. Theoretical Computer Science has become more open to 
algebraic–numerical and algebraic–geometric subjects [22,34,82,125].

The annual International Symposium on Symbolic and Algebraic Computation (ISSAC) is the main 
conference in computer algebra; these topics are also presented at the bi-annual Conference MEGA and 
the newly founded SIAM conference on Applications of Algebraic Geometry. They also appear in the 
annual ACM Conference on Computational Geometry, as well as at various Computer Science confer-
ences, including SODA, FOCS, and STOC.

Among many conferences on numerical computing, most comprehensive ones are organized under 
the auspices of SIAM and ICIAM. The International Workshop on Symbolic-Numeric Algorithms can 
be traced back to 1997 (SNAP in INRIA, Sophia Antipolis) and a special session in IMACS/ACA98 
Conference in Prague, Czech Republic, in 1998 [175]. It restarted in Xi’an, China, 2005; Timishiora, 
Romania, 2006 (supported by IEEE), and London, Ontario, Canada, 2007 (supported by ACM). The 
topics of Symbolic-Numerical Computation are also represented at the conferences on the Foundations 
of Computational Mathematics (FoCM) (meets every 3 years) and quite often at ISSAC.
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From an engineering standpoint, “randomness” sounds like a bad idea; when we build things, we want 
them to be predictable. It is therefore somewhat surprising how important randomness has become in 
the design of algorithms and data structures. A randomized algorithm or data structure is allowed to 
make random choices during its execution.*

The reason to allow randomness in the design is that it provides a larger trade-off space for qualities 
we may desire. Typically, when we talk about analyzing algorithms and data structures, we are con-
cerned with the two basic measures we want to optimize: worst-case time and space. Allowing random-
ness allows us to consider other measures, including the following:

•	 Expected time and space: We might allow worst-case time or space to be large if they are not large 
very frequently.

•	 Correctness: We might allow our algorithm or data structure to occasionally give a wrong answer 
or otherwise fail, again if it does not happen frequently, in return for gains in average or worst-
case time or space. While it may be counterintuitive to treat correctness as just another perfor-
mance metric, this idea has proven quite powerful in both theory and practice.

*	 A closely related but different line of work addresses the probabilistic analysis of algorithms (and data structures), where 
one assumes the input is random according to some distribution, rather than allowing the algorithm to make random 
choices. In the setting of probabilistic analysis, there can still be bad but rare inputs to the algorithm; in studying ran-
domized algorithms, we are concerned with bad but rare random choices made by the algorithm.
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Finally, randomized algorithms and data structures often provide another less tangible benefit: 
simplicity. Simplicity can be useful not just for theoretical analysis; if we think of programmer time as 
a measurable and important resource, a simple randomized algorithm may be more useful than a more 
complex deterministic algorithm, even if it does not gain by other more standard metrics.

The field of randomized algorithms and data structure is so large, it would be impossible to consider 
summarizing the entire area in a short survey. There are entire books devoted the subject, notably the 
general texts by Motwani and Raghavan [47] and Mitzenmacher and Upfal [43], and there are several 
texts that cover specialized subbranches of the area as well, such as [21,46,60,66].

In what follows, we provide some basic examples of how randomness is used in algorithms and data 
structures. We have chosen to emphasize approaches that have proven useful in practice. We assume 
that the reader has had an appropriate undergraduate-level training in algorithms, complexity, and 
probability theory.

Outline: Hashing is one of the most fundamental uses of randomness in computer science. In 
Section 11.1, we discuss several variations of hash tables. Tabulation hashing gives an efficient imple-
mentation of a hash function using a small amount of space with desirable theoretical and practical 
properties. We then explore the power of building hash tables with multiple hash functions for items to 
choose from and in particular examine cuckoo hashing, which allows items to move among its choices 
even after they were initially inserted to the table. Section 11.2 applies hashing to create a sketch of the 
data set; we consider two sketches, the Bloom filter and the count-min sketch. A further application 
of hashing is presented in Section 11.3, namely, the use of hash functions to create concise fingerprints 
of items. We demonstrate two applications of fingerprints in text analysis: the Karp–Rabin string 
matching algorithm and the shingling algorithm for identifying similar documents. Randomization 
is also an essential component of modern public-key cryptosystems. Section 11.4 demonstrates how 
randomness is utilized in the RSA cryptosystem and in a related algorithm for choosing large random 
prime numbers. We also present two practical applications of randomization that do not have (yet) 
a complete theoretical analysis: the naive Bayesian classifier (Section 11.5) and randomized greedy 
heuristics (Section 11.6).

11.1  Hashing

A hash function h maps a domain to a range so that the result “looks random.” Of course, any par-
ticular function is fully deterministic. In analyzing hashing, we assume that the hash function h 
is chosen at random from a family of hash functions H. To simplify the analysis we often assume 
that the hash function is fully random, that is, chosen at random from the family of all functions, 
although in practice fully random hash functions are not possible. The number of random bits 
needed to represent a fully random hash function mapping {0, 1}n to {0, 1}m would be 2n × m bits, 
which is far too large for any reasonable n. In practice we use hash functions chosen from smaller 
families that have concise representation and are easy to compute. Constructing such families of 
functions that look sufficiently random is a major theoretical and practical research area, as we 
discuss in Section 11.1.1.

A common use for hashing is to build a hash table; the hash of an item—which is more commonly 
called a key in this context—provides a location, often called a bin or bucket, for where to find the key. If 
we have n keys and a hash table of n buckets, on average, each bucket will have a load of 1 key; however, 
even with a fully random hash function, the bucket with the most keys (or maximum load) will have 
(1 + o(1))(log n/log log n) keys with high probability [30].

We use this result as a baseline. To start, we consider one method for coming up with good hash 
functions using fewer random bits. It yields hash tables with a maximum load similar in size to fully 
random hash functions. Then, we show some useful ways to make better hash tables, with much smaller 
maximum load per bucket, by using multiple hash functions.
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11.1.1 T abulation Hashing

Tabulation hashing is a fairly old scheme based on lookup tables currently enjoying a renaissance based on 
new results regarding its performance. Variations (such as Zobrist hashing [67], which was used to hash 
positions in board games to bit strings) were known in the late 1960s; it was also considered by Carter and 
Wegman [10]. Our description is based primarily on recent work by Pătraşcu and Thorup [51,52].

We assume the keys are a fixed number of bits b. We view b as a vector of t characters, each 
of c bits, so that b = ct. Suppose that we want our output to consist of a bits; that is, we want a hash 
function h: {0, 1}b → {0, 1}a. Our hash function is derived from a lookup table with 2c × t entries; each entry 
is initialized with an a-bit random value. Hence, the space required is at2c bits in total and our analysis 
assumes that the bits of the table are chosen uniformly at random from all 2at2c possibilities.

Let our lookup table T be such that T [i, j] provides the a bits when the ith character takes on the value j, 
where i ∈ [1, t] and j ∈ [0, 2c − 1]. Let our key x be given by x = x1 … xt, where the xk are the t characters con-
stituting x. Then

	 h x T x T x T t xt( ) [ , ] [ , ] [ , ],= ⊕ ⊕1 21 2 …

where ⊕ is the bitwise exclusive-or operation. Naturally, a key advantage of tabulation hashing is that it 
is very fast, if one can choose the table parameters to fit into memory. For example, suppose one wants to 
hash 128 bit keys (such as IPv6 addresses) into 32 bits. Using c = 8 and t = 16, the table requires 217 bits, 
small enough to fit into even fairly small caches, and only a small number of simple operations.

Figure 11.1 that follows shows how 32-bit keys can be hashed into 12-bit values using just 384 random bits.
Tabulation hashing seems weak under some standard measures of approximate independence of hash 

values. For example, it is three-wise independent but not four-wise independent. That is, for any three 
keys x, y, and z, we have that h(x), h(y), and h(z) are all mutually independent, but if we have four keys w, 
x, y, and z, the values h(w), h(x), h(y), and h(z) need not be mutually independent. For example, if w, x, y, 
and z are all the same except for the last two characters, so that for a prefix p we have w = pc1c3, x = pc2c4, 
y = pc1c4, and w = pc2c3, then h(w) ⊕ h(x) ⊕ h(y) ⊕ h(z) = 0. More specifically the strings

	

00000000000000000000000000000000 000000000000000000000000, 111111111

11111111 10000000000000000 00000000 0000000000000000, 1111111111111111

are not linearly independent; the hash of each is the exclusive-or of the hashes of the other three.

Char 1 Char 2 Char 3 Char 4

00000000 101001010101 000011010101 111100111100 010011110001
00000001 110100101010 101010101010 101101010101 101010000111
00000010 001001011010 101010100000 000010110101 100101000111
00000011 010100001100 001010100100 101010010111 101010101100
00000100 010100101000 101010100111 000011001011 010100110101
00000101 010101010000 000010010101 111010100001 101001010001
00000110 110011001110 110010101110 000110101010 101011110101
00000111 101010100001 111000011110 000011010000 101010100010

…..
Hash(00000000000000100000011100000001)

= 101001010101 xor 101010100000 xor 000011010000 xor 101010000111

FIGURE 11.1  The first several rows of a table for tabulation hashing. In the example, a 32-bit string is broken into 
4 characters of 8 bits each. By looking at each character in the appropriate column—shown by the bold an italicized 
entries—we find the 12-bit strings that are XOR’ed together to form the final hash value.
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But recent work shows tabulation hashing is much stronger than the earlier result suggests. For exam-
ple, one standard question is how well a hash function distributes n keys into a hash table with m buck-
ets. In this respect, tabulation hashing does quite well: when m = O(n), the most loaded bucket in the 
table has O(log n/log log n) keys with high probability, matching the same bounds as perfect random 
hashing. This follows from the following theorem (taken from Theorem 1 in [51]), which shows that 
tabulation hashing yields useful Chernoff-like bounds:

Theorem 11.1

Consider hashing n keys into m ≥ n1−1/(2c) buckets using tabulation hashing, where c is a constant and a = 
log m. Let X denote the number of keys that hash into a specific bucket (e.g., bucket 1). Let μ = E[X] = 
n/m. The following probability bounds hold for any constant γ:
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The result follows by taking m = O(n) and using a union bound.

Other known methods for generating hash values have not been shown to have (and often do not 
have) this useful property. The simplicity and small space usage of tabulation hashing, combined with 
performance guarantees such as this one, make it a strong contender for many practical applications. 
Indeed, tabulation hashing is stronger than standard pairwise-independent hashing, where any pair of 
items appear to be hashed independently even though larger collections of items may have dependen-
cies, but very competitive in terms of computation. The tabulation hashing paper [51] as well as other 
works [62,63] provide useful insights regarding implementing both tabulation hashing and other uni-
versal hashing schemes, including comparisons.

11.1.2  Hashing with Choices

One way to break the O(log n/log log n) maximum load for hashing when n keys are hashed into n buckets 
is to give each key being hashed more than one location to be placed—that is, give the keys a choice. 
The main result behind multiple-choice hashing was presented in a seminal work by Azar et al. [4], who 
showed the following: suppose that n keys are hashed sequentially into n buckets by hashing each key d 
times to obtain d choices of a bucket for each key and placing each key in the choice with the smallest 
current number of keys (or load). As we have noted, when d = 1, which is standard hashing, then the 
maximum load grows like (1 + o(1))(log n/log log n) with high probability [30]; the result of [4] is that 
when d ≥ 2, the maximum load grows like log log n/log d + O(1) with high probability, which even for two 
choices gives a maximum load of 5 in most practical scenarios. Notice that the gap in going from one to 
two choices is a different type of behavior; going from two to three choices just changes a constant factor. 
The upshot is that by giving keys just a small amount of choice in where they are placed, the maximum 
load can be greatly reduced; the cost is that now d locations have to be checked when trying to look up 
the key, which is usually a small price to pay in systems where the d locations can be looked up in parallel.

The intuition behind the proof is very easy (although the probabilistic formalism is somewhat more 
complicated). Suppose that we know that the fraction of buckets with load at least i after hashing all n 
keys is given by pi. Then, at any time in the process, the probability that a key hashes to d locations that all 
have load at least i is at most (pi)d. Hence, the expected number of keys that cause a bucket to have load at 
least i + 1 is at most n(pi)d, so the fraction pi+1 of buckets with load at least i + 1 should satisfy pi+1 ≤ (pi)d. 
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Let us assume that this equation holds for all i. Now clearly p2 ≤ 1/2, since at most 1/2 the buckets can 
have load at least 2, and by induction

	 pk
dk

≤ − −
2

2

.

In particular, when k > log log n/log d + 2, we have pk < 1/n, so the expected number of buckets of this 
load is less than 1. The proof of [4] formalizes this argument more carefully, proving the maximum load 
in a bucket is log log n/log d + O(1) with high probability.

One interesting aspect of multiple-choice hashing in practice is that very precise estimates of the 
load distribution on the buckets can be obtained using fluid limit models, which give a simple family of 
differential equations that accurately describe the behavior of the hash table. Details appear in [41,45].

A variant later introduced by Vöcking [64] both gives slightly improved performance and is particu-
larly amenable to parallelization. The hash table is split into d equal-sized subtables, which we think of 
as being ordered from left to right; when inserting a key, one bucket is chosen uniformly and indepen-
dently from each subtable as a possible location; the key is placed in the least loaded bucket, breaking ties 
to the left. (The scheme is often called the d-left scheme.) This combination of splitting and tiebreaking 
reduces the maximum load to log log n/(dϕd) + O(1), where ϕd is the asymptotic growth rate of the dth 
order Fibonacci numbers [64]. Again, very precise numerical estimates can be found using fluid limit 
models [45]. Table 11.1, for example, shows the fraction of buckets with loads from 1 to 4 for the basic 
d-choice scheme and for Vöcking’s variation for d = 2, 3, and 4 in the asymptotic limit with n balls and 
n buckets. As can be seen, the loads with Vöcking’s scheme fall even more quickly than the standard 
scheme. For example, under Vöcking’s scheme with three choices, and practical sizes for n, we would 
never expect to see any bucket with load 4 or more; for the standard scheme, with three choices, a bucket 
with load 4 would be a rare but not outstandingly unusual event.

In practice, the size of the most loaded bucket is generally highly concentrated around a specific value. 
As noted for example in [7], this effectively means that d-left hash tables can provide an “almost perfect” 
hash table in many settings. That is, the hash table is highly loaded with little empty space, insertions 
and lookups are guaranteed to take constant time, and the probability of failure (such as some bucket 
becoming overloaded) is very small. Such hash tables can then be used to bootstrap further data struc-
tures. They are particularly important for fast lookups, a common need in network processing tasks.

Several other variations of this process have been considered, such as when items are both inserted 
and deleted, when a “stash” is used to handle items that overflow buckets, and when placements are done 
in parallel; some of these variations are covered in various surveys [34,42].

11.1.3  Cuckoo Hashing: Adding Moves

Cuckoo hashing [50] extends multiple-choice hashing schemes by allowing keys to move among their 
choices in order to avoid collisions. In the original description, a key can be placed in one of two possible 

TABLE 11.1  Results for the Basic d-Choice Scheme (S) vs. Vöcking’s Scheme (V)

i

d = 2 d = 3 d = 4

S V S V S V

1 7.6 × 10−1 7.7 × 10−1 8.2 × 10−1 8.4 × 10−1 8.6 × 10−1 8.8 × 10−1

2 2.3 × 10−1 2.2 × 10−1 1.8 × 10−1 1.6 × 10−1 1.4 × 10−1 1.2 × 10−1

3 8.9 × 10−3 4.4 × 10−3 5.1 × 10−4 1.1 × 10−5 2.3 × 10−5 7.8 × 10−11

4 6.0 × 10−6 5.2 × 10−8 3.9 × 10−12 4.5 × 10−31 4.0 × 10−21 2.3 × 10−141

Note:	 Numbers represent the fraction of buckets of each load under fluid limit model, 
when n keys are placed in n buckets. These numbers are very accurate even for moderate 
values of n (in the thousands).
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buckets; each bucket can hold a single key. If both of the buckets already hold keys, we move the key in 
one of those buckets to the other of its two choices. If this other bucket is itself full, this move may in 
turn require the move of this other element, and so on until an empty spot for the current key is found. 
The name cuckoo hashing comes from the cuckoo bird in nature, which kicks other birds out of their 
nest, much like the hashing scheme recursively kicks keys out of their location as needed.

Figure 11.2 shows how one view of how a cuckoo hash table with two choices per key can be repre-
sented. An arrow represents the other choice for each key, so key A is placed in one bucket, but its other 
choice initially contains the key E. When key F is inserted, it is placed into an empty bucket. However, 
when key G is inserted, it takes the place of A, which then displaces E, which then displaces B to an 
empty bucket. It is unfortunately possible that a key cannot be placed, because the process of moving 
keys leads to a cycle; this is a cuckoo hash table failure.

In the case of two bucket choices per key, we can naturally view the process in the settings of random 
graphs. Let us assume that the two bucket choices for an element are always chosen to be distinct. Then 
we can think of the m buckets as vertices of a graph, and each of the n keys as being a random edge, with 
its two bucket choices being the endpoints of the edge. The question then becomes whether the edges of 
the graph can be oriented so each points to one of its two endpoints, in such a way that no endpoint is 
pointed to by two edges. Such an orientation would correspond to a successful placement of keys into 
buckets. Of course, beyond asking whether there exists a valid orientation, it is important to determine 
whether the cuckoo hashing algorithm outlined earlier can find it.

Hence, for two choices, we can consider the basic setting of random graphs, where there are very 
natural properties we can use.

Successfully placing an element corresponds to finding an augmenting path in the underlying graph 
where buckets are nodes and elements correspond to edges between nodes. When there are n keys to be 
placed in 2(1 + ε)n buckets, that is, when the load of the table is less than 1/2, all such augmenting paths 
are O(log n) in length with high probability. We therefore can declare that a failure occurs if a key can-
not be placed after c log n steps for an appropriately chosen constant c.

Theorem 11.2

Consider a cuckoo hash table with 2(1 + ε)n buckets and two choices per key for n keys. Then with prob-
ability 1 − O(1/n), when keys are placed sequentially, all keys are successfully placed, with each key tak-
ing at most O(log n) steps to be placed. The expected time to place each key is O(1).

A D B C E

F A D B C E

F G D E B C A

F

G

FIGURE 11.2  A cuckoo hash table example. When key F is inserted, it is placed in an empty bucket. When key G 
is inserted, it causes a sequence of moves in order to find a place.
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Cuckoo hashing can naturally be generalized to situations with more than two choices per bucket 
and more than one key per bucket [17,26]. The advantage of these generalizations is that much higher 
loads can be obtained. If everything can be placed successfully, then lookups take time O(1) as long as 
the number of choices d is constant. For d > 2, there is a correspondence to random hypergraphs, and 
when a bucket can hold k > 1 keys, we seek orientations that allow at most k edges assigned to each ver-
tex. While these settings are substantially more technically challenging, a great deal has been learned 
about such schemes in the last few years. For example, when d = 3 choices are used, a cuckoo hash table 
can handle (asymptotically) a load of over 91%; with d = 4 choices, a load of over 97% can be handled 
[16,27,28]. Also, the use of a small “stash” to hold keys that would not otherwise be able to be placed can 
dramatically reduce the probability of failure in practical settings [35].

Cuckoo hashing is a fairly new hashing method, but several applications of the idea have already been 
suggested, including for storage schemes using flash memory [13], hash tables for graphical processing 
units and associated graphics applications [3], scalable distributed directories [25], and in hardware 
caches [58].

11.2  Sketches

A large number of data structures have arisen that make use of hashing to create a sketch of a data set. 
A sketch can be seen as a useful small summary of a data set that allows specific operations on the data. 
Here we look at some simple sketches that provide a basic introduction to the general methodology.

11.2.1  Bloom Filters

Bloom filters are named after Burton Bloom, who first described them in a paper in 1970 [5]. A Bloom 
filter is a randomized data structure that succinctly represents a set and supports membership queries. 
For a set S, if x ∈ S, the Bloom filter will always return 1. If x ∉ S, the Bloom filter will return 0 with 
probability close to 1.

We review the necessary background, based on the presentation of the survey [8], which covers more 
details and some basic applications of Bloom filters. A Bloom filter representing a set S = {x1, x2,…, xn} 
of n keys from a universe U consists of an array B of m bits, initially all set to 0. The filter uses k hash 
functions h1,…, hk with range {0,…, m − 1}. Here (and throughout in our applications unless otherwise 
stated), we assume that our hash functions are fully random, so that each hash value is uniform on the 
range and independent of other hash values. Technically, this is a strong assumption, but it proves both 
useful and generally accurate in practice. (See [44] for possible reasons for this.)

For each key x ∈ S, the bits B[hi(x)] are set to 1 for 1 ≤ i ≤ k in the array B. (A bit may be set to 1 multiple 
times.) To check if an key y is in S, we check whether all array bits B[hi(y)] are set to 1 for 1 ≤ i ≤ k. If not, 
then clearly y is not a member of S. If all hi(y) are set to 1, we assume that y is in S. This may be incorrect; 
an element y ∉ S may hash to bits in the array that are set to 1 by elements of S. Hence, a Bloom filter may 
yield a false-positive error. Figure 11.3 shows further how Bloom filters function and how false-positives 
can occur.

The probability of a false-positive can be estimated in a straightforward fashion, under our assump-
tion that the hash functions are fully random. Suppose that after all n keys of S are hashed into the 
Bloom filter, a fraction ρ of the bits is 0. Then by independence of our hash values, the probability that 
an element y gives a false-positive is just (1 − ρ)k. What can we say about ρ? The expected value of ρ is 
just the probability that any specific bit remains 0; a bit has to be missed by kn hashes for that to happen, 
and that occurs with probability

	
′ = −
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Now ρ can be shown (using various concentration methods) to be closely concentrated around its 
expectation p′. Hence, a clean formula that very closely approximates the false-positive probability f is

	 f kn m k≈ − −( ) ./1 e

What is the best choice for the number of hash functions? Using calculus, it is easy to show that f is 
minimized when k = ln 2 · (m/n), in which case

	
f kn m k
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Of course, in practice, k must be an integer.
The utility of Bloom filters stems from the fact that the false-positive probability falls exponentially 

in m/n, the number of bits per key. When m/n is 8, the false-positive probability is just over 2%; when 
m/n is 10, it falls below 1%. Hence, when elements are large, Bloom filters allow one to save significant 
space at the cost of some false-positives. For many applications, that trade-off is appealing. In par-
ticular, Bloom filters have been suggested for a number of network processing tasks, such as longest 
prefix matching, or matching of signature strings within packets [14,15,61]. In the case of packet 
signatures, we may read the packet byte by byte and in parallel consider strings of various lengths 
ending at that byte. The signatures might live in a slower memory hash table, one for each signature 
length, or other lookup structure. By using a smaller Bloom filter in faster memory to record the set 
of signature strings in each table, the number of lookups can be reduced; in the common case, no 
slower lookups will be required, and false-positives will only minimally affect performance if they 
are kept sufficiently small. This use of a Bloom filter as a method to filter out requests to a slower or 
otherwise more costly lookup structure when we expect most lookups to be unsuccessful provides 
a common application of Bloom filters in real systems. Another notable early use of Bloom filters in 
networking is to provide a sketch of the contents of a web cache, to allow cooperative caching [23,56]. 
Instead of passing around lists of URLs, machines can pass around more space-efficient Bloom filters. 
The effects of false-positives, which can make a machine look to a local neighbor for a document that 
is not actually stored before then going to the web for it, can be made suitably small to still allow for 
improved performance.

11.2.2  Count-Min Sketches

Bloom filters only provide information about set membership, but the same basic framework—hash keys 
into multiple buckets in a way that preserves information about the elements despite collisions—has 

0 0 0 0 0
Start with an m bit array, filled with 0s.

If all k values are 1, then either y is in S, or y is a false positive.

To check if y is in S, check B[hi(y)]. If there is a 0, y is not in S.

Hash each item x in S k times. Set B[hi(x)] = 1.

0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

FIGURE 11.3  The basics of Bloom filters.
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now been used for many other data structures. As one example, we present here the count-min sketch 
[12] of Cormode and Muthukrishnan.* The count-min sketch is designed for settings where elements 
have associated counts. For example, in a network, a source–destination pair might have an associated 
number of bytes sent between them. We might want to track these counts, approximately, with an eye 
toward finding the heavy hitters, which are the flows sending the largest number of bytes. Tracking byte 
counts for all flows within a router would be too expensive, so we seek a small data structure that allows 
for accurate detection. Such structures also provide a building block for many other types of queries 
and applications, in databases and in various data stream settings. For example, they can be used to 
effectively estimate inner products of vectors [12].

We use the following framework. The input is a stream of updates in the form of order pairs (it, ct), 
starting from t = 1, where each key it is a member of a universe U = {1,…, n}, and each count ct is an inte-
ger. The state of the system at time T is given by a vector a(⃗T) = (a1(T),…, an(T)), where aj(T) is the total 
count associated with key j at time T, or

	
a T cj t

t T i jt

( ) .
:

=
≤ =
∑

We will assume in what follows the typical case where we have the guarantee that counts are nonnega-
tive, so aj(T) ≥ 0 for every j and T.

It is slightly more convenient for our analysis to split our structure into a 2D array Count with 
k rows and w columns, with each array entry being a counter. (There is essentially no difference in 
theory or practice if we just use a single array, but the argument is slightly harder.) As we did with 
Bloom filters, here we use k independent hash functions h1,…, hk: {1,…, n} → {1,…, w}; there is one for 
each row. (Actually, it is enough to assume that the hash functions are universal—also called pairwise 
independent—as shown in [12]; our arguments also hold with this assumption.) Every entry of the array 
is initialized to 0.

When a pair (i, c) arrives, we add c to the counters Count[1, h1(i)],…, Count[k, hk(i)]. As long as all 
counts are nonnegative, then each entry Count[j, hj(i)] will be a lower bound on ai(T). Intuitively, our 
hope is that, for at least one of these counters, no or at least very few other keys land in the same array 
counter. In that case, the minimum of the values Count[j, hj(i)] will actually be very close to the true 
count ai(T). That is, we use of âi = minj ∈ {1,…, d} Count[j, hj(i)] as an estimate of ai(T).

We now show that âi is a good bound for ai(T), as long as ai(T) is reasonably large and we size our 
array of counters appropriately. For j ∈ {1,…, k}, let
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a ,⃗ again assuming all entries are nonnegative). Markov’s inequality then implies that for any threshold 
value θ > 0, we have Pr(Xi,j ≥ θ) ≤ ∥a∥⃗/(wθ). By definition, our estimate satisfies âi = ai + minj∈1,…, d Xi,j, 
and by independence of the hj’s, we can conclude that
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*	 Estan and Varghese introduced the same data structure at essentially the same time and used it for applications in net-
work measurement [22]. They refer to the data structure as a parallel multistage filter.
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In particular, if we fix some parameters ε, δ > 0 and set w = ⌈e/ε⌉, d = ⌈ln(1/δ)⌉, and θ = ε∥a∥⃗, then 
we obtain

	
Pr ˆ || || .

ln( / )

a a ai i≥ +( ) ≤ 



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=ε
� 1

1

e

δ
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In essence, we have that âi is likely to be a fairly good estimate of ai—within ε times the total count over 
all keys. As long as ai is not too small—for example, it is a constant fraction of the total count—this can 
be a useful estimate.

One practical improvement, which unfortunately has resisted much theoretical analysis, uses a 
technique called conservative updating [22]. Here, we need to assume that all increment values ct are 
nonnegative. The basic idea is to never increment a counter more than is strictly necessary in order 
to guarantee that âi ≥ ai(T). Formally, to process an update (i, c), we let c′ = minj∈{1,…,k} Count[j, hj(i)] 
and then set Count[j, hj(i)] = max(c + c′, Count[j, hj(i)]) for j = 1, …, k. Notice that a counter is not 
updated if it is already larger than the previous estimated count associated with the key, which is c′ 
(the minimum over all the counters associated with i before the update), plus the update value c. It is 
easy to see that at every time step we still have âi ≥ ai(T) using this conservative updating, but now the 
counters are not incremented as much. Intuitively, this technique further reduces the effects of keys 
colliding in our array of counters. In particular, keys with small count are much less likely to have 
any effect on estimates for large keys. Experiments show that the improvement can be substantial [22].

11.3  String Matching and Document Similarity

Hash functions can be used to create succinct fingerprints of keys, so that with high probability most 
keys have unique fingerprints. We present two applications of this tool in the context of text analysis.

11.3.1  Karp–Rabin String Matching Algorithm

Given a long string of n characters X[1, n] = x1,…, xn and a shorter string of m characters Y[1, m] = y1,…, ym, 
we want to find all the occurrences of Y[1, m] in X[1, n], that is, all indices i1,…, ik, such that the m char-
acter substring X[ij, ij + m − 1] is identical to Y[1, m]. The problem is easily solved in O(mn) time. The 
randomized Karp–Rabin algorithm [33,29] always gives the correct answer and terminates in expected 
O(n + km) time, where k is the number of occurrences of the string Y[1, m] in X [1, n]. (In the worst case, 
the algorithm still takes only Ω(mn) time.)

Without lost of generality, we can assume that the characters in the strings are from the integer 
domain{0,…, b − 1}. Alternatively, we can view an m character string as a number written in radix b. The 
Karp–Rabin algorithm is based on two ideas:

	 1.	 The m characters strings can be hashed into a small domain of integers to speed up the compari-
sons of two strings.

	 2.	 The hash value of the string X[i + 1, i + m] can be computed with a constant number of operations 
from the hash value of the string X[i, i + m − 1].

The second idea is key; if we simply hashed each m character substring of X[1, m] in O(m) time per hash, 
there would be no gain. An example of a hash function that satisfies the earlier requirements is the 
radix b representation of a string of m characters modulo a prime integer p:
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To see how to go from one hash value to the next, assume that we have computed h(X[i, i + m − 1]). Then

	
h X i i m b h X i i m x b x pi

m
i m( [ , ]) ( [ , ]) mod ,+ + = + − −( ) +( )−
+1 1 1

which requires only O(1) operations modulo p for each new value.
The algorithm begins by computing
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in O(m) operations, and then for i = 1,…, m − n + 1 it computes and tests if

	 h X i i m h Y m( [ , ]) ( [ , ]),+ − =1 1

which requires a total of O(n) operations overall.
If h(X[i, i + m − 1]) ≠ h(Y[1, m]), then the two strings are not equal. If h(X[i, i + m − 1]) = h(Y[1, m]), 

the algorithm compares the m characters in the two string to verify the identity. Thus, the algorithm 
always gives the correct answer.

The expected run-time of the algorithm depends on the expected number of times in which h(X[i, 
i + m − 1]) = h(Y[1, m]), since in those cases the algorithm needs to individually check each of the m 
characters in the two strings. In particular, we are interested in minimizing the number of times 
in which the two hash values are equal but the two strings are not identical. In that case for some 
integer r ≠ 0.
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0. 	 (11.1)

Algorithm 11.1  Karp–Rabin Multiple Pattern Search

  1:  �input: String X [1, n]; ℓ; patterns Y1 [1, m], …, Yℓ [1, m], a random prime p and hash function h as 
defined in the text;

  2:  for j = 0, … p − 1 do
  3:      TABLE[j] = ϕ;
  4:  end for
  5:  Add 1 to the bucket TABLE[h(X [1, m])];
  6:  for i = 1, …, n − m + 1 do
  7:      h(X [i + 1, i + m]) = (b(h(X [i, i + m − 1]) − xi bm−1) + xi+m) mod p
  8:      Add i + 1 to the bucket TABLE[h(X[i + 1, i + m])];
  9:  end for
10:  for j = 1, … ℓ; do
11:      for k ∈ TABLE[h(Yj [1, m])] do
12:          if X [k, k + m − 1] = Yj [1, m] then
13:              OUTPUT: “Pattern j appears in X [k, k + m − 1]”
14:          end if
15:      end for
16:  end for
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For a given p, there are many sequences that satisfy (1). However, if we choose p at random from a suf-
ficiently large collection of prime numbers, then the probability of satisfying (1) is small. Specifically, an 
integer n has no more than log n distinct primes factors, while there are asymptotically n/log n primes 
in the range [1, n] (see, e.g., [48,59] [Theorem 5.14] or other references to the Prime Number Theorem). 
Since x b bi j

j

m
m j m

+
=

− − −∑ ≤
0

1
1 , it is divisible by no more than m log b prime numbers. Thus, if we choose p 

uniformly at random from all the primes in the range [0, nm2 log b log(nm2 log b)], the expected number 
of false equalities in the running of the algorithm is bounded by
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In this case, the expected extra work from testing false identities is O(1), and the expected run-time 
(except for verifying correct matches) is O(n + m) steps.

The Karp–Rabin method is particularly useful to search for multiple patterns simultaneously (see 
Algorithm 11.1). Assume that we have ℓ equal-length patterns Y1 [1, m],…, Yℓ [1, m], and we want to find 
any occurrence of any of these patterns in a long string X[1, n]. Such searches are useful for plagiarism 
detection and DNA motif discovery [57]. (If the ℓ patterns do not have the same length, we can use 
prefixes of the longer patterns.) Comparing the hash value of each of the strings X[i, i + m − 1], 1 ≤ i ≤ 
n − m + 1 to the hash value of each of the ℓ patterns in the natural manner could require Ω(ℓn) time. 
However, suppose that we instead store the hash values of the strings in a hash table with an appropri-
ate pointer back to the corresponding string location. For simplicity, we assume that the hash table 
has size p; however, similar results can be proven for a table of O(n) entries. We test for each of the ℓ 
patterns if its hash value coincides with any stored pointer in the table (an entry of the table can store 
a set of indices). The total work in populating the hash table is O(n), and computing the hash values for 
the ℓ patterns takes O(ℓm) time. If a substring matches the pattern hash, we need to verify the string 
matching by comparing the m characters. If we choose a prime p at random from an interval [0, nm2ℓ 
log b log(nm2ℓ log b)], the probability of a false identity is O(1/m), and the expected run-time (except for 
verifying correct matches) is O(n + ℓm). (To reduce the hash table size from modulo p to modulo n, we 
must keep both the string location and the corresponding original hash value modulo p; we then only 
do the O(m) work to check the pattern if the hash values modulo p match as well.)

11.3.2  Detecting Similar Documents

A major computational problem in indexing web pages for search engines is eliminating near-duplicate 
documents. A near-duplicate document is not an exact duplicate; exact duplicates are actually fairly 
easy to detect. For example, one could hash each document to a fingerprint of 128 bits and keep a sorted 
list of the fingerprints. To check for an exact duplicate, one could just search the fingerprint list; with 
a fingerprint of 128 bits, with high probability, two distinct documents should never obtain the same 
fingerprint hash value. In contrast, near-duplicate documents often differ in just a few locations, such 
as the date of last update. But even small differences will yield distinct fingerprints, so we cannot simply 
hash the pages as we can to check for exact duplicates.

It is estimated that about 40% of the pages on the web are duplicates or near-duplicates of other pages 
[38]. Eliminating near-duplicate documents increases the efficiency of the search engine and in general 
provides better results to the users. The shingling technique [9] provides an efficient and practical solu-
tion to this problem. Similar techniques are also used in other settings, such as plagiarism detectors [11].

Given a document, the process usually begins by putting it in a canonical form, by removing all 
punctuation, capitalization, stop words, and other extraneous information, so that the document is 
reduced to a sequence of terms (words). Then, given a document of n terms X = X[1, n] and an integer 
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k > 0, a k-shingle in X is any subsequence of k consecutive terms X[j, j + k − 1] in X. Let SX be the collec-
tions of all k-shingles in X:

	 S X i i k i n kX = + − ≤ ≤ − +{ }[ , ], .1 1 1

We measure the similarity of two documents X and Y by the Jaccard coefficient [31] of their respective 
k-shingle sets, SX and SY:

	
Jaccard S S

S S

S S
X Y

X Y

X Y

( , ) .=
∩
∪

The Jaccard coefficient has properties that make it a useful measure of similarity. In particular, the 
Jaccard coefficient is 1 for identical sets and 0 for disjoint sets. If Jaccard(SX, SY) ≥ r for some predefined 
threshold r (say 0.9), we consider the two documents similar and remove one of them. The challenge is 
to implement this computation efficiently so that it can scale to the size of web search engines. This is 
achieved through two randomization steps.

We first map each shingle, using a hash function h(), into a relatively large space of numbers (say 64 
bits numbers). Let h(s) be the hash value of shingle s and denote by HX the collection of hash values of 
the shingles in X:

	 H h s s XX = { ( ) | }.is a shingle in 

This mapping allows us to efficiently compare two shingles with relatively small probability of a false-
positive. However, typical documents have a large number of shingles, so computing the Jaccard coef-
ficient of HX and HY for every pair of documents X and Y is still too expensive.

To speed up the computation of the Jaccard coefficient, we use the following randomized estimate. 
Assume that the hash function maps the shingles into the range {0, …, b − 1} (where again, in practice 
b = 264 might be a suitable choice). Let Σ(b) be the set of b! permutations on 0, …, b − 1. We choose a 
random permutation σ ∈ Σ(b) and permute the two sets HX and HY. The following theorem shows that 
the probability that that the minimum values in the two permuted sets are equal is an unbiased estimate 
for the Jaccard coefficient of X and Y.

Theorem 11.3

Consider two documents X and Y and their collections of hashed shingles values HX and HY. Choose 
σ ∈ Σ(b) uniformly at random, let

	 m h s h s HX X( ) min{ ( ( )) | ( ) },σ σ= ∈

and similarly define mY. Then,

	 Jaccard S S m mX Y X Y( , ) ( ( ) ( )).= =Pr σ σ

Proof:  Let u = |HX ∪ HY| and t = |HX ∩ HY|. There are u! permutations of HX ∪ HY (we can ignore the 
values that do not appear in HX ∪ HY). Out of the u! permutations, there are t(u − 1)! permutations in 
which the minimum elements in the two sets are the same, since in this case there are t possible first 
elements one can choose first to be the minimum. Thus,
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To estimate the probability that Pr(mX = mY), we choose s permutations and count the number of 
permutations that give mx = mY. Thus, our estimate of J(X, Y) = Jaccard(HX, HY) is
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Applying a Chernoff type bound [43] (Exercise 4.15), we have

	 Pr | ( , ) ( , ) | ( , ) .( )�J X Y J X Y J X Y e s J− ≥( ) ≤ − −ε ε2 2 2

Thus, for any ε > 0, the failure probability decreases exponentially with s. Choosing s to be, for example, 
100 in practice generally performs quite well.

The major advantage of the shingling algorithm arises when comparing all pairs of a set of n docu-
ments. We first choose a set of s random permutations. We then process each document and store its 
list of s minimal values under the s permutations. Comparing two documents requires comparisons of 
s pairs of integers. Thus, most of the computation is done in processing the individual documents and 
therefore is linear in n. The work to compare all documents can still be quadratic in n, which is efficient 
for small n. Further methods, such as using hashing to place items into buckets according to their s 
shingle values, can reduce the time further by avoiding the need to explicitly compare the s values for 
every pair.

11.4 R SA and Primality Testing

Randomization is an essential component of any modern cryptography system. As an example, we will 
discuss the RSA encryption system and the related randomized primality testing algorithm. While 
these cryptographic schemes rely on arguments from number theory, we focus here the how random-
ness is used within the algorithms and therefore quote without proof the relevant number theory results 
as needed.

11.4.1  Public Key Encryption System

To receive a secure message in a public key encryption system [18], Bob runs a protocol that gener-
ates two keys: a public key Pub_Key and a private key Prv_Key. Bob publishes the public key and 
keeps the private key secret. Associated with the public key is an encryption function Enc(), and 
associated with the private key is a decryption function Dec(). To send a secure message x to Bob, 
Alice computes Enc(x) and sends it to Bob. The scheme is an efficient and secure encryption system 
if (1) Dec(Enc(x)) = x, that is, decoding an encoded message yields the original message; (2) the func-
tions Enc() and Dec() can be computed efficiently (in time polynomial in the message’s length); but 
(3) there is no efficient algorithm that computes x from Enc(x) (decrypts the encryption function) 
without the knowledge of the private key Prv_Key. In practice, the algorithm that Bob uses to gener-
ate his private and public keys is itself public; the security of the encryption scheme is not based on 
obscuring how the encryption algorithm works. What keeps the private key secret is that it should 
be generated by a randomized algorithm, from a large domain of possible private keys. Indeed, the 
number of possible private keys must be superpolynomial in the size of the message. Otherwise, an 
adversary could try every possible private key to obtain a polynomial time algorithm. The random 
choice of private key becomes the essential obstacle that prevents an adversary from trivially repli-
cating Bob’s encryption process.
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11.4.2 R SA

In the RSA system [55], the protocol for generating the public and private keys begins by generating two 
large random prime numbers p and q and an integer e, such that the greatest common divisor of (p − 1)
(q − 1) and e is 1. (This is commonly written as gcd((p − 1)(q − 1), e) = 1. One RSA variant is to let e = 3, 
which means that p and q cannot be integers of the form 3x + 1 for an integer x. Let n = pq and d = e−1 
mod (p − 1)(q − 1). It is a basic fact from number theory that e has a multiplicative inverse modulo (p − 1)
(q − 1) if we choose e so that gcd((p − 1)(q − 1), e) = 1. The public key that Bob publishes is (n, e), and

	 Enc x x ne( ) mod .=

The private key that Bob keeps secret is (p, q, d), and

	 Dec y y nd( ) mod .=

We first show that the decryption function correctly decodes the encrypted message. To decode 
Alice’s message, Bob computes

	 Dec Enc x x nde( ( )) mod .=

Since d and e are multiplicative inverses modulo (p − 1)(q − 1), we have that de = 1 + k(p − 1)(q − 1) for 
some k ≠ 0. Hence, for this k,

	 Dec Enc x x n x nde k p q( ( )) mod mod .( )( )= = + − −1 1 1 	 (11.2)

We would like to show that the last expression is equal to x. This follows from a well-known number-
theoretic fact, Fermat’s little theorem.

Theorem 11.4  (Fermat’s little theorem)

If p is prime and a ≠ 0 mod p, then

	 a pp− =1 1mod .

Applying Fermat’s little theorem to (2), we have x1+k(p−1)(q−1) = x mod p. This holds trivially when 
x = 0 mod p and by Fermat’s little theorem otherwise. Similarly, x1+k(p−1)(q−1) = x mod q. It follows again 
from the number theory that if x = a mod p and x = a mod q for primes p and q that x = a mod pq; thus,

	 x x pq x nk p q1 1 1+ − − = =( )( ) mod mod ,

proving that the RSA protocol correctly decodes the encoded message. Furthermore, both the encod-
ing and decoding are efficiently computable functions using repeated squaring for modular exponen-
tiations. (To compute a number like x16 mod p, you repeatedly square to compute x2 mod p, x4 mod p, 
x8 mod p, and x16 mod p; one can compute xn mod p in O(log n) multiplications modulo p.)

How secure is the RSA cryptosystem? First, notice that if an adversary can factor n, she can compute 
p and q and obtain Bob’s private key. The RSA system depends on the assumption that it is computa-
tionally hard to factor a product of two large primes. It is widely believed that factoring a sufficiently 
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large number is computationally infeasible, and so this line of attack is ineffective, barring a break-
through in factorization algorithms. Typically, in practice it is recommended that each prime is at least 
768 bit [1], but longer keys can and should be used for greater security. If you want your RSA message to 
be unbreakable for the next 20 or 30 years, and you expect improvements in factoring algorithms over 
that time, you may want to use bigger primes.

As we have stated, in order for the adversary not to know what primes have been chosen for the pri-
vate key, they should be chosen randomly; we discuss how to do this in the following. Even in choosing 
large random primes, it is important that the protocol avoids “easy” cases. For example, if one of the 
primes it small, the number is easier to factor, and that is why both primes in the key should be large. 
Similarly, if the two primes are close together, the factoring problem becomes easier. Finally, one must 
be sure to really choose the prime randomly; recently, an attack on RSA broke a large number of private 
keys, making use of the fact that several implementations did not choose their primes in a sufficiently 
random manner, allowing private key values n to be factored [36].

When the set of possible messages from Alice to Bob is small, an alternative line of attack for an adver-
sary is to keep a table of the encrypted version of all possible messages. To defend against this weak-
ness in the protocol, current implementations randomize the original message by adding a number of 
(easy to discard) extra random characters. This randomization phase—generally called “salting” [32]—
significantly increases the domain of all possible messages, thus making this line of attack less feasible.

11.4.3  Primality Testing

The RSA and similar encryption systems require the generation of random large primes. By the prime 
number (e.g., Theorem 5.14 of [59]), the probability that a random integer in the range [1, N] is prime is asymp-
totically 1/ln N. Thus, if we choose ln N random integers in the range [1, N], we are more likely than not to have 
at least one prime number among these random numbers. (If we are particularly clever, and avoid numbers 
that are, for example, obviously divisible by 2, 3, and 5, we can find a prime number faster.) The challenge is to 
identify a prime number, that is, to efficiently test for primality of large integers. We present here an efficient 
randomized algorithm for this problem. Interestingly, the question of whether there is an efficient determin-
istic algorithm for primality testing has only relatively recently been affirmatively solved [2]. Even though 
deterministic algorithms are now known, this randomized algorithm is particularly quick and effective.

11.4.4  Miller–Rabin Primality Test

Algorithm 11.2  Miller–Rabin Primality Test

  1:  input: An odd integer n > 1.
  2:  Choose w ∈ {2,…, n − 1}
  3:  s ← 0; r ← n − 1;
  4:  while s is even do
  5:       s = s + 1
  6:       r ← r/2
  7:  end while
  8:  Compute wr, w2r,…, w2sr = wn−1

  9:  for i = 1,…, s do
10:       if w2it = 1 mod n and w2i−1t ≠ ±1 mod n then
11:           Return composite
12:       end if
13:  end for
14:  Return prime
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The Miller–Rabin algorithm [53] is a randomized test with one-sided error. If the input is a prime 
number, the test always correctly confirms that the input is prime; if the input is a composite number, 
then with small probability the test can make a mistake and identify the input as prime. The error prob-
ability can be made arbitrarily small by repeating the test sufficiently number of times.

Given an input n, the test tries to randomly find a witness w demonstrating that the input n is com-
posite. An integer w ∈ {2, …, n − 1} is a witness for this primality test if it satisfies at least one of the 
following conditions:

	 1.	 wn−1 ≠ 1 mod n
	 2.	 w n w n

i ir r2 21 1
1

≠ ± =
−

mod , modand , for some integers r and 0 < i ≤ s, such that r2s = n − 1

Condition (1) follows from Fermat’s little theorem; if wn−1 ≠ 1 mod n, Fermat’s little theorem says that n 
cannot be prime, so w provides a witness for the compositeness of n. Condition (2) gives an integer x w

i r=
−2 1

 
such that x2 = 1 mod n and x ≠ ±1 mod n. Thus, x2 − 1 = (x − 1)(x + 1) is divisible by n, but both x − 1 and 
x + 1 are each not themselves divisible by n. This is impossible when n is prime, so n must be composite.

The efficiency of the earlier conditions for screening out non-prime numbers is due to the following 
fact (see [59] for a detailed discussion and in particular Theorem 10.3):

Theorem 11.5

If n is not a prime number and w is chosen uniformly at random in the range {2,…, n − 1}, then with 
probability at least 3/4, w is a witness according to the conditions earlier.

Hence, with probability 3/4, each time we run the test, we will catch that n is composite. Repeating 
the test with k independently chosen random integers in the range {2,…, n − 1}, the error probability of 
the Miller–Rabin test is at most (1/4)k.

11.5  Naive Bayesian Classifier

A naive Bayesian classifier [39] is a supervised learning algorithm that classifies objects by estimat-
ing conditional probabilities using the Bayesian rule in a simplified (“naive”) probabilistic model. In 
spite of its oversimplified assumptions, this method is very effective in many practical applications 
such as subject classification of text documents and junk e-mail filtering (see [40] and the references 
there). Strictly speaking, the algorithm is deterministic, and it makes no random steps. We include 
it here because it is one of the most practical and often-used algorithms based on a fundamental 
probabilistic concept.

Assume that we are given a collection of n training examples

	
D x x c i ni i m i i( , , ), | , , ,, ,1 1… …( ) ={ }

where Di = Di (x1,i,…, xm,i) is an object with features x1,i,…, xm,i and ci is the classification of the object.
Let C be the set of possible classes and Xi the set of values of the ith feature. For example, 

Di(x1,i ,…, xm,i) can be a text document with Boolean features x1,i, …, xm,i, where xi,j = 1 if keyword j 
appears in document i, otherwise xi,j = 0, and C can be a set of possible subjects or a {“spam,” “no-
span”} classification.
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The classification paradigm assumes that the training set is a sample from an unknown distribution 
in which the classification of an object is a (possibly probabilistic) function of the m features, that is, the 
classification of a new object D(x1,… xm) is fully characterized by the conditional probabilities
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The main difficulty in applying this model is that we need to learn a large collection of conditional 
probabilities, corresponding to all possible combination of values of the m features. Even if each feature 
has just two values, we need to estimate 2m conditional probabilities per class, which requires Ω(|C|2m) 
samples. The training process is faster and requires significantly fewer examples if we assume a “naive” 
model in which the m features are independent. In that case,
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With a constant number of possible values per feature, we only need to learn O(m(|C| + 1) + |C|) prob-
abilities. The training process is simple: Pr(xi) is the fraction of objects where the ith feature equals xi, 
Pr(xi|c) is the fraction of objects classified c where the ith feature equals xi, and Pr(c) is the fraction of 
objects classified c in the training set. (In practice, one often adds 1/2 to the numerator in each of the 
fractions to guarantee that no probability equals 0.)

Once we train the classifier, the classification of a new document D(x1,… xm) is computed using the 
Bayesian rule:
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Depending on the application, we can use the classification that maximizes the conditional probability 
(maximum likelihood classifier) or use the distribution over all possible classifications of D defined by 
the conditional probabilities.

The naive Bayesian classifier is efficient and simple to implement due to the “naive” assumption of 
independence. This assumption may lead to misleading outcomes when the classification depends on 
combinations of features. As a simple example, consider a collection of items characterized by two 
Boolean features X and Y. If X = Y, the item is in class A, and otherwise it is in class B. Assume further 
that for each value of X and Y the training set has an equal number of items in each class. All the condi-
tional probabilities computed by the classifiers equal 0.5, and therefore the classifier is not better than a 
coin flip in this example. In practice, such phenomena are rare and the naive Bayesian classifier is often 
very effective. Verifying and explaining the practical success of this method is an active research area 
[19,20,49,65].

11.6 R andomized Greedy Heuristics

As a final example of how to use randomness, we offer another heuristic that remains open to theo-
retical analysis but proves useful in practice. Several greedy algorithms can be placed in the following 
natural framework. We have a collection of n elements that need to be placed (for some notion of 
placed); their placement will determine how good the solution is. Our greedy algorithm first orders 
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the n elements into some intuitively good ordering, and then elements are greedily placed one at a 
time according to some process.

A standard example is the first-fit decreasing algorithm for bin packing. We have n items a1, a2, …, an 
with sizes in the range [0, 1], and several bins all of size 1, which we call b1, b2, …. We order the items 
in decreasing order in terms of their size and then place the items one at a time, placing each item in 
the lowest-numbered bin in which it can fit; that is, we place the item in bin bk where k is the smallest 
number where the item can be placed given the placement of the preceding items. The goal is to mini-
mize the number of nonempty bins, that is, the number of bins actually used. Intuitively, placing items 
in decreasing order is a good approach, as larger items are less easily placed, and first fit is a natural 
process for placing items. (Best fit, or placing each item in the bin with the least amount of free space 
where it can fit, is also possible.) As a more complex example of the same type, in the strip-packing 
problem, our items are rectangular boxes, and the goal is to fit the boxes into a larger rectangular box of 
fixed width W and minimum height. Again, a natural approach is to sort the items in decreasing order 
of area and to place items according to the bottom-left heuristic: place each box as far down vertically 
and then as much to the left as it can be placed. In some cases, these greedy heuristics can be shown to 
guarantee an approximation ratio; even in the worst case, they are guaranteed to be within some factor 
of the optimal solution.

The downside of using a greedy heuristic in this way is that it provides a single solution, but that is 
all. If time is available, one might hope to continue computing to find an improved solution. Obviously, 
one could adopt an entirely different approach, developing an algorithm based on techniques such as 
simulating annealing or genetic algorithms. But here we are focused on simplicity: can we better use the 
greedy algorithm we have in hand?

If the placement function is coded so that it takes the list of sorted elements as input, we can obtain 
additional possible solutions by simply providing the elements in a different order. But what order 
should we choose? Given that this chapter is based on randomized algorithms, one might be tempted to 
suggest we try orderings of elements chosen uniformly at random. But that seems like a poor idea; our 
heuristic started with an intuitively good ordering, and throwing that intuition away by using a com-
pletely random ordering is unlikely to be helpful.

Instead, we want a random ordering that is near our good ordering. There are multiple approaches 
that can be used to obtain such orderings. One natural approach is to repeatedly choose an element 
uniformly at random from the top k remaining elements for some parameter k. If the elements were 
sorted, this gives an ordering that is “close to” sorted, keeping the intuition intact but offering the 
flexibility of many more orderings [24,54]. An arguably more theoretically appealing approach is to 
repeatedly invoke the following process: take a coin that comes up heads with probability p, where p is 
a chosen parameter. Flip it, and if it comes up heads, take the next element in the sorted order for your 
permutation; otherwise, go on to the next element and continue [37]. (One can cycle back to the begin-
ning if needed.) At each step, this is equivalent to choosing the ith element in the remaining ordered 
elements with probability proportional to (1 − p)i. (The process can be programmed more efficiently in 
various ways.)

One advantage of this approach is that all orderings are possible to achieve. Indeed, more impor-
tantly, the probability an ordering is chosen is proportional to (1 − p)D where D is the Kendall tau dis-
tance, or the number of transpositions performed in a bubble sort, between the chosen ordering and the 
true sorted ordering. The original greedy ordering is the most likely, but it’s exponentially unlikely to be 
chosen. Instead, the outcome will almost surely be a sequence that is “mostly ordered.”

There are multiple variations on this theme. Many greedy algorithms change the order at each step. 
For example, the standard greedy algorithm for set cover at each step chooses to add to the cover the 
set that covers the most uncovered remaining elements. Randomized greedy algorithms can work here 
as well, although one must recompute the ordering at each step. Also, one need not keep the original 
greedy ordering as the baseline. A natural approach is to take the best ordering found thus far and 
use that as the ordering to randomize from. Finally, more can be done by adding local search as well. 
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A randomized greedy approach can be used to develop a variety of initial solutions, from which local 
search can be applied to look for locally optimal solutions. This general type of metaheuristic algorithm 
is known as a greedy randomized adaptive search procedure, or GRASP [24,54].

Improvements from randomized greedy schemes are highly problem and instance dependent. Results 
for several problems are given in [37], where the approach yields improvements of several percent after 
several hundred orderings and further improvements up through thousands of orderings. While gains 
for some problems over the basic greedy algorithm might be minimal, a key point in favor of random-
ized greedy approaches is the simplicity with which it can be implemented on top of the greedy algo-
rithm. One loses very little in programming time for potentially interesting gains.

There is essentially nothing known that is theoretically provable about randomized greedy algo-
rithms of this form. A better understanding of deterministic greedy algorithms of this form, which 
have been dubbed priority algorithms, was initiated by [6], but little is known about randomized 
variants.

Of course, the basic concept of doing multiple repeated randomized attempts in order to improve an 
algorithm has appeared in other settings. For example, one other potentially useful practical application 
arises in the randomized rounding of linear programs. In many cases, one can turn an optimization 
problem into an integer linear program, relax the integer constraint to solve the corresponding linear 
program, and then round the results of the linear program to obtain an integer program with the hope 
of obtaining a solution that is close to the optimal integer solution. In cases where an integer solution is 
not obtained, randomized rounding can be used: for example, a variable x with value 0.3 in the linear 
program solution can be rounded to 1 with probability 0.3 and 0 with probability 0.7, and similarly all 
variables can be independently randomly rounded. Repeated randomized rounding offers the opportu-
nity to obtain multiple solutions, all governed by the same intuition of being “near” the solution from 
the linear program.
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12.1  Underlying Principles

12.1.1  Introduction

The concept of approximation has been around for centuries, and it is used in all quantitative-based 
research areas. Examples include approximation of numbers (e.g., pi, e, √2, etc.) as well as mathematical 
functions, physical laws, geometrical objects, etc. Modeling of physical phenomena is by approximat-
ing its behavior. Problems in many areas are very difficult to solve analytically, and sometimes they 
are impossible to solve with the current knowledge, skills, and tools. Therefore, one needs to resort to 
approximations. In this chapter, we concentrate on “relatively” new research areas for approximations, 
which are called approximation algorithms and metaheuristics.

Even before the 1960s, researchers in applied mathematics and graph theory had established upper 
and lower bounds for certain properties of graphs. For example, bounds had been established for the 
chromatic number, achromatic number, chromatic index, maximum clique, maximum independent set 
(MIS), etc. Some of these results were implementable and could be transformed into efficient algorithms 
that may be seen as the precursors of approximation algorithms. By the 1960s, it was understood that there 
were problems that computationally could be solved efficiently, whereas for other problems all the known 
algorithms required exponential time with respect to the input size. Heuristics were being developed to 
find quick solutions to problems that appeared to be computationally difficult to solve. Researchers were 
experimenting with heuristics, branch-and-bound procedures, and iterative improvement frameworks 
to evaluate their performance when solving actual problem instances. There were many claims being 
made, not all of which could be substantiated, about the performance of the procedures being developed 
to generate optimal and suboptimal solutions to combinatorial optimization problems.
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Approximation algorithms, as we know them now, were formally introduced in the 1960s by Graham 
[1] and their most important feature is that they guarantee near-optimal solutions to all instances of the 
optimization problem being solved. These optimization problems could not be solved to optimality by 
the computing machines and algorithmic techniques available at that time. In the past 50 years there 
have been exponential improvements in the computer devices available; computing machines are orders 
of magnitude faster, can store significantly larger amount of data, and their cost and power consumption 
has decreased significantly. Also, in the past 50 years there has been tremendous growth of research in 
algorithmic techniques. These developments seem to imply that problems are nowadays more likely to be 
solved optimally than before, and that the need for approximation algorithms should have vanished, or 
at least decreased significantly by now. But this is not the case! There are two main reasons why solving 
a large class of problems to optimality is currently impossible and will remain in this state for the near 
future. First the size of the problem instances we are trying to solve has grown excessively over the past 
50 years. New applications require the solution of problems with massive amounts of data, for example, 
DNA sequencing, VLSI design automation, weather prediction, Internet searching, etc. Second, most 
optimization problems that arise in practice are computationally intractable. This means that there are 
no known efficient algorithms for their solution and it has been conjectured that no such algorithms exist.

In the early 1970s, computer scientists developed the theory of NP-completeness (see Chapter 7) 
and showed that an extremely large number of decision problems fall into this class of computation-
ally intractable problems. This theory tells us that the problems in this class are either all solvable via 
algorithms that take a polynomial number of steps for their solutions or none of them can. It is conjec-
tured that all of the problems in this class do not have polynomial time algorithms for their solution. 
In practical terms this implies that even for relatively small problem instances, all algorithms for their 
solution take in the worst case exponential time with respect to the instance (or input) size. The fastest 
algorithms to solve NP-Complete problems take time O(2n/2), O(2n), O(n!), etc., where n is the number 
of inputs (see Sahni [3] for the definition of the Big-Oh notation). For most NP-Complete problems 
their best known algorithms take O(2n) time. Increasing the input size by one, for an algorithm that 
takes 2n time, results in the doubling of the time needed to solve the problem instance. Even when n 
is 50 or 100, it would take, in the worst case, years for the fastest computer available today to solve the 
problem instance with this type of algorithms! For n in the millions, the time required to solve prob-
lems would be prohibitively large for most instances of the problem, not just the problem instances for 
which algorithms take the longest time to solve. This will remain unchanged even if new technologies 
were developed that would allow us to construct considerably faster computing machines. On the other 
hand, suppose that all NP-Complete problems can be solved in polynomial time. There is no guarantee 
that these polynomial time algorithms are low order polynomial time algorithms with small constants. 
In other words, these algorithms might not be practical. As we said before, a huge set of optimiza-
tion problem that arise in practice have the property that their corresponding decision problems are 
NP-Complete problems. These optimization problems are called NP-Hard problems because computa-
tionally they are at least as hard to solve as the NP-Complete problems. But problem instances need to 
be solved every day when flights have to scheduled, messages have to be routed through the Internet, 
computer code needs to be optimized, deadlocks in an operating system have to detected, investment 
portfolios have to optimized, energy consumption needs to be minimized, etc. In our everyday world 
we need to be able to cope with computational intractability.

We cope with NP-Completeness through restriction, randomization, and approximations. For exam-
ple, one of the most basic NP-Complete problem is called 3-SAT (satisfiability of a Boolean expression 
in which all clauses have three literals, see Chapter 7). Formal verification for program correctness 
as well as other properties of computer programs can be reduced to 3-SAT problem instances. Most 
of these instances can be solved quickly. However this does not necessarily contradict the theory of 
NP-Completeness because these restricted instances of 3-SAT might fall into a class of instances that can 
be solved in polynomial time. So one way to cope with intractability is by characterizing the instances 
that arise in practice (restriction) and then developing efficient algorithms to solve such instances. 
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Another way to cope with intractability is via randomization (see Chapter 11). The idea is to design algo-
rithms that make choices by flipping digital coins. For some problems such algorithms have been shown 
to generate near-optimal solutions with high probability. The third approach to cope with intractability 
is via approximation algorithms and metaheuristics, the main topic of this chapter.

One justification for approximations is based on computer intractability, but one can go even further 
and argue that one needs to apply approximation techniques even when the problems being solved are 
computationally tractable. The reason for this is that the input size may be very large or simply because 
we need to solve thousands of instances each fraction of a second. Also, in some applications the input 
has noise, so there is no need to solve a problem instance to optimality as the instance does not represent 
exactly the actual instance we want to solve. There are problems that are harder to solve than NP-Complete 
problems, so approximations for these problems are also required. In fact the situation is even worse, as 
there is a class of decision problems that are undecidable, that is, there is no algorithm to solve these prob-
lems. Chapter 7 discusses P, NP, NP-Completeness, and other complexity classes in more detail.

Our previous discussion gives the impression that approximation algorithms provide a solution to 
all of our problems, but that is not really the case. As it was established in the 1970s, for some problems 
one can generate near optimal solutions quickly, while for other problems generating provably good 
suboptimal solutions is computationally as difficult as generating optimal ones! In other words, generat-
ing provably good suboptimal solutions to some problems is as hard as generating optimal solutions to 
these problems (see [2]). To deal with the inapproximable problems there were a few techniques intro-
duced in the 1980s and 1990s. These methodologies have been referred to as metaheuristics and include 
simulated annealing (SA), ant colony optimization (ACO), evolutionary computation (EC), tabu search 
(TS), memetic algorithms (MA), etc. There has been a tremendous amount of research in metaheuristics 
during the past two decades. Other previously established methodologies like local search, backtrack-
ing, and branch-and-bound have also been explored in the context of approximations. These techniques 
have been evaluated experimentally and have demonstrated their usefulness for solving large problem 
instances that arise in real world applications.

During the last two decades approximation algorithms have attracted considerable attention. This 
was a result of a stronger inapproximability methodology that could be applied to a wider range of 
problems and the development of new approximation algorithms for problems arising in established 
as well as in emerging application areas. Today approximation algorithms enjoy a stature comparable 
to that of algorithms in general and the area of metaheuristics has established itself as a fundamental 
area. The new stature is a byproduct of a natural expansion of research into more practical areas where 
solutions to real world problems are expected, as well as by the higher level of sophistication required to 
design and analyze these new procedures. The goal of approximation algorithms and metaheuristics is 
to provide the best possible solutions with the resources available and to guarantee that such solutions 
satisfy certain important properties. The research area of approximation algorithms and metaheuristics 
is huge, and we only have a few pages to talk about it.

12.1.2  Criteria to Judge Approximations

One can use many different criteria to judge approximation algorithms and metaheuristics. To name a 
few, we could use the quality of solutions generated, and the time and space complexity needed to gener-
ate it. One may measure the criteria in different ways, for example, we could use the worst case, average 
case, median case, etc. The evaluation could be analytic or experimental. Additional criteria include: 
characterization of data sets where the algorithm performs very well or very poorly; comparison with 
other algorithms using benchmarks or data sets arising in practice; tightness of bounds (bounds for 
quality of solution, time and space complexity); the value of the constants associated with the time 
complexity bound including the ones for the lower order terms; and so on. For some researchers the 
most important aspect of an approximation algorithm is that it is complex to analyze, but for others it 
is more important that the algorithm be complex and involve the use of sophisticated data structures. 
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For researchers working on problems directly applicable to the “real world,” experimental evaluation or 
evaluation on benchmarks is a more important criterion. Clearly, there is a wide variety of criteria one 
can use to evaluate approximation algorithms.

For any given optimization problem P, let A1, A2, … be the set of current algorithms that generate a 
feasible solution for each instance of problem P. Suppose that we select a set of performance criteria C 
and measure each one in a way we feel it is most important. How can we decide which algorithm is best 
for problem P with respect to C? For example the criteria could be time and space complexity and in both 
cases we measure the worst case (asymptotic). We may visualize every algorithm as a point (or region) in 
multidimensional space. Now the basic approach used to compare feasible solutions for multiobjective 
function problems can also be used in this case to label some of the algorithms as current Pareto optimal 
with respect to C. Algorithm A is said to be dominated by algorithm B with respect to C, if for each cri-
teria c ∈ C algorithm B is “not worse” than A, and for at least one criteria c ∈ C algorithm B is “better” 
than A. An algorithm A is said to be a current Pareto optimal algorithm with respect to C if none of the 
current algorithms dominates it. Later on in this chapter we apply this metric to specific algorithms.

For some problems it is very hard to judge the quality of the solution generated. For example, color 
quantization, which essentially means to approximate colors, can only be judged by viewing the result-
ing images and that is very subjective. Problems arising in practice (e.g., in the areas of bioinformatics, 
VLSI CAD, etc.) have multiobjective optimization functions, and therefore it is not simple to judge the 
quality of the solutions generated.

The main criterion used to compare approximation algorithms has been the quality of the solution 
generated. An important secondary criterion is the worst case time complexity. We are mainly inter-
ested in the worst case scenario for the solutions generated by our algorithms. There are many justi-
fication for concentrating on the worst case behavior. The book entitled “Anitfragile,” by N. N. Taleb 
(Random House, 2012) mentions an interesting one relating to underestimation of events. He identified 
this issue as “... the Lucretius problem, after the Latin poetic philosopher who wrote that the fool believes 
that the tallest mountain in the world will be equal to the tallest one he has observed.” 

12.1.3 A pproximation Algorithms

The basic approximation methodologies are restriction (solution space and algorithmic), relaxation, 
rounding, partial brute force, randomization, and combinations of these methodologies. In what follows 
we discuss these techniques as well as formal notation, inapproximability and approximation classes.

12.1.3.1 R estriction (Solution Space)

The idea is to generate a solution to a given problem P by providing an optimal or suboptimal solution 
to a subproblem of P. A subproblem of a problem P means restricting the solution space for P by disal-
lowing a subset of the feasible solutions. The idea is to restrict the solution space so that the resulting 
problem has some structure which can be exploited by an efficient algorithm that solves the problem 
optimally or suboptimally. For this approach to be effective, the subproblem must have the property 
that, for every problem instance, its optimal or suboptimal solution has an objective function value that 
is “close” to the optimal one for the original problem instance. The most common approach is to solve 
just one subproblem, but there are algorithms where more than one type of subproblems are solved and 
then the best of the solutions computed is the solution generated. In what follows we apply this tech-
nique to a couple of classical problems.

12.1.3.1.1  Application to Traveling Salesperson and Steiner Tree Problems
The traveling salesperson, Steiner tree, and spanning tree problems have a large number of applications. 
The Steiner tree problem consists of a graph G = (V, E, W), where V is the set of vertices, T is a subset of 
V (T ⊆ V), E is the set of edges, and W is a function that assigns a positive value to each edge in such a 
way that for every pair of vertices a and b the weight of the edge {a, b} is at most the weight of any path 
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from a to b. The problem is to find a tree that includes all the vertices in T plus some other vertices in the 
graph such that the sum of the weight of the edges in the tree is least possible. When T = V the problem 
is called the minimum weight (or cost) spanning tree problem. The traveling salesperson problem, called 
the traveling salesman problem before the 1970s, is given an edge weighted complete graph, find a mini-
mum weight tour that starts and ends at vertex one and visits every vertex exactly once. The weight of a 
tour is the sum of the weight of the edges in the tour.

Even before the 1960s, there were several well known polynomial time algorithms to construct mini-
mum weight spanning trees for edge weighted graphs [3]. These simple greedy algorithms have low 
order polynomial time complexity bounds. It was known at that time that the same type of procedures 
would not generate an optimal tour for the traveling salesperson problem and would not construct 
optimal Steiner trees. However, in 1968 Moore [4] showed that for any set of points P in metric space 
LM ≤ LT ≤ 2LS, where LM, LT, and LS are the weights of a minimum weight spanning tree, a minimum 
weight tour (solution) for the traveling salesperson problem (TSP) and minimum weight Steiner tree 
for P, respectively.* Since every spanning tree for P is a Steiner tree for P and LM ≤ LT ≤ 2LS we know that 
a minimum weight spanning tree provides a solution to the Steiner tree problem whose total weight is at 
most twice the weight of an optimal Steiner tree.

In other words, any algorithm that generates a minimum weight spanning tree for the set of vertices T 
is a 2-approximation algorithm for the Steiner tree problem. This is called the approximation ratio or 
approximation factor for the algorithm. This criterion for measuring the quality of the solutions gener-
ated by an algorithm remains the most important one in use today. The approximation technique used 
in this case is restriction of the solution space. We are restricting the solution space by just allowing 
Steiner trees without any Steiner (additional) points. In fact we are constructing the best tree without 
any Steiner points, which is simply a minimum weight spanning tree for T.

The time complexity for our approximation method is the time complexity for solving the minimum 
weight spanning tree problem [3]. The bounds LM ≤ LT ≤ 2LS are established by first defining a simple 
transformation from any minimum weight Steiner tree into a TSP tour in such a way that LT ≤ 2LS [4]. 
Then by observing that the deletion of an edge in an optimum tour for the TSP problem results in a span-
ning tree, it follows that LM ≤ LT. The Steiner ratio is defined as LS/LM. The above arguments show that 
the Steiner ratio is at least 1 2/ . Gilbert and Pollak [4] conjectured that the Steiner ratio in the Euclidean 
plane equals 3 2/  (the .86603 … conjecture). The proof of this conjecture and improved approximation 
algorithms for the Steiner tree problem are discussed in [5].

The above approach can also be used to establish a 2-approximation algorithm for the TSP problem 
for metric graphs as follows. First, construct a minimum weight spanning tree. Then the graph (actually 
multigraph) with all the vertices in G and two copies of each edge in the minimum weight spanning tree 
has always an Euler circuit. An Euler circuit is a path that starts and ends at the same vertex and visits 
all the edges in the graph exactly once. This is a relaxed tour that visits every city at least once. Since 
graph G is metric, this relaxed tour can be easily transformed into one that visits every city at most once 
without increasing the tour length. From the above analysis we can show that the cost of the tour con-
structed is at most twice the cost of an optimal tour. The algorithm takes polynomial time and results 
in a 2-approximation algorithm for the TSP problem. This approximation algorithm for the TSP is also 
referred to as the double spanning tree algorithm. The approximation technique behind this algorithm is 
also based on restriction as initially we are finding a relaxed tour the uses the least number of different 
edges, though each of those edges is traversed twice.

The best approximation algorithm known for the TSP defined over metric graphs is the one by 
Christofides [6]. The approximation ratio for this algorithm is 3 2/ , which is smaller than the approxima-
tion ratio of 2 for the above algorithm initially reported in [4,7]. However, looking at the bigger picture 
that includes the time complexity of the approximation algorithm, Christofides algorithm is not of the 

*	 Note that for the MWST and the TSP problem the only “edges” allowed are those between any pair of points in P, but for 
the Steiner tree problem any point in the metric space may be a vertex in the Steiner tree.
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same order as the ones given in [4,7]. Therefore, neither of these two approximation algorithms domi-
nates the other as one has a smaller time complexity bound, whereas the other (Christofides algorithm) 
has a smaller worst case approximation ratio. Both of these algorithms are said to be Pareto optimal 
with respect to the worst case approximation ratio and worst case time complexity.

A closely related approach to restriction is transformation-restriction. The idea is to transform the 
problem instance to a restricted instance of the same problem. The difference is that the restricted prob-
lem instance is not a sub-problem of original problem instance as in the case of restriction, but it is a 
“simpler” problem of the same type. This approach has been applied to the problems of routing multi-
terminal nets and embedding hyperedges in a cycle.

12.1.3.2 R estriction (Algorithmic)

Algorithmic restriction (or restriction via a procedure) is a technique similar to restricting the solution 
space. The restriction is limiting the solutions to those generated by an algorithm or a class of algo-
rithms. Even though this restricts the solution space, in many situations it is difficult to characterize 
the restricted solution space. This is why we call this technique algorithmic restriction. Greedy methods 
fall into this category. Greedy algorithms generate a solution by making a sequence of irrevocable deci-
sions. Each of these decisions is a best possible choice at that point, for example, select an edge of least 
weight, select the vertex of highest degree, or select the task with largest processing time requirement.

12.1.3.2.1  Application to Scheduling on Identical Machines
Let us now apply this methodology to a couple of scheduling problems. The first problem is scheduling 
a set of tasks on a set of identical machines (or processors) to minimize the makespan. The problem is 
given a set of n tasks denoted by T1, T2,…, Tn with processing time requirements t1, t2,…, tn to be pro-
cessed by a set of m identical machines. A partial order C is defined over the set of tasks to enforce a 
set of precedence constraints, or task dependencies. The partial order specifies that a machine cannot 
commence the processing of a task until all of its predecessors have been completed. Each task Ti has to 
be processed for ti units of time by one of the machines. A (nonpreemptive) schedule is an assignment of 
tasks to time intervals on the machines in such a way that (1) each task is processed continuously for ti 
units of time by one of the machines; (2) each machine processes at most one task at a time; and (3) the 
precedence constraints are satisfied. The makespan of a schedule is the latest time at which a task is being 
processed. The problem is to construct a minimum makespan schedule for any given set of partially 
ordered tasks to be processed by a set of identical machines.

Example 12.1

The number of tasks, n, is 8 and the number of machines, m, is 3. The processing time require-
ments for the tasks and the precedence constraints are given in Figure 12.1 where a directed 
graph is used to represent the task dependencies. Vertices represent tasks and the directed edges 
represent task dependencies. The integers next to the vertices represent the task processing 
requirements. Figure 12.2 depicts two schedules for this problem instance.

The list scheduling procedure constructs a schedule given an ordering of the tasks specified by a prior-
ity list L, which may be any permutation of the set of tasks. The list scheduling procedure finds the earli-
est time t when a machine is idle and an unassigned task ready to be processed is available (i.e., all its 
predecessors have completed). It then assigns the leftmost available task in the list L to an idle machine 
at time t and this step is repeated until all the tasks are scheduled.

For example, tasks may be ordered in decreasing (actually nonincreasing) order of their processing 
times. In this case, it is a greedy method with respect to the processing time requirements. The list could 
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be any ordering of the tasks. So this is algorithmic restriction. In this case, one can characterize the solu-
tion space. The solution space is restricted to schedules without forced “idle time,” that is, each feasible 
schedule is such that for every task i there is no idle time from the time at which all the predecessors of 
task i (in C) are completed to the time when the processing of task i begins. This is clearly a restriction 
of the solution space. Is the value of the optimal solution of the original problem equal to the one of the 
restricted problem? Figure 12.2 suggests that an optimal schedule can be generated by just finding a 
clever method to break ties, that is, by finding an optimal permutation of the tasks. Unfortunately one 
cannot prove that this is always the case because there are problem instances for which all optimal sched-
ules for the original problem are not list schedules, that is, they all have forced idle time at some point! 
That is, all optimal schedules have idle time at some point even though at that point there is a task that is 
available (all its predecessors have been completed). Our technique is to generate one schedule without 
any forced idle time.

The main result in [1] is showing that for every problem instance, I, the schedule generated by this 
policy has a makespan that is bounded above by (2 − 1/m) times the optimal makespan for the instance. 
This is expressed by
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where f̂ I is the makespan of any possible list schedule for problem instance I, and fI
∗ is the makespan of 

an optimal schedule for I.
This property is established in the following theorem.
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FIGURE 12.1  Precedence constraints and processing time requirements for Example 12.1. (From Gonzalez, T.F., 
Handbook on Approximation Algorithms and Metaheuristics, Chapman & Hall / CRC, Boca Raton, FL, 2007.)
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FIGURE 12.2  (a) List schedules. Schedule (b) is an optimal schedule for Example 12.1. (From Gonzalez, T.F., 
Handbook on Approximation Algorithms and Metaheuristics, Chapman & Hall/CRC, Boca Raton, FL, 2007.)
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Theorem 12.1

For every instance I of the identical machine scheduling problem, and every list schedule, ( ( ).)f f mI I
ˆ/ /∗ ≤ −2 1

Proof:  Let S be any list schedule for problem instance I with makespan f̂ I. By construction of list sched-
ules it cannot be that at some time t, for some 0 ≤ t ≤ f̂ I, all machines are idle. Let i1 be the index of a task 
that finishes at time f̂ I. For j = 2, 3,…, if task Tij−1 has at least one predecessor in C, then define ij as the 
index of a task with latest finishing time that is a predecessor (in C) of task Tij−1. These tasks identified 
form a chain and let k be the number of tasks in the chain. By the definition of task Tij , it cannot be that 
there is an idle machine from the time when task Tij  completes its processing to the time when task Tij−1  
begins processing. Therefore, a machine can only be idle when another machine is executing a task in 
the chain. From these two observations we know that
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Since no machine can process more than one task at a time, and since no two tasks, one of which 
precedes the other in C, can be processed concurrently, we know that an optimal makespan schedule 
satisfies
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Substituting in the above inequality, we know that f f mI I
ˆ/ /∗ ≤ −2 1( ).

The second contribution in [1] was showing that the approximation ratio (2 − 1/m) is the best possible 
for list schedules. This implies that the analysis of the approximation ratio for this algorithm cannot be 
improved. This was established by constructing problem instances (for all m and n = 2m + 1) and lists 
for which the schedule generated by the procedure has a makespan equal to 2 − 1/m times the optimal 
makespan for the instance.

The third important aspect of the results in [1] was showing that list scheduling has anomalies. To 
explain this we need to define some terms. The makespan of the list schedule for instance I using list 
L is denoted by fL(I). Suppose that instance I′ is instance I, except that I′ has an additional machine. 
Intuitively fL(I′) ≤ fL(I) because with one additional machine all tasks should be finished earlier or, in 
the worst case, at the same time as fL(I). But this is not always the case for list schedules! There are prob-
lem instances and lists for which fL(I′) > fL(I). This is called an anomaly, because it is counterintuitive. 
Our expectation would be reasonable if list scheduling would generate minimum makespan schedules 
for all problem instances. But we have a procedure that for the most part generates suboptimal solutions. 
Guaranteeing that fL(I′) ≤ fL(I) for all instances is not always possible in this type of environment. List 
scheduling suffers from other anomalies. For example, relaxing the precedence constraints, or decreas-
ing the execution time of the tasks. In both of these cases one would expect schedules with smaller or the 
same makespan. But, this is not always the case. The main reason for discussing anomalies is that even 
today numerous papers are being published and systems are being deployed where “common sense” 
based procedures are being developed without any analytic justification and/or thorough experimental 
validation. Anomalies show that since we live for the most part in a “suboptimal” world, the effect of 
our decisions is not always the intended one; there are unintended consequences when one does not 
fully analyze the effects of approximation algorithms. An anomaly tends to arise in situations where its 
negative effect has the most impact.
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It is interesting to note that the worst case behavior of list schedules arises when the task with largest 
processing requirement is being processed while the rest of the machines are idle. Can a significantly 
better approximation bound be established when ties are broken in favor of a task with largest process-
ing time (LPT ordered list schedules or simply LPT schedules). The answer is no.

The problem with the LPT rule is that it only considers the processing requirements of the tasks ready 
to process but ignores the processing requirements of the tasks that follow it. We define the weight of a 
directed path as the sum of the processing time requirements of the tasks in the path. Any directed path 
that starts at task t with maximum total weight among all paths that start at task t is called a critical path 
(CP) for task t. The CP schedule is defined as a list schedule where the decision of which task to process 
next is a task whose CP “total time” is largest among the ready to be processed tasks. A CP schedule is 
optimal for many problem instances, however, Graham constructed problem instances for which the 
makespan of the CP schedule is 2 − 1/m times the length of an optimal schedule.

12.1.3.2.2  Application to Scheduling Independent Tasks
A restricted version of the above scheduling problem that has received considerable attention is when 
the tasks are independent, that is, there are no precedence constraints. Graham’s [8] elegant analysis for 
LPT scheduling has become a classic. In fact quite a few subsequent exact and approximation scheduling 
algorithms used his analysis technique.

Let I be any problem instance with n independent tasks and m identical machines. We use f̂ I as the 
makespan for an LPT schedule for I and fI

∗ as the one for an optimal schedule. In the next theorem we 
establish the approximation ratio for LPT schedules.

Theorem 12.2

For every scheduling problem instance I with n independent tasks and m identical machines, every LPT 
schedule satisfies f f mI I

ˆ / / /∗ ≤ −( ) ( )4 3 1 3 .

Proof:  It is clear that LPT schedules are optimal for m = 1. Assume that m ≥ 2. The proof is by contra-
diction. Suppose the above bound does not hold. Let I be a problem instance with the least number of 
tasks for which f f mI I

ˆ / / /∗ −> (4 3) ( )1 3 . Let n be the number of tasks in I, m be the number of machines 
and assume that t1 ≥ t2 ≥ … ≥ tn. Let k be the smallest index of a task that finishes at time fˆI. It cannot 
be that k < n, as otherwise the problem instance T1, T2, …, Tk is also a counter-example and it has fewer 
tasks than instance I, but by assumption problem instance I is a counter example with the least number 
of tasks. Therefore, k must be equal to n.

By the definition of LPT schedules, we know that there cannot be idle time before task Tn begins 
execution. Therefore,

	
t m t m fi

i

n

n I

=
∑ + − ≥

1

1( ) ˆ

This is equivalent to

	
f

m
t

m
tI i

i

n

n
ˆ ≤ + −



=

∑1
1

1

1

Since each machine cannot process more than one task at a time, we know that f t mI i
i

n∗

=
≥∑ /

1
. 

Combining these two bounds, we have
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Since I is a counter example for the theorem, this bound must be greater than ( ) ( )4 3 1 3/ /− m . Simplifying 
we know that f tI n

∗ < 3 . Since tn is the task with smallest processing time requirement it must be that in 
an optimal schedule for instance I none of the machines can process three or more tasks. Therefore, the 
number of tasks n is at most 2m. But one can show that LPT is an optimal schedule when n ≤ 2m and 
there is an optima schedule where every machine has at most two tasks. A contradiction.

For all m there are problem instances for which the ratio given by Theorem 2 is tight. One can prove 
that LPT schedules do not have the anomalies reported for list schedules.

Other approximation algorithms with improved performance were subsequently developed. Coffman 
et al. [9] introduced the multifit, MF, approach. A k attempt MF approach is denoted by MFk. The MFk 
procedure performs k binary search steps to find the smallest capacity c such that all the tasks can be 
packed into a set of m bins when packing using first fit with the tasks sorted in nondecreasing order of 
their processing times. The tasks assigned to bin i correspond to machine i and c is the makespan of the 
schedule. The approximation ratio has been shown to be 1.22 + 2−k and the time complexity of the algo-
rithm is O(n log n + kn log m). Subsequent improvements to 1.2 + 2−k [10] and ( ) ( )72 61 1 2/ /+ k  [11] were 
possible within the same time complexity bound. However, the latter algorithm has a very large constant 
associated with the Big “oh” time complexity bound.

12.1.3.3 R elaxation and Related Methodologies

This approach is in a sense the opposite of “restricting the solution space.” In this case one augments 
the feasible solution space by including previously infeasible solutions. In this case one needs to solve a 
superproblem of P. An algorithm for P solves the superproblem (optimally or suboptimally) and then 
transforms such solution to one that is feasible for P. Approximation algorithms based on the linear 
programming (LP) approach fall under this category.

Khachiyan [12] developed a polynomial time algorithm for LP problems in the late 1970s. This result 
had a tremendous impact on research as it started a new wave of approximation algorithms. Two sub-
sequent research accomplishments were at least as significant as Khachiyan’s [12] result. The first one 
was a faster polynomial time algorithm for solving LP problems developed by Karmakar [13]. The other 
major accomplishment was the work of Grötschel et al. [14,15]. They showed that it is possible to solve a 
LP problem with an exponential number of constraints (with respect to the number of variables) in time 
which is polynomial in the number of variables and the number of bits used to describe the input, given 
a separation oracle plus a bounding ball and a lower bound on the volume of the feasible solution space. 
Given a solution, the separation oracle determines in polynomial time whether or not the solution is fea-
sible, and if it is not it finds a constraint that is violated. This technique has been shown to solve more gen-
eral problems. Important developments have taken place during the past 20 years. Books [15,16] as well as 
Chapter 13 are excellent references for LP theory, algorithms, and applications. Among the first to apply 
this approach for the set and vertex cover problems include Lovász [17], Chvátal [18], Hochbaum [19], 
and Bar-Yehuda and Even [20] for the set and vertex cover problems and Gonzalez [21] for VLSI CAD 
problems.

In what follows we discuss several direct and indirect applications of relaxation to the vertex cover 
problem. These approaches include LP relaxation followed by deterministic or randomized rounding, 
α-vector, local ratio, and primal-dual.

12.1.3.3.1  Linear Programming and Rounding
Let us now consider the minimum weight vertex cover, which is a fundamental problem in the study of 
approximation algorithms. As input you are given a vertex weighted undirected graph G with the set of 
vertices V = {v1, v2,…, vn}, edges E = {e1, e2,…, em}, and a positive real number (weight) wi assigned to each 
vertex vi. The problem is to find a minimum weight vertex cover, that is, a subset of vertices C ⊂ V such 
that every edge is incident to at least one vertex in C. The weight of the vertex cover C is the sum of the 
weight of the vertices in C.
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It is well known that the minimum weight vertex cover problem is an NP-hard problem. One can 
show that greedy methods based on selecting the vertex with minimum weight, maximum weight, min-
imum weight divided by the number of edges incident to it, or combinations of these approaches do not 
result in constant ratio approximation algorithms, that is, a c-approximation algorithm for some fixed 
constant c. Other approaches to solve the problem can also be shown to fail to provide a constant ratio 
approximation algorithm for the weighted vertex cover.

Another way to view the minimum weight vertex cover is by defining a 0/1 variable xi for each vertex 
vi in the graph. The 0/1 vector X defines a subset of vertices C as follows. Vertex vi is in C if and only if 
xi = 1. The set of vertices C defined by X is a vertex cover if and only if for every edge {i, j} in the graph 
xi + xj ≥ 1. Using the earlier notation, the vertex cover problem is formulated as a 0/1 integer linear pro-
gramming (ILP) as follows:

	
minimize w xi i

i V∈∑ 	
(12.1)

	 subject to x x i j Ei j+ ≥ ∀ ∈1 { , } 	 (12.2)

	 x i Vi ∈ ∀ ∈{ , }0 1 	 (12.3)

The 0/1 ILP is also an NP-hard problem.
Let us apply the relaxation technique. In this case, one relaxes the integer constraints for the xi values. 

That is, we replace Constraint 12.3 (xi = {0, 1}) by 0 ≤ xi ≤ 1 (or simply xi ≥ 0, which in this case is equiva-
lent). This means that we are augmenting the solution space by adding solutions that are not feasible for 
the original problem. This approach will at least provide us with what appears to be a good lower bound 
for the value of an optimal solution of the original problem, since every feasible solution to the original 
problem is a feasible solution to the relaxed problem (but the converse is not true). This relaxed problem 
is an instance of the LP problem which can be solved in polynomial time. Let X* be an optimal solution 
to the LP problem. Clearly, X* might not be a vertex cover as the xi

∗ values can be fractional. The previous 
interpretation for the X* values has been lost because it does not make sense to talk about a fractional 
part of a vertex being part of a vertex cover. To circumvent this situation, we need to use the X* vector to 
construct a 0/1 vector X̂ that represents a vertex cover. In order for a vector X̂ to represent a vertex cover it 
needs to satisfy Inequality 12.2 (i.e., x̂i + x̂j ≥ 1), for every edge ek = {i, j} ∈ E. Clearly, the inequalities hold 
for X*. This means that for each edge ek = {i, j} ∈ E at least one of xi

∗ or x j
∗ has value greater than or equal 

to 1 2/ . The vector X̂ defined from X* as x̂i = 1 if xi
∗ ≥1 2/  (rounding up) and x̂i = 0 if xi

∗ <1 2/  (rounding 
down) represents a vertex cover. Furthermore, because of the rounding up the objective function value 
for the vertex cover X̂ is at most 2 w xi i∑ ∗. Since w xi i∑ ∗ value is a lower bound for an optimal solution 
to the weighted vertex cover problem, we know that this procedure generates a vertex cover whose weight 
is at most twice the weight of an optimal cover, that is, it is a 2-approximation algorithm. This rounding 
process is called (deterministic) LP-rounding, and it has been applied to a large class of problems.

12.1.3.3.2  Randomized Rounding
Another way to round is via randomization, which means in this case that we flip a biased coin (with 
respect to the value of xi

∗ [vertex cover problem] and perhaps other factors) to decide the value for x̂i. The 
probability of X̂ is a vertex cover and its expected weight can be computed analytically. By repeating this 
randomization process several times, one can show that a cover with weight at most twice the optimal 
one will be generated with very high probability. Since we have deterministic rounding for the vertex 
cover problem, it is clear that randomized rounding is not justified. However, for other problems it is 
justified. There is more complex randomized rounding for semidefinite programming (SDP).

Raghavan and Thompson [22] were the first to apply randomized rounding to solutions of relaxed LP 
problems to find near-optimal solutions. Since then this field has grown tremendously.
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These rounding methods have the disadvantage that a LP problem needs to be solved. Experimental 
evaluations over several decades have shown that the simplex method solves quickly (in polynomial 
time) the LP problem. But the worst case time complexity is exponential with respect to the problem 
size. The ellipsoid algorithm and other more recent ones solve LP problems in polynomial time. Even 
though these algorithms have polynomial time complexity, there is a term that depends on the number 
of bits needed to represent the input. Much progress has been made in speeding-up these procedures. 
Additional information can be found in Chapter 13. Promising new LP packages include CoinCLP 
and GUROBI to solve large LP problem instances faster than other packages available for free to 
academicians.

12.1.3.3.3  α-Vector
All the remaining methods in this subsection are “independent” of LP, in the sense that the LP problem 
does not need to be solved. However, these methods are based on LP formulations to some extent. The 
first approach is called the α-vector method and we now apply it to the weighted vertex cover problem. 
For every vertex i ∈ V we define δ(i) as the set of edges incident to vertex i. Let α = (α1, α2,…, αm) be any 
vector of m nonnegative real values, where m = |E| is the number of edges in the graph. For all j multiply 
the jth edge inequality for the earlier LP formulation by αj
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The total sum of these inequalities can be expressed as
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 for every vertex i ∈ V. In other words, let βi be the sum of the α values of all the 
edges incident to vertex i. Substituting in the earlier inequality we know that
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Suppose that the α vector is such that wi ≥ βi for all i. Then it follows that
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(12.7)

In other words, any vector α such that the resulting vector β computed from it satisfies wi ≥ βi provides 
us with the lower bound αk

e Ek∈∑  for every vector X that represent a vertex cover. In other words if we 
assign a nonnegative weight to each edge in such a way that the sum of the weight of the edges incident 
to each vertex i is at most wi, then the sum of the weights of the edges is a lower bound for an optimal 
solution.

This is a powerful lower bound. To get maximum strength we need to find a vector α such that 
αk

e Ek∈∑  is maximum. But finding this vector is as hard as solving the LP problem described before. 

We will explain why this is the case later on. What if we find a maximal vector α, that is, a vector that 
cannot possibly be increased in any of its components? This is a simple task. It is just matter of start-
ing with an α vector with all entries being zero and then increasing one of its components until it is no 
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longer possible to do so. We keep on doing this until there are no edges whose α value can be increased. 
In this maximal solution, we know that for each edge in the graph at least one of its endpoints has the 
property that βi = wi, as otherwise the maximality of α is contradicted. Define the vector X̂ from the 
α vector as follows: xi = 1 if βi = wi, and xi = 0, otherwise. Clearly, X̂ represents a vertex cover because 
for every edge in the graph we know that for at least one of its vertices has βi = wi. What is the weight 
of the vertex cover represented by X̂? We know that w x xi i i i k∑ ∑ ∑= ≤ˆ ˆβ α2  because each αk can 
contribute its value to at most two βis. Therefore we have a simple 2-approximation algorithm for the 
weighted vertex cover problem. Furthermore, the procedure to construct the vertex cover takes linear 
time with respect to the number of vertices and edges in the graph. The above algorithm can be proved 
to be a 2-approximation algorithm without using the ILP formulation. That is, the same result can be 
established by using simple combinatorial arguments [23].

12.1.3.3.4  Local Ratio
The local ratio approach was developed by Bar-Yehuda and Even [24]. Let us now apply it to the weighted 
vertex problem.

Initially, each vertex is assigned a cost which is simply its weight and it is referred to as the remaining 
cost. At each step the algorithm makes a “down payment” on a pair of vertices. This has the effect of 
decreasing the remaining cost of each of the two vertices. Label the edges in the graph {e1, e2,…, em}. The 
algorithm considers one edge at a time using this ordering. When the kth edge ek = {i, j} is considered, 
define γk as the minimum of the remaining cost of vertex i and vertex j. The edge makes a down pay-
ment of γk to each of its two endpoints and each of the two vertices has its remaining cost decreased by 
γk. The procedure stops when we have considered all the edges. All the vertices whose remaining cost 
is zero have been paid for completely and they are yours to keep. The remaining ones have not been 
paid for and there are “no refunds” (not even if you talk to the store manager). The vertices that have 
been paid for completely form a vertex cover. The weight of all the vertices in the cover generated by the 

procedure is at most twice γk
e Ek∈∑ , which is simply the sum of the down payments made. What is the 

weight of an optimal vertex cover? One can show it is at least γk
e Ek∈∑ . The reason is simple. Consider 

the first step when we introduce γ1 for edge e1. Let I0 be the initial problem instance and I1 be the result-
ing instance after deleting edge e1 and reducing the cost of the two endpoints of edge e1 by γ1. One can 

easily establish that f *(I0) ≥ f *(I1) + γ1 and inductively that f I k
e Ek

∗

∈
≥∑( )0 γ  [25]. The algorithm is a 

2-approximation algorithm for the weighted vertex cover. The approach is called local ratio because at 
each step one adds 2γk to the value of the solution generated and one accounts for γk value of an optimal 
solution. This local ratio approach has been successfully applied to solve optimally and suboptimally 
quite a few problems. The nice feature is that it is very simple to understand and does not require any LP 
knowledge or background.

12.1.3.3.5  Primal-Dual
The primal-dual approach is similar to the previous ones, but it uses the foundations of LP theory. Let 
us now apply it to the weight vertex cover problem using our previous formulation. The LP relaxation 
problem is

	
minimize w xi i

i V∈∑ 	
(12.8)

	 subject to x x e i j Ei j k+ ≥ ∀ = ∈1 { , } 	 (12.9)

	 x i Vi ≥ ∀ ∈0 	 (12.10)



12-14 Algorithms and Complexity 

The LP problem is called the primal problem. The corresponding dual problem is

	
maximize yk
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(12.11)
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As you can see the Y vector is simply the α vector defined before, and the dual is to find a Y vector 

with maximum yi
i V∈∑ . Linear programming theory [15,16] states that any feasible solution X to the 

primal problem and any feasible solution Y to the dual problem are such that
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This is called weak duality. Strong duality states that
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where
X* is an optimal solution to the primal problem
Y * is an optimal solution to the dual problem

Note that the dual variables are multiplied by weights which are the right hand side of the constraints 
in the primal problem. In this case all of them are one.

The primal-dual approach is based on the weak duality property. The idea is to first construct a feasible 
solution to the dual problem. This solution will give us a lower bound for the value of an optimal vertex 
cover. Then we use this solution to construct a solution to the primal problem. The idea is that the difference 
of the objective function value between the primal and dual solutions we constructed is “small.” In this case 
we construct a maximal vector Y (as we did with the α vector before). Then we note that since the Y vector is 
maximal, then for at least one of the endpoints (say i) of every edge must satisfy Inequality 12.12 tight, that 
is, y wk i

e ik

=
∈∑ δ( )

. Now define vector X with xi = 1 if Inequality 12.12 is tight in the dual solution. Clearly, 

X represent a feasible solution to the primal problem and its objective function value is at most 2 yk
k∑ . 

It then follows by weak duality that an optimal weighted vertex cover has value at least yk
k∑  and we have 

a 2-approximation algorithm for the weighted vertex cover. It is simple to see that the algorithm takes linear 
time (with respect to the number of vertices and edges in the graph) to solve the problem.

There are other ways to construct a solution to the dual problem. For example, by increasing all the y 
values until one inequality becomes tight. Then we fix a set of y values and increase all the remaining ones 
until another inequality becomes tight. We repeat this process until all the values of the y are fixed [26]. 
The only issue with this procedure is that it takes O(m2) time, rather than just O(m) as the previous one.

It is interesting to note that these relaxation techniques do not work for most problems. This is the case 
even when these problems are very similar in nature to the ones for which the techniques can be applied suc-
cessfully. Consider the MIS problem. As input you are given an undirected graph G(V, E). The problem is to 
find a largest set of vertices such that no two vertices are adjacent. The problem can be formulated as an ILP 
problem as the vertex cover problem, except that it is a maximization problem and the Constraint 12.2 is xi + 
xj ≤ 0. Applying the same arguments as in the case of the vertex cover problem does not result in a constant 
ratio approximation! The interesting fact is that if there is a way to make this work and produce a constant 
ratio approximation in polynomial time, then all NP-Complete problems can be solved in polynomial time.
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Linear programming has also been used as a tool to compute the approximation ratio of some 
algorithms. This type of research may eventually be called the automatic analysis of approximation 
algorithms.

Algorithms based on the primal-dual approach are for the most part faster, since they normally 
take (low) polynomial time with respect to the number of “objects” in the input. However, the 
LP-rounding approach can be applied to a much larger class of problems and it is more robust since 
the technique is more likely to be applicable after changing the objective function and/or constraints 
for a problem.

There are many other very interesting results that have been published in the last 15 years. Goemans 
and Williamson [27] developed improved approximation algorithms for the maxcut and satisfiability 
problems using SDP. This seminal work opened a new venue for the design of approximation algorithms. 
Goemans and Williamson [28] also developed powerful techniques for designing approximation algo-
rithms based on the primal-dual approach. The dual-fitting and factor revealing approach is used in [29].

Approximations algorithms that are based on restriction and relaxation exist. These algorithms first 
restricts the solution space and then relaxes it resulting in a solution space that is different from the 
original one. Gonzalez and Gonzalez [30] have applied this approach successfully to the minimum edge 
length corridor problem.

12.1.3.4  Formal Notation

Let P be an optimization problem and let A be an algorithm that generates a feasible solution for 
every instance I of problem P. We use f̂ A(I) to denote the objective function value of the solution 
generated by algorithm A for instance I. We drop A and use f̂ (I) when it is clear which algorithm is 
being used. Let f *(I) be the objective function value of an optimal solution for instance I. Note that 
normally we do not know the value of f *(I) exactly, but we use lower bounds which should be as tight 
as possible.

Sahni [31] defines as an ϵ-approximation algorithm for problem P an algorithm that generates a fea-
sible solution for every problem instance I of P such that

	

f I f I
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It is assumed that f *(I) > 0. For a minimization problem ε > 0 and for a maximization problem 0 < ε < 1. 
In both cases ε represents the percentage of error. The algorithm is called an ε-approximation algo-
rithm and the solution is said to be an ϵ-approximate solution. Graham’s list scheduling algorithm [1] 
is a 1 − 1/n approximation algorithm, and Sahni and Gonzalez [2] algorithm, which we discuss later on, 
for the k-maxcut problem is a 1/k-approximation algorithm. Note that this notation is different from the 
one discussed in previous sections. The difference is 1 unit, that is, the ϵ in this notation corresponds 
to 1 + ε in the other. Note that, as in the research literature, we use both notations interchangeably. 
However, readers can easily disambiguate from the context.

Johnson [32] used a slightly different but equivalent notation. He uses the approximation ratio ρ to 
mean that for every problem instance I of P, the algorithm satisfies ( ( ) ( ))f I f Iˆ / ∗ ≤ ρ for minimization 
problems, and ( ( ) ( ))f I f I∗ ≤/ ˆ ρ for maximization problems. The one for minimization problems is the 
same as the one we have been using [1]. The value for ρ is always greater than one, and the closer to 
one, the better the solution generated by the algorithm. One refers to ρ as the approximation ratio and 
the algorithm is a ρ-approximation algorithm. The list scheduling algorithm in the previous section is a 
2 1− ( )/m -approximation algorithm and the algorithm given in Section 12.1.3 for the k-maxcut problem 
is a k k/( )−1 -approximation algorithm. Some researchers use 1/ρ as the approximation ratio for maxi-
mization problems. Using this notation, the algorithm in Section 12.1.3 for the k-maxcut problem is a 
1 1− ( )/k -approximation algorithm.
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All the above forms are in use today. The most popular ones are ρ for minimization and 1/ρ for maxi-
mization. These are referred to as approximation ratios or approximation factors. We refer to all of these 
algorithms as ε-approximation algorithms. The point to remember is that one needs to be aware of the 
differences and be alert when reading the research literature.

In general it is preferred that ε and ρ are constants independent of the problem size. But, they can be 
dependent on the size of the problem instance I. For example, it may be ln n, or nϵ for some problems, 
where n is some parameter of the problem that depends on I, for example, the number of nodes in the 
input graph, and ϵ depends on the algorithm being used to generate the solutions.

Normally one prefers an algorithm with a smaller approximation ratio. However it is not always the 
case that an algorithm with smaller approximation ratio always generates solutions closer to optimal 
than one with a larger approximation ratio. The main reason is that the notation is for the worst case 
ratio and the worst case does not always occur. But there are other subtle reasons too. For example, 
the lower bound for the optimal solution value used in the analysis of two different algorithms may be 
different. Let P be the shortest path minimization problem, given an edge weighted (positive integers) 
graph find a shortest path between vertices s and t. Let A be an algorithm with approximation ratio 2. 
In this case we use d as the lower bound for f *(I), where d is some parameter of the problem instance. 
Algorithm B is a 1.5-approximation algorithm, but f *(I) used to establish it is the exact optimal solution 
value. Suppose that for problem instance I the value of d is 5 and f *(I) = 8. Algorithm A will generate 
a path with weight at most 10, whereas algorithm B will generate one with weight at most 1.5 × 8 = 12. 
So the solution generated by Algorithm B may be worse than the one generated by A even when both 
algorithms generate the worst possible solution for the instance.

One could argue that the average “error” makes more sense than worst case. The problem is to define 
and establish bounds for average “error.” There are many other pitfalls when using worst case ratios. 
It is important to keep in mind all of this when making comparisons between algorithms. In practice 
one may run several different approximation algorithms concurrently and output the best of the solu-
tions. This has the disadvantage that the running time of this compound algorithm will be the one for 
the slowest algorithm. The analysis quickly becomes very difficult, but the solutions generated are in 
many cases significantly better than the one generated by one strategy.

More elaborate approximation algorithms have been developed that generate a solution for any fixed 
constant ϵ. Formally, a Polynomial Time Approximation Scheme (PTAS) for problem P is an algorithm A 
that given any fixed constant ϵ > 0 it constructs a solution to problem P such that | ( ( ) ( )) ( ) |f I f I f Iˆ − ≤∗ ∗/ ε 
in polynomial time with respect to the length of the instance I. Note that the time complexity may be 
exponential with respect to 1/ϵ. For example, the time complexity could be O(n(1/ϵ)) or O(n + 4O(1/ϵ)). 
Equivalent PTAS is also defined using different notation, for example based on ( ( ) ( ))f I f Iˆ / ∗ ≤ +1 ε for 
minimization problems. We will see examples of PTAS later on in this chapter.

Clearly, with respect to approximation ratio a PTAS is far better than an ϵ-approximation algo-
rithms for some fixed ϵ. But the main drawback of all known PTAS is that they are not practical 
because the time complexity is exponential on 1/ϵ or the constants associated with time complexity 
bound are huge. There may be PTAS that is practical for “natural” occurring problems, but none has 
been found yet. On the positive side, a PTAS establishes that a problem can be approximated for all 
fixed constants.

A PTAS is said to be a Fully Polynomial Time Approximation Scheme (FPTAS) if its time complexity 
is polynomial with respect to n (the problem size) and 1/ϵ. FPTAS are for the most part practical algo-
rithms. We discuss one such FPTAS later on in this section.

There are a few problems for which a large approximation ratio applies only to problem instances 
where the value of the optimal solution is small. For these problems we use the following ratio. 
Informally, ρ

A

∞ is the smallest constant such that there exists a constant K < ∞ for which

	 f I f I KA
ˆ( ) ( )≤ +∞ ∗ρ
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The asymptotic approximation ratio is the multiplicative constant and it hides the additive constant K. 
This is most useful when K is small. The asymptotic notation is mainly used for the bin packing problem 
and its variants.

Approximation schemes based on asymptotic approximation algorithms have been developed. The 
first APTAS (asymptotic PTAS) was developed by Fernandez de la Vega and Lueker [33] for the bin pack-
ing problem. The first AFPTAS (asymptotic FPTAS) for the same problem was developed by Karmakar 
and Karp [34]. Randomized PTAS and FPTAS have also been developed [5].

12.1.3.5  Inapproximability and Approximation Classes

Sahni and Gonzalez [2] were the first to show that there are NP-hard optimization problems for which 
the existence of a constant ratio polynomial time approximation algorithm implies the existence of 
a polynomial time algorithm to generate an optimal solution. In other words, for these problems the 
complexity of generating a constant ratio approximation and an optimal solution are computationally 
equivalent problems. For these problems the approximation problem is NP-hard or simply inapprox-
imable (under the assumption that P ≠ NP). Later on, this notion was extended to mean that there is no 
polynomial time algorithm with approximation ratio r for a problem under some complexity theoretic 
hypothesis. The approximation ratio r is called the inapproximability ratio [5].

Consider the k-min-cluster problem. Given an edge-weighted undirected graph the k-min-cluster 
problem is to partition the set of vertices into k sets so as to minimize the sum of the weight of the edges 
with endpoints in the same group. The k-maxcut problem is defined as the k-min-cluster problem, except 
that the objective is to maximize the sum of the weight of the edges with endpoints in different sets.

Even though the k-min-cluster and the k-maxcut problems have exactly the same set of feasible and 
optimal solutions, there is a linear time algorithm for the k-maxcut problem that generates k-partitions 
with weight at least ( )k k−1 /  times the weight of an optimal k-cut [2], whereas approximating the k-min-
cluster problem is a computationally intractable problem [2]. The former problem has the property that 
a near optimal solution may be obtained as long as partial decisions are made optimally, whereas for 
the k-min-cluster an optimal partial decision may turn out to force a terrible overall solution (one local 
optimal decision may turn out to have devastating effects to the quality of the final solution). In other 
words, one strike and you are out.

Another interesting problem whose approximation problem is NP-hard is the TSP problem [2]. This 
is not exactly the same version of the TSP problem discussed earlier which we said has several constant 
ratio polynomial time approximation algorithms. The difference is that the graph may have any set of 
arbitrary weights on the edges, in other words, the graph is not restricted to be metric. On the other 
hands, the approximation algorithms given in [4,7] can be adapted easily to provide a constant ratio 
approximation to the version of the TSP problem for arbitrarily weighted graphs when a tour is defined 
as visiting each vertex in the graph at least once. Since Moore’s approximation algorithms for the metric 
Steiner tree and metric TSP are based on the same idea, one would expect that the Steiner tree prob-
lem defined over arbitrarily weighted graphs is NP-hard to approximate. However, this is not the case. 
Moore’s algorithm [4] can be modified to be a 2-approximation algorithm for this more general Steiner 
tree problem.

As pointed out in [35], Levner and Gens [36] added a couple of problems to the list of problems that are 
NP-hard to approximate. Garey and Johnson [37] show that the max clique problem has the property that if 
for some constant r there is a polynomial time r-approximation algorithm, then there is a polynomial time 
r′-approximation for any constant r′. Since then researchers had tried many different algorithms for the 
clique problem without success, it was conjectured that none existed, under the assumption that P ≠ NP.

Garey and Johnson [38] showed that a class of NP-hard optimization problems that satisfy certain 
properties and whose corresponding decision problems are strongly NP-Complete have the property 
that if any one of them has a FPTAS, then P = NP. The properties are that the objective function value 
of every feasible solution is a positive integer, and the problem is strongly NP-hard. This means that the 



12-18 Algorithms and Complexity 

problem is NP-hard even when the magnitude of the maximum number in the input is bounded by a 
polynomial on the input length. For example, the TSP problem is strongly NP-hard, whereas the knap-
sack problem is not, under the assumption that P ≠ NP.

Informally, the class of NP optimization problems, NPO, is the set of all optimization problems Π which 
can be “recognized” in polynomial time. In the late 1980s Papadimitriou and Yannakakis [39] defined 
MAXSNP as a subclass of NPO. These problems can be approximated within a constant factor and have a 
nice logical characterization. They showed that if max3sat, vertex cover, maxcut, and some other problems 
in the class could be approximated in polynomial time with an arbitrary precision, then all MAXSNP prob-
lems have the same property. This fact was established by using approximation preserving reductions. In 
the 1990s Arora et al. [40], using complex arguments, showed that max3sat is hard to approximate within 
a factor of 1 + ε for some ε > 0 unless P = NP. Thus, all problems in MAXSNP do not admit a PTAS unless 
P = NP. This work led to major developments in the area of approximation algorithms, including inap-
proximability results for other problems, approximation preserving reductions, discovery of new inapprox-
imability classes, and construction of approximation algorithms achieving optimal or near optimal ratios.

Feige et al. [41] showed that the clique problem could not be approximated to within some constant 
value. Applying the previous results in [38] it showed that the clique problem is inapproximable to 
within any constant. Feige [42] showed that the set cover is inapproximable within ln n. Other inap-
proximable results appear in [43,44].

Ausiello et al. [45] introduced and studied the differential ratio error measurement. Informally, an 
algorithm is said to be a δ differential ratio approximation algorithm if for every instance I of P
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where ω(I) is the value of a worst solution for instance I. Differential ratio has some interesting prop-
erties for the complexity of the approximation problems. For some problems ω(I) may be unbounded 
in which case one has to limit its value. For example, when scheduling independent tasks on identi-
cal processors the worst schedule would postpone indefinitely the processing of a task. But for this 
problem one could limit ω(I) by restricting the feasible schedules to those without idle time on all 
machines at the same time.

Differential ratio destroys the artificial dissymmetry between “equivalent” minimization and maxi-
mization problems (for example, the k-max-cut and the k-min cluster discussed earlier) when it comes 
to approximation. This ratio uses the difference between the worst possible solution minus the solution 
generated by the algorithm, divided by the difference between the worst solution minus the best solu-
tion. Cornuejols et al. [46] also discussed a variation of differential ratio approximations since for the 
problem they studied they wanted the ratio to satisfy the following property: “A modification of the data 
that adds a constant to the objective function value should also leave the error measure unchanged.” 
That is, the “error” by the approximation algorithm should be the same as before. Differential ratio 
along with other similar notions are discussed in [45]. Ausiello et al. [45] also introduced reductions 
that preserve approximability. Since then there have been several new types of approximation preserv-
ing reductions. The main advantage of these reductions is that they enable us to define large classes of 
optimization problems that behave in the same way with respect to approximation. An NPO problem Π 
is said to be in APX, if it has a constant approximation ratio polynomial time algorithm. The class PTAS 
consists of all NPO problems which have PTAS. The class FPTAS is defined similarly. Other classes, Poly-
APX, Log-APX, and Exp-APX, have also been defined.

As said before there are many different criteria to compare algorithms. What if we use both the 
approximation ratio and time complexity? For example, the simple linear time approximation algo-
rithm for the k-maxcut problem in [2] and the complex one given in [27]. Both of these algorithms are 
current Pareto optimal as one is faster, but the other has worst case ration that is smaller.
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The best algorithm to use also depends on the instance being solved. It makes a difference whether 
we are dealing with an instance of the TSP with optimal tour cost equal to one billion dollars and one 
with optimal cost equal to just a few pennies. Though, it also depends on the number of such instances 
being solved.

12.1.3.6  Partial Brute Force

The idea here is to solve by enumeration (or other techniques) part of the problem and then the remaining 
decisions can be made via a simple (perhaps greedy) procedure. The approach is to solve optimally the 
“most important part of the problem” and then solve suboptimally the remaining portion of the problem.

As mentioned before, Graham [8] studied the problem of scheduling tasks on identical machines, but 
restricted to the case where all the tasks are independent, that is, the set of precedence constraints is 
empty. We described and analyzed before an LPT procedure that guarantees solutions that are within a 
fixed ϵ value. We now apply the partial brute force approach to obtain a PTAS for this problem.

Graham [8], following a suggestion by Kleitman and Knuth, considered list schedules where the first 
portion of the list L consists of k tasks with the largest processing times arranged by their starting times 
in an optimal schedule for these k tasks (only). Then the list L has the remaining n − k tasks in any 
order. The approximation ratio for this list schedule using list L is 1 1 1 1+ − +  ( )( )/ / /m k m . An optimal 
schedule for the largest k tasks can be constructed in O(kmk) time by a straight forward branch and 
bound algorithm. In other words, this algorithm has approximation ratio 1 + ϵ and time complexity 
O(n + m(m−1−ϵm)/ϵ). For any fixed constants m and ϵ the algorithm constructs in polynomial (linear) time 
with respect to n a schedule with makespan at most 1 + ϵ times the optimal makespan. Note that for 
a fixed constant m the time complexity is polynomial with respect to n, but it is not polynomial with 
respect to 1/ϵ. This was the first algorithm of its kind and later on it was referred to as a Polynomial Time 
Approximation Scheme (PTAS).

Clearly, with respect to approximation ratio, a PTAS is better than an ϵ-approximation algorithm 
for some fixed value ϵ. But their main drawback is that PTAS is not useful in practice because the time 
complexity is exponential on 1/ϵ or the constants associated with the time complexity bound are large. 
This does not preclude the existence of a practical PTAS for “natural” occurring problem. However, a 
PTAS establishes that a problem can be approximated for all fixed constants.

12.1.3.7 R ounding

In the rounding technique one modifies the parameters of the problem instance to obtain another 
instance that can be easily solved optimally or suboptimally. We solve such instance and use it as a 
suboptimal solution to the original instance. Before applying this technique to obtain a FPTAS to the 
knapsack problem, additional notation needs to be defined.

The knapsack problem consists of n items with item i having a profit p(i) and a weight w(i), where each 
p(i) and w(i) is an integer. One is also given the weight capacity of the knapsack. The problem is to find 
a subset of items with total weight at most C and maximum total profit.

Via dynamic programming one can show that the knapsack problem can be solved in time 

O n min p i Cn∗ { }( )∑2 , ( ), . Clearly, when min p i C poly n( ), ( )∑{ }≤ }, where poly(n) is a polynomial on n, 

the problem can be solved in polynomial time with respect to n, the problem size. The problem is com-
putationally intractable when the capacity of the knapsack and the sum of the profits are large provided 
that there is no optimal solution with a “small” number of items.

When given an instance I, the approach is to construct an instance I′ which can be solved in poly-
nomial time with respect to n, the number of items. Every feasible solution to I′ is also a feasible one 
to I and the percentage difference between the optimal solutions to these two problems is bounded by 
1 + ϵ. The rounding that we use leaves the weights of the items untouched, but the profits are rounded 
proportionally to 1/ϵ. For further details see Chapter 10 in [5].
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The first FPTAS was developed by Ibarra and Kim [47] for the knapsack problem. Sahni [48] devel-
oped three different techniques based on rounding, interval partitioning, and separation to construct 
FPTAS for sequencing and scheduling problems. Horowitz and Sahni [49] developed FPTAS for sched-
uling on machines with different processing speeds. Gens and Levner [35] discuss a simple O(n3/ϵ) 
FPTAS for the knapsack problem developed by Babat [50,51]. Lawler [52] developed techniques to speed 
up FPTAS for the knapsack and related problems. Additional results are discussed in [5].

12.1.3.8 A dditional Classical Results

In the early 1970s, Garey et al. [53] as well as Johnson [54,55] developed the first set of polynomial time 
approximation algorithms for the bin packing problem. In the bin packing problem we are given a set of n 
items a1, a2,…, an, with size 0 < s(ai) < 1, and an unlimited number of bins with capacity 1. The goal is to find 
the minimum number of bins in such a way that the sum of the size of the items assigned to each bin is at 
most one. Research on the bin packing problem and its variants has attracted very talented investigators who 
have generated more than 650 papers, most of which deal with approximations. This work has been driven 
by numerous applications in engineering and information sciences. Interestingly several algorithmic meth-
odologies were applied for the first time to the bin packing problem and then to problems in other areas.

12.1.4  Local Search and Metaheuristics

Local search techniques have a long history; they range from simple constructive and iterative improve-
ment algorithms to rather complex methods that require significant fine-tuning and large search neighbor-
hoods. Local search is perhaps one of the most natural ways to attempt to find an optimal (or suboptimal) 
solution to an optimization problem. The idea of “local” search is simple: Start from a solution and 
improve it by making local changes until no further progress is possible. Local search normally termi-
nates at a local optimal. To escape from a local optimal solution several extensions have been developed. 
One very natural one is to expand the size of the neighborhood and make it very large. But finding the 
best neighbor to move to is most of the time an NP-hard problem. Therefore, an approximation solution is 
needed at this step. Stochastic local search algorithms use randomized movements in the neighborhood.

The study of local search sparked the study of modern heuristics, which have evolved and are now called 
metaheuristics. The term metaheuristics was coined by Glover [56] in 1986 and in general means “to find 
beyond in an upper level.” The main idea is to automate mechanisms to escape local optima. As discussed 
in Section 12.1.1, metaheuristics methodologies include TS, SA, ACO, EC, ILC (Iterated Local Search), 
MA, etc. One of the motivations for the study of metaheuristics is that it was recognized early on that con-
stant ratio polynomial time approximation algorithms are not likely to exist for a large class of practical 
problems [2]. Metaheuristics do not guarantee that optimal or near optimal solutions can be found quickly 
for all problem instances. However, these programs do find near optimal solutions for many problem 
instances that arise in practice. These procedures are general in the sense that they apply to a wide range 
of problems. Metaheuristics include mechanisms to avoid being trapped in local optimal like local search. 
These are the most appealing aspects of metaheuristics. At some level metaheuristics explore the solution 
space (diversification) and then use the accumulated search experience to guide the search (intensification). 
They also include short term strategies tied to randomness, and medium and long term strategies based 
on the use of memory. Different metaheuristics make use of these search strategies at different levels. The 
idea is to explore the solution space and move to better neighborhoods with better local optimal solutions.

Metaheuristics fall into two categories: single point search and population-based strategies. TS, SA, 
and local search methods fall into the single point search strategy. The idea is that at different points they 
behave like local search, that is, move to better solutions in the local neighborhood. However, sometimes 
they jump out of the local neighborhood and continue from that point. These jumps are guided from past 
experience in the search. Methods like MA, genetic algorithms (GAs), and ACO are population-based. 
This means that at any given point a set of solutions are in existence. Then at each step the set evolves into 
another set and the process continues. The evolution is to local and nonlocal neighborhoods.
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Metaheuristics can also be categorized as nature versus nonnature inspired. EC and ACO are nature 
inspired methodologies. Whereas TS and MA are not nature inspired methods. Some methodologies 
use memory to guide the search process and other methods are memoryless. Different levels of random-
ization are used in metaheuristics. In what follows we briefly discuss these methodologies.

12.1.4.1  Local Search

Local search is perhaps one of the most natural ways to attempt to find an optimal or suboptimal solution 
to an optimization problem. The idea of local search is simple: Start from a solution and improve it by 
making local changes until no further progress is possible. Most of the time it is simple to find an initial 
feasible solution, but there are problems where finding an initial feasible solution is a computationally 
intractable problem. In this case the problem is inapproximable in polynomial time unless P ≠ NP. When 
the neighborhood to search for the next solution is very large, finding the best neighbor to move to is 
many times an NP-hard problem. Therefore, an approximation solution is needed at this step. Reactive 
search advocates the use of simple symbolic machine learning to automate the parameter tuning process 
and make it an integral (and fully documented) part of the algorithm. Parameters are normally tuned 
through a feedback loop that many times depend on the user. Reactive search attempts to mechanize this 
process. Stochastic local search algorithms have been introduced that make stochastic choices.

Lin and Kernighan [57] developed local search heuristics that established experimentally that 
instances of the TSP with up to 110 cities can be solved to optimality with 95% confidence in O(n2) time. 
This local search based procedure was applied to a set of randomly selected feasible solutions. The pro-
cess was to perform k = 2 pairs of link (edge) interchanges that improved the length of the tour. On the 
other hand, Papadimitriou and Steiglitz [58] showed that for the TSP no local optimum of an efficiently 
searchable neighborhood can be within a constant factor of the optimal value unless P = NP. Since then 
there has been quite a bit of research activity in this area.

12.1.4.2 T abu Search

The term tabu search (TS) was coined by Glover [56]. TS is based on adaptive memory and responsive explora-
tion. The former allows for the effective and efficient search of the solution space. The latter is used to guide the 
search process by imposing restraints and inducements based on the information collected. Intensification 
and diversification are controlled by the information collected, rather than by a random process.

12.1.4.3  Simulated Annealing

In the early 1980s Kirkpatrick et al. [59] and independently Černý [60] introduced SA as a randomized 
local search algorithm to solve combinatorial optimization problems. SA is a local search algorithm, 
which means that it starts with an initial solution and then searches through the solution space by 
iteratively generating a new solution that is “near” to it. Sometimes the moves are to a worse solution to 
escape local optimal solutions. The probability of such moves decreases with time. This method is based 
on statistical mechanics (Metropolis algorithm). It was heavily inspired by an analogy between the phys-
ical annealing process of solids and the problem of solving large combinatorial optimization problems.

12.1.4.4  Evolutionary Computation

Evolutionary computation (EC) is a metaphor for building, applying, and studying algorithms based 
on Darwinian principles of natural selection. Algorithms that are based on evolutionary principles are 
called Evolutionary Algorithms (EAs). They are inspired by nature’s capability to evolve living beings 
well adapted to their environment. There have been a variety of slightly different EAs proposed over the 
years. Three different strands of EAs were developed independently of each other over time. These are 
Evolutionary Programming introduced by Fogel [61] and Fogel et al. [62], Evolutionary Strategies pro-
posed by Rechenberg [63] and GAs initiated by Holland [64]. GAs are mainly applied to solve discrete 
problems. Genetic Programming and Scatter Search are more recent members of the EA family. EAs can 
be understood from a unified point of view with respect to their main components and the way they 
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explore the search space. The two main factors are recombination (crossover) which combine two or 
more individuals (solutions) and mutation (modification) of an individual (solution).

12.1.4.5 A nt Colony Optimization

This metaheuristic is inspired by the behavior of real ants, it was proposed by Dorigo and colleagues [65] 
in the early 1990s as a method for solving hard combinatorial optimization problems. The basic idea is 
to simulate the use of pheromone for finding shortest paths like the ones ants use to locate food. But also 
use random walks, like ants, to find other sources of food. These algorithms may be considered to be 
part of swarm intelligence, the research field that studies algorithms inspired by the observation of the 
behavior of swarms. Swarm intelligence algorithms are made up of simple individuals that cooperate 
through self-organization.

12.1.4.6  Memetic Algorithms

Moscato [66] introduced MA in the late 1980s to denote a family of metaheuristics which can be charac-
terized as the hybridization of different algorithmic approaches for a given problem. It is a population-
based approach in which a set of cooperating and competing agents are engaged in periods of individual 
improvement of the solutions while they sporadically interact. An important component is problem and 
instance-dependent knowledge which is used to speed-up the search process.

12.2  Impact on Practice

Approximation algorithms and metaheuristics have been developed to solve a wide variety of prob-
lems. A good portion of these results have only theoretical value due to the fact that the time complex-
ity function for these algorithms is a high order polynomial and/or have huge constants associated 
with their time complexity bounds. However, these results are important because they establish what is 
possible now, and it may be that in the near future these algorithms will be transformed into practical 
ones. The rest of the approximation algorithms do not suffer from this pitfall, but some were designed 
for problems with limited applicability. However, the remaining approximation algorithms have real 
world applications. On the other hand, there is a huge number of important application areas, includ-
ing new emerging ones, where approximation algorithms and metaheuristics have barely penetrated 
and we believe there is an enormous potential for approximation algorithms and metaheuristics in 
these areas. Our goal is to expose the reader to the areas of the approximation algorithms and meta-
heuristics as well as to the different methodologies used to design these algorithms. These areas are 
relatively young so it is fair to repeat the lyrics of an old popular song “The best is yet to come, you ain’t 
seen nothing yet.”

In the last couple of decades we have seen approximation algorithms being applied to traditional 
combinatorial optimization problems as well as problems arising in other areas of research activity. 
These areas include: VLSI design automation, networks (wired, sensor, and wireless), bioinformatics, 
game theory, computational geometry, graph problems, etc.

Most real world problems are solved via heuristics, without any significant analysis. However, 
more problems are being solved via approximation algorithms and metaheuristics as industry is 
being populated by computer science graduates. For example, content delivery networks, like the one 
built by Akami, have been using approximation algorithms to decide where data must reside for in 
order to facilitate its retrieval by users. Similar algorithmic problems arise when designing the soft-
ware behind search engines (see Chapter 51). Manufacturing computing environments give rise to a 
large number of sequencing and scheduling problems. There is a rich set of approximation algorithms 
for this types of sequencing and scheduling problems [67].

Approximation algorithms and metaheuristics for graph, Steiner tree, TSP, clustering, logic, data 
mining, CAD placement, routing, and synchronization problems and their variations are extensively 
used in a variety of industrial settings.
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12.3 R esearch Issues

There are many important research issues that need to be resolved. The most important one is to develop 
new methodologies to design approximation algorithms and metaheuristics. These new methodologies 
should be applicable to a wide range of problems and be amenable for analysis. Tools and techniques for 
the analysis of sophisticated approximation algorithms need to be developed.

A methodology for the experimental evaluation of approximation algorithms and metaheuristics 
needs to be developed. This area is in its infancy. Automatic tools for testing and verifying approxima-
tion claims are for the most part nonexistent. The research approaches seem to be divided into theory 
and experiments. There is a need to combine them into just one that deals with both aspects: theoretical 
analysis and experimental evaluation.

We also need to find the point where approximability ends and inapproximability begins for most 
problems. We need insights into how to find these points quickly. These break points are only known 
for a few problems.

The efficient use of energy when computing is a relatively new area of research where algorithmic 
strategies can be designed and used to significantly decrease energy consumption for computing.

12.4  Summary

In this chapter we have discussed the different methodologies to design approximation algorithms 
and metaheuristics. Approximation algorithms based on restriction, relaxation, partial enumeration, 
rounding, and local search were explored. We applied these techniques to well-known problems. We 
discussed the basic metaheuristics. These include: TS, SA, ACO, EC, and MA. We discussed the history 
of approximation algorithms and metaheuristics.
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Defining Terms

ε-approximation algorithm: For problem P it is an algorithm that generates a feasible solution for every 
problem instance I of P such that
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It is assumed that f *(I) > 0. There are variations of this notation.
Approximation Methodologies: Restriction, relaxation, partial enumeration, rounding, and local 

search.
APX: A problem with a polynomial time ε-approximation algorithm.
FPTAS: A PTAS whose time complexity is polynomial with respect to the length of the instance I and 1/ϵ.
MAXSNP: Problems that can be approximated within a constant factor and have a nice logical 

characterization.
P, NP, and NP-Completeness: See Chapter 7.
PTAS: For problem P it is an algorithm A that given any fixed constant ε > 0 it constructs a solution to prob-

lem P such that 
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∗

∗ ε in polynomial time with respect to the length of the instance I.
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Further Information

Additional information may be found in the Handbook on Approximation Algorithms and Metaheuristics 
[5], as well as in the textbooks by Vazirani [26], Hochbaum (Approximation Algorithms for NP-Hard 
problems by D. Hochbaum (ed.), PWS Publishing, 1997.), and Sahni [3]). Most journals and conference 
proceedings publish papers in the area of approximation algorithms and metaheuristics. Below you will 
find the main ones. Journal of the ACM, ACM Transactions on Algorithms, SIAM Journal on Computing, 
INFORMS Journal on Computing, European Journal of Operational Research, International Journal of 
Metaheuristics, International Journal of Applied Metaheuristic Computing, and conferences and work-
shops include ACM-SIAM Symposium on Discrete Algorithms, Symposium on the Theory of Computing, 
IEEE Symposium on Foundations of Computer Science, International Workshop on Approximation 
Algorithms for Combinatorial Optimization Problems, International Workshop on Randomization and 
Computation and Metaheuristics International Conference.
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13.1  Introduction

Bin packing, routing, scheduling, layout, and network design are generic examples of combinatorial 
optimization problems that often arise in computer engineering and decision support. Unfortunately, 
almost all interesting generic classes of combinatorial optimization problems are NP -hard. The scale 
at which these problems arise in applications and the explosive exponential complexity of the search 
spaces preclude the use of simplistic enumeration and search techniques. Despite the worst-case intrac-
tability of combinatorial optimization, in practice we are able to solve many large problems and often 
with off-the-shelf software. Effective software for combinatorial optimization is usually problem spe-
cific and based on sophisticated algorithms that combine approximation methods with search schemes 
that exploit mathematical (not just syntactic) structure in the problem at hand.
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Multidisciplinary interests in combinatorial optimization have led to several fairly distinct para-
digms in the development of this subject. Each paradigm may be thought of as a particular combination 
of a representation scheme and a methodology (see Table 13.1). The most established of these, the integer 
programming paradigm, uses implicit algebraic forms (linear constraints) to represent combinatorial 
optimization and linear programming and its extensions as the workhorses in the design of the solu-
tion algorithms. It is this paradigm that forms the central theme of this chapter.

Other well-known paradigms in combinatorial optimization are search, local improvement, and 
constraint logic programming (CLP). Search uses state-space representations and partial enumeration 
techniques such as A* and dynamic programming. Local improvement requires only a representation 
of neighborhood in the solution space, and methodologies vary from simple hill climbing to the more 
sophisticated techniques of simulated annealing, tabu search, and genetic algorithms. CLP uses the 
syntax of Horn rules to represent combinatorial optimization problems and uses resolution to orches-
trate the solution of these problems with the use of domain-specific constraint solvers. Whereas integer 
programming was developed and nurtured by the mathematical programming community, these other 
paradigms have been popularized by the artificial intelligence community.

An abstract formulation of combinatorial optimization is

	 ( ) min{ ( ) : }CO f I I ∈I

where I  is a collection of subsets of a finite ground set E = {e1, e2,…, en} and f is a criterion (objective) 
function that maps 2E (the power set of E) to the reals. A mixed integer linear program (MILP) is of 
the form

	
( ) { : , }minMILP  integer 

x
j

n
A j J

∈ℜ
≥ ∀ ∈cx x b x

which seeks to minimize a linear function of the decision vector x subject to linear inequality con-
straints and the requirement that a subset of the decision variables is integer valued. This model cap-
tures many variants. If J = {1, 2,…, n}, we say that the integer program is pure, and mixed otherwise. 
Linear equations and bounds on the variables can be easily accommodated in the inequality con-
straints. Notice that by adding in inequalities of the form 0 ≤ xj ≤ 1 for a j ∈ J we have forced xj to take 
value 0 or 1. It is such Boolean variables that help capture combinatorial optimization problems as 
special cases of MILP.

Pure integer programming with variables that take arbitrary integer values is a class which has strong 
connections to number theory and particularly the geometry of numbers and Presburgher arithmetic. 
Although this is a fascinating subject with important applications in cryptography, in the interests of 
brevity we shall largely restrict our attention to MILP where the integer variables are Boolean.

TABLE 13.1  Paradigms in Combinatorial Optimization

Paradigm Representation Methodology

Integer programming Linear constraints
Linear objective 

integer variables

Linear programming 
and extensions

Search State space 
discrete control

Dynamic programming 
A*

Local improvement Neighborhoods 
fitness functions

Hill climbing
Simulated annealing
Tabu search
Genetic algorithms

Constraint logic 
programming

Horn rules Resolution
Constraint solvers
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The fact that MILPs subsume combinatorial optimization problems follows from two simple observa-
tions. The first is that a collection I  of subsets of a finite ground set E can always be represented by a cor-
responding collection of incidence vectors, which are {0, 1}-vectors in ℜE. Further, arbitrary nonlinear 
functions can be represented via piecewise linear approximations by using linear constraints and mixed 
variables (continuous and Boolean).

The next section contains a primer on linear inequalities, polyhedra, and linear programming. These 
are the tools we will need to analyze and solve integer programs. Section 13.4 is a testimony to the earlier 
cryptic comments on how integer programs model combinatorial optimization problems. In addition to 
working a number of examples of such integer programming formulations, we shall also review a formal 
representation theory of (Boolean) MILPs.

With any mixed integer program, we associate a linear programming relaxation obtained by simply 
ignoring the integrality restrictions on the variables. The point being, of course, that we have polyno-
mial-time (and practical) algorithms for solving linear programs. Thus, the linear programming relax-
ation of (MILP) is given by

	
(LP) min{ : }

x n
A

∈ℜ
≥cx x b

The thesis underlying the integer linear programming approach to combinatorial optimization is 
that this linear programming relaxation retains enough of the structure of the combinatorial optimi-
zation problem to be a useful weak representation. In Section 13.5, we shall take a closer look at this 
thesis in that we shall encounter special structures for which this relaxation is tight. For general integer 
programs, there are several alternative schemes for generating linear programming relaxations with 
varying qualities of approximation. A general principle is that we often need to disaggregate integer 
formulations to obtain higher quality linear programming relaxations. To solve such huge linear pro-
grams, we need specialized techniques of large-scale linear programming. These aspects will be the 
content of Section 13.3.

The reader should note that the focus in this chapter is on solving hard combinatorial optimization 
problems. We catalog the special structures in integer programs that lead to tight linear programming 
relaxations (Section 13.5) and hence to polynomial-time algorithms. These include structures such as 
network flows, matching, and matroid optimization problems. Many hard problems actually have pieces 
of these nice structures embedded in them. Practitioners of combinatorial optimization have always 
used insights from special structures to devise strategies for hard problems.

The computational art of integer programming rests on useful interplays between search methodolo-
gies and linear programming relaxations. The paradigms of branch and bound (B-and-B) and branch 
and cut (B-and-C) are the two enormously effective partial enumeration schemes that have evolved at 
this interface. These will be discussed in Section 13.6. It may be noted that all general purpose integer 
programming software available today uses one or both of these paradigms.

The inherent complexity of integer linear programming has led to a long-standing research program in 
approximation methods for these problems. Linear programming relaxation and Lagrangian relaxation are 
two general approximation schemes that have been the real workhorses of computational practice. Primal–
dual strategies and semidefinite relaxations are two recent entrants that appear to be very promising. 
Section 13.7 reviews these developments in the approximation of combinatorial optimization problems.

We conclude the chapter with brief comments on future prospects in combinatorial optimization 
from the algebraic modeling perspective. The original version of this chapter was written in the late 
1990s. In revising the chapter and resurveying the field, we have had an opportunity to describe some 
significant advances that have happened in resolving some open conjectures as well as in new applica-
tions and improved computational techniques. However, to a large extent, none of the foundations have 
been shaken by these advances and we are confident that the original framework we laid out is still a good 
approach for appreciating the beauty and the nuances of this approach to combinatorial optimaization.
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13.2  Primer on Linear Programming

Polyhedral combinatorics is the study of embeddings of combinatorial structures in Euclidean space 
and their algebraic representations. We will make extensive use of some standard terminology from 
polyhedral theory. Definitions of terms not given in the brief review below can be found in Nemhauser 
and Wolsey (1988).

A (convex) polyhedron in ℜn can be algebraically defined in two ways. The first and more straight-
forward definition is the implicit representation of a polyhedron in ℜn as the solution set to a finite 
system of linear inequalities in n variables. A single linear inequality ax ≤ a0; a ≠ 0 defines a half-
space of ℜn. Therefore, geometrically a polyhedron is the intersection set of a finite number of 
half-spaces.

A polytope is a bounded polyhedron. Every polytope is the convex closure of a finite set of points. 
Given a set of points whose convex combinations generate a polytope, we have an explicit or para-
metric algebraic representation of it. A polyhedral cone is the solution set of a system of homogeneous 
linear inequalities. Every (polyhedral) cone is the conical or positive closure of a finite set of vectors. 
These generators of the cone provide a parametric representation of the cone. And finally, a poly-
hedron can be alternatively defined as the Minkowski sum of a polytope and a cone. Moving from 
one representation of any of these polyhedral objects to another defines the essence of the computa-
tional burden of polyhedral combinatorics. This is particularly true if we are interested in minimal 
representations.

A set of points x1,…, xm is affinely independent if the unique solution of λ λi
i

i

m

i
i

m

x
= =∑ ∑= =

1 1
0 0,  

is λi = 0 for i = 1,…, m. Note that the maximum number of affinely independent points in ℜn is n + 1. 
A polyhedron P is of dimension k, dim P = k, if the maximum number of affinely independent points in 
P is k + 1. A polyhedron P ⊆ ℜn of dimension n is called full dimensional. An inequality ax ≤ a0 is called 
valid for a polyhedron P if it is satisfied by all x in P. It is called supporting if in addition there is an x~ in 
P that satisfies ax~ = a0. A face of the polyhedron is the set of all x in P that also satisfies a valid inequal-
ity as an equality. In general, many valid inequalities might represent the same face. Faces other than 
P itself are called proper. A facet of P is a maximal nonempty and proper face. A facet is then a face of P 
with a dimension of dim P − 1. A face of dimension zero, that is, a point v in P that is a face by itself, is 
called an extreme point of P. The extreme points are the elements of P that cannot be expressed as a strict 
convex combination of two distinct points in P. For a full-dimensional polyhedron, the valid inequality 
representing a facet is unique up to multiplication by a positive scalar, and facet-inducing inequalities 
give a minimal implicit representation of the polyhedron. Extreme points, on the other hand, give rise 
to minimal parametric representations of polytopes.

The two fundamental problems of linear programming (which are polynomially equivalent) follow:

	 1.	 Solvability: This is the problem of checking if a system of linear constraints on real (rational) 
variables is solvable or not. Geometrically, we have to check if a polyhedron, defined by such con-
straints, is nonempty.

	 2.	 Optimization: This is the problem (LP) of optimizing a linear objective function over a polyhe-
dron described by a system of linear constraints.

Building on polarity in cones and polyhedra, duality in linear programming is a fundamental con-
cept which is related to both the complexity of linear programming and to the design of algorithms for 
solvability and optimization. We will encounter the solvability version of duality (called Farkas’ Lemma) 
while discussing the Fourier elimination technique subsequently. Here, we will state the main duality 
results for optimization. If we take the primal linear program to be

	
( ) min{ : }P A

x n
 

∈ℜ
≥cx x b
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there is an associated dual linear program

	
( ) max{ : , }D A

y

T T T

m∈ℜ
= ≥b y y c y 0

and the two problems satisfy the following:

	 1.	 For any x̂ and ŷ feasible in (P) and (D) (i.e., they satisfy the respective constraints), we have 
cx̂ ≥ bTŷ (weak duality). Consequently, (P) has a finite optimal solution if and only if (D) does.

	 2.	 The pair x* and y* are optimal solutions for (P) and (D), respectively, if and only if x* and y* 
are feasible in (P) and (D) (i.e., they satisfy the respective constraints) and cx* = bTy* (strong 
duality).

	 3.	 The pair x* and y* are optimal solutions for (P) and (D), respectively, if and only if x* and y* are 
feasible in (P) and (D) (i.e., they satisfy the respective constraints) and (Ax* − b)Ty* = 0 (comple-
mentary slackness).

The strong duality condition gives us a good stopping criterion for optimization algorithms. The 
complementary slackness condition, on the other hand, gives us a constructive tool for moving from 
dual to primal solutions and vice versa. The weak duality condition gives us a technique for obtaining 
lower bounds for minimization problems and upper bounds for maximization problems.

Note that the properties just given have been stated for linear programs in a particular form. The 
reader should be able to check that if, for example, the primal is of the form

	
( ) min{ : , }′ = ≥

∈ℜ
P A

nx
cx x b x 0

then the corresponding dual will have the form

	
( ) max{ : }′ ≤

∈ℜ
D A

m

T T T

y
b y y c

The tricks needed for seeing this are that any equation can be written as two inequalities, an unre-
stricted variable can be substituted by the difference of two nonnegatively constrained variables, and an 
inequality can be treated as an equality by adding a nonnegatively constrained variable to the lesser side. 
Using these tricks, the reader could also check that duality in linear programming is involutory (i.e., the 
dual of the dual is the primal).

13.2.1 A lgorithms for Linear Programming

We will now take a quick tour of some algorithms for linear programming. We start with the classical 
technique of Fourier (1824) which is interesting because of its really simple syntactic specification. It 
leads to simple proofs of the duality principle of linear programming (solvability) that has been alluded 
to. We will then review the simplex method of linear programming, a method that has been finely honed 
over almost five decades. We will spend some time with the ellipsoid method and, in particular, with 
the polynomial equivalence of solvability (optimization) and separation problems, for this aspect of the 
ellipsoid method has had a major impact on the identification of many tractable classes of combinato-
rial optimization problems. We conclude the primer with a description of Karmarkar’s (1984) break-
through, which was an important landmark in the brief history of linear programming. A noteworthy 
role of interior point methods has been to make practical the theoretical demonstrations of tractability 
of various aspects of linear programming, including solvability and optimization, that were provided 
via the ellipsoid method.
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13.2.2  Fourier’s Scheme for Linear Inequalities

Constraint systems of linear inequalities of the form Ax ≤ b, where A is an m × n matrix of real numbers, 
are widely used in mathematical models. Testing the solvability of such a system is equivalent to linear 
programming.

Suppose we wish to eliminate the first variable x1 from the system Ax ≤ b. Let us denote

	 I i A I i A I i Ai i i
+ −= > = < = ={ : } { : } { : }1 1

0
10 0 0

Our goal is to create an equivalent system of linear inequalities Ãx~ ≤ b~ defined on the variables x~ = (x2, 
x3,…, xn):

•	 If I+ is empty then we can simply delete all the inequalities with indices in I− since they can be 
trivially satisfied by choosing a large enough value for x1. Similarly, if I− is empty we can discard 
all inequalities in I+.

•	 For each k ∈ I+, l ∈ I− we add −Al1 times the inequality Akx ≤ bk to Ak1 times Alx ≤ bl. In these new 
inequalities, the coefficient of x1 is wiped out, that is, x1 is eliminated. Add these new inequalities 
to those already in I0.

•	 The inequalities {Ãi1x~ ≤ b~i} for all i ∈ I0 represent the equivalent system on the variables 
x~ = (x2, x3,…, xn).

Repeat this construction with Ax~ ≤ b~ to eliminate x2 and so on until all variables are eliminated. If the 
resulting b~ (after eliminating xn) is nonnegative, we declare the original (and intermediate) inequality 
systems as being consistent. Otherwise,* b~ ≱ 0 and we declare the system inconsistent.

As an illustration of the power of elimination as a tool for theorem proving, we show now that Farkas 
Lemma is a simple consequence of the correctness of Fourier elimination. The lemma gives a direct 
proof that solvability of linear inequalities is in NP ⋂ coNP.

Farkas Lemma 13.1  (Duality in Linear Programming: Solvability)

Exactly one of the alternatives

	 I. :∃ ∈ℜ ≤x x bn A

	 II. : ,∃ ∈ℜ = <+y y 0 y bm t tA 0

is true for any given real matrices A, b.

Proof 13.1

Let us analyze the case when Fourier elimination provides a proof of the inconsistency of a given linear 
inequality system Ax ≤ b. The method clearly converts the given system into RAx ≤ Rb where RA is zero 
and Rb has at least one negative component. Therefore, there is some row of R, say, r, such that rA = 0 and 
rb < 0. Thus ¬I implies II. It is easy to see that I and II cannot both be true for fixed A, b.

*	 Note that the final b
~

 may not be defined if all of the inequalities are deleted by the monotone sign condition of the first 
step of the construction described. In such a situation, we declare the system Ax ≤ b strongly consistent since it is con-
sistent for any choice of b in ℜm. To avoid making repeated references to this exceptional situation, let us simply assume 
that it does not occur. The reader is urged to verify that this assumption is indeed benign.
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In general, the Fourier elimination method is quite inefficient. Let k be any positive integer and n the 
number of variables be 2k + k + 2. If the input inequalities have left-hand sides of the form ±xr ±xs ±xt 
for all possible 1 ≤ r < s < t ≤ n, it is easy to prove by induction that after k variables are eliminated, by 
Fourier’s method, we would have at least 2n/2 inequalities. The method is therefore exponential in the 
worst case, and the explosion in the number of inequalities has been noted, in practice as well, on a wide 
variety of problems. We will discuss the central idea of minimal generators of the projection cone that 
results in a much improved elimination method.

First, let us identify the set of variables to be eliminated. Let the input system be of the form

	 {( , ) | }1 2P A Bn nx u x u b= ∈ℜ + ≤+

where u is the set to be eliminated. The projection of P onto x or equivalently the effect of eliminating 
the u variables is

	 { | such that }1 2P A Bn nx u x u bx = ∈ℜ ∈ℜ + ≤

Now W, the projection cone of P, is given by

	 { | , }W Bmw w 0 w 0= ∈ℜ = ≥

A simple application of Farkas Lemma yields a description of Px in terms of W.

Projection Lemma 13.2

Let G be any set of generators (e.g., the set of extreme rays) of the cone W. Then { |( )1P A xnx gx = ∈ℜ ≤
g gb G∀ ∈ }.

The lemma, sometimes attributed to Černikov (1961), reduces the computation of Px to enumerating the 

extreme rays of the cone W or equivalently the extreme points of the polytope | 1
1

W m
i

i

m
w w∑{ }∩ ∈ℜ =

=
.

13.2.3  Simplex Method

Consider a polyhedron K = {x ∈ ℜn : Ax = b, x ≥ 0}. Now K cannot contain an infinite (in both direc-
tions) line since it is lying within the nonnegative orthant of ℜn. Such a polyhedron is called a pointed 
polyhedron. Given a pointed polyhedron K, we observe the following:

•	 If K ≠ ∅, then K has at least one extreme point.
•	 If min{cx : Ax = b, x ≥ 0} has an optimal solution, then it has an optimal extreme point solution.

These observations together are sometimes called the fundamental theorem of linear programming 
since they suggest simple finite tests for both solvability and optimization. To generate all extreme 
points of K, in order to find an optimal solution, is an impractical idea. However, we may try to run 
a partial search of the space of extreme points for an optimal solution. A simple local improvement 
search strategy of moving from extreme point to adjacent extreme point until we get to a local opti-
mum is nothing but the simplex method of linear programming. The local optimum also turns out to 
be a global optimum because of the convexity of the polyhedron K and the linearity of the objective 
function cx.
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The simplex method walks along edge paths on the combinatorial graph structure defined by the 
boundary of convex polyhedra. Since these graphs are quite dense (Balinski’s theorem states that the 
graph of d-dimensional polyhedron must be d-connected [Ziegler, 1995]) and possibly large (the Lower 
Bound Theorem states that the number of vertices can be exponential in the dimension [Ziegler, 1995]), 
it is indeed somewhat of a miracle that it manages to get to an optimal extreme point as quickly as it 
does. Empirical and probabilistic analyses indicate that the number of iterations of the simplex method 
is just slightly more than linear in the dimension of the primal polyhedron. However, there is no known 
variant of the simplex method with a worst-case polynomial guarantee on the number of iterations. 
Even a polynomial bound on the diameter of polyhedral graphs is not known.

Procedure 13.1  Primal Simplex (K, c):

0. Initialize:
x0 := an extreme point of K
k := 0

1. Iterative step:
do
If for all edge directions Dk at xk, the objective function is nondecreasing, i.e.,

	 cd d≥ ∀ ∈0 Dk

then exit and return optimal xk.
Else pick some dk in Dk such that cdk < 0.
If dk ≥ 0 then declare the linear program unbounded in objective value and exit.
Else xk+1 := xk + θk * dk, where

	 θ θ θk k k= + ∗ ≥max{ : }x d 0

k := k + 1
od

2. End

Remark 13.1

In the initialization step, we assumed that an extreme point x0 of the polyhedron K is available. This 
also assumes that the solvability of the constraints defining K has been established. These assumptions 
are reasonable since we can formulate the solvability problem as an optimization problem, with a self-
evident extreme point, whose optimal solution either establishes unsolvability of Ax = b, x ≥ 0 or pro-
vides an extreme point of K. Such an optimization problem is usually called a phase I model. The point 
being, of course, that the simplex method, as just described, can be invoked on the phase I model and, 
if successful, can be invoked once again to carry out the intended minimization of cx. There are several 
different formulations of the phase I model that have been advocated. Here is one:

	 min{ : , , }v A v v0 0 0 0x b b x 0+ = ≥ ≥

The solution (x, v0)T = (0,…, 0, 1) is a self-evident extreme point and v0 = 0 at an optimal solution of this 
model is a necessary and sufficient condition for the solvability of Ax = b, x ≥ 0.
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Remark 13.2

The scheme for generating improving edge directions uses an algebraic representation of the extreme 
points as certain bases, called feasible bases, of the vector space generated by the columns of the matrix 
A. It is possible to have linear programs for which an extreme point is geometrically overdetermined 
(degenerate), that is, there are more than d facets of K that contain the extreme point, where d is the 
dimension of K. In such a situation, there would be several feasible bases corresponding to the same 
extreme point. When this happens, the linear program is said to be primal degenerate.

Remark 13.3

There are two sources of nondeterminism in the primal simplex procedure. The first involves the choice 
of edge direction dk made in step 1. At a typical iteration, there may be many edge directions that 
are improving in the sense that cdk < 0. Dantzig’s rule, the maximum improvement rule, and steep-
est descent rule are some of the many rules that have been used to make the choice of edge direction 
in the simplex method. There is, unfortunately, no clearly dominant rule and successful codes exploit 
the empirical and analytic insights that have been gained over the years to resolve the edge selection 
nondeterminism in simplex methods. The second source of nondeterminism arises from degeneracy. 
When there are multiple feasible bases corresponding to an extreme point, the simplex method has to 
pivot from basis to adjacent basis by picking an entering basic variable (a pseudoEdge direction) and by 
dropping one of the old ones. A wrong choice of the leaving variables may lead to cycling in the sequence 
of feasible bases generated at this extreme point. Cycling is a serious problem when linear programs are 
highly degenerate as in the case of linear relaxations of many combinatorial optimization problems. 
The lexicographic rule (perturbation rule) for the choice of leaving variables in the simplex method is 
a provably finite method (i.e., all cycles are broken). A clever method proposed by Bland (cf. Schrijver, 
1986) preorders the rows and columns of the matrix A. In the case of nondeterminism in either entering 
or leaving variable choices, Bland’s rule just picks the lowest index candidate. All cycles are avoided by 
this rule also.

The simplex method has been the veritable workhorse of linear programming for four decades 
now. However, as already noted, we do not know of a simplex method that has worst-case bounds 
that are polynomial. In fact, Klee and Minty exploited the sensitivity of the original simplex method 
of Dantzig, to projective scaling of the data, and constructed exponential examples for it. Recently, 
Spielman and Tang (2001) introduced the concept of smoothed analysis and smoothed complexity 
of algorithms, which is a hybrid of worst-case and average-case analysis of algorithms. Essentially, 
this involves the study of performance of algorithms under small random Gaussian perturbations of 
the coefficients of the constraint matrix. The authors show that a variant of the simplex algorithm, 
known as the shadow vertex simplex algorithm (Gass and Saaty, 1955), has polynomial smoothed 
complexity.

The ellipsoid method of Shor (1970), was devised to overcome poor scaling in convex programming 
problems and, therefore, turned out to be the natural choice of an algorithm to first establish polyno-
mial-time solvability of linear programming. Later, Karmarkar (1984) took care of both projection and 
scaling simultaneously and arrived at a superior algorithm.

13.2.4  Ellipsoid Algorithm

The ellipsoid algorithm of Shor (1970) gained prominence in the late 1970s when Haĉijan (1979) (pro-
nounced Khachiyan) showed that this convex programming method specializes to a polynomial-time 
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algorithm for linear programming problems. This theoretical breakthrough naturally led to intense 
study of this method and its properties. The survey paper by Bland et al. (1981) and the monograph by 
Akgül (1984) attest to this fact. The direct theoretical consequences for combinatorial optimization 
problems were independently documented by Padberg and Rao (1981), Karp and Papadimitriou (1982), 
and Grötschel et al. (1988). The ability of this method to implicitly handle linear programs with an expo-
nential list of constraints and maintain polynomial-time convergence is a characteristic that is the key 
to its applications in combinatorial optimization. For an elegant treatment of the many deep theoretical 
consequences of the ellipsoid algorithm, the reader is directed to the monograph by Lovász (1986) and 
the book by Grötschel et al. (1988).

Computational experience with the ellipsoid algorithm, however, showed a disappointing gap between 
the theoretical promise and practical efficiency of this method in the solution of linear programming 
problems. Dense matrix computations as well as the slow average-case convergence properties are the 
reasons most often cited for this behavior of the ellipsoid algorithm. On the positive side though, it has 
been noted (cf. Ecker and Kupferschmid, 1983) that the ellipsoid method is competitive with the best 
known algorithms for (nonlinear) convex programming problems.

Let us consider the problem of testing if a polyhedron Q ∈ ℜd, defined by linear inequalities, is non-
empty. For technical reasons, let us assume that Q is rational, that is, all extreme points and rays of Q 
are rational vectors or, equivalently, that all inequalities in some description of Q involve only rational 
coefficients. The ellipsoid method does not require the linear inequalities describing Q to be explic-
itly specified. It suffices to have an oracle representation of Q. Several different types of oracles can be 
used in conjunction with the ellipsoid method (Padberg and Rao, 1981; Karp and Papadimitriou, 1982; 
Grötschel et al., 1988). We will use the strong separation oracle:

Oracle: Strong Separation(Q, y)

Given a vector y ∈ ℜd, decide whether y ∈ Q, and if not find a hyper-
plane that separates y from Q; more precisely, find a vector c ∈ ℜd such 
that cTy < min{cTx | x ∈ Q |.

The ellipsoid algorithm initially chooses an ellipsoid large enough to contain a part of the polyhedron 
Q if it is nonempty. This is easily accomplished because we know that if Q is nonempty then it has a 
rational solution whose (binary encoding) length is bounded by a polynomial function of the length of 
the largest coefficient in the linear program and the dimension of the space.

The center of the ellipsoid is a feasible point if the separation oracle tells us so. In this case, the algo-
rithm terminates with the coordinates of the center as a solution. Otherwise, the separation oracle out-
puts an inequality that separates the center point of the ellipsoid from the polyhedron Q. We translate 
the hyperplane defined by this inequality to the center point. The hyperplane slices the ellipsoid into two 
halves, one of which can be discarded. The algorithm now creates a new ellipsoid that is the minimum 
volume ellipsoid containing the remaining half of the old one. The algorithm questions if the new center 
is feasible and so on. The key is that the new ellipsoid has substantially smaller volume than the previ-
ous one. When the volume of the current ellipsoid shrinks to a sufficiently small value, we are able to 
conclude that Q is empty. This fact is used to show the polynomial-time convergence of the algorithm.

The crux of the complexity analysis of the algorithm is on the a priori determination of the iteration 
bound. This in turn depends on three factors. The volume of the initial ellipsoid E0, the rate of volume 
shrinkage ( ( ) ( ) )( )vol E vol E ek k

d
+

−<1

1
2/ , and the volume threshold at which we can safely conclude that Q 

must be empty. The assumption of Q being a rational polyhedron is used to argue that Q can be modi-
fied into a full-dimensional polytope without affecting the decision question: “Is Q non-empty ?” After 
careful accounting for all of these technical details and some others (e.g., compensating for the roundoff 
errors caused by the square root computation in the algorithm), it is possible to establish the following 
fundamental result.
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Theorem 13.1

There exists a polynomial g(d, ϕ) such that the ellipsoid method runs in time bounded by T g(d, ϕ), 
where ϕ is an upper bound on the size of linear inequalities in some description of Q and T is the maxi-
mum time required by the oracle Strong Separation(Q, y) on inputs y of size at most g(d, ϕ).

The size of a linear inequality is just the length of the encoding of all of the coefficients needed to 
describe the inequality. A direct implication of the theorem is that solvability of linear inequalities can 
be checked in polynomial time if strong separation can be solved in polynomial time. This implies that 
the standard linear programming solvability question has a polynomial-time algorithm (since separa-
tion can be effected by simply checking all of the constraints). Happily, this approach provides polyno-
mial-time algorithms for much more than just the standard case of linear programming solvability. The 
theorem can be extended to show that the optimization of a linear objective function over Q also reduces 
to a polynomial number of calls to the strong separation oracle on Q. A converse to this theorem also 
holds, namely, separation can be solved by a polynomial number of calls to a solvability/optimization 
oracle (Grötschel et al., 1982). Thus, optimization and separation are polynomially equivalent. This pro-
vides a very powerful technique for identifying tractable classes of optimization problems. Semidefinite 
programming (SDP) and submodular function minimization are two important classes of optimization 
problems that can be solved in polynomial time using this property of the ellipsoid method.

13.2.5  Semidefinite Programming

The following optimization problem defined on symmetric (n × n) real matrices

	

( ) min : ,SDP
X

ij
n n

C X A X B X
∈ℜ ×

⋅ ⋅ =











∑ �0

is called a semidefinite program. Note that X � 0 denotes the requirement that X is a positive semidefinite 
matrix, and F · G for n × n matrices F and G denotes the product matrix (Fij * Gij). From the definition of 
positive semidefinite matrices, X � 0 is equivalent to

	 q q qT nX ≥ ∈ℜ0 for every 

Thus, SDP is really a linear program on O(n2) variables with an (uncountably) infinite number of linear 
inequality constraints. Fortunately, the strong separation oracle is easily realized for these constraints. 
For a given symmetric X, we use Cholesky factorization to identify the minimum eigenvalue λmin. If 
λmin is nonnegative then X � 0 and if, on the other hand, λmin is negative we have a separating inequality

	 γγ γγmin min
T X ≥ 0

where γmin is the eigenvector corresponding to λmin. Since the Cholesky factorization can be computed 
by an O(n3) algorithm, we have a polynomial-time separation oracle and an efficient algorithm for SDP 
via the ellipsoid method. Alizadeh (1995) has shown that interior point methods can also be adapted to 
solving SDP to within an additive error ε in time polynomial in the size of the input and log 1/ϵ.

This result has been used to construct efficient approximation algorithms for maximum stable 
sets and cuts of graphs, Shannon capacity of graphs, and minimum colorings of graphs. It has been 
used to define hierarchies of relaxations for integer linear programs that strictly improve on known 
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exponential-size linear programming relaxations. We shall encounter the use of SDP in the approxima-
tion of a maximum weight cut of a given vertex-weighted graph in Section 13.7.

13.2.6  Minimizing Submodular Set Functions

The minimization of submodular set functions is another important class of optimization problems for 
which ellipsoidal and projective scaling algorithms provide polynomial-time solution methods.

Definition 13.1

Let N be a finite set. A real valued set function f defined on the subsets of N is submodular if f(X ∪ Y) + 
f(X ∩ Y) ≤ f(X) + f(Y) for X, Y ⊆ N.

Example 13.1

Let G = (V, E) be an undirected graph with V as the node set and E as the edge set. Let 
cij ≥ 0 be the weight or capacity associated with edge (ij) ∈ E. For S ⊆ V, define the cut func-
tion c S cij

i S j V S
( ) .

, \
=

∈ ∈∑  The cut function defined on the subsets of V is submodular since 

c X c Y c X Y c X Y cij
i X Y j Y X

( ) ( ) ( ) ( )
\ , \

+ − ∪ − ∩ = ≥
∈ ∈∑ 2 0 .

The optimization problem of interest is

	 min{ ( ) : }f X X N

The following remarkable construction that connects submodular function minimization 
with convex function minimization is due to Lovász (see Grötschel et al., 1988).

Definition 13.2

The Lovász extension f̂ (.) of a submodular function f(.) satisfies

•	 f̂  : [0, 1]N → ℜ.
•	 f fI I

I

�( ) ( )x x=
∈∑ λ

I
 where x x=

∈∑ λI I
I I

, x ∈ [0, 1]N, xI is the incidence vector of I for each 

I ∈ I , λI > 0 for each I in I , and I  = {I1, I2,…, Ik} with ∅ ≠ I1 ⊂ I2 ⊂ ⋯ ⊂ Ik ⊆ N. Note that the 
representation x x=

∈∑ λI I
I I

 is unique given that the λI > 0 and that the sets in I  are nested.

It is easy to check that f̂ (.) is a convex function. Lovász also showed that the minimization of the sub-
modular function f(.) is a special case of convex programming by proving

	 min{ ( ) : } min{ ( ) : [ , ] }f X X N f N⊆ = ∈� x x 0 1

Further, if x* is an optimal solution to the convex program and

	
x x∗ =

∈
∑λI I

I I
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then for each λI > 0, it can be shown that I ∈ I  minimizes f. The ellipsoid method can be used to solve 
this convex program (and hence submodular minimization) using a polynomial number of calls to an 
oracle for f [this oracle returns the value of f(X) when input X].

13.2.7  Interior Point Methods

The announcement of the polynomial solvability of linear programming followed by the probabilis-
tic analyses of the simplex method in the early 1980s left researchers in linear programming with a 
dilemma. We had one method that was good in a theoretical sense but poor in practice and another that 
was good in practice (and on average) but poor in a theoretical worst-case sense. This left the door wide 
open for a method that was good in both senses. Narendra Karmarkar closed this gap with a breathtak-
ing new projective scaling algorithm. In retrospect, the new algorithm has been identified with a class 
of nonlinear programming methods known as logarithmic barrier methods. Implementations of a pri-
mal–dual variant of the logarithmic barrier method have proven to be the best approach at present. It is 
this variant that we describe.

It is well known that moving through the interior of the feasible region of a linear program using the 
negative of the gradient of the objective function, as the movement direction, runs into trouble because 
of getting jammed into corners (in high dimensions, corners make up most of the interior of a polyhe-
dron). This jamming can be overcome if the negative gradient is balanced with a centering direction. 
The centering direction in Karmarkar’s algorithm is based on the analytic center yc of a full-dimensional 
polyhedron D = {y : ATy ≤ c} which is the unique optimal solution to

	

max ( ) :�n Aj

j

n
Tz y z c

=
∑ + =











1

Recall the primal and dual forms of a linear program may be taken as

	

( ) min{ : , }

( ) max{ : }

P A

D AT T

cx x b x 0

b y y c

= ≥

≤

The logarithmic barrier formulation of the dual (D) is

	

( ) max ( ) :D n AT
j

j

n
T

µ µb y z y z c+ + =










=
∑�

1

Notice that (Dμ) is equivalent to (D) as μ → 0+. The optimality (Karush–Kuhn–Tucker) conditions for 
(Dμ) are given by

	

D D

A

AT

x ze e

x b

y z c

=

=

+ =

µ

	

(13.1)

where Dx and Dz denote n × n diagonal matrices whose diagonals are x and z, respectively. Notice that if 
we set μ to 0, the above conditions are precisely the primal–dual optimality conditions: complementary 
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slackness, primal and dual feasibility of a pair of optimal (P) and (D) solutions. The problem has been 
reduced to solving the equations in x, y, z. The classical technique for solving equations is Newton’s 
method, which prescribes the directions,

	

∆ ∆ ∆ ∆y e e z y x

e e

x z z x z

z x z

= − − = −

= − −

− − −

−

( ) ( )

( )

AD D A AD D D A

D D D

T T1 1 1

1

µ

µ DD Dx z z−1∆ 	 (13.2)

The strategy is to take one Newton step, reduce μ, and iterate until the optimization is complete. The 
criterion for stopping can be determined by checking for feasibility (x, z ≥ 0) and if the duality gap (xtz) 
is close enough to 0. We are now ready to describe the algorithm.

Procedure 13.2  Primal–Dual Interior:

0. Initialize:
x0 > 0, y0 ∈ ℜm, z0 > 0, μ0 > 0, ϵ > 0, ρ > 0
k := 0

1. Iterative step:
do
Stop if Axk = b, ATyk + zk = c and x zk

T
k ≤ε.

x x xk k k
P

k+ ← +1 α ∆
y y yk k k

D
k+ ← +1 α ∆

z z zk k k
D

k+ ← +1 α ∆
/* ∆xk, ∆yk, ∆zk are the Newton directions from (1) */
μk+1 ← ρμk

k := k + 1
od

2. End

Remark 13.4

The step sizes αk
P  and αk

D are chosen to keep xk+1 and zk+1 strictly positive. The ability in the primal–dual 
scheme to choose separate step sizes for the primal and dual variables is a major advantage that this 
method has over the pure primal or dual methods. Empirically, this advantage translates to a significant 
reduction in the number of iterations.

Remark 13.5

The stopping condition essentially checks for primal and dual feasibility and near complementary slack-
ness. Exact complementary slackness is not possible with interior solutions. It is possible to maintain 
primal and dual feasibility through the algorithm, but this would require a phase I construction via 
artificial variables. Empirically, this feasible variant has not been found to be worthwhile. In any case, 
when the algorithm terminates with an interior solution, a post-processing step is usually invoked to 
obtain optimal extreme point solutions for the primal and dual. This is usually called the purification of 
solutions and is based on a clever scheme described by Megiddo (1991).



13-15Combinatorial Optimization

Remark 13.6

Instead of using Newton steps to drive the solutions to satisfy the optimality conditions of (Dμ), Mehrotra 
(1992) suggested a predictor–corrector approach based on power series approximations. This approach 
has the added advantage of providing a rational scheme for reducing the value of μ. It is the predictor–
corrector-based primal–dual interior method that is considered the current winner in interior point 
methods. The OB1 code of Lustig et al. (1994) is based on this scheme.

Remark 13.7

CPLEX, a general purpose linear (and integer) programming solver, contains implementations of inte-
rior point methods. Computational studies in the late 1990s of parallel implementations of simplex and 
interior point methods on the SGI power challenge (SGI R8000) platform indicated that on all but a 
few small linear programs in the NETLIB linear programming benchmark problem set, interior point 
methods dominated the simplex method in run times. New advances in handling Cholesky factoriza-
tions in parallel were apparently the reason for this exceptional performance of interior point methods. 
For the simplex method, CPLEX incorporated efficient methods of solving triangular linear systems 
and faster updating of reduced costs for identifying improving edge directions. For the interior point 
method, the same code included improvements in computing Cholesky factorizations and better use of 
level-two cache available in contemporary computing architectures. Using CPLEX 6.5 and CPLEX 5.0, 
Bixby et al. (2001) carried out extensive computational testing comparing the two codes with respect to 
the performance of the Primal simplex, Dual simplex, and Interior Point methods as well as a compari-
son of the performance of these three methods. While CPLEX 6.5 considerably outperformed CPLEX 
5.0 for all the three methods, the comparison among the three methods was inconclusive. However, as 
stated by Bixby et al. (2001), the computational testing was biased against interior point method because 
of the inferior floating point performance of the machine used and the nonimplementation of the paral-
lel features on shared memory machines. In a recent review of interior point methods, Jacek Gondzio 
(2012) compared CPLEX 11.0.1 with matrix-free interior point methods for addressing LP relaxations of 
quadratic assignment problems and some challenging linear optimization problems in quantum phys-
ics. Gondzio concludes that the iterative methods of linear algebra are worth considering in situations 
where direct matrix factorizations are impractical.

Remark 13.8

Karmarkar (1990) has proposed an interior-point approach for integer programming problems. The 
main idea is to reformulate an integer program as the minimization of a quadratic energy function over 
linear constraints on continuous variables. Interior-point methods are applied to this formulation to 
find local optima.

13.3 � Large-Scale Linear Programming 
in Combinatorial Optimization

Linear programming problems with thousands of rows and columns are routinely solved either by vari-
ants of the simplex method or by interior point methods. However, for several linear programs that arise 
in combinatorial optimization, the number of columns (or rows in the dual) are too numerous to be 
enumerated explicitly. The columns, however, often have a structure which is exploited to generate the 
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columns as and when required in the simplex method. Such an approach, which is referred to as column 
generation, is illustrated next on the cutting stock problem (Gilmore and Gomory, 1963), which is also 
known as the bin packing problem in the computer science literature.

13.3.1  Cutting Stock Problem

Rolls of sheet metal of standard length L are used to cut required lengths li, i = 1, 2,…, m. The jth cutting 
pattern should be such that aij, the number of sheets of length li cut from one roll of standard length L, 
must satisfy a l Lij i

i

m

=∑ ≤
1

. Suppose ni, i = 1, 2,…, m sheets of length li are required. The problem is to 
find cutting patterns so as to minimize the number of rolls of standard length L that are used to meet 
the requirements. A linear programming formulation of the problem is as follows.

Let xj, j = 1, 2,…, n, denote the number of times the jth cutting pattern is used. In general, xj, 
j = 1, 2,…, n should be an integer but in the next formulation the variables are permitted to be fractional.
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The formulation can easily be extended to allow for the possibility of p standard lengths Lk, 
k = 1, 2,…, p, from which the ni units of length li, i = 1, 2,…, m, are to be cut.

The cutting stock problem can also be viewed as a bin packing problem. Several bins, each of stan-
dard capacity L, are to be packed with ni units of item i, each of which uses up capacity of li in a bin. The 
problem is to minimize the number of bins used.

13.3.2  Column Generation

In general, the number of columns in (P1) is too large to enumerate all of the columns explicitly. 
The simplex method, however, does not require all of the columns to be explicitly written down. 
Given a basic feasible solution and the corresponding simplex multipliers wi, i = 1, 2,…, m, the 
column to enter the basis is determined by applying dynamic programming to solve the following 
knapsack problem:
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Let a i mi
∗ = …, , , ,1 2 , denote an optimal solution to (P2). If z > 1, the kth column to enter the basis has 

coefficients a a i mik i= = …∗, , , ,1 2 .
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Using the identified columns, a new improved (in terms of the objective function value) basis is 
obtained, and the column generation procedure is repeated. A major iteration is one in which (P2) 
is solved to identify, if there is one, a column to enter the basis. Between two major iterations, several 
minor iterations may be performed to optimize the linear program using only the available (generated) 
columns.

If z ≤ 1, the current basic feasible solution is optimal to (P1). From a computational point of view, 
alternative strategies are possible. For instance, instead of solving (P2) to optimality, a column to 
enter the basis can be indentified as soon as a feasible solution to (P2) with an objective function value 
greater than 1 has been found. Such an approach would reduce the time required to solve (P2) but may 
increase the number of iterations required to solve (P1).

A column once generated may be retained, even if it comes out of the basis at a subsequent itera-
tion, so as to avoid generating the same column again later on. However, at a particular iteration some 
columns, which appear unattractive in terms of their reduced costs, may be discarded in order to avoid 
having to store a large number of columns. Such columns can always be generated again subsequently, 
if necessary. The rationale for this approach is that such unattractive columns will rarely be required 
subsequently.

The dual of (P1) has a large number of rows. Hence, column generation may be viewed as row genera-
tion in the dual. In other words, in the dual we start with only a few constraints explicitly written down. 
Given an optimal solution w to the current dual problem (i.e., with only a few constraints which have 
been explicitly written down) find a constraint that is violated by w or conclude that no such constraint 
exists. The problem to be solved for identifying a violated constraint, if any, is exactly the separation 
problem that we encountered in the section on algorithms for linear programming.

13.3.3  Decomposition and Compact Representations

Large-scale linear programs sometimes have a block diagonal structure with a few additional con-
straints linking the different blocks. The linking constraints are referred to as the master constraints 
and the various blocks of constraints are referred to as subproblem constraints. Using the representation 
theorem of polyhedra (see, for instance, Nemhauser and Wolsey, 1988), the decomposition approach 
of Dantzig and Wolfe (1961) is to convert the original problem to an equivalent linear program with a 
small number of constraints but with a large number of columns or variables. In the cutting stock prob-
lem described in the preceding section, the columns are generated, as and when required, by solving a 
knapsack problem via dynamic programming. In the Dantzig–Wolfe decomposition scheme, the col-
umns are generated, as and when required, by solving appropriate linear programs on the subproblem 
constraints.

It is interesting to note that the reverse of decomposition is also possible. In other words, suppose 
we start with a statement of a problem and an associated linear programming formulation with a large 
number of columns (or rows in the dual). If the column generation (or row generation in the dual) can 
be accomplished by solving a linear program, then a compact formulation of the original problem can 
be obtained. Here compact refers to the number of rows and columns being bounded by a polynomial 
function of the input length of the original problem. This result due to Martin (1991) enables one to solve 
the problem in the polynomial time by solving the compact formulation using interior point methods.

13.4  Integer Linear Programs

Integer linear programming problems (ILPs) are linear programs in which all of the variables are 
restricted to be integers. If only some but not all variables are restricted to be integers, the problem is 
referred to as a mixed integer program. Many combinatorial problems can be formulated as integer 
linear programs in which all of the variables are restricted to be 0 or 1. We will first discuss several 
examples of combinatorial optimization problems and their formulation as integer programs. Then we 



13-18 Algorithms and Complexity

will review a general representation theory for integer programs that gives a formal measure of the 
expressiveness of this algebraic approach. We conclude this section with a representation theorem due 
to Benders (1962), which has been very useful in solving certain large-scale combinatorial optimization 
problems in practice.

13.4.1  Example Formulations

13.4.1.1  Covering and Packing Problems

A wide variety of location and scheduling problems can be formulated as set covering or set packing or 
set partitioning problems. The three different types of covering and packing problems can be succinctly 
stated as follows: Given (1) a finite set of elements M = {1, 2,…, m}, and (2) a family F of subsets of M 
with each member Fj, j = 1, 2,…, n having a profit (or cost) cj associated with it, find a collection, S, of 
the members of F that maximizes the profit (or minimizes the cost) while ensuring that every element 
of M is in one of the following:

(P3): at most one member of S (set packing problem)
(P4): at least one member of S (set covering problem)
(P5): exactly one member of S (set partitioning problem)

The three problems (P3), (P4), and (P5) can be formulated as ILPs as follows:
Let A denote the m × n matrix where
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The set packing problem is
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where em is an m-dimensional column vector of ones.
The set covering problem (P4) is (P3) with less than or equal to constraints replaced by greater than or 

equal to constraints and the objective is to minimize rather than maximize. The set partitioning prob-
lem (P5) is (P3) with the constraints written as equalities. The set partitioning problem can be converted 
to a set packing problem or set covering problem (see Padberg, 1995) using standard transformations. 
If the right-hand side vector em is replaced by a nonnegative integer vector b, (P3) is referred to as the 
generalized set packing problem.

The airline crew scheduling problem is a classic example of the set partitioning or the set covering 
problem. Each element of M corresponds to a flight segment. Each subset Fj corresponds to an accept-
able set of flight segments of a crew. The problem is to cover, at minimum cost, each flight segment 
exactly once. This is a set partitioning problem. If dead heading of crew is permitted, we have the set 
covering problem.
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13.4.1.2  Packing and Covering Problems in a Graph

Suppose A is the node-edge incidence matrix of a graph. Now, (P3) is a weighted matching problem. 
If in addition, the right-hand side vector em is replaced by a nonnegative integer vector b, (P3) is 
referred to as a weighted b-matching problem. In this case, each variable xj which is restricted to be 
an integer may have a positive upper bound of uj. Problem (P4) is now referred to as the weighted edge 
covering problem. Note that by substituting for xj = 1 − yj, where yj = 0 or 1, the weighted edge cover-
ing problem is transformed to a weighted b-matching problem in which the variables are restricted 
to be 0 or 1.

Suppose A is the edge-node incidence matrix of a graph. Now, (P3) is referred to as the weighted 
vertex packing problem and (P4) is referred to as the weighted vertex covering problem. The set packing 
problem can be transformed to a weighted vertex packing problem in a graph G as follows:

G contains a node for each xj and an edge between nodes j and k exists if and only if the columns 
A.j and A.k are not orthogonal. G is called the intersection graph of A. The set packing problem is 
equivalent to the weighted vertex packing problem on G. Given G, the complement graph G– has the 
same node set as G and there is an edge between nodes j and k in G– if and only if there is no such 
corresponding edge in G. A clique in a graph is a subset, k, of nodes of G such that the subgraph 
induced by k is complete. Clearly, the weighted vertex packing problem in G is equivalent to finding 
a maximum weighted clique in G–.

13.4.1.3  Plant Location Problems

Given a set of customer locations N = {1, 2,…, n} and a set of potential sites for plants M = {1, 2,…, m}, 
the plant location problem is to identify the sites where the plants are to be located so that the customers 
are served at a minimum cost. There is a fixed cost fi of locating the plant at site i and the cost of serv-
ing customer j from site i is cij. The decision variables are: yi is set to 1 if a plant is located at site i and to 
0 otherwise; xij is set to 1 if site i serves customer j and to 0 otherwise.

A formulation of the problem is
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Note that the constraints xij − yi ≤ 0 are required to ensure that customer j may be served from 
site i only if a plant is located at site i. Note that the constraints yi = 0 or 1 force an optimal solution 
in which xij = 0 or 1. Consequently, the xij = 0 or 1 constraints may be replaced by nonnegativity con-
straints xij ≥ 0.

The linear programming relaxation associated with (P6) is obtained by replacing constraints yi = 0 
or 1 and xij = 0 or 1 by nonnegativity contraints on xij and yi. The upper bound constraints on yi are not 
required provided fi ≥ 0, i = 1, 2,…, m. The upper bound constraints on xij are not required in view of 
constraints xij

i

m

=∑ =
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1.
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Remark 13.9

It is frequently possible to formulate the same combinatorial problem as two or more different ILPs. 
Suppose we have two ILP formulations (F1) and (F2) of the given combinatorial problem with both 
(F1) and (F2) being minimizing problems. Formulation (F1) is said to be stronger than (F2) if (LP1), the 
linear programming relaxation of (F1), always has an optimal objective function value which is greater 
than or equal to the optimal objective function value of (LP2), which is the linear programming relax-
ation of (F2).

It is possible to reduce the number of constraints in (P6) by replacing the constraints xij − yi ≤ 0 by 
an aggregate:
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However, the disaggregated (P6) is a stronger formulation than the formulation obtained by aggregrat-
ing the constraints as previously. By using standard transformations, (P6) can also be converted into a 
set packing problem.

13.4.1.4  Satisfiability and Inference Problems

In propositional logic, a truth assignment is an assignment of true or false to each atomic proposition x1, 
x2,…xn. A literal is an atomic proposition xj or its negation ¬xj. For propositions in conjunctive normal 
form, a clause is a disjunction of literals and the proposition is a conjunction of clauses. A clause is obvi-
ously satisfied by a given truth assignment if at least one of its literals is true. The satisfiability problem 
consists of determining whether there exists a truth assignment to atomic propositions such that a set 
S of clauses is satisfied.

Let Ti denote the set of atomic propositions such that if any one of them is assigned true, the clause 
i ∈ S is satisfied. Similarly, let Fi denote the set of atomic propositions such that if any one of them is 
assigned false, the clause i ∈ S is satisfied.

The decision variables are

	
x j

j
=

1

0

if atomic proposition  is assigned true

if atomic propposition  is assigned falsej





The satisfiability problem is to find a feasible solution to
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By substituting xj = 1 − yj, where yj = 0 or 1, for j ∈ Fi, (P7) is equivalent to the set covering problem

	
(P8) Min ( )x yj j

j

n

+
=
∑

1 	

(13.3)
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subject to   x yj

j T

j

j Fi i

i S
∈ ∈
∑ ∑+ ≥ ∈1

	

(13.4)

	 x yj j j n+ ≥ = …  1 1 2, , , 	 (13.5)

	 x yj j j n, , , ,= = …0 1 1 2 or 	 (13.6)

Clearly, (P7) is feasible if and only if (P8) has an optimal objective function value equal to n.
Given a set S of clauses and an additional clause k ∉ S, the logical inference problem is to find out 

whether every truth assignment that satisfies all of the clauses in S also satisfies the clause k. The logical 
inference problem is

	

(P9) Min
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The clause k is implied by the set of clauses S, if and only if (P9) has an optimal objective function 
value greater than −|Fk|. It is also straightforward to express the MAX-SAT problem (i.e., find a truth 
assignment that maximizes the number of satisfied clauses in a given set S) as an integer linear program.

13.4.1.5  Multiprocessor Scheduling

Given n jobs and m processors, the problem is to allocate each job to one and only one of the proces-
sors so as to minimize the make span time, that is, minimize the completion time of all of the jobs. 
The processors may not be identical and, hence, job j if allocated to processor i requires pij units of time. 
The multiprocessor scheduling problem is

	

(P10) Min
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Note that if all pij are integers, the optimal solution will be such that T is an integer.

Remark 13.10

Protein Folding is a challenging optimization problem in biology which has seen a great deal of research 
by computational scientists and structural biologists. The computational complexity has been estab-
lished even for very restricted lattice models to be NP-Hard and even hard to approximate within a 
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guaranteed factor. Chandru et al. (2003) survey the hardness results for lattice embeddings of the fold-
ing problem and also review the results on approximation methods with a guarantee of 1

3  of optimal 
due to Newman for folding in the plane and 3

8  for folding in 3D which is due to hart and Istrail for 
the so-called Hydrophobic-Hydrophylic (HP) model of energy minimization. For the same HP model, 
Chandru et al. (2004) show that the lattice version of the protein folding problem can be formulated as 
an Integer Programming problem and show that B-and-B methods can improve on the approximations 
produced by the approximation methods mentioned above.

13.4.2  Jeroslow’s Representability Theorem

Jeroslow (1989), building on joint work with Lowe (see Jeroslow and Lowe [1984]), characterized subsets 
of n-space that can be represented as the feasible region of a mixed integer (Boolean) program. They 
proved that a set is the feasible region of some mixed integer/linear programming problem (MILP) if 
and only if it is the union of finitely many polyhedra having the same recession cone (defined subse-
quently). Although this result is not widely known, it might well be regarded as the fundamental theo-
rem of mixed integer modeling.

The basic idea of Jeroslow’s results is that any set that can be represented in a mixed integer model 
can be represented in a disjunctive programming problem (i.e., a problem with either/or constraints). 
A recession direction for a set S in n-space is a vector x such that s + αx ∈ S for all s ∈ S and all α ≥ 0. The 
set of recession directions is denoted rec(S). Consider the general mixed integer constraint set

	

f x y b

x y

( , , )

,

( , , ), { , } , ,
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λλ λλ

≤

∈ℜ ∈ℜ

= … ∈ = …

n p

k j j kλ λ1 0 1 1with for 	

(13.7)

Here f is a vector-valued function, so that f(x, y, λ) ≤ b represents a set of constraints. We say that a set 

S ⊂ ℜn is represented by Equation 13.7 if,

	 x x y∈S yif  and only if satisfies Equation for some 13( , , ) . , .λλ 7 λ

If f is a linear transformation, so that Equation 13.7 is a MILP constraint set, we will say that S is MILP 
representable. The main result can now be stated.

Theorem 13.2

A set in n-space is MILP representable if and only if it is the union of finitely many polyhedra having the 
same set of recession directions (Jeroslow and Lowe, 1984; Jeroslow, 1989).

13.4.3  Benders’s Representation

Any MILP can be reformulated so that there is only one continuous variable. This reformulation, due to 
Benders (1962), will in general have an exponential number of constraints. Analogous to column gen-
eration, discussed earlier, these rows (constraints) can be generated as and when required.

Consider the (MILP)

	 max{ : , , }cx dy x y b x 0 y 0+ + ≤ ≥ ≥A G and integer
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Suppose the integer variables y are fixed at some values. Then, the associated linear program is

	 ( ) max{ : { : , }}LP cx x x x b y x 0∈ = ≤ − ≥P A G

and its dual is

	 ( ) min{ ( ) : { : , }}DLP w b y w w w c w 0− ∈ = ≥ ≥G AQ

Let {wk}, k = 1, 2,…, K be the extreme points of Q  and {uj}, j = 1, 2,…, J be the extreme rays of the 
recession cone of Q, CQ = {u : uA ≥ 0, u ≥ 0}. Note that if Q  is nonempty, the {uj} are all of the extreme 
rays of Q.

From linear programming duality, we know that if Q  is empty and uj(b − Gy) ≥ 0, j = 1, 2,…, J for 
some y ≥ 0 and integer then (LP) and consequently (MILP) have an unbounded solution. If Q is non-
empty and uj(b − Gy) ≥ 0, j = 1, 2,…, J for some y ≥ 0 and integer then (LP) has a finite optimum given by

	 min { ( )}k
k Gw b y−

Hence, an equivalent formulation of (MILP) is

	

Max 

 and in

α

α ≤ + − = …

− ≥ = …

≥

dy w b y

u b y

0

k

j

G k K

G j J

y

( ), , , ,

( ) , , , ,

1 2

0 1 2

tteger

unrestrictedα

which has only one continuous variable α as promised.

13.5  Polyhedral Combinatorics

One of the main purposes of writing down an algebraic formulation of a combinatorial optimization 
problem as an integer program is to then examine the linear programming relaxation and understand 
how well it represents the discrete integer program. There are somewhat special but rich classes of such 
formulations for which the linear programming relaxation is sharp or tight. These correspond to linear 
programs that have integer valued extreme points. Such polyhedra are called integral polyhedra.

13.5.1  Special Structures and Integral Polyhedra

A natural question of interest is whether the LP associated with an ILP has only integral extreme points. 
For instance, the linear programs associated with matching and edge covering polytopes in a bipartite 
graph have only integral vertices. Clearly, in such a situation, the ILP can be solved as LP. A polyhedron 
or a polytope is referred to as being integral if it is either empty or has only integral vertices.

Definition 13.3

A 0, ±1 matrix is totally unimodular if the determinant of every square submatrix is 0 or ±1.



13-24 Algorithms and Complexity

Theorem 13.3

Let
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be a 0, ±1 matrix and
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be a vector of appropriate dimensions (Hoffman and Kruskal, 1956). Then A is totally unimodular if and 
only if the polyhedron

	 P A A A A( , ) { : ; ; ; }b x x b x b x b x= ≤ ≥ = ≥1 1 2 2 3 3 0

is integral for all integral vectors b.

The constraint matrix associated with a network flow problem (see, for instance, Ahuja et al., 1993) 
is totally unimodular. Note that for a given integral b, P(A, b) may be integral even if A is not totally 
unimodular.

Definition 13.4

A polyhedron defined by a system of linear constraints is totally dual integral (TDI) if for each objective 
function with integral coefficient the dual linear program has an integral optimal solution whenever an 
optimal solution exists.

Theorem 13.4

(Edmonds and Giles, 1977). If P(A) = {x : Ax ≤ b} is TDI and b is integral, then P(A) is integral.

Hoffman and Kruskal (1956) have, in fact, shown that the polyhedron P(A, b) defined in Theorem 
13.3 is TDI. This follows from Theorem 13.3 and the fact that A is totally unimodular if and only if AT 
is totally unimodular.

Balanced matrices, first introduced by Berge (1972), have important implications for packing and 
covering problems (see also Berge and Las Vergnas, 1970).

Definition 13.5

A 0, 1 matrix is balanced if it does not contain a square submatrix of odd order with two 1s per row and 
column.
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Theorem 13.5

Let A be a balanced 0, 1 matrix (Berge, 1972; Fulkerson et al., 1974). Then the set packing, set covering, 
and set partitioning polytopes associated with A are integral, that is, the polytopes
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be a balanced 0, 1 matrix. Fulkerson et al. (1974) have shown that the polytope P(A) = {x : A1x ≤ 1; A2x ≥ 1; 
A3x = 1; x ≥ 0} is TDI and by the theorem of Edmonds and Giles (1977) it follows that P(A) is integral.

Truemper (1992) has extended the definition of balanced matrices to include 0, ±1 matrices.

Definition 13.6

A 0, ±1 matrix is balanced if for every square submatrix with exactly two nonzero entries in each row 
and each column, the sum of the entries is a multiple of 4.

Theorem 13.6

Suppose A is a balanced 0, ±1 matrix (Conforti and Cornuejols, 1992b). Let n(A) denote the column vec-
tor whose ith component is the number of −1s in the ith row of A. Then the polytopes

	

P A A A

Q A A A

R A A

( ) { : ( ); }

( ) { : ( ); }

( ) { :

= ≤ − ≤ ≤

= ≥ − ≤ ≤

=

x x 1 n 0 x 1

x x 1 n 0 x 1

x x == − ≤ ≤1 n 0 x 1( ); }A

are integral.

Note that a 0, ±1 matrix A is balanced if and only if AT is balanced. Moreover, A is balanced (totally 
unimodular) if and only if every submatrix of A is balanced (totally unimodular). Thus, if A is balanced 
(totally unimodular), it follows that Theorem 13.6 (Theorem 13.3) holds for every submatrix of A.

Totally unimodular matrices constitute a subclass of balanced matrices, that is, a totally unimodu-
lar 0, ±1 matrix is always balanced. This follows from a theorem of Camion (1965), which states that a 
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0, ±1 is totally unimodular if and only if for every square submatrix with an even number of nonzero 
entries in each row and in each column, the sum of the entries equals a multiple of 4. The 4 × 4 matrix 
in Figure 13.1 illustrates the fact that a balanced matrix is not necessarily totally unimodular. Balanced 
0, ±1 matrices have implications for solving the satisfiability problem. If the given set of clauses defines 
a balanced 0, ±1 matrix, then as shown by Conforti and Cornuejols (1992b), the satisfiability problem is 
trivial to solve and the associated MAXSAT problem is solvable in polynomial time by linear program-
ming. A survey of balanced matrices is in Conforti et al. (1994a,b).

Definition 13.7

A 0, 1 matrix A is perfect if the set packing polytope P(A) = {x : Ax ≤ 1; x ≥ 0} is integral.

The chromatic number of a graph is the minimum number of colors required to color the vertices of 
the graph so that no two vertices with the same color have an edge incident between them. A graph G is 
perfect if for every node induced subgraph H, the chromatic number of H equals the number of nodes 
in the maximum clique of H.

Recall that the complement graph of G is the graph G– with the same node set as G but the edge set 
comprises only of all the edges not in G. The perfect graph conjecture due to Berge (1961) is that G is 
perfect if and only if G– is perfect. This conjecture was proved by Lovász (1972). The strong perfect graph 
conjecture, also due to Berge (1961), is that G is perfect if and only if it contains no induced sub graph 
which is an odd hole of length of 5 or more, or an odd antihole which is the complement of an odd hole 
of length 5 or more. A proof of this conjecture was announced by Chudnovsky, Robertson, Seymour and 
Thomas in 2002 and published in 2006 (Chudnovsky et al., 2006).

The connections between the integrality of the set packing polytope and the notion of a perfect 
graph, as defined by Berge (1961, 1970), are given in Fulkerson (1970), Lovasz (1972), Padberg (1974), 
and Chvátal (1975).

Theorem 13.7

Let A be 0, 1 matrix whose columns correspond to the nodes of a graph G and whose rows are the inci-
dence vectors of the maximal cliques of G (Fulkerson, 1970; Lovasz, 1972; Chvátal, 1975). The graph G 
is perfect if and only if A is perfect.

Let GA denote the intersection graph associated with a given 0, 1 matrix A (see Section 13.4). Clearly, 
a row of A is the incidence vector of a clique in GA. In order for A to be perfect, every maximal clique of 
GA must be represented as a row of A because inequalities defined by maximal cliques are facet defining. 
Thus, by Theorem 13.7, it follows that a 0, 1 matrix A is perfect if and only if the undominated (a row of 
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FIGURE 13.1  A balanced matrix and a perfect matrix. (From Chandru, V. and Rao, M. R., ACM Comput. Survey, 
28, 55, 1996.)
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A is dominated if its support is contained in the support of another row of A) rows of A form the clique-
node incidence matrix of a perfect graph.

Balanced matrices with 0, 1 entries constitute a subclass of 0, 1 perfect matrices, that is, if a 0, 1 matrix 
A is balanced, then A is perfect. The 4 × 3 matrix in Figure 13.1 is an example of a matrix that is perfect 
but not balanced.

Definition 13.8

A 0, 1 matrix A is ideal if the set covering polytope

	 Q A A( ) { : ; }= ≥ ≤ ≤x x 1 0 x 1

is integral.

Properties of ideal matrices are described by Lehman (1979), Padberg (1993), and Cornuejols and 
Novick (1994). The notion of a 0, 1 perfect (ideal) matrix has a natural extension to a 0, ±1 perfect (ideal) 
matrix. Some results pertaining to 0, ±1 ideal matrices are contained in Hooker (1992), whereas some 
results pertaining to 0, ±1 perfect matrices are given in Conforti et al. (1993).

An interesting combinatorial problem is to check whether a given 0, ±1 matrix is totally unimodular, 
balanced, or perfect. Seymour’s (1980) characterization of totally unimodular matrices provides a poly-
nomial-time algorithm to test whether a given 0, 1 matrix is totally unimodular. Conforti et al. (1999) 
give a polynomial-time algorithm to check whether a 0, 1 matrix is balanced. This has been extended by 
Conforti et al. (1994a,b) to check in polynomial time whether a 0, ±1 matrix is balanced. An open prob-
lem is that of checking in polynomial time whether a 0, 1 matrix is perfect. For linear matrices (a matrix 
is linear if it does not contain a 2 × 2 submatrix of all ones), this problem has been solved by Fonlupt and 
Zemirline (1981) and Conforti and Rao (1993).

13.5.2  Matroids

Matroids and submodular functions have been studied extensively, especially from the point of view of 
combinatorial optimization (see, for instance, Nemhauser and Wolsey, 1988). Matroids have nice prop-
erties that lead to efficient algorithms for the associated optimization problems. One of the interesting 
examples of a matroid is the problem of finding a maximum or minimum weight spanning tree in a 
graph. Two different but equivalent definitions of a matroid are given first. A greedy algorithm to solve 
a linear optimization problem over a matroid is presented. The matroid intersection problem is then 
discussed briefly.

Definition 13.9

Let N = {1, 2,·, n} be a finite set and let F  be a set of subsets of N. Then I = (N, F ) is an independence 
system if S1 ∈ F  implies that S2 ∈ F  for all S2 ⊆ S1. Elements of F  are called independent sets. A set S ∈ F  
is a maximal independent set if S ∪ {j} ∉ F  for all j ∈ N\S. A maximal independent set T is a maximum 
if |T| ≥ |S| for all S ∈ F .

The rank r(Y) of a subset Y ⊆ N is the cardinality of the maximum independent subset X ⊆ Y. Note 
that r(ϕ) = 0, r(X) ≤ |X| for X ⊆ N and the rank function is nondecreasing, that is, r(X) ≤ r(Y) for 
X ⊆ Y ⊆ N.
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A matroid M = (N, F ) is an independence system in which every maximal independent set is a 
maximum.

Example 13.2

Let G = (V, E) be an undirected connected graph with V as the node set and E as the edge set.

	 1.	 Let I = (E, F ) where F ∈ F  if F ⊆ E is such that at most one edge in F is incident to each 
node of V, that is, F ∈ F  if F is a matching in G. Then I = (E, F ) is an independence system 
but not a matroid.

	 2.	 Let M = (E, F ) where F ∈ F  if F ⊆ E is such that GF = (V, F) is a forest, that is, GF contains 
no cycles. Then M = (E, F ) is a matroid and maximal independent sets of M are spanning 
trees.

An alternative but equivalent definition of matroids is in terms of submodular functions.

Definition 13.10

A nondecreasing integer valued submodular function r defined on the subsets of N is called a matroid 
rank function if r(ϕ) = 0 and r({j}) ≤ 1 for j ∈ N. The pair (N, r) is called a matroid.

A nondecreasing, integer-valued, submodular function f, defined on the subsets of N, is called a poly-
matroid function if f(ϕ) = 0. The pair (N, r) is called a polymatroid.

13.5.2.1  Matroid Optimization

To decide whether an optimization problem over a matroid is polynomially solvable or not, we need 
to first address the issue of representation of a matroid. If the matroid is given either by listing the 
independent sets or by its rank function, many of the associated linear optimization problems are 
trivial to solve. However, matroids associated with graphs are completely described by the graph and 
the condition for independence. For instance, the matroid in which the maximal independent sets 
are spanning forests, the graph G = (V, E) and the independence condition of no cycles describes 
the matroid.

Most of the algorithms for matroid optimization problems require a test to determine whether a 
specified subset is independent. We assume the existence of an oracle or subroutine to do this checking 
in running time, which is a polynomial function of |N| = n.

13.5.2.1.1  Maximum Weight Independent Set
Given a matroid M = (N, F ) and weights wj for j ∈ N, the problem of finding a maximum weight inde-

pendent set is maxF j
j F

w∈
∈∑{ }F . The greedy algorithm to solve this problem is as follows:

Procedure 13.3  Greedy:

	 0.	 Initialize: Order the elements of N so that wi ≥ wi+1, i = 1, 2,…, n − 1. Let T = ϕ, i = 1.
	 1. �If wi ≤ 0 or i > n, stop T is optimal, i.e., xj = 1 for j ∈ T and xj = 0 for j ∉ T. If wi > 0 and T ∪ {i} ∈ F , 

add element i to T.
	 2. Increment i by 1 and return to step 1.
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Edmonds (1970, 1971) derived a complete description of the matroid polytope, the convex hull of the 
characteristic vectors of independent sets of a matroid. While this description has a large (exponential) 
number of constraints, it permits the treatment of linear optimization problems on independent sets of 
matroids as linear programs. Cunningham (1984) describes a polynomial algorithm to solve the separa-
tion problem for the matroid polytope. The matroid polytope and the associated greedy algorithm have 
been extended to polymatroids (Edmonds, 1970; McDiarmid, 1975).

The separation problem for a polymatroid is equivalent to the problem of minimizing a submodular 
function defined over the subsets of N (see Nemhauser and Wolsey, 1988). A class of submodular func-
tions that have some additional properties can be minimized in polynomial time by solving a maximum 
flow problem (Rhys, 1970; Picard and Ratliff, 1975). The general submodular function can be minimized 
in polynomial time by the ellipsoid algorithm (Grötschel et al., 1988).

The uncapacitated plant location problem formulated in Section 13.4 can be reduced to maximizing a 
submodular function. Hence, it follows that maximizing a submodular function is NP-hard.

13.5.2.2  Matroid Intersection

A matroid intersection problem involves finding an independent set contained in two or more matroids 
defined on the same set of elements.

Let G = (V1, V2, E) be a bipartite graph. Let Mi = (E, F i), i = 1, 2, where F ∈ F i if F ⊆ E is such that no 
more than one edge of F is incident to each node in Vi. The set of matchings in G constitutes the inter-
section of the two matroids Mi, i = 1, 2. The problem of finding a maximum weight independent set in 
the intersection of two matroids can be solved in polynomial time (Lawler, 1975; Edmonds, 1970, 1979; 
Frank, 1981). The two (poly) matroid intersection polytope has been studied by Edmonds (1979).

The problem of testing whether a graph contains a Hamiltonian path is NP-complete. Since this 
problem can be reduced to the problem of finding a maximum cordinality independent set in the inter-
section of three matroids, it follows that the matroid intersection problem involving three or more 
matroids is NP-hard.

13.5.3  Valid Inequalities, Facets, and Cutting Plane Methods

Earlier in this section, we were concerned with conditions under which the packing and covering 
polytopes are integral. But, in general, these polytopes are not integral, and additional inequalities are 
required to have a complete linear description of the convex hull of integer solutions. The existence of 
finitely many such linear inequalities is guaranteed by Weyl’s (1935) Theorem.

Consider the feasible region of an ILP given by

	 P AI = ≤ ≥{ : ; }x x b x 0 and integer 	 (13.8)

Recall that an inequality fx ≤ f0 is referred to as a valid inequality for PI if fx* ≤ f0 for all x* ∈ PI. A valid 
linear inequality for PI(A, b) is said to be facet defining if it intersects PI(A, b) in a face of dimension one 
less than the dimension of PI(A, b). In the example shown in Figure 13.2, the inequality x2 + x3 ≤ 1 is a 
facet defining inequality of the integer hull.

Let u ≥ 0 be a row vector of appropriate size. Clearly uAx ≤ ub holds for every x in PI. Let (uA)j denote 
the jth component of the row vector uA and ⌊(uA)j⌋ denote the largest integer less than or equal to (uA)j. 
Now, since x ∈ PI is a vector of nonnegative integers, it follows that uu xx uubb( )A j

j
j∑   ≤   is a valid 

inequality for PI. This scheme can be used to generate many valid inequalities by using different u ≥ 0. 
Any set of generated valid inequalities may be added to the constraints in Equation 13.7 and the process 
of generating them may be repeated with the enhanced set of inequalities. This iterative procedure of 
generating valid inequalities is called Gomory–Chvátal (GC) rounding. It is remarkable that this simple 
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scheme is complete, that is, every valid inequality of PI can be generated by finite application of GC 
rounding (Chvátal, 1973; Schrijver, 1986).

The number of inequalities needed to describe the convex hull of PI is usually exponential in the size 
of A. But to solve an optimization problem on PI, one is only interested in obtaining a partial description 
of PI that facilitates the identification of an integer solution and prove its optimality. This is the underly-
ing basis of any cutting plane approach to combinatorial problems.

13.5.3.1  Cutting Plane Method

Consider the optimization problem

	 max{ : { : ; }}cx x x x b x 0∈ = ≤ ≥P AI  and integer

The generic cutting plane method as applied to this formulation is given as follows.

Procedure 13.4  Cutting Plane:

	 1.	 Initialize A′ ← A and b′ ← b.
	 2.	 Find an optimal solution x– to the linear program

	 max{ : ; }cx x b x 0′ ≤ ′ ≥A

		  If x– ∈ PI, stop and return x–.
	 3.	 Generate a valid inequality fx ≤ f0 for PI such that fx– > f0 (the inequality “cuts” x–).
	 4.	 Add the inequality to the constraint system, update

	
′ ←

′







 ′←

′







A

A

ff
b

b
,

0

Go to step 2.

In step 3 of the cutting plane method, we require a suitable application of the GC rounding scheme (or 
some alternative method of identifying a cutting plane). Notice that while the GC rounding scheme 
will generate valid inequalities, the identification of one that cuts off the current solution to the linear 

(1, 1, 0)

(1/2, 1/2, 1)

(1/2, 1, 1/2)
Cut

Facet

(0, 0, 0) (1, 0, 0)

�e relaxation

x1 + x2 + x3 ≤ 2
x1 – x2 – x3 ≥ –1

0 ≤ x1, x2, x3  ≤ 1

x1 + x2 + x3 ≤ 2
x1 – x2 – x3 ≥ –1

x2 + x3 ≤ 1
0 ≤ x1, x2, x3 ≤ 1

�e integer hull

FIGURE 13.2  Relaxation, cuts, and facets. (From Chandru, V. and Rao, M. R., ACM Comput. Survey, 28, 55, 1996.)
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programming relaxation is all that is needed. Gomory (1958) provided just such a specialization of the 
rounding scheme that generates a cutting plane. Although this met the theoretical challenge of design-
ing a sound and complete cutting plane method for integer linear programming, it turned out to be a 
weak method in practice. Successful cutting plane methods, in use today, use considerable additional 
insights into the structure of facet-defining cutting planes. Using facet cuts makes a huge difference in 
the speed of convergence of these methods. Also, the idea of combining cutting plane methods with 
search methods has been found to have a lot of merit. These B-and-C methods will be discussed in the 
next section.

13.5.3.2  b-Matching Problem

Consider the b-matching problem:

	 max{ : , }cx x b x 0A ≤ ≥  and integer 	 (13.9)

where A is the node–edge incidence matrix of an undirected graph and b is a vector of positive integers. 
Let G be the undirected graph whose node-edge incidence matrix is given by A and let W ⊆ V be any 
subset of nodes of G (i.e., subset of rows of A) such that

	
b b( )W i

i W

=
∈
∑

is odd. Then the inequality

	
x x b( ) ( ( ) )

( )

W We

e E W

= ≤ −
∈
∑ 1

2
1

	
(13.10)

is a valid inequality for integer solutions to Equation 13.8 where E(W) ⊆ E is the set of edges of G hav-
ing both ends in W. Edmonds (1965) has shown that the inequalities Equations 13.8 and 13.9 define 
the integral b-matching polytope. Note that the number of inequalities Equation 13.9 is exponential 
in the number of nodes of G. An instance of the successful application of the idea of using only a partial 
description of PI is in the blossom algorithm for the matching problem, due to Edmonds (1965).

As we saw, an implication of the ellipsoid method for linear programming is that the linear pro-
gram over PI can be solved in polynomial time if and only if the associated separation problem (also 
referred to as the constraint identification problem, see Section 13.2) can be solved in polynomial 
time, see Grötschel et al. (1982), Karp and Papadimitriou (1982), and Padberg and Rao (1981). The 
separation problem for the b-matching problem with or without upper bounds was shown by Padberg 
and Rao (1982), to be solvable in polynomial time. The procedure involves a minor modification of 
the algorithm of Gomory and Hu (1961) for multiterminal networks. However, no polynomial (in the 
number of nodes of the graph) linear programming formulation of this separation problem is known. 
A related unresolved issue is whether there exists a polynomial size (compact) formulation for the 
b-matching problem. Yannakakis (1988) has shown that, under a symmetry assumption, such a for-
mulation is impossible.

However, Kaibel et al. (2012) have shown that the symmetry assumption can make a big difference. 
Considering matchings of size of ⌊log(n)⌋, where n is the number of vertices in the graph, they show 
that there is a polynomial size nonsymmetric extended formulation while there is no compact sym-
metric extended formulation. Fiorini et al. (2012) have shown that the max-cut, traveling salesman and 
stable set problems cannot have a polynomial size extended formulation. But it is still an open question 
whether the perfect matching problem has a compact representation. Conforti et al. (2012) provide a 
survey on extended formulations.
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13.5.3.3  Other Combinatorial Problems

Besides the matching problem, several other combinatorial problems and their associated polytopes have 
been well studied and some families of facet defining inequalities have been identified. For instance, the set 
packing, graph partitioning, plant location, max-cut, traveling salesman, and Steiner tree problems have 
been extensively studied from a polyhedral point of view (see, for instance, Nemhauser and Wolsey, 1988).

These combinatorial problems belong to the class of NP-complete problems. In terms of a worst-case 
analysis, no polynomial-time algorithms are known for these problems. Nevertheless, using a cutting 
plane approach with B-and-B or B-and-C (see Section 13.6), large instances of these problems have been 
successfully solved, see Crowder et al. (1983), for general 0–1 problems, Barahona et al. (1989) for the 
max-cut problem, Padberg and Rinaldi (1991) for the traveling salesman problem (TSP), and Chopra 
et al. (1992) for the Steiner tree problem.

13.6  Partial Enumeration Methods

In many instances, to find an optimal solution to ILP, the structure of the problem is exploited together 
with some sort of partial enumeration. In this section, we review the B-and-B and B-and-C methods 
for solving an ILP.

13.6.1  Branch and Bound

The B-and-B method is a systematic scheme for implicitly enumerating the finitely many feasible solu-
tions to an ILP. Although, theoretically the size of the enumeration tree is exponential in the problem 
parameters, in most cases, the method eliminates a large number of feasible solutions. The key features 
of B-and-B method are

	 1.	 Selection/removal of one or more problems from a candidate list of problems
	 2.	 Relaxation of the selected problem so as to obtain a lower bound (on a minimization problem) on 

the optimal objective function value for the selected problem
	 3.	 Fathoming, if possible, of the selected problem
	 4.	 Branching strategy is needed if the selected problem is not fathomed. Branching creates subprob-

lems, which are added to the candidate list of problems

The four steps are repeated until the candidate list is empty. The B-and-B method sequentially exam-
ines problems that are added and removed from a candidate list of problems.
Initialization. Initially, the candidate list contains only the original ILP, which is denoted as

	 ( ) min{ : , }P Acx x b x 0≤ ≥  and integer

Let F(P) denote the feasible region of (P) and z(P) denote the optimal objective function value of (P). 
For any x– in F(P), let zP(x–) = cx–.

Frequently, heuristic procedures are first applied to get a good feasible solution to (P). The best solu-
tion known for (P) is referred to as the current incumbent solution. The corresponding objective func-
tion value is denoted as zI. In most instances, the initial heuristic solution is neither optimal nor at least 
immediately certified to be optimal. Thus, further analysis is required to ensure that an optimal solution 
to (P) is obtained. If no feasible solution to (P) is known, zI is set to ∞.
Selection/removal. In each iterative step of B-and-B, a problem is selected and removed from the can-
didate list for further analysis. The selected problem is henceforth referred to as the candidate problem 
(CP). The algorithm terminates if there is no problem to select from the candidate list. Initially, there 
is no issue of selection since the candidate list contains only the problem (P). However, as the algo-
rithm proceeds, there would be many problems on the candidate list and a selection rule is required. 
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Appropriate selection rules, also referred to as branching strategies, are discussed later. Conceptually, 
several problems may be simultaneously selected and removed from the candidate list. However, 
most sequential implementations of B-and-B select only one problem from the candidate list and this 
is assumed henceforth. Parallel aspects of B-and-B on 0–1 integer linear programs are discussed in 
Cannon and Hoffman (1990) and for the case of TSP in Applegate et al. (1994).

The computational time required for the B-and-B algorithm depends crucially on the order in which 
the problems in the candidate list are examined. A number of clever heuristic rules may be employed in 
devising such strategies. Two general purpose selection strategies that are commonly used are as follows:

	 1.	 Choose the problem that was added last to the candidate list. This last-in–first-out rule (LIFO) is 
also called depth first search (DFS) since the selected candidate problem increases the depth of the 
active enumeration tree.

	 2.	 Choose the problem on the candidate list that has the least lower bound. Ties may be broken by choos-
ing the problem that was added last to the candidate list. This rule would require that a lower bound 
be obtained for each of the problems on the candidate list. In other words, when a problem is added 
to the candidate list, an associated lower bound should also be stored. This may be accomplished by 
using ad hoc rules or by solving a relaxation of each problem before it is added to the candidate list.

Rule 1 is known to empirically dominate rule 2 when storage requirements for candidate list and 
computation time to solve (P) are taken into account. However, some analysis indicates that rule 2 can 
be shown to be superior if minimizing the number of candidate problems to be solved is the criterion 
(see Parker and Rardin, 1988).
Relaxation. In order to analyze the selected candidate problem (CP), a relaxation (CPR) of (CP) is solved 
to obtain a lower bound z(CPR) ≤ z(CP). (CPR) is a relaxation of (CP) if

	 1.	 F(CP) ⊆ F(CPR)
	 2.	 For x x x∈ ≤F CP z zCP CPR( ), ( ) ( )
	 3.	 For xx xx xx xx, ˆ ( ), ( ) ( ˆ )F CP z zCP CPR R∈ ≤  implies that zCP(x–) ≤ zCP(x̂)

Relaxations are needed because the candidate problems are typically hard to solve. The relaxations 
used most often are either linear programming or Lagrangian relaxations of (CP), see Section 13.7 for 
details. Sometimes, instead of solving a relaxation of (CP), a lower bound is obtained by using some ad 
hoc rules such as penalty functions.
Fathoming. A candidate problem is fathomed if

(FC1) analysis of (CPR) reveals that (CP) is infeasible. For instance, if F(CPR) = ϕ, then F(CP) = ϕ.
(FC2) analysis of (CPR) reveals that (CP) has no feasible solution better than the current incum-

bent solution. For instance, if z(CPR) ≥ zI, then z(CP) ≥ z(CPR) ≥ zI.
(FC3) analysis of (CPR) reveals an optimal solution of (CP). For instance, if the optimal solution, 

xR, to (CPR) is feasible in (CP), then (xR) is an optimal solution to (CP) and z(CP) = cxR.
(FC4) analysis of (CPR) reveals that (CP) is dominated by some other problem, say, CP*, in the can-

didate list. For instance, if it can shown that z(CP*) ≤ z(CP), then there is no need to analyze 
(CP) further.

If a candidate problem (CP) is fathomed using any of the preceding criteria, then further examina-
tion of (CP) or its descendants (subproblems) obtained by separation is not required. If (FC3) holds, and 
z(CP) < zI, the incumbent is updated as xR and zI is updated as z(CP).
Separation/branching. If the candidate problem (CP) is not fathomed, then CP is separated into several 
problems, say, (CP1), (CP2),…, (CPq), where F CP F CPt

t

q

( ) ( )
=

=
1∪  and, typically,

	 F CP F CP i ji j( ) ( )∩ = ∀ ≠φ
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For instance, a separation of (CP) into (CPi), i = 1, 2,…, q, is obtained by fixing a single variable, say, 
xj, to one of the q possible values of xj in an optimal solution to (CP). The choice of the variable to fix 
depends on the separation strategy, which is also part of the branching strategy. After separation, the 
subproblems are added to the candidate list. Each subproblem (CPt) is a restriction of (CP) since F(CPt) ⊆ 
F(CP). Consequently, z(CP) ≤ z(CPt) and z(CP) = mint z(CPt).

The various steps in the B-and-B algorithm are outlined as follows.

Procedure 13.5  B-and-B:

	 0.	 Initialize: Given the problem (P), the incumbent value zI is obtained by applying some heu-
ristic (if a feasible solution to (P) is not available, set zI = +∞). Initialize the candidate list 
C ← {(P)}.

	 1.	 Optimality: If C = ∅ and zI = +∞, then (P) is infeasible, stop. Stop also if C = ∅ and zI < +∞, 
the incumbent is an optimal solution to (P).

	 2.	 Selection: Using some candidate selection rule, select and remove a problem (CP) ∈ C.
	 3.	 Bound: Obtain a lower bound for (CP) by either solving a relaxation (CPR) of (CP) or by apply-

ing some ad-hoc rules. If (CPR) is infeasible, return to Step 1. Else, let xR be an optimal solution 
of (CPR).

	 4.	 Fathom: If z(CPR) ≥ zI, return to step 1. Else if xR is feasible in (CP) and z(CP) < zI, set zI ← 
z(CP), update the incumbent as xR and return to step 1. Finally, if xR is feasible in (CP) but z(CP) 
≥ zI, return to step 1.

	 5.	 Separation: Using some separation or branching rule, separate (CP) into (CPi), i = 1, 2,…, q 
and set C ← C ∪ {CP1), (CP2),…, (CPq)} and return to step 1.

	 6.	 End Procedure.

Although the B-and-B method is easy to understand, the implementation of this scheme for a par-
ticular ILP is a nontrivial task requiring the following:

	 1.	 A relaxation strategy with efficient procedures for solving these relaxations
	 2.	 Efficient data structures for handling the rather complicated bookkeeping of the candidate list
	 3.	 Clever strategies for selecting promising candidate problems
	 4.	 Separation or branching strategies that could effectively prune the enumeration tree

A key problem is that of devising a relaxation strategy, that is, to find good relaxations, which are 
significantly easier to solve than the original problems and tend to give sharp lower bounds. Since these 
two are conflicting, one has to find a reasonable tradeoff.

13.6.2  Branch and Cut

In the past few years, the B-and-C method has become popular for solving NP-complete combinatorial 
optimization problems. As the name suggests, the B-and-C method incorporates the features of both 
the B-and-B method just presented and the cutting plane method presented previously. The main differ-
ence between the B-and-C method and the general B-and-B scheme is in the bound step (step 3).

A distinguishing feature of the B-and-C method is that the relaxation (CPR) of the candidate prob-
lem (CP) is a linear programming problem, and, instead of merely solving (CPR), an attempt is made to 
solve (CP) by using cutting planes to tighten the relaxation. If (CPR) contains inequalities that are valid 
for (CP) but not for the given ILP, then the GC rounding procedure may generate inequalities that are 
valid for (CP) but not for the ILP. In the B-and-C method, the inequalities that are generated are always 
valid for the ILP and hence can be used globally in the enumeration tree.
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Another feature of the B-and-C method is that often heuristic methods are used to convert some of 
the fractional solutions, encountered during the cutting plane phase, into feasible solutions of the (CP) 
or more generally of the given ILP. Such feasible solutions naturally provide upper bounds for the ILP. 
Some of these upper bounds may be better than the previously identified best upper bound and, if so, 
the current incumbent is updated accordingly.

We thus obtain the B-and-C method by replacing the bound step (step 3) of the B-and-B method by 
steps 3(a) and 3(b) and also by replacing the fathom step (step 4) by steps 4(a) and 4(b) given subsequently.
3(a) �Bound: Let (CPR) be the LP relaxation of (CP). Attempt to solve (CP) by a cutting plane method 

which generates valid inequalities for (P). Update the constraint System of (P) and the incumbent 
as appropriate.

Let Fx ≤ f denote all of the valid inequalities generated during this phase. Update the constraint 
system of (P) to include all of the generated inequalities, that is, set AT ← (AT, FT) and bT ← (bT, fT). The 
constraints for all of the problems in the candidate list are also to be updated.

During the cutting plane phase, apply heuristic methods to convert some of the identified fractional 
solutions into feasible solutions to (P). If a feasible solution, x–, to (P), is obtained such that cx– < zI, update 
the incumbent to x– and zI to cx–. Hence, the remaining changes to B-and-B are as follows:
3(b) �If (CP) is solved go to step 4(a). Else, let x̂ be the solution obtained when the cutting plane phase is 

terminated (we are unable to identify a valid inequality of (P) that is violated by x̂). Go to step 4(b).
4(b) �Fathom by Optimality: Let x* be an optimal solution to (CP). If z(CP) < zI, set xI ← z(CP) and 

update the incumbent as x*. Return to step 1.
4(b) Fathom by Bound: If cx̂ ≥ zI, return to Step 1.

Else go to step 5.
The incorporation of a cutting plane phase into the B-and-B scheme involves several technicalities 

which require careful design and implementation of the B-and-C algorithm. Details of the state of the 
art in cutting plane algorithms including the B-and-C algorithm are reviewed in Jünger et al. (1995).

13.7 A pproximation in Combinatorial Optimization

The inherent complexity of integer linear programming has led to a long-standing research program in 
approximation methods for these problems. Linear programming relaxation and Lagrangian relaxation 
are two general approximation schemes that have been the real workhorses of computational practice. 
Semidefinite relaxation is a recent entrant that appears to be very promising. In this section, we present 
a brief review of these developments in the approximation of combinatorial optimization problems.

In the past few years, there has been significant progress in our understanding of performance guar-
antees for approximation of NP-hard combinatorial optimization problems. A ρ-approximate algo-
rithm for an optimization problem is an approximation algorithm that delivers a feasible solution with 
objective value within a factor of ρ of optimal (think of minimization problems and ρ ≥ 1). For some 
combinatorial optimization problems, it is possible to efficiently find solutions that are arbitrarily close 
to optimal even though finding the true optimal is hard. If this were true of most of the problems of 
interest, we would be in good shape. However, the recent results of Arora et al. (1992) indicate exactly 
the opposite conclusion.

A polynomial-time approximation scheme (PTAS) for an optimization problem is a family of 
algorithms, Aρ, such that for each ρ > 1, Aρ is a polynomial-time ρ-approximate algorithm. Despite 
concentrated effort spanning about two decades, the situation in the early 1990s was that for many com-
binatorial optimization problems, we had no PTAS and no evidence to suggest the nonexistence of such 
schemes either. This led Papadimitriou and Yannakakis (1991) to define a new complexity class (using 
reductions that preserve approximate solutions) called MAXSNP, and they identified several complete 
languages in this class. The work of Arora et al. (1992) completed this agenda by showing that, assuming 
P ≠ NP, there is no PTAS for a MAXSNP-complete problem.
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An implication of these theoretical developments is that for most combinatorial optimization prob-
lems, we have to be quite satisfied with performance guarantee factors ρ that are of some small fixed 
value. (There are problems, like the general TSP for which there are no ρ-approximate algorithms for 
any finite value of ρ, assuming of course that P ≠ NP.) Thus, one avenue of research is to go problem 
by problem and knock ρ down to its smallest possible value. A different approach would be to look for 
other notions of good approximations based on probabilistic guarantees or empirical validation. Let us 
see how the polyhedral combinatorics perspective helps in each of these directions.

13.7.1  LP Relaxation and Randomized Rounding

Consider the well-known problem of finding the smallest weight vertex cover in a graph. We are given 
a graph G(V, E) and a nonnegative weight w(v) for each vertex v ∈ V. We want to find the smallest total 
weight subset of vertices S such that each edge of G has at least one end in S. (This problem is known to 
be MAXSNP-hard.) An integer programming formulation of this problem is given by

	
min ( ) ( ) : ( ) ( ) , ( , ) , ( ) { , }w x x x xv v u v u v E v v V

v V∈
∑ + ≥ ∀ ∈ ∈ ∀ ∈








1 0 1




To obtain the linear programming relaxation, we substitute the x(v) ∈ {0, 1} constraint with x(v) ≥ 0 for 
each v ∈ V. Let x* denote an optimal solution to this relaxation. Now let us round the fractional parts 
of x* in the usual way, that is, values of 0.5 and up are rounded to 1 and smaller values down to 0. Let x̂ 
be the 0–1 solution obtained. First note that x̂(v) ≤ 2x*(v) for each v ∈ V. Also, for each (u, v) ∈ E, since 
x*(u) + x*(v) ≥ 1, at least one of x̂(u) and x̂(v) must be set to 1. Hence x̂ is the incidence vector of a vertex 
cover of G whose total weight is within twice the total weight of the linear programming relaxation 
(which is a lower bound on the weight of the optimal vertex cover). Thus, we have a 2-approximate 
algorithm for this problem, which solves a linear programming relaxation and uses rounding to obtain 
a feasible solution.

The deterministic rounding of the fractional solution worked quite well for the vertex cover prob-
lem. One gets a lot more power from this approach by adding in randomization to the rounding step. 
Raghavan and Thompson (1987) proposed the following obvious randomized rounding scheme. Given 
a 0–1 integer program, solve its linear programming relaxation to obtain an optimal x*. Treat the 
x j
∗∈[ , ]0 1  as probabilities, that is, let probability { }x xj j= = ∗1 , to randomly round the fractional solu-

tion to a 0–1 solution. Using Chernoff bounds on the tails of the binomial distribution, Raghavan 
and Thompson (1987) were able to show, for specific problems, that with high probability, this scheme 
produces integer solutions which are close to optimal. In certain problems, this rounding method may 
not always produce a feasible solution. In such cases, the expected values have to be computed as con-
ditioned on feasible solutions produced by rounding. More complex (nonlinear) randomized round-
ing schemes have been recently studied and have been found to be extremely effective. We will see an 
example of nonlinear rounding in the context of semidefinite relaxations of the max-cut problem in 
the following.

13.7.2  Primal–Dual Approximation

The linear programming relaxation of the vertex cover problem, as we saw previously, is given by

	
( ) min ( ) ( ) : ( ) ( ) , ( , ) , ( )P v v u v u v E v v VVC
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and its dual is

	

( ) max ( , ) : ( , ) ( ), , ( , ) (
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The primal–dual approximation approach would first obtain an optimal solution y* to the dual problem 
(DVC). Let V̂ ⊆ V denote the set of vertices for which the dual constraints are tight, that is,

	

ˆ : ( , ) ( ){ }
( , )

V v V u v v
u v E

= ∈ ∗ =
∈
∑ y w

The approximate vertex cover is taken to be V̂. It follows from complementary slackness that V̂ is a vertex 
cover. Using the fact that each edge (u, v) is in the star of at most two vertices (u and v), it also follows 
that V̂ is a 2-approximate solution to the minimum weight vertex cover problem.

In general, the primal–dual approximation strategy is to use a dual solution to the linear program-
ming relaxation, along with complementary slackness conditions as a heuristic to generate an integer 
(primal) feasible solution, which for many problems turns out to be a good approximation of the optimal 
solution to the original integer program.

Remark 13.11

A recent survey of primal-dual approximation algorithms and some related interesting results are pre-
sented in Williamson (2000).

13.7.3  Semidefinite Relaxation and Rounding

The idea of using SDP to solve combinatorial optimization problems appears to have originated in the 
work of Lovász (1979) on the Shannon capacity of graphs. Grötschel et al. (1988) later used the same tech-
nique to compute a maximum stable set of vertices in perfect graphs via the ellipsoid method. Recently, 
Lovász and Schrijver (1991) resurrected the technique to present a fascinating theory of semidefinite 
relaxations for general 0–1 integer linear programs. We will not present the full-blown theory here but 
instead will present an excelllent application of this methodology to the problem of finding the maxi-
mum weight cut of a graph. This application of semidefinite relaxation for approximating MAXCUT is 
due to Goemans and Williamson (1994).

We begin with a quadratic Boolean formulation of MAXCUT

	

max ( , )( ( ) ( )) : ( ) { , }
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where G(V, E) is the graph and w(u, v) is the nonnegative weight on edge (u, v). Any {−1, 1} vector of x 
values provides a bipartition of the vertex set of G. The expression (1 − x (u)x (v)) evaluates to 0 if u and v 
are on the same side of the bipartition and to 2 otherwise. Thus, the optimization problem does indeed 
represent exactly the MAXCUT problem.

Next we reformulate the problem in the following way:

•	 We square the number of variables by substituting each x(v) with χ(v) an n-vector of variables 
(where n is the number of vertices of the graph).
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•	 The quadratic term x (u)x (v) is replaced by χ(u) · χ(v), which is the inner product of the vectors.
•	 Instead of the {−1, 1} restriction on the x(v), we use the Euclidean normalization ∥χ(v)∥ = 1 

on the χ(v).

Thus, we now have a problem
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2
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which is a relaxation of the MAXCUT problem (note that if we force only the first component of the χ(v) 
to have nonzero value, we would just have the old formulation as a special case).

The final step is in noting that this reformulation is nothing but a semidefinite program. To see this 
we introduce n × n Gram matrix Y of the unit vectors χ(v). So Y = XTX where X = (χ(v) : v ∈ V). Thus, 
the relaxation of MAXCUT can now be stated as a semidefinite program,

	

max ( , )( ) : ,( , )
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Recall from Section 13.2 that we are able to solve such semidefinite programs to an additive error ε in 
time polynomial in the input length and log 1/ε by using either the ellipsoid method or interior point 
methods.

Let χ* denote the near optimal solution to the SDP relaxation of MAXCUT (convince yourself that 
χ* can be reconstructed from an optimal Y* solution). Now we encounter the final trick of Goemans 
and Williamson. The approximate maximum weight cut is extracted from χ* by randomized rounding. 
We simply pick a random hyperplane H passing through the origin. All of the v ∈ V lying to one side of 
H get assigned to one side of the cut and the rest to the other. Goemans and Williamson observed the 
following inequality.

Lemma 13.3

For χ1 and χ2, two random n-vectors of unit norm, let x(1) and x(2) be ±1 values with opposing signs if H 
separates the two vectors and with same signs otherwise. Then E~(1 − χ1 · χ2) ≤ 1.1393 · E~(1 − x (1)x (2)) where 
E~ denotes the expected value.

By linearity of expectation, the lemma implies that the expected value of the cut produced by the 
rounding is at least 0.878 times the expected value of the semidefinite program. Using standard condi-
tional probability techniques for derandomizing, Goemans and Williamson show that a deterministic 
polynomial-time approximation algorithm with the same margin of approximation can be realized. 
Hence, we have a cut with value at least 0.878 of the maximum cut value.

Remark 13.12

For semidefinite relaxations of mixed integer programs in which the integer variables are restricted to be 
0 or 1, Iyengar and Cezik (2002) develop methods for generating Gomory–Chavatal and disjunctive cut-
ting planes that extends the work of Balas et al. (1993). Ye (2000) shows that strengthened semidefinite 
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relaxations and mixed rounding methods achieve superior performance guarantee for some discrete 
optimization problems. A recent survey of SDP and applications is in Wolkowicz et al. (2000).

13.7.4  Neighborhood Search

A combinatorial optimization problem may be written succinctly as

	 min{ ( ) : }f x x X∈

The traditional neighborhood method starts at a feasible point x0 (in X), and iteratively proceeds to a 
neighborhood point that is better in terms of the objective function f(.) until a specified termination 
condition is attained. While the concept of neighborhood N(x) of a point x is well defined in calculus, 
the specification of N(x) is itself a matter of consideration in combinatorial optimization. For instance, 
for the travelling salesman problem, the so-called k-opt heuristic (see Lin and Kernighan, 1973) is a 
neighborhood search method which for a given tour considers “neighborhood tours” in which k vari-
ables (edges) in the given tour are replaced by k other variables such that a tour is maintained. This 
search technique has proved to be effective though it is quite complicated to implement when k is larger 
than 3.

A neighborhood search method leads to a local optimum in terms of the neighborhood chosen. Of 
course, the chosen neighborhood may be large enough to ensure a global optimum, but such a procedure 
is typically not practical in terms of searching the neighborhood for a better solution. Recently Orlin 
(2000) has presented very large scale neighborhood search algorithms in which the neighborhood is 
searched using network flow or dynamic programming methods. Another method advocated by Orlin 
(2000) is to define the neighborhood in such a manner that the search process becomes a polynomially 
solvable special case of a hard combinatorial problem.

To avoid getting trapped at a local optimum solution, different strategies such as Tabu Search 
(see for instance Glover and Laguna, 1997), simulated annealing (see, for instance, Aarts and Korst, 
1989), genetic algorithms (see, for instance, Whitley, 1993), and neural networks have been developed. 
Essentially, these methods allow for the possibility of sometimes moving to an inferior solution in terms 
of the objective function or even to an infeasible solution. While there is no guarantee of obtaining a 
global optimal solution, computational experience in solving several difficult combinatorial optimiza-
tion problems has been very encouraging. However, a drawback of these methods is that performance 
guarantees are not typically available.

13.7.5  Lagrangian Relaxation

We end our discussion of approximation methods for combinatorial optimization with the descrip-
tion of Lagrangian relaxation. This approach has been widely used for about two decades now in 
many practical applications. Lagrangian relaxation, like linear programming relaxation, provides 
bounds on the combinatorial optimization problem being relaxed (i.e., lower bounds for minimiza-
tion problems).

Lagrangian relaxation has been so successful because of a couple of distinctive features. As was noted 
earlier, in many hard combinatorial optimization problems, we usually have embedded some nice trac-
table subproblems which have efficient algorithms. Lagrangian relaxation gives us a framework to jerry-
rig an approximation scheme that uses these efficient algorithms for the subproblems as subroutines. 
A second observation is that it has been empirically observed that well-chosen Lagrangian relaxation 
strategies usually provide very tight bounds on the optimal objective value of integer programs. This is 
often used to great advantage within partial enumeration schemes to get very effective pruning tests for 
the search trees.
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Practitioners also have found considerable success with designing heuristics for combinatorial opti-
mization by starting with solutions from Lagrangian relaxations and constructing good feasible solu-
tions via so-called dual ascent strategies. This may be thought of as the analogue of rounding strategies 
for linear programming relaxations (but with no performance guarantees, other than empirical ones).

Consider a representation of our combinatorial optimization problem in the form

	 ( ) min{ : , }P z A X n= ≥ ∈ ⊆ℜcx x b x

Implicit in this representation is the assumption that the explicit constraints (Ax ≥ b) are small in num-
ber. For convenience, let us also assume that X can be replaced by a finite list {x1, x2,…, xT}.

The following definitions are with respect to (P):

•	 Lagrangian.  L(u, x) = u(Ax − b) + cx where u are the Lagrange multipliers.
•	 Lagrangian-dual function.  L(u) = minx∈X{L(u, x)}.
•	 Lagrangian-dual problem.  (D) d = maxu≥0{L(u)}.

It is easily shown that (D) satisfies a weak duality relationship with respect to (P), that is, z ≥ d. The 
discreteness of X also implies that L(u) is a piecewise linear and concave function (see Shapiro, 1979). 
In practice, the constraints X are chosen such that the evaluation of the Lagrangian dual function L(u) 
is easily made (i.e., the Lagrangian subproblem minx∈X{L(u, x)} is easily solved for a fixed value of u).

Example 13.3  Traveling salesman problem (TSP).

For an undirected graph G, with costs on each edge, the TSP is to find a minimum cost set H of 
edges of G such that it forms a Hamiltonian cycle of the graph. H is a Hamiltonian cycle of G if 
it is a simple cycle that spans all the vertices of G. Alternatively, H must satisfy: (1) exactly two 
edges of H are adjacent to each node, and (2) H forms a connected, spanning subgraph of G.

Held and Karp (1970) used these observations to formulate a Lagrangian relaxation approach 
for TSP that relaxes the degree constraints (1). Notice that the resulting subproblems are mini-
mum spanning tree problems which can be easily solved.

The most commonly used general method of finding the optimal multipliers in Lagrangian 
relaxation is subgradient optimization (cf. Held et al., 1974). Subgradient optimization is the 
non-differentiable counterpart of steepest descent methods. Given a dual vector uk, the iterative 
rule for creating a sequence of solutions is given by:

	 u u uk k
k

kt+ = +1 γγ( )

where tk is an appropriately chosen step size, and γ(uk) is a subgradient of the dual function L 
at uk. Such a subgradient is easily generated by

	 γγ( )u x bk kA= −

where xk is a maximizer of minx∈X{L(uk, x)}.
Subgradient optimization has proven effective in practice for a variety of problems. It is pos-

sible to choose the step sizes {tk} to guarantee convergence to the optimal solution. Unfortunately, 
the method is not finite, in that the optimal solution is attained only in the limit. Further, it is 
not a pure descent method. In practice, the method is heuristically terminated and the best solu-
tion in the generated sequence is recorded. In the context of nondifferentiable optimization, the 
ellipsoid algorithm was devised by Shor (1970) to overcome precisely some of these difficulties 
with the subgradient method.
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The ellipsoid algorithm may be viewed as a scaled subgradient method in much the same 
way as variable metric methods may be viewed as scaled steepest descent methods (cf. Akgul, 
1984). And if we use the ellipsoid method to solve the Lagrangian dual problem, we obtain the 
following as a consequence of the polynomial-time equivalence of optimization and separation.

Theorem 13.8

The Lagrangian dual problem is polynomial-time solvable if and only if the Lagrangian subproblem is. 
Consequently, the Lagrangian dual problem is NP-hard if and only if the Lagrangian subproblem is.

The theorem suggests that, in practice, if we set up the Lagrangian relaxation so that the subproblem 
is tractable, then the search for optimal Lagrangian multipliers is also tractable.

13.8  Prospects in Integer Programming

The TSP has been the subject of considerable research in terms of developing specialized software incor-
porating several theoretical results. The largest problem, in terms of the number of cities, that has been 
solved is a 85,900 cities problem that arises in the process of making a computer chip, see Cook (2012).

The current emphasis in software design for integer programming is in the development of shells (for 
example, CPLEX 6.5 [1999], MINTO [Savelsbergh et al., 1994], and OSL [1991]) wherein a general pur-
pose solver like B-and-C is the driving engine. Problem-specific codes for generation of cuts and facets 
can be easily interfaced with the engine. Recent computational results (Bixby et al., 2001) suggests that it 
is now possible to solve relatively large size integer programming problems using general purpose codes. 
Bixby and his team have gone on to create a new optimization engine called GUROBI (GUROBI, 2013) 
which appears to be the new benchmark. We believe that this trend will eventually lead to the creation 
of general purpose problem-solving languages for combinatorial optimization akin to AMPL (Fourer 
et al., 1993) for linear and nonlinear programming.

A promising line of research is the development of an empirical science of algorithms for combi-
natorial optimization (Hooker, 1993). Computational testing has always been an important aspect of 
research on the efficiency of algorithms for integer programming. However, the standards of test designs 
and empirical analysis have not been uniformly applied. We believe that there will be important strides 
in this aspect of integer programming and more generally of algorithms. Hooker argues that it may 
be useful to stop looking at algorithmics as purely a deductive science and start looking for advances 
through repeated application of “hypothesize and test” paradigms, that is, through empirical science. 
Hooker and Vinay (1995) develop a science of selection rules for the Davis–Putnam–Loveland scheme 
of theorem proving in propositional logic by applying the empirical approach.

The integration of logic-based methodologies and mathematical programming approaches is evi-
denced in the recent emergence of CLP systems (Borning, 1994; Saraswat and Van Hentenryck, 1995) 
and logico-mathematical programming (Jeroslow, 1989; Chandru and Hooker, 1991). In CLP, we see a 
structure of Prolog-like programming language in which some of the predicates are constraint predi-
cates whose truth values are determined by the solvability of constraints in a wide range of algebraic 
and combinatorial settings. The solution scheme is simply a clever orchestration of constraint solv-
ers in these various domains and the role of conductor is played by resolution. The clean semantics of 
logic programming is preserved in CLP. A bonus is that the output language is symbolic and expres-
sive. An orthogonal approach to CLP is to use constraint methods to solve inference problems in logic. 
Imbeddings of logics in mixed integer programming sets were proposed by Williams (1987) and Jeroslow 
(1989). Efficient algorithms have been developed for inference algorithms in many types and fragments 
of logic, ranging from Boolean to predicate to belief logics (Chandru and Hooker, 1999).
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A persistent theme in the integer programming approach to combinatorial optimization, as we 
have seen, is that the representation (formulation) of the problem deeply affects the efficacy of the 
solution methodology. A proper choice of formulation can therefore make the difference between a 
successful solution of an optimization problem and the more common perception that the problem is 
insoluble and one must be satisfied with the best that heuristics can provide. Formulation of integer 
programs has been treated more as an art form than a science by the mathematical programming 
community. (See Jeroslow (1989) for a refreshingly different perspective on representation theories for 
mixed integer programming.) We believe that progress in representation theory can have an impor-
tant influence on the future of integer programming as a broad-based problem solving methodology 
in combinatorial optimization.

Key Terms

Column generation: A scheme for solving linear programs with a huge number of columns.
Cutting plane: A valid inequality for an integer polyhedron that separates the polyhedron from a given 

point outside it.
Extreme point: A corner point of a polyhedron.
Fathoming: Pruning a search tree.
Integer polyhedron: A polyhedron, all of whose extreme points are integer valued.
Linear program: Optimization of a linear function subject to linear equality and inequality constraints.
Mixed integer linear program: A linear program with the added constraint that some of the decision 

variables are integer valued.
Packing and covering: Given a finite collection of subsets of a finite ground set, to find an optimal sub-

collection that is pairwise disjoint (packing) or whose union covers the ground set (covering).
Polyhedron: The set of solutions to a finite system of linear inequalities on real-valued variables. 

Equivalently, the intersection of a finite number of linear half-spaces in ℜn.
Relaxation: An enlargement of the feasible region of an optimization problem. Typically, the relaxation 

is considerably easier to solve than the original optimization problem.
ρ-Approximation: An approximation method that delivers a feasible solution with an objective value 

within a factor ρ of the optimal value of a combinatorial optimization problem.
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14.1  Introduction

Graph drawing addresses the problem of visualizing information by constructing geometric represen-
tations of conceptual structures that are modeled by graphs, networks, or hypergraphs. Graphs may 
be used to represent any information that can be modeled as objects and connections between those 
objects. The area of graph drawing has grown significantly in the recent years motivated mostly by appli-
cations in information visualization and in key computer technologies, including software engineering 
(call graphs, class hierarchies), visual interfaces, database systems (entity-relationship diagrams), digi-
tal libraries and World Wide Web authoring and browsing (hypermedia documents), VLSI (symbolic 
layout), electronic systems (block diagrams, circuit schematics), project management (PERT diagrams, 
organization charts), telecommunications (ring covers of networks), business, and social sciences (social 
network analysis).

14.2  Underlying Principles

A graph is drawn in two or three dimensions. Usually, the nodes are represented by circles or boxes, and 
the edges are represented by simple open curves between the nodes. A graph G = (V, E) consists of a set 
V of nodes and a set E of edges, that is, unordered pairs of nodes. Given a graph G, the number of nodes 
is denoted by n and the number of edges is denoted by m.

The objective of a graph drawing algorithm is to take a graph and produce a nice drawing of it. In 
order to define the requirements for a nice drawing, Di Battista et al. [28] distinguish three different 
concepts: (i) drawing conventions, (ii) aesthetics, and (iii) constraints. In the following, we give a brief 
overview of them.
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14.2.1  Drawing Conventions

Various drawing standards have been proposed for drawing graphs, depending on the application. 
Drawing conventions provide the basic rules that the drawing must satisfy to be admissible. These rules 
deal with representation and placement of nodes and edges. Examples of drawing conventions are the 
following:
Straight-line drawing: Each edge is represented as a straight-line segment.
Polyline drawing: Each edge is represented as a polygonal chain.
Orthogonal drawing: Each edge is drawn as a sequence of alternating horizontal and vertical line segments.
Grid drawing: Nodes, edges, and edge bends have integer coordinates.
Planar drawing: No two edges cross each other.
Upward drawing: Edges are drawn as curves that are monotonically nondecreasing in the vertical direction. 
A drawing is strictly upward if each edge is drawn as a curve strictly increasing in the vertical direction.

14.2.2 A esthetics

One of the fundamental characteristics of a graph drawing is its readability, that is, the capability of 
conveying clearly the information associated with the graph. Readability issues are expressed by means 
of aesthetics, which can be formulated as optimization goals for the graph drawing algorithms. Some 
aesthetic criteria are general, others depend on the drawing convention adopted and on the particular 
class of graphs considered.

Further information on aesthetics can be found in [21,98,99,119,122]. It should be noted that aesthet-
ics are subjective and may need to be tailored to suit personal preferences, applications, traditions, and 
culture. Next, we present some of the most important aesthetics:
Area: The area of a drawing is the area of the smallest rectangle that encloses the drawing and should 
be minimized.
Aspect ratio: The ratio of the longest to the shortest side of the smallest rectangle enclosing the drawing 
should be balanced.
Bends: The number of edge bends especially for orthogonal drawings should be minimized.
Edge crossings: The number of crossings in a drawing should be minimized.
Edge length: The total length of all edges, the maximum length of a single edge, or the variance of the 
lengths of the edges should be minimized.
Convexity: Faces of planar drawings should be drawn as convex polygons.
Symmetry: The symmetries of a graph must be displayed in the drawing.
Angular resolution: The angle between any two consecutive edges of a node should be maximized.

It is not generally possible to fulfill all aesthetics simultaneously. For example, in Figure 14.1, two 
embeddings of K4 are displayed, the one on the left minimizes the number of edge crossings, whereas 

FIGURE 14.1  Drawings of a K4 graph.
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the one on the right maximizes the display of symmetries. Additionally, it is hard to achieve opti-
mum results since most of the problems described earlier are computationally hard. For example, 
the following problems related to aesthetics are NP-complete or NP-hard: drawing a graph with 
the  minimum number of crossings [55], embedding a graph in a grid of prescribed size [47,75], 
determining the minimum number of bends for orthogonal drawings [56], and drawing a graph 
symmetrically [81,82].

14.2.3  Constraints

While drawing conventions and aesthetics apply to an entire drawing, drawing constraints only apply 
to specific parts. They usually emphasize semantic aspects of a graph (e.g., by placing related nodes close 
to each other) and are given as additional input to the layout algorithm. Some examples of drawing 
constraints are the following:

Center: Place a given node near the center of the drawing.

External: Place a given node at the boundary of the drawing.

Cluster: Place a given subset of nodes close to each other.

Shape: Draw a subgraph with a given shape.

Sequence: Place a given subset of nodes along a straight line.

Order: Place a given node to the left, right, top, or bottom of another given node.

Position: Place a given node at a given position.

Direction: Draw a given subset of edges monotonically in a prescribed direction.

14.3  Graph Drawing Algorithms

Graph drawing algorithms may be classified according to the style of drawing they generate (e.g., 
hierarchical, orthogonal, force-directed, and circular), the methodology on which they are based (e.g., 
planarization, and divide, and conquer), and the class of graphs they can be applied to (e.g., planar, 
directed acyclic, and trees).

Many algorithmic techniques have been devised in order to draw graphs. Due to space restrictions, 
the main concepts of the most important techniques are presented here. A detailed description of graph 
drawing algorithms can be found in the literature, see for example [28,71].

14.3.1  Graph Drawing Layout Styles

There are algorithms that produce drawings that attempt to highlight hierarchy, symmetry, grouping 
structure, or orthogonality. Next, we present the most interesting techniques with respect to the flavor 
of the resulting layout of a graph drawing.

14.3.1.1  Hierarchical Layout

The hierarchical layout is ideal for displaying hierarchies. Directed graphs that contain an inherent 
hierarchy are drawn using hierarchical layout algorithms. This layout style is used in a variety of 
applications, for example, in PERT diagrams, organization charts, scheduling and logistic diagrams, 
and class hierarchies in software engineering. Figure 14.2 shows an example of a hierarchical drawing.

The basic method for hierarchical graph drawings is presented in [113], upon which all other 
methods are based. It accepts, as input, a directed graph and produces, as output, a layered drawing, 
that is, a representation where the nodes are placed on horizontal layers, and the edges are drawn as 
polygonal chains connecting their end nodes. In hierarchical drawings preferably most edges f low 



14-4 Algorithms and Complexity

in the same direction, for example, from top to bottom. The methodology based on this hierarchi-
cal layout algorithm consists of the following steps:
Cycle removal: If the input graph contains directed cycles, then the cycles are removed by temporarily 
reversing the direction of some edges.
Layer assignment: The nodes are assigned to layers such that edges point from lower to higher layers. 
Dummy nodes are inserted along the edges that cross layers, so that each edge in the resulting digraph 
connects nodes in consecutive layers.
Crossing reduction: The nodes are ordered on each layer to reduce the number of edge crossings.
Horizontal coordinate assignment: The nodes (original and dummy) are assigned coordinates such that 
we get only few bend points and short edges.

Reversing the minimum number of edges in order to remove cycles is an NP-hard problem. We can 
perform a Depth-First-Search (DFS) of the graph and reverse all back edges to remove cycles. This 
simple approach removes all cycles; however, in the worst case this may reverse as many as m − n − 1 
edges. In [40], a greedy approach guarantees the reversal of at most m/2 − n/6 edges.

In most applications, the nodes need to be assigned to layers. The longest path layering algorithm is 
the most commonly used [38]. All sources are assigned to the lowest level L0; each remaining node v is 
assigned to level Lp where p is the length of the longest path from any source to v. This algorithm runs 
in linear time and produces the minimum number of layers. However, it tends to produce drawings that 
are wide towards the bottom. It is NP-hard [38] to minimize both the number of layers and the number 
of nodes on each layer. For more work on layer assignment see [18,54,104].

The number of edge crossings depends on the ordering of the nodes within each layer. This problem is 
NP-hard even if we restrict it to bipartite (two-layered) graphs [55]. It remains NP-hard even if there are 
only two layers and the permutation of the nodes on one of them is fixed [39]. Several heuristics for the 
crossing minimization problem have been proposed (e.g., [62,88,110]).

The horizontal coordinate assignment reduces the number of bends by positioning the nodes on each 
layer without changing their order established in the crossing reduction step. This is an optimization 
problem and the goal is to minimize the total amount by which an edge deviates from being a straight 
line [9,15,54].

Edge_t

struct incl_c_1 struct stdio_h_1

Sfstderr sfstderr_iob_

_

sfprintf fprintf stderr exit

Node_t Sfio_t FILE NFILE

reg fatal malloc NIL NIL E_NONENULL

newEdge

_ARG_

_NULL_TYPE

struct_n_ struct_sfio_

struct_e_

FIGURE 14.2  A hierarchical drawing that displays the reachability analysis of the C function newEdge. (Courtesy 
of R. Chen, E. Koutsofios, and S. North, AT&T Research Labs.)
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14.3.1.2  Force-Directed Layout

Force-directed layout produces graph drawings that are aesthetically pleasing, exhibit (i) symmetries 
and (ii) clustered structure of the underlying graphs. It is a popular choice for drawing general graphs, 
because it produces good drawings (well-balanced distribution of nodes and few edge crossings) and 
is relatively easy to understand and implement. However, force-directed drawings are suboptimal and 
often unpredictable; in addition, there is no performance guarantee and the running time of this tech-
nique is typically high. It has applications in many areas of visualization of complex structures, such as 
bioinformatics, enterprise networking, knowledge representation, system management, WWW visual-
ization, and Mesh visualization. Figure 14.3 shows an example of a force-directed drawing.

In general, a force-directed layout algorithm simulates a system of forces defined on an input graph, 
and outputs a locally minimum energy configuration. This approach consists of two basic steps:

•	 A model consisting of physical objects (representing the elements of the graph) and interactions 
between these objects

•	 An algorithm for finding a locally minimum energy configuration

In a seminal paper, Eades [35] presented the first force-directed graph drawing algorithm. A graph is 
modeled as a physical system where the nodes are rings and the edges are springs that connect pairs of 
rings. The rings are placed in some initial layout and the spring forces move the system to a local mini-
mum of energy. Attractive forces are calculated using a logarithmic function in place of Hooke’s law for 
spring forces and are applied only between pairs of adjacent nodes. Repulsive forces act between every 
pair of nodes in order to avoid node overlaps. A node will move to its new location based on the sum 
of those attractive and repulsive forces applied to the node. Most force-directed algorithms adopt the 
physical model of [35] and propose variants of the definition of the forces [23,50,52,69,112]. For example, 
in [112], the concept of magnetic springs is introduced to control the orientation of the edges in the 
drawing. Edges are modeled with three types of springs: non-magnetic springs, unidirectional magnetic 
springs, and bidirectional magnetic springs. Various magnetic fields are considered: three standard mag-
netic fields, namely, parallel, polar, and concentric, and two compound magnetic fields, namely, orthogo-
nal and polar-concentric. This model is suited for drawing directed graphs, trees, and graphs with more 
than one type of edges. In [52], attractive forces take into account the optimal distance between nodes 
in the drawing which is defined as a function of the number of nodes in the graph and the size of the 
drawing window. In [69], the forces are chosen so that the Euclidean distance between any two nodes 
in the drawing is proportional to the graph-theoretic distance between the corresponding nodes in the 
graph. In [23], the drawing of a graph is formulated as an optimization problem and the solution is found 

FIGURE 14.3  A random drawing of a graph and a drawing of the same graph produced by a force-directed 
algorithm.
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using simulated annealing. The goal is to minimize a cost function that is a linear combination of energy 
functions, each defined to optimize a certain aesthetic criterion, such as uniform distribution of nodes, 
uniform distribution of edge lengths, number of edge-crossings, and distance between nodes and edges.

14.3.1.3  Circular Layout

Circular layout produces graph drawings that emphasize group structures that are either inherent in a 
graph’s topology or user-defined. Circular layout has many applications, for example, in social network-
ing (organization charts, citation networks, and collaboration networks), security (case information 
diagrams, fraud networks, and felony event flow diagrams), network management (telecommunication 
and computer networks, LAN diagrams, and traffic visualization), WWW visualization (visitor move-
ment graphs and internet traffic), and eCommerce. A circular graph drawing (see Figures 14.4 and 14.5 
for examples) is a visualization of a graph with the following characteristics:

•	 The graph is partitioned into groups.
•	 The nodes of each group are placed onto the circumference of an embedding circle.
•	 Each edge is drawn as a straight line.
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FIGURE 14.4  A random drawing of a graph and a drawing of the same graph produced by a circular layout 
algorithm [107].

FIGURE 14.5  A user-grouped circular drawing [106].



14-7Graph Drawing

Node partitions are created by either analyzing the connectivity structure of the underlying graph, 
or are user-defined. The partitioning of the graph into clusters can show structural information such 
as biconnectivity, or the clusters can highlight semantic qualities of the graph. An example of an appli-
cation in which user-grouped circular drawing would be useful is a computer network management 
system. It would be very helpful to allow the user to group the computers by IP addresses, IP subnet 
masks, or other criteria.

It is essential that the number of edge crossings within each cluster remain low in order to reduce 
the visual complexity of the resulting drawings. However, the problem of finding a minimum crossing 
embedding such that all the nodes are placed onto the circumference of a circle and all edges are repre-
sented with straight lines is NP-complete [84].

A technique for producing circular drawings of biconnected graphs on a single embedding circle 
is presented in [105]. In order to produce circular drawings with few crossings, the algorithm tends to 
place edges toward the outside of the embedding circle. Also, nodes are placed near their neighbors. 
In fact, this algorithm tries to maximize the number of edges appearing toward the periphery of the 
embedding circle. It selectively removes some edges and then builds a DFS based node ordering of 
the resulting graph. This technique visits the nodes in a wave-like fashion, looking for pairs of edges 
(edges incident to two nodes which share at least one neighbor) which are then removed. Sometimes, 
triangulation edges are added to aid this process. It is the selective edge removal that causes many 
edges to be placed toward the periphery of the embedding circle. Subsequent to the edge removal, a 
DFS is performed on the reduced graph. The longest path of the resulting DFS tree is placed on the 
embedding circle and the remaining nodes are nicely merged into this ordering. The worst-case time 
requirement of this technique is O(m) (recall that m is the number of edges). An important property 
of this technique is the guarantee that if a zero-crossing drawing exists for a given biconnected graph 
then this technique will produce it. An alternative approach where selected edges are drawn outside the 
embedding circle is described in [53].

The earlier presented algorithm can be extended in order to produce circular drawings of nonbicon-
nected graphs on a single embedding circle. Given a nonbiconnected graph, it can be decomposed into 
its biconnected components. The algorithm layouts the resulting block-cutpoint tree on a circle and then 
it layouts each biconnected component.

A framework for producing circular drawings of nonbiconnected graphs on multiple circles is pre-
sented in [107]. It decomposes a nonbiconnected graph into biconnected components in O(m) time. 
Next, it produces a layout of the block-cutpoint tree using a radial layout technique [28,36] (see also 
Section 14.3.1.5). Finally, each biconnected component of the graph is drawn on a single embedding 
circle with the circular layout style.

A circular graph drawing technique is presented in [106] where the node grouping is user-defined. It 
draws each group of nodes efficiently and effectively, and visualizes the superstructure well. This tech-
nique produces drawings in which the user-defined groupings are highly visible, each group is laid out 
with a low number of edge crossings, and the number of crossings between intragroup and intergroup 
edges is low. First, it produces a layout of the superstructure graph of the input graph by using a basic 
force-directed technique (see Section 14.3.1.2 for details). Each group of nodes of the input graph is a 
node in the superstructure and for each edge of the input graph, which is incident to nodes in two differ-
ent node groups, there is an edge between nodes representing the respective groups in the superstruc-
ture graph. Next, each group of nodes is drawn on a single embedding circle with the circular layout 
style. Finally, in order to reduce the number of intragroup and intergroup edge crossings, a specialized 
force-directed algorithm is applied, in which the nodes are restricted to appear on circular tracks.

Several linear time algorithms for the visualization of survivable telecommunication networks were 
introduced in [120]. Given the ring covers of a network, these algorithms create circular drawings such 
that the survivability of the network is very visible.

An interesting application of circular graph drawings was presented in [76]. The tool InFlow is used to 
visualize human networks and produces diagrams and statistical summaries to pinpoint the strengths 
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and weaknesses within an organization. The usually unvisualized characteristics of self-organization, 
emergent structures, knowledge exchange, and network dynamics can be seen in the drawings of 
InFlow. Resource bottlenecks, unexpected work flows, and gaps within the organization are clearly vis-
ible in circular drawings.

A circular drawing technique and tool for network management was presented in [70]. In [32], an 
advanced version of this technique was introduced. It partitions nodes into groups based on a pre-
defined method, such as biconnectivity of the graph or it is user-defined. Each group of nodes is placed 
on radiating circles based on their logical interconnection.

Much work (e.g., [4,53,72,114]) has been done on circular layouts where all nodes are placed on a 
single embedding circle.

14.3.1.4  Orthogonal Layout

An orthogonal drawing is a polyline drawing that maps each edge into a chain of horizontal and vertical 
segments. Orthogonal drawings are widely used for visualizing diagrams, such as Entity-Relationship 
and Data-Flow diagrams in database conceptual design, circuit schematics in VLSI design, and UML 
diagrams in software engineering. Figure 14.6 shows an example of an orthogonal drawing.

A popular and effective technique for computing an orthogonal drawing of a graph is the so-called 
topology-shape-metrics approach [28]. This technique is well suited for medium-sized sparse graphs. 
It produces compact drawings with no overlaps, few crossings, and few bends. The topology-shape-
metrics approach consists of three phases:

Planarization: Determines the topology of the drawing which is described by a planar embedding. If the 
input graph is not planar, a set of dummy nodes is added to replace edge crossings. This transforms the 
input not planar graph to an augmented planar graph.

Orthogonalization: An orthogonal representation H of the graph is computed within the planar embed-
ding found in the planarization step.

Compaction: The final drawing that preserves the orthogonal representation of the second phase is com-
puted by assigning integer coordinates to nodes and bends. Finally, the inserted dummy nodes are removed.

The distinct phases of the topology-shape-metrics approach have been extensively studied in the lit-
erature. The first phase is explained in detail in the planarization graph drawing technique, which is 
presented in the following section.

In the second phase, an orthogonal representation is computed from the planar representation of 
the previous phase. The goal is to keep the number of bends as small as possible. In [115], a very elegant 

FIGURE 14.6  An orthogonal drawing.
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network-flow method for constructing an orthogonal representation of an embedded planar graph with 
nodes having at most four incident edges is presented. It guarantees the minimum number of bends and 
runs in O(n2 log n) time. In [118], a heuristic guarantees a constant number of bends on each edge and runs 
in linear time.

During the compaction phase, most approaches try to minimize the area and the total edge length of 
the drawing. However, compacting an orthogonal representation in such a way that it has either mini-
mum area or minimum total edge length is an NP-hard problem [97]. The compaction problem has been 
studied extensively especially in the context of circuit design [78]. Compaction heuristics in the context 
of graph drawing can be found in [13,73,115].

A pairing technique for producing orthogonal drawings with maximum degree 4 is presented in [93]. 
It is the first orthogonal drawing algorithm that produces drawings with less than n2 area. The draw-
ing is constructed incrementally. The nodes of the graph are grouped into pairs. Then, node pairs are 
inserted into the drawing according to an st-numbering of the graph. Nodes of the same pair are placed 
on the same row or column. This technique runs in linear time, requires provably 0.76n2 area, and pro-
duces drawings with a linear number of bends and at most two bends per edge. A similar approach has 
been taken in [6].

In [108], a postprocessing technique is introduced that refines and significantly improves aesthetic 
qualities of a given orthogonal graph drawing such as area, bends, crossings, and total edge length.

For more work on orthogonal drawings see [8,27,29,48,92,118].

14.3.1.5 T ree Layout

Trees are a special case of planar graphs that are commonly used in many applications. Tree layouts 
have applications in algorithm animation, circuit design, visualization of class hierarchies, flowcharts, 
project management diagrams, and syntax trees.

The most popular method for drawing a rooted tree is presented in [100]. It draws binary trees in the 
hierarchical layout style, nodes are placed on horizontal layers, and it is based on the divide and con-
quer principle. The idea is to recursively draw the left and right subtrees independently in a bottom-up 
manner, then shift the two drawings in the x-direction as close to each other as possible, and center the 
parent of the two subtrees between their roots. This method runs in linear time, requires O(n2) area, and 
produces drawings with a high degree of symmetry (identical subtrees are drawn identically). In addi-
tion, the width of the drawing is relatively small. This algorithm can be easily extended to general rooted 
trees. Figure 14.7a shows an example of a tree drawing produced by this technique.

Hierarchical layout algorithms can be used to draw trees, since trees are acyclic graphs with edges 
pointing away from the root. However, the resulting drawings are wide and the parent nodes are not 
necessarily centered with respect to their subtrees [28].

Another way of drawing trees is the so-called radial layout [28,36]. In the radial layout, the root of 
the tree is placed at the center and all descendant nodes are placed on concentric circles according to 
their depth in the tree. To avoid crossings between subtrees, a sector called annulus wedge is assigned to 
every subtree. In principle, these sectors are proportional in size to the number of nodes in the subtree. 

(a) (c)(b)

FIGURE 14.7  Three representations of a tree: (a) layered (hierarchical) drawing, (b) radial drawing, and (c) HV 
drawing.
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Algorithms for constructing hierarchical drawings can be adapted to draw trees radially. Figure 14.7b 
shows an example of the radial layout.

Figure 14.7c represents the drawing of a tree in the HV-drawing style. The HV method (HV stands for 
horizontal–vertical) can be used on both binary and general trees. A divide and conquer strategy is used 
to recursively construct an HV drawing of a tree. The root of the tree is placed on the top-left corner, and 
the drawings of its left and right subtrees are placed one next to the other (horizontal drawing) or one 
below the other (vertical drawing). Each subtree is assigned its own area so that no overlapping occurs.

14.3.2  Graph Drawing Techniques

The following techniques are frequently used to implement graph drawing algorithms [28]:

Planarization: The planarization approach is motivated by the availability of many efficient graph draw-
ing algorithms for planar graphs. If the graph is nonplanar, it is transformed into a planar graph by 
introducing dummy nodes at edge crossings. Then, graph drawing algorithms for planar graphs can be 
used to draw the transformed nonplanar graph.

In [61], a linear time algorithm tests if a graph is planar. A planar embedding of a planar graph can 
be found in linear time [16,85]. Finding the minimum number of crossings [55] or a maximum planar 
subgraph [80] are NP-hard problems. Hence, heuristics are used to solve the planarization problem. 
A natural approach to this problem is to first determine a large planar subgraph and then insert the 
remaining edges, while trying to keep a minimal number of crossings. An annotated bibliography on 
planarization techniques is presented in [79].

The orthogonal drawing algorithm (topology-shape-metrics approach), presented in the previous 
section, is based on the planarization technique.

Divide and conquer: Graphs are broken down into smaller components for which smaller layouts are 
computed recursively. The smaller layouts are assembled to form the overall layout [28]. This technique 
is often used when drawing trees.

Flow methods: Bend minimization in orthogonal drawings can efficiently be solved by reduction to a 
network flow problem, at least if the topology of the embedding is fixed [115]. The same techniques can 
be used to maximize angles between edges [28].

Visibility approach: The visibility approach is a general purpose technique for producing polyline draw-
ings of graphs and it is based on the visibility representation of planar graphs. Linear time algorithms 
for producing visibility representations of planar graphs were presented in [103,117].

In a visibility representation of a planar graph, nodes are represented as horizontal segments and 
edges as vertical segments such that each edge segment has its endpoints on the segments associated 
with its incident nodes and does not cross any other node segment. A visibility representation can be 
considered to be a skeleton or a sketch of the final drawing. In [25], a technique is presented, which con-
structs visibility representations so that some prespecified edges are vertically aligned. These visibility 
representations, called constrained visibility representations, can be used as starting points for obtain-
ing drawings of graphs with interesting properties. An example of a visibility representation of a planar 
graph is given in Figure 14.8.

The visibility approach consists of three phases [24,25,28]:

Planarization: This is the same as in the topology-shape-metrics approach presented earlier.
Visibility: The visibility representation of the planar graph, produced in the planarization phase, is 
computed.
Replacement: Constructs the final polyline drawing by replacing each horizontal line by its node and the 
vertical lines by polylines connecting the nodes.

In the replacement phase, there are several strategies in order to construct planar polyline draw-
ings from a visibility representation [28]. In [118], a linear time algorithm is presented for constructing 
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orthogonal drawings which is based on the visibility approach. In the replacement phase of this algo-
rithm, the visibility representation of the graph is transformed into an orthogonal grid embedding. 
A number of local transformations are applied to the orthogonal representation of the grid embedding 
in order to reduce the number of bends. Finally, an orthogonal grid embedding with at most 2.4n + 2 
bends is computed from the orthogonal representation. Figure 14.8 shows the steps of this algorithm.

14.3.2.1  Interactive (Dynamic) Drawings

Many applications require the layout of dynamic graphs, representing changing relational informa-
tion over time. Examples of applications include software engineering visualizations, changing Internet 
usage, and changes in social network structures. Dynamic graph drawing involves laying out graphs 
which evolve over time by continuously adding or deleting nodes and edges. The challenge in dynamic 
graph drawing is to preserve the mental map of the drawing each time we perform an addition or dele-
tion. The notion of the mental map of a drawing has been introduced in [86]. By preserving the user’s 
mental map of a drawing, we generally mean that a user that has studied a drawing will not have to rein-
vest significant effort to visualize or understand the resulting drawing after some changes.

Traditional (static) layout techniques may not be suited for drawing dynamic graphs. When static 
layout algorithms are employed, insertion or deletion of even one node or edge can significantly change 
the layout and thus alter the user’s mental map of the drawing.

Many algorithms address the problem of offline dynamic graph drawing, where the entire sequence 
of graphs to be drawn is known in advance. This gives the layout algorithm information about future 
changes in the graph, which allows it to optimize the layouts generated across the entire sequence. For 
example, the algorithm can reserve place in order to accommodate a node that appears later in the 
sequence. In [30], a meta-graph built, using information from the entire graph sequence, is used in order 
to maintain the mental map. In [77], an abstracted version of the graph is used. The nodes are topologi-
cally sorted into a tree structure in order to expose interesting features. An offline force-directed algo-
rithm is used in [44] in order to create two-dimensional (2D) and three-dimensional (3D) animations 
of evolving graphs.

The more interesting problem of online dynamic graph drawing where the graph sequence is not 
known in advance has been studied in depth. Sophisticated incremental algorithms for orthogonal 
graph drawings are presented in [7,12,94,96]. An efficient incremental algorithm for online hierar-
chical graph drawings is presented in [90]. An algorithm for visualizing dynamic social networks is 
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FIGURE 14.8  (a) A planar graph, (b) its visibility representation, (c) a preliminary orthogonal drawing derived 
from a visibility representation, and (d) the final orthogonal drawing after modifications.
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discussed in [87]. An approach based on Bayesian networks is described in [10]. An algorithm for pro-
ducing online layouts of general graphs is presented in [51]. The work in [19] presents data structures 
for dynamic graph drawings.

14.3.2.2  3D Drawings

3D graph drawings have been extensively studied since they have applications in information visualiza-
tion, VLSI circuit design, and software engineering. One of the earliest approaches in 3D graph drawing 
is the cone tree algorithm [102], where each subtree is associated with a cone, such that the vertex at 
the root of the subtree is placed at the apex of the cone, and its children are circularly arranged around 
the base of the cone. This technique displays trees in 3D mostly for artistic purposes. Empirical studies 
suggest that displaying a graph in three dimensions is better than in two [101,124]. The extra dimension 
gives greater flexibility for placing the nodes and edges of a graph and crossings can be always avoided. 
However, producing efficient 3D graph drawings is quite a challenging problem due to the occlusion 
and navigation problems involved. The interest of the 3D graph drawing community has been mainly 
devoted to straight-line drawings and to orthogonal drawings.

Straight-line drawings map nodes to points and edges to straight-line segments. In [20], it is shown 
that every graph admits a straight-line, crossing-free 3D drawing on an integer grid of O(n3) volume, 
and proved that this is asymptotically optimal. It distributes the nodes of the graph along a “momen-
tum curve,” so that there are not crossings among the edges. In [45], it is shown that all outerplanar 
graphs can be drawn in a restricted integer 3D grid of O(n) volume consisting of three parallel lines 
at distance 1 from each other. In [34], it is shown that all planar graphs can be drawn with an upper 
bound of O n( )

3
2  volume. A technique for drawing 3D hierarchical graph drawings that combines 2D 

drawings with a lifting transformation is presented in [57]. First, a 2D non-upward representation 
of a directed acyclic graph is created and then the nodes are lifted along a third dimension. The 
lifting height of the nodes reflects the hierarchy. Force-directed techniques have been extended to 
create 3D graph drawing (e.g., [14,22,91]). 3D visibility representations of graphs have been studied 
in [3,58,109].

Orthogonal drawings map nodes to points and edges to polygonal chains composed of segments 
that are parallel to the axes. In [5], a linear time algorithm is presented that draws a graph in O(n2) 
volume with at most 14 bends per edge. The drawing is obtained by placing all the nodes on a certain 
horizontal plane and by assigning a further horizontal plane to every edge. In [41], a O n( )

3
2  run-

ning time algorithm is proposed that is based on augmenting the graph to an Eulerian graph. The 
algorithm produces drawings that have O n( )

3
2  volume and at most 16 bends per edge. The algorithm 

in [42] requires O n( )
3
2  time and volume and introduces at most seven bends per edge. In the same 

paper, a second algorithm is presented whose complexity is linear, while its volume is 27n3, and at 
most three bends per edge are introduced. In [95], a linear time algorithm is presented that draws 
a graph of maximum degree 6 in O(n3) volume with at most three bends per edge. It is incremental 
and can be extended to draw graphs with nodes of arbitrary degree. The construction starts from a 
first pair of adjacent nodes, and then it adds one node at a time with its incident edges. In [125], an 
algorithm for maximum degree 5 graphs that requires O(n3) volume and at most two bends per edge 
is presented.

In [11,60,123], a different approach has been taken to construct 3D drawings. More specifically, this 
framework divides a graph into a set of subgraphs, and then draws the subgraphs in different parallel 
planes, using well-known 2D drawing algorithms, but with interdependent layouts.

14.3.2.3  Labeling

An important aspect of graph drawing is the automatic placement of text or symbol labels correspond-
ing to nodes and edges of a drawing. Labels are textual descriptions which convey information or clarify 
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the meaning of the elements of a drawing. The problem of positioning labels corresponding to graphical 
objects of drawings is called automatic label placement or simply graph labeling. The need for display-
ing node or edge labels is essential in many applications, for example in online Geographic Information 
Systems, Internet-based map search, UML diagrams, and engineering diagrams.

Labeling of edges, nodes, and graphs themselves aims to communicate the attributes of these graph 
objects in the most convenient way. This requires that labels be positioned in the most appropriate places 
and follows some basic rules [66]. It is worth noting that the problems of labeling nodes [83] and edges 
[65] are NP-hard. Because automatic labeling is a very difficult problem, we rely on heuristics to provide 
practical solutions for real world problems.

Most of the research on labeling addresses the problem of assigning labels to a set of points or nodes 
[17,46,59,126]. The problem of assigning labels to a set of lines or edges has been studied in [33,64,121]. 
For the general labeling problem (i.e., the labeling of nodes, edges, and graphs), most labeling algorithms 
are based on local and exhaustive search algorithms [1,31,43,49].

In [66], the general labeling problem is transformed into a matching problem. The general framework 
of this techniques is flexible and can be adjusted for particular labeling requirements. In Figure 14.9, 
the labeling assignment is produced by this technique. The basic steps for this labeling technique are 
the following:

	 1.	 A set of discrete potential label solutions for each object is carefully selected.
	 2.	 This set of labels is reduced by removing heavily overlapping labels. The remaining labels are 

assigned to groups, such that if two labels overlap, then they belong to the same group.
	 3.	 Finally, labels are assigned by solving a variant of the matching problem, where at most one label 

position from each group is part of the solution.

In many practical applications, each graphical feature may have more than one label. The need for 
assigning multiple labels is necessary not only when objects are large or long, but also when it is neces-
sary to display different attributes of an object. This problem has been addressed in [49,67].

Since we rely on heuristics to solve the labeling problem, there are cases where the best methods avail-
able do not always produce an overlap free label assignment. In order to resolve label overlaps, one may 
modify minimally the drawing. An algorithm that modifies an orthogonal drawing of a graph, while 
preserving the orthogonal representation of the drawing, in order to resolve label overlaps is presented 
in [68]. It remains an open problem, for the other layout styles, how one can modify a drawing to resolve 
label overlaps.

Chess game
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Draw

Black’s turn
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FIGURE 14.9  A UML state diagram that makes use of labels for states and transitions as well as the title of the 
diagram [33].
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14.4  Impact on Practice

The industrial need for graph drawing algorithms arose in the late 1960s when a large number of ele-
ments in complex circuit designs made hand-drawing too complicated [89]. Many algorithms were 
developed to aid circuit design [78]. Graph drawing is an active area in computer science. Graphs and 
their visualizations are essential in data exploration and understanding, particularly for those applica-
tions that need to manage, process, and analyze huge quantities of data. Graph drawing has applications 
in almost all branches of science and technology, we mention just a few:
Web: Site maps, browsing history diagrams, presentation and refinement of query results, product cata-
logs, visitor movement graphs, and Internet traffic diagrams.
Software engineering: UML diagrams, subroutine call graphs, data-flow diagrams, and object-oriented 
class hierarchies.
Database systems: Entity-relationship diagrams, database queries, ontology of semantic graphs, depen-
dency graphs, and database schema diagrams.
Real-time systems: Petri nets and state-transition diagrams.
Networking: Telecommunication and computer network management, network visualization, network 
analysis, and LAN diagrams.
Engineering: Circuit schematics, CAD, and finite state diagrams.
Social Sciences: Social networks, citation networks, co-authorship networks, and collaboration networks.
Business: Business process diagrams, organization charts, event-driven process chains, and scheduling 
charts.
Biomedical technology: Gene regulatory networks, metabolic networks, protein–protein interaction net-
works, evolutionary trees, phylogenetic trees, molecular maps, genetic maps, biochemical pathways, and 
neuronal networks.
Security: Criminal networks, fraud networks, felony event flow diagrams, case information diagrams, 
attack trees, network monitoring, Internet traffic control, traffic visualization, and traffic analysis.

14.5 R esearch Issues and Summary

Current research in graph drawing addresses both theoretical and applied issues. On the theoretical 
side, researchers have investigated issues ranging from combinatorial properties of graphs to algorithms 
that produce drawings with provably good upper bounds on the area, number of bends, etc., to lower 
bounds. On the systems side, there are several graph drawing tools and commercial software products 
(e.g., GraphViz from AT&T, GDToolkit, AGD, Graphlet, Tom Sawyer Software, yWorks, and ILOG). For 
a compilation of results in graph drawing in excellent tabular exposition, see [116].

Peter Eades [37] points out that the scale problem currently drives much of Computer Science. Data 
sets are growing at a faster rate than the human ability to understand them. A challenge for the graph 
drawing community is to explore more efficient ways to draw large graphs. Three approaches have been 
proposed to solve the scale problem. (i) Dynamic drawings: View only part of the drawing, (ii) Cluster 
drawings: View an abstraction of the drawing, and (iii) 3D drawings: Spread the drawing over a third 
dimension. The first two approaches have the drawback that present part of the data in order to reduce 
visual complexity. Graph drawing algorithms for 3D layouts have mostly failed to untangle the com-
plexity of large graphs [37]. Promising approaches for 3D drawings, which need further investigation, 
have been presented in [11,60,123]. In [74], a new approach in drawing 3D orthogonal drawings is pre-
sented. It combines dominance and row/column reuse and simplifies the visual confirmation of the 
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existence of an edge and/or path between any two nodes. This is a promising technique for producing 
simple drawings of large graphs that needs further investigation.

Many open graph drawing problems originating in applied bioinformatics and network biology are 
presented in [2]. Traditional graph drawing techniques do not adhere to the special drawing conven-
tions of the life science community. Thus, there is a need for specialized layout and visualization algo-
rithms to present, explore, evaluate, and compare biological network data.

Key Terms

Acyclic digraph: A digraph without directed cycles.
Biconnected component: A maximal biconnected subgraph.
Biconnected graph: A graph with the property that for every three distinct nodes u, v, and w there is a 

path from u to w not containing v.
Binary tree: A rooted tree where each node has at most two children.
Connected component: A maximal connected subgraph.
Connected graph: An undirected graph that has a path between every pair of nodes.
Digraph: A graph where the edges have a direction associated with them (also called directed graph).
Embedded graph: A planar graph with a prespecified topological embedding (i.e., set of faces), which 

must be preserved in the drawing.
Face: A planar drawing of a graph divides the plane into regions called faces. The unbounded region is 

called the external face.
Orthogonal representation: A representation of an orthogonal drawing in terms of bends along each 

edge and angles around each node.
Outerplanar graph: A planar graph which admits an embedding such that all the nodes are on the same 

face.
Rooted tree: A directed tree with a distinguished node, the root, such that each node lies on a directed 

path to the root.
Sink node: A node of a digraph without outgoing edges (also called target node).
Source node: A node of a digraph without incoming edges.
St-digraph: An acyclic digraph with exactly one source and one sink, which are joined by an edge (also 

called bipolar digraph).
Tree: A connected graph without cycles.

Further Information

Three books have been published in the area of graph drawing [28,71,111], one book on Graph Drawing 
Software [63], and one book on Planar Graph Drawing [89]. A comprehensive bibliography on graph 
drawing algorithms [26] cites more than 300 papers written before 1994. An International Symposium 
on Graph Drawing is being held annually and the proceedings are published by Springer-Verlag. The 
Journal of Graph Algorithms and Applications (JGAA) is an online journal which publishes graph 
drawing-related work. In addition, journals in the area of Computational Geometry (Computational 
Geometry: Theory and Applications, Algorithmica, etc.) are of particular interest, since graph drawing 
has strong relationships with computational geometry. Online graph drawing resources can be found 
in: (i) http://graphdrawing.org (a collection of resources mostly related to the annual International 
Symposium on Graph Drawing), (ii) http://gdea.informatik.uni-koeln.de (an electronic repository and 
archive for research materials on the topic of graph drawing), and (iii) http://www.ics.uci.edu/eppstein/
gina/gdraw.html (the section of the Geometry in Action pages devoted to graph drawing and main-
tained by David Eppstein).
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15.1  Processing Texts Efficiently

This present chapter describes a few standard algorithms used for processing texts. They apply, for exam-
ple, to the manipulation of texts (text editors), to the storage of textual data (text compression), and to 
data retrieval systems. The algorithms of this chapter are interesting in different respects. First, they are 
basic components used in the implementation of practical software. Second, they introduce program-
ming methods that serve as paradigms in other fields of computer science (system or software design). 
Third, they play an important role by providing challenging problems in theoretical computer science.

Although data are stored in various ways, text remains the main form of exchanging information. This is 
particularly evident in literature or linguistics where data are composed of huge corpora and dictionaries. 
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This applies as well to computer science where a large amount of data are stored in linear files. And this is also 
the case in molecular biology where biological molecules can often be approximated as sequences of nucleo-
tides or amino acids. Moreover, the quantity of available data in these fields tends to double every 18 months. 
This is the reason why algorithms should be efficient even if the speed of computers increases at a steady pace.

Pattern matching is the problem of locating a specific pattern inside raw data. The pattern is usually 
a collection of strings described in some formal language. Two kinds of textual patterns are presented: 
single strings and approximated strings. Two algorithms for matching patterns in images that are exten-
sions of string-matching algorithms are also presented.

In several applications, texts need to be structured before being searched. Even if no further informa-
tion is known about their syntactic structure, it is possible and indeed extremely efficient to build a data 
structure that supports searches. From among several existing data structures equivalent to represent 
indexes, suffix trees and suffix arrays are presented, along with their construction algorithms.

The comparison of strings is implicit in the approximate pattern searching problem. Since it is some-
times required to compare just two strings (files or molecular sequences), a basic method based on 
longest common subsequences is discussed.

Finally, the chapter includes two classical text compression algorithms. Variants of these algorithms 
are implemented in practical compression software, in which they are often combined together or with 
other elementary methods. An example of mixing different methods is presented.

The efficiency of algorithms is assessed by their asymptotic running times, and sometimes by the 
amount of memory space they require at run time as well.

15.2  String-Matching Algorithms

String matching is the problem of finding one or, more generally, all the occurrences of a pattern in a 
text. The pattern and the text are both strings built over a finite alphabet (a finite set of symbols). Each 
algorithm of this section outputs all occurrences of the pattern in the text. The pattern is denoted by 
x = x[0 … m − 1]; its length is equal to m. The text is denoted by y = y[0 … n − 1]; its length is equal to n. 
The alphabet is denoted by Σ and its size is equal to σ.

String-matching algorithms of the present section work as follows: they first align the left ends of the 
pattern and the text, then compare the aligned symbols of the text and the pattern—this specific task is 
called an attempt or a scan—and after a whole match of the pattern or after a mismatch they shift the 
pattern to the right. They repeat the same procedure again until the right end of the pattern goes beyond 
the right end of the text. This is called the scan and shift mechanism. Each attempt is associated with the 
position j in the text, when the pattern is aligned with y[j … j + m − 1].

The brute force algorithm consists in checking, at all positions in the text between 0 and n − m, 
whether an occurrence of the pattern starts there or not. Then, after each attempt, it shifts the pattern 
exactly one position to the right. This is the simplest algorithm, which is described in Figure 15.1.

The time complexity of the brute force algorithm is O(mn) in the worst case, but its behavior in prac-
tice is often linear on specific data.

BF(x, m, y, n)
1    ⊳ Searching
2    for j ← 0 to n − m
3           do i ← 0
4                 while i < m and x[i] = y[i + j]
5                            do i ← i + 1
6                 if i ≥ m
7                     then Output(j)

FIGURE 15.1  Brute force string-matching algorithm. Symbol ⊳ introduces comments.
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15.2.1  Karp–Rabin Algorithm

Hashing provides a simple method for avoiding a quadratic number of symbol comparisons in most 
practical situations. Instead of checking at each position of the text whether the pattern occurs, it seems 
to be more efficient to check only if the portion of the text aligned with the pattern “looks like” the pat-
tern. In order to check the resemblance between these portions a hashing function is used. To be helpful 
for the string-matching problem, the hashing function should have the following properties:

•	 Efficiently computable
•	 Highly discriminating for strings
•	 hash(y[j + 1 … j + m]) must be easily computable from hash(y[j … j + m − 1])
	 hash(y[j + 1 … j + m]) = ReHash(y[j], y[j + m], hash(y[j … j + m − 1]))

For a word w of length k, its symbols can be considered as digits, and function hash(w) is defined by

	 hash w k w w w k qk k( [ ]) ( [ ] [ ] [ ])0 1 0 2 1 2 11 2… − = × + × + + −− − � mod

where q is a large number. Then, ReHash has a simple expression

	 R H modE ASH( , , ) (( ) )a b h h a d b q= − × × +2

where d = 2k−1 and q are the computer word-size (see Figure 15.2).
During the search for the pattern x, hash(x) is compared with hash(y[j − m + 1 … j]) for m − 1 ≤ 

j ≤ n − 1. If an equality is found, it is still necessary to check the equality x = y[j − m + 1 … j] symbol 
by symbol.

In the algorithms of Figures 15.2 and 15.3 all multiplications by 2 are implemented by shifts (operator <<). 
Furthermore, the computation of the modulus function is avoided by using the implicit modular arith-
metic given by the hardware that forgets carries in integer operations. Thus, q is chosen as the maximum 
value of an integer of the system.

The worst-case time complexity of the Karp–Rabin algorithm is quadratic (as it is for the brute force 
algorithm), but its expected running time is O(m + n).

Example 15.1

Let x = ing. Then hash(x) = 105 × 22 + 110 × 2 + 103 = 743 (symbols are assimilated with their 
ASCII codes).

y = s t r i n g m a t c h i n g
hash = 806 797 776 743 678 585 443 746 719 766 709 736 743

15.2.2  Knuth–Morris–Pratt Algorithm

This section presents the first discovered linear-time string-matching algorithm. Its design follows a 
tight analysis of the brute force algorithm, and especially of the way this latter algorithm wastes the 
information gathered during the scan of the text.

ReHash(a, b, h)
1    return ((h − a × d) << 1) + b

FIGURE 15.2  Function ReHash.
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Let us look more closely at the brute force algorithm. It is possible to improve the length of shifts 
and simultaneously remember some portions of the text that match the pattern. This saves com-
parisons between characters of the text and of the pattern, and consequently increases the speed of 
the search.

Consider an attempt at position j, that is, when the pattern x[0 … m − 1] is aligned with the seg-
ment y[j … j + m − 1] of the text. Assume that the first mismatch (during a left to right scan) occurs 
between symbols x[i] and y[i + j] for 0 ≤ i < m. Then, x[0 … i − 1] = y[j … i + j − 1] = u and a = x[i] ≠ 
y[i + j] = b. When shifting, it is reasonable to expect that a prefix v of the pattern matches some suf-
fix of the portion u of the text. Moreover, if one wants to avoid another immediate mismatch, the 
letter following the prefix v in the pattern must be different from a. (Indeed, it should be expected 
that v matches a suffix of ub, but elaborating along this idea goes beyond the scope of the chapter.) 
The longest such prefix v is called the border of u (it occurs at both ends of u). This introduces 
the notation: let next[i] be the length of the longest (proper) border of x[0 … i − 1] followed by a 
character c different from x[i]. Then, after a shift, the comparisons can resume between characters 
x[next[i]] and y[i + j] without missing any occurrence of x in y and having to backtrack on the text 
(see Figure 15.4).

KR(x, m, y, n)
1    ⊳ Preprocessing
2    d ← 1
3    for i ← 1 to m − 1
4             do d ← d << 1
5    hx ← 0
6    hy ← 0
7    for i ← 0 to m − 1

8             do hx ← (hx << 1) + x[i]

9                   hy ← (hy << 1) + y[i]

10    ⊳ Searching

11    if hx = hy and x = y[0 … m − 1]

12        then Output(0)

13    j ← m

14    while j < n

15             do hy ← ReHash(y[j − m], y[j], hy)

16                   if hx = hy and x = y[j − m + 1 … j]

17                      then Output(j − m + 1)

18                   j ← j + 1

FIGURE 15.3  Karp–Rabin string-matching algorithm.
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FIGURE 15.4  Shift in the Knuth–Morris–Pratt algorithm (v suffix of u).
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Example 15.2

Here

y = . . . a b a b a a b . . . . .
x = a b a b a b a
x = a b a b a b a

Compared symbols are underlined. Note that the empty string is the suitable border of ababa. 
Other borders of ababa are aba and a.

The Knuth–Morris–Pratt (KMP) algorithm is displayed in Figure 15.5. The table next it uses is pre-
computed in O(m) time before the search phase, applying the same searching algorithm to the pattern 
itself, as if y = x (see Figure 15.6). The worst-case running time of the algorithm is O(m + n) and it 
requires O(m) extra space. These quantities are independent of the size of the underlying alphabet.

PreKMP(x, m)
1    i ← −1
2    j ← 0
3    next[0] ← −1
4    while j < m
5           do while i > −1 and x[i] ≠ x[j]
6                        do i ← next[i]
7                 i ← i + 1
8                 j ← j + 1
9                 if x[i] = x[j]

10                     then next[j] ← next[i]
11                     else  next[j] ← i
12    return next

FIGURE 15.6  Preprocessing phase of the Knuth–Morris–Pratt algorithm: computing next.

KMP(x, m, y, n)
1       ⊳ Preprocessing
2       next ← PreKMP(x, m)
3       ⊳ Searching
4       i ← 0
5       j ← 0
6       while j < n
7               do while i > − 1 and x[i] ≠ y[j]
8                           do i ← next[i]
9                      i ← i + 1

10                      j ← j + 1
11                      if i ≥ m
12                          then output(j − i)
13                                    i ← next[i]

FIGURE 15.5  Knuth–Morris–Pratt string-matching algorithm.
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15.2.3  Boyer–Moore Algorithm

The Boyer–Moore (BM) algorithm is considered the most efficient string-matching algorithm in usual 
applications. A simplified version of it, or the entire algorithm, is often implemented in text editors for 
the search and substitute commands.

The algorithm scans the characters of the pattern from right to left beginning with the rightmost 
symbol. In case of a mismatch (or a complete match of the whole pattern), it uses two precomputed func-
tions to shift the pattern to the right. These two shift functions are called the bad-character shift and the 
good-suffix shift. They are based on the following observations.

Assume that a mismatch occurs between the character x[i] = a of the pattern and the character y[i 
+ j] = b of the text during an attempt at position j. Then, x[i + 1 … m − 1] = y[i + j + 1 … j + m − 1] = u 
and x[i] ≠ y[i + j]. The good-suffix shift consists in aligning the segment y[i + j + 1 … j + m − 1] with its 
rightmost occurrence in x that is preceded by a character different from x[i] (see Figure 15.7). If there 
exists no such segment, the shift consists in aligning the longest suffix v of y[i + j + 1 … j + m − 1] with 
a matching prefix of x (see Figure 15.8).

Example 15.3

y = . . . a b b a a b b a b b a . . .
x = a b b a a b b a b b a
x = a b b a a b b a b b a

The shift is driven by the suffix abba of x found in the text. After the shift, the segment abba in 
the middle of y matches a segment of x as in Figure 15.7. The same mismatch does not recur.

Example 15.4

y = . . . a b b a a b b a b b a b b a . .
x = b b a b b a b b a
x = b b a b b a b b a

The segment abba found in y partially matches a prefix of x after the shift, as in Figure 15.8.
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FIGURE 15.7  The good-suffix shift, when u reappears preceded by a character different from a.
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FIGURE 15.8  The good-suffix shift, when the situation of Figure 15.7 does not happen. Only a suffix of u reap-
pears as a prefix of x.
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The bad-character shift consists in aligning the text character y[i + j] with its rightmost occurrence 
in x[0 … m − 2] (see Figure 15.9). If y[i + j] does not appear in the pattern x, no occurrence of x in y can 
overlap the symbol y[i + j], then the left end of the pattern is aligned with the character at position i + j + 1 
(see Figure 15.10).

Example 15.5

y = . . . . . . a b c d . . . .
x = c d a h g f e b c d
x = c d a h g f e b c d

The shift aligns the symbol a in x with the mismatch symbol a in the text y (Figure 15.9).

Example 15.6

y = . . . . . a b c d . . . . . .
x = c d h g f e b c d
x = c d h g f e b c d

The shift positions the left end of x right after the symbol a of y (Figure 15.10).

The BM algorithm is shown in Figure 15.11. For shifting the pattern, it applies the maximum between 
the bad-character shift and the good-suffix shift. More formally, the two shift functions are defined as 
follows. The bad-character shift is stored in a table bc of size σ and the good-suffix shift is stored in a 
table gs of size m + 1. For a ∈ Σ

	
[ ]

min{ |1 and [ 1 ] } if appears in ,

otherwise.
bc a i i m x m i a a x

m
=

≤ < − − =




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FIGURE 15.9  The bad-character shift, b appears in x.
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FIGURE 15.10  The bad-character shift, b does not appear in x (except possibly at m − 1).
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Let us define two conditions,

	

cond i s k i k m s k x k s x k

cond i

1

2

( , ) , [ ] [ ],

( ,

: for each such that or< < ≥ − =
ss s i x i s x i) : [ ] [ ].if then< − ≠





Then, for 0 ≤ i < m,

	 gs i s cond i s cond i s[ ] min{ | ( , ) ( , ) }+ = >1 0 1 2and hold

and gs[0] is defined as the length of the smallest period of x.
To compute the table gs, a table suff is used. This table can be defined as follows: for i = 0, 1,…, m − 1,

	 suff i x i x[ ] [ ] .= …longest common suffix between and0

It is computed in linear time and space by the function Suffixes (see Figure 15.12).

BM(x, m, y, n)
1 ⊳ Preprocessing
2 gs ← PreGS(x, m)
3 bc ← PreBC(x, m)
4 ⊳ Preprocessing
5 j ← 0
6 while j ≤ n − m
7         do i ← m − 1
8               while i ≥ 0 and x[i] = y[i + j]
9                       do i ← i − 1

10               if i < 0
11                   then Output(j)
12               j ← max{gs[i + 1], bc[y[i + j] − m + i + 1]}

FIGURE 15.11  BM string-matching algorithm.

Suffixes(x, m)
1 suff [m − 1] ← m
2 g ← m − 1
3 for i ← m − 2 downto 0
4           do if i > g and suff [i + m − 1 − f  ] ≠ i − g
5                     then suff [i] ← min{suff [i + m − 1 − f ], i − g}
6                     else if i < g
7                                 then g ← i
8                              f ← i
9                              while g ≥ 0 and x[g] = x[g + m − 1 − f ]

10                                      do g ← g − 1
11                              suff [i] ← f − g
12 return suff

FIGURE 15.12  Computation of the table suff.
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Tables bc and gs can be precomputed in time O(m + σ) before the search phase and require an 
extra space in O(m + σ) (see Figures 15.13 and 15.14). The worst-case running time of the algorithm 
is quadratic. However, on large alphabets (relative to the length of the pattern), the algorithm is 
extremely fast. Slight modifications of the strategy yield linear-time algorithms (see the References 
Section). When searching for am in (am−1b)⌊n/m⌋ the algorithm makes only O(n/m) comparisons, 
which is the absolute minimum for any string-matching algorithm in the model where the pattern 
only is preprocessed.

15.2.4  Quick Search Algorithm

The bad-character shift used in the BM algorithm is not very efficient for small alphabets, but when the 
alphabet is large compared with the length of the pattern, as it is often the case with the ASCII table 
and ordinary searches made under a text editor, it becomes very useful. Using it alone produces a very 
efficient algorithm (in practice) that is described now.

After an attempt where x is aligned with y[j … j + m − 1], the length of the shift is at least equal to 
one. Thus, the character y[j + m] is necessarily involved in the next attempt, and thus can be used for the 
bad-character shift of the current attempt. In the present algorithm, the bad-character shift is slightly 
modified to take into account the observation as follows (a ∈ Σ):

	
bc a

i i m x m i a a x

m
[ ]

min{ | [ ] } ,

.
= +

≤ < − − =
1

0 1and if appears in

otherwise





PreBC(x, m)
1 for a ← firstLetter to lastLetter
2         do bc[a] ← m
3 for i ← 0 to m − 2
4         do bc[x[i]] ← m − 1 − i
5 return bc

FIGURE 15.13  Computation of the bad-character shift.

PreGS(x, m)
1 gs ← Suffixes(x, m)
2 for i ← 0 to m − 1
3          do gs[i] ← m
4 j ← 0
5 for i ← m − 1 downto −1
6          do if i = −1 or suff [i] = i + 1
7                    then while j < m − 1 − i
8                                       do if gs[j] = m
9                                                 then gs[j] ← m − 1 − i

10                                              j ← j + 1
11 for i ← 0 to m − 2
12          do gs[m − 1 − suff [i]] ← m − 1 − i
13 return gs

FIGURE 15.14  Computation of the good-suffix shift.
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Indeed, the comparisons between text and pattern characters during each attempt can be done in 
any order. The algorithm of Figure 15.15 performs the comparisons from left to right. It was called 
Quick Search (QS) by its inventor and has a quadratic worst-case time complexity but good practi-
cal behavior.

Example 15.7

y = s t r i n g - m a t c h i n g
x = i n g
x = i n g

x = i n g

x = i n g

x = i n g

The QS algorithm makes only nine comparisons to find the two occurrences of ing inside the 
text of length 15.

15.2.5  Experimental Results

Figures 15.16 and 15.17 present the running times of three string-matching algorithms: the BM algo-
rithm, the QS algorithm, and the Backward Oracle Matching (BOM) algorithm. The BOM algorithm 
can be viewed as a variation of the BM algorithm where factors (segments) rather than suffixes of the 
pattern are recognized. The BOM algorithm uses a data structure to store all the factors of the reversed 
pattern: a factor oracle but a suffix automaton or a suffix tree (see section 15.4) can also be used.

Tests have been performed on various types of texts. Figure 15.16 shows the results when the text 
is a DNA sequence on the four-letter alphabet of nucleotides A, C, G, T. In Figure 15.17, English 
text is considered.

For each pattern length, a large number of searches with random patterns were run. The average 
time according to the length is shown in the two figures. The running times of both preprocessing 

QS(x, m, y, n)
1 ⊳ Preprocessing
2 for a ← firstLetter to lastLetter
3           do bc[a] ← m + 1
4 for i ← 0 to m − 1
5           do bc[x[i]] ← m − i
6 ⊳ Searching
7 j ← 0
8 while j ≤ n − m
9           do i ← 0

10                 while i ≥ 0 and x[i] = y[i + j]
11                          do i ← i + 1
12                 if i ≥ m
13                     then Output(j)
14                 j ← bc[y[j + m]]

FIGURE 15.15  QS string-matching algorithm.
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and searching phases are added. The three algorithms are implemented in a homogeneous way in 
order to keep the comparison significant.

For the genome, as expected, the QS algorithm is the best for short patterns. But for long patterns, it 
is eventually less efficient than the BM algorithm. In this latter case, the BOM algorithm achieves the 
best results. For rather large alphabets, the three algorithms have similar behaviors; however, the QS is 
always faster.

15.2.6 A ho–Corasick Algorithm

The UNIX operating system provides standard text (or file) facilities. Among them is the series of grep 
commands that locate patterns in files. The algorithm underlying the fgrep command of UNIX is 
described in this section. It searches files for a finite set of strings, and can, for instance, output lines 
containing at least one of the strings.

If one is interested in searching for all occurrences of all patterns taken from a finite set of patterns, a 
first solution consists in repeating some string-matching algorithm for each pattern. If the set contains 
k patterns, this search runs in time O(kn). The solution described in the present section and designed by 
Aho and Corasick runs in time O(n log σ). The algorithm is a direct extension of the KMP algorithm, 
and the running time is independent of the number of patterns.

Let X = {x0, x1,…, xk−1} be the set of patterns, and let |X| = |x0| + |x1| + ⋯ + |xk−1| be the total size of the 
set X. The Aho–Corasick algorithm first builds a trie T(X), a digital tree recognizing the patterns of X. 
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FIGURE 15.16  Running times for a DNA sequence.
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FIGURE 15.17  Running times for an English text.
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The trie T(X) is a tree in which edges are labeled by letters and in which branches spell the patterns of X. 
A node p in the trie T(X) is identified with the unique word w spelled by the path of T(X) from its root to p. 
The root itself is identified with the empty word ε. Notice that if w is a node in T(X), then w is a prefix of 
some xi ∈ X. If w is a node in T(X) and a ∈ Σ, then child(w, a) is equal to wa if wa is a node in T(X); it is 
equal to undefined otherwise.

The function PreAC in Figure 15.18 returns the trie of all patterns. During the second phase, where 
patterns are entered in the trie, the algorithm initializes an output function out. It associates the singleton 
{xi} with the nodes xi (0 ≤ i < k), and associates the empty set with all other nodes of T(X) (see Figure 15.19).

Finally, the last phase of function PreAC (Figure 15.18) consists in building the failure link of each 
node of the trie, and simultaneously completing the output function. This is done by the function 
Complete in Figure 15.20. The failure function fail is defined on nodes as follows (w is a node):

	 fail w u u w T X( ) (= where is the longest proper suffix of that belongs to )).

Computation of failure links is done during a breadth-first traversal of T(X). Completion of the output 
function is done while computing the failure function fail using the following rule:

	 if thenfail w u out w out w out u( ) ( ) ( ) ( ).= = ∪

PreAC(X, k)
1 Create a new node root
2 ⊳ creates a loop on the root of the trie
3 for a ∈ Σ
4        do child(root, a) ← root
5 ⊳ enters each pattern in the trie
6 for i ← 0 to k − 1
7           do Enter(X[i], root)
8 ⊳ completes the trie with failure links
9 Complete(root)

10 return root

FIGURE 15.18  Preprocessing phase of the Aho–Corasick algorithm.

Enter(x, root)
1 r ← root
2 i ← 0
3 ⊳ follows the existing edges
4 while i < |x| and child(r, x[i]) ≠ undefined and child(r, x[i]) ≠ root
5         do r ← child(r, x[i])
6               i ← i + 1
7 ⊳ creates new edges
8 while i < |x|
9         do Create a new node s

10               child(r, x[i]) ← s
11               r ← s
12               i ← i + 1
13 out(r) ← {x}

FIGURE 15.19  Construction of the trie.
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Example 15.8

X = {search, ear, arch, chart}

ε s

{s, e, a, c}

se sea sear searc search
s e a r c h

e ea ear
e a r

a ar arc arch
a

r c h

c ch cha char chart

c
h a r t

c

nodes ε s se sea sear searc search e ea ear
fail ε ε e ea ear arc arch ε a ar

nodes a ar arc arch c ch cha char chart

fail ε ε c ch ε ε a ar ε

nodes sear search ear arch chart
out ear {search, arch} ear arch chart

Complete(root)
1 q ← empty queue
2 ℓ ← list of the edges (root, a, p) for any character a ∈ Σ

               and any node p ≠ root
3 while the list ℓ is not empty
4          do (r, a, p) ← First(ℓ)
5                ℓ ← Next(ℓ)
6                Enqueue(q, p)
7                fail(p) ← root
8 while the queue q is not empty
9          do r ← Dequeue(q)

10                ℓ ← list of the edges (root, a, p) for any character a ∈ Σ
                              and any node p

11                while the list ℓ is not empty
12                        do (r, a, p) ← First(ℓ)
13                               ℓ ← Next(ℓ)
14                               Enqueue(q, p)
15                               s ← fail(r)
16                               while child(s, a) = undefined
17                                       do s ← fail(s)
18                               fail(p) ← child(s, a)
19                               out(p) ← out(p) ∪ out(child(s, a))

FIGURE 15.20  Completion of the output function and construction of failure links.
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To stop going back with failure links during the computation of the failure links, and also to overpass 
text characters for which no transition is defined from the root, a loop is added on the root of the trie for 
these symbols. This is done at the first phase of function PreAC.

After the preprocessing phase is completed, the searching phase consists in parsing all the characters 
of the text y with T(X). This starts at the root of T(X) and uses failure links whenever a character in y 
does not match any label of outgoing edges of the current node. Each time a node with a nonempty out-
put is encountered, this means that the patterns of the output have been discovered in the text, ending 
at the current position. Then, the position is output.

An implementation of the Aho–Corasick algorithm from the previous discussion is shown in 
Figure 15.21. Note that the algorithm processes the text in an online way, so that the buffer on the text 
can be limited to only one symbol. Also, note that the instruction r ← fail(r) in Figure 15.21 is the exact 
analogue of instruction i ← next[i] in Figure 15.5. A unified view of both algorithms exists but is beyond 
the scope of the chapter.

The entire algorithm runs in time O(|X| + n) if the child function is implemented to run in constant 
time. This is the case for any fixed alphabet. Otherwise a log σ multiplicative factor comes from access 
to the children nodes.

15.3 T wo-Dimensional Pattern Matching Algorithms

In this section, only two-dimensional arrays are considered. Arrays may be thought of as bit map rep-
resentations of images, where each cell of arrays contains the codeword of a pixel. The string-matching 
problem finds an equivalent formulation in two dimensions (and even in any number of dimensions), 
and algorithms of Section 15.2 can be extended to operate on arrays.

The problem now is to locate all occurrences of a two-dimensional pattern X = X[0 … m1 − 1, 0 … 
m2 − 1] of size m1 × m2 inside a two-dimensional text Y = Y[0 … n1 − 1, 0 … n2 − 1] of size n1 × n2. The 
brute force algorithm for this problem is given in Figure 15.22. It consists in checking at all positions of 
Y[0 … n1 − m1, 0 … n2 − m2] if the pattern occurs. This algorithm has a quadratic (with respect to the 
size of the problem) worst-case time complexity in O(m1m2n1n2). In the next sections, two more efficient 
algorithms are presented. The first one is an extension of the Karp–Rabin algorithm (previous section). 
The second one solves the problem in linear time on a fixed alphabet; it uses both the Aho–Corasick and 
the KMP algorithms.

15.3.1  Zhu–Takaoka Algorithm

As for one-dimensional string matching, it is possible to check if the pattern occurs in the text only if 
the aligned portion of the text looks like the pattern. To do that, the idea is to use vertically the hash 

AC(X, k, y, n)
1 ⊳ Preprocessing
2 r ← PreAC(X, k)
3 ⊳ Searching
4 for j ← 0 to n − 1
5         do while child(r, y[j]) = undefined
6                       do r ← fail(r)
7              r ← child(r, y[j])
8              if out(r) ≠ ∅
9                  then Output((out(r), j))

FIGURE 15.21  Complete Aho–Corasick algorithm.
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function method proposed by Karp and Rabin. To initialize the process, the two-dimensional arrays X 
and Y are translated into one-dimensional arrays of numbers x and y. The translation from X to x is done 
as follows (0 ≤ i < m2):

	 x i hash X i X i X m i[ ] ( [ , ] [ , ] [ , ])= −0 1 11�

and the translation from Y to y is done by (0 ≤ i < m2):

	 y i hash Y i Y i Y m i[ ] ( [ , ] [ , ] [ , ]).= −0 1 11�

The fingerprint y helps to find occurrences of X starting at row j = 0 in Y. It is then updated for each new 
row in the following way (0 ≤ i < m2):

	

hash Y j i Y j i Y j m i

Y j i Y j m i h

( [ , ] [ , ] [ , ])

( [ , ], [ , ],

+ + +

= +

1 2 1

1

�

R HE ASH aash Y j i Y j i Y j m i( [ , ] [ , ] [ , ]))+ + −1 11�

(functions hash and ReHash are described in Section 15.2.1).

Example 15.9

X =

a b a b a b b
a a a a b b b

a a a b b b a a a b
b b a Y = a a a b b a a
a a b b b a a a b b

a a b a b a a

x = 681 681 680 y = 680 684 680 683 681 685 686

BF2D(X, m1, m2, Y, n1, n2)
1 ⊳ Searching
2 for j1 ← 0 to n1 − m1

3         do for j2 ← 0 to n2 − m2

4                      do i ← 0
5                            while i < m1

                                         and x[i, 0 … m2 − 1] = y[j1 + i, j2 … j2 + m2 − 1]
6                                     do i ← i + 1
7                            if i ≥ m1

8                                then Output(j1, j2)

FIGURE 15.22  Brute force two-dimensional pattern matching algorithm.
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Next value of y is 681 681 681 680 684 683 685 . The occurrence of x at position 1 on y corre-
sponds to an occurrence of X at position (1, 1) on Y.

Since the alphabet of x and y is large, searching for x in y must be done by a string-matching algorithm 
for which the running time is independent of the size of the alphabet: the KMP suits this application 
perfectly. Its adaptation is shown in Figure 15.23.

When an occurrence of x is found in y, then one still has to check if an occurrence of X starts in Y at 
the corresponding position. This is done naively by the procedure of Figure 15.24.

The Zhu–Takaoka algorithm as explained is displayed in Figure 15.25. The search for the pattern is 
performed row by row starting at row 0 and ending at row n1 − m1.

15.3.2  Bird–Baker Algorithm

The algorithm designed independently by Bird and Baker for the two-dimensional pattern matching 
problem combines the use of the Aho–Corasick algorithm and the KMP algorithm. The pattern X is 
divided into its m1 rows R0 = X[0, 0 … m2 − 1] to R x m mm1 1 1 21 0 1− = − … −[ , ]. The rows are preprocessed 
into a trie as in the Aho–Corasick algorithm described earlier.

KMP-in-line(X, m1, m2, Y, n1, n2, x, y, next, j1)
1 i2 ← 0
2 j2 ← 0
3 while j2 < n2

4         do while i2 > −1 and x[i2] ≠ y[j2]
5                        do i2 ← next[i2]
6                i2 ← i2 + 1
7                j2 ← j2 + 1
8                if i2 ≥ m2

9                    then Direct-compare(X, m1, m2, Y, n1, n2, j1, j2 − 1)
10                              i2 ← next[m2]

FIGURE 15.23  Search for x in y using KMP algorithm.

Direct-compare(X, m1, m2, Y, row, column)
1 j1 ← row − m1 + 1
2 j2 ← column − m2 + 1
3 for i1 ← 0 to m1 − 1
4        do for i2 ← 0 to m2 − 1
5                     do if X[i1, i2] ≠ Y[i1 + j1, i2 + j2]
6                                then return
7 Output(j1, j2)

FIGURE 15.24  Naive check of an occurrence of x in y at position (row, column).
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Example 15.10

Pattern X and the trie of its rows:

b a a
X = a b b

b a a

ε a ab abb
a b b

b ba baa
b a a

c {a, b}

The search proceeds as follows. The text is read from the upper left corner to the bottom right corner, 
row by row. When reading the character Y[j1, j2] the algorithm checks whether the portion Y[j1, j2 − m2 + 
1 … j2] = R matches any of R Rm0 11, ,… −  using the Aho–Corasick machine. An additional one-dimensional 
array a of size n1 is used as follows: a[j2] = k means that the k − 1 first rows R0,…, Rk−2 of the pattern match, 

ZT(X, m1, m2, Y, n1, n2)
1 ⊳ Preprocessing
2 ⊳ Computes x
3 for i2 ← 0 to m2 − 1
4         do x[i2] ← 0
5               for i1 ← 0 to m1 − 1
6                       do x[i2] ← (x[i2] << 1) + X[i1, i2]
7 ⊳ Computes the first value of y
8 for j2 ← 0 to n2 − 1
9        do y[j2] ← 0

10               for j1 ← 0 to m1 − 1
11                       do y[j2] ← (y[j2] << 1) + Y[j1, j2]
12 d ← 1
13 for i ← 1 to m1 − 1
14        do d ← d << 1
15 next ← PreKMP(X′, m2)
16 ⊳ Searching
17 j1 ← m1 − 1
18 while j1 < n1

19        do KMP-in-line(X, m1, m2, Y, n1, n2, x, y, next, j2)
20               if j1 < n1 − 1
21                   then for j2 ← 0 to n2 − 1
22                                   do y[j2] ← ReHash(Y[j1 − m1 + 1, j2],

                                                      Y[j1 + 1, j2], y[j2])
23               j1 ← j1 + 1

FIGURE 15.25  Zhu–Takaoka two-dimensional pattern matching algorithm.
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respectively, the portions of the text: Y[j1 − k + 1, j2 − m2 + 1 … j2],…, Y[j1 − 1, j2 − m2 + 1 … j2]. Then, if 
R = Rk−1, a[j2] is incremented to k + 1. If not, a[j2] is set to s + 1 where s is the maximum i such that

	 R R R R Ri k s k0 1 2� �= − + − .

The value s is computed using the KMP algorithm vertically (in columns). If there exists no such s, 
a[j2] is set to 0. Finally, if at some point a[j2] = m1 an occurrence of the pattern appears at position (j1 − 
m1 + 1, j2 − m2 + 1) in the text.

The Bird-Baker algorithm is presented in Figures 15.26 and 15.27. It runs in time O((n1n2 + m1m2)
log σ).

Pre-KMP-for-B(X, m1, m2)
1 i ← 0
2 next[0] ← −1
3 j ← −1
4 while i < m1

5          do while j > −1 and X[i, 0 … m2 − 1] ≠ X[j, 0 … m2 − 1]
6                        do j ← next[j]
7                 i ← i + 1
8                 j ← j + 1
9                 if X[i, 0 … m2 − 1] ≠ X[j, 0 … m2 − 1]

10                     then next[i] ← next[j]
11                     else     next[i] ← j
12 return next

FIGURE 15.26  Computes the function next for rows of X.

B(X, m1, m2, Y, n1, n2)
1 ⊳ Preprocessing
2 for i ← 0 to m2 − 1
3        do a[i] ← 0
4 root ← PreAC(m1)
5 next ← Pre-KMP-for-B(X, m1, m2)
6 for j1 ← 0 to n1 − 1
7        do r ← root
8              for j2 ← 0 to n2 − 1
9                    do while child(r, Y[j1, j2]) = undefined

10                                  do r ← fail(r)
11                           r ← child(r, Y[j1, j2])
12                           if out(r) ≠ ∅
13                                then k ← a[j2]
14                                          while k > 0 and X[k, 0 . . m2 − 1] = out(r)
15                                                   do k ← next[k]
16                                           a[j2] ← k + 1
17                                           if k ≥ m1 − 1
18                                               then Output(j1 − m1 + 1, j2 − m2 + 1)
19                                else    a[j2] ← 0

FIGURE 15.27  Bird–Baker two-dimensional pattern matching algorithm.
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15.4  Suffix Trees

The suffix tree S(y) of a string y is a trie (as described earlier) containing all the suffixes of the string, 
and having the properties described subsequently. This data structure serves as an index on the string: 
it provides a direct access to all segments of the string, and gives the positions of all their occurrences 
in the string.

Once the suffix tree of a text y is built, searching for x in y remains to spell x along a branch of the tree. 
If this walk is successful, the positions of the pattern can be output. Otherwise, x does not occur in y.

Any kind of trie that represents the suffixes of a string can be used to search it. But the suffix tree has addi-
tional features which imply that its size is linear. The suffix tree of y is defined by the following properties:

•	 All branches of S(y) are labeled by all suffixes of y.
•	 Edges of S(y) are labeled by strings.
•	 Internal nodes of S(y) have at least two children (when y is not empty).
•	 Edges outgoing an internal node are labeled by segments starting with different letters.
•	 The preceding segments are represented by their starting positions on y and their lengths.

Moreover, it is assumed that y ends with a symbol occurring nowhere else in it (the dollar sign is used 
in examples). This avoids marking nodes, and implies that S(y) has exactly n leaves (number of nonempty 
suffixes). The other properties then imply that the total size of S(y) is O(n), which makes it possible to 
design a linear-time construction of the trie. The algorithm described in the present section has this time 
complexity provided the alphabet is fixed, or with an additional multiplicative factor log σ otherwise.

The algorithm inserts all nonempty suffixes of y in the data structure from the longest to the shortest 
suffix, as shown in Figure 15.28. Two definitions to explain how the algorithm works are introduced:

•	 headj is the longest prefix of y[j … n − 1] which is also a prefix of y[i … n − 1] for some i < j.
•	 tailj is the word such that y[j … n − 1] = headj tailj.

The strategy to insert the ith suffix in the tree is based on these definitions and described in Figure 15.29.
The second step of the insertion (Figure 15.29) is clearly performed in constant time. Thus, finding 

the node h is critical for the overall performance of the algorithm. A brute-force method to find it 
consists in spelling the current suffix y[j … n − 1] from the root of the tree, giving an O(|headj|) time 
complexity for the insertion at step j, and an O(n2) running time to build S(y). Adding short-cut links 
leads to an overall O(n) time complexity, although there is no guarantee that insertion at step j is real-
ized in constant time.

Suffix-tree(y, n)
1 T−1 ← one node tree
2 for j ← 0 to n − 1
3         do Tj ← Insert(Tj−1, y[j … n − 1])
4 return Tn−1

FIGURE 15.28  Construction of a suffix tree for y.

Insert(Tj−1, y[j … n − 1])
1 locate the node h associated with headj in Tj−1, possibly breaking an edge
2 add a new edge labeled tailj from h to a new leaf representing y[j … n − 1]
3 return the modified tree

FIGURE 15.29  Insertion of a new suffix in the tree.
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Example 15.11

The different tries during the construction of the suffix tree of y = CAGATAGAG. Leaves are 
black and labeled by the position of the suffix they represent. Plain arrows are labeled by pairs: 
the pair (j, ℓ) stands for the segment y[j … j + ℓ − 1]. Dashed arrows represent the nontrivial 
suffix links.

0, 10 0, 10 1, 9 0, 10 1, 9 2, 8

0 0 1 0 1 2

0, 10
1, 1

2, 8 4, 6

2, 8 0, 10 1, 1

2, 8
4, 6

2, 8
4, 6

0 1 3 2 0 1 3 2 4

0,10
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2, 2
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4, 6

2, 8 4, 6 0, 10

1, 1

2, 2

4, 6 8, 2

4, 6

2, 2

4, 6 8, 2

4, 6

0 1 5 3 2 4 0 1 5 3 2 6 4

0, 10

1, 1

2, 1

3, 1

4, 6 8, 2
9, 1

4, 6

2, 2

4, 6 8, 2

4, 6

0 1 5 7 3 2 6 4
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0, 10

1, 1

2, 1

3, 1

4, 6 8, 2
9, 1

4, 6

2, 1

3, 1

4, 6 8, 2
9, 1

4, 6

0 1 5 7 3 2 6 8 4

0, 10

1, 1

2, 1

3, 1

4, 6 8, 2
9, 1

4, 6

2, 1

3, 1

4, 6 8, 2

9, 1
4, 6 9, 1

0 1 5 7 3 2 6 8 4 10

15.4.1  McCreight Algorithm

The key to get an efficient construction of the suffix tree S(y) is to add links between nodes of the tree: 
they are called suffix links. Their definition relies on the relationship between headj−1 and headj: if headj−1 
is of the form az (a ∈ Σ, z ∈ Σ*), then z is a prefix of headj. In the suffix tree, the node associated with 
z is linked to the node associated with az. The suffix link creates a shortcut in the tree that helps with 
finding the next head efficiently. The insertion of the next suffix, namely, headj tailj, in the tree reduces 
to the insertion of tailj from the node associated with headj.

The following property is an invariant of the construction: in Tj, only the node h associated with headj 
can fail to have a valid suffix link. This effectively happens when h has just been created at step j. The 
procedure to find the next head at step j is composed of two main phases:

A Rescanning: Assume that headj−1 = az (a ∈ Σ, z ∈ Σ*) and let d′ be the associated node. If the suffix 
link on d′ is defined, it leads to a node d from which the second step starts. Otherwise, the suffix link 
on d′ is found by rescanning as follows. Let c′ be the parent of d′, and let (j, ℓ) be the label of edge 
(c′, d′). For the ease of the description, assume that az = av(y[j … j + ℓ − 1]) (it may happen that az = 
y[j … j + ℓ − 1]). There is a suffix link defined on c′ and going to some node c associated with v. The 
crucial observation here is that y[j … j + ℓ − 1] is the prefix of the label of some branch starting at 
node c. Then, the algorithm rescans y[j … j + ℓ − 1] in the tree: let e be the child of c along that branch, 
and let (k, m) be the label of edge (c, e). If m < ℓ, then a recursive rescan of q = y[j + m … j + ℓ − 1] 
starts from node e. If m > ℓ, the edge (c, e) is broken to insert a new node d; labels are updated cor-
respondingly. If m = ℓ, d is simply set to e. If the suffix link of d′ is currently undefined, it is set to d.

B Scanning: A downward search starts from d to find the node h associated with headj. The search 
is dictated by the characters of tailj−1 one at a time from left to right. If necessary, a new internal 
node is created at the end of the scanning.

After the two phases A and B are executed, the node associated with the new head is known, and the tail 
of the current suffix can be inserted in the tree.

To analyze the time complexity of the entire algorithm, one mainly has to evaluate the total time of 
all scannings, and the total time of all rescannings. Assume that the alphabet is fixed, so that branching 
from a node to one of its children can be implemented to take constant time. Thus, the time spent for 



15-22 Algorithms and Complexity

all scannings is linear because each letter of y is scanned only once. The same holds true for rescannings 
because each step downward (through node e) increases strictly the position of the segment of y consid-
ered there, and this position never decreases.

An implementation of McCreight’s algorithm is shown in Figure 15.30. The next figures (Figures 15.31 
through 15.34) give the procedures used by the algorithm, especially procedures Rescan and Scan.

The following notation will be used:

•	 parent(c) is the parent node of the node c.
•	 label(c) is the pair (i, l) if the edge from the parent node of c to c itself is associated with the factor 

y[i … i + l − 1].
•	 child(c, a) is the only node that can be reached from the node c with the character a.
•	 link(c) is the suffix node of the node c.

M(y, n)
1 root ← Init(y, n)
2 head ← root
3 tail ← child(root, y[0])
4 n ← n − 1
5 while n > 0
6         do if head = root ⊳ Phase A (rescanning)
7                  then d ← root
8                            (j, ℓ) ← label(tail)
9                            γ ← (j + 1, ℓ − 1)

10                  else   γ ← label(tail)
11                            if link(head) ≠ undefined
12                                then d ← link(head)
13                                else  (j, ℓ) ← label(head)
14                                             if parent(head) = root
15                                                 then d ← Rescan(root, j + 1, ℓ − 1))
16                                                 else  d ← Rescan(link(parent(head)), j, ℓ))
17                                             link(head) ← d
18                  (head, γ) ← Scan(d, γ) ⊳ Phase B (scanning)
19                  create a new node tail
20                  parent(tail) ← head
21                  label(tail) ← γ
22                  (j, ℓ) ← γ
23                  child(head, y[j]) ← tail
24                  n ← n − 1
25 return root

FIGURE 15.30  Suffix tree construction.

Init(y, n)
1 create a new node root
2 create a new node c
3 parent(root) ← undefined
4 parent(c) ← root
5 child(root, y[0]) ← c
6 label(root) ← undefined
7 label(c) ← (0, n)
8 return root

FIGURE 15.31  Initialization procedure.
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Rescan(c, j, ℓ)
1 (k, m) ← label(child(c, y[j]))
2 while ℓ > 0 and ℓ ≥ m
3          do c ← child(c, y[j])
4                ℓ ← ℓ − m
5                j ← j + m
6                (k, m) ← label(child(c, y[j]))
7 if ℓ > 0
8      then return Break-edge(child(c, y[j]), ℓ)
9      else    return c

FIGURE 15.32  The crucial rescan operation.

Break-edge(c, k)
1 create a new node g
2 parent(g) ← parent(c)
3 (j, ℓ) ← label(c)
4 child(parent(c), y[j]) ← g
5 label(g) ← (j, k)
6 parent(c) ← g
7 label(c) ← (j + k, ℓ − k)
8 child(g, y[j + k]) ← c
9 link(g) ← undefined

10 return g

FIGURE 15.33  Breaking an edge.

Scan(d, γ)
1 (j, ℓ) ← γ
2 while child(d, y[j]) ≠ undefined
3          do g ← child(d, y[j])
4                k ← 1
5                (s, lg) ← label(g)
6                s ← s + 1
7                ℓ ← ℓ − 1
8                j ← j + 1
9                while k < lg and y[j] = y[s]

10                        do j ← j + 1
11                             s ← s + 1
12                             k ← k + 1
13                             ℓ ← ℓ − 1
14                if k < lg
15                    then return (Break-edge(g, k), (j, ℓ))
16                d ← g
17 return (d, (j, ℓ))

FIGURE 15.34  The scan operation.
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15.5  Suffix Arrays

Suffix trees are very powerful; however, they are very space consuming. In most cases, they can be replaced 
by suffix arrays that are more space economical. The technique involves binary search in the sorted list of 
the text suffixes. In this section, we show how to lexicographically sort the suffixes of a string y of length n. 
The resulting permutation, as an array, constitutes the suffix array of the string. It is usually enhanced with 
the LCP array described further in the section to get an efficient string searching algorithm.

The goal of the sorting is to compute a permutation p of the indices on y that satisfies the condition

	 y p n y p n y p n n[ [ ] ] [ [ ] ] [ [ ] ].0 1 1 1 1 1… − < … − < < − … −� 	 (15.1)

Note that the inequalities are strict since two suffixes occurring at distinct positions cannot be identical.
The implementation of a standard lexicographic sorting method (repeated radix sort) leads to an 

algorithm whose execution time is O(n2) since the sum of the lengths of the suffixes of y is quadratic.
Actually, the ordering is not entirely sufficient to get an efficient search. The precomputation and the 

utilization of common prefixes to the suffixes are extra elements that make the technique very efficient. 
The search for a string of length m in a string length n then takes O(m + log n) time.

To describe the sorting algorithm, for u ∈ Σ*, we denote by

	
first u

u u k

u k
k ( )

| | ,

[ ] ,
=

≤
… −





if

otherwise0 1

the beginning of order k of the string u.

15.5.1  Kärkkäinen–Sanders Algorithm

In this section, the alphabet of y is assumed to be a bounded segment of integers, as it can be considered 
in most real applications. With this condition, not only letters can be sorted in linear time but suffixes 
of y as well.

The present algorithm for sorting the suffixes proceeds in four steps as follows, where k is an appro-
priate nonnegative integer.

Step 1 Positions i on the input string y are sorted for two-third of them, namely for i = 3k or 
i = 3k + 1, according to first3(y[i … n − 1]).

	 Let t[i] be the rank of i in the sorted list.
Step 2 Suffixes of the 2/3-shorter word z = t[0]t[3] ⋯ t[3k] ⋯ t[1]t[4] ⋯ t[3k + 1] ⋯ are recursively 

sorted.
	 Let s[i] be the rank of suffix at position i on y in the sorted list of them derived from the sorted 

list of suffixes of z.
Step 3 Suffixes y[j … n − 1], for j of the form 3k + 2, are sorted using the table s.
Step 4 The final step consists in merging the ordered lists obtained at the second and third steps.

A careful implementation of the algorithm leads to a linear running time. It relies on the following 
elements. The first step can be executed in linear time by using a mere radix sort. Since the order of 
suffixes y[j + 1 … n − 1] is already known from s, the third step can be done in linear time by just radix 
sorting pairs (y[j], s[j + 1]). Comparing suffixes at positions i (i = 3k or i = 3k + 1 for the first list) and 
j (j = 3k + 2 for the second list) remains to compare pairs of the form (y[i], s[i + 1]) and (y[j], s[j + 1]) 
if i = 3k or pairs of the form (y[i]y[i + 1], s[i + 2]) and (y[j]y[j + 1], s[j + 2]) if i = 3k + 1. This is done in 
constant time and then the merge at the fourth step can thus be realized in linear time.

An example of a run of the algorithm is shown in Figure 15.35: (1) String y = abaaabaaabb and its 
two sets of positions P01 and P2. (2) Step 1. Strings first3(y[i … n − 1]) for i ∈ P01 and their ranks: t[i] is the 
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rank of i in the sorted list. (3) Step 2. Positions in P01 sorted according to their associated suffixes in z, 
resulting in L01 and the table of ranks s. (4) Step 3. Positions j in P2 sorted according to pairs (y[j], s[j + 1]) 
resulting in L2. (5) Step 4. Pairs used for comparing positions when merging the sorted lists L01 and L2. 
(6) Permutation p corresponding to the sorted suffixes of y.

The algorithm Skew-suffix-sort (Figure 15.36) describes the method presented above in a more 
precise way. To shorten the presentation of the algorithm, the definition of s (see Line 11) is extended to 
positions n and n + 1 that are considered Lines 12 and 13 (call to Comp, Figure 15.37).

The recursivity of the algorithm (Line 8) yields the recurrence relation T(n) = T(2n/3) + O(n), for 
n > 3, and T(n) = O(1), for n ≤ 3, because all other lines execute in constant time, that is, O(n) time. The 
recurrence has solution T(n) = O(n), Algorithm Skew-suffix-sort computes the suffix array of a string 
of length n in time O(n).

15.5.2  Substring Search

Searching for a pattern x of length m in the string y using its suffix array can be done by a simple binary 
search (see Figure 15.38). It returns:

•	 (−1, 0) if x < y[p[0] … n − 1].
•	 (n − 1, n) if x > y[p[n − 1] … n − 1].
•	 i if x is a prefix of x[p[i] … n − 1].
•	 (i, i + 1) if y[p[i] … n − 1] < x < y[p[i + 1] … n − 1].

i 0 1 2 3 4 5 6 7 8 9 10
(1) y[i] a b a a a b a a a b b

P01 = {0, 1, 3, 4, 6, 7, 9, 10} and P2 = {2, 5, 8}

 i mod 3 = 0 i mod 3 = 1
(2) i 0 3 6 9 1 4 7 10

first3(y[i . . n − 1]) aba  aab  aaa  bb  baa  aba   aab   b
t[i] 2 1 0 5 4 2 1 3
z = 2 1 0 5 4 2 1 3 and L01 = (6, 3, 7, 0, 4, 10, 1, 9)

(3) s[i] 3 1 0 7 6 4 2 5

 j mod 3 = 2
(4) j 2 5 8

(y[j], s[j + 1]) (a, 1)       (b, 0)       (a, 7)
L2 = (2, 8, 5)

i mod 3 = 0 or 1
i 6 3 7 0 4 10 1 9

(5) (y[i]y[i + 1], s[i + 2])                        (aa, 7)        (ab, 0)  (b, −1)(ba, 1)
(y[i], s[i + 1]) (a, 2) (a, 4)                 (a, 6)                               (b, 5)

j mod 3 = 2
j 2 8 5
(y[j]y[j + 1], s[j + 2]) (aa, 4) (ab, 5) (ba, 2)
(y[j], s[j + 1]) (a, 1) (a, 7) (b, 0)

(6) i 0 1 2 3 4 5 6 7 8 9 10
p[i] 2 6 3 7 0 4 8 10 1 5 9

FIGURE 15.35  Building the suffix array of y = abaaabaaabb.
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Skew-suffix-sort(y, n)
1 if n ≤ 3
2     then return permutation of the sorted suffix of y
3     else      P01 ← {i | 0 ≤ i < n and (i mod 3 = 0 or i mod 3 = 1)}
4                  if n mod 3 = 0
5                      then P01 ← P01 ∪ {n}
6                  t ← table of ranks of positions i in P01 according to

                                 first3(y[i … n − 1])
7                  z ← t[0]t[3] ⋯ t[3k] ⋯ t[1]t[4] ⋯ t[3k + 1] ⋯
8                  q ← Skew-suffix-sort(z, ⌊2n/3⌋ + 1)
9                  L01 ← (3q[j] if 0 ≤ q[j] ≤ ⌊n/3⌋ + 1, 3q[j] + 1 otherwise

                              with j = 0, 1,…, |z| − 1)
10                  s ← table of ranks of positions in L01

11                  (s[n], s[n + 1]) ← (−1, −1)
12                  L2 ← list of positions j = 3k + 2, 3k + 2 < n

                              sorted according to (y[j], s[j + 1])
13                  L ← merge of L01 and L2 using Comp()
14                  p ← permutation of positions on y corresponding to L
15                  return p

FIGURE 15.36  Linear time suffix array construction on a bounded alphabet.

Comp(i, j)
1 if i mod 3 = 0
2      then if (y[i], s[i + 1]) < (y[j], s[j + 1])
3                     then return −1
4                     else return 1
5      else if (y[i … i + 1], s[i + 2]) < (y[j … j + 1], s[j + 2])
6                     then return −1
7                     else return 1

FIGURE 15.37  Constant time comparison of y[i … n − 1] and y[j … n − 1] during the merge.

Binary-Search(y, n, p, x, m)
1 ℓ ← −1
2 r ← n
3 while ℓ + 1 < r
4          do i ← ⌊(ℓ + r)/2⌋
5                k ← |lcp(x, y[p[i] … n − 1])|
6                if k = m
7                    then return i
8                elseif x ≤ y[p[i] … n − 1]
9                    then r ← i

10                else      ℓ ← i
11 return (ℓ, r)

FIGURE 15.38  Binary search of x is the suffix array of y.
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The loop line 3 iterates at most log n times and each test line 8 can perform at most m character 
comparisons. Thus the time complexity of algorithm is O(m × log n).

15.5.3  Longest Common Prefixes

In this section, the second element that constitutes a suffix array is described: the array LCP storing the 
maximal lengths of prefixes common to suffixes in the sorted list. We first introduce the following nota-
tion for two strings u, v ∈ Σ*:

	 lcp u v u v( , ) .= longest common prefix of and

We start by the first half of the array LCP storing the maximal lengths of prefixes common to consecu-
tive suffixes in the sorted list. It is defined as follows, for 1 ≤ i ≤ n − 1:

	 LCP i lcp y p i n y p i n[ ] ( [ [ ] ], [ [ ] ]).= − … − … −1 1 1

A direct computation using letter by letter comparisons leads to an execution time in O(n2) since the 
sum of lengths of the suffixes is quadratic.

We describe an algorithm that performs the computation in linear time. Indeed, the suffixes of y are 
not independent of each other. This dependence allows to reduce the computation time by the mean of a 
quite simple algorithm, based on the following property: let i, j, i′ be positions on y for which j = p[i] and 
j − 1 = p[i′], then LCP[i′] − 1 ≤ LCP[i].

Using this result, in order to compute LCP[i], that is, the length of the longest common prefix between 
y[p[i] … n − 1] and y[p[i − 1] … n − 1] when 0 < i ≤ n, one can start the letter by letter comparison exactly 
at the position at which stops the previous computation, the one of LCP[i′]. Knowing that, it is sufficient 
to proceed by considering the suffixes from the longest to the shortest, and not in the lexicographic 
order that seems more natural. This is what Algorithm Def-half-LCP (see Figure 15.39) realizes. It 
computes the values LCP[i] for 0 ≤ i ≤ n. Note that to determine the position i associated with position j, 
the algorithm uses the reverse of permutation p which is computed in the first step (Lines 1–2). This 
function is represented by the table called Rank since it indicates the rank of each suffix in the sorted 
list of suffixes of y.

Def-half-LCP(y, n, p)
1 for i ← 0 to n − 1
2          do Rank[p[i]] ← i
3 ℓ ← 0
4 for j ← 0 to n − 1
5       do ℓ ← max{0, ℓ − 1}
6             i ← Rank[j]
7             if i ≠ 0
8                 then j′ ← p[i − 1]
9                          while j + ℓ < n and j′ + ℓ < n

                                       and y[j + ℓ] = y[j′ + ℓ]
10                                  do ℓ ← ℓ + 1
11                 else ℓ ← 0
12              LCP[i] ← ℓ
13 return LCP

FIGURE 15.39  Linear computation of the first LCP values.
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Applied to string y of length n and to the permutation p of it suffixes, Algorithm Def-half-LCP 
computes the LCP array in time O(n).

The number of pairs (ℓ, r) considered by algorithm Binary-Search(y, n, p, x, m) is bounded by 2n + 1 : 
there are n + 1 pairs of the form (i, i + 1) that constitute the leaves of a binary tree; thus, there are at 
most n internal nodes. Figure 15.40 shows an example for a string of length 11. Small numbers close to 
pairs (ℓ, r) are i = ⌊(ℓ + r)/2⌋.

It is thus possible to extend array LCP as follows:

	

LCP n i lcp p n y p r n

i r

[ ] ( [ ] ], [ [ ] ])

( ) .

+ + = … − … −

= + 

1 1 1

2

�

�where /

The length of the longest common prefix between y[p[ℓ] … n − 1] and y[p[r] … n − 1] when ℓ < r − 1 
is equal to the minimum value among all LCP[i] where ℓ < i ≤ r. Then these values can be computed by 
a call to the algorithm Def-LCP(y, 0, n − 1, LCP) (see Figure 15.41).

15.5.4  Substring Search with the Length of the Common Prefixes

Let ℓ, r, i be three integers, 0 ≤ ℓ < i < r < n. If y[p[ℓ] … n − 1] < x < y[p[r] … n − 1] let lb = |lcp(x, y[p[ℓ] … 
n − 1])| and le = |lcp(x, y[p[r] … n − 1])| satisfying lb ≤ le. We then have:

	 | ( [ [ ] ], [ [ ] ]) | [ [ ] ] [ [lcp y p i n y p r n le y p i n x y p… − … − < … − < <1 1 1implies rr n] ]… −1

Def-LCP(y, ℓ, r, LCP)
1 ⊳ ℓ < r
2 if ℓ + 1 = r
3      then return LCP[r]
4      else  i ← ⌊(ℓ + r)/2⌋
5               LCP[n + 1 + i] ← min{Def-LCP(y, ℓ, i, LCP),

                           Def-LCP(y, i, r, LCP)}
6               return LCP[n + 1 + i]

FIGURE 15.41  Linear computation of the last LCP values.

(5, 8)6 (8, 11)9

(5, 11)8

(−1, 11)5

(−1, 5)2

(−1, 2)0

(−1, 0)  (0, 2)1 (2, 3)   (3, 5)4 (5, 6)    (6, 8)7 (8, 9)   (9, 11)10

(2, 5)3

(0, 1)    (1, 2) (3, 4)    (4, 5) (6, 7)    (7, 8) (9, 10)    (10, 11)

FIGURE 15.40  Pairs considered during the binary search in a string of length 11.
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and

	 | ( [ [ ] ], [ [ ] ]) | [ [ ] ] [ [lcp y p i n y p r n le y p n x y p… − … − > … − < <1 1 1implies � ii n] ].… −1 	

The search can then now be done in O(m + log n) with the algorithm Search(y, n, p, LCP, x, m) 
(see Figure 15.42).

15.6 A lignment

Alignments are used to compare strings. They are widely used in computational molecular biology. They 
constitute a mean to visualize resemblance between strings. They are based on notions of distance or sim-
ilarity. Their computation is usually done by dynamic programming. A typical example of this method is 
the computation of the longest common subsequence of two strings. The reduction of the memory space 
presented on it can be applied to similar problems. Three different kinds of alignment of two strings x and 
y are considered: global alignment (that consider the whole strings x and y), local alignment (that enable 
to find the segment of x that is closer to a segment of y), and the longest common subsequence of x and y.

An alignment of two strings x and y of length m and n, respectively, consists in aligning their sym-
bols on vertical lines. Formally, an alignment of two strings x, y ∈ Σ* is a word w on the alphabet (Σ∪{ε}) × 
(Σ∪{ε})\({(ε, ε)} (ε is the empty word) whose projection on the first component is x and whose projection 
of the second component is y.

Search(y, n, p, LCP, x, m)
1 (ℓ, lb) ← (−1, 0)
2 (r, le) ← (n, 0)
3 while ℓ + 1 < r
4          do i ← ⌊(ℓ + r)/2⌋
5                if ℓ + 1 = i
6                   then g ← LCP[i]
7                   else g ← LCP[n + 1 + ⌊(ℓ + i)/2⌋]
8                if i + 1 = r
9                   then h ← LCP[r]

10                   else h ← LCP[n + 1 + ⌊(i + r)/2⌋]
11                if lb ≤ h and h < le
12                   then (ℓ, lb) ← (i, h)
13                elseif lb ≤ le and le < h
14                   then (r, le) ← (i, h)
15                elseif le ≤ g and g < lb
16                   then (r, le) ← (i, g)
17                elseif le ≤ lb and lb < g
18                   then (ℓ, lb) ← (i, g)
19                else      ℓ ← max{lb, le}
20                             ℓ ← ℓ + |lcp(x[ℓ . . m − 1], y[p[i] + [ℓ . . n − 1])|
21                             if ℓ = m
22                                 then return i
23                             elseif x < y[p[i] . . n − 1]
24                                 then (r, le) ← (i, ℓ)
25                             else      (ℓ, lb) ← (i, ℓ)
26 return (ℓ, r)

FIGURE 15.42  Search for x in the suffix array of y using the length of the common prefixes.
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Thus, an alignment w = (x–0, y–0)(x–1, y–1) ⋯ (x–p−1, y–p−1) of length p is such that x = x–0x–1 ⋯ x–p−1 and 
y = y–0y–1 ⋯ y–p−1 with x–i ∈ Σ∪{ε} and y–i ∈ Σ∪{ε} for 0 ≤ i ≤ p − 1. The alignment is represented as follows:

x–0 x–1 ⋯ x–p−1

y–0 y–1 ⋯ y–p−1

with the symbol—instead of the symbol ε.

Example 15.12

A C G – – A
A T G C T A

is an alignment of ACGA and ATGCTA.

15.6.1  Global Alignment

A global alignment of two strings x and y can be obtained by computing the distance between 
x and y. The notion of distance between two strings is widely used to compare files. The diff com-
mand of UNIX operating system implements an algorithm based on this notion, in which lines 
of the files are treated as symbols. The output of a comparison made by diff gives the minimum 
number of operations (substitute a symbol, insert a symbol, or delete a symbol) to transform one 
file into the other.

Let us define the edit distance between two strings x and y as follows: it is the minimum number of 
elementary edit operations that enable to transform x into y. The elementary edit operations are:

•	 THe substitution of a character of x at a given position by a character of y.
•	 THe deletion of a character of x at a given position.
•	 THe insertion of a character of y in x at a given position.

A cost is associated to each elementary edit operation. For a, b ∈ Σ:

•	 Sub(a, b) denotes the cost of the substitution of the character a by the character b.
•	 Del(a) denotes the cost of the deletion of the character a.
•	 Ins(a) denotes the cost of the insertion of the character a.

This means that the costs of the edit operations are independent of the positions where the operations 
occur. The edit distance of two strings x and y can now be defined by

	 edit x y x y( , ) min{cost of | },= γ γ ∈Γ

where Γx, y is the set of all the sequences of edit operations that transform x into y, and the cost of an ele-
ment γ ∈ Γx,y is the sum of the costs of its elementary edit operations.

In order to compute edit(x, y) for two strings x and y of length m and n, respectively, a two-dimensional 
table T of m + 1 rows and n + 1 columns is used such that

	 T i j edit x i y j[ , ] ( [ ], [ ])=

for i = 0,…, m − 1 and j = 0,…, n − 1. It follows edit(x, y) = T[m − 1, n − 1].
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The values of the table T can be computed by the following recurrence formula:

	

T

T i T i Del x i

T j T j I

[ , ] ,

[ , ] [ , ] ( [ ]),

[ , ] [ , ]

− − =

− = − − +

− = − − +

1 1 0

1 1 1

1 1 1 nns y j

T i j

T i j Sub x i y j

T i j Del

( [ ]),

[ , ] min

[ , ] ( [ ], [ ]),

[ , ]=
− − +
− +

1 1

1 (( [ ]),

[ , ] ( [ ]),

x i

T i j Ins y j− +






 1

for i = 0, 1,…, m − 1 and j = 0, 1,…, n − 1.
The value at position (i, j) in the table T only depends on the values at the three neighbor positions 

(i − 1, j − 1), (i − 1, j), and (i, j − 1).
The direct application of the recurrence formula mentioned earlier gives an exponential time algorithm 

to compute T[m − 1, n − 1]. However, the whole table T can be computed in quadratic time, technique 
known as “dynamic programming.” This is a general technique that is used to solve the different kinds of 
alignments.

The computation of the table T proceeds in two steps. First, it initializes the first column and first row of T; 
this is done by a call to a generic function Margin which is a parameter of the algorithm and that depends on 
the kind of alignment that is considered. Second, it computes the remaining values of T; this is done by a call 
to a generic function Formula which is a parameter of the algorithm and that depends on the kind of align-
ment that is considered. Computing a global alignment of x and y can be done by a call to Generic-DP with 
the following parameters (x, m, y, n, Margin-global, Formula-global) (see Figures 15.43 through 15.45). 
The computation of all the values of the table T can thus be done in quadratic space and time: O(m × n).

Generic-DP(x, m, y, n, Margin, Formula)
1 Margin(T, x, m, y, n)
2 for j ← 0 to n − 1
3        do for i ← 0 to m − 1
4                       do T[i, j] ← Formula(T, x, i, y, j)
5 return T

FIGURE 15.43  Computation of the table T by dynamic programming.

Margin-global(T, x, m, y, n)
1 T[−1, −1] ← 0
2 for i ← 0 to m − 1
3       do T[i, −1] ← T[i − 1, −1] + Del(x[i])
4 for j ← 0 to n − 1
5       do T[−1, j] ← T[−1, j − 1] + Ins(y[j])

FIGURE 15.44  Margin initialization for the computation of a global alignment.

Formula-global(T, x, i, y, j)
                       






T[i − 1, j − 1] + Sub(x[i], y[j])
1 return min T[i − 1, j] + Del(x[i])

                       T[i, j − 1] + Ins(y[j])

FIGURE 15.45  Computation of T[i, j] for a global alignment.
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An optimal alignment (with minimal cost) can then be produced by a call to the function

	 One-alignment(T, x, m − 1, y, n − 1)

(see Figure 15.46). It consists in tracing back the computation of the values of the table T from 
position [m − 1, n − 1] to position [−1, −1]. At each cell [i, j], the algorithm determines among the 
three values T[i − 1, j − 1] + Sub(x[i], y[j]), T[i − 1, j] + Del(x[i]), and T[i, j − 1] + Ins(y[j]), which 
has been used to produce the value of T[i, j]. If T[i − 1, j − 1] + Sub(x[i], y[j]) has been used, it adds 
(x[i], y[j]) to the optimal alignment and proceeds recursively with the cell at [i − 1, j − 1]. If T[i − 1, j] + 
Del(x[i]) has been used, it adds (x[i], −) to the optimal alignment and proceeds recursively with 
cell at [i − 1, j]. If T[i, j − 1] + Ins(y[j]) has been used it adds (−, y[j]) to the optimal alignment and 
proceeds recursively with cell at [i, j − 1]. Recovering all the optimal alignments can be done by a 
similar technique.

Example 15.13

T j –1 0 1 2 3 4 5
i A T G C T A

–1 x[i]
y[ j]

0 1 2 3 4 5 6

0 A 1 0 1 2 3 4 5

1 C 2 1 1 2 2 3 4

2 G 3 2 2 1 2 3 4

3 A 4 3 3 2 2 3 3

The values of the above table have been obtained with the following unitary costs: Sub(a, b) = 1 
if a ≠ b and Sub(a, a) = 0, Del(a) = Ins(a) = 1 for a, b ∈ Σ.

One-alignment(T, x, i, y, j)
1 if i = −1 and j = −1
2      then return (ε, ε)
3      else    if i = −1
4                     then return One-alignment(T, x, −1, y, j − 1) · (ε, y[j])
5                 elseif j = −1
6                     then return One-alignment(T, x, i − 1, y, −1) · (x[i], ε)
7                 else       if T[i, j] = T[i − 1, j − 1] + Sub(x[i], y[j])
8                                    then return One-alignment(T, x, i − 1, y, j − 1).

                                                           (x[i], y[j])
9                               elseif T[i, j] = T[i − 1, j] + Del(x[i])
10                                    then return One-alignment(T, x, i − 1, y, j)·

                                                           (x[i], ε)
11                               else  return One-alignment(T, x, i, y, j − 1)·

                                                           (ε, y[j])

FIGURE 15.46  Recovering an optimal alignment.
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15.6.2  Local Alignment

A local alignment of two strings x and y consists in finding the segment of x that is closer to a segment 
of y. The notion of distance used to compute global alignments cannot be used in that case since the 
segments of x closer to segments of y would only be the empty segment or individual characters. This is 
why a notion of similarity is used based on a scoring scheme for edit operations.

A score (instead of a cost) is associated to each elementary edit operation. For a, b ∈ Σ:

•	 SubS(a, b) denotes the score of substituting the character b for the character a.
•	 DelS(a) denotes the score of deleting the character a.
•	 InsS(a) denotes the score of inserting the character a.

This means that the scores of the edit operations are independent of the positions where the operations 
occur. For two characters a and b, a positive value of SubS(a, b) means that the two characters are close 
to each other, and a negative value of SubS(a, b) means that the two characters are far apart.

The edit score of two strings x and y can now be defined by

	 sco x y x y( , ) max{score of | },= γ γ ∈Γ

where Γx, y is the set of all the sequences of edit operations that transform x into y and the score of an 
element σ ∈ Γx,y is the sum of the scores of its elementary edit operations.

In order to compute sco(x, y) for two strings x and y of length m and n, respectively, a two-
dimensional table T of m + 1 rows and n + 1 columns is used such that

	 T i j sco x i y j[ , ] ( [ ], [ ])=

for i = 0,…, m − 1 and j = 0,…, n − 1. Therefore sco(x, y) = T[m − 1, n − 1].
The values of the table T can be computed by the following recurrence formula:

	

T

T i

T j

T i j

T i j Sub xS

[ , ] ,

[ , ] ,

[ , ] ,

[ , ] max

[ , ] (

− − =

− =

− =

=

− − +

1 1 0

1 0

1 0

1 1 [[ ], [ ]),

[ , ] ( [ ]),

[ , ] ( [ ]),

,

i y j

T i j Del x i

T i j Ins y j

S

S

− +
− +









1

1

0



for i = 0, 1,…, m − 1 and j = 0, 1,…, n − 1.
Computing the values of T for a local alignment of x and y can be done by a call to Generic-DP with 

the following parameters (x, m, y, n, Margin-local, Formula-local) in O(mn) time and space com-
plexity (see Figures 15.43, 15.47, and 15.48). Recovering a local alignment can be done in a way similar to 
what is done in the case of a global alignment (see Figure 15.46) but the trace back procedure must start 
at a position of a maximal value in T rather than at position [m − 1, n − 1].



15-34 Algorithms and Complexity

Example 15.14

Computation of an optimal local alignment of
x = EAWACQGKL and y = ERDAWCQPGKWY with scores:

SubS(a, a) = 1, SubS(a, b) = −3 and DelS(a) = InsS(a) = −1 for a, b ∈ Σ, a ≠ b.

T j 0 1 2 3 4 5 6 7 8 9 10 11
i E R D A W C Q P G K W Y

−1

−1

x[i]
y[ j]
0 0 0 0 0 0 0 0 0 0 0 0 0

0 E 0 1 0 0 0 0 0 0 0 0 0 0 0
1 A 0 0 0 0 1 0 0 0 0 0 0 0 0
2 W 0 0 0 0 0 2 1 0 0 0 0 1 0
3 A 0 0 0 0 1 1 0 0 0 0 0 0 0
4 C 0 0 0 0 0 0 2 1 0 0 0 0 0
5 Q 0 0 0 0 0 0 1 3 2 1 0 0 0
6 G 0 0 0 0 0 0 0 2 1 3 2 1 0
7 K 0 0 0 0 0 0 0 1 0 2 4 3 2
8 L 0 0 0 0 0 0 0 0 0 1 3 2 1

The corresponding optimal local alignment is

A W A C Q — G K
A W — C Q P G K

15.6.3  Longest Common Subsequence of Two Strings

A subsequence of a word x is obtained by deleting zero or more characters from x. More formally w[0 
… i − 1] is a subsequence of x[0 … m − 1] if there exists an increasing sequence of integers (kj | j = 0,…, 
i − 1) such that for 0 ≤ j ≤ i − 1, w[j] = x[kj]. A word is an lcs(x, y) if it is a longest common subsequence 

Margin-local(T, x, m, y, n)
1 T[−1, −1] ← 0
2 for i ← 0 to m − 1
3          do T[i, −1] ← 0
4 for j ← 0 to n − 1
5          do T[−1, j] ← 0

FIGURE 15.47  Margin initialization for computing a local alignment.

Formula-local(T, x, i, y, j)
                       








T[i − 1, j − 1] + SubS(x[i], y[j])
1 return max T[i − 1, j] + DelS(x[i])

                      T[i, j − 1] + InsS(y[j])
0

FIGURE 15.48  Recurrence formula for computing a local alignment.
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of the two words x and y. Note that two strings can have several longest common subsequences. Their 
common length is denoted by llcs(x, y).

A brute-force method to compute an lcs(x, y) would consist in computing all the subsequences of 
x, checking if they are subsequences of y, and keeping the longest one. The word x of length m has 2m 
subsequences, and so this method could take O(2m) time, which is impractical even for fairly small 
values of m.

However, llcs(x, y) can be computed with a two-dimensional table T by the following recurrence 
formula:

	

T

T i

T j

T i j
T i j if

[ , ] ,

[ , ] ,

[ , ] ,

[ , ]
[ , ] [i] y

− − =

− =

− =

=
− − + =

1 1 0

1 0

1 0

1 1 1 x [[j],

max( [ , ], [ , ]) ,T i j T i j otherwise− −


 1 1

for i = 0, 1,…, m − 1 and j = 0, 1,…, n − 1. Then T[i, j] = llcs(x[0 … i], y[0 … j]) and llcs(x, y) = T[m − 1, 
n − 1].

Computing T[m − 1, n − 1] can be done by a call to Generic-DP with the following parameters (x, 
m, y, n, Margin-local, Formula-lcs) in O(mn) time and space complexity (see Figures 15.43, 15.47, 
and 15.49).

It is possible afterward to trace back a path from position [m − 1, n − 1] in order to exhibit an lcs(x, y) 
in a similar way as for producing a global alignment (see Figure 15.46).

Example 15.15

The value T[4, 8] = 4 is llcs(x, y) for x = AGCGA and y = CAGATAGAG. String AGGA is an lcs 
of x and y.

T j −1 0 1 2 3 4 5 6 7 8
i C A G A T A G A G

−1 x[i]
y[ j]
0 0 0 0 0 0 0 0 0 0

0 A 0 0 1 1 1 1 1 1 1 1

1 G 0 0 1 2 2 2 2 2 2 2
2 C 0 1 1 2 2 2 2 2 2 2

3 G 0 1 1 2 2 2 2 3 3 3

4 A 0 1 2 2 3 3 3 3 4 4

Formula-lcs(T, x, i, y, j)
1 if x[i] = y[j]
2       then return T[i − 1, j − 1] + 1
3       else return max{T[i − 1, j], T[i, j − 1]}

FIGURE 15.49  Recurrence formula for computing an lcs.
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15.6.4 R educing the Space: Hirschberg Algorithm

If only the length of an lcs(x, y) is required, it is easy to see that only one row (or one column) of the 
table T needs to be stored during the computation. The space complexity becomes O(min(m, n)) as can 
be checked on the algorithm of Figure 15.50. Indeed, the Hirschberg algorithm computes an lcs(x, y) in 
linear space and not only the value llcs(x, y). The computation uses the algorithm of Figure 15.50.

Let us define

	

T i n T m j i m j n

T m i n j x i m

* *

*

[ , ] [ , ] ,

[ , ] (( [

= = ≤ ≤ ≤ ≤

− − = …

0 0 0for and

llcs −− … −

≤ ≤ − ≤ ≤ −

1 1

0 1 0 1

]) ,( [ ]) )R Ry j n

i m j nfor and

and

	
M i T i j T m i n j

j n
( ) max{ [ , ] [ , ]}.*= + − −

≤ <0

where the word wR is the reverse (or mirror image) of the word w. The following property is the key 
observation to compute an lcs(x, y) in linear space:

	 M i T m n i m( ) [ , ], .= − − ≤ <1 1 0for 

In the algorithm shown in Figure 15.51, the integer j is chosen as n/2. After T[i, j − 1] and T*[m − i, n − j] 
(0 ≤ i < m) are computed, the algorithm finds an integer k such that T[i, k] + T*[m − i, n − k] = T[m − 1, 
n − 1]. Then, recursively, it computes an lcs(x[0 … k − 1], y[0 … j − 1]) and an lcs(x[k … m − 1], y[j … n − 1]), 
and concatenates them to get an lcs(x, y).

The running time of the Hirschberg algorithm is still O(mn), but the amount of space required 
for the computation becomes O(min(m, n)) instead of being quadratic when computed by dynamic 
programming.

LLCS(x, m, y, n)
1 for i ← −1 to m − 1
2          do C[i] ← 0
3 for j ← 0 to n − 1
4          do last ← 0
5                for i ← −1 to m − 1
6                         do if last > C[i]
7                                   then C[i] ← last
8                               elseif last < C[i]
9                                   then last ← C[i]
10                               elseif x[i] = y[j]
11                                   then C[i] ← C[i] + 1
12                                             last ← last + 1
13 return C

FIGURE 15.50  O(m)-space algorithm to compute llcs(x, y).
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15.7 A pproximate String Matching

Approximate string matching is the problem of finding all approximate occurrences of a pattern x 
of length m in a text y of length n. Approximate occurrences of x are segments of y that are close 
to x according to a specific distance: the distance between segments and x must be not greater than 
a given integer k. Two distances are considered in this section: the Hamming distance and the 
Levenshtein distance.

With the Hamming distance, the problem is also known as approximate string matching with k mis-
matches. With the Levenshtein distance (or edit distance), the problem is known as approximate string 
matching with k differences.

The Hamming distance between two words w1 and w2 of the same length is the number of positions 
with different characters. The Levenshtein distance between two words w1 and w2 (not necessarily of the 
same length) is the minimal number of differences between the two words. A difference is one of the 
following operations:

•	 A substitution: a character of w1 corresponds to a different character in w2.
•	 An insertion: a character of w1 corresponds to no character in w2.
•	 A deletion: a character of w2 corresponds to no character in w1.

The Shift-Or algorithm of the next section is a method that is both very fast in practice and very easy 
to implement. It solves the Hamming distance and the Levenshtein distance problems. The method for 
the exact string-matching problem is initially described and then it is presented how to handle the cases 
of k mismatches and of k differences. The method is flexible enough to be adapted to a wide range of 
similar approximate matching problems.

15.7.1  Shift-Or Algorithm

An algorithm to solve the exact string-matching problem is first presented that uses a technique different 
from those developed in Section 15.2, but which extends readily to the approximate string-matching problem.

Hirschberg(x, m, y, n)
1 if m = 0
2     then return ε
3     else    if m = 1
4                    then if x[0] ∈ y
5                                  then return x[0]
6                                  else   return ε
7                    else  j ← ⌊n/2⌋
8                              C ← LLCS(x, m, y[0 … j − 1], j)
9                              C* ← LLCS(xR, m, y[j … n − 1]R, n − j)
10                              k ← m − 1
11                              M ← C[m − 1] + C*[m − 1]
12                              for j ← −1 to m − 2
13                                       do if C[j] + C*[j] > M
14                                                  then M ← C[j] + C*[j]
15                                                           k ← j
16                              return Hirschberg(x[0 … k − 1], k, y[0 . . j − 1], j).

                                         Hirschberg(x[k … m − 1], m − k,
                                          y[j … n − 1], n − j)

FIGURE 15.51  O(min(m, n))-space computation of lcs(x, y).
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Let R0 be a bit array of size m. Vector R j
0 is the value of the entire array R0 after text character y[j] has 

been processed (see Figure 15.52). It contains information about all matches of prefixes of x that end at 
position j in the text. It is defined, for 0 ≤ i ≤ m − 1, by

	
R j i

x i y j i j0 0 0

1
[ ]

[ ] [ ],

.
=

… = − …



if

otherwise

Therefore, R j m0 1 0[ ]− =  is equivalent to saying that an (exact) occurrence of the pattern x ends at posi-
tion j in y.

The vector R j
0 can be computed after R j −1

0  by the following recurrence relation:

	
R

R
j

ji
i x i y j0 1

00 1 0

1
[ ]

[ ] [ ] [ ],
=

− = =




−if and

otherwise,

and

	
R j

x y j0 0
0 0

1
[ ]

[ ] [ ],
=

=



if

otherwise.

The transition from R j −1
0  to R j

0 can be computed very fast as follows. For each a ∈ Σ, let Sa be a bit array 
of size m defined, for 0 ≤ i ≤ m − 1, by

	 S i x i aa[ ] [ ] .= =0 iff

The array Sa denotes the positions of the character a in the pattern x. All arrays Sa are preprocessed 
before the search starts. And the computation of R j

0 reduces to two operations, SHIFT and OR:

	 R Rj j y jS0
1

0= −SHIFT OR( ) .[ ]

y
j

x [0]

x [0… 1]

x [0… 2]

x

i = 0

i = 1

i = 2

i = m − 1

1

0

1

0

...
...

...
...

Rj
0

FIGURE 15.52  Meaning of vector R j
0.
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Example 1.16

String x = GATAA occurs at position 2 in y = CAGATAAGAGAA.

SA SC SG ST

1 1 0 1
0 1 1 1
1 1 1 0
0 1 1 1
0 1 1 1

C A G A T A A G A G A A
G 1 1 0 1 1 1 1 0 1 0 1 1
A 1 1 1 0 1 1 1 1 0 1 0 1
T 1 1 1 1 0 1 1 1 1 1 1 1
A 1 1 1 1 1 0 1 1 1 1 1 1
A 1 1 1 1 1 1 0 1 1 1 1 1

15.7.2  String Matching with k Mismatches

The Shift-Or algorithm easily adapts to support approximate string matching with k mismatches. To 
simplify the description, the case where at most one substitution is allowed is presented first.

Arrays R0 and S are used as before, and an additional bit array R1 of size m. Vector R j −1
1  indicates all 

matches with at most one substitution up to the text character y[j − 1]. The recurrence on which the 
computation is based splits into two cases:

•	 There is an exact match on the first i characters of x up to y[j − 1] (i.e., R j i− − =1
0 1 0[ ] ). Then, substi-

tuting x[i] to y[j] creates a match with one substitution (see Figure 15.53). Thus,

	 R Rj ji i1
1

0 1[ ] [ ].= −−

•	 There is a match with one substitution on the first i characters of x up to y[j − 1] and x[i] = y[j]. Then, 
there is a match with one substitution of the first i + 1 characters of x up to y[j] (see Figure 15.54). Thus,

	
R

R
j

ji
i x i y j1 1

1 1

1
[ ]

[ ] [ ] [ ],

.
=

− =




− if

otherwise

y
jj–1

~
i–1 i

FIGURE 15.53  If R j i− − =1
0 1 0[ ]  then R j i1 0[ ]= .

y
j – 1

~

~

j

i – 1 i

FIGURE 15.54  R Rj ji i1
1

1 1[ ] [ ]= −−  if x[i] = y[j].
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This implies that R j
1 can be updated from R j −1

1  by the relation:

	 R Rj j y j jS R1
1

1
1

0= − −( ( ) ) ( ).[ ]SHIFT OR AND SHIFT

Example 1.17

String x = GATAA occurs at positions 2 and 7 in y = CAGATAAGAGAA with no more than 
one mismatch.

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 1 0 1 0 0 1 0 1 0 0
T 1 1 1 1 0 1 1 1 1 0 1 0
A 1 1 1 1 1 0 1 1 1 1 0 1
A 1 1 1 1 1 1 0 1 1 1 1 0

15.7.3  String Matching with k Differences

In this section, it is shown how to adapt the Shift-Or algorithm to the case of only one insertion, and 
then dually to the case of only one deletion. The method is based on the following elements.

One insertion is allowed: here, vector R j −1
1  indicates all matches with at most one insertion up to text 

character y[j − 1]. Entry R j i− − =1
1 1 0[ ]  if the first i characters of x (x[0 … i − 1]) match i symbols of the 

last i + 1 text characters up to y[j − 1]. Array R0 is maintained as before, and array R1 is maintained as 
follows. Two cases arise:

•	 There is an exact match on the first i + 1 characters of x (x[0 … i]) up to y[j − 1]. Then inserting y[j] 
creates a match with one insertion up to y[j] (see Figure 15.55). Thus,

	 R Rj ji i1
1

0[ ] [ ].= −

+y
j–1 j

i

FIGURE 15.55  If R j i− =1
0 0[ ]  then R j i1 0[ ]= .

+y
j–1 j

i–1 i

FIGURE 15.56  R Rj ji i1
1

1 1[ ] [ ]= −−  if x[i] = y[j].
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•	 There is a match with one insertion on the i first characters of x up to y[j − 1]. Then if x[i] = y[j], 
there is a match with one insertion on the first i + 1 characters of x up to y[j] (see Figure 15.56). Thus,

	
R

R
j

ji
i x i y j1 1

1 1

1
[ ]

[ ] [ ] [ ],

.
=

− =




− if

otherwise

This shows that R j
1 can be updated from R j −1

1  with the formula

	 R R Rj j y j jS1
1

1
1

0= − −( ( ) ) .[ ]SHIFT OR AND

Example 1.18

GATAAG is an occurrence of x = GATAA with exactly one insertion in y = CAGATAAGAGAA

C A G A T A A G A G A A
G 1 1 1 0 1 1 1 1 0 1 0 1
A 1 1 1 1 0 1 1 1 1 0 1 0
T 1 1 1 1 1 0 1 1 1 1 1 1
A 1 1 1 1 1 1 0 1 1 1 1 1
A 1 1 1 1 1 1 1 0 1 1 1 1

One deletion is allowed: assume here that R j −1
1  indicates all possible matches with at most one deletion 

up to y[j − 1]. As in the previous solution, two cases arise:

•	 There is an exact match on the first i + 1 characters of x (x[0 … i]) up to y[j] (i.e., R j i0 0[ ] = ). Then, 
deleting x[i] creates a match with one deletion (see Figure 15.57). Thus,

	 R Rj ji i1 0[ ] [ ].=

•	 There is a match with one deletion on the first i characters of x up to y[j − 1] and x[i] = y[j]. Then, 
there is a match with one deletion on the first i + 1 characters of x up to y[j] (see Figure 15.58). Thus,

	
R

R
j

ji
i x i y j1 1

1 1

1
[ ]

[ ] [ ] [ ],

.
=

− =




− if

otherwise

j–1 j

−

y

i–1 i

FIGURE 15.57  If R j i0 0[ ]=  then R j i1 0[ ]= .
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The discussion provides the following formula used to update R j
1 from R j −1

1 :

	 R R Rj j y j jS1
1

1 0= −( ( ) ) ( ).[ ]SHIFT OR AND SHIFT

Example 1.19

GATA and ATAA are two occurrences with one deletion of x = GATAA in y = CAGATAAGAGAA

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 1 0 0 0 0 0 0 0
T 1 1 1 0 0 1 1 1 0 1 0 1
A 1 1 1 1 0 0 1 1 1 1 1 0
A 1 1 1 1 1 0 0 1 1 1 1 1

15.7.4  Wu–Manber Algorithm

In this section, a general solution for the approximate string-matching problem with at most k differ-
ences of the types: insertion, deletion, and substitution is presented. It is an extension of the problems 
presented above. The following algorithm maintains k + 1 bit arrays R0, R1,…, Rk that are described now. 
The vector R0 is maintained similarly as in the exact matching case (Section 15.7.1). The other vectors are 
computed with the formula (1 ≤ ℓ ≤ k)

	

R R

R

R

j j y j

j

j

S� �

�

�

=

( )
( )

( )( )−

−

−
−

SHIFT OR

AND SHIFT

AND SHIFT

A

1

1

1
1

[ ]

NND R j−
−

1
1�

which can be rewritten into
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1
1

1
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−
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FIGURE 15.58  R Rj ji i1
1

1 1[ ] [ ]= −−  if x[i] = y[j].



15-43Pattern Matching and Text Compression Algorithms

Example 15.20

x = GATAA and y = CAGATAAGAGAA and k = 1. The output 5, 6, 7, and 11 corresponds to the 
segments GATA, GATAA, GATAAG, and GAGAA which approximate the pattern GATAA 
with no more than one difference.

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0 0 0 0 0 0
T 1 1 1 0 0 0 1 1 0 0 0 0
A 1 1 1 1 0 0 0 1 1 1 0 0
A 1 1 1 1 1 0 0 0 1 1 1 0

The method, called the Wu–Manber algorithm, is implemented in Figure 15.59. It assumes that the 
length of the pattern is no more than the size of the memory word of the machine, which is often the 
case in applications.

The preprocessing phase of the algorithm takes O(σm + km) memory space, and runs in time 
O(σm + k). The time complexity of its searching phase is O(kn).

15.8 T ext Compression

This section is interested in algorithms that compress texts. Compression serves both to save storage 
space and to save transmission time. Assume that the uncompressed text is stored in a file. The aim of 
compression algorithms is to produce another file containing the compressed version of the same text. 
Methods in this section work with no loss of information, so that decompressing the compressed text 
restores exactly the original text.

WM(x, m, y, n, k)
1    for each character a ∈ Σ
2             do Sa ← 1m

3    for i ← 0 to m − 1
4             do Sx[i][i] ← 0
5    R0 ← 1m

6    for ℓ ← 1 to k
7             do Rℓ ← SHIFT(Rℓ−1)
8    for j ← 0 to n − 1
9             do T ← R0

10                   R0 ← SHIFT(R0)    OR     Sy[j]

11                   for ℓ ← 1 to k
12                          do Tʹ ← Rℓ

13                                Rℓ ← (SHIFT(Rℓ)    OR    Sy[j])    AND
                                             (SHIFT(T    AND    Rℓ−1))    AND    T

14                                T ← Tʹ
15                   if Rk[m − 1] = 0
16                       then Output(j)

FIGURE 15.59  Wu–Manber approximate string-matching algorithm.
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Two main strategies to design the algorithms are applied. The first strategy is a statistical 
method that takes into account the frequencies of symbols to build a uniquely decipherable code 
optimal with respect to the compression. The code contains new codewords for the symbols occur-
ring in the text. In this method, fixed-length blocks of bits are encoded by different codewords. 
A contrario the second strategy encodes variable-length segments of the text. To put it simply, the 
algorithm, while scanning the text, replaces some already read segments just by a pointer to their 
first occurrences.

Text compression software often use a mixture of several methods. An example of that is given in 
Section 15.8.3 which contains in particular two classical simple compression algorithms. They compress 
efficiently only a small variety of texts when used alone. But they become more powerful with the special 
preprocessing presented there.

15.8.1  Huffman Coding

The Huffman method is an optimal statistical coding. It transforms the original code used for charac-
ters of the text (ASCII code on 8 bits, for instance). Coding the text is just replacing each symbol (more 
exactly each occurrence of it) by its new codeword. The method works for any length of blocks (not only 
8 bits), but the running time grows rapidly with the length. In the following, one assumes that symbols 
are originally encoded on 8 bits to simplify the description.

The Huffman algorithm uses the notion of prefix code. A prefix code is a set of words containing no 
word that is a prefix of another word of the set. The advantage of such a code is that decoding is immedi-
ate. Moreover, it can be proved that this type of code does not weaken the compression.

A prefix code on the binary alphabet {0, 1} can be represented by a trie (see Section 15.2.6) that is 
a binary tree. In the present method, codes are complete: they correspond to complete tries (internal 
nodes have exactly two children). The leaves are labeled by the original characters, edges are labeled by 0 
or 1, and labels of branches are the words of the code. The condition on the code implies that codewords 
are identified with leaves only. The convention is adopted that, from an internal node, the edge to its left 
child is labeled by 0, and the edge to its right child is labeled by 1.

In the model where characters of the text are given new codewords, the Huffman algorithm builds a 
code that is optimal in the sense that the compression is the best possible (the length of the compressed 
text is minimum). The code depends on the text, and more precisely on the frequencies of each character 
in the uncompressed text. The more frequent characters are given short codewords, whereas the less 
frequent symbols have longer codewords.

15.8.1.1  Encoding

The coding algorithm is composed of three steps: count of character frequencies, construction of the 
prefix code, and encoding of the text.

The first step consists in counting the number of occurrences of each character in the original text 
(see Figure 15.60). A special end marker (denoted by end) is used, which (virtually) appears only once at 
the end of the text. It is possible to skip this first step if fixed statistics on the alphabet are used. In this 
case, the method is optimal according to the statistics, but not necessarily for the specific text.

Count( fin)
1 for each character a ∈ Σ
2          do freq(a) ← 0
3 while not end of file fin and a is the next symbol
4          do freq(a) ← freq(a) + 1
5 end ← 1

FIGURE 15.60  Counts the character frequencies.
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The second step of the algorithm builds the tree of a prefix code using the character frequency freq(a) 
of each character a in the following way:

•	 Create a one-node tree t for each character a, setting weight(t) = freq(a) and label(t) = a.
•	 Repeat (1), extract the two least-weighted trees t1 and t2 (2) Create a new tree t3 having left subtree 

t1, right subtree t2, and weight weight(t3) = weight(t1) + weight(t2).
	 until only one tree remains.

The tree is constructed by the algorithm Build-tree in Figure 15.61. The implementation uses two 
linear lists. The first list contains the leaves of the future tree, each associated with a symbol. The list is 
sorted in the increasing order of the weight of the leaves (frequency of symbols). The second list con-
tains the newly created trees. Extracting the two least weighted trees consists in extracting the two least 
weighted trees among the two first trees of the list of leaves and the two first trees of the list of created 
trees. Each new tree is inserted at the end of the list of the trees. The only tree remaining at the end of 
the procedure is the coding tree.

After the coding tree is built, it is possible to recover the codewords associated with characters by a 
simple depth-first search of the tree (see Figure 15.62); codeword(a) is then the binary code associated 
with the character a.

In the third step, the original text is encoded. Since the code depends on the original text, in order 
to be able to decode the compressed text, the coding tree and the original codewords of symbols must 

Build-tree()
1 for each character a ∈ Σ ∪ {end}
2         do if freq(a) ≠ 0
3                   then create a new node t
4                             weight(t) ← freq(a)
5                             label(t) ← a
6 lleaves ← list of all the nodes in increasing order of weight
7 ltrees ← empty list
8 while Length(lleaves) + Length(ltrees) > 1
9         do (ℓ, r) ← extract the two nodes of smallest weight (among the two nodes

                            at the beginning of lleaves and the two nodes at the beginning of ltrees)
10               create a new node t
11               weight(t) ← weight(ℓ) + weight(r)
12               left(t) ← ℓ
13               right(t) ← r
14               insert t at the end of ltrees
15 return t

FIGURE 15.61  Builds the coding tree.

Build-code(t, length)
1 if t is not a leaf
2     then temp[length] ← 0
3               Build-code(left(t), length + 1)
4               temp[length] ← 1
5               Build-code(right(t), length + 1)
6     else  codeword(label(t)) ← temp[0 … length − 1]

FIGURE 15.62  Builds the character codes from the coding tree.
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be stored with the compressed text. This information is placed in a header of the compressed file, to be 
read at decoding time just before the compressed text. The header is made via a depth-first traversal of 
the tree. Each time an internal node is encountered a 0 is produced. When a leaf is encountered, a 1 is 
produced followed by the original code of the corresponding character on 9 b (so that the end marker 
can be equal to 256 if all the characters appear in the original text). This part of the encoding algorithm 
is shown in Figure 15.63.

After the header of the compressed file is computed, the encoding of the original text is realized by 
the algorithm of Figure 15.64.

A complete implementation of the Huffman algorithm, composed of the three steps just described, is 
given in Figure 15.65.

Example 1.21

y = CAGATAAGAGAA. The length of y = 12 × 8 = 96 bits (assuming an 8-bit code). The char-
acter frequencies are

�e di�erent steps during the construction of the coding tree are

endTGCA
111 37

1 1 1 3 7 1 2 3 7

C T end G A end 1 1 G A
C T

Code-tree( fout, t)
1 if t is not a leaf
2     then write a 0 in the file fout
3               Code-tree( fout, left(t))
4               Code-tree( fout, right(t))
5     else   write a 1 in the file fout
6                write the original code of label(t) in the file fout

FIGURE 15.63  Memorizes the coding tree in the compressed file.

Code-text( fin, fout)
1 while not end of file fin and a is the next symbol
2          do write codeword(a) in the file fout
3 write codeword(end) in the file fout

FIGURE 15.64  Encodes the characters in the compressed file.

Coding( fin, fout)
1 Count( fin)
2 t ← Build-tree()
3 Build-code(t, 0)
4 Code-tree( fout, t)
5 Code-text( fin, fout)

FIGURE 15.65  Complete function for Huffman coding.
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3 3 7 6 7
1 2 G A 3 3 A






1 1 1 2 G
C T 1 1

C T

13

6 7
3 3 A

1 2 G
1 1
C T

character codewords:
The encoded tree is 0001 binary (end, 9)01binary (C, 9)1binary(T, 9) 1binary (G, 9)1binary 

(A, 9), which produces a header of length 54 bits,

0001 100000000 01 001000011 1 001010100 1 001000111 1 001000001
The encoded text

0010 1 01 1 0011 1 1 01 1 01 1 1 000
is of length 24 bits. The total length of the compressed file is 78 bits.

TGCA
00000110010 011

The construction of the tree takes O(σ log σ) time if the sorting of the list of the leaves is implemented 
efficiently. The rest of the encoding process runs in linear time in the sum of the sizes of the original and 
compressed texts.

15.8.1.2  Decoding

Decoding a file containing a text compressed by the Huffman algorithm is a mere programming exer-
cise. First, the coding tree is rebuilt by the algorithm of Figure 15.66. Then, the uncompressed text is 

Rebuild-tree( fin, t)
1 b ← read a bit from the file fin
2 if b = 1                                                     ⊳ leaf
3      then left(t) ← nil
4               right(t) ← nil
5               label(t) ← symbol corresponding to

                             the 9 next bits in the file fin
6      else  create a new node ℓ
7               left(t) ← ℓ
8               Rebuild-tree( fin, ℓ)
9               create a new node r

10               right(t) ← r
11               Rebuild-tree( fin, r)

FIGURE 15.66  Rebuilds the tree read from the compressed file.
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recovered by parsing the compressed text with the coding tree. The process begins at the root of the cod-
ing tree and follows a left edge when a 0 is read or a right edge when a 1 is read. When a leaf is encoun-
tered, the corresponding character (in fact, the original codeword of it) is produced and the parsing 
phase resumes at the root of the tree. The parsing ends when the codeword of the end marker is read. An 
implementation of the decoding of the text is presented in Figure 15.67.

The complete decoding program is given in Figure 15.68. It calls the preceding functions. The run-
ning time of the decoding program is linear in the sum of the sizes of the texts it manipulates.

15.8.2  Lempel–Ziv–Welsh (LZW) Compression

Ziv and Lempel designed a compression method using encoding segments. These segments are stored in 
a dictionary that is built during the compression process. When a segment of the dictionary is encoun-
tered later while scanning the original text, it is substituted by its index in the dictionary. In the model 
where portions of the text are replaced by pointers on previous occurrences, the Ziv–Lempel compres-
sion scheme can be proved to be asymptotically optimal (on large enough texts satisfying good condi-
tions on the probability distribution of symbols).

The dictionary is the central point of the algorithm. It has the property of being prefix closed 
(every prefix of a word of the dictionary is in the dictionary), so that it can be implemented as a tree. 
Furthermore, a hashing technique makes its implementation efficient. The version described in this sec-
tion is called the Lempel–Ziv–Welsh (LZW) method after several improvements introduced by Welsh. 
The algorithm is implemented by the compress command existing under the UNIX operating system.

15.8.2.1  Compression Method

The scheme of the compression method is first described. The dictionary is initialized with all the char-
acters of the alphabet. The current situation is when one has just read a segment w in the text. Let a be 
the next symbol (just following w). Then the methods proceed as follows:

•	 If wa is not in the dictionary, write the index of w to the output file, and add wa to the dictionary. 
Then w is reset to a and process the next symbol (following a).

•	 If wa is in the dictionary, process the next symbol, with segment wa instead of w.

Initially, the segment w is set to the first symbol of the source text.

Decode-text( fin, fout, root)
1 t ← root
2 while label(t) ≠ end
3         do if t is a leaf
4                   then label(t) in the file fout
5                            t ← root
6                   else  b ← read a bit from the file fin
7                             if b = 1
8                                 then t ← right(t)
9                                 else       t ← left(t)

FIGURE 15.67  Reads the compressed text and produces the uncompressed text.

Decoding( fin, fout)
1 create a new node root
2 Rebuild-tree( fin, root)
3 Decode-text( fin, fout, root)

FIGURE 15.68  Complete function for Huffman decoding.
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Example 1.22

Here y = CAGTAAGAGAA

C A G T A A G A G A A w out added
↑ C 67 CA, 257

↑ A 65 AG, 258
↑ G 71 GT, 259

↑ T 84 TA, 260
↑ A 65 AA, 261

↑ A
↑ AG 258 AGA, 262

↑ A
↑ AG

↑ AGA 262 AGAA, 262
↑ A

65
256

15.8.2.2  Decompression Method

The decompression method is symmetrical to the compression algorithm. The dictionary is recovered 
while the decompression process runs. It is basically done in this way:

•	 Read a code c in the compressed file.
•	 Write in the output file the segment w which has index c in the dictionary.
•	 Add to the dictionary the word wa where a is the first letter of the next segment.

In this scheme, a problem occurs if the next segment is the word which is being built. This arises only 
if the text contains a segment azazax for which az belongs to the dictionary but aza does not. During the 
compression process, the index of az is written into the compressed file, and aza is added to the diction-
ary. Next, aza is read and its index is written into the file. During the decompression process, the index 
of aza is read while the word az has not been completed yet: the segment aza is not already in the dic-
tionary. However, since this is the unique case where the situation arises, the segment aza is recovered 
taking the last segment az added to the dictionary concatenated with its first letter a.

Example 15.23

Here the decoding is 67, 65, 71, 84, 65, 258, 262, 65, 256

read written added
67 C
65 A CA, 257
71 G AG, 258
84 T GT, 259
65 A TA, 260

258 AG AA, 261
262 AGA AGA, 262

65 A AGAA, 263
256
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15.8.2.3  Implementation

For the compression algorithm shown in Figure 15.69, the dictionary is stored in a table D. The diction-
ary is implemented as a tree; each node z of the tree has the three following components:

•	 parent(z) is a link to the parent node of z.
•	 label(z) is a character.
•	 code(z) is the code associated with z.

The tree is stored in a table that is accessed with a hashing function. This provides fast access to the 
children of a node. The procedure Hash-insert((D, (p, a, c))) inserts a new node z in the dictionary D 
with parent(z) = p, label(z) = a, and code(z) = c. The function Hash-search((D, (p, a))) returns the node 
z such that parent(z) = p and label(z) = a.

For the decompression algorithm, no hashing technique is necessary. Having the index of the next 
segment, a bottom-up walk in the trie implementing the dictionary produces the mirror image of the 
segment. A stack is used to reverse it. Assume that the function string(c) performs this specific work for 
a code c. The bottom-up walk follows the parent links of the data structure. The function first(w) gives 
the first character of the word w. These features are part of the decompression algorithm displayed in 
Figure 15.70.

The Ziv–Lempel compression and decompression algorithms run both in linear time in the sizes 
of the files provided a good hashing technique is chosen. Indeed, it is very fast in practice. Its 
main advantage compared to Huffman coding is that it captures long repeated segments in the 
source file.

15.8.3  Mixing Several Methods

Simple compression methods, basis of the popular bzip software are described and then an example of 
a combination of several of them.

Compress( fin, fout)
1 count ← −1
2 for each character a ∈ Σ
3          do count ← count + 1
4                Hash-insert(D, (−1, a, count))
5 count ← count + 1
6 Hash-insert(D, (−1, end, count))
7 p ← −1
8 while not end of file fin
9          do a ← next character of fin

10                q ← Hash-search(D, (p, a))
11                if q = nil
12                    then write code(p) on 1 + log(count) bits in fout
13                              count ← count + 1
14                              Hash-insert(D, (p, a, count))
15                              p ← Hash-search(D, (−1, a))
16                    else p ← q
17 write code(p) on 1 + log(count) bits in fout
18 write code(Hash-search(D, (−1, end))) on 1 + log(count) bits in fout

FIGURE 15.69  LZW compression algorithm.
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15.8.3.1 R un Length Encoding

The aim of Run Length Encoding (RLE) is to efficiently encode repetitions occurring in the input data. 
Let us assume that it contains a good quantity of repetitions of the form aa … a for some character a (a ∈ Σ). 
A repetition of k consecutive occurrences of letter a is replaced by &ak, where the symbol & is a new char-
acter (& ∉ Σ).

The string &ak that encodes a repetition of k consecutive occurrences of a is itself encoded on the 
binary alphabet {0, 1}. In practice, letters are often represented by their ASCII code. Therefore, the code-
word of a letter belongs to {0, 1}k with k = 7 or 8. Generally, there is no problem in choosing or encoding 
the special character &. The integer k of the string &ak is also encoded on the binary alphabet, but it is not 
sufficient to translate it by its binary representation, because one would be unable to recover it at decoding 
time inside the stream of bits. A simple way to cope with this is to encode k by the string 0ℓbin(k), where 
bin(k) is the binary representation of k, and ℓ is the length of it. This works well because the binary repre-
sentation of k starts with a 1 so there is no ambiguity to recover ℓ by counting during the decoding phase. 
The size of the encoding of k is thus roughly 2 log k. More sophisticated integer representations are pos-
sible, but none is really suitable for the present situation. Simpler solution consists in encoding k on the 
same number of bits as other symbols, but this bounds values of ℓ and decreases the power of the method.

15.8.3.2  Move to Front

The Move To Front (MTF) method may be regarded as an extension of RLE or a simplification of 
Ziv–Lempel compression. It is efficient when the occurrences of letters in the input text are localized 
into relatively short segment of it. The technique is able to capture the proximity between occur-
rences of symbols and to turn it into a short encoded text.

Uncompress( fin, fout)
1 count ← −1
2 for each character a ∈ Σ
3         do count ← count + 1
4               Hash-insert(D, (−1, a, count))
5 count ← count + 1
6 Hash-insert(D, (−1, end, count))
7 c ← first code on 1 + log(count) bits in fin
8 write string(c) in fout
9 a ← first(string(c))

10 while true
11         do d ← next code on 1 + log(count) bits in fin
12               if d > count
13                  then count ← count + 1
14                            parent(count) ← c
15                            label(count) ← a
16                            write string(c)a in fout
17                            c ← d
18                  else   a ← first(string(d))
19                            if a ≠ end
20                                then count ← count + 1
21                                          parent(count) ← c
22                                          label(count) ← a
23                                          write string(d) in fout
24                                          c ← d
25                                else   break

FIGURE 15.70  LZW decompression algorithm.
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Letters of the alphabet Σ of the input text are initially stored in a list that is managed dynamically. 
Letters are represented by their rank in the list, starting from 1, rank that is itself encoded as described 
above for RLE.

Letters of the input text are processed in an online manner. The clue of the method is that each letter 
is moved to the beginning of the list just after it is translated by the encoding of its rank.

The effect of MTF is to reduce the size of the encoding of a letter that reappears soon after its preced-
ing occurrence.

15.8.3.3  Integrated Example

Most compression software combine several methods to be able to compress efficiently a large range of 
input data. An example of this strategy, implemented by the UNIX command bzip, is presented.

Let y = y[0]y[1] ⋯ y[n − 1] be the input text. The k-th rotation (or conjugate) of y, 0 ≤ k ≤ n − 1, is the 
string yk = y[k]y[k + 1] ⋯ y[n − 1]y[0]y[1] ⋯ y[k − 1].

The BW transformation is defined as BW(y) = y[p0]y[p1] ⋯ y[pn−1], where pi + 1 is such that y pi +1 has 
rank i in the sorted list of all rotations of y.

It is remarkable that y can be recovered from both BW(y) and a position on it, starting position of the 
inverse transformation (see Figure 15.71). This is possible due to the following property of the transfor-
mation. Assume that i < j and y[pi] = y[pj] = a. Since i < j, the definition implies y yp pi j+ +<1 1. Since 
y[pi] = y[pj], transferring the last letters of y pi +1 and y pj +1 to the beginning of these words does not change 
the inequality. This proves that the two occurrences of a in BW(y) are in the same relative order as in 
the sorted list of letters of y. Figure 15.71 illustrates the inverse transformation. Top line is BW(y) and 
bottom line the sorted list of letters of it. Top-down arrows correspond to succession of occurrences in 
y. Each bottom-up arrow links the same occurrence of a letter in y. Arrows starting from equal letters do 
not cross. The circular path is associated with rotations of the string y. If the starting point is known, the 
only occurrence of letter b here, following the path, produces the initial string y.

Transformation BW obviously does not compress the input text y. But BW(y) is compressed more 
efficiently with simple methods. This is the strategy applied for the command bzip. It is a combination 
of the BW transformation followed by MTF encoding and RLE encoding. Arithmetic coding, a method 
providing compression ratios slightly better than Huffman coding, may also be used.

Table 15.1 contains a sample of experimental results showing the behavior of compression algorithms 
on different types of texts from the Calgary Corpus: bib (bibliography), book1 (fiction book), news 
(USENET batch file), pic (black and white fax picture), progc (source code in C), and trans (tran-
script of terminal session).

r b c a c a a

a a a b c c r

FIGURE 15.71  BW(baccara).

TABLE 15.1  Compression Results with Three Algorithms: Huffman Coding 
(pack), Ziv–Lempel Coding (gzip-b), and Burrows–Wheeler Coding (bzip2-1)

Bytes
Texts

111, 261
bib

768, 771
book1

377, 109
news

513, 216
pic

39, 611
progc

93, 695
trans Average

pack 5.24 4.56 5.23 1.66 5.26 5.58 4.99
gzip-b 2.51 3.25 3.06 0.82 2.68 1.61 2.69
bzip2-1 2.10 2.81 2.85 0.78 2.53 1.53 2.46
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The compression algorithms reported in the table are: the Huffman coding algorithm implemented by 
pack, the Ziv–Lempel algorithm implemented by gzip-b, and the compression based on the BW trans-
form implemented by bzip2-1. Figures give the number of bits used per character (letter). They show 
that pack is the less efficient method and that bzip2-1 compresses a bit more than gzip-b. Additional 
compression results can be found at http://corpus.canterbury.ac.nz.

15.9 R esearch Issues and Summary

The algorithm for string searching by hashing was introduced by Harrison in 1971, and later fully ana-
lyzed by Karp and Rabin (1987).

The linear-time string-matching algorithm of Knuth, Morris, and Pratt is from 1976. It can be proved 
that, during the search, a character of the text is compared to a character of the pattern no more than 
logΦ(|x| + 1) (where Φ is the golden ratio ( )1 5 2+ / ). Simon (1993) gives an algorithm similar to the 
previous one but with a delay bounded by the size of the alphabet (of the pattern x). Hancart (1993) 
proves that the delay of Simon’s algorithm is, indeed, no more than 1 + log2|x|. He also proves that this 
is optimal among algorithms searching the text through a window of size 1.

Galil (1981) gives a general criterion to transform searching algorithms of that type into real-time 
algorithms.

The BM algorithm was designed by Boyer and Moore (1977). The first proof of its linearity when 
restricted to the search for the first pattern occurrence is by Knuth et al. (1977). Cole (1994) proves that 
the maximum number of symbol comparisons is bounded by 3n, and that this bound is tight.

Knuth et al. (1977) consider a variant of the BM algorithm in which all previous matches inside the cur-
rent window are memorized. Each window configuration becomes the state of what is called the BM autom-
aton. It is still unknown whether the maximum number of states of the automaton is polynomial or not.

Several variants of the BM algorithm avoid the quadratic behavior when searching for all occurrences 
of the pattern. Among the more efficient in terms of the number of symbol comparisons are: the algo-
rithm of Apostolico and Giancarlo (1986), Turbo–BM algorithm by Crochemore et al. (1992) (the two 
algorithms are analyzed in Lecroq (1995)), and the algorithm of Colussi (1994).

The general bound on the expected time complexity of string matching is O(|y| log |x|/|x|). The proba-
bilistic analysis of a simplified version of the BM algorithm, similar to the QS algorithm of Sunday 
(1990) described in the chapter, was studied by several authors.

String searching can be solved by a linear-time algorithm requiring only a constant amount of mem-
ory in addition to the pattern and the (window on the) text. This can be proved by different techniques 
presented in Crochemore and Rytter (2002).

Experimental results presented in this chapter have been realized using SMART (String Matching 
Algorithms Research Tool, http://www.dmi.unict.it/∼faro/smart/) by Faro and Lecroq (2011). An 
exhaustive experimental study can be found in Faro and Lecroq (2010).

The Aho–Corasick algorithm is from Aho and Corasick (1975). It is implemented by the fgrep com-
mand under the UNIX operating system. Commentz-Walter (1979) has designed an extension of the 
BM algorithm to several patterns. It is fully described in Aho (1990).

On general alphabets, the two-dimensional pattern matching can be solved in linear time, whereas 
the running time of the Bird–Baker algorithm (Baker, 1978; Bird, 1977) has an additional log σ factor. It 
is still unknown whether the problem can be solved by an algorithm working simultaneously in linear 
time and using only a constant amount of memory space (see Crochemore and Rytter, 2002).

The suffix tree construction of Section 15.4 is by McCreight (1976). An online construction is given by 
Ukkonen (1995). Other data structures to represent indexes on text files are: direct acyclic word graph 
(Blumer et al., 1985), suffix automata (Crochemore, 1986), and suffix arrays (Manber and Myers, 1993). 
All these techniques are presented in Crochemore and Rytter (2002). The Zhu-Takakoka was published in 
Zhu and Takaoka (1989). The data structures implement full indexes with standard operations, whereas 
applications sometimes need only incomplete indexes. The design of compact indexes is still unsolved.
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The suffix array of a string, with the associated search algorithm based on the knowledge of the com-
mon prefixes (Section 15.5), is from Manber and Myers (1993). The suffix array construction in Section 
15.5.1 is from Kärkkäinen and Sanders (2003) (see also Kim et al., 2003; Ko and Aluru, 2003). The 
method used in Section 15.5.3 to compute the longest common prefixes of sorted suffixes is from Kasai 
et al. (2001).

First algorithms for aligning two sequences are by Needleman and Wunsch (1970) and Wagner and 
Fischer (1974). Idea and algorithm for local alignment is by Smith and Waterman (1981). Hirschberg 
(1975) presents the computation of the lcs in linear space. This is an important result because the algo-
rithm is classically run on large sequences. Another implementation is given in Durbin et al. (1998). 
The quadratic time complexity of the algorithm to compute the Levenshtein distance is a bottleneck in 
practical string comparison for the same reason.

Approximate string searching is a lively domain of research. It includes, for instance, the notion of 
regular expressions to represent sets of strings. Algorithms based on regular expression are commonly 
found in books related to compiling techniques. The algorithms of Section 15.7 are by Baeza-Yates and 
Gonnet (1992) and Wu and Manber (1992).

The statistical compression algorithm of Huffman (1951) has a dynamic version where symbol count-
ing is done at coding time. The current coding tree is used to encode the next character and then updated. 
At decoding time, a symmetrical process reconstructs the same tree, so the tree does not need to be stored 
with the compressed text, see Knuth (1985). The command compact of UNIX implements this version.

Several variants of the Ziv and Lempel algorithm exist. The reader can refer to Bell et al. (1990) for a 
discussion on them (see Welch [1984], for instance). Nelson (1992) presents practical implementations of 
various compression algorithms. The BW transform is from Burrows and Wheeler (1994).

Key Terms

Alignment: An alignment of two strings x and y is a word of the form (x–0, y–0)(x–1, y–1) ⋯ (x–p−1, y–p−1) 
where each (x–i, y–i) ∈ (Σ ∪ {ε}) × (Σ ∪ {ε})\({(ε, ε)} for 0 ≤ i ≤ p − 1 and both x = x–0x–1 ⋯ x–p−1 
and y = y–0y–1 ⋯ y–p−1.

Border: A word u ∈ Σ* is a border of a word w ∈ Σ* if u is both a prefix and a suffix of w (there exist two 
words v, z ∈ Σ* such that w = vu = uz). The common length of v and z is a period of w.

Edit distance: The metric distance between two strings that counts the minimum number of insertions 
and deletions of symbols to transform one string into the other.

Hamming distance: The metric distance between two strings of same length that counts the number 
of mismatches.

Levenshtein distance: The metric distance between two strings that counts the minimum number of 
insertions, deletions, and substitutions of symbols to transform one string into the other.

Occurrence: An occurrence of a word u ∈ Σ*, of length m, appears in a word w ∈ Σ*, of length n, at posi-
tion i if for 0 ≤ k ≤ m − 1, u[k] = w[i + k].

Prefix: A word u ∈ Σ* is a prefix of a word w ∈ Σ* if w = uz for some z ∈ Σ*.
Prefix code: Set of words such that no word of the set is a prefix of another word contained in the set. A 

prefix code is represented by a coding tree.
Segment: A word u ∈ Σ* is a segment of a word w ∈ Σ* if u occurs in w (see occurrence), that is, w = vuz 

for two words v, z ∈ Σ* (u is also referred to as a factor or a subword of w).
Subsequence: A word u ∈ Σ* is a subsequence of a word w ∈ Σ* if it is obtained from w by deleting zero 

or more symbols that need not be consecutive (u is sometimes referred to as a subword of w, 
with a possible confusion with the notion of segment).

Suffix: A word u ∈ Σ* is a suffix of a word w ∈ Σ* if w = vu for some v ∈ Σ*.
Suffix tree: Trie containing all the suffixes of a word.
Trie: Tree in which edges are labeled by letters or words.
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Further Information

Problems and algorithms presented in the chapter are just a sample of questions related to pattern 
matching. They share the formal methods used to design solutions and efficient algorithms. A wider 
panorama of algorithms on texts may be found in a few books such as:

Adjeroh, D., Bell, T., and Mukherjee, A. 2008. The Burrows-Wheeler Transform: Data Compression, Suffix 
Arrays, and Pattern Matching. Springer Verlag, Heidelberg, Germany.

Apostolico, A. and Galil, Z., eds. 1997. Pattern Matching Algorithms. Oxford University Press, New York.
Bell, T. C., Cleary, J. G., and Witten, I. H. 1990. Text Compression. Prentice-Hall, Englewood Cliffs, NJ.
Crochemore, M., Hancart, C., and Lecroq, T. 2007. Algorithms on Strings. Cambridge University Press, 

Cambridge, U.K.
Crochemore, M. and Rytter, W. 2002. Jewels of Stringology. World Scientific, Singapore.
Gusfield D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Computational 

Biology. Cambridge University Press, Cambridge, U.K.
Navarro, G. and Raffinot M. 2002. Flexible Pattern Matching in Strings: Practical On-line Search Algorithms 

for Texts and Biological Sequences. Cambridge University Press, Cambridge.
Nelson, M. 1992. The Data Compression Book. M&T Books, New York.
Salomon, D. 2000. Data Compression: The Complete Reference. Springer Verlag, New York.
Smyth, W. F. 2003. Computing Patterns in Strings. Addison-Wesley Longman, Harlow, U.K.
Stephen, G. A. 1994. String Searching Algorithms. World Scientific Press, Singapore.
Research papers in pattern matching are disseminated in a few journals, among which are: Communications 

of the ACM, Journal of the ACM, Theoretical Computer Science, Algorithmica, Journal of Algorithms, 
SIAM Journal on Computing, Journal of Discrete Algorithms.

Finally, three main annual conferences present the latest advances of this field of research: Combinatorial 
Pattern Matching, which started in 1990. Data Compression Conference, which is regularly held at 
Snowbird. The scope of SPIRE (String Processing and Information Retrieval) includes the domain 
of data retrieval.

General conferences in computer science often have sessions devoted to pattern matching algorithms.
Several books on the design and analysis of general algorithms contain chapters devoted to algorithms on 

texts. Here is a sample of these books:
Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT Press, 

Boston, MA.
Gonnet, G. H. and Baeza-Yates, R. A. 1991. Handbook of Algorithms and Data Structures. Addison-Wesley, 

Boston, MA.
Animations of selected algorithms may be found at:

•	 http://www-igm.univ-mlv.fr/∼lecroq/string/ (Exact String Matching Algorithms),
•	 http://www-igm.univ-mlv.fr/∼lecroq/seqcomp/ (Alignments).
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16.1  Introduction

One of the key trends in computing over the past two decades, both at the level of large-scale and 
small-scale systems, has been distribution. At one extreme, given the advent of new paradigms such as 
cloud computing, utility computing, and social networks, large-scale software systems are now rou-
tinely distributed over several machines or clusters of machines, which can in turn be spread over large 
geographic regions.

At the other extreme, that is, at the processor level, recent years have shown an industry shift towards 
multicore architectures. In particular, due to technological limitations, processor manufacturers were 
forced to stop increasing processor clock speeds and instead started providing more processing units 
or cores as part of a single processor. This change, known as the multicore revolution, implies that soft-
ware applications must be designed with parallelism in mind, to exploit the extra computing power of 
multiple cores.

Given this broad shift toward distributed computing, understanding the power and limitations of 
computation in a distributed setting is one of the major challenges in modern Computer Science. This 
challenge has prompted researchers to look for common frameworks to specify distributed algorithms 
and compare their performance. For classical centralized algorithms such analytical tools have already 
been in place for decades. This guided the design of efficient algorithms for practical problems and pro-
vided an understanding of the inherent limitations of classical computing in terms of lower bounds and 
NP-completeness.

Research in distributed computing aims to provide the formal models and analytic tools for under-
standing problems arising when computation is performed on a set of devices, connected through a net-
work or located on the same chip. In particular, distributed computing identifies fundamental problems 
that appear in practical distributed systems, states them formally, and provides algorithms and lower 
bounds for these problems.

16
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One of the key differences from centralized computing is that there is no single, universal model of 
computation for distributed computing. This is because distributed systems vary significantly in terms 
of the communication primitives or timing guarantees that the system provides. Another important 
distinction is fault-tolerance: In centralized computing, it is generally assumed that the underlying 
(Turing) machine always functions properly, following its algorithm. On the other hand, distributed 
algorithms model the fact that single computing agents may be unreliable and are usually designed to 
deal with crashes of the individual units of computation or even with agents that act maliciously in order 
to influence the global computation. In some sense, the multiplicity of Turing machines calls for a new 
notion of computation that tolerates the unreliability of some of these machines.

Even though there may never be a single unified model for distributed computing, there does, 
however, exist a set of core problems that keep reoccurring in distributed systems, irrespective of their 
architecture. The focus of research is on the solvability and complexity of such fundamental problems 
under various timing and failure guarantees.

In this chapter, we give an overview of the core principles of distributed computing and pres-
ent some of the field’s fundamental results. We then survey some of the practical applications of 
the research and give an overview of the major challenges that the field will face in the near future. 
Since distributed computing is an extremely active research area, our presentation is not meant to be 
exhaustive. We just scratch the surface, in the hope that the reader will find it appealing to explore the 
field in more depth.

16.2  Underlying Principles

Over the past 30 years, distributed computing has emerged as a coherent research field. In general, the 
style of work follows a pattern: The field first abstracts problems and models relevant for practical sys-
tems, then develops algorithms to solve these problems, or proves impossibility results that characterize 
the feasibility and complexity of the problem at hand. In case the problem is proved to be unsolvable 
in a given setting, research focuses on ways to circumvent the impossibility by restricting the model or 
relaxing the problem requirements.

In the rest of this section, we present some of the fundamental notions underlying distributed com-
puting and isolate the key questions that the field aims to answer. We illustrate the pattern of research 
outlined above by discussing some canonical distributed problems and outline some of the main results 
and research directions in the area.

16.2.1  Basic Notions

The fundamental concept in distributed computing is the process, that is, a sequential computing device, 
which executes a distributed algorithm.* In particular, a process is the functional equivalent of a sequen-
tial Turing machine; by extension, a distributed system can be seen as a collection of communicating 
Turing machines. In a distributed system, each process runs an instance of a distributed algorithm, with 
a limited amount of information about the state of the whole system.

Processes communicate with each other and gain information about the system by performing opera-
tions on shared objects, that is, abstractions that can be accessed by multiple processes. Examples of 
elementary shared objects are registers, that is, units of shared memory holding information, which can 
be read or written by multiple processes, and communication channels, which processes can use to send 
messages to each other. These basic communication primitives provided by hardware are also called 
base objects. Depending on the type of communication primitives available, distributed systems can be 
classified as either shared-memory or message-passing systems.†

*	 Some texts, for example [80], use the term processor instead of process.
†	 Under certain conditions, shared-memory and message-passing systems can be shown to be computationally equivalent [9].
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Processes may be faulty, that is, may deviate from their algorithm. Such faulty behavior includes 
crash faults, where the process stops executing the algorithm after a certain point. Failures can also be 
Byzantine, in which case processes may behave arbitrarily; in particular, they might behave maliciously, 
attempting to manipulate the distributed computation. Research also considers failures of the commu-
nication mechanisms, such as message loss or memory corruption.

The timing behavior of processes and their faults are typically assumed to be under the control of 
an external abstraction called a scheduler, which is independent from the processes. In particular, the 
scheduler decides the order in which processes take steps and the timing of their faults. Since we focus 
on the correctness and worst-case behavior of algorithms, the scheduler is generally assumed to be 
adversarial. The most general scheduler is asynchronous, that is, does not assume any bound on the rela-
tive speeds of processes, and thus allows arbitrary interleavings of process steps.

Algorithms that guarantee termination in an asynchronous model in which all but one process may 
crash are called wait-free; such algorithms ensure progress without making any assumptions on the 
timing behavior of processes. Even though in typical real-world systems it is possible to make stronger 
timing assumptions, wait-free algorithms have the advantage of being general and portable; in particu-
lar, they are guaranteed to run correctly in systems with arbitrary timing guarantees.

16.2.2  Fundamental Questions

Roughly speaking, the key question in distributed computing is that of computability:

Given a set of processes communicating through shared objects, what abstractions can be imple-
mented on top of these objects?

In a broad sense, the objective is to raise the level of abstraction that a distributed system can provide, 
beyond the fundamental message-passing or shared-memory primitives generally available in hard-
ware.* A distributed algorithm typically has at its disposal a set of base objects (basic primitives ensured 
by shared-memory or communication channels) and lower level shared objects (in turn, these may be 
composed of other base and shared objects, and so on). The problem is to correctly implement a higher-
level abstraction on top of these objects, in spite of timing anomalies and process faults. This would then 
allow programmers to use such abstractions to build specific applications.

Once we know what abstractions can be implemented in a distributed system, a second fundamental 
question is that of complexity:

Given a distributed abstraction, what is the minimal cost of implementing it out of a set of lower-level 
shared objects?

Several cost metrics may be of interest, such as the number of shared object accesses (the counterpart of 
sequential time complexity) or the number of shared objects that need to be allocated (the counterpart 
of sequential space complexity). Complexity is characterized by giving algorithms that minimize the cost 
and lower bounds that demonstrate inherent cost requirements. In general, distributed computing is inter-
ested in characterizing worst-case complexity, that is, the executions in which the cost is maximized; practical 
implementations sometimes focus on improving complexity in the average case or in certain common cases.

16.2.3  Fundamental Results

As we pointed out in the previous section, research in distributed computing follows a general pattern. 
In particular, it isolates models and problems of interest for distributed systems practitioners, abstracts 
them, and then studies the solvability and complexity of fundamental abstractions in general models. In 
case an abstraction cannot be implemented, research investigates ways to circumvent the impossibility.

*	 In the sequential world, the same role is played by data structures such as queues, stacks, sets, etc.
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In the following, we illustrate this pattern by considering state machine replication and consensus as 
examples of such canonical problems. Along the way, we will describe some of the fundamental tech-
niques and research directions underlying distributed computing.

16.2.3.1  Identifying the Practical Problem

A replicated state machine (RSM) [73,87] is the distributed equivalent of a highly available Turing machine, 
as it requires a set of processes to maintain a coherent state machine in a distributed, fault-tolerant fashion.

This problem is motivated by the observation that distributed software is often structured in terms 
of clients and services. A software service, such as a bank’s web service, comprises one or more servers 
and exports operations that clients invoke by making requests. To ensure availability under high load 
or failures, multiple servers that fail independently have to be used, maintaining a consistent version of 
the service via a distributed protocol. These independent servers are called replicas, implementing the 
distributed service that is maintained as a RSM. (See Figure 16.1 for an illustration.)

16.2.3.2  Determining the Fundamental Abstraction

Several fundamental results, for example, [61,73], show that a RSM is computationally equivalent to the 
consensus problem. In this problem, a set of processes, each proposing a value, must agree on the same 
output from the values proposed. Formally, consensus is defined as follows.

Definition 16.1  (Consensus)

The consensus problem exports a propose operation, which takes as input an integer value. Each process 
pi calls propose with its proposal value vi as argument. The consensus object requires every nonfaulty 
process to eventually output a single output (the termination condition), such that all outputs are equal 
(the agreement condition). To avoid trivial solutions, the common output decided has to be the input of 
some process (the validity condition).

The intuition behind the transformation is given in Figure 16.2. The equivalence between RSM 
and consensus is important, since it suggests that, given consensus, any object representable as a state 
machine has a distributed implementation.

Reply
Request

Replicated state machineClient

FIGURE 16.1  A distributed Turing machine implemented as a replicated state machine (RSM). The protocol must 
maintain the illusion of a centralized Turing machine, even though the implementation is distributed over multiple 
sequential machines, some of which may be subject to crash faults or malicious (Byzantine) faults.
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16.2.3.3  Establishing a Fundamental Limitation

On the other hand, surprisingly, consensus cannot be implemented using elementary base objects such as 
read-write registers or message-passing communication channels in an asynchronous system in which a sin-
gle process may crash. This result, proved by Fischer, Lynch, and Paterson [47], abbreviated as FLP, is prob-
ably the most celebrated result in distributed computing. By reduction, we obtain the same impossibility for 
implementations of a RSM and for many other abstractions, which can be used to implement consensus.

Theorem 16.1  (FLP [47])

Given an asynchronous message-passing system or an asynchronous shared-memory system with read-
write registers, no consensus protocol is totally correct in spite of one crash fault.

The intuition behind the proof is the following. The argument proceeds by contradiction and assumes 
there exists an algorithm that solves consensus in the given setting. It then builds a valid execution of 
the algorithm in which no process can decide. The construction relies on two fundamental notions: 
one is the bivalence of an execution, that is, the property that an execution prefix can be continued by 
arranging process steps in two different ways, where each extension reaches a distinct decision. The 
second is the notion of indistinguishability: two system configurations are indistinguishable to a process 
if the values of all shared variables and the state of the process are the same in both configurations. Both 
these notions are key for proving lower bounds and impossibility results in distributed computing. The 
FLP argument starts by proving that any consensus algorithm has a bivalent initial configuration; it 
then shows that each bivalent configuration can be extended to a configuration that is still bivalent by 
scheduling an additional process step. Iterating this argument, we obtain an execution of infinite length 
in which each configuration is bivalent, therefore no process may decide in that execution.

16.2.3.4  Generalizing the Result

Besides the connection to the RSM problem, another strong argument for the centrality of consensus in 
distributed computing is Herlihy’s consensus hierarchy [61]. Herlihy showed that every shared object can 
be assigned a consensus number, which is the maximum number of processes for which the object can solve 
wait-free consensus in an asynchronous system. The resulting hierarchy has a key separation property: No 
object with consensus number x + 1 can be implemented out of objects of consensus number at most x.

Shared Objects:
  Cons, an array of consensus objects
Local Variables: /* at process i */
  Requestsi, a list of requests from clients
  stateMachinei, a state machine
  indexi, a counter variable, initially 0

procedure ReplicatedStateMachine()
  while Requestsi is not empty do
        request ← Requestsi.next()
        repeat
            cons ← Cons[index]
            decision ← cons.propose(request)
            stateMachinei.perform(decision)
            index ← index + 1
        until request = decision

FIGURE 16.2  A basic RSM implementation using consensus objects. The replicas receive requests from clients, 
and use the consensus objects to agree on the order in which requests are committed.
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For example, read-write registers have consensus number 1, since they can solve consensus for one 
process (trivially) but cannot solve consensus for two processes (by the FLP result). Herlihy also showed 
that shared objects such as queues, stacks, and fetch-and-add counters have consensus number 2. 
Shared-memory primitives such as compare-and-swap or sticky bytes have consensus number ∞, since 
they can solve consensus for any number of processes. (See Table 16.1). In turn, consensus is universal, 
that is, it may implement any other shared object wait-free.

This elegant result gives a way of characterizing the computational power of shared objects and sug-
gests that distributed systems should provide universal primitives, which can be used to build wait-free 
distributed implementations of any sequential object.

16.2.3.5  Circumventing the Impossibility

Given the centrality of consensus in distributed computing, considerable research effort has been 
invested in understanding the limits of the FLP impossibility.

16.2.3.5.1  More Choices
One approach has been to relax the problem specification from consensus to k-set agreement, which 
allows k distinct decision values from the n ≥ k values proposed. This line of work led to a stronger 
impossibility: for any k ≥ 1, k-set agreement is impossible in an asynchronous system in which k pro-
cesses may fail by crashing.

This result was proved concurrently by three independent groups of researchers: Herlihy and Shavit 
[63], Borowsky and Gafni [19], and Saks and Zaharoglou [86], revealing a deep connection between dis-
tributed computing and a branch of mathematics called algebraic topology. This fundamental result has 
been extended to other models by reduction [6,50,51], while the topological tools have been developed 
further to characterize the solvability of other fundamental distributed tasks such as renaming [22,23,63].

16.2.3.5.2  Stronger Timing Assumptions
Another approach for circumventing the FLP impossibility has been to identify the additional amount 
of system information needed to solve consensus in a distributed system. This additional information 
can be provided in through a distinct shared object called a failure detector [27]. Whereas, in general, 
shared objects are used for interprocess communication, a failure detector acts as an oracle, providing 
extra information about process crashes or their relative speeds. These ideas have been developed into 
a coherent theory, which allows to identify the minimal amount of synchronization, that is, weakest 
failure detector, needed to implement abstractions such as consensus [26] or set agreement [52].

The FLP result holds in an asynchronous system, in which processes may be delayed for arbitrarily 
long periods of time. Real systems, however, exhibit bounded delays in most executions and unbounded 
delays only in the worst case. It is therefore natural to ask whether one can mitigate the impossibility of 
consensus by designing an algorithm that decides quickly when the system behaves well and maintains 
correctness (does not break agreement) in executions with failures or asynchrony. This idea was exploited 
by Dwork et al. [41], who showed that if the maximum delay between two process steps becomes bounded 
eventually, then consensus can be solved once this delay is respected. Further research, for example 
[12,39], extended this idea to other distributed problems and introduced frameworks for exploiting peri-
ods with bounded delays.

TABLE 16.1  Structure of Herlihy’s Consensus Hierarchy [61]

Consensus Number Shared Object

1 Read-write registers
2 Test-and-set, swap, fetch-and-add, queue, stack
⋮ ⋮
∞ Augmented queue, compare-and-swap, sticky byte



16-7Distributed Algorithms

16.2.3.5.3  Randomization
An important tool for circumventing the FLP impossibility is the use of randomization. The idea is 
to allow processes to flip coins during the execution and bias their decisions based on the results of 
the coin flips. The resulting probability space assigns weight to particular executions. One can then 
relax the problem specification to allow processes to terminate with probability 1—therefore, nonter-
minating executions are still possible in theory, but occur with probability 0. The other correctness 
properties must be preserved in every execution. Ben-Or [17] was the first to use this approach to show 
that randomized consensus can be solved in an fault-prone asynchronous system. Further research 
characterized the expected complexity of asynchronous consensus, for example [8,11], and applied ran-
domization to other distributed problems, such as renaming [4,5,84] or concurrent data structures, for 
example [89].

16.2.3.6  Complexity of Consensus

The research described above aimed to isolate the minimal set of assumptions needed to solve consensus 
in a distributed system. On the other hand, another aspect of the quest for understanding the limita-
tions of the FLP result has been understanding the complexity of consensus in a practical setting, for 
example [13,32,37,40,45].

A key approach in this direction has been to design speculative distributed algorithms, which decide 
quickly in well-behaved executions, for example, in which processes are relatively synchronous or there 
are no crashes and delay decision during periods with crashes or delays. The classic example is the Paxos 
protocol, for example [33,74,75], which solves consensus in a constant number of message delays if the 
system is well behaved (see Figure 16.3 for an illustration). Paxos does not contradict the FLP impos-
sibility, since there exist worst-case executions in which it is prevented from terminating indefinitely. 
However, the protocol performs well in practice, since worst-case executions occur very rarely, and 
maintains correctness in all executions.

16.2.4  More Abstractions

To illustrate the pattern of work in distributed computing, we have considered consensus and state 
machine replication as examples of fundamental distributed abstractions. Of course, research in the 
field goes beyond these canonical problems and explores a wide variety of other research directions: 
for example, problems related to concurrent data structures, for example [7,42,46,68], distributed 
graph algorithms, for example [16,72,79], mutual exclusion, for example [14,18,91], distributed infor-
mation dissemination, for example [30,36,69], clock synchronization, for example [44,78], distributed 
storage, for example [3,35], distributed task allocation, for example [20,71], distributed knowledge, 
for example [43,58], or issues related to decidability and checkability in a distributed setting, for 
example [48,49].

Client

Leader

Replica

Replica

Request Propose Accept Reply

FIGURE 16.3  The message pattern in a failure-free execution of the Paxos protocol [74]. In the absence of failures, 
the protocol solves consensus among the replicas within two message delays.
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16.3  Impact on Practice

Distributed computing research constitutes an elegant mathematical theory for distributed systems. 
However, the field goes beyond being just mathematical theory: the research results can be applied 
back to the original practical problems that inspire distributed computing abstractions. In particular, 
algorithms can be engineered for practical use in real systems, while impossibility results can suggest to 
system designers when to stop trying to build a certain kind of system or point to the requirements that 
need to be relaxed to gain efficiency. In the following, we give a few examples of the impact of the field 
on practical aspects of computer systems.

16.3.1  Fault-Tolerant Computing

Chronologically, one of the first prominent practical applications of distributed computing results has 
been the state machine replication approach for large-scale distributed systems [73,87]. State machine 
replication is a general method of implementing a fault-tolerant distributed service by replicating serv-
ers and coordinating the interactions between replicas and clients. Lamport was the first to propose this 
approach in a seminal 1984 paper [73]; the approach was later elaborated by Schneider [87].

The Paxos family of protocols, for example [74,75], is at the core of many RSM implementations. The 
original protocol was proposed by Lamport [74] as a means to reach consensus among a set of servers 
in an asynchronous system. Although no deterministic consensus algorithm may solve consensus in 
an asynchronous system with faults [47], Paxos guarantees safety (no two processes decide distinct 
values) and may delay termination under asynchrony or failures, conditions that occur relatively rarely 
in practice [74,76].

Several variants of the original protocol were developed, tailored to different contexts such as disk 
storage [53] or fault-tolerant distributed databases [25]. Google uses the Paxos algorithm in the Chubby 
distributed lock service [25]; in turn, Chubby is used by BigTable, a high performance data storage 
system employed by several Google applications such as Gmail, Google Maps, or Youtube and avail-
able externally through the Google App Engine [29]. Microsoft also uses Paxos in the Autopilot cluster 
management service of the Bing search engine [67].

The Paxos protocol was generalized by Castro and Liskov in the context of malicious (Byzantine) 
failures among the replicas, to obtain a high-performance Byzantine fault-tolerant algorithm [24]. Their 
protocol has been later refined in terms of performance [57,70] and in terms of fault-tolerance [31]. 
Elements of Byzantine fault-tolerant protocols are used in the Bitcoin online currency system [55].

16.3.2  Concurrent Programming

The wide-spread introduction of multicore processors has brought problems related to concurrency in 
a distributed system at the forefront of software design. Even though the code executed by a single pro-
cessor core may have few lines, the fact that many cores execute the program in parallel, with arbitrary 
interleavings of steps, implies that there is a variety of ways in which the program may behave, even 
given the same inputs. This makes concurrent programming an exceedingly difficult task. Further, clas-
sic interprocess synchronization primitives, such as locks or barriers, are increasingly believed not to be 
suitable for widespread use in large-scale multicore systems, for example [88].

Given the practical need for efficient concurrent code and the challenges posed by the use of clas-
sic synchronization primitives, significant research effort went into devising abstractions that make 
concurrent programming easier, while ensuring scalability of the software in a multicore environment.

16.3.2.1 T ransactional Memory

One of the most promising solutions to this problem is transactional memory (TM). First introduced by 
Herlihy and Moss [62], the idea behind this abstraction is to enable processes to execute concurrently 
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through the use of lightweight, in-memory transactions. A transaction is a sequence of operations that 
should be executed atomically, similarly to the code in the critical section of a conventional lock. Unlike 
locks, transactions may abort, in which case their operations are rolled back and invisible to any other 
processes. To gain performance, transactions only appear to have executed sequentially, while they 
might in fact execute concurrently.

TM is easy to use, since the programmer should simply convert the blocks of code that have to be 
executed atomically into transactions. The burden of executing the code correctly and efficiently is taken 
by the TM implementation, whose contention management mechanisms are hidden from the program-
mer. TM can be seen as an adaptation of the notion of database transaction [54] to handle concurrency 
in multicore systems.

Since its introduction in 1993 [62], significant research effort has gone into implementing efficient 
TM systems and formalizing its properties. Particular attention has been given to software TM [90], 
that is, implementations where contention management is performed in software, without additional 
architectural support, for example [34,38]; hardware TM implementations also exist, for example 
[65,82].

TM is currently migrating from being a research construct to adoption in production environments. 
In particular, Intel has recently announced that its new Haswell microprocessor architecture will fea-
ture Transactional Synchronization Extensions [66]. IBM’s BlueGene/Q processor, used in the Sequoia 
supercomputer, will also support TM [65]. The Rock processor by Oracle also has hardware support for 
TM [82]. Practical software TM implementations include the Glasgow Haskell Compiler [2].

16.3.2.2  Concurrent Data Structures

A related research direction is the design of efficient concurrent versions of practical data structures, 
such as stacks, queues, sets, or hash tables. Research has focused on lock-free versions of these data 
structures, which generally employ read-modify-write hardware primitives such as compare-and-swap 
instead of locks. The key property of such implementations is that they guarantee system-wide progress; 
in particular, by contrast to lock-based techniques, the suspension of one or more processes does not 
prevent the whole system from making progress. Efficient lock-free implementations of many practical 
data structures, such as queues [81], lists [60,89], or counters [42], have been developed. Lock-free imple-
mentations of these data structures are available through several libraries [1,83].

16.4 R esearch Issues

We presented a few fundamental results in the area, which only scratch the surface of a deeper theory 
for distributed computation. As such, distributed computing will be more and more a field of intense 
research activity, stimulated by the proliferation of distributed systems in the context of large-scale 
Internet services and multicore architectures.

16.4.1  Unified Theory

Given the wide variety of models and abstractions for distributed computing, a major research challenge 
is isolating a core set of fundamental models, abstractions, and results for the field. Such results should 
express fundamental notions and limitations of distributed computing and could be extended to new 
settings introduced by new architectures or new programming paradigms. A growing body of evidence 
points to wait-free computation in asynchronous systems as being such a fundamental abstraction: 
Several central results proved for wait-free asynchronous computation can be extended to yield new 
lower bounds in other models. For example, it has been shown that the impossibility of asynchronous 
set agreement [19,63,86] can be extended through simulation to yield time complexity lower bounds in 
synchronous [50,51] and eventually synchronous models [6]. Identifying such fundamental notions and 
developing them into a unified theory of distributed computation remain a major open question.
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16.4.2  Understanding Speculation

Another important research question is the structured understanding of algorithmic speculation in 
the context of distributed systems. As noted before, many distributed algorithms are based on the 
idea of taking advantage of common well-behaved executions, while covering worst-case scenarios 
via several intricate backup procedures. This is the case of several protocols of practical interest, such 
as Paxos [74] or PBFT [24]. However, due to their ad hoc structure, such algorithms are exceedingly 
difficult to design, implement, and analyze, for example, [25,57]. Thus, a key challenge is to develop 
a structured approach for building and analyzing such algorithms. Given a specific problem, such 
approaches should identify common scenarios in which the algorithm has to speculate and provide a 
framework for composing speculative algorithmic modules with the fail-safe backup protocols cor-
rectly and efficiently. Questions such as the inherent complexity overhead of speculation or formally 
specifying algorithmic composition are still not well understood and present interesting research 
opportunities.

Furthermore, significant research effort has been invested in characterizing the complexity of wait-
free implementations of fundamental abstractions. Together with practical observations, this research 
suggests that wait-free deterministic implementations of many common objects may have prohibitive 
cost in the worst case and even in the average case. On the other hand, the per-thread progress ensured 
by wait-free implementations may not be necessary in all situations; implementations that guarantee 
global progress, such as lock-free (nonblocking) implementations, may suffice in many practical sce-
narios. However, the complexity requirements of such implementations are not known for many fun-
damental abstractions.

16.4.3  Consistency Conditions and Randomization

With the advent of large-scale distribution, research started exploring relaxed consistency conditions 
for shared object implementations. The goal of such an approach is to obtain a gain in performance 
by weakening some of the formal requirements for object implementations. A simple example of this 
approach is the use of unordered pool or hash map data structures in concurrent programs [88], instead 
of queue or stack data structures, which do maintain a precise order between elements, but have been 
shown to have high complexity overhead [5,46,68].

A related research direction is the use of randomization in shared object implementations to ensure 
good performance with high probability. The use of relaxed consistency conditions and randomiza-
tion appears promising for some implementations; however, a major open question is to fully exploit 
the benefits of these approaches for practical use and to characterize their limitations in the context of 
distributed computation.

16.4.4  New Computing Paradigms

Finally, a major challenge that the field faces periodically is adapting to new trends in distributed com-
putation, dictated by new computing paradigms and new architectures. Currently, such changes are 
brought about by developments such as the pervasiveness of mobile wireless devices, new distributed 
computing paradigms such as big data processing, the advent of social networks and crowdsourcing, or 
the introduction of new architectures and programming paradigms for mass-produced microprocessors.

16.5  Summary

In this chapter, we have given an overview of some basic principles and fundamental results that under-
lie the study of distributed algorithms. In particular, we considered consensus and state machine rep-
lication as examples of fundamental abstractions and gave an overview of the core results and research 
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directions in distributed computing, together with some practical applications of results in the field. 
Given the continuing trend toward distribution, both at the macrolevel, through large-scale distributed 
services, and at the microlevel, through multicore processor architectures, we predict that distributed 
computing will be an area of intense research activity for years to come.

Key Terms

Adversary: The interleaving of process steps and the failures of the processes in a distributed system are 
assumed to be under the control of an entity called adversary or scheduler. It is assumed that 
the goal of the adversary is to maximize the cost of the algorithm (under a given cost metric), 
leading to worst-case executions of the distributed algorithm.

Asynchronous system: A system is said to be asynchronous if there are no bounds on the speeds at 
which processes take steps. In particular, processes may take steps in arbitrary order and at 
arbitrary relative speeds.

Byzantine failure: A process failure is said to be Byzantine [77] if the process stops following its pre-
scribed algorithm and instead may behave arbitrarily. In particular, the process may behave 
maliciously, attempting to influence the global computation.

Consensus: Consensus [77,85] is a fundamental problem in distributed computing. In consensus, each 
process pi proposes a value vi. Every nonfaulty process has to eventually return a value (the ter-
mination condition), which has to be the same for all nonfaulty processes (the agreement condi-
tion). Further, the value returned has to be one of the values proposed (the validity condition).

Crash failure: A process is said to crash if the process stops executing the algorithm after some point 
in the execution.

Eventual synchrony: A system is said to exhibit eventual synchrony [41] if, in any execution of an algo-
rithm in the system, there exists a point in time after which the relative speeds of processes are 
bounded. Note that the time bound may be unknown to the processes.

Execution: An execution is a sequence of operations performed by a set of processes. To represent an 
execution, we usually assume discrete time, where at every time unit there is one active pro-
cess. Thus, an execution can be represented as a string of process identifiers.

Failure: Distributed algorithms may run on hardware that exhibits faulty behavior; such behavior is 
modeled as process crashes or process Byzantine failures, but also failures of the communica-
tion mechanisms, such as message loss or duplication.

Failure detector: A failure detector [28] is an abstraction that encapsulates information about process 
failures in a distributed system.

Lock-free: An object implementation is lock-free if it always guarantees global progress; in particular, 
the failure of a process does not prevent the system from fulfilling client requests.

Process: The process is a sequential unit of computation; it can be seen as a Turing machine. Distributed 
computing considers the computational power of several connected processes (i.e., several 
connected Turing machines) under various model assumptions.

Renaming: Renaming [10] is a fundamental problem in distributed computing in which a group of 
processes need to pick unique names from a small namespace.

Scheduler: Synonymous to adversary.
Synchronous system: A system is synchronous if nonfaulty processes perform communication and 

computation in perfect lock-step synchrony.
Transactional memory: Transactional memory [62] is a concurrent programming abstraction, which 

allows the programmer to specify regions of sequential code that are guaranteed to be exe-
cuted atomically (i.e., the operations appear to occur instantaneously).

Wait-free: An object implementation is wait-free [61] if it guarantees per-process progress; in particular, 
any nonfaulty process returns from any invocation on the object within a finite number of steps.
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Further Information

Distributed computing research is presented at several dedicated conferences. The Association 
for Computing Machinery (ACM) sponsors the annual Symposium on Principles of Distributed 
Computing (PODC), and publishes its proceedings. The European Association for Theoretical 
Computer Science (EATCS) sponsors the annual International Symposium on Distributed Computing 
(DISC), whose proceedings are published by Springer-Verlag. These are the two major confer-
ences of the field. Results of general interest in distributed computing are published in Computer 
Science theory conferences, such as the ACM Symposium on Theory of Computing (STOC) or the 
IEEE Symposium on the Foundations of Computer Science (FOCS), and in the ACM Symposium on 
Parallel Algorithms and Architectures (SPAA). Complete versions of results can be found in journals 
such as the Distributed Computing journal by Springer, the Journal of the ACM, the SIAM Journal on 
Computing, or the Algorithmica journal.

There are several excellent textbooks presenting several aspects of the field at an introductory level. 
One of the main references is the Distributed Algorithms book by Lynch [80]. Other textbooks focusing 
on various aspects of distributed systems are Reliable and Secure Distributed Programming, by Cachin 
et al. [21], and Distributed Computing: Fundamentals, Simulations, and Advanced Topics by Attiya and 
Welch [15]. A recent book by Herlihy and Shavit entitled The Art of Multiprocessor Programming [64] 
provides an up-to-date presentation of shared-memory programming. Harris et al. give an overview 
of transactional memory research in [59]. The theoretical foundations of transactional memory are 
explored in [56].
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17.1  Introduction

This chapter explores combinational and sequential Boolean logic design as well as technologies for 
implementing efficient, high speed digital circuits. Some of the most common devices used in com-
puters and general logic circuits are described. Sections 17.2 through 17.4 introduce the fundamental 
concepts of logic circuits and in particular the rules and theorems upon which combinational logic, logic 
with no internal memory, is based. Section 17.5 describes in detail some frequently used combinational 
logic components and shows how they can be combined to build the arithmetic and logical unit (ALU) 
for a simple calculator. Section 17.6 introduces the subject of sequential logic; logic in which feedback 
and thus internal memory exist. Two of the most important elements of sequential logic design, the 
data flip-flop (DFF) and the register, are introduced. Memory elements are combined with the ALU to 
complete the design of a simple calculator. The final section of the chapter examines field-programmable 
gate arrays (FPGAs) which now provide fast, economical solutions for implementing large logic designs 
for solving diverse problems.
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17.2  Overview of Logic

Logic has been a favorite academic subject, certainly since the Middle Ages and arguably since the days 
of the greatness of Athens. That use of logic connoted the pursuit of orderly methods for defining theo-
rems and proving their consistency with certain accepted propositions. In the middle of the nineteenth 
century, George Boole put the whole subject on a sound mathematical basis and spread “logic” from the 
Philosophy Department into Engineering and Mathematics. (Boole’s original writings have recently 
been reissued, Boole, 2009.) Specifically, what Boole did was to create an algebra of two-valued (binary) 
variables. Initially designated as true or false, these two values can represent any parameter that has two 
clearly defined states. Boolean algebras of more than two values have been explored, but the original 
binary variable of Boole dominates the design of circuitry for reasons that we will explore. This chapter 
presents some of the rules and methods of binary Boolean algebra and shows how it is used to design 
digital hardware to meet specific engineering applications.

A system that is well adapted to digital (discrete) representation is one that spends little time in a 
state of ambiguity. All digital systems spend some time in indeterminate states when switching between 
values. One very common definition of the two states is made for systems operating between 2.5 volts (V) 
and ground. It is shown in Figure 17.1. One state, usually called one, is defined as any voltage greater than 
1.7 V. The other state, usually called zero, is defined as any voltage less than 0.8 V.

The gray area in the middle is ambiguous. When an input signal is between 0.8 and 1.7 V in a 2.5 V 
complementary metal oxide semiconductor (CMOS) digital circuit, you cannot predict the output 
value. Most of what you will read in this chapter assumes that input variables are clearly assigned 
to the state one or the state zero. In real designs, there are always moments when the inputs are 
ambiguous. A good design is one in which the system never makes decisions based on ambiguous 
data. Such requirements limit the speed of response of real systems; they must wait for the ambigui-
ties to settle out.

17.3  Concept and Realization of Digital Gate

A gate is the basic building block of digital circuits. A gate is a circuit with one or more inputs and a 
single output. From a logical perspective in a binary system, any input or output can take on only the 
values one and zero. From an analog perspective, the gates make transitions through the ambiguous 
region with great rapidity and quickly resolve to an unambiguous state.

In Boolean algebra, a good place to begin is with three operations: NOT, AND, and OR. These have 
similar meaning to their meaning in English. Given two input variables, called A and B, and an output 
variable X, X = NOT A is true when A is false, and false when A is true. When both inputs are true, X = 
A AND B is true, and when either A or B is true (or both are true), X = A OR B is true. This is called an 
inclusive or function because it includes the case where A and B are both true. There is another Boolean 
operator, exclusive or, that is true when either A or B, but not both, is true. In fact there are 16 Boolean 
functions of two variables. The more useful functions are shown in truth table form in Table 17.1. These 
functions can be generalized to more than one variable, as is shown in Table 17.2.

Functions AND, OR, and NOT are sufficient to describe all Boolean logic functions. Why do we need 
all these other operators?

Logic gates are themselves an abstraction. The actual physical realization of logic gates is with transis-
tors. Most digital designs are implemented in CMOS technology. In CMOS and most other transistor 

Zero One

0 V 0.8 V 1.7 V 2.5 V

FIGURE 17.1  The states zero and one as defined in 2.5 V CMOS logic.
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technologies, logic gates are naturally inverting. In other words, it is very natural to build NOT, NAND, 
and NOR gates, even if it is more natural to think about positive logic: AND and OR. Neither XOR nor 
XNOR are natural building blocks of CMOS technology. They are included for completeness. As we 
shall see, AND and OR gates are implemented with NAND and NOR gates.

There are widely used graphical symbols for these same operations. These are presented in Figure 17.2. 
The symbol for NOT includes both a buffer (the triangle) and the actual inversion operation (the open 
circle). Often, the inversion operation alone is used, as seen in the outputs of NAND, NOR, and XNOR. 
In writing Boolean operations we use the symbols A‒ for NOT A, A + B for A OR B, and A · B for A AND B. 
A + B is called the sum of A and B and A · B is called the product. The operator for AND is often omit-
ted, and the operation is implied by adjacency, just like in multiplication. To illustrate the use of these 
symbols and operators, Figure 17.3 shows two constructs made from the gates of Figure 17.2. These two 
examples show how to build the expression AB + CD and how to construct an XOR from the basic gates 
AND, OR, and NOT.

The first construct of Figure 17.3 would fit the logic of the sentence: “I will be content if my federal and 
state taxes are lowered (A and B, respectively), or if the money that I send is spent on reasonable things 

AB

A + B

NOR

NAND

A

A

B

B
A

A

B

B
XOR

A XOR B

A XNOR B

XNOR

AB

AA

NOT

OR

A + B

A

A

B

B

AND

FIGURE 17.2  Commonly used graphical symbols for seven of the gates defined in Table 17.1.

TABLE 17.1  Boolean Operators of Two Input Variables

Inputs A B True False A NOT(A) AND OR XOR NAND NOR XNOR

0 0 1 0 0 1 0 0 0 1 1 1
0 1 1 0 0 1 0 1 1 1 0 0
1 0 1 0 1 0 0 1 1 1 0 0
1 1 1 0 1 0 1 1 0 0 0 1

TABLE 17.2  Boolean Operators Extended to More Than Two Inputs

Operation Input Variables Operator Symbol Output = 1 if

NOT A A‒ A = 0
AND A, B,… A · B .… All of the set [A, B,…] are 1.
OR A, B,… A + B + … Any of the set [A, B,…] are 1.
NAND A, B,… ( )A B⋅ ⋅� Any of the set [A, B,…] are 0.

NOR A, B,… ( )A B+ +� All of the set [A, B,…] are 0.

XOR A, B,… A ⊕ B ⊕ ⋯ The set [A, B,…] contains an 
odd number of 1’s.

XNOR A, B,… A ⊙ B ⊙ ⋯ The set [A, B,…] contains an 
even number of 1’s.
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and spent effectively (C and D, respectively).” You would certainly expect the speaker to be content if 
either pair is TRUE and most definitely content if both are TRUE. The output on the right side of the 
construct is TRUE if either or both of the inputs to the OR is TRUE. The outputs of the AND gates are 
TRUE when both of their inputs are TRUE. In other words, both state and federal taxes must be reduced 
to make the top AND’s output TRUE.

The right construct in Figure 17.3 gives an example of how one can build one of the basic logic gates, 
in this case the XOR gate, from several of the others. Let us consider the relationship of this construct to 
common speech. The sentence: “With the time remaining, we should eat dinner or go to a movie.” The 
implication is that one cannot do both. The circuit on the right of Figure 17.3 would indicate an accept-
able decision (TRUE if acceptable) if either movie or dinner were selected (asserted or made TRUE) but 
an unacceptable decision if both or neither were asserted.

What makes logic gates so very useful is their speed and remarkably low cost. On-chip logic gates 
today can respond in well under a nanosecond and can cost less than 0.0001 cent each. Furthermore, 
a rather sophisticated decision-making apparatus can be designed by combining many simple-minded 
binary decisions. The fact that it takes many gates to build a useful apparatus leads us back directly to 
one of the reasons why binary logic is so popular. First we will look at the underlying technology of logic 
gates. Then we will use them to build some useful circuits.

17.3.1  CMOS Binary Logic Is Low Power

A modern microcomputer chip contains on the order of billions of logic gates. If all of those gates were 
generating heat at all times, the chip would melt. Keeping them cool is one of the most critical issues in 
computer design. Good thermal designs were significant parts of the success of Cray, IBM, Intel, and 
Sun. One of the principal advantages of CMOS binary logic is that it can be made to expend much less 
energy to generate the same amount of calculation as other forms of circuitry.

Gates are classified as active logic or saturated logic depending on whether they control the 
current continuously or simply switch it on or off. In active logic, the gate has a considerable volt-
age across it and conducts current in all of its states. The result is that power is continually being 
dissipated. In saturated logic, the TRUE–FALSE dichotomy has the gate striving to be perfectly 
connected to the power bus when the output voltage is high and perfectly connected to the ground 
bus when the voltage is low. These are zero-dissipation ideals that are not achieved in real gates, 
but the closer one gets to the ideal, the better the gate. When you start with more than one mil-
lion gates per chip, small reductions in power dissipation make the difference between usable and 
unusable chips.

Saturated logic is saturated because it is driven hard enough to ensure that it is in a minimum-
dissipation state. Because it takes some effort to bring such logic out of saturation, it is a little slower 
than active logic. Active logic, on the other hand, is always dissipative. It is very fast, but it is always 
getting hot. Although it has often been the choice for the most active circuits in the fastest computers, 

AB + CD

D
C

B
A

A

A XOR B

B

FIGURE 17.3  Two constructs built from the gates in column 1 of Figure 17.2. The first is a common construct in 
which if either of two paired propositions is TRUE, the output is TRUE. The second is XOR constructed from the 
more primitive gates, AND, OR, and NOT.
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active logic has never been a major player, and it owns a diminishing role in today’s designs. This 
chapter focuses on today’s dominant family of binary, saturated logic, which is CMOS.

17.3.2  CMOS Switching Model for NOT, NAND, and NOR

The metal–oxide–semiconductor (MOS) transistor is the oldest transistor in concept and still the best in 
one particular aspect: its control electrode—also called a gate but in a different meaning of that word from 
logic gate—is a purely capacitive load. Holding it at constant voltage takes no energy whatsoever. These 
MOS transistors, like most transistors, come in two types. One turns on with a positive voltage; the other 
turns off with a positive voltage. This pairing allows one to build complementary gates, which have the 
property that they dissipate no energy except when switching. Given the large number of logic gates and the 
criticality of power reduction, it is small wonder that the CMOS gate dominates today’s digital technology.

Consider how we can construct a set of primitive gates in the CMOS family. The basic element is a 
pair of switches in series, the NOT gate. This basic building block is shown in Figure 17.4. The switching 
operation is shown in the two drawings to the right. If the input is low, the upper switch is closed and 
the lower one is open—complementary operation. This connects the output to the high side. Apart from 
voltage drops across the switch itself, the output voltage becomes the voltage of the high bus. If the input 
now goes high, both switches flip and the output is connected, through the resistance of the switch, 
to the ground bus, high-in, low-out, and vice versa. We have an inverter. Only while the switches are 
switching is there significant current flowing from one bus to the other. Thus, in the static state, these 
devices dissipate almost no power at all. Once one has the CMOS switch concept, it is easy to show how 
to build NAND and NOR gates with multiple inputs.

Let us look at the switching structure of a 3-input NAND and 3-input NOR, just to show how 
multiple-input gates are created. The basic inverter or NOT gate of Figure 17.4 is our paradigm; if the 
lower switch is closed, the upper one is open, and vice versa. To go from NOT to an N-input NAND, 
make the single lower switch in the NOT a series of N switches, so only one of these need be open to open 
the circuit. Then change the upper complementary switch in the NOT into N parallel switches. With 
these, only one switch need be closed to connect the circuit. Such an arrangement with N = 3 is shown 
on the left in Figure 17.5. On the left, if any input is low, the output is high. On the right is the construc-
tion for NOR. All three inputs must be low to drive the output high.

An interesting question at this point is: How many inputs can such a circuit support? The answer 
is called the fan-in of the circuit. The fan-in depends mostly on the resistance of each switch in the 
series string. In most cases, six or seven inputs would be considered a reasonable limit. The number 
of outputs a gate can support is the fan-out. Logic gates can be designed with a considerably higher 
fan-out than fan-in.

Low

Low

Vin

Vout

+5 V (high)

n-channel

p-channel

Low

Low

HighHigh

High

High

0 V (low)

FIGURE 17.4  A CMOS inverter shown as a pair of transistors with voltage and ground and also as pairs of 
switches with logic levels. The open circle indicates logical negation (NOT).
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17.3.3  Doing It All with NAND

We think of the basic logic operators as being NOT, AND, and OR, since these seem to be the most 
natural. When it comes to building logic gates out of CMOS transistor technology, as we have just seen, 
the “natural” logic gates are NOTs, NANDs, and NORs.

To build an AND or an OR gate, you take a NAND or NOR and add an inverter. The more primitive 
nature of NAND and NOR comes about because transistor switches are inherently inverting. Thus, a 
single-stage gate will be NAND or NOR; AND and OR gates require an extra stage. If this is the way 
one were to implement a design with a million gates, a million extra inverters would be required. Each 
extra stage requires extra area and introduces longer propagation delays. Simplifying logic to eliminate 
delay and unnecessary heat are two of the most important objectives of logic design. Instead of using 
an inverter after each NAND or NOR gate, most designs use the inverting gates directly. We will see 
how Boolean logic helps as to do this. Consider the declaration: “Fred and Jack will come over this 
afternoon.” This is equivalent to saying: “Fred will stay away or Jack will stay away, NOT.” This strange 
construct in English is an exact formulation of one of two relationships in Boolean logic known as 
De Morgan’s theorems. More formally:

	

A B A B

A B A B

⋅ = +

+ = ⋅

In other words, the NAND of A and B is equivalent to the OR of (NOT A) and (NOT B). Similarly, the 
NOR of A and B is equivalent to the AND of (NOT A) and (NOT B). These two statements can be repre-
sented at the gate level as shown in Figure 17.6.

De Morgan’s theorems show that a NAND can be used to implement a NOR if we have inverters. It 
turns out that a NAND gate is the only gate required. Next we will show that a NOT gate (inverter) can 
be constructed from a NAND. Once we have shown that NORs and NOTs can be constructed out of 

ABC

HighHigh

Low

C

C

B

B

A

A

Low

A + B + C

3-input NAND 3-input NOR

FIGURE 17.5  Three pairs of CMOS switches arranged on the left to execute the 3-input NAND function and on 
the right the 3-input NOR. The switches are shown with all the inputs high, putting the output in the low state.
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NANDs, only NAND gates are required. An AND gate is a NAND followed by a NOT and an OR gate 
is a NOR followed by a NOT. Thus, all other logic gates can be implemented from NANDs. The same is 
true of NOR gates; all other logic gates can be implemented from NORs.

Take a NAND gate and connect both inputs to the same input A. The output is the function ( ).A A⋅  
Since A AND A is TRUE only if A is TRUE (AA = A), we have just constructed our inverter. If we actu-
ally wanted an inverter, we would not use a 2-input gate where a 1-input gate would do. But we could. 
This exercise shows that the minimal number of distinct logic gates required to implement all Boolean 
logic functions is one. In reality we use AND, OR, and NOT when using positive logic and NAND, 
NOR, and NOT when using negative logic or thinking about how logic gates are implemented with 
transistors.

17.4 R ules and Objectives in Combinational Design

Once the concept of a logic gate is established, the next natural question is: What useful devices can you 
build with them? We will look at a few basic building blocks and show how you can put them together 
to build a simple calculator.

The components of digital circuits can be divided into two classes. The first class of circuits has out-
puts that are simply some logical combination of their inputs. Such circuits are called combinational. 
Examples include the gates we have just looked at and those that we will examine in this section and in 
Section 17.5. The other class of circuits, constructed from combinational gates, but with the addition of 
internal feedback, have the property of memory. Thus, their output is a function not only of their inputs 
but also of their previous state(s). Since such circuits go through a sequence of states, they are called 
sequential. These will be discussed in Section 17.6.

The two principal objectives in digital design are functionality and minimum cost. Functionality 
requires not only that the circuit generates the correct outputs for any possible inputs but also that those 
outputs be available quickly enough to serve the application. Minimum cost must include both the design 
effort and the cost of production and operation. For very small production runs (<10,000), one wants to 
“program” off-the-shelf devices. For very large runs, costs focus mostly on manufacture and operation. 
The operation costs are dominated by cooling or battery drain, where these necessary peripherals add 
weight and complexity to the finished product. To fit in off-the-shelf devices, to reduce delays between 
input and output, and to reduce the gate count and thus the dissipation for a given functionality, designs 

FIGURE 17.6  On the left, the two forms of De Morgan’s theorem in logic gates. On the right, the two forms of 
the circuit on the left of Figure 17.3. In the upper form, we have replaced the lines between the ANDs and OR with 
two inverters in series. Then, we have used the lower form of De Morgan’s theorem to replace the OR and its two 
inverters with a NAND. The resulting circuit is all-NAND and is simpler to implement than the construction from 
AND and OR in Figure 17.3.
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must be realized with the smallest number of gates possible. Many design tools have been developed for 
achieving designs with minimum gate count. In this section and the next, we will develop the basis for 
such minimization in a way that assures the design achieves logical functionality.

17.4.1 � Boolean Realization: Half Adders, Full 
Adders, and Logic Minimization

One of the basic units central to a calculator or microprocessor is a binary adder. We will consider how 
an adder is implemented from logic gates. A straightforward way to specify a Boolean logic function 
is by using a truth table. This table enumerates the output for every possible combination of inputs. 
Truth tables were used in Table 17.1 to specify different Boolean functions of two variables. Table 17.3 
shows the truth table for a Boolean operation that adds two one-bit numbers A and B and produces 
two outputs: the sum bit S and the carry-out C. Since binary numbers can only have the values 1 or 0, 
adding two binary numbers each of value 1 will result in there being a carry-out. This operation is 
called a half adder.

To implement the half adder with logic gates, we need to write Boolean logic equations that are 
equivalent to the truth table. A separate Boolean logic equation is required for each output. The most 
straightforward way to write an equation from the truth table is to use sum of products (SOP) form to 
specify the outputs as a function of the inputs. An SOP expression is a set of “products” (ANDs) which 
are “summed” (ORed) together. Note that any Boolean formula can be expressed in SOP or POS (prod-
uct of sums) form.

Let us consider output S. Every line in the truth table that has a 1 value for an output corresponds to 
a term that is ORed with other terms in SOP form. This term is formed by ANDing together all of the 
input variables. If the input variable is a 1 to make the output 1, the variable appears as is in the AND 
term. If the input is a zero to make the output 1, the variable appears negated in the AND term. Let us 
apply these rules to the half adder. The S output has two combinations of inputs that result in its out-
put being 1, therefore its SOP form has two terms ORed together. The C output only has one AND or 
product term, since only one combination of inputs results in a 1 output. The entire truth table can be 
summarized as

	

S A B A B

C A B

= ⋅ + ⋅

= ⋅

Note that we are implicitly using the fact that A and B are Boolean inputs. The equation for C can 
be read “C is 1 when A and B are both 1.” We are assuming that C is zero in all other cases. From 
the Boolean logic equations, it is straightforward to implement S and C with logic gates, as shown in 
Figure 17.7. The logical function for S is that of an XOR gate, so we show S as an XOR gate in the figure.

The half adder is a building block in an n-bit binary adder. An n-bit binary adder adds n-bit num-
bers represented in base 2. Table 17.4 shows the representation of three-bit, unsigned binary numbers. 

TABLE 17.3  Truth Table for a Half Adder

Inputs Outputs

A B S C

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
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The left-most bit is the most significant bit. It is in the 4’s place. The middle bit represents the 2’s place 
and the rightmost bit represents the 1’s place. The largest representable number, 1112, represents 4 + 2 + 
1, or 7 in decimal.

Let us examine adding two binary numbers. Table 17.5 shows the operation 2 + 3 = 5 in binary. The 
top row is the carry-out from the addition in the previous bit location. Notice that there is a carry-out 
bit with value 1 from the second position to the third (leftmost) bit position.

The half adder described in the preceeding text has two inputs: A and B. This can be used for the 
rightmost bit where there is no carry-in bit. For other bit positions we use a full adder with inputs A, B, 
and Cin and outputs S and Cout. The truth table for the full adder is given in Table 17.6. Note that a full 
adder adds one bit position; it is NOT an n-bit adder.

To realize the full adder as a circuit we need to design it using logic gates. We do this in the same 
manner as with the half adder, by writing a logic equation for each of the outputs separately. For each 1 
in the truth table on the output of the function there is an AND term in the SOP representation. Thus, 
there are four AND terms for the S equation, and four AND terms for the Cout equation. These equations 
are given as follows:

	

S A B C A B C A B C ABC

C A BC A B C AB C

in in in in

out in in in

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +

= ⋅ + ⋅ ⋅ + ⋅ + AABCin

TABLE 17.5  Adding 3-Bit Binary 
Numbers
1 0 Carry Bits
0 1 0 2
0 1 1 +3
1 0 1 =5

C

B

A
S

FIGURE 17.7  The gate level implementation of a half adder.

TABLE 17.4  Binary Representation 
of Decimal Numbers

Decimal Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
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These equations for S and Cout are logically correct, but we would also like to use the minimum num-
ber of logic gates to implement these functions. The fewer gates used, the fewer gates that need to switch, 
and hence the smaller amount of power that is dissipated. Next, we will look at applying the rules of 
Boolean logic to minimize our logic equations.

17.4.2 A xioms and Theorems of Boolean Logic

Our goal is to use the minimum number of logic gates to implement a design. We use logic rules or axi-
oms. These were first described by George Boole, hence the term Boolean algebra. Many of the axioms 
and theorems of Boolean algebra will seem familiar because they are similar to the rules you learned for 
algebra in high school. Let us be formal here and state the axioms:

	 1.	 Variables are binary: This means that every variable in the algebra can take on one of two 
values and these two values are not the same. Usually, we will choose to call the two values 
1 and 0, but other binary pairs such as TRUE and FALSE, and HIGH and LOW are widely 
used and often more descriptive. Two binary operators, AND (·) and OR (+), and one unary 
operator, NOT, can transform variables into other variables. These operators were defined 
in Table 17.2.

	 2.	 Closure: The AND or OR of any two variables is also a binary variable.
	 3.	 Commutativity: A · B = B · A and A + B = B + A.
	 4.	 Associativity: (A · B) · C = A · (B · C) and (A + B) + C = A + (B + C).
	 5.	 Identity elements: A · 1 = 1 · A = A and A + 0 = 0 + A = A.
	 6.	 Distributivity: A · (B + C) = A · B + A · C and A + (B · C) = (A + B) · (A + C). (The usual rules of 

algebraic hierarchy are used here where · is done before +.)
	 7.	 Complementary pairs: A · A‒ = 0 and A + A‒ = 1.

These are the axioms of this algebra. They are used to prove further theorems. Each algebraic rela-
tionship in Boolean algebra has a dual. To get the dual of an axiom or a theorem, one simply inter-
changes AND and OR as well as 0 and 1. Because of this principle of duality, Boolean algebra axioms 
and theorems come in pairs. The principle of duality tells us that if a theorem is true, then its dual 
is also true.

In general, one may prove a Boolean theorem by exhaustion—that is, by listing all of the possible 
cases—although more abstract algebraic reasoning may be more efficient. Here is an example of a pair 
of theorems based on the axioms given earlier:

TABLE 17.6  Truth Table for a Full Adder

Inputs Outputs

A B Cin S Cout

0 0 0 0 0 0
1 0 0 1 1 0
2 0 1 0 1 0
3 0 1 1 0 1
4 1 0 0 1 0
5 1 0 1 0 1
6 1 1 0 0 1
7 1 1 1 1 1
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Theorem 17.1  (Idempotency)

 A · A = A and A + A = A.

Proof 17.1

The definition of AND in Table 17.1 can be used with exhaustion to complete the proof for the first form.

	

A

A

is   

is  

1 1 1 1

 0 : 0

: ⋅ = =

⋅ = =

A

A0 0

The second form follows as the dual of the first.
Now let us consider reducing the expression from the previous section:

	 C A BC A B C AB C ABCout in in in in= ⋅ + ⋅ ⋅ + ⋅ +

First, we apply idempotency twice to triplicate the last term on the right and put the extra terms after 
the first and second terms by repeated application of axiom 3:

	 C A BC ABC A B C ABC AB C ABCout in in in in in in= ⋅ + + ⋅ ⋅ + + ⋅ +

Now we apply axioms 4, 3, and 6 to obtain:

	 C A A BC A B B C AB C Cout in in= + + + + +( ) ( ) ( )

And finally, we apply axioms 7 and 5 to obtain:

	 C AB AC BCout in in= + +

The reduced equation certainly looks simpler; let us consider the gate representation of the two equa-
tions. This is shown in Figure 17.8. From four 3-input ANDs to three 2-input ANDs and from a 4-input 
OR to a 3-input OR is a major saving in a basically simple circuit.

CoutB

C

ACout

B CA

FIGURE 17.8  The direct and reduced circuits for computing the carry-out from the three inputs to the full adder.
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The reduction is clear. The savings in a chip containing more than a million gates should build some 
enthusiasm for gate simplification. What is probably not so clear is how you could know that the key to 
all of this saving was knowing to make two extra copies of the fourth term in the direct expression. It 
turns out that there is a fairly direct way to see what you have to do, one that takes advantage of the eye’s 
remarkable ability to see a pattern. This tool, the Karnaugh map, is the topic of the next section.

17.4.3  Design, Gate-Count Reduction, and SOP/POS Conversions

The truth table for the full adder was given in Table 17.6. All possible combinations of the three input 
bits appear in the second through fourth columns. Note that the first column is the numerical value if 
the three bits are interpreted as an unsigned binary number. So 000 is the value 0, 101 is the value 5, etc.

Let us rearrange the rows of the truth table, so that rather than being in increasing numerical order, 
the truth table values are listed in a way that each row differs from its neighbors by only one bit value. 
(Note that the fourth and fifth row (entries for 2 and 4) differ by more than one bit value.) It should 
become apparent soon why you would want to do this. The result will be Table 17.7.

Consider the last two lines in Table 17.7, corresponding to 6 and 7. Both have Cout = 1. On the input 
side, the pair is represented as ABC–in + ABCin = AB(C–in + Cin).

The algebraic reduction operation shows up as adjacency in the table. In the same way, the 5,7 pair 
can be reduced. The two are adjacent and both Cout outputs are 1. It is less obvious in the truth table, 
but notice that 3,7 also forms just such a pair. In other words, all of the steps proposed in algebra are 
“visible” in this truth table. To make adjacency even clearer, we arrange the groups of four, one above the 
other, in a table called a Karnaugh map after its inventor, M. Karnaugh (1953). In this map, each possible 
combination of inputs is represented by a box. The contents of the box are the output for that combina-
tion of inputs. Adjacent boxes all have numerical values exactly one bit different from their neighbors on 
any side. It is customary to mark the asserted outputs (the 1’s) but to leave the unasserted cells blank (for 
improved readability). The tables for S and Cout are shown in Figure 17.9. The two rows are just the first 
and second group of four from the truth table with the output values of the appropriate column. First, 
convince yourself that each and every cell differs from any of its neighbors (no diagonals) by precisely 
one bit. The neighbors of an outside cell include the opposite outside cell. That is, they wrap around. 
Thus, 2 and 0 or 4 and 6 are neighbors. The Karnaugh map (or K-map) simply shows the relationships 
of the outputs of conjugate pairs, which are sets of inputs that differ in exactly one bit location. The item 
that most people find difficult about K-maps is the meaning and arrangement of the input variables 
around the map. If you think of these input variables as the bits in a binary number, the arrangement is 
more logical. The difference between the first four rows of the truth table and the second four is that A has 
the value 0 in the first four and the value 1 in the second four. In the map, this is shown by having A indi-
cated as asserted in the second row. In other words, where the input parameter is placed, it is asserted. 

TABLE 17.7  Truth Table for 
Full Adder with Rows Rearranged

Input ABCin S Cout

0 000 0 0
1 001 1 0
3 011 0 1
2 010 1 0
4 100 1 0
5 101 0 1
7 111 1 1
6 110 0 1
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Where it is not placed, it is unasserted. Accordingly, the middle two columns are those cells which have 
Cin asserted. The right two columns have B asserted. Column 3 has both B and Cin asserted.

Let us look at how the carry-out map implies gate reduction while sum’s K-map shows that no reduc-
tion is possible. Since we are looking for conjugate pairs of asserted cells, we simply look for adjacent 
pairs of 1’s. The carryout map has three such pairs; sum has none. We take pairs, pairs of pairs, or pairs 
of pairs of pairs—any rectangular grouping of 2n cells with all 1’s. With carryout, this gives us the group-
ings shown in Figure 17.10.

The three groupings in Figure 17.10 do the three things that we must always achieve:

	 1.	 The groups must cover all of the 1’s (and none of the 0’s).
	 2.	 Each group must include at least one cell not included in any other group.
	 3.	 Each group must be as large a rectangular box of 2n cells as can be drawn.

Once we fulfill these three rules, we are assured of a minimal set, which is our goal. Although there is no 
ambiguity in the application of these rules in this example, there are other examples where more than 
one set of groups results in a correct, minimal set. K-maps can be used for functions of up to six input 
variables and are useful aids for humans to minimize logic functions. Computer-aided design programs 
use different techniques to accomplish the same goal for greater than six input variables.

Writing down the solution once you have done the groupings is done by reading the specification of 
the groups. The vertical pair in Figure 17.10 is BCin. In other words, that pair of cells is uniquely defined 
as having B and Cin both 1. The other two groups are indicated in the figure. The sum of those three 
(where “+” is OR) is the very function we derived algebraically in the last section. Notice how you could 
know to twice replicate cell 7. It occurs in three different groups. It is important to keep in mind that the 
Karnaugh map simply represents the algebraic steps in a highly visual way. It is not intrinsically differ-
ent from the algebra.

B B

1 1 1 1

1
10

1

11
1 3 3

Cin Cin

220

4 45
AA

7 756 6

Sum Carry-out

FIGURE 17.9  Karnaugh maps for sum and carry-out. The numbers in the cell corners give the bit patterns of 
ABCin. The cells whose outputs are 1 are marked; those whose outputs are 0 are left blank.

B

A 1 1

1

1

BCinCin

64 5 7

0 1 23

ACin AB
Carry-out

FIGURE 17.10  The groupings of conjugate pairs in carry-out.
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We have used the word “cell” to refer to a single box in the K-map. The formal name for a cell whose 
value is 1 is the minterm of the function. Its counterpart, the maxterm, comprises all the cells which 
represent an output value of 0. Note that all cells are both possible minterms and possible maxterms.

Two more examples will complete our coverage of K-maps. One way to specify a function is to list the 
minterms in the form of a summation, for example, Cout = Σ(2, 5, 6, 7). Consider the arbitrary 4-input 
function F(X, Y, Z, T) = Σ(0, 1, 2, 3, 4, 8, 9, 12, 15). With four input variables, there are sixteen possible 
input states, and every minterm must contact four neighbors. That can be accomplished in a 4 × 4 array 
of cells as shown in Figure 17.11. Convince yourself that each cell is properly adjacent to its neighbors. 
For example, 1110 (1011) is adjacent to 15 (1111), 9 (1001), 1010 (1010), and 3 (0011) with each neighbor dif-
fering by one bit. Now consider the groupings. Minterm 15 has no neighbors whose value is 1. Hence it 
forms a group on its own, represented by the AND of all four inputs. The top row and first columns can 
each be grouped as a pair of pairs. It takes only two variables to specify such a group. For example, the 
top row includes all terms of the form 00xx, and the first column includes all the terms of the form xx00. 
This leaves us but one uncovered cell, 9. You might be tempted to group it with its neighbor, 8, but rule 
3 demands that we make as large a covering as possible. We can make a group of four by including the 
neighbors 0 and 1 on top. Had we not done that, the bottom pair would be X · Y– · Z–, but by increasing the 
coverage, we get that down to Y– · Z–, a 2-input AND versus a 3-input AND. The final expression is

	 F X Y Z T X Y Y Z Z T XYZT( , , , ) = ⋅ + ⋅ + ⋅ +

The aforementioned function is in SOP form because it is a set of products which are summed 
together. It is just as easy to generate the function with a POS, where several OR gates are joined by a 
single AND. To get to that expression, we find F−, the complement of F, and then convert to F using De 
Morgan’s theorem. One finds F− by grouping the cells where F is not asserted—the zero cells. This is 
shown in Figure 17.12, where we get the expression F− = X−YZ + XZT− + XY−Z + YZ−T.

Let us convert from F − to F using De Morgan’s theorem to get the POS form:

	 F XYZ XZT XYZ YZT X Y Z X Z T X Y Z Y Z T= + + + = + + + + + + + +( ) ( )( )( )( )

1

11

1

1 1 1 1

1

98 11

15 1413

54 7 6

3 210

T
YXZY

X

XYZT

Y
ZT

10

12

Z

FIGURE 17.11  The K-map for F(X, Y, Z, T) = Σ(0, 1, 2, 3, 4, 8, 9, 12, 15) with the minterm groupings shown.
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Why would one want to do this? Economy of gates. Sometimes the SOP form has fewer gates, sometimes 
the POS form does. In this example, the SOP form is somewhat more economical.

17.4.4  Minimizing with Don’t Cares

Sometimes, we can guarantee that some combination of inputs will never occur. I don’t care what the 
output value is for that particular combination of inputs because I know that the output can never occur. 
This is known as an “output” don’t care. I can set these outputs to any value I want. The best way to do 
this is to set these outputs to values that will minimize the gate count of the entire circuit.

An example is the classic seven-segment numerical display that is common in watches, calculators, 
and other digital displays. The input to a seven-segment display is a number coded in binary-coded-
decimal, a 4-bit representation with 16 possible input combinations, but only the 10 numbers 0, …, 9 
ever occur. The states 10, …, 15 are called don’t cares. One can assign them to achieve minimum gate 
count. Consider the entire number set that one can display using seven line segments. We will consider 
the one line segment indicated by the arrows in Figure 17.13. It is generally referred to as “segment e,” 
and it is asserted only for the numbers 0, 2, 6, and 8.

Now we will minimize Se(A, B, C, D) with and without the use of the don’t cares. We put an “X” 
wherever the don’t cares may lie in the K-map and then treat each one as either 0 or 1 in such a way as to 
minimize the gate count. This is shown in Figure 17.14.

We are not doing something intrinsically different on the right and left. On the left, all of the don’t cares 
are assigned to 0. In other words, if someone enters a 14 into this 0 : 9 decoder, it will not light up seg-
ment e. But since this is a don’t care event, we examine the map to see if letting it light up on 14 will help. 
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FIGURE 17.12  The K-map for the complement of F from Figure 17.11.

FIGURE 17.13  Segment e of the seven-segment display whose decoder we are going to minimize.
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The grouping with the choice of don’t care values is decidedly better. We choose to assert e only for don’t 
cares 10 and 14, but those assignments reduce the gates required from two 3-input ANDs to two 2-input 
ANDs. For this little circuit, that is a substantial reduction.

17.4.5 A dder/Subtractor

Let us return to the design of the full adder. A full (1-bit) adder can be implemented out of logic gates by 
implementing the equations for C and S. As we have seen, the simplified version for C is

	 C AB AC BCout in in= + +

One cannot simplify S using K-maps. Instead, we will simplify S by inspection of the truth table for 
the full adder given in Table 17.6. Note that S is high when exactly one of the three inputs is high or when 
all the inputs are high. This is the same functionality as a 3-input XOR gate, as shown in Table 17.8. Thus, 
we can implement S with the following equation:

	 S A B Cin= ⊕ ⊕

This completes our design of a full adder. Its implementation in logic gates is shown in Figure 17.15.
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FIGURE 17.14  Minimization of Se without and with deliberate assignment of the don’t cares.

TABLE 17.8  Truth Table for 3-Input XOR

Inputs Outputs

A B C A ⊕ B A ⊕ B ⊕ C

0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1
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We would like to add n-bit binary numbers. To accomplish this we will connect N full adders as 
shown in Figure 17.16. This configuration connects the carry-out of one bit to the carry-in of the next bit 
and is called a ripple-carry adder. This design is small but slow because the carry must ripple through 
from the least significant bit to the most significant bit. For designs where speed is of the essence, such 
as modern high speed microprocessors, various techniques are used to speed up the calculation of the 
carry chain. Such techniques are beyond the scope of this chapter.

17.4.6 R epresenting Negative Binary Numbers

We would like to add negative numbers as well as positive numbers, and we would like to subtract 
numbers as well as add them. To do this we need a way of representing negative numbers in base 2. Two 
common methods are used: sign-magnitude and 2’s complement. A third method, 1’s complement, will 
also be described to aid in the explanation of 2’s complement.

In Table 17.9, four bits are used to represent the values 7–0. The three different methods for repre-
senting negative numbers are shown. Note that for all three methods the positive numbers have the 
same representation. Also, the leftmost bit is always the sign bit. It is 0 for a positive number and 1 for a 
negative number. It is important to note that all these representations are different ways that a human 
interprets the bit patterns. The bit patterns are not what is changing; the interpretations are. Given a bit 
pattern, you cannot tell which system is being used unless someone tells you. This discussion can be 
extended to numbers represented with any number of bits.

The sign-magnitude method is the closest to the method we use for representing positive and nega-
tive numbers in decimal. The sign bit indicates whether it is positive or negative, and the remaining bits 
represent the magnitude or value of the number. So for example, to get the binary value of negative 3, you 
take the positive value 0011 and flip the sign bit to get 1011. While this is the most intuitive for humans to 
understand, it is not the easiest representation for computers to manipulate. This is true for several reasons. 
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FIGURE 17.15  Implementation of full adder from logic gates on the left. Symbol of full adder on the right.
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FIGURE 17.16  Implementation of an n-bit adder from full adders.
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One is that there are two representations for 0, +0 and −0. A very common operation to perform is to com-
pare a number to 0. With two representations of zero, this operation becomes more complex.

Instead, a representation called 2’s complement is more frequently used. The 2’s complement representa-
tion has the feature that it has only one representation for zero. It has other advantages as well, including 
the fact that addition and subtraction are straightforward to implement; subtraction is the same as adding a 
negative number. If you add a number and its complement, the result is zero with no carry-out as one would 
expect. To form the negative value of a positive number in 2’s complement, simply invert all the bits and 
add 1. Inverting the bits results in the 1’s complement, as shown in Table 17.7. The 1’s complement representa-
tion has many of the advantages of 2’s complement, except that it still has two representations of zero. The 
2’s complement is formed by adding 1 to the 1’s complement of a number. Number 3 in binary is 0011. Its one’s 
complement is 1100 and its 2’s complement is 1101. Given a negative number, how can I tell its value? Due 
to properties of 2’s complement numbers, if I take the 2’s complement of a negative number, I get its positive 
value. Given 1101, I invert the bits to get 0010 and then add 1 to get 0011, its positive value 3. Note that the 2’s 
complement representation has one representation for zero, and it is the value represented by all zeros. Since 
I can represent 16 values with 4 bits, this leaves me with a nonsymmetric range. In other words, I can repre-
sent one more negative number 1000 than positive number. This number is −8. Its positive value cannot be 
represented in 4 bits. What happens if I take the 2’s complement of −8 ? The 1’s complement is 0111. When I 
add 1 to form the 2’s complement, I get 1000. What is really happening is that the true value, +8, cannot be 
represented in the number of bits I have available. It overflows the range for the representation I am using.

Representing numbers in 2’s complement makes it easy to do subtraction. To subtract two n-bit num-
bers A − B you simply invert the bits of B and add 1 when you are summing A + B–.

We are now ready to expand our n-bit ripple-carry adder to an n-bit adder/subtractor. Just as we do 
addition one digit at a time, the adder circuit handles two input bits, Ai and Bi, plus a carry-in Cini. We 
can arrange as many of these circuits in parallel as we have bits. The ith circuit gets the ith bits of two 
operands plus the carry-out of the previous stage. It is straightforward to modify the full adder to be a 
one bit adder/subtractor. A one bit adder/subtractor performs the following tasks:

	 1.	 Choose Bi or the complement of Bi as the B input.
	 2.	 Form the sum of the three input bits, S A B Ci i i ini= + + .
	 3.	 Form the carry-out of the three bits, C f A B Cout i i ini i= ( , , ).

TABLE 17.9  Binary Representation of Negative Numbers

Decimal Sign-Magnitude 1’s Complement 2’s Complement

7 0111 0111 0111
6 0110 0110 0110
5 0101 0101 0101
4 0100 0100 0100
3 0011 0011 0011
2 0010 0010 0010
1 0001 0001 0001
0 0000 0000 0000

−0 1000 1111
−1 1001 1110 1111
−2 1010 1101 1110
−3 1011 1100 1101
−4 1100 1011 1100
−5 1101 1010 1011
−6 1110 1001 1010
−7 1111 1000 1001
−8 1000
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On a bit by bit basis, the complement of Bi is just Bi . For an n-bit number, the two’s complement is 
formed by taking the bit by bit complement and adding 1. I can add 1 to an n-bit subtraction by setting 
the carry-in bit, Cin0

 to 1. In other words, I want Cin0 1=  when subtract is true, and Cin0 0=  when subtract 
is false. This is accomplished by connecting the control signal for subtracting (SB) to Cin0. Similarly when 
SB = 0 I want to use Bi as the input to my full adder. When SB = 1, I want to use Bi  as input. This is sum-
marized in Table 17.10. By inspection, the desired B input bit to the ith full adder is the XOR of SB and Bi. 
If I put all the components together—n full adders, the carry-in of the LSB set to SB, and the XOR of SB 
and Bi to form the complement of B, I get an n-bit ripple-carry adder/subtractor as shown in Figure 17.17.

17.5  Frequently Used Digital Components

Many components such as full adders, half adders, 4-bit adders, 8-bit adders, etc. are used over and over again 
in digital logic design. These are usually stored in a design library to be used by designers. In some libraries 
these components are parameterized. For example, a generator for creating an n-bit adder may be stored. 
When the designer wants a 6-bit adder, he or she must instantiate the specific bit width for the component.

Many other, more complex components are stored in these libraries as well. This allows components 
to be designed efficiently once and reused many times. These include encoders, multiplexers, demulti-
plexers, and decoders. Such designs are described in more detail in the following text. Later, we will use 
them in the design of a calculator datapath.

17.5.1  Elementary Digital Devices: ENC, DEC, MUX, DEMUX

17.5.1.1  ENC

An ENCODER circuit has 2n input lines and n output lines. The output is the number of the input line 
that is asserted. Such a circuit encodes the asserted line. The truth table of a 4-to-2 encoder is shown in 
Table 17.11. The inputs are D0, D1, D2, and D3, and the outputs are Q0 and Q1. Note that we assume at 
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FIGURE 17.17  Connection of n full adders to form an N-bit ripple-carry adder/subtractor. At the rightmost 
adder, the subtract line (SB) is connected to Cin0.

TABLE 17.10  Choosing the B 
Input for an Adder/Subtractor

SB Bi Result

0 0 0
0 1 1
1 0 1
1 1 0
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most one input can be high at any given time. More complicated encoders, such as priority encoders, 
that allow more than one input to be high at a time, are described in the following.

An encoder, like all other components, is built out of basic logic gates. The equations for the Q 
outputs can be determined by inspection. Output Q0 is 1 if D1 is 1 or D3 is 1. Output Q1 is 1 if D2 is 1 
or D3 is 1.

Note that there is no difference in the outputs of this circuit if no input is asserted or if input D0 is 
asserted. To distinguish between these two cases, an output that indicates the Q outputs are valid, V is 
added. Output V is 1 if any of the inputs are 1 and 0 otherwise. V is considered a control output rather 
than a data output. A logic diagram of an encoder is shown in Figure 17.18.

17.5.1.2  DEC

A decoder performs the opposite function of an encoder. Exactly one of the outputs is true if the circuit 
is enabled. That output is the decoded value of the input, if I think of the input as a binary number. When 
the enable input (EN) is 0, the circuit is disabled, and all outputs are 0. The truth table of a 2-to-4 decoder 
is given in Table 17.12.

Note the use of X values for inputs in the first line of the truth table. Here, X stands for “don’t care.” In 
other words, I don’t care what the value of the inputs A and B are. If EN = 0, the outputs will always have 
the value 0. I am using the don’t care symbol, X, as a shorthand for the four combinations of input values 
for A and B. We have already used don’t cares for minimizing circuits with K-maps mentioned earlier. 
In that case the don’t cares were “output” don’t cares. The don’t cares in the truth table for the encoder 
are “input” don’t cares. They are shorthand for several combinations of inputs.

TABLE 17.11  Truth Table for a 4-to-2 Encoder

D0 D1 D2 D3 Q1 Q0 V

0 0 0 0 0 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1

D0

D1

D2

V

Q0

Q1

D3

FIGURE 17.18  A four-to-two encoder with outputs Q0 and Q1 and valid signal.
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17.5.1.3  MUX

Many systems have multiple inputs, which are handled one at a time. Call waiting is an example. You 
are talking on one connection when a clicking noise signals that someone else is calling. You switch to 
the other, talk briefly, and then switch back. You can toggle between calls as often as you like. Since you 
are using one phone to talk on two different circuits, you need a multiplexer or MUX to choose between 
the two. There is also an inverse MUX gate called either a DEMUX or a DECODER. Again, a telephone 
example is the selection of an available line among, say, eight lines between two exchanges. That is, you 
have one line in and eight possible out, but only one output line is connected at any time. An algorithm 
based on which lines are currently free determines the choice. Let us design these two devices, begin-
ning with a two-to-one MUX.

What we want in a 2-input MUX is a circuit with one output. The value of that output should be the 
same as the input that we select. We will call the two inputs A and B and the output Q. The select input 
S chooses which input to steer to the output.

Logically, I can think of Q being equal to A when S = 0 and Q being equal to B when S = 1. I can write 
this as the Boolean equation: Q = (A · S–) + (B · S). You can use a truth table to convince yourself that this 
equation captures the behavior of a 2-input MUX. Note that we now have a new dichotomy of inputs. We 
call some of them inputs and the others controls. They are not inherently different, but from the human 
perspective, we would like to separate them. In logic circuit drawings, inputs come in from the left and 
outputs go out to the right. Controls are brought in from top or bottom. The select input for our multi-
plexer is a control input. Note that, even though I talk about S being a control, in the logic equation it is 
treated the same as an input. An enable is another kind of control input. A valid signal can be viewed as 
a control output. A realization of a 2-to-1 Multiplexer with enable is shown in Figure 17.19.

The 2-to-1 MUX circuit is quite useful and is found in many design libraries. Other similar circuits 
are the 4-to-1 MUX and the 8-to-1 MUX. In general, you can design n-to-1 MUX circuits, where n is a 
power of 2. The number of select bits needed for an n-to-1 MUX is log2(n).

TABLE 17.12  Truth Table for a 
2-to-4 Decoder with Enable

EN A B Q0 Q1 Q2 Q3

0 X X 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1

Q

B

A

SEN

FIGURE 17.19  A two-to-one MUX with enable. If the enable is asserted, this circuit delivers at its output, Q, the 
value of A or the value of B, depending on the value of S. In this sense, the output is “connected” to one of the input 
lines. If the enable is not asserted, the output Q is low.
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Figure 17.20 shows a 4-to-1 multiplexer on the left and a 1-to-4 demultiplexer on the right. The MUX 
chooses one of four inputs using the two select lines: S1 and S0. If we view the values on the select lines 
as the binary numbers 0, …, 3, we understand the selection process as enabling the top AND when the 
input is 00 and then progressively lower ANDs as the numbers become 01, 10, and 11. Essentially, there 
is a decoder circuit within the four-to-one multiplexer.

17.5.1.4  DEMUX/DECODER

The inverse circuit to a multiplexer is a demultiplexer or DEMUX. A DEMUX has one line in, which 
it switches to one of the n possible output lines. A one-to-four DEMUX, used in conjunction with the 
four-to-one MUX, is shown on the right in Figure 17.20.

Note that the Q output line on the multiplexer is labeled as the EN input line on the DEMUX. If I 
treat this line as an enable, the DEMUX becomes a DECODER, in the sense that, when EN is asserted, 
one and only one of the four outputs is asserted, that being the output selected by the number on S1:S0. 
So a decoder and a DEMUX are the same circuit. You usually do not find a DEMUX in a design library. 
Rather, what you find is called a DECODER or sometimes a DEMUX/DECODER.

Decoding is an essential function in many places in computer design. For example, random-access 
memory (RAM) is fed an address—a number—and must return data based on that number. It does this 
by decoding the address to assert lines which enable the output of the selected data. Similarly, computer 
instructions are numbers which must be decoded to assert the lines which enable the specific hardware 
that each instruction requires.

17.5.1.5  Priority Encoder

The encoder we started this section with assumed that exactly one input was asserted at any given time. 
An encoder which could deal with more than one asserted input would be even more useful, but how 
would we define the output if more than one line were asserted? One simple choice is to have the encoder 
deliver the value of the highest-ranking line that is asserted. Thus, it is a priority encoder.

The truth table for the priority encoder is given in Table 17.13. This truth table has a lot of simi-
larities to the simple encoder we started this section with. The valid output V tells us if any input is 
asserted. The output Q0 is true if the only input asserted is D1. The circuit differs in that more than one 
input may be asserted. In this case, the output encodes the value of the highest input that is asserted. 

S1 S0
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QD

Q EN
QC

QB

QA

S1EN S0

FIGURE 17.20  A four-to-one MUX feeding a one-to-four DEMUX. The value on MUX select lines S1:S0 deter-
mines the input connected to Q. EN, in turn, is connected to the output of choice by S1:S0 on the DEMUX.
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So, for example, if D0 and D1 are both asserted, the output Q0 is asserted. I don’t care if the D0 input is 
asserted or not, because the D1 input has higher priority. Here once again, the don’t cares are used as 
short hand to cover several different inputs. If I listed all possible combinations of inputs in the truth 
table, my truth table would have 24 = 16 lines. Using don’t cares makes the truth table more compact 
and readable.

17.5.2  Calculator Arithmetic and Logical Unit

Let us look at putting some of these components together to do useful work. The core of a calculator or 
microprocessor is its ALU. This is the part of the calculator that implements the arithmetic functions, 
such as addition, subtraction, and multiplication. In addition, logic functions are also implemented such 
as ANDing inputs and ORing inputs. A microprocessor may have several, sophisticated ALUs. We will 
examine the design of a very simple ALU for a 4-bit calculator. Our ALU will perform four different 
operations: AND, OR, addition, and subtraction on two 4-bit inputs, A and B. Two input control signals, 
I1 and I0, will be used to choose between the operations, as shown in Table 17.14. We will call the 4 bit 
result R.

A common way to implement such an ALU is to implement the various functions in parallel, then 
choose the requested result based on the setting of the control inputs. The 4-bit AND requires four 
AND gates, one for each bit position. Similarly, the 4-bit OR requires four OR gates. We will imple-
ment the adder and subtractor using a single adder/subtractor unit, since using two would waste area. 
The adder/subtractor unit in Figure 17.17 is perfect for our purposes here. Note, in Table 17.14, that I0 
is 0 for adding A and B and 1 for subtracting A and B, so we can use I0 for the SB input to the adder/
subtractor. These units will always operate on the A and B inputs; a multiplexer will select the correct 
output based on the values of I1 and I0. Four, 4-to-1 multiplexers are used, one for each output bit. 
4-to-1 multiplexers are used because there are no 3-to-1 muxes. We will use the fourth input to pass 
the A input to the output R. The reason for doing this will become apparent when we use the ALU in 
a calculator datapath. To keep the diagram readable, we use the convention that signals with the same 
name are wired together. The resulting ALU implementation is shown in Figure 17.21. The symbol 
for this ALU is shown in Figure 17.22. We will use this symbol when we incorporate the ALU into a 
calculator datapath.

TABLE 17.14  ALU Instructions for Calculator

I1 I0 Result

0 0 A AND B
0 1 A OR B
1 0 A + B
1 1 A − B

TABLE 17.13  Truth Table for a 4-to-2 
Priority Encoder

D0 D1 D2 D3 Q0 Q1 V

0 0 0 0 0 0 0
1 0 0 0 0 0 1
X 1 0 0 1 0 1
X X 1 0 0 1 1
X X X 1 1 1 1
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17.6  Sequential Circuits

17.6.1  Concept of a Sequential Device

So far, all the circuits we have discussed have been combinational. The current output can be deter-
mined by knowing the current inputs. Sequential circuits differ from combinational circuits because 
they have memory. For a circuit with memory, the current outputs depend on the current inputs and on 
the past history of the circuit. Memory elements dramatically change the way a circuit operates.

One of the oldest and most familiar sequential devices is a clock. In its modern implementation, a 
vibrating crystal of piezoelectric material has a mechanical resonance that is used to create an electrical 
signal with a very precise frequency. Because clock (CLK) signals oscillate between logic high and logic 
low states very quickly, and typically appear as a square wave. Figure 17.23 shows an example of a CLK 
signal. Except during transitions from one state to its successor, the clock is always in a discrete state. 

A0A1A2A3
I1

I0

MUXMUX

A0A0A0 A1 A1A1 A2A2A2 A3A3A3

S0S1S2S3U3T3 T2 T1 T0 U2 U1 U0

B0B0B0 B1B1B1 B2B2 B3B3B2 B3
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MUXMUX
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FIGURE 17.21  Implementation of an ALU from other components.
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FIGURE 17.22  Symbol of an ALU component.
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To be in a discrete state requires some form of memory. I can only know the current output of my clock 
if I know what its previous output was.

One of the most ubiquitous and essential memory elements in the digital world is the latch or flip-flop 
(FF). It snaps from one position to the other (storing a 1 or storing a 0) and retains memory of its current 
position. We shall see how to build such a latch out of logic gates.

Like clocks, computers and calculators are finite state machines. All of the states of a computer can be 
enumerated. Saying this does not in any way restrict what you can compute. The states of a finite state 
machine capture the history of the behavior of the circuit up to the current state.

By linking memory elements together, we can build predictable sequential machines that do impor-
tant and interesting tasks. Only the electronic “latch” and the datapath of our simple calculator are 
included in this short chapter, but from the sequential elements presented here complex machines can 
be built. There are two kinds of sequential circuits, called clocked or synchronous circuits and asynchro-
nous circuits. The clocked circuits are built from components such as the FF, which are synchronized 
to a common CLK signal. In asynchronous circuits, the “memory” is the intrinsic delay between input 
and output. To maintain an orderly sequence of events, they depend on knowing precisely how long it 
takes for a signal to get from input to output. Although that sounds difficult to manage in a very com-
plex device, it turns out that keeping a common clock synchronized over a large and complex circuit is 
nontrivial as well. We will limit our discussion to clocked sequential circuits.

17.6.2  Data Flip-Flop and Register

17.6.2.1  SR Latch. Set, Reset, Hold, and Muddle

In all the circuits we have looked at so far, there was a clear distinction between inputs and outputs. Now 
we will erase this distinction by introducing positive feedback; we will feed back the outputs of a circuit 
to the inputs of the same circuit. In an electronic circuit, positive feedback can be used to force the cir-
cuit into a “stable state.” Since saturated logic goes into such states quite normally, it is a very small step 
to generate an electronic latching circuit from a pair of NAND or NOR gates. The simplest such circuit 
is shown in Figure 17.24.
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FIGURE 17.24  The basic set/reset (SR) latch is shown on the left. If S
–

 is asserted, Q is asserted (set). If R
–

 is 
asserted, Q is deasserted (reset). If neither S

–
 nor R

–
 is asserted (both high), the latch retains its current state. If 

both are asserted, the latch goes into a muddle state where Q is asserted and Q– is deasserted (both high), but upon 
simultaneous release of the inputs, the next state is unpredictable. The truth table for an NAND gate is shown on 
the right.
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FIGURE 17.23  Example waveform of an oscillating clock signal with a period of 20 ns and frequency 50 MHz.
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Analyzing Figure 17.24 requires walking through the behavior of the circuit. Let us assume that Q has 
the value 1 and Q– has the value 0. Start with both S– and R– deasserted. In other words, both have value 1, 
since they are active low signals. The inputs to B will be high, so Q– will be low. This is a “steady state” of 
this circuit; the circuit will stay in this state for some time. This state is called storing 1, or sometimes 
just “1” because Q has the value 1. You could toggle S

–
 (i.e., change its value to 0 and then back to 1) and 

no other change would take place in the circuit.
Now, with S– high, let us assert R– by setting it to 0. First, Q– will go high because R– is one of the inputs 

to B, and the NAND of 0 with anything is 1. This makes both of the inputs to A high, so Q goes low. Now 
the upper input to B is low, so deasserting R– (setting it to 1) will have no effect. Thus, asserting R– has reset 
the latch. The latch is in the other steady state, “storing 0” or “0.”

At this point, asserting S– will set the latch, or put it back into the state “1.” For this reason, the S input 
is the “set” input to the latch, and the R input is the “reset” input.

What happens if both S– and R– are asserted at the same time? The initial result is to have both Q and 
Q– go high simultaneously. Now, deassert both inputs simultaneously. What happens? You cannot tell. 
It may go into either the set or the reset state. Occasionally, the circuit may even oscillate, although this 
behavior is rare. For this reason, it is usually understood that the designer is not allowed to assert both S– 
and R– at the same time. This means that, if the designer asserts both S– and R– at the same time, the future 
behavior of the circuit cannot be guaranteed, until it is set or reset again into a known state.

There is another problem with this circuit. To hold its value, both S– and R– must be continuously deas-
serted. Glitches and other noise in a circuit might cause the state to flip when it should not.

With a little extra logic, we can improve upon this basic latch to build circuits less likely to go into 
an unknown state, oscillate, or switch inadvertently. These better designs eliminate the muddle state.

17.6.2.2 T ransparent D-Latch

A simple way to avoid having someone press two buttons at once is to provide them with a toggle switch. 
You can push it only one way at one time. We can also provide a single line to enable the latch. This 
enable control signal is usually called the clock. We will modify the S–R latch above. First, we will com-
bine the S and R inputs into one input called the data or D input. When the D line is a one we will set the 
latch. When the D line is a zero we will reset the latch. Second, we will add a CLK signal to control when 
the latch updates. With the addition of two NANDs and an inverter, we can accomplish both purposes, 
as shown in Figure 17.25.

Note that we tie the data line, D, to the top NAND gate and the inverse or D– to the bottom NAND 
gate. This assures that only one of the two NAND outputs can be low at one time. The CLK signal allows 
us to open the latch (let data through) or latch the data at will. This device is called a transparent D-latch 
and is found in many digital design libraries. This latch is called transparent because the current value 
of D appears at Q if the CLK signal is high. If CLK is low, then the latch retains the last value D had when 
CLK was high.

R

S

Q

CLK

D

Q

FIGURE 17.25  The transparent D-latch. The circuit is transparent when CLK is high (i.e., the current value D 
appears at Q) and latched when CLK is low (the value of D when the clock went low is held at Q).
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Has this device solved all of the problems we described for the SR-latch? No. Consider what might 
happen if D changes from low to high just as the clock changes from high to low. For the brief period 
before the change has propagated through the D-inverter, both NANDs see both inputs high. Thus, at 
least briefly, both R– and S– are asserted. This is the very situation we wanted to avoid. This muddled situ-
ation would last only for the propagation time of the inverter, but then the CLK signal arrives and drives 
both S

–
 and R– high. The latch might oscillate or flip either way. In any case, it will be unpredictable.

There is another problem with this circuit. It is indeed transparent during the high CLK signal. This 
means that Q will mirror D while CLK is high. If D changes rapidly, so will Q. Sometimes you may want 
transparency. However, frequently you want to be able to guarantee when the output will change and to 
only allow one transition on the output per clock cycle. In that case you do not want transparency; what 
you really want is a different circuit: an FF.

17.6.2.3  Master–Slave DFF to Eliminate Transparency

The problem with transparent gates is not a new one. A solution which first appeared in King Solomon’s 
time (ninth century B.C.E.) will work here as well. The Solomonic gate was a series pair of two quite 
ordinary city gates. They were arranged so that both were never open at the same time. You entered 
the first and it was shut behind you. While you were stuck between the two gates, a well-armed, suspi-
cious soldier asked your business. Only if you satisfied him was the second gate opened. The solution of 
putting out-of-phase transparent latches between input and output is certainly one obvious solution to 
generating a DFF. Such an arrangement of two D-latches is shown in Figure 17.26.

The latch on the left is called the master; that on the right is called the slave. This master–slave (MS) 
DFF solves the transparency problem but does nothing to ameliorate the timing problems. While tim-
ing problems are not entirely solvable in any FF, accommodating the number of delays in this circuit 
tends to make the MSFF a slow device and thus a less attractive solution. Why should it be slow? The 
issue is that to be sure that you do not put either of these devices into a metastable or oscillatory state, 
you must hold D constant for a relatively long setup time (before the clock edge) and continue it past the 
clock transition for a sufficient hold time. This accommodation limits the speed with which the whole 
system can switch.

Can we do better? Yes, not perfect, but better. The device of choice is the edge-triggered DFF. We 
will not go into the details of the implementation of an edge-triggered FF as it is considerably more 
complicated than the circuits considered so far. An edge-triggered FF is designed to pass the input 
datum to the output during a very short amount of time defined by a clock edge. Edge triggered 
FFs can either be rising edge-triggered or falling edge-triggered. A rising edge-triggered FF will only 
change its output on the rising edge of a clock. There is still a setup time and a hold time; a small 
amount of time right around the clock edge during which the input datum must be stable in order 
to avoid the FF becoming metastable. The advantage of the edge-triggered design is that there is only 
one brief moment when any critical changes take place. This improves synchronization and leads to 
faster circuits.

R1 R2

Q

S1 S2

Q
Q
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CLK

FIGURE 17.26  The master–slave data flip-flop constructed of two D-latches in series.
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There are other types of FFs as well, but the DFF is widely used and useful for building more com-
plex circuits. We will consider these as we build more complex circuits. Most designs of a positive-
edge-triggered DFF include two additional asynchronous inputs, preset and clear. Asynchronous 
inputs cause the output to change independently of the clock input. The D input is a synchronous 
input; changes on the D input are only reflected at the output during a clock edge. An active signal 
on the preset input causes the output of the FF to be set to 1; an active signal on the clear input 
causes the output to be cleared or set to 0. These inputs are useful for putting FFs in a design into a 
known state.

17.6.3  From DFF to Data Register, Shift Register, and Stack

The simplest and most useful device we can build with DFFs is a data register. A data register stores 
data. The simplest data register stores new data on every clock edge. Its design is shown in Figure 17.27. 
It is useful to control when the data register stores new data. We can extend the data register by adding a 
control signal called load. Now our register will load new data only when load is high. Otherwise it will 
store its old data. The new register design is shown in Figure 17.28.

We can also build a shift register, which shifts data, one bit at a time, into a parallel register. Shift 
registers are useful for converting serial data to parallel data. For example, you may receive data one 
bit at a time from a serial connection to your computer but want to operate on the data in parallel. 
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FIGURE 17.28  An n-bit register with load input. The upper layer is a set of n 2-input MUXs. The bottom layer is 
a set of n positive-edge-triggered DFFs.
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FIGURE 17.27  An n-bit data register built from n DFFs.
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Shift registers can sometimes be loaded in parallel also, just like the data register. We will keep things 
simple; a serial-in parallel-out shift register is shown in Figure 17.29. This shift register also has a 
serial output.

17.6.3.1  Stack for Holding Data

Our calculator requires memory to store variables that need to be manipulated. We could implement a 
RAM with addressing, read and write capabilities. Instead, to keep things simple, we will implement a 
stack for storing variables and results. A stack is a group of memory locations with limited access to its 
contents. At any given time, only the top of the stack can be read. This makes its implementation simple 
because general addressing does not need to be supported. Our stack supports three operations: push, pop, 
and hold. When a value is pushed onto the stack, it becomes the value at the top of the stack. All values 
already in the stack are pushed down by one. If the stack was full before the push operation, then the oldest 
(first in) value on the stack is lost. In a pop operation, the top of the stack is deleted, and all other values 
move up in the stack by one position. Note that this operation differs from a software pop operation. In 
software, the popped value is stored in a register. In our hardware implementation there is no register stor-
ing the removed value, so this value is lost. A stack is sometimes called a Last In First Out because that is 
the order in which values are accessed. The hold operation ensures that the current contents of the stack are 
retained. It is important to explicitly support this so that the contents of the stack are not changed during 
operation. Push, pop, and hold all happen on a clock edge. By default, the stack holds its contents when 
there is no clock edge.

We will implement a stack to hold 4-bit variables. Our stack will contain four locations. One can 
implement this stack as four shift registers (one for each bit position) with each shift register containing 
four FFs. The total memory contents of our stack is held in 16 DFFs. In a real calculator implementation, 
the stack would be implemented with memory cells which use fewer transistors and consume less power 
than DFFs, but for our small design, DFFs will suffice.

17.6.4  Datapath for 4-Bit Calculator

Let us put the pieces together and implement the datapath of a 4-bit calculator. We will use the stack 
described in the preceeding text as our memory, and the ALU described in the previous section to 
implement logical operations. We need to add connections and a way to input data values. We also need 
an instruction to tell the calculator datapath what to do. We will use a 7-bit input that can be connected 
to toggle switches to provide the data and instructions. The datapath for the calculator is shown in 
Figure 17.30. The output is the top of stack (TOS). This is represented as the 4 bits OUT[3:0]. These could 
be hooked to a seven-segment display to display the results.

Our calculator will support the instructions: push, pop, and, or, add, and subtract. Note that the last 
four are the operations that our ALU supports. These are operations that take two 4-bit input values 
and produce a 4-bit result. The operands will be found on the stack. The input values will be popped 
off the stack, and the output value will be pushed onto the top of the stack. For a push operation, the 

Q2 Q1 Q0 SHIFT IN
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FIGURE 17.29  An n-bit shift register with serial input, parallel, and serial output. This register shifts one bit to 
the left at the positive edge of every clock cycle.
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value to be pushed onto the stack will be entered via the input switches. Suppose we want to calculate: 
4 + (5 − 3). The operations required are:

PUSH 4
PUSH 3
PUSH 5
SUB
ADD

The contents of the stack for this sequence of operations are shown in Figure 17.31.
The format of the instructions and data on the input switches are shown in Table 17.15. Note that only 

the PUSH instruction uses external data.
What is missing from our calculator design? A controller to make sure that the right operations are per-

formed on the datapath in the correct sequence for each instruction. While the design of such a controller 
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FIGURE 17.30  Calculator datapath. The temp register stores the ALU results every CLK edge.
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FIGURE 17.31  Stack contents for calculating 4 + (5 − 3).

TABLE 17.15  Switch Settings for 
Calculator Instructions

Instruction SW6…SW4 SW3…SW0

AND 000 Unused
OR 001 Unused
ADD 010 Unused
SUB 011 Unused
PUSH 101 Data
POP 110 Unused
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is beyond the scope of this chapter, we will specify its behavior. For each instruction, the datapath goes 
through a sequence of operations or states. There are a finite number of such states to describe the behav-
ior of the controller; hence, the controller is a finite state machine. Such a finite state machine can be 
implemented with FFs to hold the state and combinational logic to generate the next state and the outputs 
required. The inputs to the state machine are the current state and, for the calculator, the instruction 
which is entered via the switches. There is also a button the user needs to be able to press that indicates that 
the next instruction is ready to execute. The outputs are the control signals for the datapath. Our control-
ler needs to output two bits for the ALU to tell it what to do, and two bits for the stack to generate the push, 
pop, or hold inputs, and 1 bit for the MUX to tell it which input to use. The temporary register requires no 
control signals—it will be updated every clock cycle. The entire calculator design is shown in Figure 17.32.

Let us look at how the instructions are executed on our calculator. There are three classes of instruc-
tions: push, pop, and ALU (add, sub, and, or). The pop instruction is the simplest. All that is needed is 
one state to pop the stack. In that state, the control inputs to the stack should be “pop.” We don’t care 
what the ALU or MUX control inputs are set to. Operation push is also a one state instruction. In that 
state the data on the switches is pushed onto the stack. So the control input for the MUX should be set to 
select the input switches and the control input for the stack should be set to “push.”

The ALU instructions are more complicated; they require three control states. We assume that our calcula-
tor has the two operands on the stack before an ALU instruction is executed. In the first state the data value on 
the top of the stack is stored in the temp register and the stack is popped. How can we accomplish this in one 
state? Note that the ALU is a combinational circuit and the TOS is already the A input to the ALU. If we select 
the ALU operation to pass A through to the output of the ALU, then on the clock edge, we will simultaneously 
store the current TOS value in the temp register and pop the value off the stack. Now, at the start of the second 
state, the first operand is at input B of the ALU because the temp register output is connected to input B. The 
second operand is at input A of the ALU because the TOS is connected to input A. In this state we will execute 
the correct ALU instruction, store the result in the temp register, and pop the A operand off the stack. Finally, 
in the third state the contents of the temp register, that is the results of the ALU operation, are pushed onto 
the stack. At the end of an ALU operation, the two operands have been popped from the stack, and the result 
pushed on the stack as required. To summarize, the three states of an ALU operation are as follows:

state 1: temp <- operand A; pop
state 2: temp <- A op B   ; pop
state 3:                    push temp

We have discussed what happens when an instruction is executing. What happens between instruc-
tions? The stack should “hold” its contents. It does not matter what the ALU is doing, or what input the 
MUX passes through. The memory of this design is in the stack. As long as the stack holds its contents, 
the memory is maintained. The temporary register is updated every clock cycle, but the results are not 
saved, so this does not affect the correct operation of the calculator datapath. Note that the output is 
always active, and it always shows what is currently on the top of the stack.
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FIGURE 17.32  Connecting the controller, datapath, inputs, and outputs of the calculator.
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We have presented basic digital components, both combinational and sequential, and put them together 
to build a useful design: a simple calculator. Using essentially the same techniques, much more compli-
cated devices can be constructed. Many of the digital devices we take for granted—digital clocks, anti-
lock braking systems, microwave oven controllers, etc.—are the implementations of designs using these 
techniques. In the final section of this chapter, we will consider how such devices are physically realized.

17.7 A SICs and FPGAs—Faster, Cheaper, More Reliable Logic

The circuits we have considered so far—encoders, decoders, muxes, FFs, etc.—can be bought in pack-
ages with several to a chip. For example, a 14-pin package containing four 2-input NANDs per package 
has been available for more than 30 years. These chips are called small scale integrated circuits. No one 
who has watched the astonishing decline in the cost of digital electronics brought about by very large 
scale integrated circuits (VLSI) would expect to find engineers generating circuits by hooking up vast 
arrays of such packages. In a world where powerful computer chips roll off the line with more than a 
billion transistors all properly connected and functioning at clock speeds in excess of 1 GHz, why would 
we be manually hooking up hundreds of these small packages with 16 transistors in a chip that takes 
15–20 ns to get a signal through a single NAND? Today, the equivalent of many pages of random logic 
circuit diagrams can be implemented in a single chip. There are many different ways to specify such 
designs and many different ways to physically realize them. The dominant method of design entry is 
using a hardware description language (HDL). HDLs resemble software programming languages with 
added features specifically for describing hardware such as bitwidth, I/O ports, and controller state 
specifications. Design tools translate HDL descriptions of a circuit to the final implementation. One 
of the goals of an HDL design is to separate the design from the implementation technology. The same 
HDL description, in theory at least, can be mapped to different target technologies.

There are also many technologies for physically realizing digital logic designs. Application-specific 
integrated circuits (ASICs) can be implemented as VLSI circuits where millions of transistors are real-
ized on a single chip resulting in very high speeds and very low power dissipation. Such designs are 
manufactured at a foundry and cannot be changed after they have been implemented. Since high per-
formance VLSI designs are very expensive to manufacture, they are increasingly used only for very large 
volume designs and designs where low power is critical. For example, VLSI ASIC chips are found in 
mobile phones, tablets, and other handheld devices that meet these criteria.

Designers are increasingly turning to programmable and reconfigurable devices for realizing their 
designs. These devices are manufactured in large quantities using VLSI techniques with the latest tech-
nology. They are specialized to a particular design after the fabrication process, hence they are pro-
grammable. Devices that can be reprogrammed to fix errors or update functionality are also called 
reconfigurable. One of the most popular of these devices is the FPGA. Modern FPGAs can implement 
designs with the equivalent of millions of transistors on a single chip and operate with clock speeds of 
several hundred MegaHertz. For many designs, FPGAs are much more cost effective than ASICs.

For both FPGAs and ASICs, all of the steps that take the initial design to finished chip can be auto-
mated. The initial design can be described as a schematic, similar to the diagrams in this chapter, or 
using an HDL. In the case of FPGAs, design tools translate this specification into programming data 
that can be downloaded to the chip. As we shall see, FPGA chips are based on memory technology. 
Rather than downloading a data file to memory, you download a configuration file to an FPGA that 
changes the way the hardware functions. This programming of the chip is very rapid. One can make a 
change in a complex design and have a working realization in less than an hour. By comparison, ASIC 
fabrication can take several weeks. By tightening the design cycle, such rapid prototyping has dramati-
cally reduced the cost of designing and producing complex circuits for specific applications.

The underlying technology of an FPGA, and what makes it programmable and reconfigurable, is memory. 
Writing HDL programs and programming the FPGA makes the design process sound more like software than 
hardware development. The major difference is that the underlying structures being programmed implement 
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the hardware structures we have been discussing in this chapter. In this section, we introduce FPGA technol-
ogy and explain how digital designs are mapped onto the underlying structures. There are several companies 
that design and manufacture FPGAs. We will use the architecture of the Xilinx FPGA as an example.

17.7.1  FPGA Architecture

Let us consider the architecture of Xilinx FPGAs. Our objective is not to learn how to program them—
a task normally accomplished by software—but rather to show the relationship of these sophisticated 
chips to the logic we have already developed. The Xilinx chip is made up of three basic building blocks:

CLB the configurable logic blocks are where the computation of the user’s circuit takes place.
IOB the input/output blocks connect I/O pins to the circuitry on the chip.
Interconnect interconnect is essential for wiring between CLBs and from IOBs to CLBs.
The Xilinx chip is organized with its configurable logic blocks (CLBs) in the middle, its I/O blocks 

(IOBs) on the periphery, and lots of different types of interconnect. Wiring is essential to support the 
versatility of the chips to implement different designs efficiently and to ensure that the resources on the 
FPGA can be utilized efficiently. The overview of a Xilinx chip is presented in Figure 17.33. Each CLB 
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FIGURE 17.33  Overview of the Xilinx FPGA. I/O blocks (IOBs) are connected to pads on the chip which are 
connected to the chip-carrier pins. Several different types of interconnect are shown, including programmable 
interconnect points (PIPs), programmable switch matrices (PSMs), and long line interconnect.
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is programmable and can implement combinational or sequential logic or both. Data enter or exit the 
chip through the IOBs. The interconnect can be programmed so that the desired connections are made. 
Distributed configuration memory (not shown in the figure) controls the functionality of the CLBs 
and IOBs, as well as the wiring connections. Implementation of the CLBs, interconnect, and IOBs is 
described in more detail in the following text.

17.7.1.1  Configurable Logic Block

How do you use memory to implement different Boolean logic functions? You download the truth 
table of the function to the memory. Changing the contents of the memory cells changes the function-
ality of the hardware. One set of memory cells for a one-bit output are referred to as a Look Up Table 
(LUT) because you “look up” the result. The basic Xilinx logic slice contains a 6-input LUT for realizing 
combinational logic. The result of this combinational function may or may not be stored in a DFF. The 
implementation of a logic slice, with 6-input LUT and optional FF on the LUT output, is shown on 
the left in Figure 17.34. Note that the multiplexer can be configured to output the combinational result 
of the LUT or the result of the LUT after it has been stored in the FF by setting the memory bit attached 
to the MUX’s select line. The logic is configured by downloading 17 bits of memory: the 16 bits in the 
lookup table and the one select bit for the multiplexer. Using this simple structure, all of the designs 
described so far in this chapter can be implemented.

The real Xilinx CLB is considerably more complicated; however, the way it is programmed is the 
same. It essentially contains two of the logic slices shown in Figure 17.35. In addition, there is a third 
LUT whose three inputs can include the outputs of the two 6-input LUTs. The CLB is designed to be able 
to implement any Boolean function of five input variables, or two Boolean functions each of four input 
variables. With the third LUT, some functions of up to nine input variables can be realized. Extra logic 
and routing is also added to speed up the carry chain for an adder, since adders are such common digital 
components. In addition, additional routing and muxes allow the FFs to be used independently of the 
LUTs as well as in conjunction with them.

17.7.1.2  Interconnect

Once the CLBs have been configured to implement combinational and sequential logic components, 
they need to be connected to implement larger circuits, just as we wired together the ALU, register, 
and muxes to implement the calculator datapath. This requires programmable interconnect, so that an 
FPGA can be programmed with different connections depending on the circuit being implemented. 
The key is the programmable interconnect point (PIP) shown on the right in Figure 17.34. This simple 
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FIGURE 17.34  On the left, a simplified CLB logic slice containing one 6-input lookup table (LUT) and 
optional DFF. The 16 one-bit memory locations on the left implement the LUT. One additional bit of memory is 
used to configure the MUX so the output comes either directly from the LUT or from the DFF. On the right is a 
programmable interconnect point (PIP). LUTs, PIPs, and MUXes are three of the components that make FPGA 
hardware programmable.
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device is a pass transistor with its gate connected to a memory bit. If that memory bit contains a one, the 
two ends of the transistor are logically connected; if the memory bit contains a zero, no connection is 
made. By appropriately loading these memory bits, different wiring connections can be realized. Note 
that there is considerably more delay across the PIP than across a simple metal wire on a chip. This is the 
tradeoff when using programmable interconnect.

Our FPGA architecture has CLBs arranged in a matrix over the surface of a chip, with routing chan-
nels for wiring between the CLBs. Programmable switch matrices (PSMs) are implemented at the inter-
section between a row and column of routing. These switch matrices support multiple connections, 
including signals on a row and a column, signals passing through on a row, and signals passing through 
on a column. Figure 17.35 shows a signal output from one CLB connecting to the inputs of two others. 
This signal passes through two PSMs and three PIPs, one for each CLB connection.

While programmable interconnect makes the FPGA versatile, each active device in the interconnec-
tion fabric slows the signal being routed. For this reason, early FPGA devices, where all the intercon-
nect went through PIPs and PSMs, implemented designs that were considerably slower than their ASIC 
counterparts. More recent FPGA architectures have recognized the fact that high speed interconnect is 
essential to high performance designs. In addition to PIPs and PSMs, many other types of interconnect 
have been added. Many architectures have nearest neighbor connections, where wires connect from one 
CLB to its neighbors without going through a PIP. Lines that skip PSMs have been added. For example, 
double lines go through every other PSM in a row or a column. Long lines have been added to support 
signals that span the chip. Special channels for fast carry chains are available. Finally, global lines that 
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FIGURE 17.35  Programmable interconnect including two programmable switch matrices (PSMs) for connecting 
the output of one CLB to the input of two other CLBs.
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transmit CLK and reset signals are provided to ensure these signals are propagated with little delay. All 
of these types of interconnect are provided to support both versatility and performance.

17.7.1.3  Xilinx Input/Output Block

Finally, we need a way to get signals into and out of the chip. This is done with IOBs that can be config-
ured as input blocks, output blocks, or both (but not at the same time). The output enable (OE) signal 
enables the IOB as an output. If OE is high, the output buffer drives its signal out to the I/O pad. If OE 
is low, the output function is disabled, and the IOB does not interfere with reading the input from the 
pad. The OE signal can be produced from a CLB, thus allowing the IOB to sometimes be enabled as an 
output and sometimes not. In addition, IOBs contain DFFs for latching the input and output signals. The 
latches can be bypassed by appropriately programming multiplexers. A simplified version of the IOB is 
shown in Figure 17.36. The actual IOB contains additional circuitry to properly deal with such electrical 
issues as voltage and current levels, ringing and glitches, and phased-locked loops that are important 
when interfacing the chip to signals on a circuit board.

Interconnect, CLBs, and IOBs form the basic architecture for implementing many different designs in a 
single FPGA. The configuration memory locations, distributed across the chip, need to be loaded to imple-
ment the appropriate design. For a Xilinx FPGA, these memory bits are SRAM and are loaded on power 
up. Special I/O pins that are not user configurable are provided to download the configuration bits that 
define the design to the FPGA. Other devices use different underlying technologies such as SRAM to pro-
vide programmability and reconfigurability, and some specialized devices include additional specialized 
circuitry like digital signal processing (DSP) blocks and an increased number of on-chip SRAM blocks.

17.7.1.4  Mapping Simple Calculator to FPGA

Let us look at how the calculator design (Figure 17.32) is mapped onto a board containing an FPGA. The 
board used contains a Xilinx 4028E FPGA, switches, push buttons, and seven-segment displays. The 
calculator was designed to map to this board, with switches used for entering instructions and data, a 
push button for the EXC command, and a seven-segment display used to show the TOS. The logic of 
the calculator is mapped to CLBs. The controller is made up of boolean logic and DFFs to hold the state. 
The datapath is made up of the components developed in this chapter and mapped to LUTs and DFFs.
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FIGURE 17.36  Simplified version of the IOB. The IOBs can be configured to input or output signals to the FPGA. 
When OE is high, the output buffer is enabled so the output signal is driven on the I/O pad. When OE is low, the 
IOB functions as an input block. Buffers handle electrical issues with signals from the I/O pad.
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This calculator was developed as an undergraduate laboratory experiment. Students enter the design 
using a schematic capture tool, which involves drawing diagrams like the ones in this chapter. Synthesis 
tools translate the design to LUTs and FFs, breaking the logic up into 4-input chunks of logic, each of 
which is implemented with one truth table. Alternatively, the design can be described using a HDL to 
specify behavior. A different synthesis tool is involved, but the end result is a set of LUTs and DFFs that 
implement the design. Placement tools map these components to CLBs on the chip, and routing tools 
route the connections making use of the various kinds of interconnect available. The tools translate the 
logic design to a bitstream that is downloaded to the board from a PC through a download cable. The 
result is a functioning calculator on an FPGA board.

An advantage of this design flow is that designers can migrate their designs to the newest chip 
architecture without changing the specification. Only the tools need to change to target a faster or 
cheaper device.

17.7.2  Higher Levels of Complexity

Integrating functionality on a single chip allows for higher performance and smaller packages. As 
more and more transistors can be realized on a single chip, and functionality increases, it also has 
become increasingly clear that one particular structure for implementing a design does not suit all 
needs. While many digital designs can be implemented using FPGA structures, others are less well 
suited to this technology. For example, hardware multipliers are particularly inefficient when mapped 
to CLBs. Certain functions perform better on a microprocessor or a programmable DSP than in digital 
hardware. For this reason, FPGA manufacturers have begun integrating large functionality blocks on 
FPGAs. For example, both Xilinx and Altera, two of the major FPGA manufacturers, have introduced 
FPGAs with embedded multipliers, embedded RAM blocks, and embedded processors. Altera calls this 
approach “System on a Programmable Chip”. Similarly, to support reconfigurability after manufactur-
ing, ASIC designers are increasingly adding blocks of FPGA logic to their designs. It is clear that the 
future will bring more complex chips with more functionality, higher clock speeds, and more types of 
logic integrated on a single chip. Digital logic and reconfigurable hardware will be part of these designs 
for the foreseeable future.

Key Terms

Active logic: Digital logic which operates all of the time in the active, dissipative region of the electronic 
amplifiers from which it is constructed. Such logic is generally faster than saturated logic, but 
it dissipates much more energy. See saturated logic.

ASIC: Application-specific integrated circuit. Integrated circuits that are designed for a specific application. 
The term is used to describe VLSI circuits which can be configured before manufacturing to meet 
the specific needs of the application. High performance ASICs are low power and high speed but 
also expensive.

CLB: Configurable logic block in a Xilinx FPGA. This is where the computation occurs in an FPGA. 
CLBs implement truth tables and DFFs.

Clock: THe input which provides the timing signal for a circuit. In general, the oscillator circuit which 
generates a synchronization signal.

CMOS: Complementary metal–oxide–semiconductor. The dominant family of binary, saturated logic. 
CMOS circuits are built from MOS transistors in complementary pairs. When one transistor 
is open, its complement is closed, ensuring that no current flows through the switch itself. Such 
a configuration has minimum power dissipation in any static state.

Combinational circuit: A logic circuit whose output is a function only of its inputs. Apart from propaga-
tion delays, the output always represents a logical combination of its present inputs. See sequen-
tial circuit.



17-38 Architecture and Organization

Critical race: In a sequential circuit, a situation in which the “next state” is determined by which 
of two (or more) internal gates is first to reach saturated state. Such a race is dependent on 
minor variations in circuit parameters and on temperature, making the circuit unpredict-
able and possibly even unstable.

Decoder: A logic circuit with N inputs and 2N outputs, one and only one of which is asserted to indicate 
the numerical value of the N input lines read as a binary number. A decoder and demultiplexer 
use the same internal circuitry.

Demultiplexer (DEMUX): A logic circuit with K control inputs which steers the data input to the one 
of the 2K outputs selected by the control inputs.

D flip-flop (DFF): A fundamental sequential circuit whose output changes only upon a CLK signal and 
whose output represents the data on its input at the time of the last clock.

Don’t care: In a truth table or Karnaugh map, a state which is irrelevant to the correct functioning of the 
circuit (e.g., because it never occurs in the intended application). Thus, the designer “doesn’t 
care” whether that state is asserted, and he or she may choose the output that best minimizes 
the number of gates.

Edge-triggered FF: An FF which changes state on a clock transition from low to high or high to low 
rather than responding to the level of the CLK signal. Contrast to MS FF.

Encoder: A logic circuit with 2N inputs and N outputs, the outputs indicating the binary number of the 
one input line that is asserted. See also priority encoder.

Flip-flop: Any of several related bistable circuits which form the memory elements in clocked, sequen-
tial circuits.

FPGA: Field-programmable gate array. VLSI chips with a large number of reconfigurable gates that can 
be “programmed” to function as complex logic circuits. The programming can be done on site 
and in some cases may be dynamically (in circuit) reprogrammable.

Glitch: A transient transition between logic states caused by different delays through parallel paths in 
a logic circuit. They are unintentional transitions, so they do not correctly represent the logic 
of the intended design.

HDL: Hardware Description Language. A language that resembles a programming language with 
added features for specifying hardware designs.

IOB: I/O block in a Xilinx FPGA. Block on the periphery of an FPGA that supports the input and/or 
output of a signal from the FPGA to its external environment.

Karnaugh map: A mapping of a truth table into a rectangular array of cells in which the nearest neigh-
bors of any cell differ from that cell by exactly one binary input variable. K-maps are useful for 
minimizing Boolean logic functions.

Master–slave FF: An FF which changes state when the clock voltage reaches a threshold level. Contrast 
to edge-triggered FF.

Multiplexer (MUX): A circuit with N control inputs to select among one of 2N data inputs and connect 
the appropriate data input to the single output line.

PIP: Programmable interconnect point on a Xilinx FPGA. A pass transistor with a memory bit connected 
to its gate terminal. If the memory is loaded with a “1” the two ends are connected; if loaded 
with a “0” the two ends are not connected. This is the basis of programmable interconnect.

Priority encoder: An encoder with the additional property that if several inputs are asserted simultane-
ously, the output number indicates the numerically highest input that is asserted. For example, 
if lines 1 and 3 were both asserted, the output value would be 3.

Saturated logic: Logic gates whose output is fully on or fully off. Saturated logic dissipates no power 
except while switching. The opposite of saturated logic is active logic.

Sequential circuit: A circuit which goes through a sequence of stable states, transitioning between such 
states at times determined by a CLK signal. The output of a sequential circuit depends both on 
its current inputs and its history, which is captured in the states. Contrast with combinational 
circuit.
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Transparent latch: Essentially, an FF which continuously passes the input to the output (thus transpar-
ent) when the clock is high (low) but holds the last output during any interval when the clock 
is low (high). The circuit is said to have latched when it is holding its output constant regardless 
of the value of the input.

VLSI: Very large scale integrated circuit. A semiconductor device that integrates millions of transistors 
on a single chip. VLSI chips are typically very high speed and have very high power dissipation.

Further Information

This is a very quick pass through digital circuit design. What has been covered in this chapter provides 
a good overview of the principles as well as information to help the reader understand the chapter on 
computer architecture in this volume.

There are many textbooks devoted to the subject of digital logic design. Wakerly (2005) emphasizes 
basic principles and the underlying technologies. Other digital logic texts emphasize logic design tools 
(Katz, 2004) and computer design fundamentals (Mano and Kime, 2007).

There have also been many volumes published on design entry, tools for automating the digital 
design process, and mapping designs onto Field Programmable Logic (FPL). The Hardware Description 
Languages (HDLs) most widely used today are VHDL (Ashenden, 2008) and Verilog (Moorby and 
Thomas, 2008). The interested reader may also wish to pursue the topic of design with field program-
mable logic (Zeidman, 2002). The subjects of logic design, FPL and HDLs, are brought together in one 
volume (Salcic and Smailagic, 2000).

Ongoing research in this area is concerned with design entry, automation of the design process and 
new architectures, and technologies for implementing digital designs. The research in design entry is 
focused on raising the level of specification of digital logic designs. New HDLs based on high level lan-
guages such as Java and C are being developed. Another approach is design environments which incor-
porate sophisticated libraries of very complex, parameterized components such as digital filters, ALUs, 
and Ethernet controllers. The user can customize these blocks for their specific design. One such widely 
used environment is Simulink, a product of Mathworks.

Along with higher levels of design specification, researchers are investigating more sophisticated 
design automation tools. The goal is to have designers specify the functionality of their designs and to 
use synthesis tools to automatically translate that functionality to efficient hardware implementations.
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18.1  Introduction

As shown in Figure 18.1, a computing system consists of three fundamental units: (i) units of computa-
tion to perform operations on data (e.g., processors), (ii) units of storage (or memory) that store data to 
be operated on or archived, (iii) units of communication that communicate data between computation 
units and storage units. The storage/memory units are usually categorized into two: (1) memory system, 
which acts as a working storage area, storing the data that is currently being operated on by the running 
programs, and (2) the backup storage system, for example, the hard disk, which acts as a backing store, 
storing data for a longer term in a persistent manner. This chapter will focus on the “working storage 
area” of the processor, that is, the memory system.

The memory system is the repository of data from where data can be retrieved and updated by the 
processor (or processors). Throughout the operation of a computing system, the processor reads data 
from the memory system, performs computation on the data, and writes the modified data back into the 
memory system—continuously repeating this procedure until all the necessary computation has been 
performed on all the necessary data.

18.1.1  Basic Concepts and Metrics

The capacity of a memory system is the total amount of data that it can store. Every piece of data stored 
in the memory system is associated with a unique address. For example, the first piece of data has an 

18
Memory Systems

18.1	 Introduction..................................................................................... 18-1
Basic Concepts and Metrics  •  Two Components of the Memory 
System

18.2	 Memory Hierarchy.......................................................................... 18-3
18.3	 Managing the Memory Hierarchy................................................18-5

Virtual vs. Physical Address Spaces  •  Virtual Memory System
18.4	 Caches................................................................................................18-8

Basic Design Considerations  •  Logical 
Organization  •  Management Policies  •  Managing Multiple 
Caches  •  Specialized Caches for Virtual Memory

18.5	 Main Memory................................................................................ 18-13
DRAM Organization  •  Bank Operation  •  Memory Request 
Scheduling  •  Refresh

18.6	 Current and Future Research Issues........................................... 18-16
Caches  •  Main Memory

18.7	 Summary......................................................................................... 18-19
References................................................................................................... 18-19

Yoongu Kim
Carnegie Mellon University

Onur Mutlu
Carnegie Mellon University



18-2 Architecture and Organization

address of 0, whereas the last piece of data has an address of capacity − 1. The full range of possible 
addresses, spanning from 0 to capacity − 1, is referred to as the address space of the memory system. 
Therefore, in order to access a particular piece of data from the memory system, the processor must sup-
ply its address to the memory system.

The performance of a memory system is characterized by several important metrics: (i) latency, 
(ii) bandwidth, and (iii) parallelism. A high-performance memory system would have low latency, 
high bandwidth, and high parallelism. Latency is the amount of time it takes for the processor to 
access one piece of data from the memory system. Bandwidth, also known as throughput, is the rate 
at which the processor can access pieces of data from the memory system. At first blush, latency 
and bandwidth appear to be inverses of each other. For example, if it takes time T seconds to access 
one piece of data, then it would be tempting to assume that 1/T  pieces of data can be accessed over 
the duration of 1 s. However, this is not always true. To fully understand the relationship between 
latency and bandwidth, we must also examine the third metric of a memory system’s performance. 
Parallelism is the number of accesses to the memory system that can be served concurrently. If a 
memory system has a parallelism of 1, then all accesses are served one-at-a-time, and this is the only 
case in which bandwidth is the inverse of latency. But if a memory system has a parallelism of more 
than 1, then multiple accesses to different addresses can be served concurrently, thereby overlap-
ping their latencies. For example, when the parallelism is equal to two, during the amount of time 
required to serve one access (T), another access is served in parallel. Therefore, while the latency of 
an individual access remains unchanged at T, the bandwidth of the memory system doubles to 2/ .T  
More generally, the relationship among latency, bandwidth, and parallelism of a memory system can 
be expressed as follows:

	
Bandwith accesses time

Parallelism unitless

Latency time
[ ]

[ ]

[
/

/
=

aaccess]

While the bandwidth can be measured in the unit of accesses-per-time (preceding equation), another 
way of expressing bandwidth is in the unit of bytes-per-time—that is, the-amount-of-data-accessed-per-
time (the following equation):

	
Bandwidth [bytes time]=

Parallelism [unitless]

Latency [time ac
/

/ ccess]
DataSize [bytes access]× /

An additional characteristic of a memory system is cost. The cost of a memory system is the capital 
expenditure required to implement it. Cost is closely related to the capacity and performance of the 
memory system: increasing the capacity and performance of a memory system usually also makes it 
more expensive.

Computing
units

Communication
units

Storage systemMemory system

Memory/storage
units 

FIGURE 18.1  Computing system.
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18.1.2 T wo Components of the Memory System

When designing a memory system, computer architects strive to optimize for all of the three character-
istics explained in the preceding text: large capacity, high performance, and low cost. However, a mem-
ory system that has both large capacity and high performance is also very expensive. For example, when 
one wants to increase the capacity of memory, it is almost always the case that the latency of memory 
also increases. Therefore, when designing a memory system within a reasonable cost budget, there exists 
a fundamental trade-off relationship between capacity and performance: it is possible to achieve either 
large capacity or high performance but not both at the same time in a cost-effective manner.

As a result of the trade-off between capacity and performance, a modern memory system typically 
consists of two components, as shown in Figure 18.2: (i) a cache [44] (pronounced “cash”), a component 
that is small but relatively fast-to-access and (ii) main memory, a component that is large but relatively 
slow-to-access. Between the two, main memory is the all-encompassing (i.e., “main”) repository whose 
capacity is usually determined to minimize accesses to the storage system. If the memory system were to 
consist only of main memory, then all accesses to the memory system would be served by main memory, 
which is slow. That is why a memory system also contains a cache: Although a cache is much smaller 
than main memory, it is fast (exactly because it is smaller). The memory system utilizes the cache by 
taking a subset of the data from main memory and placing it into the cache—thereby enabling some of 
the accesses to the memory system to be served quickly by the cache. The data stored in the cache are 
replicas of the data that are already stored in main memory. Hence, the capacity of the memory system 
as a whole is defined by the capacity of only the main memory while ignoring the capacity of the cache. 
In other words, while the processor can always access the data it wants from main memory, the cache 
exists to expedite some of those accesses as long as they are to data that are replicated in the cache. In 
fact, most memory systems employ not just one but multiple caches, each of which provides a different 
trade-off between capacity and performance. For example, there can be two caches, one of which is 
3 smaller and faster than the other. In this case, the data in the smaller cache is a subset of the data in the 
larger cache, similar to how the larger cache is a subset of the main memory.

Note that the structure and operation of the hardware components that make up the cache and main 
memory can be similar (in fact, they can be exactly the same). However, the structure and operation of 
cache and memory components are affected by (i) the function of the respective components and (ii) the 
technology in which they are implemented. The main function of caches is to store a small amount of 
data such that it can be accessed quickly. Traditionally, caches have been designed using the SRAM 
technology (so that they are fast), and main memory has been designed using the DRAM technology (so 
that it has large capacity). As a result, caches and main memory have evolved to be different in structure 
and operation, as we describe in Sections 18.4 and 18.5.

18.2  Memory Hierarchy

An ideal memory system would have the following three properties: high performance (i.e., low latency 
and high bandwidth), large capacity, and low cost. Realistically, however, technological and physical 
constraints limit the design of a memory system that achieves all three properties at the same time. 
Rather, one property can be improved only at the expense of another—that is, there exists a fundamental 

Caches Main memory

Small and fast Large and slow

FIGURE 18.2  Memory system.
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trade-off relationship that tightly binds together performance, capacity, and cost of a memory system. 
(To simplify the discussion, we will assume that we always want low cost, restricting ourselves to the 
“zero-sum” trade-off relationship between performance and capacity.) For example, main memory 
is a component of the memory system that provides large capacity but at relatively low performance, 
while a cache is another component of the memory system that provides high performance but at rela-
tively small capacity. Therefore, caches and main memory lie at opposite ends of the trade-off spectrum 
between performance and capacity.

We have mentioned earlier that modern memory systems consist of both caches and main memory. 
The reasoning behind this is to achieve the best of both worlds (performance and capacity)—that is, 
a memory system that has the high performance of a cache and the large capacity of main memory. 
If the memory system consists only of main memory, then every access to the memory system would 
experience the high latency (i.e., low performance) of main memory. However, if caches are used 
in addition to main memory, then some of the accesses to the memory system would be served by 
the caches at low latency, while the remainder of the accesses are assured to find their data in main 
memory due to its large capacity—albeit at high latency. Therefore, as a net result of using both caches 
and main memory, the memory system’s effective latency (i.e., average latency) becomes lower than 
that of main memory, while still retaining the large capacity of main memory.

Within a memory system, caches and main memory are said to be part of a memory hierarchy. More 
formally, a memory hierarchy refers to how multiple components (e.g., cache and main memory) with 
different performance/capacity properties are combined together to form the memory system. As shown 
in Figure 18.3, at the “top level” of the memory hierarchy lies the fastest (but the smallest) component, 
whereas at the “bottom level” of the memory hierarchy lies the slowest (but the largest) component. 
Going from top to bottom, the memory hierarchy typically consists of multiple levels of caches (e.g., L1, 
L2, L3 caches in Figure 18.3, standing for, respectively, level-1, level-2, level-3)—each of whose capacity 
is larger than the one above it—and a single level of main memory at the bottom whose capacity is the 
largest. The bottom-most cache (e.g., the L3 cache in Figure 18.3, which lies immediately above main 
memory) is also referred to as the last-level cache.

When the processor accesses the memory system, it typically does so in a sequential fashion by first 
searching the top component to see whether it contains the necessary data. If the data is found, then 
the access is said to have “hit” in the top component and the access is served there on-the-spot with-
out having to search the lower components of the memory hierarchy. Otherwise, the access is said to 
have “missed” in the top component and it is passed down to the immediately lower component in 
the memory hierarchy, where the access may again experience either a hit or a miss. As an access goes 
lower into the hierarchy, the probability of a hit becomes greater due to the increasing capacity of the 
lower components, until it reaches the bottom level of the hierarchy where it is guaranteed to always hit 
(assuming the data is in main memory).
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FIGURE 18.3  Example of a memory hierarchy with three levels of caches.
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Assuming a two-level memory hierarchy with a single cache and main memory, the effective latency 
of the memory system can be expressed by the following equation. In the equation, Pcache

hit  denotes the 
probability that an access would hit in the cache, also known as the cache hit-rate:

	 Latency Latency Lateeffective cache
hit

cache cache
hit= × + − ×P P( )1 nncymain_memory

•	 0 1≤ ≤Pcache
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Similarly, for a three-level memory hierarchy with two caches and main memory, the effective latency 
of the memory system can be expressed by the following equation:
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As both equations show, a high hit-rate in the cache implies a lower effective latency. In the best case, 
when all accesses hit in the cache Pcache

hit =( )1 , then the memory hierarchy has the lowest effective latency, 
equal to that of the cache. While having a high hit-rate is always desirable, the actual value of the hit-
rate is determined primarily by (i) the cache’s size and (ii) the processor’s memory access behavior. First, 
compared to a small cache, a large cache is able to store more data and has a better chance that a given 
access will hit in the cache. Second, if the processor tends to access a small set of data over and over 
again, the cache can store those data so that subsequent accesses will hit in the cache. In this case, a 
small cache would be sufficient to achieve a high hit-rate.

Fortunately, many computer programs—that the processor executes—access the memory system in 
this manner. In other words, many computer programs exhibit locality in their memory access behavior. 
Locality exists in two forms: temporal locality and spatial locality. First, given a piece of data that has 
been accessed, temporal locality refers to the phenomenon (or memory access behavior) in which the 
same piece of data is likely to be accessed again in the near future. Second, given a piece of data that has 
been accessed, spatial locality refers to the phenomenon (or memory access behavior) in which neigh-
boring pieces of data (i.e., data at nearby addresses) are likely to be accessed in the near future. Thanks 
to both temporal and spatial locality, the cache—and, more generally, the memory hierarchy—is able to 
reduce the effective latency of the memory system.

18.3  Managing the Memory Hierarchy

As mentioned earlier, every piece of data within a memory system is associated with a unique address. 
The set of all possible addresses for a memory system is called the address space and it ranges from 0 
to capacity − 1, where capacity is the size of the memory system. Naturally, when software program-
mers compose computer programs, they rely on the memory system and assume that specific pieces of 
the program’s data can be stored at specific addresses without any restriction, as long as the addresses 
are valid—that is, the addresses do not overflow the address space provided by the memory system. In 
practice, however, the memory system does not expose its address space directly to computer programs. 
This is due to two reasons.

First, when a computer program is being composed, the modern software programmer has no way of 
knowing the capacity of the memory system on which the program will run. For example, the program 



18-6 Architecture and Organization

may run on a computer that has a very large memory system (e.g., 1 TB capacity) or a very small memory 
system (e.g., 1 MB capacity). While an address of 1 GB is perfectly valid for the first memory system, 
the same address is invalid for the second memory system, since it exceeds the maximum bound (1 MB) 
of the address space. As a result, if the address space of the memory system is directly exposed to the 
program, the software programmer can never be sure which addresses are valid and can be used to store 
data for the program she is composing.

Second, when a computer program is being composed, the software programmer has no way of know-
ing which other programs will run simultaneously with the program. For example, when the user runs 
the program, it may run on the same computer as many other different programs, all of which may hap-
pen to utilize the same address (e.g., address 0) to store a particular piece of their data. In this case, when 
one program modifies the data at that address, it overwrites another program’s data that was stored at 
the same address, even though it should not be allowed to do so. As a result, if the address space of the 
memory system is directly exposed to the program, then multiple programs may overwrite and corrupt 
each other’s data, leading to incorrect execution for all of the programs.

18.3.1  Virtual vs. Physical Address Spaces

As a solution to these two problems, a memory system does not directly expose its address space but 
instead provides the illusion of an extremely large address space that is separate for each individual 
program. While the illusion of a large address space solves the first problem of different capacities 
across different memory systems, the illusion of a separate large address space for each individual 
program solves the second problem of multiple programs modifying data at the same address. Since 
such large and separate address spaces are only an illusion provided to the programmer to make her 
life easier in composing programs, they are referred to as virtual address spaces. In contrast, the actual 
underlying address space of the memory system is called the physical address space. To use concrete 
numbers from today’s systems (circa 2013), the physical address space of a typical 8 GB memory system 
ranges from 0 to 8 GB − 1, whereas the virtual address space for a program typically ranges from 0 to 
256 TB − 1.*

A virtual address, just by itself, does not represent any real storage location unless it is actually backed 
up by a physical address. It is the job of the operating system—a program that manages all other pro-
grams as well as resources in the computing system—to substantiate a virtual address by mapping it to 
a physical address. For example, at the very beginning of when a program is executed, none of its virtual 
addresses are mapped to physical addresses. At this point, if the program attempts to store a piece of 
data to a particular virtual address, the operating system must first intervene on behalf of the program: 
the operating system maps the virtual address to a physical address that is free—that is, a physical 
address that is not yet mapped to another virtual address. Once this mapping has been established, it 
is memorized by the operating system and used later for “translating” any subsequent access to that 
virtual address to its corresponding physical address (where the data is stored).

18.3.2  Virtual Memory System

The entire mechanism, described so far, in which the operating system maps and translates between 
virtual and physical addresses is called virtual memory. There are three considerations when designing 
a virtual memory system as part of an operating system: (i) when to map a virtual address to a physical 
address, (ii) the mapping granularity, and (iii) what to do when physical addresses are exhausted.

First, most virtual memory systems map a virtual address when it is accessed for the very first 
time—that is, on-demand. In other words, if a virtual address is never accessed, it is never mapped 

*	 For example, the current generation of mainstream x86-64 processors manufactured by Intel uses 48-bit virtual 
addresses—that is, a 256 TB virtual address space (248 = 256 T) [13].
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to a physical address. Although the virtual address space is extremely large (e.g., 256 TB), in practice, 
only a small fraction of it is actually utilized by most programs. Therefore, mapping the entirety of 
virtual address space to the physical address space is wasteful, because the overwhelming majority of 
the virtual addresses will never be accessed. Not to mention the fact that the virtual address space is 
much larger than the physical address space such that it is not possible to map all virtual addresses to 
begin with.

Second, a virtual memory system must adopt a granularity at which it maps addresses from the 
virtual address space to the physical address space. For example, if the granularity is set equal to 
1 byte, then the virtual memory system evenly divides the virtual/physical address into 1-byte virtual/
physical “chunks,” respectively. Then, the virtual memory system can arbitrarily map a 1-byte virtual 
chunk to any 1-byte physical chunk, as long as the physical chunk is free. However, such a fine divi-
sion of the address spaces into large numbers of small chunks has a major disadvantage: it increases 
the complexity of the virtual memory system. As we recall, once a mapping between a pair of virtual/
physical chunks is established, it must be memorized by the virtual memory system. Hence, large 
numbers of virtual/physical chunks imply a large number of possible mappings between the two, 
which increases the bookkeeping overhead of memorizing the mappings. To reduce such an over-
head, most virtual memory systems coarsely divide the address spaces into fewer of chunks, where a 
chunk is called a page and whose typical size is 4 kB. As shown in Figure 18.4, a 4 kB chunk of the 
virtual address space is referred to as a virtual page, whereas a 4 kB chunk of the physical address is 
referred to as a physical page (alternatively, a frame). Every time a virtual page is mapped to a physi-
cal page, the operating system keeps track of the mapping by storing it in a data structure called the 
page table.

Third, as a program accesses a new virtual page for the very first time, the virtual memory system 
maps the virtual page to a free physical page. However, if this happens over and over, the physical 
address space may become exhausted—that is, none of the physical pages are free since all of them have 
been mapped to virtual pages. At this point, the virtual memory system must “create” a free physical 
page by reclaiming one of the mapped physical pages. The virtual memory system does so by evicting a 
physical page’s data from main memory and “unmapping” the physical page from its virtual page. Once 
a free physical page is created in such a manner, the virtual memory system can map it to a new virtual 
page. More specifically, the virtual memory system takes the following three steps in order to reclaim a 
physical page and map it to a new virtual page. First, the virtual memory system selects the physical page 
that will be reclaimed, that is, the victim. The selection process of determining the victim is referred to 
as the page replacement policy [5]. While the simplest policy is randomly selecting any physical page, 
such a policy may significantly degrade the performance of the computing system. For example, if a 
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very frequently accessed physical page is selected as the victim, then a future access to that physical 
page would be served by the hard disk. However, since a hard disk is extremely slow compared to main 
memory, the access would incur a very large latency. Instead, virtual memory systems employ more 
sophisticated page-replacement policies that try to select a physical page that is unlikely to be accessed 
in the near future, in order to minimize the performance degradation. Second, after a physical page 
has been selected as the victim, the virtual memory system decides whether the page’s data should be 
migrated out of main memory and into the hard disk. If the page’s data had been modified by the pro-
gram while it was in main memory, then the page must be written back into the hard disk—otherwise, 
the modifications that were made to the page’s data would be lost. On the other hand, if the page’s data 
had not been modified, then the page can simply be evicted from main memory (without being written 
into the hard disk) since the program can always retrieve the page’s original data from the hard disk. 
Third, the operating system updates the page table so that the virtual page (that had previously mapped 
to the victim) is now mapped to the hard disk instead of a physical page in main memory. Finally, now 
that a physical page had been reclaimed, the virtual memory system maps the free physical page to a new 
virtual page and updates the page table accordingly.

After the victim has been evicted from main memory, it would be best if the program does not 
access the victim’s data ever again. This is because accessing the victim’s data incurs the large latency 
of the hard disk where it is stored. However, if the victim is eventually accessed, then the virtual 
memory system brings the victim’s data back from the hard disk and places it into a free physical 
page in main memory. Unfortunately, if main memory has no free physical pages remaining at this 
point, then another physical page must be chosen as a victim and be evicted from main memory. 
If this happens repeatedly, different physical pages are forced to ping-pong back and forth between 
main memory and hard disk. This phenomenon, referred to as thrashing, typically occurs when the 
capacity of the main memory is not large enough to accommodate all of the data that a program is 
actively accessing (i.e., its working set). When a computing system experiences thrashing, its per-
formance degrades since it must constantly access the extremely slow hard disk instead of the faster 
main memory.

18.4  Caches

Generally, a cache is any structure that stores data that is likely to be accessed again (e.g., frequently 
accessed data or recently accessed data) in order to avoid the long latency operation required to access 
the data from a much slower structure. For example, web servers on the internet typically employ caches 
that store the most popular photographs or news articles so that they can be retrieved quickly and sent 
to the end user. In the context of the memory system, a cache refers to a small but fast component of the 
memory hierarchy that stores the most recently (or most frequently) accessed data among all data in 
the memory system [26,44]. Since a cache is designed to be faster than main memory, data stored in the 
cache can be accessed quickly by the processor. The effectiveness of a cache depends on whether a large 
fraction of the memory accesses “hit” in the cache and, as a result, are able to avoid being served by the 
much slower main memory. Despite its small capacity, a cache can still achieve a high hit-rate thanks 
to the fact that many computer programs exhibit locality (Section 18.2) in their memory access behavior: 
data that have been accessed in the past are likely to be accessed again in the future. That is why a small 
cache, whose capacity is much less than that of main memory, is able to serve most of the memory 
accesses as long as the cache stores the most recently (or most frequently) accessed data.

18.4.1  Basic Design Considerations

There are three basic design considerations when implementing a cache: (i) physical substrate, (ii) capac-
ity, and (iii) granularity of managing data. In the following text, we discuss each of them in that order.
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First, the physical substrate used to implement the cache must be able to deliver much lower laten-
cies than that used to implement main memory. That is why SRAM (static random-access memory, 
pronounced “es-ram”) has been—and continues to be—by far the most dominant physical substrate 
for caches. The primary advantage of SRAM is that it can operate at very high speeds that are on 
par with the processor itself. In addition, SRAM consists of the same type of semiconductor-based 
transistors that make up the processor. (This is not the case with DRAM, which is used to implement 
main memory, as we will see in Section 18.5.). So an SRAM-based cache can be placed—at low cost—
side-by-side with the processor on the same semiconductor chip, allowing it to achieve even lower 
latencies. The smallest unit of SRAM is an SRAM cell, which typically consists of six transistors. The 
six transistors collectively store a single bit of data (0 or 1) in the form of electrical voltage (“low” or 
“high”). When the processor reads from an SRAM cell, the transistors feed the processor with the 
data value that corresponds to their voltage levels. On the other hand, when the processor writes into 
an SRAM cell, the voltage of the transistors is appropriately adjusted to reflect the updated data value 
that is being written.

Second, when determining the capacity of a cache, one must be careful to balance the need for high 
hit-rate, low cost, and low latency. While a large cache is more likely to provide a high hit-rate, it also has 
two shortcomings. First, a large cache has high cost due to the increased number of transistors that are 
required to implement it. Second, a large cache is likely to have a higher latency. This is because orches-
trating the operation of many transistors is a complex task that introduces extra overhead delays (e.g., it 
may take a longer time to determine the location of an address). In practice, a cache is made large enough 
to achieve a sufficiently high hit-rate but not large enough to incur significantly high cost and latency.

Third, a cache is divided into many small pieces, called cache blocks, as shown in Figure 18.5. A cache 
block is the granularity in which the cache manages data. The typical size of a cache block is 64-bytes 
in modern memory systems. For example, a 64 kB cache consists of 1024 separate cache blocks. Each 
of these cache blocks can store data that corresponds to an arbitrary 64-byte “chunk” of the address 
space—that is, any given 64-byte cache block can contain data from address 0, or address 64, or address 
128, address 192, and so on. Therefore, a cache block requires some sort of a “label” that conveys the 
address of the data stored in the cache block. For exactly this purpose, every cache block has its own 
tag where the address of the data (not the data itself) is stored. When the processor accesses the cache 
for a piece of data at a particular address, it searches the cache for the cache block whose tag matches 
the address. If such a cache block exists, then the processor accesses the data contained in the cache 
block—as explained earlier, this is called a cache hit. In addition to its address, a cache block’s tag may 
also store other types of information about the cache block. For example, whether the cache block is 
empty, whether the cache block has been written to, or how recently the cache block has been accessed. 
These topics and more will soon be discussed in this section.

Cache block

Cache block

Cache block Data (64B) Tag

Information about 
the cache block, 
e.g., the address 

FIGURE 18.5  Cache.
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18.4.2  Logical Organization

In addition to the basic considerations discussed in the preceding text, the computer architect must 
decide how a cache is logically organized—that is, how it maps 64-byte chunks of the address space onto 
its 64-byte cache blocks. Since the memory system’s address space is much larger than the cache’s capac-
ity, there are many more chunks than there are cache blocks. As a result, the mapping between chunks 
and cache blocks is necessarily “many-to-few.” However, for each individual chunk of the address space, 
the computer architect can design a cache that has the ability to map the chunk to (i) any of its cache 
blocks or (ii) only a specific cache block. These two different logical organizations represent two oppo-
site extremes in the degree of freedom when mapping a chunk to a cache block. This freedom, in fact, 
presents a crucial trade-off between the complexity and utilization of the cache, as described in the 
following text.

On the one hand, a cache that provides the greatest freedom in mapping a chunk to a cache block is 
said to have a fully associative organization (Figure 18.6, lower-left). When a new chunk is brought in 
from main memory, a fully associative cache does not impose any restriction on where the chunk can 
be placed—that is, the chunk can be stored in any of the cache blocks. Therefore, as long as the cache 
has at least one empty cache block, the chunk is guaranteed to be stored in the cache without having 
to make room for it by evicting an already occupied (i.e., nonempty) cache block. In this regard, a fully 
associative cache is the best at efficiently utilizing all the cache blocks in the cache. However, the down-
side of a fully associative cache is that the processor must exhaustively search all cache blocks whenever 
it accesses the cache, since any one of the cache blocks may contain the data that the processor wants. 
Unfortunately, searching through all cache blocks not only takes a long time (leading to high access 
latency), but also wastes energy.

On the other hand, a cache that provides the least freedom in mapping a chunk to a cache block is said 
to have a direct-mapped organization (Figure 18.6, lower-middle). When a new chunk is brought in from 
main memory, a direct-mapped cache allows the chunk to be placed in only a specific cache block. For 
example, let us assume a 64 kB cache consisting of 1024 cache blocks (64 bytes). A simple implementa-
tion of a direct-mapped cache would map every 1024th chunk (64 bytes) of the address space to the same 
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cache block—for example, chunks at address 0, address 64K, address 128K, etc. would all map to the 
0th cache block in the cache. But if the cache block is already occupied with a different chunk, then the 
old chunk must first be evicted before a new chunk can be stored in the cache block. This is referred to as 
a conflict—that is, when two different chunks (corresponding to two different addresses) contend with 
each other for the same cache block. In a direct-mapped cache, conflicts can occur at one cache block 
even when all other cache blocks are empty. In this regard, a direct-mapped cache is the worst at effi-
ciently utilizing all the cache blocks in the cache. However, the upside of a direct-mapped cache is that 
the processor can simply search only one cache block to quickly determine whether the cache contains 
the data it wants. Hence, the access latency of a direct-mapped cache is low.

As a middle ground between the two organizations (fully associative vs. direct-mapped), there is a 
third alternative called the set-associative organization [12] (Figure 18.6, lower-right), which allows a 
chunk to map to one of multiple (but not all) cache blocks within a cache. If a cache has a total of N 
cache blocks, then a fully associative organization would map a chunk to any of the N cache blocks, 
while a direct-mapped organization would map a chunk to only one specific cache block. A set-associa-
tive organization, in contrast, is based on the concept of sets, which are small nonoverlapping groups 
of cache blocks. A set-associative cache is similar to a direct-mapped cache in that a chunk is mapped 
to only one specific set. However, a set-associative cache is also similar to a fully associative cache in 
that the chunk can map to any cache block that belongs to the specific set. For example, let us assume 
a set-associative cache in which each set consists of two cache blocks, which is called a two-way set-
associative cache. Initially, such a cache maps a chunk to one specific set out of all N/2  sets. Then, 
within the set, the chunk can map to either of the two cache blocks that belong to the set. More gener-
ally, a W-way set-associative cache (1 < W < N) directly maps a chunk to one specific set, while fully 
associatively mapping a chunk to any of the W cache block within the set. For a set-associative cache, 
the value of W is fixed when the cache is designed and cannot be changed afterward. However, depend-
ing on the value of W, a set-associative cache can behave similarly to a fully associative cache (for large 
values of W) or a direct-mapped cache (for small values of W). In fact, an N-way set-associative cache 
degenerates into a fully associative cache, whereas a one-way set-associative cache degenerates into a 
direct-mapped cache.

18.4.3  Management Policies

If a cache has unlimited capacity, it would have the highest hit-rate since it can store all of the proces-
sor’s data that is in memory. Realistically, however, a cache has only a limited capacity. Therefore, it 
needs to be selective about which data it should store—that is, the cache should store only the data that 
is the most likely to be accessed by the processor in the near future. In order to achieve that goal, a cache 
employs various management policies that enable it to make the best use of its small capacity: (i) allocation 
policy and (ii) replacement policy. In the following text, we discuss each of them, respectively.

First, the cache’s allocation policy determines how its cache blocks become populated with data. 
Initially, before the execution of any program, all of the cache blocks are empty. As a program starts to 
execute, it accesses new chunks from the memory system that are not yet stored in the cache. Whenever 
this happens (i.e., a cache miss), the cache’s allocation policy decides whether the new chunk should be 
stored in one of the empty cache blocks. Since many programs exhibit locality in their memory accesses, 
a chunk that is accessed (even for the first time) is likely to be accessed again in the future. That is why 
always-allocate is one of the most popular allocation policies: for every cache miss, the always-allocate 
policy populates an empty cache block with the new chunk. (On the other hand, a different alloca-
tion policy may be more discriminative and prevent certain chunks from being allocated in the cache.) 
However, when the cache has no empty cache blocks left, a new chunk cannot be stored in the cache 
unless the cache “creates” an empty cache block by reclaiming one of the occupied cache blocks. The 
cache does so by evicting the data stored in an occupied cache block and replacing it with the new chunk, 
as described next.
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Second, when the cache does not have an empty cache block where it can store a new chunk, the 
cache’s replacement policy selects one of the occupied cache blocks to evict, that is, the victim cache 
block. The replacement policy is invoked when a new chunk is brought into the cache. Depending on 
the cache’s logical organization, the chunk may map to one or more cache blocks. However, if all such 
cache blocks are already occupied, the replacement policy must select one of the occupied cache blocks 
to evict from the cache. For a direct-mapped cache, the replacement policy is trivial: since a chunk 
can be mapped to only one specific cache block, then there is no choice but to evict that specific cache 
block if it is occupied. Therefore, a replacement policy applies only to set-associative or fully associa-
tive caches, where a chunk can potentially be mapped to multiple cache blocks—any one of which may 
become the victim if all of those cache blocks are occupied. Ideally, the replacement policy should select 
the cache block that is expected to be accessed the farthest away in the future, such that evicting the 
cache block has the least impact on the cache’s hit-rate [3]. That is why one of the most common replace-
ment policies is the LRU (least-recently used) policy, in which the cache block that has been the least 
recently accessed is selected as the victim. Due to the principle of locality, such a cache block is less likely 
to be accessed in the future. Under the LRU policy, the victim is the least recently accessed cache block 
among (i) all cache blocks within a set (for a set-associative cache) or (ii) among all cache blocks within 
the cache (for a fully associative cache). To implement the LRU policy, the cache must keep track of each 
block in terms of the last time when it was accessed. A similar replacement policy is the LFU (least-
frequently used) policy, in which the cache block that has been the least frequently accessed is selected 
as the victim. We refer the reader to the following works for more details on cache replacement policies: 
Liptay [26] and Qureshi et al. [36,39].

18.4.4  Managing Multiple Caches

Until now, we have discussed the design issues and management policies for a single cache. However, as 
described previously, a memory hierarchy typically consists of more than just one cache. In the follow-
ing, we discuss the policies that govern how multiple caches within the memory hierarchy interact with 
each other: (i) inclusion policy, (ii) write handling policy, and (iii) partitioning policy.

First, the memory hierarchy may consist of multiple levels of caches in addition to main memory. 
As the lowest level, main memory always contains the superset of all data stored in any of the caches. 
In other words, main memory is inclusive of the caches. However, the same relationship may not hold 
between one cache and another cache depending on the inclusion policy employed by the memory sys-
tem [2]. There are three different inclusion policies: (i) inclusive, (ii) exclusive, and (iii) noninclusive. 
First, in the inclusive policy, a piece of data in one cache is guaranteed to be also found in all lower levels 
of caches. Second, in the exclusive policy, a piece of data in one cache is guaranteed not to be found in 
all lower levels of caches. Third, in the noninclusive policy, a piece of data in one cache may or may not 
be found in lower levels of caches. Among the three policies, the inclusive and exclusive policies are 
opposites of each other, while all other policies between the two are categorized as noninclusive. On the 
one hand, the advantage of the exclusive policy is that it does not waste cache capacity since it does not 
store multiple copies of the same data in all of the caches. On the other hand, the advantage of the inclu-
sive policy is that it simplifies searching for data when there are multiple processors in the computing 
system. For example, if one processor wants to know whether another processor has the data it needs, it 
does not need to search all levels of caches of that other processor but instead search only the lowest-level 
cache. (This is related to the concept of cache coherence, which is not covered in this chapter.) Lastly, the 
advantage of the noninclusive policy is that it does not require the effort to maintain a strict inclusive/
exclusive relationship between caches. For example, when a piece of data is inserted into one cache, 
inclusive or exclusive policies require that the same piece of data be inserted into or evicted from other 
levels of caches. In contrast, the noninclusive policy does not have this requirement.

Second, when the processor writes new data into a cache block, the data stored in the cache block 
is modified and becomes different from the data that was originally brought into the cache. While the 
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cache contains the newest copy of the data, all lower levels of the memory hierarchy (i.e., caches and 
main memory) still contain an old copy of the data. In other words, when a write access hits in a cache, a 
discrepancy arises between the modified cache block and the lower levels of the memory hierarchy. The 
memory system resolves this discrepancy by employing a write handling policy. There are two types of 
write handling policies: (i) write-through and (ii) write-back. First, in a write-through policy, every write 
access that hits in the cache is propagated down to the lower levels of the memory hierarchy. In other 
words, when a cache at a particular level is modified, the same modification is made for all lower levels 
of caches and for main memory. The advantage of the write-through policy is that it prevents any data 
discrepancy from arising in the first place. But, its disadvantage is that every write access is propagated 
through the entire memory hierarchy (wasting energy and bandwidth), even when the write access hits 
in the cache. Second, in a write-back policy, a write access that hits in the cache modifies the cache block 
at only that cache, without being propagated down to the rest of the memory hierarchy. In this case, 
however, the cache block contains the only modified copy of the data, which is different from the copies 
contained in lower levels of caches and main memory. To signify that the cache block contains modified 
data, a write-back cache must have a dirty flag in the tag of each cache block: when set to “1,” the dirty flag 
denotes that the cache block contains modified data. Later on, when the cache block is evicted from the 
cache, it must be written into the immediately lower level in the memory hierarchy, where the dirty flag is 
again set to “1.” Eventually, through a cascading series of evictions at multiple levels of caches, the modi-
fied data is propagated all the way down to main memory. The advantage of the write-back policy is that 
it can prevent write accesses from always being written into all levels of the memory hierarchy—thereby 
conserving energy and bandwidth. Its disadvantage is that it slightly complicates the cache design since 
it requires additional dirty flags and special handling when modified cache blocks are evicted.

Third, a cache at one particular level may be partitioned into two smaller caches, each of which is 
dedicated to two different types of data: (i) instruction and (ii) data. Instructions are a special type of 
data that tells the computer how to manipulate (e.g., add, subtract, move) other data. Having two sepa-
rate caches (i.e., an instruction cache and a data cache) has two advantages. First, it prevents one type of 
data from monopolizing the cache. While the processor needs both types of data to execute a program, 
if the cache is filled with only one type of data, the processor may need to access the other type of data 
from lower levels of the memory hierarchy, thereby incurring a large latency. Second, it allows each of 
the caches to be places closer to the appropriate parts of the processor—lowering the latency to supply 
instructions and data to the processor. Typically, one part of the processor (i.e., the instruction fetch 
engine) accesses instructions, while another part of the processor (i.e., the data fetch engine) accesses 
noninstruction data. In this case, the two caches can each be colocated with the part of the processor 
that accesses its data—resulting in lower latencies and potentially higher operating frequency for the 
processor. For this reason, usually only the highest level of the cache in the memory hierarchy, which is 
directly accessed by the processor, is partitioned into an instruction cache and a data cache.

18.4.5  Specialized Caches for Virtual Memory

Specialized caches have been used to accelerate address translation in virtual memory systems (dis-
cussed in Section 18.3). The most commonly used such cache is referred to as a TLB (translation looka-
side buffer). The role of a TLB is to cache the recently used virtual to physical address translations by the 
processor such that the translation is quick for the virtual addresses that hit in the TLB. Essentially, a 
TLB is a cache that caches the parts of the page table that have been used by the processor.

18.5  Main Memory

While caches are predominantly optimized for high speed, in contrast, the foremost purpose of 
main memory is to provide as large capacity as possible at low cost and at reasonably low latency. 
That is why the preferred physical substrate for implementing main memory is DRAM (dynamic 
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random-access-memory, pronounced “dee-ram”) [6]. The smallest unit of DRAM is a DRAM cell, con-
sisting of one transistor (1T) and one capacitor (1C). A DRAM cell stores a single bit of data (0 or 1) in 
the form of electrical charge in its capacitor (“discharged” or “charged”). DRAM’s primary advantage 
over SRAM lies in its small cell size: a DRAM cell requires fewer electrical components (1T and 1C) 
than an SRAM cell (6T). Therefore, many more DRAM cells can be placed in the same amount of area 
on a semiconductor chip, enabling DRAM-based main memory to achieve a much larger capacity for 
approximately the same amount of cost.

Typically, SRAM-based caches are integrated on the same semiconductor chip as the processor. In 
contrast, DRAM-based main memory is implemented using one or more dedicated DRAM chips that are 
separate from the processor chip. This is due to two reasons. First, a large capacity main memory requires 
such a large number of DRAM cells that they cannot all fit on the same chip as the processor. Second, 
the process technology needed to manufacture DRAM cells (with their capacitors) is not compatible at 
low cost with the process technology needed to manufacture processor chips. Therefore, placing DRAM 
and logic together would significantly increase cost in today’s systems. Instead, main memory is imple-
mented as one or more DRAM chips that are dedicated for the large number of DRAM cells. From the 
perspective of the processor, since DRAM-based main memory is not on the same chip as the processor, 
it is sometimes referred to as “off-chip” main memory.

A set of electrical wires, called the memory bus, connects the processor to the DRAM chips. Within 
a processor, there is a memory controller that communicates with the DRAM chips using the memory 
bus. In order to access a piece of data from the DRAM chips, the memory controller sends/receives the 
appropriate electrical signals to/from the DRAM chips through the memory bus. There are three types 
of signals: (i) address, (ii) command, and (iii) data. The address conveys the location of the data being 
accessed, the command conveys how the data is being accessed (e.g., read or write), and the data is the 
actual value of the data itself. Correspondingly, a memory bus is divided into three smaller sets of wires, 
each of which is dedicated to a specific type of signal: (i) address bus, (ii) command bus, and (i) data 
bus. Among these three, only the data bus is bidirectional since the memory controller can either send/
receive data from the DRAM chips, whereas the address and command buses are unidirectional since 
only the memory controller sends the address and command to the DRAM chips.

18.5.1  DRAM Organization

As shown in Figure 18.7, a DRAM-based main memory system is logically organized as a hierarchy of 
(i) channels, (ii) ranks, and (iii) banks. Banks are the smallest memory structures that can be accessed in 
parallel with respect to each other. This is referred to as bank-level parallelism [34]. Next, a rank is a collec-
tion of DRAM chips (and their banks) that operate in lockstep. A DRAM rank typically consists of eight 
DRAM chips, each of which has eight banks. Since the chips operate in lockstep, the rank has only eight 
independent banks, each of which is the set of all ith bank across all chips. Banks in different ranks are 
fully decoupled with respect to their chip-level electrical operation and, consequently, offer better bank-
level parallelism than banks in the same rank. Lastly, a channel is the collection of all banks that share 
the same memory bus (address, command, data buses). While banks from the same channel experience 
contention at the memory bus, banks from different channels can be accessed completely independently 
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of each other. Although the DRAM system offers varying degrees of parallelism at different levels in its 
organization, two memory requests that access the same bank must be served one after another. To under-
stand why, let us examine the logical organization of a DRAM bank as seen by the memory controller.

Figure 18.8 presents the logical organization of a DRAM bank. A DRAM bank is a two-dimensional 
array of capacitor-based DRAM cells. It is viewed as a collection of rows, each of which consists of 
multiple columns. Therefore, every cell is identified by a pair of addresses: a row address and a column 
address. Each bank contains a row-buffer which is an array of sense-amplifiers. The purpose of a sense-
amplifier is to read from a cell by reliably detecting the very small amount of electrical charge stored in 
the cell. When writing to a cell, on the other hand, the sense-amplifier acts as an electrical driver and 
programs the cell by filling or depleting its stored charge. Spanning a bank in the columnwise direction 
are wires called the bitlines, each of which can connect a sense-amplifier to any of the cells in the same 
column. A wire called the wordline (one for each row) determines whether or not the corresponding row 
of cells is connected to the bitlines.

18.5.2  Bank Operation

To serve a memory request that accesses data at a particular row and column address, the memory 
controller issues three commands to a bank in the order as shown in the following list. Each command 
triggers a specific sequence of events within the bank to access the cell(s) associated with the address:

	 1.	 ACTIVATE (issued with a row address): Load the entire row into the row-buffer.
	 2.	 READ/WRITE (issued with a column address): From the row-buffer, access the data stored in 

a column. For a READ, transfer the data out of the row-buffer to the processor. For a WRITE, 
modify the data in the row-buffer according to the data received from the processor.

	 3.	 PRECHARGE: Clear the row-buffer.

Each DRAM command incurs a latency while it is processed by the DRAM chip. Undefined behav-
ior may arise if a command is issued before the previous command is fully processed. To prevent such 
occurrences, the memory controller must obey a set of timing constraints while issuing commands to 
a DRAM chip [16]. These constraints define when a command becomes ready to be scheduled depend-
ing on all other commands issued before it to the same channel, rank, or bank. The exact values of 
the timing constraints are specified by the DRAM chip’s datasheet and are different on a chip-by-chip 
basis. However, a rule of thumb is that the three DRAM commands (ACTIVATE, READ/WRITE, and 
PRECHARGE) each take about 15 ns [16]. For more information on the organization and operation of a 
DRAM bank, we refer the reader to Kim et al. [20].

18.5.3  Memory Request Scheduling

When there are multiple memory requests waiting to access DRAM, the memory controller must choose 
one of the memory requests to schedule next. The memory controller does so by employing a memory 
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scheduling algorithm [40] whose goal, in many current high-performance systems, is to select the most 
favorable memory request for reducing the overall latency of the memory requests. For example, let us 
assume there is a memory request waiting to access a row that happens to be loaded in the row-buffer. 
In this case, since the row is already in the row-buffer, the memory controller can skip the ACTIVATE 
and PRECHARGE commands and directly proceed to issue the READ/WRITE command. As a result, 
the memory controller can quickly serve that particular memory request. Such a memory request—that 
accesses the row in the row-buffer—is called a row-buffer hit. Many memory-scheduling algorithms 
exploit the low latency nature of row-buffer hits and prioritize such requests over others [18,19,33,34]. 
For more information on memory request scheduling, we refer the reader to recent works that explored 
the topic [18,19,33,34].

18.5.4 R efresh

A DRAM cell stores data as charge on a capacitor. Over time, this charge steadily leaks, causing the 
data to be lost. That is why DRAM is named “dynamic” RAM; its charge changes over time. In order to 
preserve data integrity, the charge in each DRAM cell must be periodically restored or refreshed. DRAM 
cells are refreshed at the granularity of a row by reading it out and writing it back in—which is equiva-
lent to issuing an ACTIVATE and a PRECHARGE to the row in succession.

In modern DRAM chips, all DRAM rows must be refreshed once every 64 ms [16], which is called 
the refresh interval. The memory controller internally keeps track of time to ensure that it refreshes all 
DRAM rows before their refresh interval expires. When the memory controller decides to refresh the 
DRAM chips, it issues a REFRESH command. Upon receiving a REFRESH command, a DRAM chip 
internally refreshes a few of its rows by activating and precharging them. A DRAM chip refreshes only 
a few rows at a time since it has a very large number of rows and refreshing all of them would incur a 
very large latency. Since a DRAM chip cannot serve any memory requests while it is being refreshed, it 
is important that the refresh latency is kept short such that no memory request is delayed for too long. So 
instead of refreshing all rows at the end of each 64 ms interval, throughout a given 64 ms time interval, 
the memory controller issues many REFRESH commands, each of which triggers the DRAM chip to 
refresh only a subset of rows. However, the memory controller ensures that REFRESH commands are 
issued frequently enough such that all rows eventually do become refreshed before 64 ms has passed. 
For more information on DRAM refresh (and methods to reduce its effect on performance and energy), 
we refer the reader to Liu et al. [27].

18.6  Current and Future Research Issues

The memory system continues to be a major bottleneck in almost all computing systems (especially 
in terms of performance and energy/power consumption). It is becoming even more of a comput-
ing system bottleneck today and looking into the future: more and increasingly diverse processing 
cores and agents are sharing parts of the memory system; applications that run on the cores are 
becoming increasingly data and memory intensive; memory is consuming significant energy and 
power in modern systems; and, there is increasing difficulty scaling the well-established memory 
technologies, such as DRAM, to smaller technology nodes. As such, managing memory in sig-
nificantly better ways at all levels of the transformation hierarchy, including both the software 
and hardware levels, is becoming even more important. Techniques or combinations of techniques 
that integrate the best ideas cooperatively at multiple levels together appear promising to solve the 
difficult performance, energy efficiency, correctness, security, and reliability problems we face in 
designing and managing memory systems today. In this section, we brief ly discuss some of the 
major research problems (as we see them) related to caches and main memory and describe recent 
potential solution directions. Note that a comprehensive treatment of all research issues is out of 
the scope of this chapter, and neither is it our intent. For an illustrative treatment of some of the 
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major research issues in memory systems, we refer the reader to Mutlu [32] (http://users.ece.cmu.
edu/∼omutlu/pub/onur-ismm-mspc-keynote-june-5-2011-short.pptx).

18.6.1  Caches

Efficient Utilization. To better utilize the limited capacity of a cache, many replacement policies have 
been proposed to improve upon the simple LRU policy. The LRU policy is not always the most benefi-
cial across all memory-access patterns that have different amounts of locality. For example, in the LRU 
policy, the most-recently accessed data is always allocated in the cache even if the data has low-locality 
(i.e., unlikely to be ever accessed again). To make matters even worse, the low-locality data is unneces-
sarily retained in the cache for a long time. This is because the LRU policy always inserts data into the 
cache as the most-recently accessed and evicts the data only after it becomes the least-recently accessed. 
As a solution, researchers have been working to develop sophisticated replacement policies using a com-
bination of three approaches. First, when a cache block is allocated in the cache, it should not always 
be inserted as the most-recently accessed. Instead, cache blocks with low-locality should be inserted 
as the least-recently accessed, so that they are quickly evicted from the cache to make room for other 
cache blocks that may have more locality (e.g., [15,35,41]). Second, when a cache block is evicted from 
the cache, it should not always be the least-recently accessed cache block. Ideally, “dead” cache blocks 
(which will never be accessed in the future) should be evicted—regardless of whether they are least-
recently-accessed or not. Third, when choosing the cache block to evict, there should also be consider-
ation for how costly it is to refetch the cache block from main memory. Between two cache blocks, all 
else being equal, the cache block that is likely to incur the shorter latency to refetch from main memory 
should be evicted [36].

Quality-of-service. In a multicore system, the processor consists of many cores, each of which can 
independently execute a separate program. In such a system, parts of the memory hierarchy may be 
shared by some or all of the cores. For example, the last-level cache in a processor is typically shared by 
all the cores. This is because the last-level cache has a large capacity and, hence, it is expensive to have 
multiple last-level caches separately for each core. In this case, however, it is important to ensure that the 
shared last-level cache is utilized by all the cores in a fair manner. Otherwise, a program running on one 
of the cores may fill up the last-level cache with only its data and evict the data needed by programs run-
ning on the other cores. To prevent such occurrences, researchers have proposed mechanisms to provide 
quality-of-service when a cache is shared by multiple cores. One mechanism is to partition the shared 
cache among the cores in such a way that each core has a dedicated partition where only the core’s data 
is stored (e.g., [14,17,25,37]). Ideally, the size of a core’s partition should be just large enough to hold the 
data that the core is actively accessing (the core’s working set) and not any larger. Furthermore, as the 
size of a core’s working set changes over time, the size of the core’s partition should also dynamically 
expand or shrink in an appropriate manner.

Low power. Increasing the energy efficiency of computing systems is one of the key challenges faced 
by computer architects. Caches are one of the prime targets for energy optimization since they require 
large numbers of transistors, all of which dissipate power. For example, researchers have proposed to 
reduce a cache’s power consumption by lowering the operating voltage of the cache’s transistors [43]. 
However, this introduces new trade-offs in designing a cache that must be balanced: while a low voltage 
cache consumes less power, it may also be slower and more prone to errors. Researchers have been exam-
ining solutions to enable low-voltage caches that provide acceptable reliability at acceptable cost [43].

18.6.2  Main Memory

Challenges in DRAM scaling. Primarily due to its low cost-per-bit, DRAM has long been the most popu-
lar physical substrate for implementing main memory. In addition, DRAM’s cost-per-bit has continu-
ously decreased as DRAM process technology scaled to integrate more DRAM cells into the same area 
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on a semiconductor chip. However, improving DRAM cell density by reducing the cell size, as has been 
done traditionally, is becoming more difficult due to increased manufacturing complexity/cost and 
reduced cell reliability. As a result, researchers are examining alternative ways of enhancing the perfor-
mance and energy-efficiency of DRAM while still maintaining low cost. For example, there have been 
recent proposals to reduce DRAM access latency [24], to increase DRAM parallelism [20], and to reduce 
the number of DRAM refreshes [27].

3D-Stacked memory. A DRAM chip is connected to the processor chip by a memory bus. In today’s 
systems, the memory bus is implemented using electrical wires on a motherboard. But, this has three 
disadvantages: high power, low bandwidth, and high cost. First, since a motherboard wire is long and 
thick, it takes a lot of power to transfer an electrical signal through it. Second, since it takes even more 
power to transfer many electrical signals in quick succession, there is a limit on the bandwidth that a 
motherboard wire can provide. Third, the processor chip and the DRAM chip each have a stub (called 
a pin) to which either end of a motherboard wire is connected. Unfortunately, pins are expensive. 
Therefore, a memory bus that consists of many motherboard wires (which requires just as many pins on 
the chips) increases the cost of the memory system. As a solution, researchers have proposed to stack one 
more DRAM chips directly on top of a processor chip [4,28] instead of placing them side by side on the 
motherboard. In such a 3D-stacked configuration, the processor chip can communicate directly with 
the DRAM chip(s), thereby eliminating the need for motherboard wires and pins.

Emerging technology. DRAM is by far the most dominant technology for implementing main memory. 
However, there has been research to develop alternative main memory technologies that may replace 
DRAM or be used in conjunction with DRAM. For example, PCM (phase-change memory, pronounced 
“pee-cee-em”) is a technology in which data is stored as a resistance value. A PCM cell consists of a small 
crystal whose resistance value can be changed by applying heat to it at different rates. If heat is abruptly 
applied by a short burst of high current, then the crystal is transformed into the amorphous state, which 
has high resistance. On the other hand, if heat is steadily applied by a long burst of low current, then the 
crystal is transformed into the crystalline state, which has low resistance. PCM has important advan-
tages that make it an attractive candidate for main memory [21,38]: nonvolatility (i.e., data is not lost 
when the power is turned off and there is no need to refresh PCM cells) and scalability (i.e., compared 
to DRAM, it may be easier to make smaller PCM cells in the future). However, PCM also has the disad-
vantages of large latency (especially for writes) and limited write-endurance (i.e., the PCM cell becomes 
unreliable beyond a certain number of writes), the solution to which is the topic of on-going research. 
To overcome the shortcomings of different technologies, several recent works have examined the use of 
multiple different technologies (e.g., PCM and DRAM together) as part of main memory, an approach 
called hybrid memory or heterogeneous memory [7,29,38,45]. The key challenge in hybrid memory sys-
tems is to devise effective algorithms that place data in the appropriate technology such that the system 
can exploit the advantages of each technology while hiding the disadvantages of each [29,45].

Quality-of-service. Similar to the last-level cache, main memory is also shared by all the cores in a 
processor. When the cores contend to access main memory, their accesses may interfere with each other 
and cause significant delays. In the worst case, a memory-intensive core may continuously access main 
memory in such a way that all the other cores are denied service from main memory [30]. This would 
detrimentally degrade the performance of not only those particular cores, but also of the entire com-
puting system. To address this problem, researchers have proposed mechanisms that provide quality-
of-service to each core when accessing shared main memory. For example, memory request scheduling 
algorithms can ensure that memory requests from all the cores are served in a fair manner [18,19,33,34]. 
Another approach is for the user to explicitly specify memory service requirements of a program to the 
memory controller so that the memory scheduling algorithm can subsequently guarantee that those 
requirements are met [42]. Other approaches to quality-of-service include mechanisms proposed to 
map the data of those applications that significantly interfere with each other to different memory chan-
nels [31] and mechanisms proposed to throttle down the request rate of the processors that cause sig-
nificant interference to other processors [8]. Request scheduling mechanisms that prioritize bottleneck 
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threads in parallel applications have also been proposed [10]. The QoS problem gets exacerbated when 
the processors that share the main memory are different, for example, when main memory is shared by a 
CPU consisting of multiple processors and a GPU, and recent research has started to examine solutions 
to this [1]. Finally, providing QoS and high performance in the presence of different types of memory 
requests from multiple processing cores, such as speculative prefetch requests that aim to fetch the data 
from memory before it is needed, is a challenging problem that recent research has started providing 
solutions for [9,11,22,23].

18.7  Summary

The memory system is a critical component of a computing system. It serves as the repository of data 
from where the processor (or processors) can access data. An ideal memory system would have both 
high performance and large capacity. However, there exists a fundamental trade-off relationship 
between the two: it is possible to achieve either high performance or large capacity but not both at the 
same time in a cost-effective manner. As a result of the trade-off, a memory system typically consists 
of two components: caches (which are small but relatively fast-to-access) and main memory (which 
is large but relatively slow-to-access). Multiple caches and a single main memory, all of which strike 
a different balance between performance and capacity, are combined to form a memory hierarchy. 
The goal of the memory hierarchy is to provide the high performance of a cache at the large capacity 
of main memory. The memory system is cooperatively managed by both the operating system and 
the hardware.

This chapter provided an introductory level description of memory systems employed in modern 
computing systems, focusing especially on how the memory hierarchy, consisting of caches and main 
memory, is organized and managed. The memory system continues to be an even more critical bottle-
neck going into the future, as described in Section 18.6. Many problems abound, yet the authors of this 
chapter remain confident that promising solutions, some of which are also described in Section 18.6, 
will also abound and hopefully prevail.
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19.1  Introduction

Desirable properties for a storage system (in no particular order) are: (1) Low cost per GigaByte (GB), 
(2) nonvolatility, (3) reliability, (4) low access latency, (5) high access bandwidth, (6) low power con-
sumption, (7) high recording density, small footprint, (8) data compression and deduplication, (9) data 
security via encryption, (10) data retention or longevity, (11) endurance or high maximum number of 
cycles, and (12) Compound Annual Growth Rate (CAGR).

19
Storage Systems*

19.1	 Introduction..................................................................................... 19-1
19.2	 Magnetic Tapes for Low-Cost Archival Storage......................... 19-3
19.3	 Hard Disk Drives (HDDs)..............................................................19-4

HDD Characteristics  •  Disk Arm Scheduling  •  Log-Structured File 
System (LFS)  •  Active Disks

19.4	 Redundant Arrays of Independent Disks (RAID)......................19-8
RAID5, RAID6, and Their Variations  •  RAID5 Operation in 
Normal Mode  •  RAID5 Operation in Degraded Mode  •  RAID5 
Rebuild Processing

19.5	 Mirrored Disks or RAID1............................................................ 19-17
Mirrored Disk Organizations  •  Routing of Disk Requests in RAID1

19.6	 RAID Reliability Analysis............................................................ 19-19
General Discussion of Reliability Analysis  •  Reliability Expressions 
for RAID Arrays  •  Approximate Reliability Analysis for 
RAID  •  RAID5 Reliability Analysis with Repair

19.7	 Power Conservation in RAID......................................................19-24
19.8	 Miscellaneous RAID Arrays........................................................19-25

Grid Codes  •  Hierarchical RAID (HRAID)  •  Heterogeneous Disk 
Arrays (HDAs)

19.9	 Storage Area Network and Network Attached Storage...........19-27
19.10	 Data Deduplication.......................................................................19-28
19.11	 Solid State Disks (SSDs)................................................................19-29

Differential RAID for Flash Memories  •  Partial MDS Coding 
for SSDs

19.12	 Conclusions....................................................................................19-32
Glossary...................................................................................................... 19-33
Abbreviations in Paper.............................................................................19-35
Abbreviations for Journal and Conference Titles.................................19-36
Further Information..................................................................................19-36
References...................................................................................................19-37

Alexander 
Thomasian
Thomasian & Associates

*	 The writing of this chapter was started when the author was affiliated with Shenzhen Institutes of Advanced 
Technology—SIAT, which is part of Chinese Academy of Sciences, in Shenzhen, China.



19-2 Architecture and Organization

No single storage technology has all these properties, but a combination of storage technologies 
can be used to meet data storage requirements. Low access time is achieved at the processor level 
via a memory hierarchy with fast, small, high cost per GB static RAM (SRAM) cache memories at 
the highest levels, followed by larger, slower, and lower cost dynamic RAM (DRAM) memories at 
the lower levels. Memory hierarchies are beneficial because of the locality of reference principle.* 
Temporal locality implies that code and associated variables accessed once will be referenced repeat-
edly, such as those inside a loop. Spatial locality implies that data in close proximity to data being 
accessed has a higher probability of being accessed, such as successive elements of a one-dimensional 
array. The hierarchical reuse model implied by the fractal structure of data reference is a powerful 
tool for understanding cache and database behaviors on many scales of size and time [63]. Prefetching 
is applicable to many levels of the memory hierarchy, for example, at the CPU cache level in [38] and 
disk level in [49].

The DRAM technology for main memories is volatile so that permanent data is held on magnetic hard 
disk drives (HDDs). CPU caches, DRAM (main memories), and disks are reviewed in [49]. Magnetic 
tape drives which were used for backup and archival storage are being challenged by less expensive, low-
performance, and high capacity Serial Advanced Technology Attachment (SATA) HDDs,† as opposed 
to more expensive, high-performance, and smaller capacity Small Computer Systems Interface (SCSI) 
HDDs [49].‡ SCSI and SATA drives are compared in [2]. SCSI drives are used in enterprise storage and 
SATA drives are used in personal computers, and archival storage systems.

DRAM caches in disk array controllers (DACs) and main memories are the best way to improve I/O 
performance by eliminating disk accesses altogether as much as possible. Part of DAC’s cache can be 
turned into non volatile storage (NVS) by backing it up by uninterruptible power supply (UPS). NVS 
holds dirty data blocks, which have not been written to disk, to avert data loss in case of a power outage. 
Even without UPS, lost updates in transaction (txn) processing systems are averted by write ahead log-
ging (WAL), which writes updated data to NVS, before a txn is committed [81].

Flash memories are gaining popularity as replacements for disks in handheld devices, but also as disk 
caches.§ This configuration is not suited for a write intensive workload with small writes (see Section 
19.11). Flash memories outperform Serial Attached SCSI (SAS) drives and allow a significant reduction 
in power consumption (see Section 19.7).

Storage systems mainly in the form of HDDs constitute a significant fraction of information tech-
nology (IT) expenditure. The early IBM Random Access Method for Accounting and Control (RAMAC) 
computer was equipped with a 5 megabyte (MB) capacity disk drive, which cost $10,000 [62].¶ There has 
been a dramatic drop in HDD cost per GB due to the exponential growth in disk recording densities. 
HDDs are highly reliable with a Mean Time to Failure (MTTF) exceeding a million hours (114 years) [91]. 
The technological impact of HDDs on storage systems is discussed in [32].

HDDs have two weaknesses due to their electromechanical nature: (i) high power consumption 
to rotate disks and (ii) poor performance as a result of high access time. The projection in [27] that 
DRAM will surpass disks in cost has not come true, but with the advent of Storage Class Memories 
(SCM) the quest for replacing HDDs with solid-state disks (SSDs) is becoming a reality. Ten SCM 
technologies are currently under consideration and are expected to be fast, inexpensive, and power 
efficient [11]. Phase change memory is one of the more promising SCM technologies [80]. Using SCM 
as a disk drive replacement yields a performance for random requests that is orders of magnitude 
faster than comparable disk-based systems and requires much less space and power in the data center. 

*	 http://en.wikipedia.org/wiki/Locality_of_reference.
†	 http://en.wikipedia.org/wiki/Sata.
‡	 http://en.wikipedia.org/wiki/SCSI.
§	 http://en.wikipedia.org/wiki/Flash_memory.
¶	 http://en.wikipedia.org/wiki/IBM_305_RAMAC.
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An extrapolation of disk and SCM technology trends up to 2020 in [25] concludes that there will be a 
100- to 1000-fold advantage for SCM in terms of the data-center space and power.

This is a major rewriting of the chapter titled “Secondary Storage Systems” in the previous edi-
tion of the handbook. It consists of the following sections. Trends in tape storage based on [23] are 
reported in Section  19.2. Section 19.3 discusses various aspects of HDDs. HDD characteristics are 
discussed in Section 19.3.1. Disk arm scheduling and data placement are discussed in Section 19.3.2. 
The log-structured file systems (LFS) paradigm is discussed in Section 19.3.3, followed by active disks 
in Section 19.3.4. RAID with erasure coding is discussed in Section 19.4. The starting point is RAID5, 
RAID6, and their variations in Section 19.4.1. RAID operation in normal/degraded/rebuild modes is 
discussed in Sections 19.4.2 through 19.4.4. In Sections 19.4.4.2 and 19.4.4.3, we discuss rebuild perfor-
mance analysis and methods to improve RAID5 reliability for rebuild processing. RAID1 or mirrored 
disks are discussed in Section 19.5. RAID1 organizations are discussed in Section 19.5.1. Scheduling of 
requests in RAID1 is discussed in Section 19.3.2. RAID reliability is discussed in Section 19.6. Section 
19.6.1 is a general introduction to reliability analysis. Section 19.6.2 lists expressions for mirrored disks 
reliabilities. Section 19.6.3 provides the approximate reliability analysis of disk arrays with empha-
sis on RAID1. Section 19.6.4 provides an analysis of RAID1 arrays with repair. Power conservation 
in RAID is discussed in Section 19.7. Three interesting RAID arrays are discussed  in  Section 19.8. 
Grid codes are discussed in Section 19.8.1. Hierarchical RAID (HRAID) is discussed in Section 19.8.2. 
Heterogeneous disk arrays (HDAs) are discussed in Section 19.8.3. Storage area networks (SANs) 
and network attached storage (NAS) are discussed in Section 19.9. Data deduplication is discussed in 
Section 19.10. SSDs with emphasis on flash memories are discussed in Section 19.11. Section 19.11.1 
describes a new sparing method to increase the lifetime of flash memories, while Section 19.11.2 
describes the partial MDS (PMDS) for dealing with sector as well as component failures. Conclusions 
are presented in Section Conclusions.

19.2  Magnetic Tapes for Low-Cost Archival Storage

Magnetic tapes preceding HDDs in 1950s as a data storage medium were considerably less costly than 
the removable disk drives at the time [62]. Magnetic tapes record data on Mylar (a polyester film) coated 
with magnetic material. Data is recorded and read from tapes using Read/Write (R/W) heads against 
which tapes are moved at a fixed speed. Early tapes which came in open reels were susceptible to being 
torn and there was a later conversion to cartridges. The problem of the wrong tape being loaded by the 
operator was solved by automated tape libraries with robotic arms. IBM’s 3850 Mass Storage System 
(MSS) introduced in 1974 is an early system. Tape storage is discussed in [62], but there have been 
numerous publications on this topic since then.*

Early data processing applications held customer records on a tape “masterfile,” which was sorted 
according to customer number. Access to find a customer’s record based on customer number was not 
attempted, because scanning half of the file on the average to find a record (the whole file if the cus-
tomer number was not there) would take time linearly proportional on the number of records in the 
file. Updates to the masterfile were in batches sorted by customer number. For example, in a monthly 
billing application, typical of an electric utility, the sorted file of customer numbers and meter readings 
is applied to the masterfile to compute the monthly bill.

Clever algorithms for sorting on tape discussed in Knuth’s 3rd volume on Sorting and Searching 
are now mainly of historical interest. Hashing and indexing methods for direct disk access and algo-
rithms for relational database operations such as joins and sorting, which utilize large main memory 
buffers for sequentially accessed disk data, are described in texts on data base management systems 
(DBMSs) [81].

*	 http://en.wikipedia.org/wiki/Magnetic_tape_data_storage.
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Digital magnetic tape recording is quite complex [62].* Data compression, deduplication, and encryp-
tion were introduced in magnetic tapes before disks. IBM system storage tape encryption solutions are 
described in [36]. Encryption is also provided at disk-resident databases, which is beyond the scope of 
this discussion.

Linear Tape Open Generation LTX-4 has a lifetime of 30+ years and an error rate an order-of-magni-
tude lower than SAS drives. When a tape drive fails, the tape may be read on another drive [23], which 
was also the case with early disk drives with removable disks [62]. The inconvenience of accessing tape 
files is addressed in LTX-5, which provides indexing with a convenient interface for downloading files.

Tapes do not consume power unless they are being read or written, so that it is estimated in [23] that 
tape-based archival systems consume 290 times less power than disk-based archives. It is also noted that 
although 3 terabytes (TB) disks (four times 750 GB or five times 600 GB) are available at a reasonable 
price ($250) at this time, there is the issue of total cost of ownership (TCO). Power consumption is 5 w/h 
for 3.5˝ and 2 w for 2.5˝ disks, while disk reads/writes are in progress.

Long-term data storage is rapidly gaining in importance. According to [10], the 2700 petabytes (PB) 
of long-term storage in 2008 is expected to increase 10-fold by 2010. The requirements for such storage 
systems are quoted as follows:

		  (1) Standard interfaces for ingestion and retrieval of documents
		  (2) Flexible and secure access to documents
		  (3) Efficient search mechanisms
		  (4) Policies for multitier storage management to meet service-level agreements
		  (5) Scalability
		  (6) �Ability to archive original file and metadata with assistance for its specification, generation, 

and discovery
		  (7) Dynamically varying system scale based on business needs
		  (8) �Security controls, nonrepudiation, and auditing to meet compliance and data governance 

requirements
		  (9) Business continuity and protections, media migration provisions as technology changes

Redundant array of independent libraries (RAIL) is a tertiary storage system architecture that cou-
ples multiple small and inexpensive “building block” tape libraries [24]. It is shown that RAIL has per-
formance and availability characteristics superior to conventional tertiary storage systems, for almost 
the same dollar/megabyte cost. The log-structured library array (LSLA) allows data compression and 
alleviates certain inefficiencies associated with RAID5 described in Section 19.4.

There have been recent proposals for long-term archival storage systems based on low-cost SATA 
disks, such as Pergamum [96], which is discussed in more detail in Section 19.7. Encrypting the data 
offers a higher level of security in case data is lost, stolen, or accessed by an unauthorized person. 
Solutions to problems associated with long-term archival storage system are addressed in [97].

19.3  Hard Disk Drives (HDDs)

The section first describes HDD characteristics in Section 19.3.1. We then proceed to disk arm 
scheduling in Section 19.3.2. The LFS is described in Section 19.3.3, followed by active disks in 
Section 19.3.4.

19.3.1  HDD Characteristics

Disks consist of one or more circular platters, which are attached to a spindle rotated by a motor at 
a constant angular velocity (CAV). The spindles are made of a light-weight aluminum alloy, which is 

*	 http://www.quadibloc.com/comp/tapeint.htm.
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coated with magnetic material. One or both sides of a platter may be accessed, based on the availability 
of R/W heads on the surfaces. Data are written on HDD tracks as 512 byte (B) sectors. Advanced format 
4096 B sector disks provide a higher recording efficiency.*

Disks associated with IBM mainframes had the count key data (CKD) format [62].† The key is a unique 
field per record in ISAM and VSAM files, where the latter is a variation on ubiquitous B-trees [81]. The 
key search in early IBM disk drives was carried out by the disk controller [62]. IBM 3390 disks with 
extended CKD (ECKD) are not manufactured anymore, but are simulated by DAC’s software on fixed 
block architecture (FBA) disks.‡ The advantage of the latter format is that the data is addressable as an 
array of sectors by the logical block number (LBN).

When the radius of the outermost track is twice that of the innermost track, disk zoning increases 
the disk capacity by as much as 50% by maintaining approximately the same bits per inch (BPI) at 
all tracks. The bookkeeping for the varying numbers of sectors per track is simplified by zoned bit 
recording (ZBR), which at the cost of reduced storage efficiency assigns the same number of sec-
tors to multiple contiguous tracks. Adaptive zoning is a relatively new trend described in [56], so 
that the disk transfer rate from the same relative disk (track) position may vary from 6% faster to 
14% slower.

In addition to BPI, disk recording density is determined by tracks per inch (TPIs), which may exceed 
100,000. The BPI versus TPI trade-off is discussed in Section 19.3 in [49]. Increases in BPI are prefer-
able to TPI, since higher TPIs result in an increased head settling time. With Perpendicular Magnetic 
Recording (PMR) technology, 630 gigabits per square inch and even 1 terabit are possible from leading 
HDD manufacturers, such as Seagate.§

Smaller form factor HDDs with 3.5 and 2.5 in. diameters have been adopted, since with increasing 
recording densities sufficient capacity is attained even with one surface of a platter. Higher capacity is 
attainable by recording on both surfaces of a platter or stacking multiple disk platters, which however 
require more power for disk rotation. Tracks on one or both surfaces of a platter, which are placed on top 
of each other form a cylinder. These are accessible simultaneously (without moving the arm) by multiple 
R/W heads attached to a single disk arm. Files are therefore usually written on successive disk tracks 
and cylinders. The head switching time is accounted for by skewing the starting points across tracks 
and cylinders, so that no latency is incurred in accessing large blocks of data [49]. Track-aligned extents 
utilize disk-specific knowledge to match access patterns to disks, for example, placing disk blocks to 
avoid track boundaries and using zero latency reads (ZLR) to minimize latency [89]. ZLR allows data 
transfers to start at any sector of a requested block, so that the latency to read a full track is just one half 
the sector time.

The movement of R/W heads across disk tracks is called seeking. Seek time is a significant com-
ponent of disk access time, which depends on the placement of blocks being accessed. Seek times 
have improved significantly over the years, but the year to year improvement is quite small. The 
seek time depends on the number of disk tracks traversed by the arm. The seek time characteristic 
(STC) tseek(d), 1 ≤ c − 1, where c is the number of disk cylinders obtained by subjecting the disk to 
seeks with various distances and averaging the seek time over multiple trials. The STC has several 
regions for the HDD considered in [90]. For d ≤ 100, the seek time is a small constant, followed by 
a discontinuity, after which it is approximately the square root of the seek distance. tseek(d) is linear 
for d ≥ (c − 1)/3. Because short seeks incur less delay than head-switching time, the “serpentine” 
organizations shown in Figure 4 in [90] places successive blocks of a file on the same surface, before 
proceeding to the next one.

*	 http://en.wikipedia.org/wiki/Advanced_Format.
†	 http://en.wikipedia.org/wiki/Count_Key_Data.
‡	 http://en.wikipedia.org/wiki/Fixed_Block_Architecture.
§	 http://en.wikipedia.org/Magnetic_storage.
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The seek distance distribution for nonzoned disks with uniform accesses to c disk cylinders is 
as follows:
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In zoned disks with uniform accesses to disk blocks, p[d] is computed by noting that the probability 
of accessing a cylinder is proportional to the number of blocks that it holds [119]. The p[d] in this case 
exceeds the straight line for nonzoned disks for smaller seek distances, but there is a crossover point at 
higher seek distances.

The HDD rotational speed, expressed in rotations per minute (RPM), has increased over the years: 
2400, 3600, 7200, 10,000, 15,000, and beyond. The disk rotation time is Trot = 60000/RPM in ms 
(milliseconds), determines the rotational delay, the time for a requested block to become accessible by 
the R/W heads after a seek is completed. For accesses to small data blocks x–lat ≈ Trot/2. The mean transfer 
time of small blocks equals the number of sectors per block (16 for 8 KB blocks) divided by the number 
of sectors on the track times Trot. To summarize the mean disk access time is x–disk = x–seek + x–lat + x–xfer. 
Data read from disk is initially transferred to an onboard disk cache, which is also used for prefetching 
when a sequential access pattern is detected.

The mean response time for disk accesses is the sum of mean waiting time (W) and mean disk service time: 
R = x–disk + W. When the arrival process of disk requests is Poisson with rate λ and assuming that xdisk is expo-
nentially distributed then: W = ρx–disk/(1 − ρ), where ρ = λx–disk is the disk utilization [55]. Rdisk increases rapidly 
with increasing λ as ρ → 1. With the implicit assumption of FCFS scheduling and for a general distribution of 
xdisk, only its mean and second moment: x ii

disk , ,= 1 2 are required to determine W, which is given as
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The squared coefficient of variation of service time: c x xdisk disk disk

2 2 2 1= −/( )  was found to be less than one 
for random accesses to small disk blocks in [112]. Since cdisk = 1 for the exponential distribution, W is 
overestimate with this assumption.

Disk reads which affect application response time can be processed at a higher priority than writes. 
Assuming that the fraction of reads in the arrival stream is fR, the mean waiting time for reads is given 
as [55]: W = ρx–disk/(1 − ρR), where ρR = λfRx–disk is the disk utilization due to read requests only. That is, 
read requests are not affected by the disk utilization due to write requests.

19.3.2  Disk Arm Scheduling

The FCFS disk scheduling policy in early HDDs was later superseded by more sophisticated disk sched-
uling methods. An easy method to reduce the mean disk service time x–disk is to keep track of the disk arm 
by the operating system (OS) as in the case of the Shortest Seek Time First (SSTF) and SCAN scheduling 
[20]. The scheduling was to be carried out by the OS, which kept track of the position of the disk arm. 
SCAN reduces the seek time of outstanding disk requests by processing them as the arm is moved from 
the outermost to innermost tracks. A combination of SSTF and SCAN is described in [26], which allevi-
ates SSTF’s susceptibility to starvation. It allows accesses in the opposite direction of SCAN, provided 
that their seek distance plus the product r × c is smaller than the seek distance in the forward direction. 
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The number of cylinders is c and r, 0 ≤ r ≤ 1 is a coefficient, whose optimal value was determined to be 
r = 0.2 for the workload under consideration with the target HDD.

The Shortest Access Time First (SATF) method processes requests, which minimize the positioning 
time (sum of projected seek time and latency) first [50]. SATF is implemented at the HDD controller, 
which can better estimate the positioning time than the OS. Improvements to SATF utilizing lookahead 
to minimize disk access time and incorporation of priorities in SATF are described in [105]. Lookahead 
takes into account the time to process additional requests beyond the first request, but at a discounted 
cost. Priority scheduling with SATF discounts the access time for higher priority requests. In fact, 
Equation 19.1 is applicable to scheduling methods that do not take into account service time.

In addition to disk arm scheduling, the placement of disk files affects the seek time. The organ-pipe 
arrangement reduces the seek distance by placing most frequently accessed disk files at middle disk cyl-
inders, that is, at an equal distance from innermost and outermost tracks, surrounded by less frequently 
accessed files [49]. The Automatically Locality Improving Storage (ALIS) method described in [44], in 
addition to optimizing placement, coalesces disk requests to exploit the efficiency of sequential accesses.

Multimedia systems with fixed rate requests and deadlines for guaranteed completion of requests 
require specialized disk scheduling methods. SCAN-EDF scheduling combines the efficiency of SCAN 
with the Earliest Deadline First (EDF) real-time scheduling policy [69]. The performance metric is the 
number of streams that can be supported, which increases with larger buffer space and for deadlines 
exceeding interrequest periods.

Two notable studies of disk-scheduling performance are [131] and [43], while [105] is a recent survey 
of this subject, with emphasis on author’s research in this area.

19.3.3  Log-Structured File System (LFS)

LFS optimizes writing to disk in an environment where read accesses to disk are uncommon due to the 
high hit rate of a large cache [84]. LFS accumulates modified files in a buffer and writes them to disk in 
large chunks called segments to reduces disk arm positioning overhead. Similarly to database logging 
[81], segments are written onto consecutive disk locations.

The fact that files are not written in place allows file compression, since otherwise there is the possibil-
ity that a file will not compress below its previous size. Disk space held by modified files is designated 
as free space. A background garbage collection process merges half-empty segments into full segments 
and creates empty segments for future destaging. For example, two half empty segments will result in 
one full and one empty segment. Files are located by inodes written to the log.

The write cost in LFS is a steeply increasing function of the utilization of disk capacity (u), which is the 
fraction of live data in segments (see Figure 3 in [84]). The crossover point with respect to UNIX’s Fast 
File System (FFS) is at u = 0.5. The following issues related to segment cleaning policies are investigated 
in [84]: (1) When should the segment cleaner be executed? (2) How many segments should be cleaned? 
(3) Which segments should be cleaned? (4) How should be live blocks grouped into segments?

19.3.4 A ctive Disks

There have been numerous proposals to offload database operations to specialized processors associated 
with disks. Early work on database machines is reviewed in [41]. The Teradata Data Base Computer - 
DBC/1012 with 1012 bytes or a TB storage capacity. DBC/1012 was designed for the efficient processing of 
relational algebra operators, see, for example, [81].*

HDDs are equipped with relatively powerful microprocessors, which have low utilizations, so that 
this processing power can be utilized in carrying out background tasks. Freeblock scheduling (FS) 
is based on opportunistic disk accesses, as the arm moves in processing regular requests [61]. This is 

*	 http://en.wikipedia.org/wiki/DBC_1012.
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advantageous since due to their mechanical nature, disk arms constrain the access bandwidth to disks 
with ever-increasing capacities. FS can be used in conjunction with LFS to prepare free segments, pro-
cess nearest-neighbor queries, carry out data mining [81] and disk scrubbing [53], etc. [83].

Off-loading database activities work well for simpler operations, such as SQL SELECTs, but this is 
not the case for more complex SQL operations, such as relational joins and star-joins in data warehous-
ing, which may involve multiple disks [81]. The SmartStor project at Almaden provided multiprocessor 
access to multiple disks, so that more complex database operations can be undertaken [42]. While a 
performance advantage is demonstrable, there is the additional cost of developing software with parallel 
processing capabilities at the storage level.

There has been recent activity at IBM to offload database applications from mainframes, such that 
most of their processing capacity remains available for OnLine Txn Processing (OLTP) applications with 
high-performance requirements [12]. There is the cost saving due to having a single copy of the database 
with a single set of disks. A 70%–97% reduction in CPU times and 9%–78% reduction in bytes trans-
ferred were observed in [79]. A key issue is that the “backend” software has the capability to process 
legacy file systems, such as VSAM (IBM’s version of B+ trees). Little interference is expected at the disks, 
since OLTP applications will access most of the required data in main memory, but require logging on 
dedicated disks. The need by queries to read consistent data from relational tables requires innovative 
concurrency control solutions, see for example, [99].

19.4 R edundant Arrays of Independent Disks (RAID)

The five-level Berkeley RAID classification introduced in late 1980s was extended to seven levels with 
the addition of RAID0 and RAID6 in [15]. RAID0 has no redundancy, but utilizes striping for load bal-
ancing. Striping partitions the data associated with the file system into fixed size stripe-units or strips, 
which are placed round-robin across the disks. The data strips in a row constitute a stripe. Mirroring or 
replication, which is classified as RAID1, is described in Section 19.5. RAID5 and RAID6 arrays with 
erasure coding are described in Section 19.4.1. In Sections 19.4.2 through 19.4.4, we describe RAID5 
operation in normal, degraded, and rebuild modes. The four RAID levels are shown in Figure 19.1.
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FIGURE 19.1  RAID0, RAID1, RAID5, and RAID6 layouts. (a) RAID0, (b) RAID1, (c) RAID5, and (d) RAID6 
data layouts.
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19.4.1 RA ID5, RAID6, and Their Variations

RAID4 extends RAID0 with N − 1 disks, with an additional Nth disk dedicated to parity. Parity strips 
hold the eXclusive-OR (XOR) of the corresponding N − 1 data strips in the same stripe, for example, 
P DN i

N
i= ⊕ =

−
1

1 . The strips of a failed disk (or their blocks) can be reconstructed by XORing the corre-
sponding strips (or blocks) on surviving disks. For example, D D PN

i N1 2
1= ⊕ ⊕−( ) . Two disadvantages of 

RAID4 are that the dedicated parity disk is not utilized at all by read requests and that it may constitute 
a bottleneck for write intensive workloads.

RAID5 disk array balances disk loads for processing updates by placing check strips in right 
to left diagonals, known as the left-symmetric organization [15], as shown in Figure 19.1. Diff-
RAID, described in Section 19.11, utilizes an unbalanced allocation of parities to attain a higher 
reliability [6].

Parity striping is a variation on RAID5, which does not stripe the data at all, but dedicates 1/Nth of 
the capacity of all disks to parity. This placement sacrifices higher data transfer rates to the ability to 
access the strips of a file in parallel, thus increasing the throughput of the RAID5 array (see Section 
19.4.2). The performance of RAID5 and parity striping is compared in [14].

In general, RAID(4 + k), k ≥ 1 arrays are extensions of RAID0 with k check strips, where k is also 
the number of failed disks that can be tolerated, hence the classification k disk failure tolerant (kDFT) 
[109]. Although, under the best circumstances, RAID1 arrays can tolerate up to one half of disk failures 
without data loss, as discussed in Section 19.5, a second disk failure may lead to data loss, hence RAID1 
is a 1DFT.

Reed–Solomon (RS) codes are maximum distance separable (MDS) in that they incur the capacity 
equivalent of k ≥ 1 redundant disks to tolerate as many disk failures [109]. RS is costly to implement, 
since it is based on Galois field finite arithmetic [75,76]. EVENODD (EO) is a 2DFT which uses parity 
coding with a significantly lower cost than RS for check code calculations [8], but is outperformed by 
the Rotated Diagonal Parity (RDP) invented 10 years later [18]. Figure 19.2 is an RDP array with n2 data 
blocks and n = 4. The updating of almost all data blocks requires the updating of two blocks with the 
exception of one block in each row, that is, we need 2n2 − 2n XORs to protect n2 data blocks, or 2 − 2/n 
XORs per data block. This is smaller than 2 − 2/(n − 1) for EO [109]. A performance evaluation of storage 
erasure coding libraries is reported in [77].

X-code is another 2DFT MDS code [133], which dedicates two (horizontal) stripes to P and Q pari-
ties per segment, which is an N × N array of strips, so that N data stripes in N − 2 rows are protected. A 
shortcoming of X-code is that the number of disks (N) should be prime. The two parities cover strips 
placed in diagonals with positive and negative slopes, as shown in Figures 19.3 and 19.4.

RM2 is non-MDS but similarly to the X-code uses horizontally placed check codes. Each data strip is 
covered by two check strips, so that RM2 is 2DFT. Depending on the redundancy level p = 1/M, there are 
M − 1 data strips per parity stripe [74]. Based on constraints given in the paper, the smallest number of 
possible disks for p = 1/3 is N = 7, so that the redundancy level is higher than a RAID6 with seven disks, 
which is 2/7. In Figure 19.5 P0, …, P6 are the parity strips for the seven parity groups. Data strip Di, j is 
protected by two parity strips Pi and Pj.

RAID operation in normal/degraded/rebuild modes are discussed in Sections 19.4.2 through 19.4.4.

Disk 0 Disk 1 Disk 2 Disk 3 Q Parity P Parity

0 1 2 3 4 0
1 2 3 4 0 1
2 3 4 0 1 2
3 4 0 1 2 3

FIGURE 19.2  RDP array with (p − 1)(p + 1) strips with p = 5.
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19.4.2 RA ID5 Operation in Normal Mode

The updating of each data block in RAID(k + 4), k ≥ 1 requires the reading and writing of k check blocks 
protecting a data block. For RAID5 with k = 1 given the updated data block dnew, the difference block 
is computed as the XOR of the new and old data block: ddiff = dold ⊕ dnew. The parity block is updated 
as pnew = pold ⊕ ddiff. If dold and pold are not cached, the updating of a single block in RAID5 requires the 
reading of the data and parity blocks and writing them. The four disk accesses are referred to as the 
small write penalty (SWP) in [15]. In the case of RS codes, ddiff is multiplied by an appropriate coeffi-
cient, before being XORed with the Q check blocks [75,76]. Disks are assumed to have an XOR capabil-
ity and the XOR can be carried out as part of a read modify write (RMW) operation at the check disks 
consists of a read followed by an XOR and a disk rotation before the check blocks is overwritten. Disk 
Architecture for Composite Operations (DACO) is a proposal to place a write head followed by a read 
head to eliminate the disk rotation time [60]. The shortcomings of this approach are discussed in [106].

Optimum strip sizes, their layout, and efficient methods to update parities were areas of early RAID 
research, which are reviewed in [15]. Larger strip sizes facilitating single disk accesses to larger files 
are beneficial in a multiuser environment, but preclude parallel access in single user environments. 
Strip sizes should be large enough to accommodate most block sizes in order to preclude multiple disk 

Disk Number
Row 0 1 2 3 4 5 6

0 2 3 4 5 6 0 1
1 3 4 5 6 0 1 2
2 4 5 6 0 1 2 3
3 5 6 0 1 2 3 4
4 6 0 1 2 3 4 5
5 0 1 2 3 4 5 6
6

FIGURE 19.3  P parities with positive slopes.

Disk Number
Row 0 1 2 3 4 5 6

0 5 6 0 1 2 3 4
1 4 5 6 0 1 2 3
2 3 4 5 6 0 1 2
3 2 3 4 5 6 0 1
4 1 2 3 4 5 6 0
5
6 0 1 2 3 4 5 6

FIGURE 19.4  Q parities with negative slopes.

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6

P0 P1 P2 P3 P4 P5 P6

D2,3 D3,4 D4,5 D5,6 D0,6 D0,1 D1,2

D1,4 D2,5 D3,6 D4,0 D5,1 D6,2 D0,3

FIGURE 19.5  RM2 disk layout for N = 7 disks.
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accesses and unnecessary seeks, which would result in an unnecessary increase in disk utilization. The 
optimum strip size for database applications may be recommended by database companies to optimize 
the performance of their products.

A simple and pragmatic method for dealing with SWP is caching dirty blocks in NVS portion of 
DAC’s cache [64]. Trace analysis shows that dirty blocks tend to be overwritten several times before they 
are destaged. Such blocks exhibit locality, for example, multiple blocks are destaged on the same track. 
This effect was taken into account in the performance analysis in [112]. Disk scheduling can be applied 
to reduce destage time. A detailed study of RAID5 cache behavior is reported in [122], which does not 
recommend the caching of parity blocks, since they do not contribute to the hit rate for read accesses.

The log structured array (LSA) is an extension of LFS to RAID5 according to [65]. In fact, LSA was 
first implemented in conjunction with StorageTek’s Iceberg RAID6 disk array [15]. It has been imple-
mented as the RAID5 portion of HP’s AutoRAID disk array [127] (see Section 19.8.3). LSA eliminates 
SWP by utilizing full stripe writes, by first accumulating a sufficient volume of data in the form of 
modified files in DAC’s cache. The check strips can be computed on the fly as data strips are written to 
consecutive disks. Similarly to LFS, the previous version of files is designated for garbage collection. 
This task is carried out periodically to coalesce n not fully utilizes stripes onto m < n almost full stripes 
and n−m empty stripes. Since files are not written in place, they may be compressed to attain a higher 
storage efficiency.

19.4.3 RA ID5 Operation in Degraded Mode

RAID5 takes advantage of its redundancy to reconstruct disk blocks on demand. A data block on a 
failed disk or an unreadable block due to media failure requires the N − 1 corresponding blocks from 
surviving disks to be read and XORed. A read access to the failed disk is thus converted to an (N − 1)-way 
fork-join request, which is considered completed when the corresponding blocks from surviving disks 
are accessed and XORed. There is a doubling in disk loads due to for-join requests to reconstruct blocks 
on the failed disk, since in addition each disk processes its own read accesses. Read redirection accesses 
reconstructed blocks directly by simply keeping track of the progress made by the rebuild process, 
which systematically reconstructs the contents of a failed disk on a spare disk [68].

Clustered RAID (CRAID) or parity declustering is a data layout, which reduces the load increase in 
degraded mode [68]. This is accomplished by settling the number of disks in a parity group to G, which 
is smaller than the number of disks N. The load increase due to read requests is specified as the decluster-
ing ratio: α = (G − 1)/(N − 1). For N = 10 and G = 4, we have α = 1/3 and 2.5 parity groups per stripe. Since 
as many strips are reconstructed per stripe, this will result in overloading of the spare disk. Adjusting 
the fraction of redirected reads to the spare disk is proposed as a solution to this problem in [68], since 
the increased load on surviving disks will result in reduced rate in rebuild reading (see Section 19.4.4). 
This may not be an adequate solution in all cases, since it may result in a backlog of rebuild units (RUs), 
which are the smallest block sizes for rebuild processing, in the rebuild buffer. Throttling of rebuild 
reads is then a more robust solution to this problem.

CRAID has a twofold effect on reducing the mean response time: (i) The mean response time at each disk 
lowers because of the smaller disk utilizations. (ii) We have a (G − 1)-way rather than an (N − 1)-way fork-
join request, whose mean response time is proportional to HG−1, rather than HN−1, where H in

i

n

=
=∑ 1

1
/  

is  the Harmonic sum (strictly speaking this is true for exponential distributed disk response times). 
When the bandwidth of the rebuild buffer constitutes a bottleneck, CRAID, which requires G − 1-way, 
rather than an N − 1-way XOR processing with associated DRAM accesses, improves rebuild time, as 
shown in Figure 6 in [125].

Balanced incomplete block designs (BIBD) [72,39] and nearly random permutations (NRP) [67] are 
two efficient implementations of CRAID to balance disk update loads [109]. BIBD has the shortcoming 
that data layouts are not available for all values of N and α [109].
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19.4.4 RA ID5 Rebuild Processing

The discussion is organized in four parts. Section 19.4.4.1 is a general discussion of rebuild processing. 
Section 19.4.4.2 discusses rebuild performance. Section 19.4.4.3 discusses methods to improve RAID5 
reliability by improving the chances that rebuild is completed successfully. Section 19.4.4.4 discusses 
methods to reduce rebuild cost.

19.4.4.1  General Discussion of Rebuild Processing

RAID5 rebuild is the systematic reconstruction of the contents of a failed disk on a spare disk. In the 
case of RAID5 with N disks successive RUs, for example, tracks, are read from the N − 1 surviving disks, 
XORed to reconstruct the next missing RU, which is then written to disk.

In stripe-oriented rebuild (SOR), the strips in a stripe constitute RUs [39]. Since rebuild reading 
proceeds one stripe at a time, the synchronization at this level results in an unnecessary slowdown 
compared to disk-oriented rebuild (DOR), where contents of surviving disks are read in parallel into 
a rebuild buffer. They are then XORed to reconstruct the next RU to be written to disk. It follows from 
simulation results in [39] that DOR outperforms SOR.

In distributed sparing spare areas are distributed among the disks in the RAID array, so that the 
contents of a failed disk can be reconstructed on surviving disks [66,112]. It has the advantage over 
dedicated sparing in that the bandwidth of the hot spare is not wasted and conversely a higher access 
bandwidth is provided. Once a spare disk becomes available, the spare areas are copied onto this disk to 
free up space for further rebuilds, so that rebuild is a two-step process.

Parity sparing is another method, where two RAID5 arrays are merged into one, by utilizing one of 
two parities [66]. In the case of a single RAID5, restriping overwrites the parity strips, so that the disk 
array reverts to RAID0 [82]. In the case of RAID7, we have the following transitions:

	 RAID7 RAID6 RAID5 RAID0→ → → .

Interestingly as check blocks are overwritten by restriping, there is an increase in the maximum disk 
I/Os per second (IOPS) with the progression of disk failures, since the effect of SWP is reduced as the 
redundancy level is lowered [120].

With the advent of multiterabyte disks, a substantial increase rebuild time is to be expected. Rebuild 
time can be reduced by carrying out rebuild processing at the level of identifiable objects, as discussed 
in Section 19.8.3.

19.4.4.2 R ebuild Performance Analysis

The vacationing server model (VSM) reduces the effect of rebuild reads on the response time of exter-
nal requests, which are already higher in degraded operating mode. This is accomplished by starting 
rebuild reading when the disk becomes idle [111,112,118] and stopping it with the arrival of an external 
request. Provided disk requests arrive according to a Poisson process, each disk in a RAID5 array cor-
respond to an M/G/1 queueing system, which has alternating busy and idle periods [55]. Disk accesses 
are processed in a busy period and an idle period starts when there are no requests pending. There is no 
forced idleness, although the latter has been shown to improve performance if a succeeding request in 
the same stream of requests is anticipated. The duration of an idle period is simply the interarrival time 
of external requests with rate λ, so that t–idle = 1/λ. As shown in Figure 19.6, the first rebuild read requires 
a seek, while successive reads do not. It is assumed that the RU is a disk track.

To simplify the discussion, we assume all disk requests are reads with mean service time x–disk, so that 
the disk utilization is ρ = λx–disk. The duration of the busy period t–busy can be obtained by noting that it is 
the fraction of time the system is busy: t–busy/(t

–
busy + t–idle) = ρ, so that t–busy = x–disk/(1 − ρ) [55].

With rebuild processing, the duration of the busy period is modified since the service time of the 
first request starting the modified busy period is elongated by the residual lifetime of the rebuild 
read in progress: z– = x–disk + y–r, by the first request arriving during the final vacation during which a 
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request arrives. To simplify the discussion, we assume that vacation times have a fixed duration y = v, 
so that mean remaining vacation time after an arrival in a vacation period is given as
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The mean effective service time of the first request starting the next modified busy period, referred to as 
the delay cycle (with mean d–) is: z– = vr + x–, so that [55]: t–busy = z–/(1 − ρ).

Similarly, ignoring the initial seek time the probability that a disk request arrives during a disk rota-
tion is p e TT= − ≈−1 λ λrot

rot. One can estimate z– more accurately by noting that it is the residual lifetime 
of the first arrival during rebuild reading that really matters [118]. The probability of n tracks being read 
in an idle period is: pn = p(1 − p)n − 1, so that n– = 1/p. The rebuild reading time of a disk with Ntrack tracks is

	
T T T

N

n
rebuild busy idle

track( ) [ ] ,ρ = +

where ρ denotes the initial disk utilization, before the failure of the disk, after which the load on surviv-
ing disks is doubled. The arrival rate of read requests at the start of rebuild processing is twice the rate in 
normal mode for read requests, but the arrival rate returns to normal mode as a result of read redirec-
tion. The variation in disk utilization in computing Trebuild(ρ) can be taken into account by computing 
rebuild processing time over k intervals [111]:
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217, March 2007.)
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The mean response time of external disk requests is increased by the mean residual time for rebuild 
reads. The larger the RU, the shorter the rebuild time, since fewer seeks are required to complete the 
rebuild time. This trade-off is explored in [40] by setting the RU to be a block, a track, or a cylinder, but 
not the whole disk in which case rebuild time would be minimized.

The mean response time for external requests can be improved by the split-seek option, that is, the reading 
of a track is abandoned if there is a pending request following the completion of a seek [111]. The simulation 
study in [100] investigates the effect of preempting rebuild reads during the latency and even the transfer 
phases. In all three cases, the wasted positioning time for rebuild reading results in the elongation of rebuild 
time, so that more external requests are processed in degraded mode. The efficiency of rebuild policies from 
the viewpoint of external requests can be compared as the excess response time of user requests processed 
during rebuild processing compared with mean disk response time in normal mode operation.

The analysis of VSM with dedicated sparing in [111] is extended to distributed sparing in [112], which 
takes the extra load due to rebuild writes on a disk. An iterative solution is required since the rate of 
rebuild writes depends on the rate of rebuild reads, which are not known a priori.

The reading of surviving disks for rebuild takes approximately the same time at all disks, provided 
the disk loads are balanced due to striping [112]. If the writing of the RUs is pipelined with disk reading, 
rebuild time can be approximated by the time to complete the reading of disks. This is provided the spare 
disk is not a bottleneck in dedicated sparing, but this is not the case with CRAID as was noted earlier.

Rebuild time increases rapidly with higher disk utilization (ρ) due to external disk requests before the 
disk failure occurred. This is because rebuild progresses at a rate 1 − 2ρ at the start of rebuild processing. 
Curve-fitting against simulation results yields Trebuild(ρ) = Trebuild(0)/(1 − βρ) with β = 1.75 [109], where 
Trebuild(0) is the time for reading an idle disk or when the processing of external requests is deferred, 
which is not a practical solution.

The permanent customer model (PCM) for rebuild processing inserts a new rebuild read into the 
queue of pending disk requests as soon as another rebuild read is completed [67]. Given that disk 
requests are processed in FCFS order, the arrival of disk requests while a rebuild read is enqueued and 
being processed will result in more interruptions in rebuild reads than with VSM, which is only affected 
by arrivals while a rebuild read is being processed [109]. It is easy to see that VSM has less effect on 
external requests than PCM in that: (1) Rebuild reads are not processed ahead of external requests. (2) 
Rebuild reading with VSM takes less time than PCM, so that it interferes with fewer external requests.

The analysis in [112] is extended in [118] to zoned disks, with whole tracks constituting RUs. If a fixed 
size RU is selected, then partial tracks reads will result in multiple accesses to a track and additional 
latencies. Caching into disk’s track buffer can be used to reduce the number of accesses to the same 
track. Lookahead reading into the track buffer while user requests are pending may, however, affect the 
response time of user requests.

19.4.4.3  Improved Reliability for Rebuild Processing

Rebuild may be unsuccessful due to: (1) A second disk failure before rebuild is completed. (2) Latent sec-
tor errors (LSEs) encountered, while rebuild is in progress. It was observed in [8] that 4% of unsuccessful 
rebuilds are due to LSEs and this was used as the motivation to develop EO. Using the data in [48], it 
can be shown that the probability of unsuccessful rebuilds due to LSEs is two orders of magnitude more 
likely than a second disk failure.

Intra-disk redundancy (IDR) is a novel method which applies redundancy at the level of disk sectors, 
so that LSEs are masked [22]. IDR utilized in several RAID products has been termed vertical coding, as 
opposed to horizontal coding at interdisk level in RAID5. The effectiveness of the single parity (SP), the 
RS, and interleaved parity (IP) codes are analyzed in [22]. It is shown that IP, which is less expensive to 
implement than RS, provides the same reliability level as RS. The reliability analysis in [22] shows that 
IDR+RAID5 yields the same reliability as RAID6. The small increase in disk block lengths due to IDR 
has a negligible effect on disk access time in RAID5, which provides a significant performance advan-
tage with respect to RAID6 in that it updates a single check block instead of two [119].
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Disk scrubbing is the periodic reading of disks to detect and correct LSEs using the redundancy pro-
vided by the RAID5 paradigm [53]. The advantage of disk scrubbing is that sector errors are detected 
and corrected early, before they hinder the completion of the rebuild process. Four disk scrubbing meth-
ods are proposed in [53]. The original Disk Scanning Algorithm (DSA) starts a scrubbing request when 
the disk is idle after a certain waiting time wt has expired. Adaptive DSA adjusts wt based on system 
activity, that is, wt is increased for heavier loads and decreased for lighter loads. Simplified DSA main-
tains two queues, one for user and one for scanning requests. After the user queue has been empty for 
a sufficiently long interval, a scanning request is issued. Rather than starting DSA right away, it can be 
issued periodically, for example, once a day. DSA with the VERIFY command transfers read data into 
internal disk buffers where the consistency of data is checked.

A straightforward analysis of disk scrubbing is reported in [48]. The probability of an error due to 
a write is Pw and writes constitute a fraction rw of disk accesses with rate h. The probability of error 
in reading a sector without scrubbing is Pe = rwPw. The probability of sector failure for deterministic 
scrubbing and random (exponentially distributed) scrubbing period are P e hT phT

s S e
s= − − −[ ( ) ( )]1 1 /  and 

Ps = [hTS/(1 + hTS)]Pe, respectively, where TS denotes the mean scrub period. It follows that deterministic 
scrubbing is preferable, since random scrubbing has double the value for Ps. Furthermore Ps ≤ Pe ≤ Pw. 
The effectiveness of disk scrubbing and IDR for dealing with LSEs is investigated in [92] and [48], with 
the latter concluding that IDR is preferable to disk scrubbing.

When the memory bandwidth constitutes a bottleneck, rebuild time can be reduced via CRAID. 
This is because fewer RUs are XORed for rebuild and less memory bandwidth is required [125]. Taking 
into account hardware resource contention, rebuild time is the maximum of the delay due to disk and 
DRAM buffer transfer times [22].

19.4.4.4 R educing the Cost of Rebuild Processing

The supplementary parity augmentation (SPA) method, in addition to the P parity which covers all 
disks, introduces the S parity which covers half of the disks [121]. This implies that two parities need to 
be updated for one half of the disks, but only one half of the disks are protected against two disk failures. 
There is a similarity to Pyramid codes proposed in [46]. Briefly, a disk array with three RS codes P, Q, 
and R, the P parity strips are replaced by two strips P0 and P1, so that given an even number of disks N, 
P0 covers disks 1:N/2 and P1 covers N/2 + 1: N. While SPA and Pyramid codes have the same level of 
redundancy, only one of two parities should be modified per update in the case of Pyramid codes. Both 
methods have the advantage of halving the volume of the data to be read for rebuild, which reduces the 
possibility of LSE being encountered during rebuild reading. Given that RAID5+IDR introduces the 
same level of reliability as RAID6, the overhead associated with SPA is hard to justify. A more detailed 
discussion of SPA appears in [107].

The Local Reconstruction Codes (LRC), which was developed for Windows Azure Storage (WAS) 
similarly to Pyramid codes [46], partitions data fragments into groups to reduce rebuild processing 
cost [47]. As an example, we consider the (k, l, r) code with k = 6 data fragments, l = 2 local parities, 
and r = 2 global parities. LRC can tolerate arbitrary three failures by choosing the sets of coding 
coefficients:

	 q x x x q x x x q x x xx x x, , ,, , .0 0 0 1 1 2 2 1 0
2

0 1
2

1 2
2

2 0 0 1 2= + + = + + = + +α α α α α α

	 q y y y q y y y q y y yy y y, , ,, , .0 0 0 1 1 2 2 1 0
2

0 1
2

1 2
2

2 0 0 1 2= + + = + + = + +β β β β β β

The two local parities are px = qx,2 and py = qy,2. The two global parities are: p0 = qx,0 + qy,0 and p1 = qx,1 + qy,1. 
The choice of α’s and β’s from the Galois Field GF(24) is specified in the paper. The key properties of the 
LRC codes are: (i) single data fragments failure can be decoded from k/ℓ fragments; (ii) arbitrary failures 
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up to r + 1 can be decoded. It is shown in the paper that for a set of typical parameters (6,2,2) outper-
forms the MTTF of (6,3) RS code by an order of magnitude.

Note that construction does not take into account the partial parities when computing the global par-
ity, so that special cases need to be considered when decoding.

An important detail about WAS is that the data is initially written into three replicas, but periodically 
the replicas are sealed at the extent level (large chunks of data), which are not expected to be modified 
anymore, and converted to the LRC format for higher data efficiency. Unlike AutoRAID, this conversion 
is not reversible and the replicates are then deleted.

An improvement in the number of disk strips accessed for rebuilding a single disk block is possible 
by taking advantage of the fact that disk strips are protected by two parities. It is shown in [124] that in 
a distributed RDP storage system with two redundancy nodes, only 3/4 of the information needs to be 
transmitted to rebuild one node. In the case of X-code with p nodes, the “repair bandwidth” is at most 
(3p2 − 2p + 5)/4 while the repair bandwidth for RDP and X-code is given as 3(p − 1)2. This is given as a 
lower bound for RDP disk arrays in [132], which adopts a symbol size equal to the strip size in a disk 
array context. RDP disk arrays similar to EO adopts small symbol sizes in the context of disk arrays, 
which makes their access pattern the same as RAID6.

Large symbol sizes equaling strip sizes are utilized by X-code [133], so that the method to reduce 
the cost of rebuilding a single disk is applicable to it [115]. Referring back to Figures 19.3 and 19.4 we 
assume that disk 0 has failed. Rather than reconstructing all blocks using P or Q parities, we reconstruct 
four blocks using P and the other three blocks using Q parities. In what follows we have specified block 
accesses to reconstruct strips (0,0), (1,0), (2,0), and (5,0) or p(0) using P parities, followed by (3,0), (4,0), 
(6,0), or q(0) using Q parities. With two disk failures, RDP with large symbol sizes requires a multistep 
recovery method [58], similarly to the X-code [115].

(0,0) using p(2): (5,1), (4,2), (3.3), (2,4), (1,5)1

(1,0) using p(3): (5,3), (4,4), (3,5)2, (2,6)3, (0,1)
(2,0) using p(4): (5,4), (4,5), (3,6)4, (1,1), (0,2)5

(5,0) using p(0): (4,1)6, (3,2), (2,3), (1,4)7, (0,5)
(3,0) using q(2): (4,1)6′, (6,2), (0,4), (1,5)1′, (2,6)3′

(4,0) using q(1): (6,1), (0,3), (1,4)7′, (2,5), (3,6)4′

(6,0) using q(0): (0,2)5′, (1,3), (2,4), (3,5)2′, (4,6)

Repeated accesses to the same strip are specified by unprimed subscripts in a first occurrence and a 
primed subscript in a second occurrence. Rather than N × (N − 2) = 35 accesses, 28 block accesses are 
required, provided seven strips are cached, after they are accessed, which amounts to a 20% decrease in 
the number of accessed strips.

This concept is extended to cloud storage in [54], where a rotated RS code is proposed such that strips 
are reused in the construction process, reducing its cost. We illustrate the savings in cost using Figure 7 
in the paper, with k = 6 columns, m = 3 check strips, and r = 4 rows. All four rows are referred to as a 
stripe in this work. The coding for row 0 is then
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Data strips from different rows are used in computing the check strips, according to the following 
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Four of the check strips required for reconstructing the four strips on disk 0 which has failed are as 
follows:
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It can be observed that only 16 symbols (strips) are required for recovery, versus 24 strips which 
would be otherwise required. For even r the cost of reconstructing a disk is r k

mk2 +  ( ) versus k × r.
A disadvantage of this method is that m × r check strips need to be buffered when data is being 

written. It is assumed that rows constituting data strips are read one row at a time and applied to the 
check strips.

19.5  Mirrored Disks or RAID1

We start with a discussion of mirrored disk organizations in Section 19.5.1. This is followed by a discus-
sion of efficient processing of disk requests without and with an NVS cache.

19.5.1  Mirrored Disk Organizations

Basic Mirroring (BM) with two disks is the simplest form of data replication, which was utilized in 
Tandem’s (now HP) fault-tolerant computers, such as NonStop SQL, before its classification as RAID 
level 1 (RAID1) in [15]. For higher volumes of data, we have RAID1/0 with N = 2M disks or M disk 
pairs, that is, two mirrored RAID0 arrays. Alternatively we have RAID0/1, a RAID0 array where each 
virtual disk is a mirrored pair, that is, striping is applied across mirrored pairs to balance disk loads. For 
RAID1/0 with N = 8, the four primary disks hold strips (B1,1, B1,2, B1,3, B1,4) and the secondary disks hold 
strips (B′1,1, B′1,2, B′1,3, B′1,4), where the indices denote the stripe (or row) and disk number, respectively. The 
failure of up to M = N/2 disks will not result in data loss in either case, as long as they do not constitute a 
pair, but the failure of only two disks constituting a pair will result in data loss, GRD, ID, and CD RAID1 
arrays, described below, are 1DFTs, while LSI RAID1 is a 2DFT.

Group Rotate Declustering (GRD) is similar to RAID1/0, but rotates data on the secondary disks from 
row to row, so that the second row on the mirrors is: (B′2,2, B′2,3, B′2,4, B′2,1), and so on. The advantage of GRD 
over BM is that upon the failure of a single disk, its read load is evenly distributed over M disks at “the 
other side.” Up to M disk failures will not lead to data loss as long as they are all on one side. The probability 
that a second disk failure leads to data loss is then M/(2M − 1) > 0.5, while it is only 1/(2M − 1) for BM.

Interleaved Declustering (ID) was introduced in Teradata’s DBC/1012 computer. Disks are partitioned 
into equal-sized clusters, for example, for N = 8 and c = 2 clusters there are K = N/c = 4 disks per cluster. 
Disks are divided into primary and secondary areas, which replicate each other. We use capital letters 
for primary and small letters for secondary data blocks. Primary blocks Bi, 1 ≤ i ≤ 4 have each K − 1 = 3 
secondary blocks: (bi,1, bi,2, bi,3) with Bi = bi,1∥bi,2∥bi,3. The latter are placed in rotated manner at the other 
disks in the cluster, so that the read load of a failed disk is distributed evenly across the disks in the 
other cluster. The advantage of ID over BM is that the read load increase due to a single disk failure is 
1/(K − 1) < 1/2. Up to c disk failures can be tolerated by ID, as long as they are in different clusters.

Chained Declustering (CD) is an improvement over ID in terms of reliability, but unlike ID it requires 
careful routing of read request to balance disk loads. The space on Di, 1 ≤ i ≤ N disks is partitioned into 
primary and secondary areas with equal sizes. Unprimed data blocks in the primary area of each disk are 
replicated on primed data blocks in the secondary area of the following disk, for example, disk Di holds 
data blocks Bi, B′(i − 1)modN, 1 ≤ i ≤ N. Read requests can be accessed from the primary or secondary area, 
using static load balancing methods, which adjust the fraction of requests to balance disk loads as disk fail-
ures occur. Up to M disk failures can be tolerated by CD, as long as the two failed disks are not contiguous.
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LSI RAID1. This is a hybrid disk array, which is described in a patent by LSI Logic Corp. [128] 
(LSI stands for Large Scale Integration). LSI RAID1 combined mirroring and parity, as shown in the 
following for N = 8 disks, four of which are data and four parity disks:

	 ( , , , , , , , ), , , ,D P D P D P D P1 1 2 2 2 3 3 3 4 4 4 1

Each Parity disk (Pdisk) is the XOR of the two neighboring Data disks (Ddisks), for example, 
P1,2 = D1 ⊕ D2. Ddisks can be reconstructed as follows, for example, D1 = P1,2 ⊕ D2 = D4 ⊕ P4,1. Three 
disks failures can be tolerated by LSI RAID1, unless they are three consecutive disk failures with a parity 
disk in the middle [113]. The failure of four Ddisks and also two Ddisk and two Pdisks can lead to data 
loss. Enumeration is used to extend the reliability analysis of mirrored disks to LSI RAID1 [113].

Survivable Storage using Parity in Redundant Array Layout (SSPiRAL) extends the LSI RAID para-
digm to the case where Pdisks are computed over m = 3 Ddisks and each Ddisk is protected by m = 3 
Pdisks, so that DoutD=PinD=3 [93]. For N = 8 the four Ddisks A, B, C, and D are protected by the four 
Pdisks holding A ⊕ B ⊕ C, B ⊕ C ⊕ D, C ⊕ D ⊕ A, and D ⊕ A ⊕ B. If Ddisks and Pdisks are placed in 
two rows, then each Pdisk is the XOR of the Ddisk above it and the two Ddisks that follow it, modulo 
M = N/2. It is easy to verify that up to three disk failures can be tolerated in all cases. If all Ddisks fail 
they can be reconstructed using Pdisks, which is not the case for LSI RAID. There is data loss if a Ddisk 

and the three Pdisks in which it participates fail. There are 
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ures. Enumeration shows that for N = 8, data loss occurs in 1/5th of four disk failure cases.

19.5.2 R outing of Disk Requests in RAID1

In addition to higher reliability, mirrored disks provide twice the access bandwidth of single disks for 
processing read requests, which tended to dominate write requests in many applications. This is less so 
with the availability of very large caches, which results in fewer read misses.

A reduction in seek distance for read requests can be achieved in BM by judicious routing. Routing 
policies can be classified as static and dynamic, where the latter take into account the states of the 
disks. Assuming that the R/W heads and disk blocks are positioned at random disk tracks, then 
selecting the R/W head closest to a requested block results in a mean seek distance c/5 for reads and 
7c/25 to complete both writes [7], versus c/3 for a single disk. There are many complications, such as 
the effect of two R/W heads being positioned on the same track after a write. Refinements to this per-
formance analysis are discussed in [101]. The following static routing policies are considered in [101]:

Private Queue (PQ): Read requests are immediately routed to one of the disks according to some routing 
policy, while write requests are sent to both disks.

Shared Queue (SQ): Read requests are held in this queue and are routed to the first disk that becomes 
available. Dynamic routing can be pursued in this case.

Hybrid Queue (HQ): The routing of read requests from SQ to PQs can be deferred.

Routing of requests to PQ can be classified as static or dynamic [101]. Uniform and round-robin routing 
are two examples of static routing policies. Round-robin routing is simpler to implement than uniform 
routing. It improves the mean disk response time by making the arrival process more regular than expo-
nential interarrival times with coefficient of variation ca = 1, that is, Erlang-2 with ca = 1 2/  [55,123].

The router in addition to checking whether a request is a read or a write can determine other request 
attributes, such as the addresses disk blocks organized as a single dimensional array. Read accesses with 
addresses below a certain value can be routed to one disk and others to another. Such affinity-based 
routing is beneficial for sequential accesses from a file, so that it will minimize the seek distance for such 
accesses. It is also possible to take advantage of data prefetching to the onboard buffer. This method 
works well if the disk loads are balanced.
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A dynamic policy that takes into account the number of requests at each disk, such as join the shortest 
queue (JSQ), may not be effective, since the queue length is not a good measure of pending processing 
times at the disk, because requests may be to highly variable file sizes. Performance can be improved 
by estimating the remaining service time at each disk, which is only feasible if requests are processed 
in FCFS order. In the case of SATF scheduling, the processing time changes with the arrival of each 
new request, although the number of requests under consideration may be limited to a finite number 
of requests.

Simulation studies have shown that the routing policy for PQ has a negligible effect on performance 
for a workload consisting of random disk accesses and that performance is mainly determined by the 
local scheduling policy. SQ provides more opportunities than PQ to improve performance, because 
more requests are available to carry out optimization, but then the PQ may be integrated with disk’s 
controller, while SQ cannot. Mirrored disks with a single controller would be a solution to this prob-
lem. SATF scheduling with SQ provides better performance PQ, because SQ provides almost twice the 
requests for scheduling [101].

The performance of a mirrored disk system without an NVS cache can be improved by using a write 
anywhere policy on one disk to minimize disk arm movement and also susceptibility to data loss 
when an NVS cache is not available. Data is written in place later on the primary disk, which allows 
efficient sequential accesses, while a directory is required to keep track of blocks written anywhere. 
The distorted mirrors method described in [95] is one of several proposals for improving mirrored 
disk performance.

Similarly to RAID5, a large NVS caches can be used to improve the performance of mirrored 
disks. Prioritizing the processing of read requests yields a significant improvement in response 
time. Deferred writes can be processed efficiently in batches. The scheme proposed in [78] oper-
ates mirrored disks in two phases. While one disk is processing read requests, the other disk is 
processing writes in a batch mode using Cyclical CSCAN (CSCAN), that is, SCAN in one direction 
only [105]. The performance of the above method can be improved as follows [110]: (1) Eliminating 
the forced idleness by processing write requests individually. This can be carried out opportunisti-
cally, as in FS. (2) Using SATF or exhaustive enumeration, which is only possible for sufficiently 
small batch sizes, instead of CSCAN, to find an optimal destaging sequence to minimize time. (3) 
Introducing a threshold for the number of read requests, which when exceeded defers the process-
ing of write batches.

Rebuild processing in RAID1 with the BM organization, which is tantamount to copying the contents 
of the surviving disk on a spare, can be improved by carrying out the rebuild out-of-order, by opportu-
nistic reading of unread tracks, which eliminates seek times [5]. Note that this method is not applicable 
to RAID5, because of excessive buffer space requirements. Results of an analytic and simulation study 
using the VSM an PCM methods described in Section 19.4.4.2 without and with opportunistic reading 
option are reported in [5].

19.6 RA ID Reliability Analysis

This section is organized as follows: Section 19.6.1 is a general introduction to reliability analysis. 
Section 19.6.2 lists expressions for RAID reliabilities. Section 19.6.3 provides the asymptotic reliabil-
ity analysis of disk arrays emphasizing RAID1. Section 19.6.4 provides an analysis of RAID5 arrays 
with repair.

19.6.1  General Discussion of Reliability Analysis

From a reliability viewpoint, systems can be classified into two extremes: series and parallel. In the for-
mer case, all components are required for the operation of the system, while in the latter case the system 
is not considered failed as long as one component survives.
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Given n components with reliabilities Ri, 1 ≤ i ≤ n, we have
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Each component may be a complex system, whose reliability can be expressed as a function of its 
subcomponents. The reliability of a system may be specified as a logical expression specifying a minimal 
configuration for the operation of the system.

Component reliabilities are usually expressed as a function of time. Given the time to failure of the 
ith component is exponentially distributed with rate δi, that is, Ri(t) = e−δt, then the reliability of a series 
system with n components can be expressed simply using the superposition property of Poisson pro-
cesses as [123]
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Given that the MTTFsingle = 1/δ, then MTTFseries = 1/(nδ) = MTTFsingle/n. In the case of a parallel system, 
the time to failure is the maximum of the times to failure of its components [123]. Given two parallel 
components with reliabilities R t e ii

ti( ) , ,= =−δ 1 2 we have
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For δ1 = δ2 MTTF2 = 1.5/δ = H2/δ, more generally using the substitution u = 1 − e−δt and noting that 
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It is easy to see that incremental increase in reliability decreases rapidly with n.
Most reliability analyses of disk arrays are concerned with disk reliabilities only, although it has 

been shown in [91] that a significant fraction of disk subsystem failures are due to components other 
than disks. A possible justification is the assumption that the rest of the systems are equally reliable 
and the interest is in comparing relative disk reliabilities. A comprehensive study of storage subsystem 
failure characteristics is reported in [51], which also spreads the blame for data loss to components 
other than disks.

The Weibull distribution has been determined to provide a good representation for the time to disk 
failure [27,91]. The exponential distribution is used instead, because of its mathematical tractability, in 
that it can be incorporated into continuous time Markov chain (CTMC) models [123]. A transient solu-
tion of the CTMC provides the time to data loss, which is the passage time from an initial fault-free state 
to a state where data loss has occurred. Rather than the distribution of time to data loss, most analyses 
report only the Mean Time to Data Loss (MTTDL) as a means of comparing the relative reliabilities of 
systems (see Section 19.6.4).

It is, however, the reliability of the system during its useful lifetime (tu), rather than the time to fail-
ure that really matters. In a triple modular redundancy (TMR) system at least 2-out-of-3 components 
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with reliability r(t) are required for the correct operation of the system: RTMR(t) = r3(t) + 3r2(t)(1 − r(t)). 
Given that r(t) = e−δt then MTTFTMR = 5/(6δ), which is smaller than the MTTF of a single component: 
MTTFsingle = 1/δ. Setting RTMR(t) = Rsingle(t) yields the crossover point tc = ln(2)/δ ≈ 0.7/δ, preceding which 
RTMR(t) > Rsingle(t). The TMR system is preferable to a simplex system provided tu ≤ tc.

The reliability analysis becomes complicated when dealing with nonexponential distributions, such 
as the Weibull. Estimating the MTTDL in RAID5 disk arrays using simulation may be quite costly, as 
explained below. Consider the simplified case, where data loss occurs when a second disk fails, while 
rebuild is in progress. This is a rare event since the disk MTTF is much larger than the Mean Time to 
Repair (MTTR) or rebuild time. Given the rarity of this event, very lengthy simulations are required 
to estimate the MTTDL (as reported in [121]). The importance sampling method for dealing with rare 
events in simulation should be adopted in this case to reduce the simulation cost [73].

19.6.2 R eliability Expressions for RAID Arrays

We use reliability analysis in [108] to compare the reliabilities of various RAID1 organizations. Let r 
denote the reliability of each disk. The maximum number of disk failures that can be tolerated for a 
RAID1 with N = 2M disks is I = M in all cases except ID, where it equals the number of clusters I = c. The 
general expression for RAID reliability is as follows:
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An interesting special case relevant to storage systems is RAID(4 + k), which does not sustain data 
loss as long as N − k out of N disks survive:
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As far as RAID1 disk arrays are concerned, up to M disk failures can be tolerated by BM, as long as 
one disk in each pair survives:

	
A N i

M

i
i Mi( , ) , .=









 ≤ ≤2 0

	
(19.5)

In the case of GRD up to M disks can fail, as long as they are all on one side:
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In the case of ID with c clusters and K = N/c disks per cluster, only one disk failure per cluster can be 
tolerated so that I = c:

	
A N i

c

i
K i ci( , ) , .=









 ≤ ≤0

	
(19.7)



19-22 Architecture and Organization

Data loss in CD is a result of two neighboring disk failures (modulo N). The expression for A(N, i) for 
CD is derived in [108]:
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The behavior of the RAID1 system can be represented by a CTMC, where state Si is indexed by the 
number of failed disks and F  denotes the state with data loss:
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Starting with the fault-free state: S0, the mean number of visits to Si is given as
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Assuming that r = e−δt, the mean holding time at state Si with i failed disks is hi = [(N − i)δ]−1. The 
MTTDL is given as
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The MTTDL can be computed using integration by noting that R(t) = 1 − F(t), where F(t) is the dis-
tribution function [123]:
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19.6.3 A pproximate Reliability Analysis for RAID

A shortcut method to express the system reliability based on a power series expansion of disk unreli-
abilities: ε = 1 − r is reported in [102]. For disks with exponential failure rate with MTTF = 106 h or 114 
years after 3 years r = e−3/114 = 0.975, so that ε = 0.025 << 1. The reliability of RAID1 with two disks is: 
RRAID1 = 1 − (1 − r)2 = 1 − ε2. Generally, we need to retain the smallest power of ε, which represents the 
probability of data loss with a minimum number of disk failures:
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where j is the minimum i for which ai ≥ 0. This term can be interpreted as the probability of data loss 
with the minimum number of disks:
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The approximate reliability equation for RAID(4 + k), k ≥ 1 can be obtained by induction:
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The MTTDL for various RAID1 organizations, but also RAID5/6/7 for systems without repair are 
given in Table 19.1. It is interesting to note that LSI RAID1 has the highest MTTDL, followed by RAID7, 
although LSI does not tolerate all three disk failures. We also provide the first term in the series expan-
sion for estimating reliabilities.

19.6.4 RA ID5 Reliability Analysis with Repair

The reliability analysis of a storage system may include a repair process, that is, rebuild processing as 
discussed in detail in Section 19.4.4. In the case of repair on a spare disk, the assumption that an infi-
nite number of spares is available may lead to misleading results. In the case of distributed sparing 
and restriping the number of rebuilds is constrained by the number of spare areas. RAID7 can tolerate 
three disk failures, but rather than operating in degraded mode, with an (i + 1)-fold reduction in its 
throughput in processing read requests it can be restriped into RAID6, RAID5, and RAID0 after each 
disk failure.

We consider a RAID5 array with N disks, where each disk has an exponentially distributed failure 
rate δ and an exponentially distributed repair rate μ. The assumption that the repair time is exponen-
tially distributed is justifiable by the fact that as verified by simulation it yields a good approximation 
to MTTDL. The behavior of the system can be represented by a CTMC with three states: Sn, where 
0 ≤ n ≤ 2 is the number of failed disks., S0 is the fault-free state, S1 is the degraded state, and S2 is the 
failed state. The transition S1 → S1 has rate Nδ. The transition rate S1 → S0 is μ. which is the inverse of 
mean rebuild time. Otherwise, we have the transition S1 → S2 with rate (N − 1)δ, which leads to data loss. 
The probability of a successful rebuild is: p = μ/(N − 1)δ + μ), so that the number of successful rebuilds 

TABLE 19.1  Summary of MTTDLs and the First Term in Approximate Reliability Expression

RAID5 BM CD GRD ID RAID6 LSI RAID7
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follows a geometric distribution: Pn = (1 − p)pn − 1 with a mean n– = (1 − p)−1. Multiplied by the mean hold-
ing time in S0 we obtain the MTTDL as
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This analysis is extended in [22] to include uncorrectable sector failures with an associated prob-
ability Puf :
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Reliability expressions for RAID5 and RAID6 with IDR (intraDisk redundancy) are reported in [22], 
while the effect of disk scrubbing and IDR on RAID reliability is compared in [48].

19.7  Power Conservation in RAID

Power consumption in disks is mainly due to the 12 V motor for rotating disks, while less power is 
used by the 5 V electronics. The three states associated with a disk are: Active, Idle, and Standby. 
Reading and writing to disk is carried out in the Active state. The disk drive continues spinning 
in the idle state, but significant energy savings are only possible by spinning down the disk to a 
standby state. According to Table 1 in [21] 15K RPM IBM 36Z15 disks consume 13.5, 10.2, and 
2.5 W in the three states, while the IBM 40GNX “mobile” disks consume only 3, 0.85, and 0.25 W 
in the three states.

Spinning down a disk to a standby state may be counterproductive if the disk does not remain in that 
state long enough, since spinning up the disks takes significant time and energy, for example, 11 s and 
135 W. A timeout strategy is used by OS before spinning down a disk. Power consumption by a disk’s 
motor is [38]

	 Power RPM= × ×D n2 2 8. ,

where D is the disk diameter, and n is the number of the platters. Some disk drive models are avail-
able with a variable number of platters, with capacities proportional to the number of utilized platter 
surfaces.

Higher RPMs are required for higher performance by reducing latency for accesses to randomly 
placed disk blocks by OLTP applications. The power consumption of a SATA and SAS disk drives is 
compared in Figure 6.3 in [38], where the SAS drive consumes 25 W versus 12 for the SATA drive. The 
7200 RPM SATA drives are used for archival storage, while 15,000 RPM SAS drives are used for high-
performance storage systems.

Storage devices contribute up to 27% of the total energy consumed in data centers, so that it is impor-
tant to reduce this power consumption. An early study is massive array of idle disks (MAID), where a 
small subset of “cache” disks store active files, while the remaining disks are on standby [17].

The Hybernator system takes advantage of Sony’s multispeed disks, which can save more energy 
(29%) than previous solutions, while still providing a txn throughput for OLTP comparable to a RAID5 
array with no energy management [134]. Variable speed disks are, however, not widely available.

Write off-loading redirects requests to spun-down disks to NVS [70]. This study shows a 28%–36% 
reduction in power consumption by spindown, which increases to 45%–60% with write off-loading.

It is argued in [96] that tape-based archival systems suffer from poor performance due to sequential 
nature of data access, while most disk systems are unsuited for long-term archival storage, because of 
their high energy demands. Pergamum is motivated by MAID, but in addition adds NVRAM at each 
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node to store data signatures, metadata, etc. to allow deferred writes. Pergamum uses both IDR and 
inter-disk redundancy to guard against data loss and staggered rebuild to reduce peak energy usage, 
while rebuilding large redundancy stripes.

A recent study of practical power proportionality in storage systems addresses read and write avail-
ability, no performance degradation, consistency, and fault tolerance for general I/O workloads [98]. The 
power-aware layout used is a tradeoff between load balancing, rebuild parallelism, and power savings. 
A distributed virtual log is used to absorb updates to replicas. Recovery and migration techniques, and 
predictive gear scheduling are adopted. A large, real service (Hotmail) on a cluster shows power savings 
of 23%, but savings of 40%–50% are possible with more complex optimizations.

The issue of power consumption is currently addressed in the broader context of Green Computing, 
which is outside the scope of this discussion.

19.8  Miscellaneous RAID Arrays

The three topics discussed in this section are Grid codes in Section 19.8.1, Hierarchical RAID (HRAID) 
in Section 19.8.2, and Heterogeneous Disk Arrays (HDAs) in Section 19.8.3.

19.8.1  Grid Codes

Grid codes use coding in two dimensions to protect strips arranged in this manner to attain a higher 
reliability [59]. In two dimensions, there are two sets of erasure codes: Horizontal (H) and Vertical (V) 
codes or HVPC codes [59]. In the simplest case with the single parity code (SPC) over k2 columns and 
k1 rows we have
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Given that H and V codes can protect against K and L strip failures, all (K + 1)(L + 1) − 1 strip failures 
can be tolerated. In other words, t = (K + 1)(L + 1) is the lowest number of strip failures that will lead to 
data loss. For K = L = 1 data loss occurs if the four strips constitute a rectangle.

SPC and X-code [133] are two codes that can be utilized vertically, but X-codes have the limitation 
that the number of strips and hence the associated number of disks should be prime. Relevant horizon-
tal codes are SPC, which is tantamount to RAID5, EO, and STAR (an extension of EO) [45], which can 
tolerate single, double, and triple disk failures, respectively. The two-dimensional GRID codes listed in 
[59] are summarized in Table 19.2. Since k1 = k2 needs to be a prime number for the X-code, we have 
modified the example in [59], so that instead of k1 = k2 = 10 we use k1 = k2 = 11 with the total number of 
strips: d = k1 × k2 = 121. Then the redundancy ratio is the number of check strips divided by d.

The level of redundancy is quite significant, on the other hand higher levels of redundancy are to be 
expected.

19.8.2  Hierarchical RAID (HRAID)

It has been observed in [91] that the failure of components other than disks is a significant contributor to 
system failures and possibly data loss. Hierarchical RAID (HRAID) addresses whole storage node (SN) 
failures, as well as individual disk failures at each node [120]. The study has a similarity to [82], which is 
based on IBM’s Collective Intelligent Bricks project [126]. There are N SNs and M disks per SN. The disks at 
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a node are RAID level 0, 5, 6, or 7. The same RAID levels are considered at the internode level. An HRAID 
with redundancy level k and ℓ at the internode and internode level is specified as HRAIDk/ℓ. Figure 19.7 
depicts the first four rows in HRAID1/1 with N = 4 SNs and M = 4 disks per SN, which utilizes a single par-
ity P at the intra-node level and a single parity Q at the intra-node level (k = ℓ = 1). Internode Q parities pro-
tect data strips at other nodes, while intranode P parities protect local data and Q parity strips at that SN.
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Generally, HRAIDk/ℓ requires (k + 1)(ℓ + 1) reads if the old data and check blocks are not cached and 
(k + 1)(ℓ + 1) writes to update a data block.

The minimum number of disk failures that can be tolerated by HRAIDk/ℓ is: dmin = (k + 1)(ℓ + 1) − 1 
and the maximum number dmax = Nℓ + (M − ℓ)k or dmax = N(k + ℓ) − kℓ for N = M. For N = M k + ℓ 
disk per node or N(k + ℓ) disks for the HRAID array are dedicated to check codes. Since at most dmin 
disk failures are tolerated, it follows that the coding in HRAID(k/ℓ) is not MDS.

The failure of the controller at an SN makes the disks controlled by it inaccessible. We consider three 
options for HRAID recovery. With Option I nodes operate independently and given that each node is an 
ℓDFT, data loss occurs if there are more than ℓ failed disks at the SN or the controller fails. With Option 
II internode recovery is allowed, so that the contents of failed disks, which are unrecoverable at the node 
level can be reconstructed via internode recovery. Rebuild processing is carried out via restriping both 
at disk and SN level. Option III does not carry out rebuild processing and instead carries out on demand 
multistep recovery.

19.8.3  Heterogeneous Disk Arrays (HDAs)

RAID level selection, most importantly RAID1 versus RAID5, was a difficult issue to resolve for early 
RAID users. RAID1 is suitable for high-performance OLTP applications, because it provides twice the 
access bandwidth for read requests. RAID5 provides the access parallelism required for high volumes 
of data accessed by data mining and decision support applications. AutoRAID developed by HP, which 

TABLE 19.2  Maximum Number of Failures 
(t) and the Redundancy Percent (r%) 
Associated with Miscellaneous Grid Codes

Codes t Redundancy Ratio (r%)
(SPC,SPC) 3 (k1 + k2 − 1)/d = 19%
(SPC,EO) 5 (2k1 + k2 − 2)/d = 28%
(SPC,STAR) 7 (3k1 + k2 − 3)/d = 37%
(SPC, X-Code) 5 (k1 + 2k2 − 2)/d = 28%
(EO,EO) 8 (2k1 + 2k2 − 4)/d = 36%
(STAR,STAR) 15 (3k1 + 3k2 − 9)/d = 51%
(STAR,X-Code) 11 (3k1 + 2k2 − 6)/d = 44%
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FIGURE 19.7  HRAID1/1 with N = 4 nodes and M = 4 disks per node.
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uses RAID1 as a cache to a RAID5 array at the lower level, was proposed as a solution to the RAID selec-
tion problem [127]. AutoRAID data is initially held with the space-inefficient RAID1 format, but when 
storage space is exhausted the system converts the less frequently used storage segments to RAID5/LSA 
format (see Section 19.4). The fact that RAID5/LSA introduces less load than RAID1 in dealing with 
large writes is used as the RAID level selection criterion in [116].

There was significant activity in the area of data allocation in storage systems at HP Labs, which led 
to the Disk Array Designer (DAD) [3]. IBM provisioning planners for storage allocation involve deter-
mining the number, size, and location of volumes with attention to access paths to meet performance 
requirements [10]. Disaster recovery is another aspect of the overall process. Introducing a new applica-
tion into a data center is a complex task, which is however assisted by monitoring tools provided by IBM 
and EMC. These tools monitor SAN (storage area network) components to determine its configura-
tion and performance. The volume planner takes new workloads space and performance requirements 
(I/O demand, R/W ratio, response time) and provides a recommendation. These information is used to 
determine disk utilizations. The selection process’ configuration phase selects storage pools, which can 
potentially hold the new data. The load balancing phase uses a volume allocation algorithm, rather than 
using first-fit, best-fit, or worst-fit. The path planner determines paths to connect the volumes to the 
hosts. The zone planner restricts the connectivity to ensure security.

The Panasas Parallel File System (PFS) stripes files across objects, which are stored according to the 
RAID1 or RAID5 paradigm. Small files are stored as RAID1 and large files as RAID5, since they provide 
more parallelism for data access [125]. Note similarity to EMC’s Centera file system for reliable storage 
of fixed content.* Four advantages associated with PFS are: (i) Scalable computing of parities for the files 
by clients. (ii) Capability for end-to-end data integrity checking. (iii) Parallel rebuild capability for files. 
(iv) Unrecoverable faults are restricted to individual files. The initial data placement is random. Passive 
balancing is used to place new data into empty nodes, while active balancing moves objects from node 
to node to eliminate hotspots.

In [117], we consider the allocation of Virtual Arrays (VAs) with different RAID levels in Heterogeneous 
Disk Arrays (HDAs). HDAs are expected to providing cost savings by consolidating multiple disk arrays. 
The number of Virtual Disks (VDs) required to materialize a VA is determined by upper limits on VD 
bandwidth and space per physical disk drive in normal operating mode. The synthetic stream of alloca-
tion requests for VDs is used by a single-pass data allocation methods for HDA. The allocations are carried 
out in degraded mode, so that disk loads are not exceeded due to a single disk failure. Only 1DFT RAID1 
and RAID5 arrays and single disk failures are considered in the simulation study, but we develop the 
analytic expressions for allocating other RAID levels. A VA allocation is successful if disks sharing VAs 
with a failed disk are not overloaded in degraded mode. Experimental results show that allocation meth-
ods minimizing the maximum disk bandwidth and capacity utilization or their variance across all disks 
yield the maximum number of allocated VAs. When the disk bandwidth is the bottleneck resource, the 
clustered RAID5 paradigm may be adopted to increase the number of allocated VAs (see Section 19.4.2).

19.9  Storage Area Network and Network Attached Storage

A storage area network (SAN) is defined as a set of disk drives connected by a network: a SCSI bus, an 
Ethernet switch, or a peer-to-peer network, where the disk drives are associated with cooperating servers. 
Requirements for SANs listed in [86] are summarized in the following:

	 1.	 Space and access balance. The requirement to store additional data is growing rapidly. Given that 
disk capacity is cheap, the storage capacity of the network can be easily expanded. There is a 
need to allocate data carefully to utilize disk capacities and balance their utilizations. This can 
be accomplished by striping and randomizing [87]. There is also the issue of data reorganization 

*	 http://www.emc.com/products/family/emc-centera-family.htm.
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to accommodate increased data volumes, larger capacity disks, etc. Given the characteristics of 
the disk system and the access rates of files, a nearly optimal assignment of files to disks is sought 
to optimize performance metrics, such as the mean disk response time [130]. Without such an 
optimized allocation, disks are susceptible to access skew.

	 2.	 Availability. High data availability can be attained by mirroring or erasure coding. The latter, 
which provides a much higher storage efficiency, has been adopted by the Zebra distributed file 
system based on the RAID5/LSA concept [37]. Data from various clients is combined into a single 
stream, which is written as one stripe, so that the parity strip is computed on the fly.

	 3.	 Resource efficiency. Higher availability implies wasted disk capacity in the form of check disks 
and replicated data. This overhead should be quantified against higher performance and 
availability.

	 4.	 Access efficiency. This is determined by the time and space requirements to access the data.
	 5.	 Heterogeneity. New disk drives, possibly with higher capacities, should be introduced with as little 

disruption as possible. It is not economically viable to replace all old disks with new disks, just 
for the sake of maintaining homogeneity. RAID5 data layout becomes more complicated with 
heterogeneous disks: variable stripe sizes and disk load imbalance for updating parity. Solutions 
to these and other problems are discussed in [19].

	 6.	 Adaptivity. This is a measure of how fast can the system adapt to increases in the data volume 
and the addition of more disk capacity. More specifically, a fraction of the existing data must be 
redistributed, and the efficiency of this process is called adaptivity. The faithfulness property is to 
balance disk capacity utilizations, so that given m data units and that the ith disk has a fraction 
di of the total capacity, then this disk’s share of the data is (di + ε)m, where ε is a small value. The 
issue of access bandwidth should also be taken into consideration. A relevant study is [94], which 
poses the disk replacement problem (DRP), that is, minimizing the cost of migrating data follow-
ing disk additions and removals.

	 7.	 Locality. This is a measure of the degree of communication required for accessing data.

Network attached storage (NAS) as opposed to direct attached storage (DAS) embeds the file system 
into storage, while a SAN does not [28]. Four typical NAS systems described in [86] are as follows:

•	 Storage appliances such as products from Network Appliance (NetApp) and SNAP.*
•	 Network Attached Secure Devices (NASD) project at CMU’s Parallel Data Laboratory (PDL) [29].†
•	 The goal of the Petal project is to provide easily expandable storage with a block interface [57]. 

Incidentally, Petal adopts the CD mirroring data layout (see Section 19.5.1).
•	 The Internet SCSI (iSCSI) protocol, which implements the SCSI protocol on top of TCP/IP [88].

19.10  Data Deduplication

Data deduplication is an attempt to reduce wasted storage due to perceived high levels of redundancy in 
data storage systems. For example, the email server in a large company may hold thousands of copies of 
the same report sent to all of its employees as an attachment. Deduplication is known as intelligent com-
pression, single-instance storage, data reduction, and capacity optimized storage, replaces the multiple 
copies to a pointer to a single copy. The need for deduplication could have been alleviated by sending 
a pointer to the message to start with. Data Domain, now part of EMC, introduced data deduplication 
software in 2004. Proprietary implementations of data deduplication for Data Domain and Symantec 
are reported in [135] and [34], respectively.

*	 http://www.netapp.com.
†	 http://www.pdl.cmu.edu/NASD/index.shtml.
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Data deduplication is data compression at a coarse granularity, for example, files or blocks. 
Deduplication at a finer granularity may identify duplicates, which do not exist at a coarser level, as in 
the case of a lengthy files with minor modifications. File compression methods such as Lempel-Ziv [129], 
which remove short repeated strings result in a limited compression ratio, while deduplication tends to 
result in significant reduction in storage space requirements. There is an indirect reduction in power 
consumption, since fewer disks are required to store the data.

Cryptographic hash functions are applied to determine if two chunks of data are identical. There 
is a negligibly small possibility that the chunks are not identical due to the pigeon hole principle:* The 
Secure Hashing Algorithm (SHA)-1 returns a 20 byte hash value, and is more reliable than the earlier 
Message Digest (MD)-5, which returns 16 bytes. Data deduplication performance can be improved by 
first applying a weak hash function, followed by a strong hash function to attain a higher confidence. 
Some systems ascertain that two chunks are identical by a bit by bit comparison.

There have been several performance comparisons of deduplication implementations, with daily 
backup capacity (TB/day) as perhaps the most important single metric.†

19.11  Solid State Disks (SSDs)

Target specifications for an SCMs based on [25] are: Access time: 50–1000 nanoseconds (ns), Data rate: 
100 MB/s, Endurance: 109–1012 cycles, Error rate per TB: 10−4, mean time between failures (MTBF): 
2 million hours, Data retention: 10 years, ON/standby power: 100/1 milliwatt (mW), Cost: $5 per GB, 
CAGR: 35%.

In what follows, we discuss the more popular NAND flash memories, as opposed to NOR flash, which 
are used to store code. The smallest unit of writing into a NAND-based flash storage is a 4 KB page. 
Before a page is written all its bits need to be set to one. This is done at the level of blocks, which are usu-
ally much larger than pages, Table II in [21] provides the characteristics of five typical flash memories, 
but more comprehensive data is provided in [33].

The two varieties of flash SSDs are single-level cell (SLC) and multi-level cell (MLC), where the for-
mer stores 1 bit per cell, while the latter stores multiple bits per cell, providing more storage capacity at 
a higher cost.

Design tradeoffs for flash memories are considered in [1]. A 4 GB Samsung NAND flash is used as 
an example in this paper (see Figure 1 and Table 1). There are two 2 GB dies packaged together. Data is 
organized as 256K blocks of thirty-two 4 KB pages. It takes 25 microseconds (μs) to read from a register 
or write to it. Block erase is a slow operation and takes 1.5 milliseconds (ms). It takes 100 μs to transfer a 
4 KB page from an on-chip register. Pipelining the two operations leads to 40 MB/s. Writes take 100 μs 
per page for transfer time and 200 μs programming time. Given that there are two dies per chip these 
operations can be interleaved.

Writes cannot be performed in place in NAND flash and for higher efficiency should be performed in 
large chunks. Writes are carried out onto individual 4 KB pages from allocation pools, which may be an 
allocation plane or larger. Writing can only be carried out after the associated block is cleared, so that 
we maintain a free block list in each allocation pool.

Given that modified blocks in database applications are overwritten, it is advisable to hold such 
blocks in DRAM buffers or even HDDs, which act as caches for the flash memory. There are techniques 
to increase the lifespan of flash memories by enhancing the flash translation layer (FTL), which provides 
virtual to physical address translation. Since update in place is not possible, FTL implements updating 
out-of-place using an already erased page.

*	 http://en.wikipedia.org/wiki/Pigeonhole_principle.
†	 http://wikibon.org/wiki/v/Wikibon_Data_De-duplication_Performance_Tables.
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A difficulty associated with FTL is the size of the SRAM cache, which stores the mapping table, for 
example, 32 MB cache is required for a 16 GB flash to map at the page level. Block-level mapping is 
costly due to wasted space and performance degradation due to garbage collection. A hybrid approach is 
used: data blocks are mapped at the block level, while the smaller number of update blocks are mapped 
at the page level. It is argued in [35] that this scheme suffers from poor garbage collection behavior, 
requires several workload specific tuning parameters, and does not exploit the temporal locality of most 
workloads. Four state-of-the-art FTLs are described in this paper and compared to Demand-based FTL 
(DFTL) proposed in this work.

Many existing approaches on flash-memory management are based on RAM-resident tables in which 
one single granularity size is used for both address translation and space management. As high-capacity 
flash memory is becoming more affordable than ever, the dilemma of how to manage the RAM space 
or how to improve the access performance is emerging for many vendors. A tree-based management 
scheme, which adopts multiple granularities in flash-memory management is proposed in [13], with 
the objective of not only reducing the run-time RAM footprint, but also managing the write workload, 
due to housekeeping. The proposed method was evaluated under realistic workloads, where significant 
advantages over existing approaches were observed, in terms of the RAM space, access performance, 
and flash-memory lifetime.

A Fast Array of Wimpy Nodes (FAWN) is an array of low power processors with local f lash 
memories providing efficient parallel access to data [4]. FAWN provides an efficient implementa-
tion for Amazon’s Dynamo key-storage system, which represents the key and the actual data in 
a key–value relationship. FAWN consists of frontend and backend nodes, for example, 80 versus 
10,000 nodes Each frontend is responsible for a range of keys and directs a query to the appropri-
ate backend.

HyStor integrates low-cost HDDs and the more expensive SSDs into a single layer block storage, so that 
no modifications are required to OS [16]. Blocks have a LBN on HDD and some of the blocks may be cached 
at the SDD, which is an order of magnitude smaller. The SDD has a remap and a writeback area, the latter 
area simply holds dirty blocks, while the former area is holds high-value, frequently accessed data blocks.

We are mainly interested in flash memories as a replacement for HDDs, which as SSDs are attractive 
from the viewpoint of speed, power consumption, and reliability. Flash memories are orders of magnitude 
more expensive than HDDs, and have a finite number of Program/Erase (P/E) cycles. Flash memories 
(32 GB, 64 GB, and 128 GB) have been introduced with R/W rates of 1400/2500 MB per second have been 
attained. While in recent years flash-based SSDs have grown enormously, both in capacity and popularity, 
their adoption in high-performance enterprise storage applications depends on exceeding disk perfor-
mance, while closing the gap in cost per GB [33]. Although, the latter is becoming a reality, with increas-
ing flash densities, flash reliability, and performance are declining. High-capacity and high-performance 
flash-based SSDs are not reliable enough to justify their cost in enterprise environments. The conclusions 
of this study are based on 45 flash chips from 6 manufacturers indicating that: “SSD manufacturers and 
users will face a tough choice in trading off between cost, performance, capacity and reliability.”

We conclude the discussion of flash memories with two techniques to increase their reliability.

19.11.1  Differential RAID for Flash Memories

Diff-RAID is an unconventional RAID array whose design takes into account the fact that flash memo-
ries have very different failure characteristics from HDDs, that is, the Bit Error Rate (BER) of an SSD 
increases with more writes [6]. RAID arrays composed from SSDs are subject to correlated failures. By 
balancing writes evenly across the array, RAID schemes can wear out devices at similar rates, making 
the RAID susceptible to data loss. Diff-RAID reshuffles the parity distribution on each drive replace-
ment to maintain an age differential when old devices are replaced by new ones. A simulator to evaluate 
Diff-RAID’s reliability by using BERs from 12 flash chips showed that it is more reliable than RAID5 by 
orders of magnitude.
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For MLC technology, the number of erasures is limited to 5,000–10,000 cycles per block. Diff-RAID 
differs significantly from RAID5 arrays on HDD in that it attains a higher reliability by distributing 
parity blocks unevenly [6]. Diff-RAID masks higher BERs on aging SSDs while: (1) Retaining the low 
overhead of RAID5; (2) extending the lifetime of commodity SSDs; (3) alleviating the need for expensive 
error correction hardware.

Load balancing can cause correlated failures, since with balanced writes all SSDs will be susceptible 
to failure when an SSD fails. Consider n = 5 SDDs with 80% of parity allocated on the first SDD and the 
rest of parities evenly distributed across remaining SDDs, so that we have the following configuration 
(80,5,5,5,5). After the first disk reaches its limit, it is replaced by the second SSD. Denoting the percent-
age of parity blocks on the ith and jth device by pi and pj, the aging rate of the two devices are
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For example, for n = 4 and (70,10,10,10) the aging rate of the first device is twice that of the others. For 
n = 5 and with (80,5.5,5,5), after numerous replacements the ages of remaining devices at replacement 
time converge to (5750,4312.5,2875,1437.5). The implementation of device replacement can be accom-
plished via rebuild processing, while maintaining the same parity layout. The reduction in data loss 
probability, as given by Figures 6 and 8 in the paper, is significant.

19.11.2  Partial MDS Coding for SSDs

The Partial MDS (PMDS) method was developed in [9] to deal with sector failures in SSDs, since they 
are more prevalent than HDD sector failures. The sector is the data storage unit protected by a cyclic 
error correcting code (ECC) such as BCH.* Applying RS codes as in RAID6 is not appropriate for two 
reasons: (i) too expensive to dedicate an extra SSD to parity to handle sectors errors; (ii) RAID6 cannot 
handle more than two erased errors.

PMDS similarly to [47] relies on local and global parities, but is more complicated and does not 
require special consideration for parities being erased. Given an m × n array of sectors r erasures can 
be corrected in a horizontal row. As in the case of the EVENODD code m = n − 1 and that n should be 
prime, although this limitation can be easily circumvented [8]. If r columns are erased, an additional s 
global parities allow correcting s extra erasures. In the case r = 1 and s = 2 shown in Figure 19.8, neces-
sary and sufficient conditions for finding codes and tables of codes are given in the paper. The r local 
parities can efficiently deal with failed sectors in a row and the extra s parities are invoked in rare occa-
sions. Given six check sectors as many failed sectors can be corrected, say 4 sectors in a column and two 
other failed sectors.

In Figure 19.8, a0,4, a1,4, a2,4, a3,4 are the four local parities, and a3,2 and a3,3 placed somewhat arbitrarily 
are the global parities.† To simplify the notation, we superimpose a one-dimensional vector bi, 0 ≤ i ≤ 19, 

*	 http://en.wikipedia.org/wiki/BCH_code.
†	 The following discussion is partially based on Mario Blaum’s presentation at Stanford University in July 2012.

a0,0 a0,1 a0,2 a0,3 a0,4

a1,0 a1,1 a1,2 a1,3 a1,4

a2,0 a2,1 a2,2 a2,3 a2,4

a3,0 a3,1 a3,2 a3,3 a3,4

FIGURE 19.8  Layout of the local and global parities for partial MDS with r = 1 and s = 2, The four local parities 
are ai,4 = pi, 0 ≤ i ≤ 3 and a3,2 = g1 and a3,3 = g2 are the global parities.
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which covers the blocks in Figure 19.8 one row at a time. The m × n codeword should satisfy the follow-
ing six equations, with the first four for local parities and the last two for global parities:
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Given that disk two and two random blocks have failed, we designate them as a0,2 = u, a1,2 = y, a2,2 = v, 
a3,2 = w, and a1,0 = x, and a1,3 = z. The unknowns u, v, and w can be determined by using local parities: S0, 
S2, and S3), while the following three equations can be used to determine x, y, and z:
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The set of linear equations has a unique solution provided the determinant of the matrix A defined in 
the following is not zero:
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A is a Vandermonde matrix since powers of α in its rows are different [75], so that det(A) ≠ 0 allowing 
x, y, and z to be determined.

As a second example, consider two sector errors: x = a1,0 and y = a3,1 and a failed SSD u = a0,2, z = a1,2, 
v = a2,2, w = a3,2. The values of u and v can be obtained using S0 and S2. We have the additional four 
equations:

	 x z S y w S x z y w S x z y w S⊕ = ⊕ = + ⊕ ⊕ = + + + =1 3
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This system has a unique solution since the determinant is nonzero. A general condition is given 
by Theorem 4.1 for the necessary and sufficient conditions for the case of RAID5 (single global parity 
with r = 1); plus s global parities). In the special case of s = 2 Theorem 5,1 states that the code is PMDS 
depending on m, n, and the polynomial f(x) defining the underlying field or ring. This polynomial f(x) is 
not necessarily primitive,* but has a certain exponent, which has to exceed m × n. For example for f(x) = 
Mp(x) = 1 + x + x2 + .…. + xp − 1, the polynomial has a prime exponent p, so that m × n should be smaller 
than p. Using Equation 16 in [9] a search is made for different parameters to obtain Table 19.1. The table 
is not extensive and does not consider all possible irreducible polynomials, but it gives a good idea.

19.12  Conclusions

In spite of the frequently used term “secondary storage,” with main memory being the primary storage, 
secondary storage in the form of magnetic HDDs provides permanent storage for data. Unlike main 
memories, which are based on DRAM technology, HDDs are unaffected by occasional power outages 
and are made immune to rare disk failures using coding methods or replication. There are the additional 
levels of redundancy, such as replicated sites to protect against software errors, catastrophic failures 
(earthquakes, fires, floods, wars).

*	 http://en.wikipedia.org/wiki/Primitive_polynomial_(field_theory).
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High-performance enterprise storage systems are used by applications such as OLTP, which incur 
high disk arm positioning time. Large-scale archival systems tend to have much higher capacities, but 
lower performance than enterprise drives. The recent indications are that while flash memories are 
not suitable replacements for HDDs, they may serve as cache storage with respect to HDDs, in what 
has been referred to as hybrid storage. According to [11] at least 10 SCMs are under consideration for 
this purpose.

We have discussed reliable storage systems based on erasure encoding, such as RAID5 and RAID6, 
and replication. In both cases, we discuss the issue of improving performance in normal, degraded, and 
rebuild mode of operations.

It is worthwhile to mention that it is easier to deal with erasures (broken disks) and unreadable sec-
tors, than when the wrong data is read from disk or overwrites the wrong sectors. Higher level applica-
tions are separated from data being read/written to/from SDDs and HDDs, by many layers of software 
which complicates the issue of error detection. The narrow and well-defined interface to disk disallows 
the propagation writing of erroneous data, while faulty software may more easily destroy the contents 
of SSDs.

There is sufficient material in this chapter to serve as a full semester graduate course on storage sys-
tems, supplemented with appropriate reading material from the references.

Glossary

BIBD: Balanced Incomplete Block Design. A data layout method for clustered RAID, which has its ori-
gin in combinatorial mathematics and has been applied to design of experiments in statistics.

Clustered RAID (CRAID): A data layout to reduce the increase in disk load when operating in degraded 
mode, for example, one failed disk in RAID5.

Cryptographic Hash Functions: These are applied as part of data deduplication to determine if two 
chunks of data are identical. The Secure Hashing Algorithm (SHA)-1 returns a 20 byte hash 
value, and is more reliable than Message Digest (MD)-5, which returns 16 bytes. Data dedu-
plication performance can be improved by first applying a weak hash function, followed by a 
stronger hash function to attain a higher confidence.

DAS: Direct Attached Storage has files directly accessible by a computer, rather than file servers attached 
to a network.

Dedicated/Distributed Sparing: A hot spare is provided in the case of dedicated sparing, which may 
be shared among several arrays. Sufficient spare capacity is provided at N − 1 out of N disks, to 
hold the data and parity blocks of a failed disk. Advantage with respect to dedicated sparing is 
that the bandwidth of the spare disk is not wasted.

Deduplication: Substituting duplicates with pointer to a single shared copy. Hash function are used 
to determine duplicates. Also known as intelligent compression, single instance storage, data 
reduction, and capacity optimized storage.

DRAM/SRAM: DRAM is more dense than SRAM and is used in main memories, but SRAM which is 
faster and more expensive per GB than DRAM is used in main memories.

ECKD: Extended count-key-data (CKD) is a format associated with IBM mainframes, starting with 
IBM S/360 series in 1960s. The IBM OS/390 or z/OS operates on ECKD disks such as 3990 and 
disk array controller (DAC) serves the role of simulating ECKD disks on disks with a fixed 
block architecture (FBA).

EVENODD (EO): Uses a horizontal and a diagonal parity to protect against two disk failure, hence 
more efficient code than RS for RAID6.

Freeblock Scheduling (FS): A proposal to utilize opportunistic disk accesses as the arm moves in pro-
cessing regular requests to carry out other tasks. The goal of FS to maximize the efficiency of 
background processing.
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Grid Codes: A combination of horizontal and vertical check codes protect against data strip failures in 
two dimensions.

HDA: Heterogeneous disk array allows the sharing of disk space among multiple virtual arrays with 
different levels.

HDD: Hard disk drive as opposed to floppy disk drive, which became popular in conjunction with 
personal computers.

HRAIDk/ℓ: Hierarchical RAID uses two levels of erasure coding to tolerate k node failures and ℓ disk 
failures per node.

IDR: IntraDisk Redundancy a RAID paradigm at the level of disk blocks to deal with LSEs. IDR has 
been referred to as a vertical code in trade literature.

kDFT: k Disk Failure tolerant. RAID1 disk arrays are 1DFT, LSI RAID is 2DFT, and RAID(4 + k), 
k ≥ 1 arrays are kDFT.

LFS: Log-structured file system is a scheme to improve write efficiency, by buffering modified files and 
writing them out sequentially in large chunks.

LSA: Log-structured arrays extend the LFS concept to RAID5/6. Full stripe writes are utilized in 
writing out batches of modified files. Data compression is possible because data is not writ-
ten in place.

LSE: Latent sector error, which are unreadable and are the main cause of unsuccessful rebuilds.
MAID: Massive array of idle disks, where a small fraction of disks which hold active data remain online.
MB/GB/TB: Kilo/mega/giga/tera-byte, which are 103, 106, 109, 1012 bytes, respectively. These are fol-

lowed by petabyte (1015), exabyte (1018), zettabyte (1021), and yottabyte (1024).
MDS: Maximum distance separable codes introduce the minimum level of redundancy for erasure 

coding, such that it is known which disk has failed. EO, RDP, and X-code in addition to Reed–
Solomon codes are examples of MDS codes.

MTBF/MTTF/MTTDL: Mean time between failures/mean time to failure/mean time to data loss. 
MTBF implies that the failed component is repaired, but repair in the context of disk arrays 
implies the copying of a failed disk on a spare.

NAS: Network attached storage relies on a specialized computers, that is, network file system (NFS) for 
storing and serving files.

NVRAM/NVS: Non-volatile DRAM or storage. Nonvolatility is attained by backup batteries
Off/Near/Online Storage: Offline storage is a tape archive. Nearline storage is an automated tape 

library. Online storage is usually a SATA drive.
Parity Sparing: Combining two RAID5 arrays into one, by utilizing the parity strips of one of two 

arrays with the strips of the failed disk.
Parity Striping: A RAID5 data layout where data blocks are placed sequentially (without striping), but 

1/N of the capacity of each disk is dedicated to parity blocks. In effect placing RAID5’s parity 
strips on all disks horizontally, following 1 − 1/N of the space at each disk dedicated to data. 
Advantage that large chunks of the user data can be accessed efficiently without disruption.

Prefailure/Postfailure Replacement: The former can be carried out efficiently by utilizing Self-
Monitoring Analysis and Reporting Technology (SMART),* so that the contents of a disk about 
to fail are copied, without incurring the usual rebuild process or postfailure replacement.

Primary/Secondary/Tertiary Storage: These refer to main memory, disk, and tape storage, respectively.
Partial MDS (PMDS) Codes: PMDS codes were developed for SDDs where hard sector errors are more 

common than in the case of HDDs. In an m × n array with r = 1 and s = 2, there is a single 
parity per row and s = 2 global parities. More general cases are considered in [9], while local 
reconstruction codes (LRCs) consider this special case.

Pyramid Codes: In RAID(4 + k), k > 1 have the lowest order check strip, which is a parity, duplicated, 
such that each parity covers half of the disks in the array.

*	 http://en.wikipedia.org/wiki/S.M.A.R.T.
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RAID: Redundant array of independent disks has seven levels: 0:6. RAID0 does not tolerate disk fail-
ures, RAID1 corresponds to mirrored disks, and RAID(4 + k), k ≥ 1 are kDFT arrays, so that 
RAID7 tolerates three disk failures.

RAID1: Mirrored disks have different data organizations. A more balanced load following disk failures 
is attainable by spreading the data of each disk over multiple disks, rather than one in basic 
mirroring, but this increases the chances of data loss when more disk failures occur. Basic 
Mirroring (BM). Group Rotate Declustering (GRD), Interleaved Declustering (ID), and Chained 
Declustering (CD) are better known RAID1 organizations, while LSI RAID and SSPiRAL com-
bine mirroring and parity coding.

ReConstruct Write (RCW): RCW reads the remaining strips in a stripe to compute and write check 
blocks.

Read-modify-write (RMW): RMW reads, modifies, and overwrites a disk block after a disk rotation. When 
the modification (an XOR) is done by the DAC, we have a single read followed by a single write.

Rebuild in RAID5: Postfailure rebuild is the systematic reconstruction of the contents of a failed disk 
in the form of rebuild units on a spare disk. See also prefailure replacement.

RDP: Rotated Diagonal Parity is a slight improvement on EO, developed at NetApp.
Reed-Solomon (RS) Code: An MDS code which is more expensive to implement than parity based 

codes such as EO and RDP, since it requires Galois field finite arithmetic.
Restriping: With successive disk failures in a RAID(4 + K) array with k > 1, its check strips are overwrit-

ten with the strips of the failed disk.
RM2: A nonMDS 2DFT code with adjustable redundancy p = 1/M, so that one parity stripe per M − 1 

data strips. Each data strip participates in two parity groups with 2M − 1 strips and is hence a 
2DFT but not MDS.

SAN: A Storage Area Network is a dedicated network that provides access to consolidated, block level 
data storage. Devices attached to SAN appear as if they are locally attached.

SAS: Serial Attached SCSI.
SATA: Serial Advanced Technology Attachment.
SCSI: Small Computer System Interface is a standard for connecting disks with computer systems.
Sparing Alternatives: Dedicated/distributed/parity-sparing/restriping are four sparing alternatives. Parity 

sparing combines two RAID5 arrays into one. These are discussed under separate headings.
SSD: Solid state disks are used to store persistent data and are much faster than HDDs.
Static/Dynamic Routing: The routing is in the context of mirrored disks.
Striping: Partitioning data into fixed sized strips, which are allocated round-robin across the disks in a 

disk array. The strips in a row constitute a stripe.
Small Write Penalty (SWP): Indicates the high cost of updating small data blocks in RAID(4 + k), k ≥ 1 

disks arrays, where k + 1 data blocks, which have to be read (unless they were cached),
X-code: An MDS 2DFT code with two vertical parities placed horizontally as (N − 1)st and Nth stripes 

of N × N segments, where N is the number of disks.
The SNIA Dictionary is a glossary of storage networking, data, and information management 

terminology.*

Abbreviations in Paper

BER: Bit Error Rate. BM: Basic Mirroring. CAGR: Compound Annual Growth Rate. CAV: Constant 
Angular Velocity. CD: Chained Declustering. CTMC: Continuous Time Markov Chain. DAC: Disk 
Array Controller. DAS: Direct Attached Storage. EDF: Earliest Deadline First. FTL: Flash Translation 
Layer. GRD: Group Rotate Declustering. HDA: Heterogeneous Disk Array. HDD: Hard Disk Drive. 
ID: Interleaved Declustering. IDR: Intra-Disk Redundancy. LBN: Logical Block Number. LFS: 

*	 http://www.snia.org/education/dictionary.
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Log-structured File System. LSA: Log-Structured Array. LSE: Latent Sector Error. MAID: Massive Array 
of Idle Disks. MDS: Maximum Distance Separable. MTTDL: Mean Time to Data Loss. MTTF: Mean 
Time To Failure, NAS: Network Attached Storage. PMDS: Partial MDS. RS: Reed–Solomon (codes). RU: 
Rebuild Unit. R/W: Read/Write (head). SAN: Storage Area Network. SAS: Serial Attached SCSI. SATA: 
Serial Attached SCSI Attachment. SCSI: Small Computer System Interface. SN: Storage Node. SSD: Solid 
State Disk. SPA: Supplementary Parity Augmentation. SWP: Small write penalty. TMR: Triple Modular 
Redundancy. VA: Virtual Array. VD: Virtual Disk.

Abbreviations for Journal and Conference Titles

ACM: Association for Computing Machinery.* ASPLOS: Architectural Support for Programming 
Languages and Systems (ACM). ATC: Annual Technical Conference (USENIX). CAN: Computer 
Architecture News (ACM SIGARCH). Special Interest Group (SIG). CACM: Communications of the ACM. 
DPDB: Distributed and Parallel Databases. EUROSYS: European Conference on Computer Systems.† 
FAST: File and Storage Technologies Conference (USENIX). HPCA: High Performance Computer 
Architecture (IEEE International Symposium). HPDC: High Performance Distributed Computing (IEEE 
International Symposium). ICDE: International Conference on Data Engineering (IEEE). IEEE: Institute 
of Electrical and Electronics Engineers.‡ IEEE Computer Society:§ ISCA: International Symposium on 
Computer Architecture (ACM). IBM J. R&D: IBM Journal of Research and Development (since 2009 
includes IBM Systems Journal). ISCA: International Conference on Computer Architecture (ACM). 
JPDC: Journal Parallel Distributed Computing (Elsevier). NAS: Networking, Architecture, and Storage 
(IEEE International Conference). OSDI: Operating System Design and Implementation (USENIX 
Symposium). SIGMETRICS: Conference on Measurement and Modeling of Computer Systems (ACM). 
SIGMOD: International Conference on Management of Data (ACM). S. P. & E.: Software Practice and 
Experience (Wiley). SOSP: Symposium on Operating Systems Principles (ACM). TC: Transactions 
on Computers (IEEE). TDSC: Transactions on Dependable and Secure Computing (IEEE). TOCS: 
Transactions on Computing Systems (ACM). TOMCCAP: Transactions on Multimedia Computing, 
Communications, and Applications (ACM). TOS: Transactions on Storage (ACM). TPDS: Transactions 
Parallel and Distributed Systems (IEEE). VLDB: Proceedings of Very Large Data Bases Conference.¶

Further Information

There have been many new recent developments in this field, since the publication of the second edition 
of the Handbook in 2004. Rather than making a minor modification to that chapter, it was completely 
rewritten. Sections dealing with performance analysis can be skipped by readers not interested in this 
topic. Conversely, readers are encouraged to read the chapter on Performance Evaluation of Computer 
Systems in the Handbook for a more detailed discussion of this topic.

Publications on storage systems and storage research in industry and universities are reviewed in 
[107] and [112]. ACM started publishing Transactions on Storage (TOS) in 2005, while articles on this 
topic appeared in ACM’s Trans. on Computer Systems (TOCS), before that year with some minor overlap. 
USENIX’s conference on File and Storage Technologies (FAST) was started in 2002.

A good collection of papers on mass storage and parallel I/O is [52]. A new book with a good descrip-
tion of modern disks is [49]. but no space is dedicated to flash memories. A follow-up to [15] is [108], 
which emphasizes two-disk failure tolerant (2DFT) arrays and associated coding methods.

*	 http://www.acm.org.
†	 http://www.eurosys.org.
‡	 http://www.ieee.org.
§	 http://www.computer.org.
¶	 http://www.vldb.org.
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Storage Networking Industry Association (SNIA),* has numerous active technical projects in this 
area, including: Cloud storage, Hypervisor storage, Storage management, Object-based storage, IP 
storage Green storage, Solid state storage, Data integrity, and Long-term retention. Object-based stor-
age devices (OSD) working group concerned with the creation of self-managed, heterogeneous, shared 
storage. This entails moving low-level storage functions to the device itself and providing the appropri-
ate interface.

Web pages, if storage companies have white papers, reports, and presentations on their products. IBM 
publishes RedBooks online. Several storage-related articles are listed at http://www.redbooks.ibm.com/
portals/storage.

The Storage Performance Council (SPC)† is an organization, which acts similarly to Transaction 
Processing Council (TPC),‡, but develops storage performance and power efficiency benchmarks, while 
TPC deals with overall system processing database workloads.

This chapter touches upon the topic of Performance Evaluation of Computer Systems, covered else-
where in this handbook. Also provided is a self-sufficient discussion of reliability analysis. Additional 
references on both topics are available from Appendix A: Bibliography in [122].
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20.1  Introduction

The speeds of memory and the arithmetic units are the primary determinants of the speed of a com-
puter. Whereas the speed of both units depends directly on the implementation technology, arithmetic 
unit speed also depends strongly on the logic design. Even for an integer adder, the speed can easily vary 
by an order of magnitude, while the complexity varies by less than 50%.

This chapter begins with a discussion of binary fixed point number systems in Section 20.2. Section 
20.3 provides examples of fixed point implementations of the four basic arithmetic operations (i.e., 
add, subtract, multiply, and divide). Finally, Section 20.4 briefly describes algorithms for floating-point 
arithmetic.

Regarding notation, capital letters represent digital numbers (i.e., words), while subscripted lower 
case letters represent bits of the corresponding word. The subscripts range from n − 1 to 0 to indicate the 
bit position within the word (xn−1 is the most significant bit of X, x0 is the least significant bit [lsb] of X, 
etc.). The logic designs presented in this chapter are based on positive logic with AND, OR, and invert 
operations. Depending on the technology used for implementation, different logical operations (such as 
NAND and NOR) or direct transistor realizations may be used, but the basic concepts do not change 
significantly.

20.2  Fixed-Point Number Systems

Most arithmetic is performed with fixed point numbers that have constant scaling (i.e., the position 
of the binary point is fixed). The numbers can be interpreted as fractions, integers, or mixed numbers, 
depending on the application. Pairs of fixed point numbers are used to create floating-point numbers, 
as discussed in Section 20.4.
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At the present time, fixed point binary numbers are generally represented using the two’s comple-
ment number system. This choice has prevailed over the sign–magnitude and other number systems, 
because the frequently performed operations of addition and subtraction are easily performed on 
two’s complement numbers. Sign–magnitude numbers are more efficient for multiplication, but the 
lower frequency of multiplication and the development of efficient two’s complement multiplication 
algorithms have resulted in the nearly universal selection of the two’s complement number system for 
most applications. Most of the algorithms presented in this chapter assume the use of two’s comple-
ment numbers.

Fixed point number systems represent numbers, for example, A, by n bits: a sign bit and n − 1 data 
bits. By convention, the most significant bit an−1 is the sign bit, which is a 1 for negative numbers and a 
0 for positive numbers. The n − 1 data bits are an−2, an−3, …, a1, a0. In the following material, fixed point 
fractions will be described for the two’s complement and sign–magnitude systems.

Table 20.1 compares 4 bit fractional fixed point numbers in the two number systems. Note that the 
sign–magnitude number system has two zeros (i.e., positive zero and negative zero) and that only two’s 
complement is capable of representing −1. For positive numbers, both number systems use identical 
representations.

20.2.1 T wo’s Complement Number System

In the two’s complement fractional number system, the value of a number is the sum of n − 1 positive 
binary fractional bits and a sign bit that has a weight of −1:

	
A a an i

i

n
i n= +−

=

−

∑ − +
– 1

0

2

2
1 	 (20.1)

TABLE 20.1  Example of 4 Bit Fractional 
Fixed-Point Numbers

Number Two’s Complement Sign–Magnitude

+7/8 0111 0111
+5/8 0101 0101
+1/2 0100 0100
+3/8 0011 0011
+1/4 0010 0010
+1/8 0001 0001
+0 0000 0000
−0 N/A 1000
−1/8 1111 1001
−1/4 1110 1010
−3/8 1101 1011
−1/2 1100 1100
−5/8 1011 1101
−3/4 1010 1110
−7/8 1001 1111
−1 1000 N/A
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Two’s complement numbers are negated by complementing all bits and adding a 1 to the lsb position, for 
example, using 4 bit numbers to form −3/8:

	 +3/8 = 0011
	 invert all bits = 1100
	 add 1 lsb	 0001
	 1101 = −3/8

	 Check:	 invert all bits = 0010
	 Add 1 lsb	 0001
	 0011 = 3/8

20.2.2  Sign–Magnitude Number System

Sign–magnitude numbers consist of a sign bit and n − 1 bits that express the magnitude of the number:

	
A a an i

i

n
i n= +−

=

−
− +∑( )1 2 21

0

2
1− 	 (20.2)

Sign–magnitude numbers are negated by complementing the sign bit. For example, to form −3/8,

	 +3/8 = 0011
	 invert sign bit  = 1011 = −3/8

	 Check:	 invert sign bit = 0011 = 3/8

A significant difference between the two number systems is their behavior under truncation. Figure 20.1 
shows the effect of truncating high-precision fixed point fractions X, to form three-bit fractions T(X). 
Truncation of two’s complement numbers never increases the value of the number (i.e., the trun-
cated numbers have values that are unchanged or shift toward negative infinity), as can be seen from 

1

1/2

–1

–1/2

–1

–1/2 1/2 1

T(X)

X

1

1/2

–1

–1/2

–1

–1/2 1/2 1

T(X)

X

(a) (b)

FIGURE 20.1  Behavior of fixed point fractions under truncation: (a) two’s complement and (b) sign–magnitude.
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Equation 20.1 since any truncated bits have positive weight. This bias can cause an accumulation of 
errors for computations that involve summing many truncated numbers (which may occur in scien-
tific and signal processing applications). In the sign–magnitude number system, truncated numbers are 
unchanged or shifted toward zero, so that if approximately half of the numbers are positive and half are 
negative, the errors will tend to cancel.

20.3  Fixed-Point Arithmetic Algorithms

This section presents an assortment of typical fixed point algorithms for addition, subtraction, multi-
plication, and division.

20.3.1  Fixed-Point Addition

Addition is performed by summing the corresponding bits of the two n-bit numbers, including the sign 
bit. Subtraction is performed by summing the corresponding bits of the minuend and the two’s comple-
ment of the subtrahend. Overflow is detected in a two’s complement adder by comparing the carry 
signals into and out of the most significant adder stage (i.e., the stage that computes the sign bit). If the 
carries differ, an overflow has occurred and the result is invalid.

20.3.1.1  Full Adder

The full adder is the fundamental building block of most arithmetic circuits. Its operation is defined by 
the truth table shown in Table 20.2. The sum and carry outputs are described by the following equations:

	 s c a b c a b c a b c a b c a b ck k k k k k k k k k k k k k k k k= = + + + = ⊕ ⊕+1 	 (20.3)

	 c a b c a b c a b c a b c a b a c b ck k k k k k k k k k k k k k k k k k k+ = + + + = + +1 	 (20.4)

where
ak, bk, and ck are the inputs to the kth full adder stage
sk and ck+1 are the sum and carry outputs, respectively
⊕ is the exclusive-OR logic operation

In evaluating the relative complexity of implementations, it is often convenient to assume a nine gate 
realization of the full adder, as shown in Figure 20.2. For this implementation, the delay from either ak 
or bk to sk is six gate delays and the delay from ck to ck+1 is two gate delays. Some technologies, such as 

TABLE 20.2  Full Adder Truth Table

Inputs Outputs

ak bk ck ck + 1 sk

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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CMOS, form inverting gates (e.g., NAND and NOR gates) more efficiently than the noninverting gates 
that are assumed in this chapter. Circuits with equivalent speed and complexity can be constructed with 
inverting gates.

20.3.1.2 R ipple Carry Adder

A ripple carry adder for n-bit numbers can be implemented by concatenating n full adders, as shown 
in Figure 20.3. At the kth bit position, bits ak and bk of operands A and B and the carry signal from the 
preceding adder stage, ck, are used to generate the kth bit of the sum, sk, and the carry to the next stage, ck+1. 
This is called a ripple carry adder, since the carry signals “ripple” from the lsb position to the most 
significant. If the ripple carry adder is implemented by concatenating n of the nine gate full adders, 
which were shown in Figure 20.2, an n-bit ripple carry adder requires 2n + 4 gate delays to produce the 
most significant sum bit and 2n + 3 gate delays to produce the carry output. A total of 9n logic gates are 
required to implement the n-bit ripple carry adder.

In comparing the delay and complexity of adders, the delay from data input to most significant sum 
output denoted by DELAY and the gate count denoted by GATES will be used. The DELAY and GATES 
values are subscripted by RCA to indicate that they are for a ripple carry adder. Although these simple 
metrics are suitable for first-order comparisons, more accurate comparisons require more exact model-
ing since the implementations may be effected with transistor networks (as opposed to gates), which will 
have different delay and complexity characteristics:

	 DELAY nRCA = +2 4 	 (20.5)

	 GATES nRCA = 9 	 (20.6)

ck+1 

ak 

bk 

sk 

Half adder
Half adder

ck 

FIGURE 20.2  Nine gate full adder.

an–1 bn–1
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a2

c2 c1

c0b2 a1 b1 a0 b0

Full
adder

Full
adder

Full
adder

Full
adder

sn–1cn s2 s1 s0

FIGURE 20.3  Ripple carry adder.
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20.3.1.3  Carry Lookahead Adder

Another popular adder approach is the carry lookahead adder (MacSorley 1961, Weinberger and Smith 
1958). Here, specialized logic computes the carries in parallel. The carry lookahead adder uses modified 
full adders (MFAs) (modified in the sense that a carry is not formed) for each bit position and lookahead 
modules, which form the carries. The lookahead modules form individual carries and also block gen-
erate and block propagate outputs that indicate that a carry is generated within the module or that an 
incoming carry would propagate across the module, respectively. Rewriting Equation 20.4 with gk = ak bk 
and pk = ak + bk,

	 c g p ck kk k+ = +1 	 (20.7)

This explains the concept of carry generation and carry propagation. At a given stage, a carry is “gener-
ated” if gk is true (i.e., both ak and bk are 1), and a carry is “propagated” from its input to its output if pk 
is true (i.e., either ak or bk is a 1). The nine gate full adder shown in Figure 20.2 has AND and OR gates 
that produce ak and bk with no additional complexity. Because the carry out is produced by the looka-
head logic, the OR gate that produces ck+1 can be eliminated. The result is an eight gate MFA. Extending 
Equation 20.7 to a second stage,

	

c g p c

g p g p c

g p g p p c

k k k k

k k k k k

k k k k k k

+ + + +

+ +

+ + +

= +

= + +

= + +

2 1 1 1

1 1

1 1 1

( )

	 (20.8)

Equation 20.8 results from evaluating Equation 20.7 for the (k + 1)th stage and substituting ck+1 from 
Equation 20.7. Carry ck+2 exits from stage k + 1 if: (1) a carry is generated there or (2) a carry is generated 
in stage k and propagates across stage k + 1 or (3) a carry enters stage k and propagates across both stages 
k and k + 1, etc. Extending to a third stage:
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k k k k
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++ + + + + ++ +2 1 2 1 2 1g p p g p p p ck k k k k k k k 	 (20.9)

Although it would be possible to continue this process indefinitely, each additional stage increases the 
size (i.e., the number of inputs) of the logic gates. Four inputs (as required to implement Equation 20.9) 
are frequently the maximum number of inputs per gate for current technologies. To continue the pro-
cess, block generate and block propagate signals (gk+3:k and pk+3:k), respectively, are defined over 4-bit 
blocks (stages k to k + 3):

	 g g p g p p g p p p gk k k k k k k k k k k k+ + + + + + + + + += + + +3 3 3 2 3 2 1 3 2 1:      	 (20.10)

and

	 p p p p pk k k k k k+ + + +=3 3 2 1:   	 (20.11)

Equation 20.7 can be expressed in terms of the 4-bit block generate and propagate signals:

	 c g p ck k k k k k+ + += +4 3 3: : 	 (20.12)
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Thus, the carry out from a 4-bit-wide block can be computed in only four gate delays (the first to com-
pute pi and gi for i = k through k + 3, the second to evaluate pk+3:k, the second and third to evaluate gk+3:k, 
and the third and fourth to evaluate ck+4 using Equation 20.12).

An n-bit carry lookahead adder implemented with r-bit blocks requires ⌈(n − 1)/(r − 1)⌉ lookahead 
logic blocks. A 4 bit lookahead logic block is a direct implementation of Equations 20.7 through 20.11, 
requiring 14 logic gates. In general, an r-bit lookahead logic block requires 1/2 (3r + r2) logic gates. The 
Manchester carry chain (Kilburn et al. 1960) is an alternative switch-based technique for the implemen-
tation of a lookahead logic block.

Figure 20.4 shows the interconnection of 16 MFAs and five 4 bit lookahead logic blocks to realize a 
16 bit carry lookahead adder. The sequence of events that occur during an add operation is as follows: 
(1)  apply A, B, and carry in signals; (2) each adder computes P and G; (3) first-level lookahead logic 
computes the 4 bit propagate and generate signals; (4) second-level lookahead logic computes c4, c8, and c12; 
(5) first-level lookahead logic computes the individual carries; and (6) each MFA computes the sum out-
puts. This process may be extended to larger adders by subdividing the large adder into 16 bit blocks and 
using additional levels of carry lookahead (e.g., a 64 bit adder requires three levels).

The delay of carry lookahead adders is evaluated by recognizing that an adder with a single level of 
carry lookahead (for 4 bit words if 4 bit blocks are used) has six gate delays and that each additional level 
of lookahead increases the maximum word size by a factor of four and adds four gate delays. More gen-
erally (Waser and Flynn 1982, pp. 83–88), the number of lookahead levels for an n-bit adder is ⌈logrn⌉ 
where r is the maximum number of inputs per gate. Since an r-bit carry lookahead adder has six gate 
delays and there are four additional gate delays per carry lookahead level after the first,

	 DELAY nCLA r= +  2 4 log 	 (20.13)

The complexity of an n-bit carry lookahead adder implemented with r-bit lookahead logic blocks is 
n MFAs (each of which requires eight gates) and ⌈(n − 1)/(r − 1)⌉ lookahead logic blocks (each of which 
requires 1/2 (3r + r2) gates). In addition, two gates are used to calculate the carry out from the adder, cn, 
from pn−1:0 and gn−1:0:

	
GATES n r r

n

r
CLA = + + −

−






8
1

2
3

1

1
2( ) 	 (20.14)

For the common case of r = 4,

	 GATES nCLA ≈ −12 42
3

2
3 	 (20.15)

The carry lookahead approach reduces the delay of adders from increasing in proportion to the word size 
(as is the case for ripple carry adders) to increasing in proportion to the logarithm of the word size. As 
with ripple carry adders, the carry lookahead adder complexity grows linearly with the word size (for r = 4, 
the complexity of a carry lookahead adder is about 40% greater than the complexity of a ripple carry 
adder). It is important to realize that most carry lookahead adders require gates with up to 4 inputs, 
while ripple carry adders use only inverters and 2 input gates.

20.3.1.4  Carry Skip Adder

The carry skip adder (Lehman and Burla 1961) divides the words to be added into blocks (like the carry 
lookahead adder). The basic structure of a 16 bit carry skip adder implemented with five 3 bit blocks and 
one 1-bit-wide block is shown in Figure 20.5. Within each block, a ripple carry adder is used to produce 
the sum bits and the carry (which is used as a block generate). In addition, an AND gate is used to form the 
block propagate signal. These signals are combined using Equation 20.12 to produce a fast carry signal.
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For example, with k = 4, Equation 20.12 yields c8 = g7:4 + p7:4 c4. The carry out of the second ripple carry 
adder is a block generate signal if it is evaluated when carries generated by the data inputs (i.e., a7:4 and 
b7:4 in Figure 20.5) are valid, but before the carry that results from c4. Normally, these two types of car-
ries coincide in time, but in the carry skip adder, the c4 signal is produced by a 4 bit ripple carry adder, 
so the carry output is a block generate from 11 gate delays after application of A and B until it becomes 
c8 at 19 gate delays after the application of A and B.

In the carry skip adder, the first and last blocks are simple ripple carry adders, whereas the ⌈n/k⌉ − 2 
intermediate blocks are ripple carry adders augmented with three gates. The delay of a carry skip 
adder is the sum of 2k + 3 gate delays to produce the carry in the first block, two gate delays through 
each of the intermediate blocks, and 2k + 1 gate delays to produce the most significant sum bit in the 
last block.

To simplify the analysis, the ceiling function in the count of intermediate blocks is ignored. If the 
block width is k,

	 DELAY k kSKIP
n
k= + + −( ) + +2 3 2 2 2 1

	 DELAY kSKIP
n
k= +4 2 	 (20.16)

where DELAYSKIP is the total delay of the carry skip adder with a single level of k-bit-wide blocks. The 
optimum block size is determined by taking the derivative of DELAYSKIP with respect to k, setting it to 
zero, and solving for k. The resulting optimum values for k and DELAYSKIP are

	
k

n=
2

	 (20.17)

	 DELAY nSKIP = 4 2 	 (20.18)

Better results can be obtained by varying the block width so that the first and last blocks are smaller, 
while the intermediate blocks are larger, and also by using multiple levels of carry skip (Chen and Schlag 
1990, Turrini 1989).

The complexity of the carry skip adder is only slightly greater than that of a ripple carry adder because 
the first and last blocks are standard ripple carry adders, while the intermediate blocks are ripple carry 
adders with three gates added for carry skipping.

	
GATES nSKIP

n
k= +   −( )9 3 2 	 (20.19)

20.3.1.5  Carry Select Adder

The carry select adder (Bedrij 1962) divides the words to be added into blocks and forms two sums for 
each block in parallel (one with a carry in of 0 and the other with a carry in of 1). As shown for a 16-bit 
carry select adder in Figure 20.6, the carry out from the previous block controls a multiplexer (MUX) 
that selects the appropriate sum. The carry out is computed using Equation 20.12, because the group 
propagate signal is the carry out of an adder with a carry input of 1 and the group generate signal is the 
carry out of an adder with a carry input of 0.

If a constant block width of k is used, there will be ⌈n/k⌉ blocks, and the delay to generate the sum 
is 2k + 3 gate delays to form the carry out of the first block, two gate delays for each of the ⌈n/k⌉ − 2 
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intermediate blocks, and three gate delays (for the MUX) in the final block. To simplify the analysis, the 
ceiling function in the count of intermediate blocks is ignored. The total delay is thus

	
DELAY k

n

k
C SEL– = + +8

2
2 	 (20.20)

where DELAYC–SEL is the total delay. The optimum block size is determined by taking the derivative of 
DELAYC–SEL with respect to k, setting it to zero, and solving for k. The result is

	 k n= 	 (20.21)

	 DELAY nC SEL– = +2 4 	 (20.22)

As for the carry skip adder, better results can be obtained by varying the width of the blocks. In this 
case, the optimum is to make the two least significant blocks the same size and each successively more 
significant block 1 bit larger. In this configuration, the delay for each block’s most significant sum bit 
will equal the delay to the MUX control signal (Goldberg 1990, p. A-38).

The complexity of the carry select adder is 2n − k ripple carry adder stages, the intermediate carry 
logic and (⌈n/k⌉ − 1)k-bit-wide 2:1 MUXs:

	
GATES n k n kC SEL

n
k

n
k− = − +   −( ) + − +   −9 2 2 2 3 1( ) ( )

	 GATES n kC SEL
n
k− = − +   −21 12 3 5 	 (20.23)

This is slightly more than twice the complexity of a ripple carry adder of the same size.

20.3.1.6  Conditional-Sum Adder

The conditional-sum adder (Sklansky 1960) can be viewed as a carry select adder where each block 
adder is constructed with smaller carry select adders that are constructed with still smaller carry select 
adders until the smallest carry select adders are 1 bit wide.

An example of the operation of an 8-bit conditional-sum adder is shown on Figure 20.7. In step 0, 
the lsb of the sum and c1 is determined with a conventional full adder. In step 1, the conditional sums 
and carries for each remaining bit position are computed assuming a carry into the bit position of 0 

a15:12

4-Bit RCA Cin–0 4-Bit RCA Cin–04-Bit RCA Cin–0

4-Bit RCA Cin–1 4-Bit RCA Cin–1

4-Bit RCA Cin

4-Bit RCA Cin–1

b15:12 a11:8

g11:8

p11:8

b11:8 a7:4 a3:0 b3:0

g7:4

p7:4

b7:4

c12 c8

c4

c0

2:1MUX  2:1MUX  2:1MUX

s7:4 s3:0s15:12 s11:8

FIGURE 20.6  16 Bit carry select adder.
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and assuming a carry into the bit position of 1. In step 2, pairs of conditional sums and carries from 
step 1 are combined to make groups of two adjacent sum bits and a carry out assuming a carry into the 
group of 0 and assuming a carry into the group of 1. This process of combining pairs of conditional-sum 
groups continues until there is only a single group.

As the groups are being computed, the correct least significant conditional group is selected by the 
carry from the previous stage.

Figure 20.8 shows an 8 bit conditional-sum adder. Along the top, there are seven modified half adders 
(MHAs), one at each bit position above the lsb, which has a full adder (FA). Each MHA produces two 
pairs of outputs, the sum, si

0 , and carry, ci+10 , that are the sum and carry that would result if there is a 
carry of 0 into that bit (i.e., the sum and carry conditioned on a carry of 0 into the stage) and the sum, 
si

1, and carry, ci+1
1, that are conditioned on a carry of 1 into the stage. Trees of MUXs are used to select 

the appropriate sum and carry outputs for the adder.
Assuming that the word size, n, is an integer power of 2, the delay of an n-bit conditional-sum adder, 
DELAYCOND, is given by

	 DELAY Delay C n Delay MUXCOND = +    1 2log 	 (20.24)

The delay of the conditional-sum adder grows in proportion to the logarithm of the word size. This is 
attractive if fast (transistor level) MUXs are used. Although gate-level MUX designs have a delay of 3 
from the select input to the output, transistor level designs can be significantly faster.

The complexity of the conditional-sum adder has two components, the MHAs that are propor-
tional to the data word size and the MUXs that are roughly proportional to n log2 n where n is the 
data word size.

20.3.2  Fixed-Point Subtraction

To produce an adder/subtracter, the adder is modified as shown in Figure 20.9 by including Exclusive-OR 
gates to complement operand B when performing subtraction. It forms either A + B or A − B. In the 
case of A + B, the mode selector is set to logic 0, which causes the Exclusive-OR gates to pass operand 
B through unchanged to the adder. The carry into the least significant adder stage is also set to ZERO, 
so standard addition occurs. Subtraction is implemented by setting the mode selector to logic ONE, 

Operand A 1 0 0 1 1 1 1 0
Operand B 0 0 1 1 1 0 0 0

Step 0: Full Adder for LSB 0, 0 = c1, s0

Step 1: For each bit:
Sum (cin = 0) 0, 1 0, 0 0, 1 1, 0 1, 0 0, 1 0, 1 = c2, s1

Sum (cin = 1) 1, 0 0, 1 1, 0 1, 1 1, 1 1, 0 1, 0

Step 2: For pairs of bits:
Sum (cin = 0) 0, 1, 0 1, 0, 0 1, 0, 1 = c4, s3, s2

Sum (cin = 1) 0, 1, 1 1, 0, 1 1, 1, 0

Step 3: For quads:
Sum (cin = 0) 0, 1, 1, 0, 0
Sum (cin = 1) 0, 1  1, 0, 1, = c8, s7, s6, s5, s4

Thus: Cout = 0, Sum = 1, 1, 0, 1, 0, 1, 1, 0

FIGURE 20.7  Conditional-sum addition example.
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which causes the Exclusive-OR gates to complement the bits of B; formation of the two’s complement of 
B is completed by setting the carry into the least significant adder stage to ONE.

20.3.3  Fixed-Point Multiplication

Multiplication is generally implemented by direct logic implementations. Array multipliers have a very 
regular layout but are slower than “fast” multipliers.

20.3.3.1 A rray Multipliers

A direct approach to multiplication involves the combinational generation of all bit products and their 
summation with an array of full adders. The block diagram for an unsigned 8-by-8 array multiplier is 
shown in Figure 20.10. It has an 8-by-8 array of cells (15 G cells, 7 HA cells, and 42 FA cells) in the upper 
portion of the diagram and a 7 bit ripple carry adder (constructed with 1 HA cell and 6 FA cells) along 
the bottom row. The upper portion uses an 8-by-8 array of AND gates to form the bit products (some of 
the AND gates are in the G cells and the remainder are contained within the FA and HA blocks). The 
output of the upper portion of the circuit is a pair of 7 bit words whose sum is the most significant 8 bit 
of the product p8 − p15. The complete product is available after 14 adder delays.

Modification of the array multiplier to multiply two’s complement numbers requires using NAND 
gates instead of AND gates to form the bit products in the most significant row (the b7 row) and column 
(the a7 column) (an AND gate is used for the a7b7 bit product) and also adding two correction terms 
(Parhami 2010, p. 223).

The delay of the array multiplier is evaluated by following the pathways from the inputs to the outputs. 
The longest path starts at the upper-left corner, progresses to the lower-right corner, and then across the 
bottom to the lower-left corner. If it is assumed that the delay from any adder input (for either half or full 
adders) to any adder output is k gate delays, then the total delay of an n-bit by n-bit array multiplier is

	 DELAY k nARRAY MPY = − +( )2 2 1 	 (20.25)

The complexity of the array multiplier is n2 AND gates, n half adders, and n2 − 2n full adders. If a half 
adder comprises four gates and a full adder comprises nine gates, the total complexity of an n-bit by 
n-bit array multiplier is

	 GATES n nARRAY MPY = −10 142 	 (20.26)

Array multipliers are easily laid out in a cellular fashion, making them suitable for very large scale inte-
grated (VLSI) circuit implementation, where minimizing the design effort may be more important than 
maximizing the speed.

an–1 bn–1 a2 b2 a1 b1 a0 b0

n-bit adder

Mode 1 = subtract
0 = add

c0

sn–1 s2 s1 s0cn

FIGURE 20.9  Adder/subtracter.
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20.3.3.2  Wallace/Dadda Fast Multiplier

A method for fast multiplication was developed by Wallace (1964) and refined by Dadda (1965). With this 
method, a three-step process is used to multiply two numbers: (1) the bit products are formed, (2) the bit 
product matrix is reduced to a two-row matrix in which the sum of the rows equals the sum of the bit prod-
ucts, and (3) the two numbers are summed using a fast adder to produce the product. Although this may 
seem to be a complex process, it yields multipliers with delay proportional to the logarithm of the operand 
word size, which is faster than array multipliers that have delay that is proportional to the word size.

The second step in the fast multiplication process is shown for an unsigned 8-by-8 Dadda multiplier 
in Figure 20.11. An input 8-by-8 matrix of dots (each dot represents a bit product) is shown as Matrix 0. 

G
b0
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FIGURE 20.10  Unsigned 8 bit by 8 bit array multiplier.
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Columns having more than six dots (or that will grow to more than six dots due to carries) are reduced 
by the use of half adders (each half adder takes in two dots from a given column and outputs one dot 
in the same column and one dot in the next more significant column) and full adders (each full adder 
takes in three dots from a given column and outputs one in the same column and one in the next more 
significant column) so that no column in Matrix 1 will have more than six dots. Half-adders are shown 
by two dots connected with a crossed line in the succeeding matrix and full adders are shown by two 
dots connected with a line in the succeeding matrix. In each case, the rightmost dot of the pair con-
nected by a line is in the column from which the inputs were taken for the adder. In the succeeding steps, 
reduction to Matrix 2 with no more than four dots per column, Matrix 3 with no more than three dots 
per column, and finally Matrix 4 with no more than two dots per column is performed. The height of 
the matrices is determined by working back from the final (two-row) matrix and limiting the height of 
each matrix to the largest integer that is no more than 1.5 times the height of its successor (i.e., 2, 3, 4, 
6, 9, 13, 19, 28, 42, etc.). Each matrix is produced from its predecessor in one adder delay. Because the 
number of matrices is logarithmically related to the number of bits in the words to be multiplied, the 
delay of the matrix reduction process is proportional to log n. Because the adder that reduces the final 
two-row matrix can be implemented as a carry lookahead adder (which also has logarithmic delay), the 
total delay for this multiplier is proportional to the logarithm of the word size.

3 full adders

3 half adders

12 full adders

2 half adders

9 full adders

1 half adder

11 full adders

1 half adder

Matrix 0

Matrix 1

Matrix 2

Matrix 3

Matrix 4

Total: 35 full adders and 7 half adders

FIGURE 20.11  Unsigned 8 bit by 8 bit Dadda multiplier.
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The delay of a Dadda multiplier is evaluated by following the pathways from the inputs to the outputs. 
The longest path starts at the center column of bit products (which require one gate delay to be formed) 
and progresses through the successive reduction matrices (which requires approximately log1.44 (n) − 2 
full adder delays) and finally through the 2n − 2-bit carry propagate adder. If the delay from any adder 
input (for either half or full adders) to any adder output is k gate delays and if the carry propagate adder 
is realized with a carry lookahead adder implemented with 4-bit lookahead logic blocks (with delay 
given by Equation 20.13), the total delay (in gate delays) of an n-bit by n-bit Dadda multiplier is

	 DELAY k n nDADDA MPY r= + − + + − 1 2 2 4 2 21 44(log ( ) ) log ( ). 	 (20.27)

The complexity of a Dadda multiplier is determined by evaluating the complexity of its parts. There are 
n2 gates (2n − 2 are NAND gates, the rest are AND gates) to form the bit product matrix, (n − 2)2 full 
adders, n − 1 half adders, and a 2n − 2 bit carry propagate adder for the addition of the final two-row 
matrix. If the carry propagate adder is realized with a carry lookahead adder (implemented with 4 bit 
lookahead logic blocks) and if the complexity of a full adder is nine gates and the complexity of a half 
adder (either regular or special) is four gates, then the total complexity is

	
GATES n nDADDA MPY 

21 6 26= − −0
2

3
	 (20.28)

The Wallace multiplier is very similar to the Dadda multiplier, except that it does more reduction in the 
first stages of the reduction process, it uses more half adders, and it uses a slightly smaller carry propagat-
ing adder. A dot diagram for an unsigned 8 bit by 8 bit Wallace multiplier is shown on Figure 20.12. This 
reduction (which like the Dadda reduction requires four full adder delays) is followed by an 8-bit carry 
propagating adder. The total complexity of the Wallace multiplier is slightly greater than the total complex-
ity of the Dadda multiplier. In most cases the Wallace and Dadda multipliers have the same delay.

20.3.4  Fixed-Point Division

There are two types of division algorithms in common use: digit recurrence and convergence meth-
ods. The digit recurrence approach computes the quotient on a digit-by-digit basis; hence, they have a 
delay proportional to the precision of the quotient. In contrast, the convergence methods compute an 
approximation that converges to the value of the quotient. For the common algorithms, the convergence 
is quadratic, meaning that the number of accurate bits approximately doubles on each iteration.

The digit recurrence methods that use a sequence of shift, add, or subtract and compare operations are 
relatively simple to implement. On the other hand, the convergence methods use multiplication on each 
cycle. This means higher hardware complexity, but if a fast multiplier is available, potentially higher speed.

20.3.4.1  Digit Recurrent Division

The digit recurrent algorithms (Robertson 1958) based on selecting digits of the quotient Q (where Q = N/D) 
to satisfy the following equation:

	 P r P q D k nk k n k+1  for = = −− …− −1 1 2 1, , , 	 (20.29)

where
Pk is the partial remainder after the selection of the kth quotient digit
P0 = N (subject to the constraint |P0| < |D|)
r is the radix
qn−k−1 is the kth quotient digit to the right of the binary point
D is the divisor
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In this subsection, it is assumed that both N and D are positive; see Ercegovac and Lang (1994) for details 
on handling the general case.

20.3.4.2  Binary SRT Divider

The binary SRT division process (also known as radix-2 SRT division) selects the quotient from three 
candidate quotient digits {±1, 0}. The divisor is restricted to 0.5 ≤ D < 1. A flowchart of the basic binary 
SRT scheme is shown in Figure 20.13. Block 1 initializes the algorithm. In steps 3 and 5, 2Pk is used to 
select the quotient digit. In steps 4 and 6, Pk+1 = 2Pk–q D. Step 8 tests whether all bits of the quotient have 
been formed and goes to step 2 if more need to be computed. Each pass through steps 2–8 forms one 
digit of the quotient. The result upon exiting from step 8 is a collection of n signed binary digits.

Step 9 converts the n digit signed digit number into an n-bit two’s complement number by subtracting 
N, which has a 1 for each bit position where qi = −1 and 0 elsewhere, from P, which has a 1 for each bit 
position where qi = 1 and 0 elsewhere. For example,

	 Q = 0 .1 1 − 1 0 1 = 21/32

	 P = 0 .1 1 0 0 1

12 full adders
4 half adders

13 full adders
3 half adders

6 full adders
4 half adders

7 full adders
4 half adders

Matrix 0

Matrix 1

Matrix 2

Matrix 3

Matrix 4

Total: 38 full adders and 15 half adders

FIGURE 20.12  Unsigned 8 bit by 8 bit Wallace multiplier.
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	 N = 0.0 0 1 0 0

	 Q = 0.1 1 0 0 1 − 0.0 0 1 0 0

	 Q = 0.1 1 0 0 1 + 1.1 1 1 0 0

	 Q = 0.1 0 1 0 1 = 21/32

The selection of the quotient digit can be visualized with a P-D plot such as the one shown in 
Figure 20.14. The plot shows the divisor along the x-axis and the shifted partial remainder (in this 

1. P0 = N
   k= –1

GE

LT

LT

LE GT

2. k = k+1

4. q n–k–1 = 1
  P k+1 = 2 P k– D

6. q n–k–1 = – 1
 P k+1 = 2 P k+ D

7. q n–k–1 = 0
 P k+1 = 2 P k

3. Pk : . 5

5. Pk : – . 5

8. k : n – 1

9. Form P and N
Q = P – N

Q = N/D

FIGURE 20.13  Flowchart of binary SRT division.
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case 2Pk) along the y-axis. In the area where 0.5 ≤ D < 1, values of the quotient digit are shown as 
a function of the value of the shifted partial remainder. In this case, the relations are especially 
simple. The digit selection and resulting partial remainder are given for the kth iteration by the fol-
lowing relations:

	 If 0.5, and 2P q P P Dk n k k k≥ = = −+− −1 11 	 (20.30)

	 If , and 2− < < = =+0 5 0 5 01 1. .P q P Pk n k k k− − 	 (20.31)

	 If 0.5, and 2P q P P Dk n k k k≤ = = ++− −− −1 11 	 (20.32)

Computing an n-bit quotient will involve selecting n quotient digits and up to n + 1 additions.

20.3.4.3 R adix-4 SRT Divider

The higher radix SRT division process is similar to the binary SRT algorithm. Radix 4 is the most com-
mon higher radix SRT division algorithm with either a minimally redundant digit set of {±2, ±1, 0} or 
the maximally redundant digit set of {±3, ±2, ±1, 0}. The operation of the algorithm is similar to the 
binary SRT algorithm shown on Figure 20.13, except that in steps 3 and 5, 4Pk and D are used to deter-
mine the quotient digit. A P-D Plot is shown on Figure 20.15 for the maximum redundancy version of 
radix-4 SRT division. There are seven possible values for the quotient digit at each stage. The test for 
completion in step 8 becomes k: n/2 − 1. Also, the conversion to two’s complement in step 9 is modified 
slightly since each quotient digit occupies two bits of the P and N numbers that are used to form the 
two’s complement number.

20.3.4.4  Newton–Raphson Divider

The second category of division techniques uses a multiplication-based iteration to compute a quadrati-
cally convergent approximation to the quotient. In systems that include a fast multiplier, this process may 
be faster than the digit recurrent methods (Ferrari 1967). One popular approach is the Newton–Raphson 
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FIGURE 20.14  P-D Plot for binary SRT division.
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algorithm that computes an approximation to the reciprocal of the divisor that is then multiplied by the 
dividend to produce the quotient. The process to compute Q = N/D consists of three steps:

	 1.	 Calculate a starting estimate of the reciprocal of the divisor, R(0). If the divisor, D, is normalized 
(i.e., 1/2 ≤ D < 1), then R(0) = 3 − 2D exactly computes 1/D at D = .5 and D = 1 and exhibits maxi-
mum error (of approximately 0.17) at D = 1 2/ . Adjusting R(0) downward to by half the maximum 
error gives

	 R D( )0 = 2.915 2− 	 (20.33)

This produces an initial estimate, that is, within about 0.087 of the correct value for all points in 
the interval 1/2 ≤ D < 1.
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	 2.	 Compute successively more accurate estimates of the reciprocal by the following iterative 
procedure:

	 R R DR i ki i i( ) ( ) ( )) , , ,+ = − =1 2 0 1 (  for … 	 (20.34)

	 3.	 Compute the quotient by multiplying the dividend times the reciprocal of the divisor:

	 Q NR k= ( ) 	 (20.35)

where
k is the iteration count
N is the numerator

Figure 20.16 illustrates the operation of the Newton–Raphson algorithm. For this example, three itera-
tions (involving a total of four subtractions, and seven multiplications) produce an answer accurate to 
nine decimal digits (approximately 30 bits).

With this algorithm, the error decreases quadratically, so that the number of correct bits in each 
approximation is roughly twice the number of correct bits on the previous iteration. Thus, from the 3 1

2  bit 
initial approximation of Equation 20.33, two iterations produce a reciprocal estimate accurate to 14 bits, 
four iterations produce a reciprocal estimate accurate to 56 bits, etc.

The efficiency of this process is dependent on the availability of a fast multiplier, since each iteration 
of Equation 20.34 requires two multiplications and a subtraction. The complete process for the initial 

N = .625
D = .75

STEP 1
R(0) = 2.915 − 2 · B 1 Subtract

= 2.915 − 2 · .75
R(0) = 1.415

STEP 2
R(1) = R(0) (2 − B · R(0)) 2 Multiplies, 1 Subtract

= 1.415 (2 − .75 · 1.415)
= 1.415 · .95875

R(1) = 1.32833125

R(2) = R(1) (2 − B · R(1)) 2 Multiplies, 1 Subtract
= 1.32833125 (2 − .75 · 1.32833125)
= 1.32833125 · 1.00375156

R(2) = 1.3333145677

R(3) = R(2) (2 − B · R(2)) 2 Multiplies, 1 Subtract
= 1.3333145677 (2 − .75 · 1.3333145677)
= 1.3333145677 · 1.00001407

R(3) = 1.3333333331

STEP 3
Q = N · R(3) 1 Multiply
Q = .83333333319

FIGURE 20.16  Example of Newton–Raphson division.
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estimate, three iterations, and the final quotient determination requires four subtraction operations 
and seven multiplication operations to produce a 16 bit quotient. This is faster than a conventional 
nonrestoring divider if multiplication is roughly as fast as addition, a condition that is satisfied for some 
systems that include a hardware multiplier.

20.3.4.5  Goldschmidt Divider

The Goldschmidt divider (Anderson et al. 1967) is another division algorithm that forms a quadratically 
convergent approximation to the quotient. It treats the division problem as a fraction whose numerator 
and denominator are multiplied by a succession of numbers so that the final denominator is approxi-
mately 1 and the final numerator is approximately equal to the quotient.

The steps to compute a quotient using the Goldschmidt method are as follows:

	 1.	 Scale the numerator, N0, and the denominator, D0, so that the value of the denominator is “close” 
to 1 (e.g., ¾ < D0 < 1¼). Use a table to find a factor, F1, that will make D0*F1 ≈1. Set i = 0.

	 2.	 Multiply Ni and Di by Fi+1 forming Ni+1 and Di+1, respectively.
	 3.	 Increment i. Calculate Fi+1 = 2 − Di.

Repeat steps 2 and 3 until Dn = 1 within the desired precision.
This process is illustrated by the decimal example shown in Figure 20.17.
Like the Newton–Raphson algorithm, the value of Nk quadratically approaches the value of the quo-

tient. If F1 in step 1 results in D1 ≈ 1 within a maximum error, the number of iterations to achieve a 
specific accuracy of the quotient can be predetermined. In the example, D1 is within 2.5% of 1, D2 is 
within 0.06%, etc. Thus, each iteration (which requires 1 subtract and 2 multiplies) doubles the number 
of accurate bits to which Nk approximates the quotient. If the initial accuracy is known, the final multi-
plication that forms Dk is not needed.

20.4  Floating-Point Arithmetic

Recent advances in VLSI have increased the feasibility of hardware implementations of floating-point 
arithmetic units. The main advantage of floating-point arithmetic is that its wide dynamic range virtu-
ally eliminates overflow for most applications.

N0 = N = 0.625

D0 = D = 0.75

F1 = 1.3 1 Table Look Up

N1 = N0 · F1 = 0.625 · 1.3 = 0.8125 1 Multiply
D1 = D0 · F1 = 0.75 · 1.3 = 0.975 1 Multiply

F2 = 2 − D1 = 2 − 0.975 = 1.025 1 Subtract

N2 = N1 · F2 = 0.8125 · 1.025 = 0.8328125 1 Multiply
D2 = D1 · F2 = 0.975 · 1.025 = 0.999375 1 Multiply

F3 = 2 − D2 = 2 − 0.999375 = 1.000625 1 Subtract

N3 = N2 · F3 = 0.8328125 · 1.000625 = 0.83333300781 1 Multiply
D3 = D2 · F3 = 0.999375 · 1.000625 = 0.99999960937 1 Multiply

Q = N3 = 0.83333300781

FIGURE 20.17  Example of Goldschmidt division.
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20.4.1  Floating-Point Number Systems

A floating-point number, A, consists of a significand (or mantissa), Sa, and an exponent, Ea. The value of 
a number, A, is given by the equation

	 A S ra
Ea= 	 (20.36)

where r is the radix (or base) of the number system. The significand is generally normalized by requiring 
that the most significant digit be nonzero. Use of the binary radix (i.e., r = 2) gives maximum accuracy 
but may require more frequent normalization than higher radices.

The IEEE Standard 754 single precision (32-bit) floating-point format, which is widely imple-
mented, has an 8 bit biased integer exponent that ranges between 0 and 255 (IEEE 2008). The exponent 
is expressed in excess 127 code so that its effective value is determined by subtracting 127 from the 
stored value. Thus, the range of effective values of the exponent is −127 to 128, corresponding to stored 
values of 0 to 255, respectively. A stored exponent value of 0 (Emin) serves as a flag indicating that the 
value of the number is 0 if the significand is 0 and for denormalized numbers if the significand is non-
zero. A stored exponent value of 255 (Emax) serves as a flag indicating that the value of the number is 
infinity if the significand is 0 or “not a number” if the significand is nonzero. The significand is a 25 bit 
sign–magnitude mixed number (the binary point is to the right of the most significant bit). The lead-
ing bit of the significand is always a 1 (except for denormalized numbers). As a result, when numbers 
are stored, the leading bit can be omitted, giving an extra bit of precision. More details on floating-
point formats and on the various considerations that arise in the implementation of floating-point 
arithmetic units are given in Gosling (1980), Goldberg (1990), Parhami (2010), Flynn and Oberman 
(2001), and Koren (2002).

20.4.1.1  Floating-Point Addition

A flow chart for the functions required for floating-point addition is shown in Figure 20.18. For this 
flowchart, the operands are assumed to be IEEE Standard 754 single precision numbers that have been 
“unpacked” and normalized with significand magnitudes in the range [1, 2) and exponents in the range 
[−126, 127].

On the flow chart, the operands are (Ea, Sa) and (Eb, Sb), the result is (Es, Ss), and the radix is 2. In step 1, the 
operand exponents are compared; if they are unequal, the significand of the number with the smaller 
exponent is shifted right in step 3 or 4 by the difference in the exponent values to properly align the 
significands. For example, to add the decimal operands 0.867 × 105 and 0.512 × 104, the latter would be 
shifted right by one digit and 0.867 added to 0.0512 to give a sum of 0.9182 × 105. The addition of the sig-
nificands is performed in step 5. Step 6 tests for overflow and step 7 corrects, if necessary, by shifting the 
significand one position to the right and incrementing the exponent. Step 9 tests for a zero significand. 
The loop of steps 10–11 scales unnormalized (but nonzero) significands upward to normalize the result. 
Step 12 tests for underflow.

It is important to recognize that the f lowchart shows the basic functions that are required, but 
not necessarily the best way to perform those functions. For example, the loop in steps 10–11 is 
not a good way to normalize the significand of the sum. It is a serial loop that is executed a vari-
able number of times depending on the data value. A much better way is to determine the number 
of leading zeros in the significand and then use a barrel shifter to do the shift in a single step in 
hardware.

Floating-point subtraction is implemented with a similar algorithm. Many refinements are possible 
to improve the speed of the addition and subtraction algorithms, but floating-point addition and sub-
traction will, in general, be much slower than fixed point addition as a result of the need for operand 
alignment and result normalization and rounding.
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1. Ea = Eb
3. Sa = Sa 2(Ea–Eb)

    Es = Eb
4. Sb = Sb 2(Eb–Ea)

    Es = Ea

7. Ss = Ss /2 
        Es = Es + 1

11. Ss = 2 Ss
       Es = Es – 1

2. Es = Ea
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6. |Ss| : 2

10. |Ss| : 1

12.  Es :–127
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9. Ss : 0

FIGURE 20.18  Floating-point adder.
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20.4.1.2  Floating-Point Multiplication

The algorithm for floating-point multiplication is shown in the flowchart of Figure 20.19. In step 1, the 
product of the operand significands and the sum of the operand exponents are computed. Steps 2 and 3 
normalize the significand if necessary. For radix-2 floating-point numbers, if the operands are normal-
ized, at most a single shift is required to normalize the product. Step 4 tests the exponent for overflow. 
Finally, step 5 tests for underflow.

20.4.1.3  Floating-Point Division

The floating-point division algorithm is shown in the flowchart of Figure 20.20. The quotient of the 
significands and the difference of the exponents are computed in step 1. The quotient is normalized 
(if  necessary) in steps 2 and 3 by shifting the quotient significand, while the quotient exponent is 
adjusted appropriately. For radix-2, if the operands are normalized, only a single shift is required to 
normalize the quotient. The computed exponent is tested for underflow in step 4. Finally, the fifth step 
tests for overflow.

GE

GE

LE

LT

LT

GE

P = AB

Over�ow

Under�ow

3. Sp = Sp/2
       Ep = Ep + 12. |Sp| : 2

4. Ep : 128

5. Ep : – 127

1. Sp = SaSb
       Ep = Ea + Eb

FIGURE 20.19  Floating-point multiplier.



20-27High-Speed Computer Arithmetic

20.4.1.4  Floating-Point Rounding

All floating-point algorithms may require rounding to produce a result in the correct format. A variety 
of alternative rounding schemes have been developed for specific applications. Round to nearest with 
ties to even, round to nearest with ties away from 0, round toward ∞, round toward −∞, and round 
toward 0 are all available in implementations of the IEEE floating-point standard (IEEE 2008).

20.5  Conclusions

This chapter has presented an overview of the two’s complement number system; algorithms for the 
basic integer arithmetic operations of addition, subtraction, multiplication, and division; and a very 
brief discussion of floating-point operations. When implementing arithmetic units, there is often an 
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Under�ow

Over�ow

3. Sq = 2 Sq
        Eq = Eq – 12. |Sq | : 1

4. Eq : – 127

5. Eq : 128

1. Sq = Sa / Sb
     Eq = Ea – Eb

FIGURE 20.20  Floating-point divider.
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opportunity to optimize the performance and the complexity to match the requirements of the specific 
application. In general, faster algorithms require more area or more complex control; it is often useful to 
use the fastest algorithm that will fit the available area.
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21.1  Introduction

The computing literature often draws a sharp distinction between input and output; computer scientists 
are used to regarding a screen as a passive output device and a mouse as a pure input device. However, 
nearly all examples of human–computer interaction (HCI) require both input and output to do anything 
useful. For example, what good would a mouse be without the corresponding feedback embodied by the 
cursor on the screen, as well as the sound and feel of the buttons when they are clicked? The distinc-
tion between output devices and input devices becomes even more blurred in the real world. A sheet of 
paper can be used to both record ideas (input) and display them (output). Clay reacts to the sculptor’s 
fingers yet also provides feedback through the curvature and texture of its surface. Indeed, the complete 
and seamless integration of input and output is becoming a common research theme in advanced com-
puter interfaces such as ubiquitous computing (Weiser, 1991) and tangible interaction (Ishii and Ullmer, 
1997). And of course, with the modern commercial success of mobile touch screen devices such as the 
Apple iPhone and various Android units, people everywhere experience input and output as entirely 
inseparable and collocated concepts, their fingers acting directly on virtual widgets displayed on a 
responsive piece of glass. It is no accident that we should address input and output in the same chapter. 
Further, as the space required for a powerful computer has plummeted, new form factors have emerged. 
In mobile devices, the desire to provide large screens to maximize media consumption experiences has 
marginalized dedicated control surfaces, replacing physical keyboards and pointing devices with ad hoc 
screen-rendered controls manipulated through touch input. Although measurably inferior at nearly all 
input tasks, touch screens have nonetheless emerged as a dominant form of mobile computing.

Although inextricably linked, for the ease of discussion, we consider separately the issues of input 
and output. Input and output bridge the chasm between a computer’s inner world of bits and the real 
world perceptible to the human senses. Input to computers consists of sensed information about the 
physical environment. Familiar examples include the mouse, which senses movement across a surface, 
and the keyboard, which detects a contact closure when the user presses a key. However, any sensed 
information about physical properties of people, places, or things can also serve as input to computer 
systems, for example the location of a user carrying a GPS-enabled mobile phone to inform recommen-
dations for nearby restaurants. Output from computers can comprise any emission or modification to 
the physical environment, such as a display (including the cathode ray tube [CRT], flat-panel displays, 
or even light emitting diodes), speakers, or tactile and force feedback devices (sometimes referred to as 
haptic displays). There have even been olfactory displays such as the Smell Vision machine that debuted 
at the World’s Fair in Stockholm in 1976. Finally, an interaction technique is a fusion of input and out-
put, consisting of all hardware and software elements, that provides a way for the user to accomplish a 
low-level task. For example, in the traditional graphical user interface (GUI), users can scroll through a 
document by clicking or dragging the mouse (input) within a scrollbar displayed on the screen (output).

A fundamental task of HCI is to shuttle information between the brain of the user and the silicon 
world of the computer. Progress in this area attempts to increase the useful bandwidth across that 
interface by seeking faster, more natural, and more convenient means for users to transmit information 
to computers, as well as efficient, salient, and pleasant mechanisms to provide feedback to the user. On 
the user’s side of the communication channel, interaction is constrained by the nature of human atten-
tion, cognition, and perceptual motor skills and abilities; on the computer side, it is constrained only 
by the technologies and methods that we can invent. 

Research in input and output centers around the two ends of this channel: the devices and techniques 
computers can use for communicating with people and the perceptual abilities, processes, and organs 
people can use for communicating with computers. 

It then attempts to find the common ground through which the two can be related by studying new 
modes of communication and expression that could be used for HCI and developing devices and tech-
niques to use such modes. Basic research seeks theories and principles that inform us of the param-
eters of human cognitive and perceptual facilities, as well as models that can predict or interpret user 
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performance in computing tasks (e.g., Wobbrock et al., 2008). Advances can be driven by the need for 
new modalities to support the unique requirements of specific application domains, by technological 
breakthroughs that HCI researchers apply to improving or extending the capabilities of interfaces, 
or by theoretical insights suggested by studies of human abilities and behaviors, or even problems 
uncovered during careful analyses of existing interfaces. These approaches complement one another, 
and all have their value and contributions to the field, but the best research seems to have elements of 
all of these.

21.2  Interaction Tasks, Techniques, and Devices

A designer looks at the interaction tasks necessary for a particular application (Foley et al., 1984). Interaction 
tasks are low-level primitive inputs required from the user, such as entering a text string or choosing a 
command. For each such task, the designer chooses an appropriate interaction technique. In selecting an 
interaction device and technique for each task in a human–computer interface, simply making an optimal 
choice for each task individually may lead to a poor overall design, with too many different or inconsistent 
types of devices or dialogues. Therefore, it is often desirable to compromise on the individual choices to 
reach a better overall design. Design is fundamentally about managing trade-offs in complex solution 
spaces, and it is often said that designs that are best for something are often worst for something else.

There may be several different ways of accomplishing the same task. For example, one could use a 
mouse to select a command by using a pop-up menu, a fixed menu (a palette or command bar), multiple 
clicking, circling the desired command, or even writing the name of the command with the mouse. 
Software might even detect patterns of mouse use in the background, such as repeated “surfing” through 
menus, to automatically suggest commands or help topics (Horvitz et al., 1998). The latter suggests a 
shift from the classical view of interaction as direct manipulation where the user is responsible for all 
actions and decisions to one that uses background sensing techniques to allow technology to support the 
user with semiautomatic or implicit actions and services (Buxton, 1995a).

21.3  Composition of Interaction Tasks

Early efforts in HCI sought to identify elemental tasks that appear repeatedly in human–computer 
dialogues. Foley et al. (1984) proposed that user interface transactions are composed of the following 
elemental tasks:

Selection: Choosing objects from a set of alternatives.
Position: Specifying a position within a range. This includes picking a screen coordinate with a 

pointing device.
Orient: Specifying an angle or 3D orientation.
Path: Specifying a series of positions and/or orientations over time.
Quantify: Specifying an exact numeric value.
Text: Entry of symbolic data.

While these are commonly occurring tasks in many direct-manipulation interfaces, a problem with 
this approach is that the level of analysis at which one specifies “elemental” tasks is not well defined. 
For example, for Position tasks, a screen coordinate could be selected using a pointing device such as 
a mouse, but might be entered as a pair of numeric values (Quantify) using a pair of knobs (like an 
Etch-A-Sketch) where precision is paramount. But if these represent elemental tasks, why do we find that 
we must subdivide Position into a pair of Quantify subtasks for some devices but not for others?

Treating all tasks as hierarchies of subtasks, known as compound tasks, is one way to address this. 
With appropriate design and by using technologies and interaction techniques that parallel the way the 
user thinks about a task as closely as possible, the designer can phrase together a series of elemental tasks 
into a single cognitive chunk. For example, if the user’s task is to draw a rectangle, a device such as an 
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Etch-A-Sketch is easier to use. For drawing a circle, a pen is far easier to use. Hence the choice of device 
influences the level at which the user is required to think about the individual actions that must be per-
formed to achieve a goal. See Buxton (1986) for further discussion of this important concept.

The six elemental tasks previously enumerated may be a complete list of “fundamental” low-level 
tasks that underlie most interaction with computers, but it could be argued that this list is not complete; 
for example, which of these six tasks does a fingerprint scanner support? Perhaps, if used for password 
replacement, it could be viewed as supporting the Text task; alternatively, one might add “Establishment 
of Identity” to the list. This points to a problem with the fundamental task approach. While identifying 
“elemental tasks” can be useful for thinking about interaction techniques in general, a problem with 
viewing tasks as assemblies of elemental tasks is that it typically only considers explicit input in the clas-
sical direct-manipulation paradigm. Where do devices like cameras, microphones, and the fingerprint 
scanner previously discussed fit in? These support higher-level data types and concepts (e.g., images, 
audio, and identity). Advances in technology will continue to yield new “elemental” inputs. However, 
these new technologies also may make increasing demands on systems to move from individual samples 
to synthesis of meaningful structure from the resulting data (Fitzmaurice et al., 1999).

21.4  Properties of Pointing Devices

The breadth of input devices and displays on the market today can be bewildering. It is important to 
understand that, when considering these devices, they are not all created equal. We must remember that 
the traditional mouse-based user interface, the Windows–Icons–Menus–Pointers (WIMP), has as per-
haps its most essential component an abstraction of the logical target of user actions. This abstraction 
has gone by many names. The inventors of the mouse, Engelbart and English, named it the bug and later 
referred to it as the telepointer. In Windows, it is the pointer. In OSX, it is alternately the pointer and the 
cursor. But by whatever name, it remains a focal point for user-generated events in the system. A funny 
thing has happened with the pointer: a kind of abstraction has grown up around it, where a plethora 
of hardware can control it, and it is the movement of the pointer, rather than the hardware, around 
which software designers create their experiences. This has led to widespread misunderstanding that the 
design of the GUI itself is abstract. It’s not. It has been designed over more than 40 years of iteration to 
be highly optimized for a particular piece of hardware.

Thus, when considering input devices, one must be careful to avoid thinking of them in the overly 
simplistic terms of how they will control a cursor. Instead, we consider a number of organizing proper-
ties and principles in order to make sense of the design space and performance issues. First, we consider 
continuous, manually operated pointing devices (as opposed to discrete input mechanisms such as but-
tons or keyboards, or other devices not operated with the hand, which we will discuss briefly later). For 
further insight readers may also wish to consult complete taxonomies of devices (Buxton, 1983; Card 
et al., 1991). As we shall see, however, it is nearly impossible to describe properties of input devices with-
out reference to output—especially the resulting feedback on the screen—since after all input devices are 
only useful insofar as they support interaction techniques that allow the user to accomplish something.

21.4.1  Physical Property Sensed

Traditional pointing devices typically sense position, motion, or force. A tablet senses position, a mouse 
measures motion (i.e., change in position), and an isometric joystick senses force. An isometric joystick 
is a unmoving force sensing joystick such as the IBM TrackPoint (“eraser head”) found on many lap-
tops. For a rotary device, the corresponding properties are angle, change in angle, and torque. Position-
sensing devices are also known as absolute input devices, whereas motion-sensing devices are relative 
input devices. An absolute device can fully support relative motion, since it can calculate changes to 
position, but a relative device cannot fully support absolute positioning and in fact can only emulate 
“position” at all by introducing a cursor on the screen. Note that it is difficult to move the mouse cursor 
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to a particular area of the screen (other than the edges) without looking at the screen, but with a tablet 
one can easily point to a region with the stylus using the kinesthetic sense (Balakrishnan and Hinckley, 
1999), informally known as “muscle memory.”

21.4.2 T ransfer Function

A device, in combination with the host operating system, typically modifies its signals using a math-
ematical transformation that scales the data to provide smooth, efficient, and intuitive operation. 
An appropriate mapping is a transfer function that matches the physical properties sensed by the input 
device. Appropriate mappings include force-to-velocity, position-to-position, and velocity-to-velocity 
functions. For example, an isometric joystick senses force; a nonlinear rate mapping transforms this 
into a velocity of cursor movement (Rutledge and Selker, 1990; Zhai and Milgram, 1993; Zhai et al., 
1997). Ideally, the device should also be self-centering when using a rate mapping, with a spring return 
to the zero input value, so that the user can stop quickly by releasing the device. A common inappropri-
ate mapping is calculating a speed of scrolling based on the position of the mouse cursor, such as extend-
ing a selected region by dragging the mouse close to the edge of the screen. The user has no feedback of 
when or to what extent scrolling will accelerate, and the resulting interaction can be hard to learn how 
to use and difficult to control.

Gain entails a simple multiplicative transfer function known as the device gain, which can also be 
described as a control-to-display (C:D) ratio, the ratio between the movement of the input device and the 
corresponding movement of the object it controls. For example, if a mouse (the control) must be moved 
1 cm on the desk to move a cursor 2 cm on the screen (the display), the device has a 1:2 control-display 
ratio. However, on commercial pointing devices and operating systems, the gain is rarely constant*; an 
acceleration function is often used to modulate the gain depending on velocity. An acceleration function 
is a transfer function that exhibits an exponential relationship between velocity and gain. Experts believe 
the primary benefit of acceleration is to reduce the footprint, or the physical movement space, required 
by an input device (Hinckley et al., 2001; Jellinek and Card, 1990). One must also be very careful when 
studying the possible influence of gain settings on user performance: experts have criticized gain as a 
fundamental concept, since it confounds two separate concepts (device size and display size) in one arbi-
trary metric (Accot and Zhai, 2001). Furthermore, user performance may exhibit speed–accuracy trade-
offs, calling into question the assumption that there exists an “optimal” C:D ratio (MacKenzie, 1995).

21.4.3  Number of Dimensions

Devices can measure one or more linear and angular dimensions. For example, a mouse measures 
two linear dimensions, a knob measures one angular dimension, and a six degree-of-freedom (6 DOF) 
magnetic tracker measures three linear dimensions and three angular (for examples of 6 DOF input 
and design issues, see Green and Liang, 1994; Hinckley et  al., 1994b; Serra et  al., 1997; Ware and 
Jessome, 1988). If the number of dimensions required by the user’s interaction task does not match the 
number of dimensions provided by the input device, then special handling (e.g., interaction techniques 
that may require extra buttons, graphical widgets, and mode switching) will need to be introduced. 
A lack of control degrees-of-freedom is a particular concern for 3D user interfaces and interaction 
(Hinckley et  al., 1994b; Zhai, 1998). Numerous interaction techniques have been proposed to allow 
standard 2D pointing devices to control 3D positioning or orientation tasks (e.g., Bukowski and Sequin, 
1995; Chen et al., 1988; Conner et al., 1992). Well-designed interaction techniques using specialized 
multiple degree-of-freedom input devices can sometimes offer superior performance (Hinckley et al., 
1997; Ware and Rose, 1999), but may be ineffective for standard desktop tasks, so overall performance 
must be considered (Balakrishnan et al., 1997; Hinckley et al., 1999).

*	 Direct input devices (see next page) are an exception, since the C:D ratio is typically fixed at 1:1 (but see also Sears and 
Shneiderman, 1991 and Forlines et al., 2006).
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21.4.4  Pointing Speed, Accuracy, and Throughput

The standard way to characterize pointing device performance employs Fitts’ law paradigm (Fitts, 1954; 
Soukoreff and MacKenzie, 2004; Wobbrock et al., 2011). Fitts’ law relates the movement time to point at 
a target, the amplitude of the movement (the distance to the target), and the width of the target (i.e., the 
precision requirement of the pointing movement). The movement time is proportional to the logarithm of 
the distance divided by the target width, with constant terms that vary from one device to another. While 
not emphasized in this chapter, Fitts’ law is the single most important quantitative analysis, testing, and 
prediction tool available to input research and device evaluation. For an excellent overview of its applica-
tion to the problems of HCI, including use of Fitts’ law to characterize throughput (a composite measure 
of both speed and accuracy often informally called bandwidth), see MacKenzie (1992). For discussion of 
other accuracy metrics, see MacKenzie et al. (2001). Recently Fitts’ law testing paradigm has been proposed 
as an international standard for evaluating pointing devices (Douglas et al., 1999; Keates et al., 2002).

Recent years have seen a number of new insights and new applications for Fitts’ law (Guiard, 2009). 
Fitts’ law was originally conceived in the context of rapid, aimed movements, but Fitts’ law can also be 
applied to tasks such as scrolling (Hinckley et al., 2001), multi-scale navigation (Guiard et al., 2001), 
crossing boundaries (Accot and Zhai, 2002) and predicting pointing error rates instead of movement 
time (Wobbrock et al., 2008, 2011). Researchers have also recently applied Fitts’ law to expanding tar-
gets that double in width as the user approaches them. Even if the expansion begins after the user has 
already covered 90% of the distance from a starting point, the expanding target can be selected as easily 
as if it had been fully expanded since the movement began (McGuffin and Balakrishnan, 2002); see also 
Zhai et al. (2003). However, it remains unclear if this can be successfully applied to improve pointing 
performance for multiple targets that are closely packed together (as typically found in menus and tool 
palettes). For tasks that exhibit continuous speed–accuracy requirements, such as moving through a 
hierarchical menu, Fitts’ law cannot be applied, but researchers have recently formulated the steering 
law, which does addresses such tasks. In fact, the steering law was independently discovered outside the 
computing fields twice before (Accot and Zhai, 1997, 1999, 2001).

21.4.5  Input Device States

To select a single point or region with an input device, users need a way to signal when they are select-
ing something versus when they are just moving over something to reach a desired target. The need for 
this fundamental signal of intention is often forgotten by researchers eager to explore new interaction 
modalities such as empty-handed pointing (e.g., using camera tracking or noncontact proximity sensing 
of hand position). The three-state model of input (Buxton, 1990b) generalizes the states sensed by input 
devices as tracking, which causes the cursor to move; dragging, which allows selection of objects by click-
ing (as well as moving objects by clicking and dragging them); and out of range, which occurs when the 
device moves out of its physical tracking range (e.g., a mouse is lifted from the desk, or a stylus is removed 
from a tablet). Most pointing devices sense only two of these three states: for example, a mouse senses 
tracking and dragging, but a touchpad senses tracking and the out-of-range state. Hence, to fully simu-
late the functionality offered by mice, touchpads need special procedures, such as tapping to click, which 
are prone to inadvertent activation (e.g., touching the pad by accident causes a click [MacKenzie and 
Oniszczak, 1998]). For further discussion and examples, see Buxton (1990b) and Hinckley et al. (1998a).

21.4.6  Direct versus Indirect Control

A mouse is an indirect input device (one must move the mouse to point to a spot on the screen); a touch 
screen is a direct input device (the display surface is also the input surface). Direct devices raise several 
unique issues. Designers must consider the possibility of parallax error resulting from a gap between the 
input and display surfaces, reduced transmissivity of the screen introduced by a sensing layer, or occlusion 
of the display by the user’s hands. Another issue is that touch screens can support a cursor tracking state, 
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or a dragging state, but not both; typically, touch screens move directly from the out-of-range state to the 
dragging state when the user touches the screen, with no intermediate cursor feedback (Buxton, 1990b). 
Techniques for touch-screen cursor feedback have been proposed, but typically require that selection 
occurs on lift-off (Potter et al., 1988; Sears and Shneiderman, 1991; Sears et al., 1992). See Section 21.5.4.

21.4.7  Device Acquisition Time

The average time to pick up or put down an input device is known as acquisition time (or sometimes 
homing time). It is often assumed to be a significant factor for user performance, but Fitts’ law through-
put of a device tends to dominate human performance time unless switching occurs frequently (Douglas 
and Mithal, 1994). However, one exception is stylus or pen-based input devices; pens are generally com-
parable to mice in general pointing performance (Accot and Zhai, 1999), or even superior for some high-
precision tasks (Guiard et al., 2001), but these benefits can easily be negated by the much greater time it 
takes to switch between using a pen and using a keyboard.

21.4.8  Modeling of Repetitive Tasks

The keystroke-level model (KLM) is commonly used to model expert user performance in repetitive 
tasks such as text editing. The KLM includes standard operators that represent average times required 
for pointing with an input device, pressing a button, pauses for decision making, and device acquisition 
time, but the model does not account for errors or nonexpert behaviors such as problem solving (Card 
et al., 1980). Good examples of research that apply the KLM include Wang et al. (2001) and MacKenzie 
and Soukoreff (2002). Another approach called GOMS modeling is an extension of the KLM that can 
handle more complex cases (Olson and Olson, 1990), but many practitioners still use the KLM to evalu-
ate input devices and low-level interaction techniques because of KLM’s greater simplicity.

21.4.9  Hardware Criteria

Various other characteristics can distinguish input devices, but are perhaps less important in distin-
guishing the fundamental types of interaction techniques that can be supported. Engineering parame-
ters of a device’s performance such as sampling rate, resolution, accuracy, and linearity can all influence 
performance. Latency is the end-to-end delay between the user’s physical movement, sensing this and 
providing the ultimate system feedback to the user. Latency can be a devious problem as it is impos-
sible to completely eliminate from system performance; latency of more than 75–100 ms significantly 
impairs user performance for many interactive tasks (MacKenzie and Ware, 1993; Robertson et al., 
1989). For vibrotactile or haptic feedback, users may be sensitive to much smaller latencies of just a few 
milliseconds (Cholewiak and Collins, 1991). The effects of latency can also be magnified in particular 
interaction techniques; for example, when dragging on a touch screen, users notice latency as a sepa-
ration between their finger and the dragged object, even for extremely low latencies (Ng et al., 2012).

21.5  Discussion of Common Pointing Devices

Here, we briefly describe commonly available pointing devices and some issues that can arise with them 
in light of the properties previously discussed.

21.5.1  Mouse

A mouse senses movement relative to a flat surface. Mice exhibit several properties that are well suited 
to the demands of desktop graphical interfaces (Balakrishnan et al., 1997). The mouse is stable and does 
not fall over when released (unlike a stylus on a tablet). A mouse can also provide integrated buttons 
for selection, and since the force required to activate a mouse’s buttons is orthogonal to the plane of 
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movement, it helps minimize accidental clicking or interference with motion. Another subtle benefit is 
the possibility for users to employ a combination of finger, hand, wrist, arm, and even shoulder muscles 
to span the range of tasks from short precise selections to large, ballistic movements (Balakrishnan and 
MacKenzie, 1997; Zhai et al., 1996). Finally, Fitts’ law studies show that users can point with the mouse 
about as well as with the hand itself (Card et al., 1978).

21.5.2 T rackball

A trackball is like a roller-ball mouse that has been turned upside down, with a mechanical ball that 
rolls in place. Trackballs, like mice, are indirect relative pointing devices. The main advantage of 
trackballs is that they can be used on an inclined surface and they often require a smaller physical 
footprint than mice. They also employ different muscle groups, which some users find more com-
fortable, especially users with motor impairments caused by, e.g., spinal cord injuries (Fuhrer and 
Fridie, 2001; Sperling and Tullis, 1988; Wobbrock and Myers, 2006). However, rolling the trackball 
while holding down any of its buttons requires significant dexterity, especially when trying to do so 
with only one hand. Therefore, tasks requiring moving the trackball with a button held down, for 
example, dragging an icon across the desktop, can be awkward or even impossible for some users 
(MacKenzie et al., 1991).

21.5.3 T ablets

Touch-sensitive tablets (that are not also touch screens) are indirect pointing devices and may be used in 
either absolute or relative pointing modes. In absolute mode, each position on the tablet maps directly 
to a corresponding position on the screen (e.g., the top-right corner). In relative mode, movements on 
the tablet move a cursor on the screen according to a transfer function, as with a mouse. Most tablets 
sense the absolute position of a mechanical intermediary such as a stylus or puck on the tablet surface. 
A puck is a mouse that is used on a tablet; the only difference is that it senses absolute position and it 
cannot be used on a surface other than the tablet. Absolute mode is generally preferable for tasks such 
as tracing, digitizing, drawing, freehand inking, and signature capture. Tablets that sense contact of the 
bare finger are known as touch tablets (Buxton et al., 1985); touchpads are miniature touch tablets, as 
commonly found on portable computers (MacKenzie and Oniszczak, 1998). A touch screen is a touch-
sensitive tablet collocated with an information display, but demands different handling than a tablet (see 
Section 21.4.6).

21.5.4  Pen Input

Pen-based input for mobile devices is an area of increasing practical concern. Pens effectively support 
activities such as inking, marking, and gestural input (see Section 21.8.2), but raise a number of prob-
lems when supporting graphical interfaces originally designed for mouse input. Pen input raises the 
concerns of direct input devices as previously described. There is no way to see exactly what position 
will be selected before selecting it: pen contact with the screen directly enters the dragging state of the 
three-state model (Buxton, 1990b). There is no true equivalent of a “hover” state for tool tips* nor an 
extra button for context menus. Pen dwell time on a target can be used to provide one of these two 
functions. When detecting a double-tap, one must allow for longer interval between the taps (as com-
pared to double-click on a mouse), and one must also accommodate a significant change to the screen 
position between taps. Finally, users often want to touch the screen of small devices using a bare finger, 

*	 Tool tips are small explanatory labels or balloons that appear next to a button, icon, or other interface widget when the 
user holds the cursor still over that object. The “hover” state is detected when there is little or no cursor movement for a 
fixed time-out (many systems use a time-out of approximately 1 s).
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so applications should be designed to accommodate imprecise selections. Note that some pen-input 
devices, such as the Tablet PC, use an inductive sensing technology that can only sense contact from 
a specially instrumented stylus and thus cannot be used as a touch screen. However, this deficiency is 
made up for by the ability to track the pen when it is close to (but not touching) the screen, allowing 
support for a tracking state with cursor feedback (and hence ToolTips as well).

21.5.5  Joysticks

There are many varieties of joysticks. As previously mentioned, an isometric joystick senses force and 
returns to center when released. Because isometric joysticks can have a tiny footprint, they are often 
used when space is at a premium, allowing integration with a keyboard and hence rapid switching 
between typing and pointing (Douglas and Mithal, 1994; Rutledge and Selker, 1990). Isotonic joysticks 
sense the angle of deflection of the stick; they tend to move more than isometric joysticks, offering bet-
ter feedback to the user. Such joysticks may or may not have a mechanical spring return to center. Some 
joysticks even include both force and position sensing and other special features. For a helpful organiza-
tion of the complex design space of joysticks, see Lipscomb and Pique (1993).

21.5.6 A lternative Means of Pointing

Researchers have explored using the feet (Pearson and Weiser, 1988), head tracking, (Bates and Istance, 
2003; LoPresti et al., 2000) and eye tracking (Jacob, 1990; Kumar et al., 2007; Lankford, 2000) as alter-
native approaches to pointing. Head tracking has much lower pointing bandwidth than the hands and 
may require the neck to be held in an awkward fixed position, but has useful applications for intuitive 
coupling of head movements to virtual environments (Brooks, 1988; Sutherland, 1968) and interactive 
3D graphics (Hix et al., 1995; Ware et al., 1993). Eye movement-based input, properly used, can provide 
an unusually fast and natural means of communication, because we move our eyes rapidly and almost 
unconsciously. The human eye fixates visual targets within the fovea, which fundamentally limits the 
accuracy of eye gaze tracking to 1 degree of the field of view (Zhai et al., 1999). Eye movements are sub-
conscious and must be interpreted carefully to avoid annoying the user with unwanted responses to his 
actions, known as the Midas touch problem (Jacob, 1991). Current eye-tracking technology is expensive 
and has numerous technical limitations, confining its use thus far to research labs and disabled persons 
with few other options.

21.6  Feedback and Perception-Action Coupling

The ecological approach to human perception (Gibson, 1986) asserts that the organism, the environ-
ment, and the tasks the organism performs are inseparable and should not be studied in isolation. 
Hence, perception and action are intimately linked in a single motor-visual feedback loop, and any 
separation of the two is an artificial one. The lesson for interaction design is that techniques must con-
sider both the motor control (input) and feedback (output) aspects of the design and how they interact 
with one another.

From the technology perspective, one can consider feedback as passive or active. Active feedback is 
under computer control. This can be as simple as presenting a window on a display or as sophisticated 
as simulating haptic contact forces with virtual objects when the user moves an input device. We will 
return to discuss active feedback techniques later in this chapter, when we discuss display technologies 
and techniques.

Passive feedback may come from sensations within the user’s own body, as influenced by physical 
properties of the device, such as the shape, color, and feel of buttons when they are depressed. The indus-
trial design of a device suggests the purpose and use of a device even before a user touches it (Norman, 
1990). Mechanical sounds and vibrations that result from using the device provide confirming feedback 
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of the user’s action. The shape of the device and the presence of landmarks can help users orient a device 
without having to look at it (Hinckley et al., 1998b). Proprioceptive and kinesthetic feedback are some-
what imprecise terms, often used interchangeably, that refer to sensations of body posture, motion, and 
muscle tension (MacKenzie and Iberall, 1994). These senses allow users to feel how they are moving an 
input device without looking at the device and indeed without looking at the screen in some situations 
(Balakrishnan and Hinckley, 1999; Kane et al., 2008; Mine et al., 1997). This may be important when the 
user’s attention is divided between multiple tasks and devices (Fitzmaurice and Buxton, 1997). Sellen 
et al. (1992) report that muscular tension from depressing a foot pedal makes modes more salient to the 
user than purely visual feedback. Although all of these sensations are passive and not under the direct 
control of the computer, these examples nonetheless demonstrate that they are relevant to the design of 
devices, and interaction techniques can consider these qualities and attempt to leverage them.

21.6.1  Impoverished Physicality

Modern input devices such as touch-screens and in-air gesture systems lack some of the tactile and kin-
esthetic feedback inherently present in traditional input devices. Such feedback is an essential element 
of the user experience, especially when users are attempting to understand why the system response may 
not be as expected. Many commercial mobile devices use audio to compensate with phones that beep or 
click when a virtual key is pressed.

To understand the role that feedback plays, consider the following table (Table 21.1), which describes 
various states of a system and the feedback that is provided by either the cursor or the hardware itself. 
As is immediately evident, most touch-based platforms shift a great deal of the feedback burden onto 
the application developer.

Some work has addressed this issue by providing haptic sensations using piezoelectric actuators, 
electrovibration, or deformable fluids (Bau et al., 2010; Jansen et al., 2010; Poupyrev and Maruyama, 
2003; Poupyrev et al., 2002). Others have supplied physical cutouts as templates to provide passive hap-
tic sensations to a finger (or stylus) (Buxton et al., 1985; Wobbrock et al., 2003). Still others have placed 
transparent physical plastics, ranging in feel from “squishy” to “rigid,” on touch-screen surfaces to pro-
vide for haptic sensations (Bilton, 2011; Jansen et al., 2012; Weiss, 2010; Weiss et al., 2009). If haptic 
possibilities are not available, well-designed visual feedback indicating when and where touches were 
perceived by the system is crucial for effective interaction (Wigdor et al., 2009).

User performance may be influenced by correspondences between input and output. Some corre-
spondences are obvious, such as the need to present confirming visual feedback in response to the user’s 

TABLE 21.1  Potential Causes of Unexpected Behavior (Left) and the Source 
of Feedback That Users Receive to Refute Those Causes in Representative Mouse 
versus Touch Input Systems

Cause of Unexpected Behavior

Feedback Refuting Cause

Mouse Touch

System is nonresponsive OS: pointer movement Application
Hardware failed to detect input HW: activation of button Application
Input delivered to wrong location OS: visible pointer Application
Input does not map to expected function Application Application
System is in a mode OS + application: pointer icon Application
Max size reached OS: pointer moves past edge Application
Accidental input (arm brushing) N/A Application
Over constrained (too many contacts) N/A Application
Stolen capture (second user captures control) N/A Application
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actions. Ideally, feedback should indicate the results of an operation before the user commits to it (e.g., 
highlighting a button or menu item when the cursor moves over it). Kinesthetic correspondence and 
perceptual structure, described later, are less obvious.

21.6.1.1  Kinesthetic Correspondence

Kinesthetic correspondence refers to the principle that graphical feedback on the screen should cor-
respond to the direction that the user moves the input device, particularly when 3D rotation is involved 
(Britton et al., 1978). Users can easily adapt to certain non-correspondences: when the user moves a 
mouse forward and back, the cursor actually moves up and down on the screen; if the user drags a scroll-
bar downward, the text on the screen scrolls upward. With long periods of practice, users can adapt to 
almost anything (e.g., for over 100 years psychologists have known of the phenomena of prism adapta-
tion, where people can eventually adapt to wearing prisms that cause everything to look upside down 
[Stratton, 1897]). However, one should not force users to adapt to a poor design.

21.6.1.2  Perceptual Structure

Researchers have also found that the interaction of the input dimensions of a device with the control 
dimensions of a task can exhibit perceptual structure. Jacob et al. (1994) explored two input devices: a 
3D position tracker with integral (x, y, z) input dimensions and a standard 2D mouse, with (x, y) input 
separated from (z) input by holding down a mouse button. For selecting the position and size of a rectan-
gle, the position tracker is most effective: here, the integral 3D position input matches the integral pre-
sentation of the feedback on the screen. But for selecting the position and grayscale color of a rectangle, 
the mouse is most effective: here, the user perceives the position and grayscale color of the rectangle as 
separate quantities and can more easily perform the task when the input device provides separate con-
trols. Hence neither a 3D integral input nor a 2D (x, y) plus 1D (z) input is uniformly superior; the better 
performance results when the task and device are both integral or both separable.

21.7  Pointing Facilitation Techniques

In an effort to improve the performance of pointing devices, particularly devices for indirect relative 
pointing (e.g., mice), researchers have invented numerous pointing facilitation techniques. Such tech-
niques attempt to improve on the “raw” pointing performance one would exhibit with one’s hand or 
finger by utilizing various means for making targets easier to acquire. Such techniques are sometimes 
said to “beat Fitts’ law” (Balakrishnan, 2004), which refers to performing better than Fitts’ law, the 
widespread quantitative model of human movement time, would predict (Fitts, 1954; MacKenzie, 1992).

Pointing facilitation techniques can be divided into two flavors: those that are target-agnostic and those 
that are target-aware (Balakrishnan, 2004; Wobbrock et al., 2009a). Target-agnostic techniques require no 
knowledge of target identities, locations, or dimensions, working instead only with information directly 
available from the input device and on-screen cursor. Such techniques are relatively easy to deploy in 
real-world systems. Target-aware techniques, on the other hand, require knowledge of targets, often target 
locations and dimensions. Such techniques may also manipulate targets in some way, such as by expand-
ing them (McGuffin and Balakrishnan, 2005). As a result, target-aware techniques are exceedingly difficult 
to deploy across commercial systems and, until recently, have mostly been confined to research laborato-
ries. Recent efforts, however, have shown that target-aware techniques can be deployed on real-world sys-
tems by using an underlying architecture for target identification and interpretation (Dixon et al., 2012). 
Nevertheless, an ongoing theoretical challenge with target-aware techniques is that what constitutes a 
target is not easily defined. In a word processor, for example, a target may be every character or every word 
or perhaps even the space between characters. In a calendar program, every half hour slot may be a target. 
In a paint program, every pixel on the paint canvas is a target. Even on the open desktop, icons are not the 
only targets; every pixel is a candidate for the start of a drag-rectangle operation or a right-click menu. 
What constitutes a target is a more complex question than at first it may seem.
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Target-agnostic techniques avoid the aforementioned issues but are relatively few in number, as 
only information from the input device and on-screen cursor is available to techniques. Target-
agnostic techniques include conventional pointer acceleration (Casiez et  al., 2008), dynamic gain 
adjustment based on the spread of movement angles (Wobbrock et al., 2009a), dynamic gain adjust-
ment based on velocity changes (Hourcade et al., 2008), freezing the mouse cursor in place when the 
mouse button is down (Trewin et al., 2006), and visual-and-motor-space magnification of pixels with 
a lens (Findlater et al., 2010; Jansen et al., 2011). Click histories in the form of “magnetic dust” have 
also been used as a means for providing target-agnostic gravity (Hurst et al., 2007). Placing targets 
along impenetrable screen edges is also a target-agnostic pointing facilitation strategy, as edges con-
strain, guide, and trap on-screen cursors (e.g., in screen corners) (Appert et al., 2008; Farris et al., 
2001; Froehlich et al., 2007; Walker and Smelcer, 1990). Related to but not strictly a pointing facilita-
tion technique in itself, kinematic endpoint prediction (Lank et al., 2007) predicts the endpoints of 
mouse movements en route to targets using motion kinematic formulae like the minimum-jerk law 
(Flash and Hogan, 1985).

Target-aware techniques are more numerous than their impoverished target-agnostic brethren. 
With target identities, locations, and dimensions available to them, target-aware techniques contain 
the highest-performing pointing techniques in the world. One strategy for target-aware pointing is to 
modify the mouse cursor. For general-purpose pointing, the bubble cursor, which operates using a sim-
ple rule that “the closest target is always selected,” still remains unbeaten (Grossman and Balakrishnan, 
2005). It is rivaled by the DynaSpot, which is a speed-dependent bubble cursor that also transitions 
to being a point cursor after stopping, making it capable of selecting specific pixels, not just objects 
(Chapuis et al., 2009). Both are variations on the static area cursor, which is target-aware so that when its 
large area overlaps multiple targets, it can degrade to a point cursor at its center (Kabbash and Buxton, 
1995; Worden et al., 1997). Other explorations of area cursors have incorporated goal crossing (Accot 
and Zhai, 1997, 2002) into the cursors themselves (Findlater et al., 2010).

Other target-aware schemes modify the targets themselves. Mouse gain is dropped inside sticky icons 
(Blanch et al., 2004; Worden et al., 1997). Even more aggressive, gravity wells and force fields actually 
“pull” cursors into themselves (Ahlström et al., 2006; Hwang et al., 2003). Bubble targets and, more gen-
erally, target expansion enlarge targets as the cursor approaches (Cockburn and Firth, 2003; McGuffin 
and Balakrishnan, 2002, 2005; Zhai et al., 2003). A more extreme form of target expansion is to simply 
bring targets close to the mouse cursor as it begins its movement (Baudisch et al., 2003). More radically, 
the mouse cursor can be made to “jump over” the open space between targets, bypassing nontarget 
pixels altogether (Guiard et al., 2004). There are a great many ways to “beat Fitts’ law” and it is likely that 
new pointing facilitation techniques will be invented for years to come.

21.8  Keyboards, Text Entry, and Command Input

For over a century, keyboards, whether on typewriters, desktop computers, laptops, or mobile devices, 
have endured as the mechanism of choice for text entry. The resiliency of the keyboard, in an era of 
unprecedented technological change, is the result of how keyboards complement human skills and may 
make keyboards difficult to supplant with new input devices or technologies. We summarize some gen-
eral issues surrounding text entry later, with a focus on mechanical keyboards; see also Lewis et  al. 
(1997) and MacKenzie and Tanaka-Ishii (2007).

21.8.1  Skill Acquisition and Skill Transfer

Procedural memory is a specific type of memory that encodes repetitive motor acts. Once an activity is 
encoded in procedural memory, it requires little conscious effort to perform (Anderson, 1980). Because 
procedural memory automates the physical act of text entry, touch typists can rapidly type words with-
out interfering with the mental composition of text. The process of encoding an activity in procedural 
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memory can be formalized as the power law of practice: Tn = T1 × n(−α), where Tn is the time to perform 
the nth task, T1 is the time to perform the first task, and α reflects the learning rate (Card et al., 1983; 
De Jong, 1957; Snoddy, 1926). The power law of practice is sometimes recast as Y = aXb, called the power 
law of learning, as it produces “learning curves” for which Y is an increasing measure of proficiency (e.g., 
words per minute), X is a measure of the amount of practice (e.g., trial, block, or session), and a and b 
are regression coefficients. See MacKenzie and Zhang (1999) for an example in text entry. This suggests 
that changing the keyboard can have a high relearning cost. However, a change to the keyboard can 
succeed if it does not interfere with existing skills or allows a significant transfer of skill. For example, 
some ergonomic keyboards preserve the basic key layout, but alter the typing pose to help maintain 
neutral postures (Honan et al., 1995; Marklin and Simoneau, 1996), whereas the Dvorak key layout may 
have some small performance advantages, but has not found wide adoption due to high retraining costs 
(Lewis et al., 1997).

21.8.2  Eyes-Free Operation

With practice, users can memorize the location of commonly used keys relative to the home position 
of the two hands, allowing typing with little or no visual attention (Lewis et al., 1997). By contrast, soft 
keyboards (small on-screen virtual keyboards found on many handheld devices) require nearly con-
stant visual monitoring, resulting in a secondary focus-of-attention (FoA), where the primary focus is 
on the user’s work, that is, the text being composed. A third FoA may consist of a source document that 
the user is transcribing. Furthermore, with stylus-driven soft keyboards, the user can only strike one 
key at a time. Thus the design issues for soft keyboards differ tremendously from mechanical keyboards 
(Zhai et al., 2000).

21.8.3 T actile Feedback

On a mechanical keyboard users can feel the edges and gaps between the keys, and the keys have an 
activation force profile that provides feedback of the key strike. In the absence of such feedback, as on 
touch-screen keyboards (Sears, 1993), performance may suffer and users may not be able to achieve eyes-
free performance (Lewis et al., 1997).

21.8.4  Combined Text, Command, and Navigation Input

Finally, it is easy to forget that keyboards provide many secondary command and control actions in 
addition to pure text entry, such as navigation keys (Enter, Home/End, Delete, Backspace, Tab, Esc, Page 
Up/Down, Arrow Keys, etc.), chord key combinations (such as Ctrl + C for Copy) for frequently used 
commands, and function keys for miscellaneous functions defined by the current application. Without 
these keys, frequent interleaving of mouse and keyboard activity may be required to perform these 
secondary functions.

21.8.5  Ergonomic Issues

Many modern information workers suffer from repetitive strain injury (RSI). Researchers have identi-
fied many risk factors for such injuries, such as working under stress or taking inadequate rest breaks. 
People often casually associate these problems with keyboards, but the potential for RSI is common to 
many manually operated tools and repetitive activities (Putz-Anderson, 1988). Researchers have advo-
cated themes for ergonomic design of keyboards and other devices (Pekelney and Chu, 1995), including 
reducing repetition, minimizing force required to hold and move the device or press its buttons, avoid-
ing sharp edges that put pressure on the soft tissues of the hand, and designing for natural and neutral 
postures of the user’s hands and wrists (Honan et al., 1995; Marklin et al., 1997). Communicating a clear 
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orientation for gripping and moving the device through its industrial design also may help to discour-
age inappropriate, ergonomically unsound grips.

21.8.6  Other Text Entry Mechanisms

One-handed keyboards can be implemented using simultaneous depression of multiple keys; such chord 
keyboards can sometimes allow one to achieve high peak performance (e.g., court stenographers), but 
take much longer to learn how to use (Buxton, 1990a; Mathias et al., 1996; Noyes, 1983). They are often 
used in conjunction with wearable computers (Smailagic and Siewiorek, 1996) to keep the hands free 
as much as possible (but see also Section 21.8.1). With complex written languages, such as Chinese and 
Japanese, key chording and multiple stages of selection and disambiguation are currently necessary for 
keyboard-based text entry (Wang et al., 2001). Handwriting and character recognition may ultimately 
provide a more natural solution, but for Roman languages handwriting (even on paper, with no recog-
nition involved) is much slower than skilled keyboard use. To provide reliable stylus-driven text input, 
some systems have adopted unistroke (single-stroke) gestural “alphabets” (Goldberg and Richardson, 
1993; Wobbrock et al., 2003) that reduce the demands on recognition technology, while remaining rela-
tively easy for users to guess and learn (MacKenzie and Zhang, 1997; Wobbrock et al., 2005). However, 
small “two-thumb” keyboards (MacKenzie and Soukoreff, 2002) or fold-away peripheral keyboards 
are becoming increasingly popular for mobile devices. Recently, hybrid stroke-keyboard combinations 
have emerged that enable users to tap conventionally on keys or, without explicitly switching modes, to 
make unistroke gestures over the keys that form the desired word (Kristensson and Zhai, 2004; Zhai 
and Kristensson, 2003). Precise gestures over keys are not required as the stroke is pattern-matched to 
produce the intended word. Stroke keyboards have even been commercialized (e.g., ShapeWriter and 
Swype, both acquired in 2012 by Nuance Corporation) and generally have received a welcome response 
from consumers. Dictation using continuous speech recognition is available on the market today, but 
the technology still has a long way to go; a recent study found that the corrected words-per-minute rate 
of text entry using a mouse and keyboard are about twice as fast as dictation input (Karat et al., 1999). 
We further discuss speech interaction in the next section.

21.9  Modalities of Interaction

Here, we briefly review a number of general strategies and input modalities that have been explored 
by researchers. These approaches generally transcend a specific type of input device, but rather span a 
range of devices and applications.

21.9.1  Speech and Voice

Carrying on a full conversation with a computer as one might do with another person is well beyond 
the state of the art today and, even if possible, may be a naive goal. Yet even without understanding the 
content of the speech, computers can digitize, store, edit, and replay segments of speech to augment 
human–human communication (Arons, 1993; Buxton, 1995b; Stifelman, 1996). Conventional voice 
mail and the availability of MP3 music files on the web are simple examples of this. Computers can also 
infer information about the user’s activity from ambient audio, such as determining if the user is present 
or perhaps engaging in a conversation with a colleague, allowing more timely delivery of information or 
suppression of notifications that may interrupt the user (Horvitz et al., 1999; Sawhney and Schmandt, 
2000; Schmandt et al., 2000).

Understanding speech as input has been a long-standing area of research. While progress is being 
made, it is slower than optimists originally predicted, and daunting unsolved problems remain. For 
limited vocabulary applications with native English speakers, speech recognition can excel at recog-
nizing words that occur in the vocabulary. Error rates can increase substantially when users employ 



21-15Input/Output Devices and Interaction Techniques

words that are out-of-vocabulary (i.e., words the computer is not “listening” for), when the complexity 
of the grammar of possible phrases increases or when the microphone is not a high-quality close-talk 
headset. Even if the computer could recognize all of the user’s words, the problem of understanding 
natural language is a significant and unsolved one. It can be avoided by using an artificial language of 
special commands or even a fairly restricted subset of natural language. But, given the current state of 
the art, the closer the user moves toward full unrestricted natural language, the more difficulties will 
be encountered.

Speech input is not the only form of voice-based input researchers have explored. Nonspeech voice 
input has been examined as well, particularly for scenarios in which speech commands are not well 
suited. Such scenarios may involve continuous control responses, as opposed to discrete responses. 
Since speech utterances themselves are discrete, they are well mapped to discrete commands (e.g., “save 
document”) but poorly mapped to continuous activities (e.g., painting in a voice-driven paint program, 
maneuvering in a first-person shooter, or panning or zooming into documents or photographs). In addi-
tion, nonspeech voice has numerous qualities often ignored in speech: loudness, pitch, intonation, nasal-
ity, duration, timbre, prosody, vowel quality, and so on. Some of these qualities have been utilized, for 
example, in the Vocal Joystick, a voice control engine enabling continuous omnidirectional control by 
making vowel sounds that form a continuous circular phonetic space (Harada et al., 2006). Explorations 
utilizing the Vocal Joystick include drawing programs (Harada et al., 2007) and video games (Harada 
et al., 2011). Others also have explored controlling video games using nonspeech voice (Igarashi and 
Hughes, 2001). Even humming and whistling have been explored as forms of nonspeech input for text 
entry and gaming (Sporka et al., 2004, 2006a,b).

21.9.2  Pens

Pen-based input can emulate mouse-based input, for example, on a Tablet PC, or can support gesture-
based input (see Section 21.9.4). Pens afford acting on documents, for example, crossing out a word to 
delete it or circling a paragraph and drawing an arrow to move it. Besides commands, pens can also 
provide ink, where strokes are not interpreted as commands but left as annotations. Pens thus constitute 
a versatile input modality, not just an isolated input device.

Pens have been employed in numerous specific interaction techniques besides just the emulation of 
mice or general gestural input. One of the most compelling is the marking menu. Marking menus use 
directional pen motion to provide rapid menu selection (Kurtenbach and Buxton, 1993; Kurtenbach 
et al., 1993). Marking menus have been incorporated into composite pen-based systems for indicating 
targets of an action and the action itself (Hinckley et al., 2005). Entire pen-specific interfaces for Tablet 
PCs have been explored that incorporate marking menus among other features (Hinckley et al., 2007). 
Marking menus have been improved or extended in numerous ways, for example, by enabling access to 
hierarchical menus with multiple discrete strokes (Zhao and Balakrishnan, 2004), using relative posi-
tion and orientation (Zhao et al., 2006) or using two hands on a touch surface (Lepinski et al., 2010) (see 
also Section 21.9.3).

Of course, pen-specific interaction techniques go beyond marking menus. Multiple Tablet PCs can 
be “stitched” together using pen strokes that begin on the screen of one device, cross the bezel bound-
ary, and end on the screen of an adjacent device (Hinckley et al., 2004). Pen pressure has been used in 
different ways, for example, to activate a magnifying lens for easier target acquisition (Ramos et al., 
2007). Pen-based target acquisition has also been facilitated by slip-resistant bubble cursors (Moffatt 
and McGrenere, 2010) and target-directional beams (Yin and Ren, 2007).

The need for frequent mode switching in pen interfaces has inspired numerous interaction tech-
niques. Barrel buttons, pen dwell time, pen pressure, and the “eraser end” of pens have been explored 
for mode switching (Li et al., 2005). Pens themselves have been made into multi-touch devices for grip 
sensing (Song et al., 2011). Even the tilt angle and azimuth of pens have been studied and used to control 
modes (Xin et al., 2011, 2012). Researchers have also explored multimodal pen and voice input; this is a 
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powerful combination because pen and voice have complementary strengths and weaknesses and can 
disambiguate one another (Cohen and Sullivan, 1989; Cohen et al., 1997; Harada et al., 2007; Kurihara 
et al., 2006; Oviatt, 1997).

An important benefit of pen-based interfaces is their support for sketching. Sketching interfaces often 
raise the difficult issue of how to disambiguate users’ marks as ink versus as commands (Kramer, 1994; 
Moran et al., 1997; Mynatt et al., 1999). One solution to this is hover widgets (Grossman et al., 2006), 
which uses the pen hover state on Tablet PCs for command and property selection, separate from inking 
on the screen. Pen input, via sketching, has been used to define 3D objects (Igarashi et al., 1999; Zeleznik 
et al., 1996). Computational support for pen-based sketching has a rich history. For a comprehensive 
review, readers are directed to a recent survey (Johnson et al., 2009).

21.9.3 T ouch Input

With the widespread adoption of mobile touch-screen devices, particularly mobile phones based on 
Apple’s iOS operating system or the Android operating system, touch interaction has become the main-
stream. Although touch and gesture are often thought of together—and rightly so, as many gestures 
employ touch—they are not inherently the same thing, as one may have touch without gesture and 
gesture without touch. In the former case, incidental contact with no intended meaning such as brush-
ing up against an object involves touch but not gesture. In the latter case, one may perform gestures in 
midair using a computer vision system without touching anything. Despite these examples, for many of 
today’s interactions, touch and gesture are meaningfully coupled together. We cover touch in this sec-
tion and gesture in the next (Section 21.9.4).

The earliest explorations of touch interaction were on touch tablets that were input-sensing surfaces 
separated from their output graphical displays. Such tablets often employed relative pointing with a 
cursor on the display. Although some tablets supported the use of pens, pucks, or other objects, touch 
tablets, as their name suggests, required no such apparatuses, enabling fingers to directly act on their 
surfaces (Buxton et  al., 1985). Although touch tablets still exist, they are far outnumbered today by 
touch screens whose input and output surfaces are collocated.

Direct-touch interfaces on touch-screen devices or interactive tabletops usually operate without a 
cursor in absolute positioning mode. Although styli and pens have been used with touch-screen devices 
for many years (see Section 21.9.2), often on resistive touch screens, today’s devices often employ 
capacitive touch-sensing techniques enabling the human finger to interact directly. Using the finger 
in direct-touch interfaces raises many challenges. One challenge is the “fat finger problem,” in which 
the user’s relatively large fingertip proves to be insufficiently precise when selecting small on-screen 
targets. A related challenge is the “occlusion problem,” in which the user’s finger or hand occludes any 
objects beneath it (Vogel and Casiez, 2012). Numerous explorations of these issues have been conducted 
with a variety of proposals for their amelioration. Such proposals include offset cursors and lift-off 
selection (Potter et al., 1988; Sears and Shneiderman, 1991), magnifying lenses (Roudaut et al., 2008; 
Vogel and Baudisch, 2007), zooming (Olwal et al., 2008), precision handles (Albinsson and Zhai, 2003), 
picture-in-picture-style “radar views” (Karlson and Bederson, 2007), probabilistic hit testing (Schwarz 
et al., 2010, 2011), and techniques utilizing finger orientation (Wang et al., 2009). In addition, a stream 
of work has studied and exploited interaction on the backsides of devices (or, in the case of interac-
tive tabletops, the undersides), where fingers cannot possibly occlude portions of the graphical display 
(Baudisch and Chu, 2009; Hiraoka et al., 2003; Sugimoto and Hiroki, 2006; Wigdor et al., 2006, 2007; 
Wobbrock et al., 2007, 2008).

Finally, while the aforementioned work has innovated to ameliorate the challenges of touch, others 
have studied the properties of human touch itself (Wang and Ren, 2009). Findings indicate that users 
touch with consistent offsets from their perceived target location depending on their finger angle (Holz 
and Baudisch, 2010), and users align visible features on the tops of their fingers with the underlying tar-
get on the screen (Holz and Baudisch, 2011). Extracting fingerprints for modeling users and their touch 
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styles can double touch accuracy (Holz and Baudisch, 2010), and if cameras can be used (e.g., above a 
tabletop), features atop users’ fingers can be correlated with their perceived touch point for improved 
accuracy (Holz and Baudisch, 2011). It is also possible to distinguish with which part of a user’s finger he 
or she touches the screen from the acoustic signature of touches (e.g., fingertip, finger pad, fingernail, or 
knuckle) (Harrison et al., 2011). Rather than distinguishing single touch points, it can be useful to support 
whole-hand touches that create entire touch regions (Cao et al., 2008).

21.9.4  Gestural Input

Gesture is a powerful input modality that takes place in a variety of forms: as strokes on 2D sur-
faces or as motions made in 3D space. Depending on the sensing technologies employed, gestures 
may require holding or wearing an object (e.g., a stylus or a Nintendo Wiimote), or gestures may 
be performed with the bare fingers or hands (e.g., on a capacitive touch screen or in the air before a 
Microsoft Kinect). Gestures are highly expressive, rapid, capable of symbolic or metaphorical associa-
tion, and often entertaining for performers and observers alike. Although gestures have been part of 
HCI for years, in the last decade, gestures have become a mainstream input modality on commercial-
ized platforms.

Gestures have a powerful property in that they can designate both the object of an action and the action 
itself in one fluid motion (Buxton et al., 1983). Thus, gestures support cognitive chunking by integrat-
ing command selection with specification of the command’s scope (Kurtenbach and Buxton, 1991a,b).

Gestures may be defined in the simplest case by a single point, as in a tap gesture performed by a finger 
on a capacitive touch screen. At this level, the concepts of “touch” and “gesture” are trivially the same. 
It does not take long, however, for a touch unfolding over time to become a complex gesture involving 
paths or ordered sequences of points over time. Paths may be unistrokes (Goldberg and Richardson, 
1993), meaning they begin upon receiving the first input point (e.g., “touch down”), unfold as that point 
moves (e.g., “touch move”), and end when the input points cease (e.g., “touch up”). Of course, a “touch” 
is only exemplary; a unistroke may be made with a stylus or in midair with a wand or entire hand. The 
defining aspect of a unistroke is that it is segmented (separated) from gestures that precede or succeed 
it by a clear signal equivalent to “begin” and “end” with no intervening segmentation signals. Gestures 
that comprise multiple successive unistrokes are called multistrokes (see, e.g., Hinckley et  al., 2006). 
Gestures that comprise multiple concurrent unistrokes using fingers on a touch screen are called multi-
touch gestures. The famous “pinch” gesture for resizing photographs is an example of a multi-touch 
gesture, where the user’s thumb and forefinger each perform a unistroke concurrently.

Besides paths, gestures may be composed of poses. In the case of hand gestures, poses involve certain 
positions of the hand that convey meaning, such as a fist or flat palm. Whole-body gestures may also 
entail poses, such as raising one’s hands above one’s head (Cohn et al., 2012). Poses may be preserved 
over a path, such as a fist pose held while punching in a boxing game. Or poses themselves may be 
dynamic, changing either in place or over a path. Of course, as devices or other objects are incorporated 
into gestures, the possibilities grow according to the properties available. Gestures made with a rigid 
remote may be different than those available when using a bendable computer (Schwesig et al., 2004).

In an attempt to organize the high variation possible in gestures, numerous gesture taxonomies 
have been erected both within and outside the computing field. Early taxonomies by sociolinguists 
included categories such as Efron’s physiographics, kinetographics, ideographics, deictics, and batons 
(Efron, 1941). Similarly, McNeill’s taxonomy contained iconics, metaphorics, deictics, and beats 
(McNeill, 1992). Kendon placed his gestures on a spectrum of formality, identifying sign languages 
as the most formal and gesticulation as the least (Cadoz, 1994; Kendon, 1988) broadly categorizes 
hand gestures as semiotic, ergotic, and epistemic. Semiotic gestures are those used to communicate 
meaningful information, such as “thumbs up.” Ergotic gestures are those used to manipulate physical 
objects. Epistemic gestures are exploratory movements to acquire haptic or tactile information; see 
also D. Kirsh (1995a,b).
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The aforementioned gesture categories are not entirely foreign to those developed with computer input 
in mind. Deictic gestures in particular have received much attention, with several efforts using point-
ing, typically captured using instrumented gloves or camera-based recognition to interact with “intel-
ligent” environments (Baudel and Beaudouin-Lafon, 1993; Freeman and Weissman, 1995; Jojic et al., 
2000; Maes et al., 1996). Deictic gestures in combination with speech recognition have also been studied 
(Bolt, 1980; Hauptmann, 1989; Lucente et al., 1998; Wilson and Shafer, 2003). Explorations of tangible 
interaction techniques (Ullmer and Ishii, 1997) and efforts to sense movements and handling of sensor-
enhanced mobile devices may be considered ergotic gestures (Harrison et al., 1998; Hinckley et al., 2000, 
2003). Most research in hand gesture recognition focuses on empty-handed semiotic gestures (Cassell, 
2003), which (Rime and Schiaratura, 1991) are further classified as follows:

Symbolic—conventional symbolic gestures such as “OK”
Deictic—pointing to fill in a semantic frame, analogous to deixis in natural language
Iconic—illustrating a spatial relationship
Pantomimic—mimicking an invisible tool, such as, pretending to swing a golf club

Wobbrock et al. studied gestures that users make on an interactive tabletop for accomplishing common 
actions like “move,” “copy,” and “delete” (Wobbrock et al., 2009b). Over 1000 gestures were collected 
from 20 people for 27 common commands. Findings indicated that apart from (Cadoz, 1994) ergotic 
gestures in which simulated physical objects are manipulated (e.g., moving a virtual object from one 
screen location to another), users employed widely varying gestures and had little gestural agreement. 
This led Wobbrock et al. to formulate the following taxonomy of surface gestures with four dimensions, 
each with various properties. Note that the “Nature” dimension represents a similar classification to 
those seen thus far:

Form—static pose, dynamic pose, static pose and path, dynamic pose and path, one-point touch, 
one-point path

Nature—symbolic, physical, metaphorical, abstract
Binding—object-centric, world-dependent, world-independent, mixed dependencies
Flow—discrete, continuous

Freeman et al. extended Wobbrock et al.’s “Form” dimension with the following categories that capture 
how a gesture begins and unfolds over time (Freeman et al., 2009):

Registration pose—single finger, multi-finger, single shape, multi-shape
Continuation pose—static, dynamic
Movement—no path, path

Not surprisingly, the use of gestures for computer input raises numerous challenges. With most forms 
of gestural input, errors of user intent and errors of computer interpretation seem inevitable (Bellotti 
et  al., 2002). The learnability of gestures is another persistent challenge, as unlike visible buttons, 
menus, or hyperlinks, gestures are not trivially discoverable by users. Rather like speech commands, 
gestures must be articulated by users. Numerous efforts have explored how to teach gestures to users 
(Bau and Mackay, 2008; Bragdon et al., 2009; Fothergill et al., 2012; Freeman et al., 2009; Martin and 
Isokoski, 2008; Plimmer et  al., 2011). Other work has attempted to assess and improve the guess-
ability, learnability, and “naturalness” of gestures in the first place (Alexander et al., 2012; Grandhi 
et al., 2011; Kane et al., 2011; Költringer and Grechenig, 2004; MacKenzie and Zhang, 1997; Wobbrock 
et  al., 2005, 2009b). Yet another challenge with gestures has been for system designers to choose 
appropriate and distinct gestures that avoid collision in the feature-space utilized by gesture recog-
nizers (Long et al., 1999, 2000). Given the popularity of gestures, some researchers have worked to 
make gesture recognizers easier to incorporate into software prototypes (Anthony and Wobbrock, 
2010, 2012; Henry et al., 1990; Landay and Myers, 1993; Li, 2010; Myers et al., 1997; Swigart, 2005; 
Wobbrock et al., 2007).
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21.9.5  Bimanual Input

Aside from touch typing, most of the devices and modes of operation discussed thus far and in use today 
involve only one hand at a time. But people use both hands in a wide variety of the activities associated 
with daily life. For example, when writing, a right-hander writes with the pen in the right hand, but the 
left hand also plays a crucial and distinct role. It holds the paper and orients it to a comfortable angle 
that suits the right hand. In fact, during many skilled manipulative tasks, Guiard observed that the 
hands take on asymmetric, complementary roles (Guiard, 1987): for right-handers, the role of the left 
hand precedes the right (the left hand first positions the paper), the left hand sets the frame of reference 
for the action of the right hand (the left hand orients the paper), and the left hand performs infrequent, 
large-scale movements compared to the frequent, small-scale movements of the right hand (writing 
with the pen). Most applications for bimanual input to computers are characterized by asymmetric 
roles of the hands, including compound navigation/selection tasks such as scrolling a web page and 
then clicking on a link (Buxton and Myers, 1986), command selection using the nonpreferred hand 
(Bier et al., 1993; Kabbash et al., 1994), as well as navigation, virtual camera control, and object manipu-
lation in 3D user interfaces (Balakrishnan and Kurtenbach, 1999; Hinckley et al., 1998b; Kurtenbach 
et al., 1997). Researchers have also applied this approach to keyboard design (MacKenzie and Guiard, 
2001; McLoone et al., 2003). For some tasks, such as banging together a pair of cymbals, the hands may 
take on symmetric roles; for further discussion of bimanual symmetric tasks, see Guiard (1987) and 
Balakrishnan and Hinckley (2000).

21.9.6  Direct Muscle-Based Input and Brain–Computer Interfaces

Traditional input devices can be thought of as secondary sensors, in that they sense a physical action 
that is the consequence of cognition and muscle movements. An alternative approach is to attempt 
primary sensing by detecting brain activity and muscle movements directly. Muscle sensing is accom-
plished through electromyography, a technique previously employed for measuring muscular activity 
or controlling prosthetics. Saponas et al. demonstrated its use to enable sensing of muscle activation as 
fine-grained as detecting and identifying individual fingers (Saponas et al., 2009) and used in combi-
nation with touch-screen input to provide a richer data stream (Benko et al., 2009). Brain–computer 
interfaces (BCI) typically employ electroencephalography or functional near-infrared spectroscopy to 
detect input. Projects have used the technique to detect workload and user engagement (Hirshfield et al., 
2009a) in order to conduct usability studies, as well as to explore the possible dynamic adaptation of user 
interfaces based on such metrics (Hirshfield et al., 2009b). Such work remains in its infancy, but appears 
to hold great promise (particularly as assistive technologies for users suffering from devastating injuries 
or other significant physical limitations) as sensing and signal processing techniques improve.

21.9.7  Passive Measurement: Interaction in the Background

Not all interactions with computers need consist of explicit, intentionally communicated commands. 
Think about walking into a grocery store with automatic doors. You approach the building; the doors 
sense this motion and open for you. No explicit communication has occurred, yet a computer has used 
your action of walking toward the store as an “input” to decide when to open the door. Intentional, 
explicit interaction takes place in the foreground, while implicitly sensed interaction takes place in the 
background, behind the fore of the user’s attention (Buxton, 1995a). Background sensing techniques will 
be a major emphasis of future research in automation and sensing systems as users become increas-
ingly mobile and become saturated with information from many sources. Researchers are currently 
exploring ways of providing context awareness through location sensing; ambient sensing of light, 
temperature, and other environmental qualities; movement and handling of devices (Goel et  al., 
2012); detecting the identity of the user and physical objects in the environment; and possibly even 
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physiological measures such as heart-rate variability. This type of information potentially can allow 
technology to interpret the context of a situation and respond more appropriately (Dey et al., 2001; 
Hinckley et al., 2003; Schilit et al., 1994; Schmidt, 1999). However, like other recognition-based tech-
nologies, there is a risk of errors of user intent or computer interpretation: returning to the automatic 
door, for example, if you walk by (parallel to) the doors, they may sense your motion and open even if 
you have no intention of entering the building.

Background interaction can also be applied to explicit input streams through passive behavioral mea-
surements, such as observation of typing speed, manner of moving the cursor (Evans and Wobbrock, 
2012), sequence and timing of commands activated in a graphical interface (Horvitz et al., 1998), and 
other patterns of use. For example, a carefully designed user interface could make intelligent use of such 
information to modify its dialogue with the user, based on inferences about the user’s alertness or exper-
tise. These measures do not require additional input devices, but rather gleaning of additional, typically 
neglected, information from the existing input stream. These are sometimes known as intelligent or 
adaptive user interfaces, but mundane examples also exist. For example, cursor control using the mouse 
or scrolling using a wheel can be optimized by modifying the device response depending on the velocity 
of movement (Hinckley et al., 2001; Jellinek and Card, 1990).

We must acknowledge the potential for misuse or abuse of information collected in the background. 
Users should always be made aware of what information is or may potentially be observed as part of a 
human–computer dialogue. Users should have control and the ability to block any information that they 
want to remain private (Nguyen and Mynatt, 2001).

21.10  Displays and Perception

We now turn our attention to focus on the fundamental properties of displays and techniques for effec-
tive use of displays. We focus on visual displays and visual human perception, since these represent the 
vast majority of displays, but we also discuss feedback through the haptic and audio channels.

21.10.1  Properties of Displays and Human Visual Perception

Display requirements, such as resolution in time and space, derive from the properties of human vision. 
Thus, we begin with the basic issues relating to display brightness, uniformity, and spatial and temporal 
resolution.

21.10.1.1  Dynamic Range

The human eye has an enormous dynamic range. The amount of light reflected from surfaces on a bright 
day at the beach is about five orders of magnitude higher than the amount available under dim lamp-
lights. Yet the shapes, layouts, and colors of objects look nearly identical to the human eye across much 
of this range. Most displays in common use are self-luminous CRTs or back-lit liquid crystal displays 
(LCDs). The best of these devices has a dynamic range (the ratio between the maximum and minimum 
values produced) of a little more than two orders of magnitude. In practice, under typical room lighting 
conditions, 15%–40% of the light reaching the user’s eye is actually ambient room light reflected by the 
front surface of the phosphors or off of the screen surface. This means that the effective dynamic range 
of most devices, unless viewed in dark rooms, is no better than three or four to one. Fortunately the 
human eye can tolerate extreme variation in the overall level of illumination, as well as the amount of 
contrast produced by the display.

21.10.1.2  Spatial Frequency

The ability of the human visual system to resolve fine targets is known as visual acuity. A standard way of 
measuring visual acuity is to determine how fine a sinusoidal striped pattern can be discriminated from 
a uniform gray. Humans are capable of perceiving targets as fine as 50–60 cycles/degree of visual angle 
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when the pattern is of very high contrast. Figure 21.1 illustrates the spatial sensitivity of the human eye 
as a function of spatial frequency. Specifically, it illustrates the degree of contrast required for sinusoidal 
gratings of different spatial frequencies to be perceived. The function has an inverted U shape with a 
peak at about two cycles per degree of visual angle. This means that 5 mm stripes at arm’s length are 
optimally visible. The falloff at low spatial frequencies indicates that the human visual system is insensi-
tive to gradual changes in overall screen luminance. Indeed, most CRTs have a brightness falloff toward 
the edges of as much as 20%, which we barely notice. This nonuniformity is even more pronounced 
with rear projection systems, due to the construction of screens that project light primarily in a forward 
direction. This is called the screen gain; a gain of 3.0 means that three times as much light is transmitted 
in the straight through direction compared to a perfect Lambertian diffuser. At other angles, less light 
is transmitted so that at a 45° off-axis viewing angle, only half as much light may be available compared 
to a perfect diffuser. Screen gain is also available with front projection with similar nonuniformities as 
a consequence, although the use of curved screens can compensate to some extent.

21.10.1.3  Spatial Resolution

The receptors in the human eye have a visual angle of about 0.8 s of arc. Modern displays provide approx-
imately 40 pixels/cm. A simple calculation reveals that at about a 50 cm viewing distance, pixels will 
subtend about 1.5 s of arc, about two times the size of cone receptors in the center of vision. Viewed from 
100 cm, such a screen has pixels that will be imaged on the retina at about the same size as the recep-
tors. This might suggest that we are in reach of the perfect display in terms of spatial resolution; such a 
screen would require approximately 80 pixels/cm at normal viewing distances. However, under some 
conditions the human visual system is capable of producing superacuities that imply resolution better 
than the receptor size. For example, during fusion in stereo vision, disparities smaller than 5 s of arc can 
be detected (Westheimer, 1979); see also Ware (2000) for a discussion of stereopsis and stereo displays 
aimed at the practitioner. Another example of superacuity is known as aliasing, resulting from the divi-
sion of the screen into discrete pixels; for example, a line on the display that is almost (but not quite) hori-
zontal may exhibit a jagged “stairstep” pattern that is very noticeable and unsatisfying. This effect can 
be diminished by anti-aliasing, which computes pixel color values that are averages of all the different 
objects that contribute to the pixel, weighted by the percentage of the pixel they cover. Similar techniques 
can be applied to improve the appearance of text, particularly on LCD screens, where individual red, 
green, and blue display elements can be used for sub-pixel anti-aliasing (Betrisey et al., 2000; Platt, 2000).
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FIGURE 21.1  Spatial contrast sensitivity function of the human visual system. There is a falloff in sensitivity 
both to detailed patterns (high-spatial frequencies) and to gradually changing gray values (low spatial frequencies).
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21.10.1.4 T emporal Resolution, Refresh, and Update Rates

The flicker fusion frequency represents the least rapidly flickering light that the human eye does not per-
ceive as steady. Flicker fusion frequency typically occurs around 50 Hz for a light that turns completely 
on and off (Wyszecki and Styles, 1982). In discussing the performance of monitors, it is important to 
differentiate the refresh rate and the update rate. The refresh rate is the rate at which a screen is redrawn 
and it is typically constant (values of 60 Hz up to 120 Hz are common). By contrast, the update rate is 
the rate at which the system software updates the output to be refreshed. Ideally, this should occur at or 
above the refresh rate, but with increasingly demanding applications and complex data sets, this may 
not be possible. A rule of thumb states that a 10 Hz update rate is a minimum for smooth animation 
(Robertson et al., 1989). Motion blur (also known as temporal anti-aliasing) techniques can be applied 
to reduce the jerky effects resulting from low frame rates (Cook, 1986).

21.11  Color Vision and Color Displays

The single most important fact relating to color displays is that human color vision is trichromatic; our 
eyes contain three receptors sensitive to different wavelengths. For this reason, it is possible to generate 
nearly all perceptible colors using only three sets of lights or printing inks. However, it is much more 
difficult to exactly specify colors using inks than using lights because, whereas lights can be treated as a 
simple vector space, inks interact in complex nonlinear ways.

21.11.1  Luminance, Color Specification, and Color Gamut

Luminance is the standard term for specifying brightness, that is, how much light is emitted by a 
self-luminous display. The luminance system in human vision gives us most of our information about 
the shape and layout of objects in space. The international standard for color measurement is the 
Commission Internationale de L’Eclairage (CIE) standard. The central function in Figure 21.2 is the CIE 
V(λ) function, which represents the amount that light of different wavelengths contributes to the overall 

CIE  V (λ)

400350

CI
E 

sp
ec

tr
al

 tr
ist

im
ul

us
 va

lu
es

–.2

0

.2

.4

.6

.8

1

1.2

1.4

1.6

1.8

2

500 550 600 700 750

x
y
z

450 650
Wavelength (nm)

FIGURE 21.2  The CIE tristimulus functions. These are used to represent the standard observer in colorimetry. 
Short wavelengths at the left-hand side appear blue, in the middle they are green, and to the right they are red. 
Humans are most sensitive to the green wavelengths around 560 nm.



21-23Input/Output Devices and Interaction Techniques

sensation of brightness. As this curve demonstrates, short wavelengths (blue) and long wavelengths 
(red) contribute much less than green wavelengths to the sensation of brightness. The CIE tristimulus 
functions, also shown in Figure 21.2, are a set of color-matching functions that represent the color vision 
of a typical person. Humans are most sensitive to the green wavelengths around 560 nm. Specifying 
luminance and specifying a color in CIE tristimulus values are complex technical topics; for further 
discussion, see Ware (2000) and Wyszecki and Styles (1982).

A chromaticity diagram can be used to map out all possible colors perceptible to the human eye, 
as illustrated in Figure 21.3. The pure spectral hues are given around the boundary of this diagram in 
nanometers (10−9 m). While the spacing of colors in tristimulus coordinates and on the chromaticity 
diagram is not perceptually uniform, uniform color spaces exist that produce a space in which equal 
metric distances are closer to matching equal perceptual differences (Wyszecki and Styles, 1982). For 
example, this can be useful to produce color sequences in map displays (Robertson, 1988).

The gamut of all possible colors is the dark-gray region of the chromaticity diagram, with pure hues 
at the edge and neutral tones in the center. The triangular region represents the gamut achievable by a 
particular color monitor, determined by the colors of the phosphors given at the corners of the triangle. 
Every color within this triangular region is achievable, and every color outside of the triangle is not. This 
diagram nicely illustrates the trade-off faced by the designer of color displays. A phosphor that produces 
a very narrow wavelength band will have chromaticity coordinates close to the pure spectral colors, and 
this will produce more saturated colors (thus enlarging the triangle). However, this narrow band also 
means that little light is produced.
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The irregular shape inside the triangle illustrates the gamut of colors obtainable using printing inks. 
Notice that this set of colors is still smaller, causing difficulties when we try to obtain a hard copy repro-
duction of the colors on the monitor. Because the eye is relatively insensitive to overall color shifts and 
overall contrast changes, we can take the gamut from one device and map it into the gamut of the print-
ing inks (or some other device) by compressing and translating it. This is known as gamut mapping, a 
process designed to preserve the overall color relationships while effectively using the range of a device 
(Stone et al., 1988). However, it should be noted that the original colors will be lost in this process and 
that after a succession of gamut mappings, colors may become distorted from their original values.

A process known as chromatic adaptation occurs in the human eye receptors and in the early stages of 
visual processing: for example, we hardly notice that daylight is much bluer than the yellow cast of tung-
sten light produced from ordinary light bulbs. The CIE standard does not account for chromatic adapta-
tion nor does it account for color contrast (colors appear differently to the human eye depending on the 
surrounding visual field). The practical implication is that we can get by with color monitors and printers 
that are grossly out of calibration. However, accurate color is essential in some applications. It is possible 
to precisely calibrate a color device so that the particular inputs required to produce a color may be speci-
fied in CIE tristimulus values. For monitor calibration, see Cowan (1983); for calibrating print devices, 
see Stone et al. (1988). It is also possible to correct for the nonlinear response of CRT displays, a process 
known as gamma correction, but keep in mind that CRT designers intentionally insert this nonlinearity 
to match the human eye’s sensitivity to relative changes in light intensity. If one desires a set of perceptu-
ally equal gray steps, it is usually best to omit gamma correction. See Ware (2000) for further discussion.

21.12  Information Visualization

Researchers and practitioners have become increasingly interested in communicating large quantities of 
information quickly and clearly by leveraging the tremendous capabilities of the human visual system, 
a field known as information visualization. Thanks to advances in computer graphics hardware and 
algorithms, virtually all new desktop machines available today have sophisticated full-color displays 
with transparency and texture mapping for complex 2D or 3D scenes, and it now seems inevitable these 
capabilities will become commonplace on laptop computers, and ultimately even on handheld devices.

21.12.1  General Issues in Information Coding

The greatest challenge in developing guidelines for information coding is that there are usually effec-
tive alternatives, such as color, shape, size, texture, blinking, orientation, and gray value. Although a 
number of studies compare one or more coding methods separately, or in combination, there are so 
many interactions between the task and the complexity of the display that guidelines based on science 
are not generally practical. However, Tufte provides excellent guidelines for information coding from an 
aesthetic perspective (Tufte, 1983, 1990, 1997). For further discussion, examples, and case studies, see 
also Ware (2000) and Card et al. (1999).

A theoretical concept known as preattentive processing has interesting implications for whether or 
not the coding used can be processed in parallel by the visual system. The fact that certain coding 
schemes are processed faster than others is called the pop-out phenomenon, and this is thought to 
be due to early preattentive processing by the visual system. Thus, for example, the shape of the word 
“bold” is not processed preattentively, and it will be necessary to scan this entire page to determine how 
many times the word appears. However, if all of the instances of the word bold are emphasized, they pop 
out at the viewer. This is true as long as there are not too many other emphasized words on the same 
page: if there are less than seven or so instances, they can be processed at a single glance. Preattentive 
processing is done for color, brightness, certain aspects of texture, stereo disparities, and object orienta-
tion and size. Codes that are preattentively discriminable are very useful if rapid search for information 
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is desired (Triesman, 1985). The following visual attributes are known to be preattentive codes and, 
therefore, useful in differentiating information belonging to different classes:

•	 Color: Use no more than 10 different colors for labeling purposes.
•	 Orientation: Use no more than 10 orientations.
•	 Blink coding: Use no more than 2 blink rates.
•	 Texture granularity: Use no more than 5 grain sizes.
•	 Stereo depth: The number of depths that can be effectively coded is not known.
•	 Motion: Objects moving out of phase with one another are perceptually grouped. The number of 

usable phases is not known.

However, coding multiple dimensions by combining different pop-out cues is not necessarily effective 
(Ware, 2000).

21.12.2  Color Information Coding

When considering information display, one of the most important distinctions is between chromatic and 
luminance information, because these are treated quite differently in human perception. Gray scales are 
not perceived in the same way as rainbow-colored scales. A purely chromatic difference is one where 
two colors of identical luminance, such as red and green, are placed adjacent to one another. Research 
has shown that we are insensitive to a variety of information if it is presented through purely chromatic 
changes. This includes shape perception, stereo depth information, shape from shading, and motion. 
However, chromatic information helps us classify the material properties of objects. A number of practi-
cal implications arise from the differences in the way luminance and chromatic information is processed 
in human vision:

•	 Our spatial sensitivity is lower for chromatic information, allowing image compression tech-
niques to transmit less information about hue relative to luminance.

•	 To make text visible, it is important to make sure that there is a luminance difference between the 
color of the text and the color of the background. If the background may vary, it is a good idea to 
put a contrasting border around the letters (e.g., Harrison and Vicente, 1996).

•	 When spatial layout is shown either through a stereo display or through motion cues, ensure 
adequate luminance contrast.

•	 When fine detail must be shown, for example, with fine lines in a diagram, ensure that there is 
adequate luminance contrast with the background.

•	 Chromatic codes are useful for labeling objects belonging to similar classes.
•	 Color (both chromatic and gray scale) can be used as a quantitative code, such as on maps, where 

it commonly encodes height and depth. However, simultaneous contrast effects can change the 
appearance of a patch of color depending on the surrounding colors; careful selection of colors 
can minimize this (Ware, 1988).

A number of empirical studies have shown color coding to be an effective way of identifying informa-
tion. It is also effective if used in combination with other cues such as shape. For example, users may 
respond to targets faster if they can be identified by both shape and color differences (for useful reviews, 
see Christ [1975]; Stokes et al. [1990]; and Silverstein [1977]). Color codes are also useful in the percep-
tual grouping of objects. Thus, the relationship between a set of different screen objects can be made 
more apparent by giving them all the same color. However, it is also the case that only a limited number 
of color codes can be used effectively. The use of more than about 10 will cause the color categories to 
become blurred. In general, there are complex relationships between the type of symbols displayed (e.g., 
point, line, area, or text), the luminance of the display, the luminance and color of the background, and 
the luminance and color of the symbol (Spiker et al., 1985).
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21.12.3  Integrated Control-to-Display Objects

When the purpose of a display is to allow a user to integrate diverse pieces of information, it may make 
sense to integrate the information into a single visual object or glyph (Wickens, 1992). For example, if 
the purpose is to represent a pump, the liquid temperature could be shown by changing the color of the 
pump, the capacity could be shown by the overall size of the pump, and the output pressure might be 
represented by the changing height of a bar attached to the output pipe, rather than a set of individual 
dials showing these attributes separately. However, perceptual distortions can result from an ill-chosen 
display mapping, and the object display may introduce visual clutter: if there are 50 pumps to control, 
then the outlines of all the pumps may interfere with the data of interest (Tufte, 1983). In object displays, 
input and output can be integrated in a manner analogous to widgets such as the scrollbar, or even 
more directly by having input devices that resemble the physical object being handled, known as a prop 
(Hinckley et al., 1994a). For some good examples of the linking of output and input, see Ahlberg and 
Shneiderman (1994) as well as Ishii and Ullmer (1997).

This style of presentation and interaction can be especially relevant for telepresence or augmented 
reality applications, where the user needs to interact with actual physical objects that have attributes 
that must be viewed and controlled (Feiner et al., 1993; Tani et al., 1992). For more abstract data repre-
sentation tasks, choosing the color, size, orientation, or texture to represent a particular data attribute 
may be difficult, and there seem to be practical limits on the number of attributes that one can encode 
simultaneously. Thus, object displays must usually be custom designed for each different display prob-
lem. In general, this means that the display and controls should somehow match the user’s cognitive 
model of the task (Cole, 1986; Norman, 1990).

21.12.4  3D Graphics and Virtual Reality

Much research in 3D information visualization and virtual reality is motivated by the observation that 
humans naturally operate in physical space and can intuitively move about and remember where things are 
(an ability known as spatial memory). However, translating these potential benefits to artificially generated 
graphical environments is difficult because of limitations in display and interaction technologies. Virtual 
environment research pushed this to the limit by totally immersing the user in an artificial world of graph-
ics, but this comes at the cost of visibility and awareness of colleagues and objects in the real world. This has 
led to research in so-called fish tank virtual reality displays by using a head tracking system in conjunction 
with a stereo display (Deering, 1992; Ware et al., 1993) or a mirrored setup, which allows superimposition of 
graphics onto the volume where the user’s hands are located (Schmandt, 1983; Serra et al., 1997). However, 
much of our ability to navigate without becoming lost depends upon the vestibular system and spatial updat-
ing as we physically turn our bodies, neither of which is engaged with stationary displays (Chance et al., 
1998; Loomis et al., 1999). For further discussion of navigation in virtual environments, see Darken and 
Sibert (1993, 1995); for application of spatial memory to 3D environments, see Robertson et al. (1998, 1999).

Outside of virtual reality, volumetric displays present imagery in true 3D space, by illuminating “vox-
els” (volumetric pixels) in midair. Favalora provides a thorough survey of the various technological 
implementations of volumetric displays (Favalora, 2005). The true 3D imagery in volumetric displays 
has been shown to improve depth perception (Grossman and Balakrishnan, 2006b) and shape recogni-
tion (Rosen et al., 2004). Besides providing true 3D images, the main difference from the other 3D table-
top displays is that volumetric display is generally enclosed by a surface. This means that users cannot 
directly interact with the 3D imagery. Balakrishnan et al. explored the implications of this unique dif-
ference to interaction design by using physical mock-ups (Balakrishnan et al., 2001). More recent work-
ing implementations have allowed users to interact with the display by using hand and finger gestures 
on and above the display surface (Grossman et al., 2004) and by using a handheld six degree-of-freedom 
input device (Grossman and Balakrishnan, 2006a). Another key differentiator is that volumetric dis-
plays better support collocated multiuser interaction, given a shared view of 3D imagery, without the 
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need to wear glasses or head-mounted displays that can interfere with natural collaboration. Grossman 
and Balakrishnan describe various techniques that can overcome the limitations of multiuser interac-
tion with volumetric displays (Grossman and Balakrishnan, 2008).

21.12.5 A ugmented Reality

Augmented reality superimposes information on the surrounding environment rather than blocking it 
out. For example, the user may wear a semitransparent display that has the effect of projecting labels and 
diagrams onto objects in the real world. It has been suggested that this may be useful for training people 
to use complex systems or for fault diagnosis. For example, when repairing an aircraft engine, the names 
and functions of parts could be made to appear superimposed on the parts seen through the display 
together with a maintenance record if desired (Caudell and Mizell, 1992; Feiner et al., 1993). The com-
puter must obtain a detailed model of the environment; otherwise it is not possible to match the synthetic 
objects with the real ones. Even with this information, correct registration of computer graphics with the 
physical environment is an extremely difficult technical problem due to measurement error and system 
latency. This technology has been applied to heads-up displays for fighter aircraft, with semitransparent 
information about flight paths and various threats in the environment projected on the screen in front of 
the pilot (Stokes et al., 1990), as well as digitally augmented desk surfaces (Wellner, 1993).

21.13  Scale in Displays

It is important to consider the full range of scale for display devices and form factors that may embody an 
interaction task. Computer displays increasingly span orders of magnitude in size and available computa-
tional resources, from watches, handheld personal data assistants (PDAs), tablet computers, and desktop 
computers, all the way up to multiple-monitor and wall-size displays. A technique that works well on a 
desktop computer, such as a pull-down menu, may be awkward on a small handheld device or even unus-
able on a wall-size display (where the top of the display may not even be within the user’s reach). Each class 
of device seems to raise unique challenges, and the best approach may ultimately be to design special-
purpose, appliance-like devices (see Want and Borriello [2000] for a survey) that suit specific purposes.

21.13.1  Small Displays

Users increasingly want to do more and more on handheld devices, mobile phones, pagers, and watches 
that offer less and less screen real estate. Researchers have investigated various strategies for conserving 
screen real estate. Transparent overlays allow divided attention between foreground and background 
layers (Harrison and Vicente, 1996; Harrison et al., 1995a,b; Kamba et al., 1996), but some degree of 
interference seems inevitable. This can be combined with sensing which elements of an interface are 
being used, such as presenting widgets on the screen only when the user is touching a pointing device 
(Hinckley and Sinclair, 1999). Researchers have also experimented with replacing graphical interfaces 
with graspable interfaces that respond to tilting, movement, and physical gestures that do not need 
constant on-screen representations (Fitzmaurice et  al., 1995; Harrison et  al., 1998; Hinckley et  al., 
2000; Rekimoto, 1996). Much research in focus plus context techniques, including fish-eye magnifi-
cation (Bederson, 2000) and zooming metaphors (Bederson et al., 1996; Perlin and Fox, 1993; Smith 
and Taivalsaari, 1999), has also been motivated by providing more space than the boundaries of the 
physical screen can provide. Researchers have started to identify principles and quantitative models to 
analyze the trade-offs between multiple views and zooming techniques (Baudisch et al., 2002; Plumlee 
and Ware, 2002). There has been considerable effort devoted to supporting web browsing in extremely 
limited screen space (Baudisch et al., 2004; Buyukkokten et al., 2001; Jones et al., 1999; Trevor et al., 
2001; Wobbrock et al., 2002).
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21.13.2  Multiple Displays

Researchers have recently recognized that some very interesting design issues arise when multiple displays 
are considered, rather than the traditional single display of desktop computers. Having multiple moni-
tors for a single computer is not like having one large display (Grudin, 2001). Users employ the boundary 
between displays to partition their tasks, with one monitor being reserved for a primary task and other 
monitors being used for secondary tasks. Secondary tasks may support the primary task (e.g., reference 
material, help files, or floating tool palettes), may provide peripheral awareness of ongoing events (such 
as an e-mail client), or may provide other background information (to-do lists, calendars, etc.). Switching 
between applications has a small time penalty (incurred once to switch and again to return), and perhaps 
more importantly, it may distract the user or force the user to remember information while switching 
between applications. Having additional screen space “with a dedicated purpose, always accessible with a 
glance” (Grudin, 2001), reduces these burdens (Czerwinski et al., 2003), and studies suggest that provid-
ing multiple, distinct foci for interaction may aid users’ memory and recall (Tan et al., 2001, 2002). Finally, 
small displays can be used in conjunction with larger displays (Myers et al., 1998, 2000; Rekimoto, 1998), 
with controls and private information on the small device and shared public information on the larger 
display. This shows how displays of different dimensions support completely different user activities and 
social conventions. It is also possible to dynamically join multiple displays for collaboration or to create a 
larger but temporary tiled display (Hinckley, 2003a,b; Tandler et al., 2001).

21.13.3  Large-Format Displays

Trends in display technology suggest that large-format displays will become increasingly affordable 
and common. A recent journal special issue includes numerous articles on implementing large-for-
mat displays using projection, application design for large displays, and specific application domains 
such as automotive design (Funkhouser and Li, 2000). Large displays often implicitly suggest multiple 
simultaneous users, with many applications revolving around collaboration (Funkhouser and Li, 2000; 
Swaminathan and Sato, 1997) and giving a large-scale physical presence to virtual activities (Buxton 
et al., 2000). To support input directly on whiteboard-size displays, researchers have explored gestural 
interaction techniques for pens or touch screens (Guimbretiere et al., 2001; Moran et al., 1997). Some 
technologies cannot handle more than one point of contact, so system developers must check this care-
fully if simultaneous use by multiple persons is desired. Large displays also seem to lend themselves to 
interaction at a distance, although using laser pointers to support such interaction (Myers et al., 2002; 
Olsen and Nielsen, 2001) has met with mixed success due to the lack of separation between tracking ver-
sus dragging states (Buxton, 1990b); using small handheld devices to interact with the full area of a large 
display also is problematic as the ratio of the display size to the control surface size may be very large 
(Myers et al., 1998). Environmentally situated ambient displays share some properties of large displays, 
but emphasize subtle presentation of information in the periphery of attention (Ishii and Ullmer, 1997; 
Wisneski et al., 1998). Large-format displays and virtual realities also share some design issues; see the 
taxonomy of Buxton and Fitzmaurice for further discussion (Buxton and Fitzmaurice, 1998).

Unless life-size viewing of large objects is necessary (Buxton et al., 2000), in general it is not yet clear 
what performance benefits a single large display may offer as compared to multiple monitors with the 
same screen area partitioned by bezels (Czerwinski et  al., 2003). One recent study suggests that the 
increased field of view afforded by large-format displays can lead to improved 3D navigation perfor-
mance, especially for women (Czerwinski et al., 2002).

21.14  Force and Tactile Displays

Haptic feedback research has sought to provide an additional channel of sensory feedback by synthesiz-
ing forces on the skin of the operator. The touch sensation is extraordinarily complex.
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In fact, the sense of “touch” is a very imprecise term: it includes an amalgamation of multiple sensory 
systems, including sensitivity to pressure, small shear forces in the skin, heat and cold, pain, kinesthesis 
and proprioception, and the vestibular system (Burdea, 1996; MacKenzie and Iberall, 1994).

There appears to be no physical means by which a complex tactile stimulus can be delivered except in 
a very localized way. As a result, most haptic feedback devices are limited to simulation of a single point 
of contact, analogous to feeling the world with the tip of a pencil, although a few examples of whole-
hand force feedback devices exist (Burdea, 1996; Iwata, 1990). Efforts in haptic feedback include force 
feedback (active presentation of forces to the user) and tactile feedback (active presentation of vibrotac-
tile stimuli to the user). Haptic feedback is popular for gaming devices, such as force feedback steer-
ing wheels and joysticks, but general-purpose pointing devices with force or tactile feedback remain 
uncommon. For a comprehensive discussion of force and tactile feedback technologies and techniques, 
as well as perceptual properties of the skin and joints, see Burdea (1996).

Adding force feedback to a mouse or stylus may impose constraints on the mechanical design, since 
a physical linkage is typically needed to reflect true forces. This may prevent a force feedback mouse 
from functioning like a traditional mouse, as it may limit range of motion or preclude clutching by 
lifting the device. Some devices instead increase resistance between the mouse and the pad, but this 
prevents simulation of hard contact forces. One can also use a vibrotactile stimulus, such as a vibrat-
ing pin under the mouse button or a vibrating shaft of an isometric joystick (Campbell et al., 1999). 
Combination devices have also been explored (Akamatsu and MacKenzie, 1996). Vibrotactile feedback 
seems especially promising for small mobile devices, for example, to provide the user with feedback 
of command recognition when the user’s attention may not be focused on the screen (Poupyrev et al., 
2002). Applications for remote controls and augmented handles also look promising (MacLean et al., 
2000; Snibbe and MacLean, 2001).

Using force feedback to provide attractive forces that pull the user toward a target, or tactile feed-
back to provide additional feedback for the boundaries of the target, has been found to yield modest 
speed improvements in some target acquisition experiments, although error rates may also increase 
(Akamatsu and MacKenzie, 1996; MacKenzie, 1995). However, there have been almost no published 
studies for tasks where multiple targets are present, as on a computer screen with many icons and menus. 
Haptic feedback for one target may interfere with the selection of another, unless one uses techniques 
such as reducing the haptic forces during rapid motion (Oakley et al., 2001). Finally, one should also 
consider whether software constraints, such as snap to grids, are sufficient to support the user’s tasks.

The construction of force output devices is extremely technically demanding. They must be stiff in 
order to be able to create the sensation of solid contact, yet light so that they have little inertia them-
selves, and there must be a tight loop between input (position) and output (force). Sigoma (1993) has 
suggested that having this loop iterated at 5 kHz may be necessary for optimal fine motor control. It 
has been shown that force feedback improves performance in certain telerobotic applications when, for 
example, inserting a peg into a hole (Sheridan, 1992). The most promising applications of force output 
seem to appear in domains where simulation of force is essential, such as surgical simulation and telero-
botics (Burdea, 1996).

Another fundamental challenge for haptic feedback techniques results from the interaction between 
the haptic and visual channels. Visual dominance deals with phenomena resulting from the tendency 
for vision to dominate other modalities (Wickens, 1992). Campbell et al. (1999) show that tactile feed-
back improves steering through a narrow tunnel, but only if the visual texture matches the tactile tex-
ture; otherwise, tactile feedback harms performance.

21.15 A uditory Displays

Here, we consider computer-generated auditory feedback. Speech audio can consist of synthesized or 
recorded speech. All other audio feedback is known as nonspeech audio. With stereo speakers or a ste-
reo headset, either type of audio can be presented such that it seems to come from a specific 3D location 
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around the user, known as spatialized audio. For speech input and technology-mediated human–human 
communication applications that treat stored voice as data, see Section 21.8.1.

21.15.1  Nonspeech Audio

Nonspeech auditory feedback is prevalent in video games but largely absent from other interaction 
with computing devices. Providing an auditory echo of the visual interface has little or no practical 
utility and may annoy users. Audio should be reserved to communicate simple, short messages that 
complement visual feedback (if any). Furthermore, one or more of the following conditions should hold: 
the message should (1) deal with events in time, (2) call for immediate action, or (3) take place when the 
user’s visual attention may be overburdened or directed elsewhere (Buxton, 1995b; Deatherage, 1972). 
For example, researchers have attempted to enhance scrollbars using audio feedback (Brewster et al., 
1994). However, the meaning of such sounds may not be clear. Gaver advocates ecological sounds that 
resemble real-world events with an analogous meaning. For example, an empty disc drive might sound 
like a hollow metal container (Gaver, 1989). If a long or complex message must be delivered using audio, 
it will likely be quicker and clearer to deliver it using speech output. Audio feedback may be crucial to 
support tasks or functionality on mobile devices that must take place when the user is not looking at the 
display (for some examples, see Hinckley et al., 2000).

Nonspeech sounds can be especially useful for attracting the attention of the user. Auditory alert-
ing cues have been shown to work well, but only in environments where there is low auditory clutter. 
However, the number of simple nonspeech alerting signals is limited, and this can easily result in mis-
identification or cause signals to mask one another. An analysis of sound signals in fighter aircraft (Doll 
and Folds, 1985) found that the ground proximity warning and the angle-of-attack warning on an F16 
were both an 800 Hz tone, a dangerous confound since these conditions require opposite responses 
from the pilot. It can also be difficult to devise nonspeech audio events that convey information without 
provoking an alerting response that unnecessarily interrupts the user. For example, this design tension 
arises when considering nonspeech audio cues that convey various properties of an incoming e-mail 
message (Hudson and Smith, 1996; Sawhney and Schmandt, 2000).

21.15.2  Speech Output

Speech auditory output is generally delivered through either recorded speech segments or completely 
synthetic speech (also known as text-to-speech technology). There has been considerable interest, 
especially for military applications, in the use of speech in providing warnings to the operators of 
complex systems. Speech can provide information to direct the operator’s attention in a way that 
alarms cannot (since an unfamiliar alarm simply indicates a problem, without telling the user the 
nature or context of the problem). Synthetic speech is most useful where visual information is not 
available, for example, in touch-tone phone menu systems or in screen reader software for blind or 
low-vision users. Although progress is being made, synthetic voices still sound somewhat unnatural 
and may be more difficult for users to understand. Recorded speech is often used to give applications, 
particularly games, a more personal feel, but can only be used for a limited number of responses 
known in advance.

The rate at which words must be produced to sound natural is a narrow range. For warning messages, 
178 words per minute is intelligible but hurried, 123 words per minute is distracting and irritatingly 
slow, and a more natural rate of 156 words per minute is preferred (Simpson and Marchionda-Frost, 
1984). The playback rate of speech can be increased by overlapping samples in time such that one sample 
is presented to one ear and another sample to the other ear. Technologies to correct for pitch distortions 
and remove pauses have also been developed (Arons, 1993; Sawhney and Schmandt, 2000; Stifelman, 
1996). It is recommended by the US Air Force that synthetic speech be 10 dB above ambient noise levels 
(Stokes et al., 1990).



21-31Input/Output Devices and Interaction Techniques

21.15.3  Spatialized Audio Displays

It is possible to synthesize spatially localized sounds with a quality such that spatial localization in the 
virtual space is almost as good as localization of sounds in the natural environment (Wenzel, 1992). 
Auditory localization appears to be primarily a 2D phenomenon, that is, observers can localize in hori-
zontal position (azimuth) and elevation angle to some degree of accuracy. Azimuth and elevation accu-
racies are of the order of 15°. As a practical consequence this means that sound localization is of little use 
in identifying sources in conventional screen displays. Where localized sounds are really useful is in pro-
viding an orienting cue or warning about events occurring behind the user, outside of the field of vision.

There is also a well-known phenomenon called visual capture of sound. Given a sound and an appar-
ent visual source for the sound, for example, a talking face on a cinema screen, the sound is perceived to 
come from the source despite the fact that the actual source may be off to one side. Thus, visual localiza-
tion tends to dominate auditory localization when both kinds of cues are present.

21.16  Future Directions

The future of interaction with computers will both be very different and very much like it is today. Some 
of our current tools, such as mice and keyboards, have evolved to suit interaction with desktop GUIs and 
rapid text entry. As long as users’ work continues to involve tasks such as calculating budgets, writing 
reports, looking up citations, exchanging memos, and other knowledge worker tasks that seem to lend 
themselves to solution using desktop computers, we will continue to see mice and keyboards in use, not 
only because they are familiar but also because they closely match human skills and the requirements 
of the tasks. Devising new techniques that provide more efficient pointing at a desktop display than a 
mouse, for example, is difficult to achieve (Card et al., 1978). Speech recognition will allow new types of 
interaction and may enable interaction where it previously has been difficult or infeasible. However, even 
as technical limitations are removed, speech interaction will not replace all forms of interaction: we will 
continue to interact with computers using our hands and physical intermediaries, not necessarily because 
our technology requires us to do so but because touching, holding, and moving physical objects is the 
foundation of the long evolution of tool use in the human species (Wilson, 1998).

But our computers and the tasks they serve are rapidly evolving. Current handheld devices have 
the display and computational capabilities of common desktop machines from several years ago. 
What is lacking are new methods of interacting with such devices that uniquely suit mobile inter-
action, rather than derivatives of the desktop interface. Researchers are still actively exploring and 
debating the best ways to achieve this. Meanwhile, technology advances and economic trends con-
tinue to drive the cost of commodity displays lower and lower, while the limits of the technology 
continue to increase. Thus, we will continue to see new innovations in both very small and very large 
displays, and as these become commonplace, new forms of interaction will become prevalent. Very 
small displays invariably seem to be incorporated into input/output appliances such as watches, pag-
ers, and handheld devices, so interaction techniques for very small form factors will become increas-
ingly important.

The Internet and wireless networking seem to be the main disruptive technologies of the current 
era. Indeed, it seems likely that 100 years from now the phrase “wireless network” will seem every 
bit as antiquated as the phrase “horseless carriage” does today. Nobody really understands yet what it 
will mean for everything and everyone to be connected, but many researchers are working to explore 
the vision of ubiquitous computing originally laid out by Weiser (1991). Techniques that allow users 
to communicate and share information will become increasingly important. Biometric sensors or 
other convenient means for establishing identity will make services such as personalization of the 
interface and sharing data much simpler (Rekimoto, 1997; Sugiura and Koseki, 1998; Westeyn et al., 
2005). Techniques that combine dissimilar input devices and displays in interesting ways also will 
be important to realize the full potential of these technologies (e.g., Myers et al., 2001; Streitz et al., 
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1999). Electronic tagging techniques for identifying objects (Want et al., 1999) may also become com-
monplace. Such a diversity of locations, users, and task contexts points to the increasing importance 
of sensors to acquire contextual information, as well as machine learning techniques to interpret them 
and infer meaningful actions (Bellotti et al., 2002; Buxton, 1995a; Hinckley et al., 2003). This may well 
lead to an age of ubiquitous sensors (Saffo, 1997) with devices that can see, feel, and hear through digital 
perceptual mechanisms.

Key Terms

Absolute input device: An input device that reports its actual position, rather than relative movement. 
A tablet or touch screen typically operates this way (see also relative input device).

Acquisition time: The average time to pick up or put down an input device. It is sometimes known as 
homing time.

Anti-aliasing: The specification of pixel color values so that they reflect the correct proportions of the 
colored regions that contribute to that pixel. In temporal anti-aliasing the amount of time a 
region of a simulated scene contributes to a pixel is also taken into account.

Augmented reality: The superimposition of artificially generated graphical elements on objects in the 
environment. It is achieved with a see-through head-mounted display.

Background sensing techniques: Implicitly sensed interaction takes place in the background, behind 
the fore of the user’s attention. Background sensing techniques use sensor technology or 
intelligent algorithms to glean additional, typically neglected, information from the existing 
input stream, with the goal of supporting the user with semiautomatic or implicit actions and 
services.

Cognitive chunk: A series of elemental tasks that seems like a single concept to the user. For example, 
users think of pointing at something as a single chunk, but from a technical perspective it may 
consist of selecting an (X, Y, Z) coordinate in a 3D environment. By using technologies and 
interaction metaphors that parallel the way the user thinks about a task as closely as possible, 
the designer can phrase together a series of elemental tasks into a single cognitive chunk.

Compound tasks: A compound task is a hierarchy of elemental subtasks. For example, the navigate/
select compound task consists of scrolling to view an item in a list and then clicking on it to 
select it. When interacting with a graphical scrollbar, scrolling itself may be a compound task 
with multiple selection or positioning tasks.

C:D ratio: The ratio between the movement a user must make with an input device and the resulting 
movement obtained on the display. With a large C:D ratio, a large movement is required to 
effect a small change on the display, affording greater precision. A low ratio allows more rapid 
operation and takes less desk space. The C:D ratio is sometimes expressed as a single number, 
in which case it is referred to as the device gain. Note that many experts have criticized gain 
as a fundamental concept; one must take great care when manipulating gain in experiments, 
since it confounds display size and control size in one arbitrary metric.

Direct input device: A device that the user operates directly on the screen or other display to be con-
trolled, such as a touch screen (see also indirect input device).

Fish tank virtual reality: A form of virtual reality display that confines the virtual scene to the vicinity 
of a monitor screen.

Fitts’ law: A model that relates the movement time to point at a target, the amplitude of the move-
ment (the distance to the target), and the width of the target (i.e., the precision requirement of 
the pointing movement). The movement time is proportional to the logarithm of the distance 
divided by the target width, with constant terms that vary from one device to another. Fitts’ 
law has found wide application in HCI to evaluating and comparing input devices and transfer 
functions for pointing at targets.
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Flicker fusion frequency: The frequency at which a flickering light is perceived as a steady illumination. 
It is useful in determining the requirements for a visual display.

Footprint: The physical movement space (area) required to operate an input device.
Fovea: The central part of the retina at which vision is the sharpest, about 2° of visual angle in 

diameter.
Gamma correction: The correction of nonlinearities of a monitor so that it is possible to specify a color 

in linear coordinates.
Indirect input device: A device that the user operates by moving a control that is located away from 

the screen or other display to be controlled, such as a mouse or trackball (see also direct input 
device).

Input device: A hardware computer peripheral through which the user interacts with the computer.
Interaction task: A low-level primitive input to be obtained from the user, such as entering a text string 

or choosing a command.
Interaction technique: The fusion of input and output, consisting of all hardware and software ele-

ments, that provides a particular way for the user to accomplish a low-level task with a physical 
input device. For example, the pop-up menu is an interaction technique for choosing a com-
mand or other item from a small set, using a mouse and a graphical display.

Lambertian diffuser: A diffuser that spreads incoming light equally in all directions.
Latency: The end-to-end delay between the user’s physical movement and the system’s ultimate feed-

back to the user. Latency of more than 75–100 ms significantly impairs user performance for 
many interactive tasks.

Luminance: The standard way of defining an amount of light. This measure takes into account the rela-
tive sensitivities of the human eye to light of different wavelengths.

Preattentive processing: Visual stimuli that are processed at an early stage in the visual system in paral-
lel. This processing is done prior to processing by the mechanisms of visual attention.

Refresh rate: The rate at which a computer monitor is redrawn. It is sometimes different from the 
update rate.

Relative input device: An input device that reports its distance and direction of movement each time 
it is moved, but cannot report its absolute position. A mouse operates this way (see absolute 
input device).

Screen gain: A measure of the amount by which a projection video screen reflects light in a preferred 
direction. The purpose is to give brighter images if viewed from certain positions. There is a 
corresponding loss in brightness from other viewing positions.

Superacuities: The ability to perceive visual effects with a resolution that is finer than can be predicted 
from the spacing of receptors in the human eye.

Three-state model: A model for the discrete states of input devices that models transitions between 
three states: tracking, dragging, and out of range. Most input devices only sense two of these 
three states (e.g., a mouse senses tracking and dragging, whereas a touchpad senses tracking 
and the out-of-range state).

Transfer function. A mathematical transformation that scales the data from an input device to ide-
ally provide smooth, efficient, and intuitive operation. Appropriate mappings are transfer 
functions that match the physical properties sensed by the input device and include force-
to-velocity, position-to-position, and velocity-to-velocity functions.

Uniform color space: A transformation of a color specification such that equal metric differences 
between colors more closely correspond to equal perceptual differences.

Update rate: The rate at which the image on a computer monitor is changed.
Virtual reality: A method of monitoring a user’s head position and creating a perceptive view of an arti-

ficial world that changes as the user moves, in such a way as to simulate an illusory 3D scene.
Visual acuity: The ability of the human visual system to resolve fine targets.
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22.1  Introduction

In previous chapters, the reader should have become familiar with the basics of instruction set architec-
ture and datapath and control unit design. Knowledge of these principles is sufficient to understand the 
essentials of central processing unit (CPU) architecture and implementation and, given some effort, to 
generate the logical design for a complete, usable CPU. Decades ago, purely sequential, von Neumann 
architecture processors were commercially viable. To succeed in today’s marketplace, however, a pro-
cessor (and the system containing it) must not only work correctly but must perform extremely well 
on the application(s) of interest. This chapter is devoted to exploring various implementation tech-
niques that computer manufacturers have adopted in order to achieve the goal of making their CPU 
process information as rapidly as possible. The basis of virtually all of these techniques, which we shall 
shortly introduce, is known as pipelining. Essentially all high-performance computers utilize some form 
of pipelining.

Implementation technologies used to manufacture computer components change rapidly over time. 
For decades, transistors (which make up the most basic binary switching elements) have become smaller 
and faster; circuits that were considered blindingly fast 4 or 5 years ago are hopelessly slow today and 
will be completely obsolete that far, or less, in the future. Over the history of computing devices, tech-
nology has always improved and continues to improve—though at some point, Moore’s law must expire 
as we approach the ultimate physical limits [1]. Where will more speed come from when we have switch-
ing elements close to the size of individual atoms, with signal propagation over such tiny distances still 
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limited by the velocity of light? Perhaps the unique approach of quantum computing will allow us to 
do much more than is currently thought possible within the limits of conventional physics. Only time 
will tell where new innovations in technology will take us, as designers and users of computer systems.

What is always true is that at any given time, be it 1955 or 1981 or 2013, computer manufacturers 
could, and can, only make a given piece of hardware so fast using available technology. What if that is 
not fast enough to suit our purposes? Then we must augment technology with clever design. If a given 
hardware component is not fast enough to do the work we need to do in the time we have to allow, we 
build faster hardware if we can, but if we cannot, we build more hardware and divide the problem. This 
approach is known as parallelism or concurrency. We can achieve concurrency within a single processor 
core and/or by using multiple processors in a system (either in the form of a multicore chip, multiple 
CPU chips in a system, or both). The former approach—concurrency within one core—is the subject of 
the rest of this chapter; the latter will be addressed in Chapters 23 and 24 on multiprocessing.

22.2  Underlying Principles

22.2.1  Limitations of Purely Sequential Processors

The original digital computers, and their successors for a number of years, were all serial (sequential) 
processors not only in their architecture but also in their implementation. Not only did they appear 
to execute only one instruction at a time, as the von Neumann model suggests, but they actually did 
execute only one instruction at a time. Each machine instruction was processed completely before the 
next one was started. This sequential execution property allowed the processor’s control unit, whether 
hardwired or microprogrammed, to be kept relatively simple as it only has to generate the control sig-
nals for one instruction at a time.

The sequential execution approach that forms the basis of the von Neumann machine cycle is very 
effective as well as simple, but it has one obvious flaw: it does not make very efficient use of the hard-
ware. In a typical architecture, executing a single machine instruction requires several steps: fetch the 
instruction from memory, decode it, retrieve its operands, perform the operation it specifies, and store 
its result. (Somewhat different breakdowns of the machine cycle are possible, but this will suffice for 
discussion.) If the machine processes one instruction at a time, what is the arithmetic/logic unit (ALU) 
doing while the instruction (or an operand) is being fetched? Probably nothing. What work are the 
instruction decoder, memory address register, memory data register, and various other parts of the CPU 
accomplishing while the ALU is busy performing a computation? Probably none.

For the most efficient use of all the system components in which we have invested design time, chip 
area, electrical power, and other valuable resources, we would ideally like to keep all of these compo-
nents as busy as possible as much of the time as possible. A component that is unused part of the time is 
not giving us our money’s worth; designers should search for a way to make more use of it. Conversely, 
a component that is overused (needed more often than it is available) creates a structural hazard; it will 
often have other components waiting on it and will thus become a bottleneck, slowing down the entire 
system [2]. Designers may need to replicate such a component to improve throughput. The art of design-
ing a modern processor involves balancing the workload on all the parts of the CPU such that they 
are kept busy doing useful work as much of the time as possible without any of them “clogging up the 
works” and making the other parts wait. As the reader might expect, this “balancing act” is not a trivial 
exercise. Pipelining, which we are about to investigate, is an essential technique for helping bring about 
this needed balance.

22.2.2  Basic Concepts of Pipelining

Pipelining, in its most basic form, means breaking up a task into smaller subtasks and overlapping the 
performance of those subtasks for different instances of the task. (The same concept, when applied to 
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the manufacture of automobiles or other objects, is called an assembly line.) Or, to use terms more 
specifically related to computing, pipelining means dividing a computational operation into steps and 
overlapping those steps over successive computations. This approach, while much more common in 
today’s computers than it was 20 or 30 years ago, is hardly new. The first use of pipelining in computers 
dates back to the International Business Machines (IBM) Stretch and Univac LARC machines of the late 
1950s [3]. Pipelining, as we shall see, improves the performance of a processor in much the same way 
that low-order interleaving can improve the performance of main memory while being subject to many 
of the same considerations and limitations.

To understand how pipelining works, consider a task that can be broken down into three parts, per-
formed sequentially. Let us refer to these parts as step 1, step 2, and step 3 (see Figure 22.1). The time 
taken to perform step 1 is represented as t1, while t2 and t3 represent the times required to perform steps 
2 and 3. Since the three steps (subtasks) are performed sequentially, the total time to perform the task 
is of course given by

	 tTASK = t1 + t2 + t3

Without pipelining, the time to perform three iterations of this task is 3 * tTASK, while the time to per-
form fifty iterations is 50 * tTASK. The time required is directly proportional to the number of iterations 
to be performed; there is no advantage to be gained by repeated performance of the task.

Now, suppose that we separate the hardware that performs steps 1, 2, and 3 in such a way that it is pos-
sible for them to work independently of each other. (We shall shortly see how this can be accomplished 
in computer hardware.) Figure 22.2 illustrates this concept. We begin the first iteration of the task by 
providing its inputs to the hardware that performs step 1 (call this stage 1). After t1 seconds, step 1 (for 
the first iteration of the task) is done, and the results are passed along to stage 2 for the performance of 
step 2. Meanwhile, we provide the second set of inputs to stage 1 and begin the second iteration of the 
task before the first iteration is finished. When stage 2 is finished processing the first iteration and stage 1 
is finished processing the second iteration, the outputs from stage 2 are passed to stage 3, and the outputs 
from stage 1 are passed to stage 2. Stage 1 is then provided a new, third set of inputs—again, before the 
first and second iterations are finished. At this point, the pipeline is full; all three stages are busy work-
ing on something. When all are done this time, iteration 1 is complete, iteration 2 moves to stage 3, itera-
tion 3 moves to stage 2, and the fourth iteration is initiated in stage 1. This process can continue as long 
as we have more iterations of the task to perform. All stages will remain busy until the last task iteration 
leaves stage 1 and eventually “drains” from the pipeline (completes through all the remaining stages).

Obviously, this approach works best if the three stage times t1, t2, and t3 are all equal to tTASK/3. Let us 
refer to this as the stage time tSTAGE. If t1, t2, and t3 are not all equal, then tSTAGE must be set equal to the 
greatest of the three values; in other words, we cannot advance the results of one stage to the next until 
the slowest stage completes its work. If we try to make tSTAGE smaller than that, at least one of the stages 
will be given new inputs before it finishes processing its current inputs and the process will break down 
(generate incorrect results).

Step 1

tTASK

Iteration 1 Iteration 2 Iteration 3

Step 2 Step 2 Step 2

t1 t2 t3

Step 3 Step 3 Step 3Step 1 Step 1

3 iterations require 3 * tTASK

FIGURE 22.1  Subdividing a task into sequential subtasks. (From Dumas II, J.D., Computer Architecture: 
Fundamentals and Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.1.)
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22.2.3  Performance Implications of Pipelining

What are the performance implications of this pipelined (or assembly line) approach? It should be 
obvious that pipelining does nothing to enhance the performance of a single computation. A single 
iteration of the task still requires at least tTASK seconds. In fact, it may take somewhat longer if the 
stage times are mismatched (we know that 3 * tSTAGE ≥ t1 + t2 + t3). The performance advantage occurs 
only if we perform two or more successive iterations of the task. While the first iteration takes just 
as long as ever (or perhaps slightly longer), the second and all subsequent iterations are completed 
in one additional tSTAGE each, rather than the 3 * tSTAGE taken by the first iteration. Two iterations 
can be completed in 4 * tSTAGE, three iterations in 5 * tSTAGE, four in 6 * tSTAGE, and so on. In general, 
we can define the time taken to perform n iterations of the task using this three-stage pipeline as

	 tTOTAL = [3 * tSTAGE] + [(n − 1) * tSTAGE] = [(n + 2) * tSTAGE]

If tSTAGE is equal (or even reasonably close) to tTASK/3, then a substantial speedup is possible versus the 
nonpipelined case; larger values of n lead to a greater advantage for the pipelined implementation. Let 
us suppose for the sake of simplicity that there is no hardware overhead (we will address this topic later) 
and that tSTAGE equals 1 ns and tTASK equals 3 ns. Five iterations of the task would take (5 * 3) = 15 ns 
without pipelining but only (7 * 1) = 7 ns using the pipelined approach. The speed ratio in this case is 
2.143 to 1 in favor of pipelining. If we consider ten consecutive iterations, the total times required are 
30 ns (nonpipelined) versus 12 ns (pipelined), with pipelining yielding a speedup factor of 2.5. For fifty 
iterations, the numbers are 150 and 52 ns, respectively, for a speedup of 2.885. In the limit, as n grows 
very large, the speedup factor of the pipelined implementation versus the nonpipelined implementation 
approaches 3, which is—not coincidentally—the number of stages in the pipe.

Most generally, for a pipeline of s stages processing n iterations of a task, the time taken to complete 
all the iterations may be expressed as

	 tTOTAL = [s * tSTAGE] + [(n − 1) * tSTAGE] = [(s + n − 1) * tSTAGE]

Step 1

tSTAGE

Step 2

Step 1

Step 3

Step 2

Step 2Step 1

Iteration 1

Iteration 2

Iteration 3

Step 3

Step 3

FIGURE 22.2  Basic pipelining concept. (From Dumas II, J.D., Computer Architecture: Fundamentals and 
Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.2.)



22-5Performance Enhancements

The [s * tSTAGE] term represents the flow-through time, which is the time for the first result to be com-
pleted; the [(n − 1) * tSTAGE] term is the time required for the remaining results to emerge from the pipe. 
The time taken for the same number of iterations without pipelining is n * tTASK. In the ideal case of a 
perfectly balanced pipeline (in which all stages take the same time), tTASK = s * tSTAGE and so the total 
time for the nonpipelined implementation would be n * s * tSTAGE. The best-case speedup obtainable 
by using an s-stage pipeline would thus be (n * s)/(n + s − 1), which, as n becomes large, approaches s 
as a limit.

From this analysis, it would appear that the more stages into which we subdivide a task, the better. 
This does not turn out to be the case for several reasons. First of all, it is generally only possible to break 
down a given task so far. (In other words, there is only so much granularity inherent in the task.) When 
each stage of the pipeline represents only a single level of logic gates, how can one further subdivide 
operations? The amount of logic required to perform a given task thus places a fundamental limitation 
on the depth of (number of stages in) a pipelined implementation of that task.

Another limiting factor is the number of consecutive, uninterrupted iterations of the task that are 
likely to occur. For example, it makes little sense to build a ten-stage multiplication pipeline if the num-
ber of multiplications to be done in sequence rarely exceeds 10. One would spend most of the time fill-
ing and draining the pipeline—in other words, with less than the total number of stages doing useful 
work. Pipelines only improve performance significantly if they can be kept full for a reasonable length 
of time. Or, mathematically speaking, achieving a speedup factor approaching s (the number of pipeline 
stages) depends on n (the number of consecutive iterations being processed) being large, where “large” 
is defined relative to s. “Deep” pipelines, which implement a fine-grained decomposition of a task, only 
perform well on long, uninterrupted sequences of task iterations.

Yet another factor that limits the speedup that can be achieved by subdividing a task into smaller sub-
tasks is the reality of hardware implementation, which always incurs some overhead. Specifically, con-
structing a pipeline with actual hardware requires the use of a pipeline register (a parallel-in, parallel-out 
storage register comprised of a set of flip-flops or latches) to separate the combinational logic used in 
each stage from that of the following stage (see Figure 22.3 for an illustration). The pipeline registers 
effectively isolate the outputs of one stage from the inputs of the next, advancing them only when a clock 
pulse is received; this prevents one stage from interfering with the operation of those preceding and/or 
following it. The same clock signal is connected to all the pipeline registers so that the outputs of each 
stage are transferred to the inputs of the next simultaneously.

Of course, each pipeline register has a cost of implementation: it consumes a certain amount of power, 
takes up a certain amount of chip area, etc. Also, the pipeline registers have finite propagation delays 
that add to the propagation delay of each stage; this reduces the performance of the pipeline somewhat, 
compared to the ideal, theoretical case. The clock cycle time tC of the pipeline can be no smaller than 
tSTAGE (the longest of the individual stage logic delays) plus tR (the delay of a pipeline register). The reg-
ister delays represent an extra cost or “overhead factor” that takes away somewhat from the advantage 
of a pipelined implementation. If tR is small compared to tSTAGE, as is usually the case, the pipeline will 
perform close to theoretical limits and certainly much better than a single-stage (purely combinational) 
implementation of the same task. If we try to divide the task into very small steps, though, tSTAGE may 
become comparable to, or even smaller than, tR, significantly reducing the advantage of pipelining. 
We cannot make tC smaller than tR no matter how finely we subdivide the task. (Put another way, the 
maximum clock frequency of the pipeline is limited to 1/tR even if the stages do no work at all!) Thus, 
there is a point of diminishing returns beyond which it makes little sense to deepen the pipeline. The 
“best” design would probably be one with a number of stages that maximizes the ratio of performance 
to cost, where cost may be measured not so much in dollars as in terms of chip area, transistor count, 
wire length, power dissipation, and/or other factors.

CPU pipelines generally fall into one of two categories: arithmetic pipelines or instruction-unit 
pipelines. Arithmetic pipelines are generally found in vector supercomputers, where the same numeri-
cal (usually floating-point) computation(s) must be done to many values in succession. Vector machines 
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are a dying breed, though; while in June 1993, approximately 65% of the world’s top 500 supercomputers 
used a vector architecture, by November 2007, that figure had dropped to less than 1%, where it remains. 
(The highest-ranked vector supercomputer remaining on the list is Japan’s Earth Simulator 2, an NEC 
SX-9/E system that debuted at number 22 in June 2009 but had dropped to 94th place by November 2011 
and all the way to 217th by November 2012 [4].) By contrast, instruction-unit pipelines, which are used 
to execute a variety of scalar instructions at high speed, are found in practically all modern general-
purpose processors—including those used in most high-performance, massively parallel systems. Thus, 
the following sections will concentrate on techniques used in pipelined instruction execution units.

22.3  Impact on Practice

22.3.1  Instruction-Unit Pipelines

Instruction-unit pipelines are pipelines that are used to execute a machine’s scalar instruction set (the 
instructions that operate on only one or two individual operands to produce a single result—these make 
up most, if not all, of the instruction set of a typical general-purpose machine). As we discussed in 
Section 22.2.1, the execution of each machine instruction can be broken into several steps. Often, par-
ticularly in a machine that has simple instructions, most of these steps are the same for many (possibly 
most or all) of the instructions. For example, all of the computational instructions may be done with 
the same sequence of steps, with the only difference being the operation requested of the ALU once 
the operands are present. With some effort, the data transfer and control transfer instructions may 
also be implemented with the same or a very similar sequence of steps. If most or all of the machine’s 

Stage 3 logic

Stage 2 logic

Stage 1 logic

Register

RegisterClock

Register

Input

tC = tSTAGE + tR

Output

FIGURE 22.3  Pipeline construction showing pipeline registers. (From Dumas II, J.D., Computer Architecture: 
Fundamentals and Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.3.)
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instructions can be accomplished with a similar number and type of steps, it is relatively easy to pipeline 
the execution of those steps and thus improve the machine’s performance considerably versus a com-
pletely sequential design.

22.3.2  Basics of an Instruction Pipeline

The basic concept flows from the principles that were introduced at the beginning of Section 22.2.2. 
Pipelining as we defined it means breaking up a computational task into smaller subtasks and overlap-
ping the performance of those subtasks for different instances of the task. In this case, the basic task is 
the execution of a generic, scalar instruction, and the subtasks correspond to subdivisions of the von 
Neumann execution cycle, which the machine must perform in order to execute it. The von Neumann 
cycle may be broken into more or fewer steps depending on the designer’s preference and the amount 
of logic required for each step. (Remember that for best pipelined performance, the overall logic delay 
should be divided as equally as possible among the stages.) As an example, let us consider a simple 
instruction-unit pipeline with four stages, as follows:

F—Fetch instruction from memory.
D—Decode instruction and obtain operand(s).
E—Execute required operation on operand(s).
W—Write result of operation to destination.

A sequential (purely von Neumann) processor would perform these four steps, one at a time, for a given 
instruction, then go back and perform them one at a time for the next instruction, and so on. If each 
step required one CPU clock cycle, then each machine instruction would require four clock cycles. Two 
instructions would require 8 cycles, three would require 12 cycles, etc. As we noted previously, this 
approach is effective but slow and does not make very efficient use of the hardware.

In an instruction-pipelined processor, we break down the required hardware into smaller pieces, 
separated by pipeline registers as described previously. Our example divides the hardware into four 
stages as shown in Figure 22.4. By splitting the hardware into four stages, we can overlap the execu-
tion of up to four instructions simultaneously. As Table 22.1 shows, we begin by fetching instruction I1 
during the first time step t0. During the next time step (t1), I1 moves on to the decoding/operand fetch 
stage, while simultaneously instruction I2 is being fetched by the first stage. Then during step t2, I1 is in 
the execute (E) stage, while I2 is in the D stage, and I3 is being fetched by the F stage. During step t3, I1 
moves to the final stage (W), while I2 is in E, I3 is in D, and I4 is in F. This process continues indefinitely 
for subsequent instructions.

As in the nonpipelined case, it still takes four clock cycles to execute the first instruction I1. However, 
because of the overlap of operations in the pipeline, I2 completes one clock cycle later, I3 completes one 
cycle after that, and likewise for subsequent instructions. Once the pipeline is full, we achieve a steady-
state throughput of one instruction per clock cycle (IPC), rather than one instruction per four cycles as 
in the nonpipelined case. Thus, in the ideal case, the machine’s performance may increase by nearly a 
factor of four.

Of course, the ideal case is not always the way things work out in the real world. It appears from an 
initial examination that we can easily achieve a pipeline throughput of one instruction per cycle. (This 
was the goal of the original reduced instruction set computer [RISC] designers [5] and of course is the 
goal of any pipelined processor design.) However, a sustained throughput of 1.0 instruction per cycle 
is never attainable in practice using a single instruction pipeline (although in some cases we can come 
fairly close). Why not? For the same reason, we can never achieve maximum throughput in an arithme-
tic or any other type of pipeline: something happens to “break the chain” or temporarily interrupt the 
operation of the pipeline. For a vector arithmetic pipeline, this might result from having to change a 
dynamic pipeline to another configuration or simply reaching the end of the current vector computation 
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(i.e., running out of operands). Anytime we miss initiating a new operation into the pipe for even a 
single cycle, we will correspondingly miss completing one operation per cycle at some later time and 
thus not average performing one operation per cycle.

Neither of the previous scenarios applies directly to an instruction-unit pipeline. Though different 
instructions are executed, they all use the same sequence of steps; thus, the pipeline structure is not 
reconfigured. And of course the CPU is always executing some instructions! They may be part of a user 
program or the operating system; they may be computational instructions, data transfers, or even “no 
operation” (NOP) instructions, but the processor never stops executing instructions as long as it is “up.” 

From cache or
main memory

Stage 1
instruction

fetch (F)

Stage 2
instruction

decode/operand
fetch (D)

Stage 2
instruction

execution (E)

From registers, cache,
or main memory

Stage 4
write result (W)

To register, cache,
or main memory

FIGURE 22.4  Stages of a typical instruction pipeline. (From Dumas II, J.D., Computer Architecture: Fundamentals 
and Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.12.)

TABLE 22.1  Execution of Instructions in a 
Four-Stage Pipeline

t0 t1 t2 t3 t4 t5 t6

Stage 1 (F) I1 I2 I3 I4 I5 I6 I7

Stage 2 (D) I1 I2 I3 I4 I5 I6

Stage 3 (E) I1 I2 I3 I4 I5

Stage 4 (W) I1 I2 I3 I4
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(We are ignoring the special case of some embedded processors that have “sleep” or “standby” modes 
where they halt execution in order to save power.) So if these types of situations are not the problem, 
what can—and does—happen to hold up the operation of a pipelined instruction unit and keep it from 
achieving its theoretical throughput of one instruction per cycle? There are several possibilities that we 
shall explore later, but the most fundamental difficulty is the fact that execution of instructions is not 
always sequential.

22.3.3  Control Transfers and the Branch Penalty

It is control transfer instructions, which of course are very important to all practical programs, which 
cause the most obvious problem with respect to pipelined instruction execution. Pipelining instruc-
tions that are sequentially stored and sequentially executed is relatively easy, but sooner or later in 
any useful program, we must make a decision (based on data input or retrieved from memory or on 
the results of computations performed on data) as to what to do next. This decision-making process 
is typically done using a comparison and conditional branching technique. The program performs 
a comparison (or some other arithmetic or logic operations), and then a conditional branch instruc-
tion is executed. This branch tests some condition related to the operation just performed and either 
succeeds or fails based on whether or not the specified condition is true. A conditional branch that suc-
ceeds means that the next instruction executed is the one at the specified target address, while one that 
fails means that the next instruction executed is the next one in program sequence.

If it were possible to know in advance which of these events would occur, handling the situation 
would pose fewer problems for the pipelined instruction execution unit. But of course, if it were pos-
sible to always know ahead of time that a given branch would be taken or not, it would not have to be 
encoded as a branch! And in fact the CPU often (particularly in the case of program loops) encounters 
a particular branch repeatedly over time, where—depending on the particular data being processed—it 
may succeed on some occasions and fail on others. Conditional transfers of control are an unavoidable 
fact of life in the logic of useful programs built on the von Neumann execution model, and as we shall 
see, these control transfers do pose problems, known as control hazards, for pipelined execution of 
instructions [2].

The problems we encounter with branching stem from the obvious fact that a single pipeline can only 
process one sequence of instructions. There may indeed be only one sequence of instructions leading 
up to a given conditional branch, but there are always two possible sequences of instructions following 
it. There is the sequence of instructions immediately following the branch instruction in memory, to be 
executed if it fails, but there is also the sequence of instructions beginning at the branch target location 
in memory, to be executed if it succeeds. The pipeline can only process one of these sequences of instruc-
tions at a time—what if it is the wrong one?

If the pipeline control logic assumes that a given conditional branch will fail and begins working 
on the sequential instructions, and it turns out that the branch actually fails, then there is no problem 
and the pipeline can continue completing instructions at the rate of one per clock cycle. Likewise, if 
the pipeline logic successfully predicts that the branch will succeed and begins processing at the tar-
get location, the pipeline can be kept full or nearly so. (Depending on the pipeline structure and the 
memory interface, there may be a slight delay as instructions must be obtained from a different part of 
memory.) But in either of the other two cases, where a branch succeeds while sequential instructions 
have already started down the pipe or where a branch fails while the processor assumed it would be 
taken, there is a definite problem that will interrupt the completion of instructions—possibly for sev-
eral clock cycles.

When any given conditional branch instruction first enters a pipeline, the hardware has no way of 
knowing whether it will succeed or fail. Indeed, since the first stage of the pipeline always involves fetch-
ing the instruction from memory, the control unit would not even know at this point whether or not 
this instruction is a control transfer! That information is not available until the instruction is decoded 
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(in our example, this occurs in the second pipeline stage). And even once the instruction is identified 
as a conditional branch, it takes some time to check the appropriate condition and make the decision of 
whether or not the branch will succeed (and then to update the program counter with the target location 
if the branch does succeed). By this time, one, two, or more subsequent instructions, which may or may 
not be the correct ones, may have entered the pipe.

Table 22.2 illustrates a possible scenario where a branch that was assumed to fail instead happens to 
succeed. Assume that instruction I4 is a conditional branch that implements a small program loop; its 
target is I1, the top of the loop, while of course the sequential instruction I5 will be executed on comple-
tion of the loop. We do not know ahead of time how many times the loop will iterate before being exited; 
either I1 or I5 may follow I4 at any time.

Instruction I4 is fetched by the first pipeline stage during cycle t3. During the following cycle, t4, it 
is decoded while the pipeline is busy fetching the following instruction I5. Sometime before the end 
of cycle t4, the control unit determines that I4 is indeed a conditional branch, but it still has to test the 
branch condition. Let us assume that this does not happen until sometime during cycle t5, when the 
fetch of instruction I6 has begun. At this point, the control unit determines that the branch condition is 
true and loads the address of I1 into the program counter to cause the branch to take place. I1 will thus 
be fetched during the next clock cycle, t6, but by this time, two instructions (I5 and I6) are in the pipeline 
where they should not be. Allowing them to continue to completion would cause the program to gen-
erate incorrect results, so they are aborted or nullified by the control logic (meaning that the results of 
these two instructions are not written to their destinations). This cancellation of the incorrectly fetched 
instructions is known as “flushing” the pipeline [6]. While the correctness of program operation can be 
retained by nullifying the effects of I5 and I6, we can never recover the two clock cycles that were wasted 
in mistakenly attempting to process them. Thus, this branch has prevented the pipeline from achieving 
its maximum possible throughput of one IPC.

In this example, a successful conditional branch caused a delay of two clock cycles in processing 
instructions. This delay is known as the branch penalty [7]. Depending on the details of the instruction 
set architecture and the way it is implemented by the pipeline, the branch penalty for a given design 
might be greater or less than two clock cycles. In the best case, if the branch condition could be tested 
and the program counter modified in stage 2 (before the end of cycle t4 in our example), the branch 
penalty could be as small as one clock cycle. If determining the success of the branch, modifying the 
PC, and obtaining the first instruction from the target location took longer, the branch penalty might be 
three or even four cycles (the entire depth of the pipeline, meaning that its entire contents would have to 
be flushed). The number of lost cycles may vary from implementation to implementation, but branches 
in a program are never good for a pipelined processor.

It is worth noting that branching in programs can be a major factor limiting the useful depth of 
an instruction pipeline. In addition to the other reasons mentioned earlier to explain the diminish-
ing returns we can achieve from pipelines with many stages, one can readily see that the deeper an 
instruction-unit pipeline, the greater the penalty that may be imposed by branching. Rather than one or 
two instructions, a fine-grained instruction pipe may have to flush several instructions on each success-
ful branch. If branching instructions appear frequently in programs, a pipeline with many stages may 
perform no better—or even worse—than one with a few stages [8].

TABLE 22.2  Pipelined Instruction Execution with 
Conditional Branching

t0 t1 t2 t3 t4 t5 t6 t7 t8

Stage 1 (F) I1 I2 I3 I4 I5 I6 I1 I2 I3

Stage 2 (D) I1 I2 I3 I4 I5 — I1 I2

Stage 3 (E) I1 I2 I3 I4 — — I1

Stage 4 (W) I1 I2 I3 I4 — —
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It is also worth mentioning that conditional branch instructions are not the only reason why the 
CPU cannot always initiate a new instruction into the pipeline every cycle. Any type of control transfer 
instruction, including unconditional jumps and subprogram calls and returns, may cause some delay in 
processing. Though there is no branch condition to check, these other instructions must still proceed a 
certain distance into the pipeline before being decoded and recognized as control transfers, during which 
time one or more subsequent instructions may have entered the pipe. Exception processing (includ-
ing internally generated traps and external events such as interrupts) also requires the CPU to suspend 
execution of the sequential instructions in the currently running program, transfer control to a handler 
located somewhere else in memory, and then return and resume processing the original program. The 
pipeline must be drained and refilled upon leaving and returning, once again incurring a penalty of one 
or more clock cycles in addition to other overhead such as saving and restoring register contents.

22.3.4  Branch Prediction

Branch prediction is one approach that can be used to minimize the performance penalty associated 
with conditional branching in pipelined processors. Consider the example presented in Table 22.2. If 
the control unit could somehow be made aware that instructions I1 through I4 make up a program loop, 
it might choose to assume that the branch would succeed and fetch I1 (instead of I5) after I4 each time. 
Using this approach, the full branch penalty would be incurred only once, upon exiting the loop, rather 
than each time through the loop. Of course, one could equally well envision a scenario where assuming 
that the branch would fail would be the better course of action. But how, other than by random guessing 
(which of course is as likely to be wrong as it is to be right), can the control unit predict whether or not 
a branch will be taken?

Branch prediction, which dates back to the IBM Stretch machine of the late 1950s [9], can be done 
either statically (before the program is run) or dynamically (by the control unit at run time) or as a 
combination of both techniques. The simplest forms of static prediction either assume all branches suc-
ceed (assuming they all fail would be equivalent to no prediction at all) or assume that certain types 
of branches always succeed, while others always fail [10]. As the reader might imagine, these primitive 
schemes tend not to fare much better than random guessing.

A better way to do static prediction, if the architecture supports it, is to let the compiler do the work. 
Version 9 of Sun Microsystems’ (now Oracle’s) scalable processor architecture (SPARC) provides a good 
example of this approach. Each SPARC V9 conditional branch instruction has two different op codes: 
one for “branch probably taken” and one for “branch probably not taken [11].” The compiler analyzes 
the structure of the high-level code and chooses the version of the branch it expects will be correct most 
of the time; when the program runs, the processor uses the op code as a hint to help it choose which 
instructions to fetch into the pipeline. If the compiler is right most of the time, this technique will 
improve performance. However, even this more sophisticated form of static branch prediction has not 
proven to be especially effective in most applications when used alone (without run-time feedback) [12].

Dynamic branch prediction relies on the control unit keeping track of the behavior of each branch 
encountered. This may be done by the very simple means of using a single bit to remember the behav-
ior of the branch the last time it was executed. Or, for more accurate prediction, two bits may be used 
to record the action of the branch for the last two consecutive times it was encountered. If it has been 
taken, or not taken, twice in succession, that is taken as a strong indication of its likely behavior the next 
time, and instructions are fetched accordingly. If it was taken once and not taken once, the control unit 
decides randomly which way to predict the branch. Another, even more sophisticated dynamic predic-
tion technique associates a counter of two or more bits with each branch [10]. The counter is initially 
set to a threshold value in the middle of its count range. Each time the branch succeeds, the counter is 
incremented; each time it fails, the counter is decremented. As long as the current count is greater than 
or equal to the threshold, the branch is predicted to succeed; otherwise, it is predicted to fail. The Intel 
Pentium processor used a two-bit, four-state counter like this to predict branches [13]. Note that for this 
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technique to work properly, the counter must saturate or “stick” at its upper and lower limits, rather 
than rolling over from the maximum count to zero, or vice versa. Even more elaborate schemes (includ-
ing hybrid, adaptive, and two-level mechanisms) are possible [10], but there is a point of diminishing 
returns beyond which the cost of additional hardware complexity is not justified by significantly better 
performance on typical compiled code.

While dynamic branch prediction requires more hardware, in general, it has been found to perform 
better than static prediction (which places greater demands upon the compiler) [12]. Since dynamic 
prediction is dependent upon the details of a particular implementation rather than the features of the 
instruction set architecture, it also allows compatibility with previous machines to be more easily main-
tained. Of course, the two approaches can be used together, with the compiler’s prediction being used 
to initialize the state of the hardware predictor and/or as a tiebreaker when the branch is considered 
equally likely to go either way.

What are the performance effects of branch prediction? Obviously, performance is very sensitive to 
the success rate of the prediction scheme(s) used. Highly successful branch prediction can significantly 
improve performance, while particularly poor prediction may do no better (or possibly even worse) than 
no prediction at all. While a branch correctly predicted to fail may cost no cycles at all and one correctly 
predicted to succeed may incur only a minimal penalty (if any), a branch that is mispredicted either way 
will require the machine to recover to the correct execution path and so may incur a branch penalty as 
severe (or even more severe) than if the machine had no prediction scheme at all.

For comparison, let us first consider mathematically the throughput of a pipelined processor without 
branch prediction [14]. Any instruction in a program is either a branching instruction or a nonbranch-
ing instruction. Let pb be the probability of any instruction being a branch; then of course (1 − pb) is the 
probability of it not being a branch. Also, let CB be the average number of cycles per branch instruction 
and CNB be the average number of cycles per nonbranching instruction. The average number of clock 
cycles per instruction is thus given by

	 CAVG = pbCB + (1 − pb)CNB

In a pipelined processor, nonbranching instructions execute in one clock cycle, so CNB = 1. (In prac-
tice, there may be certain exceptions to this rule, most notably stalls due to data dependencies between 
instructions, to be discussed in Section 22.3.7, but for now we shall proceed under the simplifying 
assumption that nonbranching instructions do not stall the pipe.) The average number of cycles per 
branch CB depends on the fraction of branches taken (to the target) versus the fraction that are not 
taken and result in sequential execution. Let pt be the probability that a branch is taken and (1 − pt) be 
the probability it is not taken; also let b be the branch penalty in clock cycles. Since no prediction is 
employed, failed branches execute in 1 cycle, while successful branches require (1 + b) cycles. The aver-
age number of cycles per branch instruction is thus given by

	 CB = pt(1 + b) + (1 − pt)(1) = 1 + ptb

We can substitute this expression for CB into the previous equation to determine the average number of 
cycles per instruction as follows:

	 CAVG = pb(1 + ptb) + (1 − pb)(1) = 1 + pbptb

The throughput of the pipeline (the average number of instructions completed per clock cycle) is simply 
the reciprocal of the average number of cycles per instruction:
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The probabilities pb and pt obviously will vary for different programs. Typical values for pb, the fraction 
of branch instructions, have been found to be in the range of 0.1–0.3 [15]. The probability of a branch 
succeeding, pt, may vary widely, but values in the 0.5–0.8 range are reasonable. As a numerical example, 
suppose for a given program that the branch penalty is three cycles, pb = 0.22, and pt = 0.7. Then the aver-
age number of cycles per instruction would be 1 + (0.22)(0.7)(3) = 1.462, and the pipeline throughput 
would be approximately 0.684 instructions per cycle.

Another way to compute this result without memorizing the formula for CAVG is to construct a simple 
probability tree diagram as shown in Figure 22.5. To obtain CAVG, it is simply necessary to multiply the 
number of cycles taken in each case times the product of the probabilities leading to that case and then 
sum the results. Thus, we obtain CAVG = (0.22)(0.7)(4) + (0.22)(0.3)(1) + (0.78)(1) = 1.462 as before, once 
again giving H ≈ 0.684.

Now, suppose that the pipelined processor employs a branch prediction scheme to try to improve per-
formance. Let pc be the probability of a correct prediction, and let c be the reduced penalty associated with 
a correctly predicted branch. (If correctly predicted branches can execute as quickly as sequential code, 
c will be equal to zero.) Branches that are incorrectly predicted (either way) incur the full branch penalty 
of b cycles. In this scenario, the average number of cycles per branch instruction can be shown to be

	 CB = 1 + b − pcb + ptpcc

Substituting this into our original equation CAVG = pbCB + (1 − pb)(1), we find that with branch prediction, 
the average number of cycles per instruction is given by

	 CAVG = 1 + pbb − pbpcb + pbptpcc

Returning to our numerical example, let us assume that b is still three cycles and pb and pt are still 
0.22 and 0.7, respectively. Let us further assume that c = 1 cycle and the probability of a correct 
branch prediction, pc, is 0.75. Substituting these values into the first equation, we find that the aver-
age number of cycles per branch instruction is 1 + 3 − (0.75)(3) + (0.7)(0.75)(1) = 2.275. The second 
equation gives the overall average number of cycles per instruction as 1 + (0.22)(3) − (0.22)(0.75)
(3) + (0.22)(0.7)(0.75)(1) = 1.2805. The pipeline throughput H with branch prediction is 1/1.2805 
or approximately 0.781, a significant (approximately 14%) improvement over the example without 
branch prediction.

Again, if one does not wish to memorize formulas, the same result could be obtained using the 
probability tree diagram shown in Figure 22.6. Multiplying the number of cycles required in each 
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FIGURE 22.5  Probability tree diagram for conditional branching example. (From Dumas II, J.D., Computer 
Architecture: Fundamentals and Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.13.)
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case times the probability of occurrence and then summing the results, we get CAVG = (0.22)(0.7)
(0.75)(2) + (0.22)(0.7)(0.25)(4) + (0.22)(0.3)(0.75)(1) + (0.22)(0.3)(0.25)(4) + (0.78)(1) = 1.2805, the same 
result obtained from our equation.

As we mentioned earlier, the performance benefits derived from branch prediction depend heavily on 
the success rate of the prediction scheme. To illustrate this, suppose that instead of pc = 0.75, our branch 
prediction scheme achieved only 50% correct predictions (pc = 0.5). In that case, the average number of 
cycles per instruction would be 1 + (0.22)(3) − (0.22)(0.5)(3) + (0.22)(0.7)(0.5)(1) = 1.407 for a through-
put of approximately 0.711, not much better than the results with no prediction at all. If the prediction 
scheme performed very poorly, say, with pc = 0.3, the pipeline throughput could be even worse than with 
no prediction—in this case, 1/1.5082 ≈ 0.663 instructions per cycle.

To facilitate branch prediction, it is common for modern processors to make use of a branch target 
buffer (also known as a branch target cache or target instruction cache) to hold the addresses of branch 
instructions, the corresponding target addresses, and the information about the past behavior of the 
branch [15]. Any time a branch instruction is encountered, this buffer is checked and, if the branch in 
question is found, the relevant history is obtained and used to make the prediction. A prefetch queue may 
be provided to funnel instructions into the pipeline [16]. To further improve performance, some proces-
sors make use of dual instruction prefetch queues to optimize branches [14]. Using this multiple prefetch 
approach, the processor fetches instructions from both possible paths (sequential and target). By replicat-
ing the prefetch queue (and possibly even the first few stages of the pipeline itself), the processor can keep 
both possible execution paths “alive” until the branch decision is made. Instructions from the correct 
path continue on to execution, while those from the incorrect path are discarded. Of course, for this 
approach to work, there must be sufficient space on the chip for the prefetch queues and sufficient mem-
ory (particularly instruction cache) bandwidth to allow for the simultaneous prefetching of both paths.

22.3.5  Delayed Control Transfers

Delayed control transfers are another approach that has been adopted by some designers to eliminate, or 
at least minimize, the penalty associated with control transfers (both conditional and unconditional) 
in pipelined processors. A delayed branch instruction is unlike any control transfer instruction the 
reader has likely encountered before. The branch instructions in most computer architectures take 
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FIGURE 22.6  Probability tree diagram for example with branch prediction. (From Dumas II, J.D., Computer 
Architecture: Fundamentals and Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.14.)
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effect immediately. That is to say, if the branch condition is true (or if the instruction is an uncondi-
tional branch), the next instruction executed after the branch itself is the one at the target location. 
A delayed branch, on the other hand, does not take effect immediately. The instruction sequentially 
following the branch is executed whether or not the branch succeeds [17]. Only after the instruc-
tion following the control transfer instruction, which is said to be in the delay slot [18], is executed will 
the target instruction be executed—with execution continuing sequentially from that point.

An example of delayed branching is shown in Figure 22.7. Let us assume that instructions I1 through 
I4 form a program loop, with I4 being a conditional branch back to I1. In a “normal” instruction set 
architecture, I5 would never be executed until the loop had finished iterating. If this instruction set were 
implemented with a pipelined instruction unit, I5 would have to be flushed from the pipeline every time 
the branch I4 succeeded. If the number of loop iterations turned out to be large, many clock cycles would 
be wasted fetching and flushing I5.

The idea of delayed branching, which only makes sense in an architecture designed for pipelined 
implementation, comes from the desire not to waste the time required to fetch I5 each time the branch 
(I4) is taken. “Since I5 is already in the pipeline,” the argument goes, “why not go ahead and execute 
it instead of flushing it?” To programmers used to working in high-level languages or most assembly 
languages, this approach invariably seems very strange, but it makes sense in terms of efficient hard-
ware implementation. (The delayed branch scheme appears to an uninitiated assembly programmer as 
a bug, but as all computing professionals should know, any bug that is documented becomes a feature.) 
I5 appears to be—and is physically located in memory—outside the loop, but logically, in terms of pro-
gram flow, it is part of the loop. The instructions are stored in the sequence I1, I2, I3, I4, I5—but they are 
logically executed in the sequence I1, I2, I3, I5, I4.

The trick in making use of this feature lies in finding an instruction that logically belongs before the 
branch, which is independent of the branch decision—neither affecting the branch condition nor being 
affected by it. (Of course, if the control transfer instruction is unconditional, any instruction that logi-
cally goes before it could be placed in its delay slot.) If such an instruction can be identified, it may be 
placed in the delay slot to make productive use of a clock cycle that would otherwise be wasted. If no 
such instruction can be found, the delay slot may simply be filled with a time-wasting instruction such 
as NOP. This is the software equivalent of flushing the delay slot instruction from the pipe.

Delayed control transfer instructions are not found in complex instruction set computer (CISC) archi-
tectures, which by and large trace their lineage to a time before pipelining was widely used. However, they 
are often featured in RISC architectures, which were designed “from the ground up” for a pipelined imple-
mentation. CISC architectures were intended to make assembly language programming easier by making 
the assembly language look more like a high-level language. RISC architectures, on the other hand, were not 
designed to support assembly language programming at all but rather to support efficient code generation by 
an optimizing compiler. So the fact that delayed branches make assembly programming awkward is not really 
significant as long as a compiler can be designed to take advantage of the delay slots when generating code.

There is no reason that an architecture designed for pipelined implementation must have only one 
delay slot after each control transfer instruction. In fact, the example presented earlier in Table 22.2 is of a 
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FIGURE 22.7  Delayed branching example. (From Dumas II, J.D., Computer Architecture: Fundamentals and 
Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.15.)
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machine that could have two delay slots. (Machines with very deep pipelines might have even more.) Since 
instructions I5 and I6 will both have entered the pipeline before the branch at I4 can be taken, they could 
both be executed before the target instruction if the architecture so specifies (see Figure 22.8). Of course, 
the more delay slots that exist after a conditional branch instruction, the more difficult it will be for the 
compiler (or masochistic assembly programmer) to find useful, independent instructions with which to 
fill them. But in the worst case, they can still be filled with NOPs, which keeps the hardware simpler than 
it would be if it had to be able to recognize this situation and flush the instructions itself. This is just one 
more example of the hardware/software trade-offs that are made all the time in computer systems design.

22.3.6  Memory Accesses: Delayed Loads and Stores

Control transfers are not the only occurrences that can interrupt and/or slow processing in a pipe-
lined processor. Another potentially costly activity (in terms of performance) is accessing memory for 
operands. Register operands are generally accessible very quickly, such that they can be used for an 
arithmetic computation within the same clock cycle. Memory operands, even if they reside in cache, 
generally require at least one cycle to access before any use can be made of them. RISC architectures, in 
particular, attempt to minimize this problem by clearly subdividing their instruction sets into compu-
tational instructions (which operate only on register contents) and memory access (or load and store) 
instructions that do not perform computations on data. Even so, a problem may arise when a subsequent 
instruction tries to perform a computation on a data value being loaded by a previous instruction. For 
example, suppose the following two instructions appear consecutively in a program:

LOAD VALUE, R5 
ADD R5, R4, R3

Given the slower speed of memory relative to most CPUs, the variable VALUE being loaded into register 
R5 might not be available by the time it was needed by the ADD instruction. One obvious solution to the 
problem would be to build in some sort of hardware interlock that would “freeze” or stall the pipeline 
until the data had been retrieved from memory and placed in R5. Only then would the ADD instruction 
be allowed to execute. The hardware is thus made responsible for the correct operation of the software—
a typical, traditional computer design approach.

However, another way of approaching this problem is simply to document the fact that loads from 
memory always take at least one extra cycle to occur. The compiler, or the assembly language program-
mer, would be made aware that every load instruction has a “load delay slot [18].” In other words, the 
instruction immediately following a load must not make use of the value being loaded. (In some archi-
tectures, the following instruction may also not be another load.) If the load’s destination register is 
referenced by the following instruction, it is known that the value obtained will be the “old” value, not 
the new one being loaded from memory. This is another example of documenting what might appear to 
the casual user to be a bug, thus enshrining it as a feature of the instruction set! Instead of the hardware 
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FIGURE 22.8  Example of control transfer with two delay slots. (From Dumas II, J.D., Computer Architecture: 
Fundamentals and Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.16.)
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compensating for delays in loading data and ensuring the correct operation of the software, the software 
is simply informed of the details of the hardware implementation and forced to ensure correctness on 
its own. (Note that a hardware interlock will still be required to detect data cache misses and stall the 
pipeline when they occur, since main memory access may take several clock cycles rather than one.) 
In the example earlier, correctness of operation is assured by simply inserting an unrelated but useful 
instruction—or an NOP if no such instruction can be found—between the LOAD and the ADD (or any 
other computational instruction) that uses the results of the LOAD.

Store operations (writes of data to memory) are less problematic than loads because the CPU is unlikely 
to need to retrieve the stored information from memory soon enough to pose a problem. (Since stores 
write data from a register to memory, presumably the CPU can use the copy of the data still in a register if 
it is needed.) However, back-to-back memory accesses may pose a problem for some machines because of 
the time required to complete an access. If two consecutive load or store operations are executed, it may 
be necessary to stall the pipeline. For that reason, stores in some architectures are also sometimes said to 
have a “delay slot,” which should not contain another load or store instruction. If it does, the pipeline may 
have to be stalled for one cycle to allow the first store to complete before a second memory access is done.

22.3.7  Data Dependencies and Hazards

Dependency relations among computed results, giving rise to pipeline data hazards, may also hold up 
operations in a pipelined CPU and keep it from approaching its theoretical throughput. In a nonpipe-
lined processor, each instruction completes before execution of the next instruction begins. Thus, values 
computed by a previous instruction are always available for use in subsequent instructions, and the 
program always obtains the results anticipated by the von Neumann sequential execution model. Since a 
pipelined instruction unit overlaps the execution of several instructions, though, it becomes possible for 
results to become sensitive to the timing of instructions rather than just the order in which they appear 
in the program. This is obviously not a desirable scenario and must be corrected (or at least accounted 
for) if we want our pipelined machine to compute the same results as a purely sequential machine.

For an example of a common data dependency problem in a pipelined machine, consider the follow-
ing situation (illustrated in Figure 22.9). Suppose a CPU with a four-stage pipeline like the one in our 
previous example executed the following sequence of instructions:

I1 ADD R1, R2, R3
I2 SUB R3, R4, R6
I3 XOR R1, R5, R3
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FIGURE 22.9  Data dependency problem in pipelined CPU. (a) Incorrect operation stage 3 needs result of I1 at 
the beginning of cycle 4; not available until the end of cycle 4. (b) Correct operation due to stalling pipeline for 
1 cycle after cycle 3; stage 3 will now have updated value for use in executing I2. (From Dumas II, J.D., Computer 
Architecture: Fundamentals and Principles of Computer Design, CRC Press, Boca Raton, FL, 2006, Figure 4.17.)
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The last operand listed for each instruction is the destination. Thus, it can be seen that instruction I2 uses 
the result computed by I1. But will that result be available in time for I2 to use it?

In Figure 22.9a, we can see how instruction I1 proceeds through the pipeline, with I2 and I3 following 
it stage by stage. The result from I1 is not computed by stage 3 until the end of the third clock cycle and 
is not stored back into the destination register (R3) by stage 4 until the end of the fourth clock cycle. 
However, stage 3 needs to read R3 and obtain its new contents at the beginning of the fourth clock cycle 
so they can be used to execute the subtraction operation for I2. If execution proceeds unimpeded as 
shown, the previous contents of R3 will be used by I2 instead of the new contents, and the program 
will operate incorrectly. This situation, in which there is a danger of incorrect operation due to the fact 
that the behavior of one instruction in the pipeline depends on that of another, is known as a data haz-
ard [2]. This particular hazard is known as a true data dependence or (more commonly) a read after write 
(RAW) hazard [19] because I2, which reads the value in R3, comes after I1, which writes it.

To avoid the hazard and ensure correct operation, the control unit must make sure that I2 actually 
reads the data after I1 writes it. The obvious solution is to stall I2 (and any following instructions) for 
one clock cycle in order to give I1 time to complete. Figure 22.9b shows how this corrects the problem. 
Instruction I2 now does not reach stage 3 of the pipeline until the beginning of the fifth clock cycle, and 
so it is executed with the correct operand value from R3.

RAW hazards are the most common data hazards and in fact the only possible type in a machine 
such as we have been considering so far, with a single-pipeline instruction unit in which instructions 
are always begun and completed in the same order and only one stage is capable of writing a result. 
Other types of data hazards, known as write after read (WAR) and write after write (WAW) hazards, are 
only of concern in machines with multiple pipelines (or at least multiple execution units, which might 
be “fed” by a common pipeline) or in situations where writes can be done by more than one stage of the 
pipe [20]. In such a machine, instructions may be completed in a different order than they were fetched 
(out-of-order execution or OOE) [21]. OOE introduces new complications to the process of ensuring that 
the machine obtains the same results as a nonpipelined processor.

Consider again the sequence of three instructions introduced earlier. Notice that I1 and I3 both write 
their results to register R3. In a machine with a single pipeline feeding a single ALU, we know that if I1 
enters the pipeline first (as it must), it will also be completed first. Later, its result will be overwritten by 
the result calculated by I3, which of course is the behavior expected under the von Neumann sequential 
execution model. But suppose the machine has more than one ALU that can execute the required opera-
tions. The ADD instruction (I1) might be executed by one unit, while at the same time the XOR (I3) is being 
executed by another. There is no guarantee that I1 will be completed first or have its result sent to R3 first. 
Thus, it is possible that due to OOE, R3 could end up containing the wrong value. This situation in which 
two instructions both write to the same location, and the control unit must make sure that the second 
instruction’s write occurs after the first write, is known as an output dependence or WAW hazard [19].

Now, consider the relationship between instructions I2 and I3 in the example code. Notice that I3 
writes its result to R3 after the previous value in R3 has been read for use as one of the operands in the 
subtraction performed by I2. At least, that is the way things are supposed to happen under the sequential 
execution model. Once again, however, if multiple execution units are employed, it is possible that I2 
and I3 may execute out of their programmed order. If this were to happen, I2 could mistakenly use the 
“new” value in R3, which had been updated by I3 rather than the “old” value computed by I1. This is one 
more situation, known as an antidependence or WAR hazard [19], which must be guarded against in a 
machine where OOE is allowed.

There is one other possible relationship between instructions that reference the same location for data 
and might have their execution overlapped in a pipeline(s). This “read after read” situation is the only 
one that never creates a hazard [19]. In our example, both I1 and I3 read R1 for use as a source operand. 
Since R1 is never modified (written), both instructions are guaranteed to read the correct value regard-
less of their order of execution. Thus, a simple rule of thumb is that for a data hazard to exist between 
instructions, at least one of them must modify a commonly used value.
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22.3.8  Controlling Instruction Pipelines

Controlling the operation of pipelined processors in order to detect and correct for data hazards is a very 
important but very complex task, especially in machines with multiple execution units. In a machine 
with only one pipelined instruction execution unit, RAW hazards are generally the only ones a designer 
must worry about. (The exception would be in the very unusual case where more than one stage of the 
pipeline is capable of writing a result.) Control logic must keep track of (or “reserve”) the destination 
register or memory location for each instruction in progress and check it against the source operands 
of subsequent instructions as they enter the pipe. If a RAW hazard is detected, the most basic approach 
is to simply stall the instruction that uses the operand being modified (as shown in Figure 22.9b) while 
allowing the instruction that modifies it to continue. When the location in question has been modified, 
the reservation placed on it is released and the stalled instruction is allowed to proceed. This approach 
is straightforward, but forced stalls obviously impair pipeline throughput.

Another approach that can minimize, or in some cases eliminate, the need to stall the pipeline is 
known as data forwarding [22]. By building in additional connectivity within the processor, the result 
just computed by an instruction in the pipeline can be forwarded to the ALU for use by the subsequent 
instruction at the same time it is being sent to the reserved destination register. This approach gener-
ally saves at least one clock cycle compared to the alternative of writing the data into the first instruc-
tion’s destination register and then immediately reading it back out for use by the following dependent 
instruction.

Finally, designers can choose not to build in control logic to detect, and interlocks or forwarding to 
avoid, these RAW hazards caused by pipelining. Rather, they can document pipeline behavior as an 
architectural feature and leave it up to the compiler to reorder instructions and/or insert NOPs to arti-
ficially stall subsequent instructions, allowing a sufficient number of cycles to elapse so that the value in 
question will definitely be written before it is read. This solution certainly simplifies the hardware design 
but is not ideal for designing a family of computers since it ties the instruction set architecture closely 
to the details of a particular implementation, which may later be superseded. In order to maintain com-
patibility, more advanced future implementations may have to emulate the behavior of the relatively 
primitive earlier machines in the family. Still, the approach of handling data dependencies in software 
is a viable approach for designers who wish to keep the hardware as simple as possible.

Machines with multiple execution units encounter a host of difficulties not faced by simpler imple-
mentations. Adding WAW and WAR hazards to the RAW hazards inherent to any pipelined machine 
makes the design of control logic much more difficult. Two important control strategies were devised 
back in the 1960s for high-performance, internally parallel machines of that era. Variations of these 
methods are still used in the microprocessors of today. These design approaches are known as the score-
board method and Tomasulo’s method.

The scoreboard method for resource scheduling dates back to the Control Data Corporation (CDC) 
6600 supercomputer, which was introduced in 1964. James Thornton and Seymour Cray were the 
lead engineers for the 6600 and contributed substantially to this method, which was used later in the 
Motorola 88000 and Intel i860 microprocessors. The machine had ten functional units that were not 
pipelined but did operate concurrently (leading to the possibility of OOE). The CDC 6600 designers 
came up with the idea of a central clearinghouse, or scoreboard, to schedule the use of functional units 
by instructions [23]. As part of this process, the scoreboard had to detect and control interinstruction 
dependencies to ensure correct operation in an OOE environment.

The scoreboard is a hardware mechanism—a collection of registers and control logic—that monitors 
the status of all data registers and functional units in the machine. Every instruction is passed through 
the scoreboard as soon as it is fetched and decoded in order to check for data dependencies and resource 
conflicts before the instruction is issued to a functional unit for execution. The scoreboard checks to 
make sure the instruction’s operands are available and that the appropriate functional unit is also avail-
able; it also resolves any write conflicts so that correct results are obtained.
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There are three main parts, consisting of tables or sets of registers with associated logic, to the score-
board: functional unit status, instruction status, and destination register status [24]. The functional unit 
status table contains several pieces of information about the status of each functional unit. This infor-
mation includes a busy flag that indicates whether or not the unit is currently in use, two fields indicat-
ing the numbers of its source registers and one field indicating its destination register number, and ready 
flags for each of the source registers to indicate whether they are ready to be read. (A source register is 
deemed to be ready if it is not waiting to receive the results of a previous operation.) If a given functional 
unit can perform more than one operation, there might also be a bit(s) indicating which operation it 
is performing.

The instruction status table contains an entry for each instruction from the time it is first decoded 
until it completes (until its result is written to the destination). This table indicates the current status of 
the instruction with respect to four steps: whether or not it has been issued, whether or not its operand(s) 
has been read, whether or not its execution is complete, and whether or not the result has been written 
to the destination.

The destination register status table is the key to detecting data hazards between instructions. It 
contains one entry for each CPU register. This entry is set to the number of the functional unit that 
will produce the result to be written into that register. If the register is not the destination of a cur-
rently executing instruction, its entry is set to a null value to indicate that it is not involved in any 
write dependencies. Tables 22.3 through 22.5 show examples of possible contents of the functional 
unit status, instruction status, and destination register status tables for a machine with four functional 
units and eight registers. The actual CDC 6600 was more complex, but this example will serve for 
illustrative purposes.

TABLE 22.3  Scoreboard Example: Functional Unit Status Table

Unit Name
Unit 

Number Busy?
Destination 

Register
Source 

Register 1 Ready?
Source 

Register 2 Ready?

Adder/ 0 No — — — — —
Subtractor 1
Adder/ 1 Yes 5 2 Yes 7 Yes
Subtractor 2
Multiplier 2 Yes 0 1 Yes 3 Yes
Divider 3 No — — — — —

TABLE 22.4  Scoreboard Example: Instruction Status Table

Instruction
Instruction 

Address
Instruction 

Issued? Operands Read?
Execution 
Complete? Result Written?

ADD R1, R4, R6 1000 Yes Yes Yes Yes
ADD R2, R7, R5 1001 Yes Yes Yes No
MUL R1, R3, R0 1002 Yes Yes No No
MUL R2, R6, R4 1003 No No No No
ADD R0, R5, R7 1004 No No No No

— — — — — —

TABLE 22.5  Scoreboard Example: Destination Register Status Table

R7 R6 R5 R4 R3 R2 R1 R0

Functional unit number — — 1 — — — — 2
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The tables show a typical situation with several instructions in some stage of completion. Some func-
tional units are busy and some are idle. Unit 0, the first adder/subtractor, has just completed the first 
ADD operation and sent its result to R6, so it is momentarily idle. Unit 1, the second adder/subtractor, 
has just completed the second ADD operation. However, the result has yet to be written into R5 (in this 
case, simply because not enough time has elapsed for the write operation to complete; in some situa-
tions, the delay could be a deliberate stall due to a WAR hazard between this and a previous instruction). 
Therefore, this instruction is not complete, and the reservations on the functional unit and destination 
register have not been released. Unit 2, the multiplier, has the first MUL operation in progress. Notice 
that R0 is reserved in the destination register status table as the result register for unit 2. As long as this 
is true, the control logic will not issue any subsequent instruction that uses R0.

As new instructions are fetched and decoded, the scoreboard checks each for dependencies and hard-
ware availability before issuing it to a functional unit. The second MUL instruction has not yet been 
issued because the only multiplier, functional unit 2, is busy. Hardware (unit 0) is available such that the 
third ADD instruction could be issued, but it is stalled due to data dependencies: neither of its operands 
(in R0 and R5) is yet available. Only when both of these values are available can this instruction be 
issued to one of the adder/subtractor units. The new R5 value will be available soon, but until the first 
multiply completes (freeing unit 2 and updating R0), neither of the two instructions following the first 
MUL can be issued.

As long as scoreboard entries remain, subsequent instructions may be fetched and checked to see if 
they are ready for issue. (In Table 22.4, the last scoreboard entry is still available and the first one is no 
longer needed now that the instruction has completed, so two additional instructions could be fetched.) 
If all scoreboard entries are in use, no more instructions can be fetched until some instruction currently 
tracked by the scoreboard is completed. The limited number of scoreboard entries, along with the fre-
quent stalls caused by all three types of data hazards and the fact that all results must be written to the 
register file before use, is the major limitation of the scoreboard approach.

Another important control strategy was first used in the IBM 360/91, a high-performance scientific 
computer introduced in 1967 [25]. Its multiple pipelined execution units were capable of simultaneously 
processing up to three floating-point additions or subtractions and two floating-point multiplications 
or divisions in addition to six loads and three stores. The operation of the floating-point registers and 
execution units (the heart of the machine’s processing capability) was controlled by a hardware schedul-
ing mechanism designed by Robert Tomasulo [26].

Tomasulo’s method is essentially a refinement of the scoreboard method with some additional fea-
tures and capabilities designed to enhance concurrency of operations. One major difference is that in 
Tomasulo’s method, detection of hazards and scheduling of functional units are distributed, not cen-
tralized in a single scoreboard. Each data register has a busy bit and a tag field associated with it. The 
busy bit is set when an instruction specifies that register as a destination and cleared when the result of 
that operation is written to the register. The tag field is used to identify which unit will be computing 
the result for that register. Note that this information is analogous to that kept in the destination status 
register table of a scoreboard.

Another principal feature of Tomasulo’s method that differs from the scoreboard method is the use of 
reservation stations [26] to hold operands (and their tags and busy bits, plus an operation code) for the func-
tional units [24]. Each reservation station is essentially a set of input registers that are used to buffer opera-
tions and operands for a functional unit. The details of functional unit construction are not important 
to the control strategy. For example, if the machine has three reservation stations for addition/subtraction 
(as the 360/91 did), it does not matter whether it has three nonpipelined adders or one three-stage pipelined 
adder (as was actually the case). Each reservation station has its own unit number and appears to the rest 
of the machine as a distinct “virtual” adder. Likewise, if there are two reservation stations for multiplica-
tion, the machine appears to have two virtual multipliers regardless of the actual hardware used.

The tags associated with each operand in Tomasulo’s method are very important because they specify 
the origin of each operand independently of the working register set. Though program instructions are 



22-22 Architecture and Organization

written with physical register numbers, by the time an instruction is dispatched to a reservation station, 
its operands are no longer identified by their original register designations. Instead, they are identified by 
their tags, which indicate the number of the functional unit (actually the number of a virtual functional 
unit—one of the reservation stations) that will produce that operand. Operands being loaded from memory 
are tagged with the number of their load buffer [26] (in a modern machine, they might be tagged by cache 
location, but the 360/91 had no cache). Once an operand has been produced (or loaded from memory) and 
is actually available in the reservation station, its tag and busy bit are changed to 0 to indicate that the data 
value is present and ready for use. Any time a functional unit is ready to accept operands, it checks its reser-
vation stations to see if any of them have all operands present; if so, it initiates the requested operation. Thus, 
although programs for the machine are written sequentially using the von Neumann model, the functional 
units effectively operate as dataflow machines in which execution is driven by the availability of operands.

This use of tags generated “on the fly,” rather than the original register numbers generated by the pro-
grammer or compiler, to identify operands is known as register renaming [27]. The register renaming scheme 
significantly reduces the number of accesses to data registers; not only do they not have to be read for oper-
ands if data are coming directly from a functional unit but also only the last of a series of writes to the same 
register actually needs to be committed to it. The intermediate values are just sent directly to the reservation 
stations as necessary. Tomasulo’s register renaming scheme is instrumental in avoiding or minimizing stalls 
due to WAR and WAW hazards and thus achieves a significant advantage over the scoreboard method.

Another important feature of the 360/91 that helped to reduce or eliminate stalls due to RAW hazards 
was the use of a common data bus (CDB) to forward data to reservation stations that need a just-calculated 
result [26]. Because of this data forwarding mechanism (which goes hand in hand with the register renam-
ing scheme), the reservation stations do not have to wait for data to be written to the register file. If the tag 
of a value on the CDB matches the tag of an operand needed by any reservation station(s), the operand is 
captured from the bus and can be used immediately. Meanwhile, the register file also monitors the CDB, 
loading a new value into any register with a busy bit set whose tag matches the one on the bus. Figure 22.10 
is a simplified view of a machine with Tomasulo scheduling and a CDB architecture like the IBM 360/91.

Tomasulo’s method has some distinct disadvantages. Not only does it require complex hardware for 
control but its reliance on a single, shared bus makes it hard to scale up for a machine with many registers 
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and/or functional units (typical of modern CPUs). Of course, given sufficient “real estate” on the chip, 
additional shared internal buses can be constructed to remove the CDB bottleneck. Likewise, the larger 
tags (and greater number of tag comparisons) needed in a more complex machine can be accommodated 
if sufficient space is available. On the other hand, the great selling point for Tomasulo’s method is the 
fact that it helps encourage concurrency of execution (to a greater degree than the scoreboard method) 
while preserving the dependency relationships inherent to programs written under the von Neumann 
sequential execution model. Tomasulo’s method in particular helps get better performance out of archi-
tectures with multiple pipelines. Because of this, approaches based on or very similar to this method are 
used in many modern, superscalar (see Section 22.3.10) microprocessors including the more advanced 
members of the Alpha, MIPS, Precision Architecture RISC (PA-RISC), Pentium, and PowerPC families.

22.3.9  Superpipelined Architectures

We learned in the preceding sections that pipelining is an effective way to improve the processing per-
formance of computer hardware. However, a simple arithmetic or instruction-unit pipeline can only 
improve performance by a factor approaching, but never reaching or exceeding, the small number of 
stages employed. The fundamental limitation on performance improvement using pipelining is the 
number of stages into which the task is subdivided. A three-stage pipeline can at best yield a speedup 
approaching a factor of 3; a five-stage pipeline can only approach a 5:1 speed ratio. The simplest and most 
straightforward approach to achieving further performance improvement, then, is simply to divide the 
pipeline into a greater number of smaller stages in order to clock it at a higher frequency. There is still 
only one pipeline, but by increasing the number of stages, we increase its temporal parallelism—it is 
working on more instructions at the same time. This use of a very deep, very high-speed pipeline for 
instruction processing is called superpipelining.

One of the first superpipelined processors was the MIPS R4000 (introduced in 1991), which had an 
eight-stage pipeline [28] instead of the four- or five-stage design that was common in RISC architectures 
at the time. The eight stages were instruction fetch (first half), instruction fetch (second half), instruc-
tion decode and register fetch, execution, data cache access (first half), data cache access (second half), 
tag check, and write back. By examining this decomposition of the task, one can see that the speed of 
the cache had been a limiting factor in CPU performance. In splitting up memory access across two 
stages, the MIPS designers were able to better match that slower operation with the speed of internal 
CPU operations and thus balance the workload throughout the pipe.

The MIPS R4000 illustrated both the advantages and disadvantages of a superpipelined approach. 
On the plus side, it was able to achieve a very high clock frequency for its time. The single-pipeline 
functional unit was simple to control and took up little space on the chip, leaving room for more cache 
and other components including a floating-point unit and a memory management unit. However, as 
with all deeply pipelined instruction execution units, branching presented a major problem. The branch 
penalty of the R4000 pipeline was “only” three cycles (one might reasonably expect an even greater 
penalty given an eight-stage implementation). However, the MIPS instruction set architecture had been 
designed for a shallower pipeline and so only specified one delay slot following a branch. This meant 
that there were always at least two stall cycles after a branch—three if the delay slot could not be used 
constructively [28]. This negated much of the advantage gained from the chip’s higher clock frequency. 
The R4000’s demonstration of the increased branch delays inherent to a single superpipeline was so con-
vincing that this approach has largely been abandoned. Most current machines that are superpipelined 
are also superscalar (see succeeding text) to allow speculative execution down both paths from a branch.

22.3.10  Superscalar Architectures

A superscalar machine is one that uses a standard, von Neumann-type instruction set but can issue 
(and thus often complete) multiple instructions per clock cycle. Obviously, this cannot be done with 
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a single conventional pipeline; so an alternate definition of superscalar is a machine with a sequential 
programming model that uses multiple pipelines. Superscalar CPUs attempt to exploit whatever degree 
of instruction-level parallelism (ILP) exists in sequential code by increasing spatial parallelism (building 
multiple execution units) rather than temporal parallelism (building a deeper pipeline). By building 
multiple pipelines, designers of superscalar machines can get beyond the theoretical limitation of one 
IPC inherent to any single-pipeline design and achieve higher performance without the problems of 
superpipelining.

Quite a few microprocessors of the modern generation have been implemented as superscalar designs. 
Superscalar CPUs are generally classified by the maximum number of instructions they can issue at the 
same time. (Of course, due to data dependencies, structural hazards, and/or branching, they do not actu-
ally issue the maximum number of instructions during every cycle.) The maximum number of instruc-
tions that can be simultaneously issued depends, as one might expect, on the number of pipelines built 
into the CPU. Digital Equipment Corporation’s (DEC) Alpha 21064 (a RISC processor introduced in 1992) 
was a “2-issue” chip [29], while its successors the 21164 (1995), 21264 (1998), and 21364 (2003) were all 
“4-issue” processors [30]. Another way of saying the same thing is to call the 21064 a two-way superscalar 
CPU, while the 21164 and following chips are said to be four-way superscalar. The MIPS Technologies 
R10000 [31], R12000, R14000, and R16000 are also four-way superscalar processors. Even CISCs can be 
implemented in superscalar fashion: as far back as 1993, Intel’s first Pentium chips were based on a two-
way superscalar design [32]. The Pentium had essentially the same instruction set architecture as the 486 
processor but achieved higher performance by using two execution pipelines instead of one.

In order to issue multiple instructions per cycle from a sequentially written program and still main-
tain correct execution, the processor must check for dependencies between instructions using an 
approach like those we discussed previously (the scoreboard method or Tomasulo’s method) and issue 
only those instructions that do not conflict with each other. Since OOE is possible, all types of hazards 
can occur; register renaming is often used to help solve the problems. Precise handling of exceptions is 
more difficult in a superscalar environment, too. Of course, the logic required to detect and resolve all 
of these problems is complex to design and adds significantly to the amount of chip area required. The 
multiple pipelines also take up more room, making superscalar designs very space sensitive and thus 
more amenable to implementation technologies with small feature (transistor) sizes. (Superpipelined 
designs, by contrast, are best implemented with technologies that have short propagation delays.) These 
many difficulties of building a superscalar CPU are offset by a significant advantage: with multiple pipe-
lines doing the work, clock frequency is not as critical in superscalar machines as it is in superpipelined 
ones. Since generating and distributing a high-frequency clock signal across a microprocessor are far 
from a trivial exercise, this is a substantial advantage in favor of the superscalar approach.

Of course, superscalar and superpipelined designs are not mutually exclusive. Some CPUs have been 
implemented with multiple, deep pipelines, making them both superpipelined and superscalar. Sun’s 
UltraSPARC processor [33], introduced in 1995, was an early example of this hybrid approach: it was both 
superpipelined (nine stages) and four-way superscalar. A more recent (2003) example is IBM’s PowerPC 
970 CPU [34]. Even CISC processors such as the AMD Athlon [35] have combined superscalar and super-
pipelined design in order to maximize performance. Given sufficient chip area, superscalar design is a 
useful enhancement that makes superpipelining much more practical. When a branch is encountered, 
a superscalar/superpipelined machine can use one (or more) of its deep pipelines to continue executing 
sequential code, while another pipeline(s) executes speculatively down the branch target path. Whichever 
way the branch decision goes, at least one of the pipelines will have correct results; any that took the 
wrong path can be flushed. Some work is wasted, but processing never comes to a complete halt.

22.3.11  Very Long Instruction Word Architectures

Superscalar CPU designs have many advantages, as we saw in the preceding pages. However, there 
remains the significant problem of scheduling which operations can be done concurrently and which 
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ones have to wait and be done sequentially after others. Determining the precise amount of ILP present in 
a program is a complex exercise that is made even more difficult by having to do it “on the fly” within the 
limitations of hardware design and timing constraints. How can we get the benefits of multiple instruc-
tion issue found in superscalar CPUs without having to build in complex, space- and power-consuming 
circuitry to analyze multiple types of data dependencies and schedule the initiation of operations? A 
look back at one of the basic RISC design principles provides one possible answer: “let the compiler do 
the work.” This idea is the foundation of a relatively new class of architectures known by the acronym 
(coined by Josh Fisher of Yale University) VLIW, which stands for very long instruction word [36].

The centerpiece of a VLIW architecture is exactly what the name implies: a machine language 
instruction format that is fixed in length (as in a RISC architecture) but much longer than the 32–64 bit 
formats common to most conventional CISC or RISC architectures (see Figure 22.11 for an example). 
Each “very long” instruction contains enough bits to specify not just one machine operation but several 
to be performed simultaneously. Ideally, the VLIW format includes enough slots (or groups of bit fields) 
to specify operands and operations for every functional unit present in the machine. If sufficient ILP is 
present in the high-level algorithm, all of these fields can be filled with useful operations, and maximum 
use will be made of the CPU’s internal parallelism. If not enough logically independent operations can 
be scheduled at one time, some of the fields will be filled with NOPs, and thus some of the hardware will 
be idle, while other units are working.

The VLIW approach gives essentially the same effect as a superscalar design but with most or all of 
the scheduling work done statically (offline) by the compiler, rather than dynamically (at run time) by 
the control unit. It is the compiler’s job to analyze the program for data and resource dependencies and 
pack the “slots” of each VLIW with as many concurrently executable operations as possible. Since the 
compiler has more time and resources to perform this analysis than would the control unit and since it 
can see a “bigger picture” of the code at once, it may be able to find and exploit more ILP than would be 
possible in hardware. Thus, a VLIW architecture may be able to execute more (equivalent) instructions 
per cycle than a superscalar machine with similar capabilities.

Finding and expressing the parallelism inherent in a high-level program is quite a job for the com-
piler; however, the process is essentially the same whether it is done in hardware or software. Doing 
scheduling in software allows the hardware to be kept simpler and hopefully faster. One of the primary 
characteristics of the original, single-pipeline RISC architectures was reliance on simple, fast hardware 
with optimization to be done by the compiler. A VLIW architecture is nothing more nor less than the 
application of that same principle to a system with multiple pipelined functional units. Thus, in its reli-
ance on moving pipeline scheduling from hardware to software (as well as in its fixed-length instruction 
format), VLIW can be seen as the logical successor to RISC.

The VLIW concept goes back further than most computing professionals are aware. The first 
VLIW system was the Yale ELI-512 computer (with its Bulldog compiler) built in the early 1980s 
[36], just about the time that RISC architectures were being born. Josh Fisher and some colleagues 
from Yale University started a company named Multiflow Computer, Inc., in 1984 [37]. Multiflow 
produced several TRACE systems, named for the trace scheduling algorithm used in the compiler 
[36]. Another company, Cydrome Inc., which was founded about the same time by Bob Rau, pro-
duced a machine known as the Cydra-5 [37]. However, the VLIW concept was clearly ahead of 
its time. (Keep in mind that RISC architectures—which were a much less radical departure from 
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conventional design—also had a hard time gaining acceptance at first.) Both companies failed to 
thrive and eventually went out of business.

For quite some time after this, VLIW architectures were only found in experimental, research machines. 
IBM got wind of the idea and started its own VLIW project in 1986 [38]. Most of the research involved 
the (very complex) design of the compilers; IBM’s hardware prototype system was not constructed 
until about 10 years after the project began. This system is based on what IBM calls the Dynamically 
Architected Instruction Set from Yorktown (DAISY) architecture [39]. Its instructions are 759 bits long; 
they can simultaneously specify up to 8 ALU operations, 4 loads or stores, and 7 branch conditions. The 
prototype machine contains only 4 MB of data memory and 64K VLIWs of program memory, so it was 
obviously intended more as a proof of the VLIW concept (and of the compiler) than as a working system.

Commercially available CPUs based on the VLIW concept entered the market in 2001 with the intro-
duction of the IA-64 architecture [40], which was jointly developed by Intel and Hewlett-Packard (HP) 
and initially implemented in the Itanium (Merced) processor. Subsequent chips in this family include 
the Itanium 2 (2002), Itanium 2 9000 series (2006), 9100 series (2007), 9300 series (code name Tukwila, 
2010), and 9500 series (code name Poulson), introduced in 2012. Intel does not use the acronym VLIW, 
preferring to refer to its slightly modified version of the concept as EPIC (which stands for explicitly 
parallel instruction computing). However, EPIC’s lineage is clear: VLIW pioneers Fisher and Rau went 
to work with HP after their former companies folded and contributed to the development of the new 
architecture [40]. The IA-64 instruction set incorporates 128-bit “bundles” (see Figure 22.12) containing 
three 41-bit RISC-type instructions [40]; each bundle provides explicit dependency information. This 
dependency information (determined by the compiler) is used by the hardware to schedule the execu-
tion of the bundled operations. The purpose of this arrangement (with some of the scheduling done in 
hardware in addition to that done by software) is to allow binary compatibility to be maintained between 
different generations of chips. Ordinarily, each generation of a given manufacturer’s VLIW processors 
would be likely to have a different number and/or types of execution units and thus a different instruc-
tion format. Since hardware is responsible for some of the scheduling and since the instruction format is 
not directly tied to a particular physical implementation, the Itanium processor family is architecturally 
somewhere between a “pure VLIW” and a superscalar design (though arguably closer to VLIW).

There are several disadvantages to the VLIW approach, which IBM, HP, and Intel hoped would be 
outweighed by its significant advantages. Early VLIW machines performed poorly on branch-intensive 
code; IBM has attempted to address this problem with the tree structure of its system, while the IA-64 
architecture addresses it with a technique called predication (as opposed to prediction, which has been 
used in many RISC and superscalar processors) [40]. The predication technique uses a set of predicate 
registers, each of which can be used to hold a true or false condition. Where conditional branches would 
normally be used in a program to set up a structure such as if/then/else, the operations in each pos-
sible sequence are instead predicated (made conditional) on the contents of a given predicate register. 
Operations from both possible paths (the “then” and “else” paths) then flow through the parallel, 
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pipelined execution units, but only one set of operations (the ones with the predicate that evaluates to 
true) are allowed to write their results.

Another problem that negatively affected the commercial success of early VLIW architectures was the 
lack of compatibility with established architectures. Unless one had access to all the source code and could 
recompile it, the existing software could not be run on the new architectures. This problem was addressed 
in IBM’s DAISY prototype by performing dynamic translation (essentially, run-time interpretation) of 
code for the popular PowerPC architecture [39]. Early (pre-2006) EPIC processors also supported the 
execution of the huge existing Intel IA-32 (x86) code base, as well as code compiled for the HP PA-RISC 
architecture, through hardware emulation at run time. However, the performance proved to be poor 
compared to both native IA-64 code running on Itanium series chips and IA-32 code running on existing 
IA-32 processors. Thus, starting with the Itanium 2 9000 series (Montecito) processors, a software emula-
tor known as the IA-32 Execution Layer [41] was introduced to improve performance on legacy x86 code.

Yet another VLIW disadvantage is poor code density. Since not every VLIW instruction has useful 
operations in all its slots, some bit fields are inevitably wasted, making compiled programs take up more 
space in memory than they otherwise would. No real cure has been found for this problem, as the avail-
able hardware resources are constant, while the ILP available in software varies. However, this issue has 
been considerably ameliorated by the fact that memory prices have trended downward over time.

VLIW architectures have several advantages that would seem to foretell their future success. The 
most obvious is the elimination of most or all scheduling logic from the hardware, freeing up more 
space for additional functional units, more on-chip cache, multiple cores, etc. Simplifying the control 
logic may also reduce overall delays and allow the system to operate at a higher clock frequency than 
a superscalar CPU built with the same technology. Also, as was previously mentioned, the compiler 
(relatively speaking) has “all day” to examine the entire program and can potentially uncover much 
more ILP in the algorithm than could a real-time, hardware scheduler. This advantage, coupled with the 
presence of additional functional units, should allow VLIW machines to execute more operations per 
cycle than are possible with a superscalar approach. Since the previously steady increase in CPU clock 
speeds has started to flatten out, the ability of VLIW architectures to exploit ILP would seem to bode 
well for their success in the high-performance computing market. However, in actual practice, IA-64 
chips account for only a small fraction of Intel’s overall sales, and Itanium-based systems represent only 
a fraction of the overall server and high-performance computing market (almost all of it in systems 
made by HP) [42]. It appears that this trend is likely to continue, and at least in the near future, the vast 
majority of high-end systems will be based on multicore, and in many cases multithreaded (see suc-
ceeding text), implementations of more conventional architectures and/or increasingly powerful and 
popular graphics processing units (GPUs).

22.3.12  Multithreaded Architectures

Previously, in Section 22.3.8, we mentioned that Tomasulo’s scheduling algorithm for machines using 
OOE was based on a dataflow approach. Though they outwardly perform as von Neumann machines 
and are programmed using the conventional, sequential programming paradigm, processors with 
Tomasulo schedulers operate internally as dataflow machines—a type of “non-von Neumann” architec-
ture. While pure dataflow machines never became popular in their own right, they did inspire this and 
certain other innovations that have been applied to more traditional CPU designs.

One other way in which dataflow concepts have influenced conventional computer designs is in the area 
of multithreaded, superthreaded, and hyper-threaded processors. Consider the behavior of programs in 
conventional machines. We think of programs running on a single instruction stream single data stream 
(SISD) or multiple instruction stream multiple data stream (MIMD) architecture as being comprised 
of one or more, relatively coarse-grained, processes. Each process is an instruction stream consisting of 
a number of sequentially programmed instructions. Multiple processes can run on an MIMD system 
in truly concurrent fashion, while on an SISD machine, they must run one after another in time-sliced 
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fashion. In a dataflow machine, each individual machine operation can be considered to be an extremely 
“lightweight” process of its own and to be scheduled when it is ready to run (has all its operands) and 
when hardware (a processing element) is available to run it. This is as fine grained a decomposition of 
processes as is possible and lends itself well to a highly parallel machine implementation. However, for a 
number of reasons, massively parallel dataflow machines are not always practical or efficient.

The same concept, to less of a degree (and much less finely grained), is used in multithreaded systems. 
Multithreaded architectures, at least in some aspects, evolved from the dataflow model of computation. 
The idea of dataflow, and multithreading as well, is to avoid data and control hazards and thus keep mul-
tiple hardware functional units busy, particularly when latencies of memory access or communication are 
high and/or not a great deal of ILP is present within a process. While each thread of execution is not nearly 
as small as an individual instruction (as it would be in a true dataflow machine), having more, “lighter-
weight” threads instead of larger, monolithic processes and executing these threads in truly concurrent 
fashion are in the spirit of a dataflow machine since it increases the ability to exploit replicated hardware.
Time-slice multithreading, or superthreading [43], is a dataflow-inspired implementation technique 
whereby a single, superscalar processor executes more than one process or thread at a time. In each clock 
cycle, the control unit’s scheduling logic can issue multiple instructions belonging to a single thread, but 
on a subsequent cycle, it may issue instructions belonging to another thread (Figure 22.13 illustrates this 
approach). In effect, process/thread execution on a superthreaded machine is still time sliced (as it is in 
traditional uniprocessor architectures), but the time slice can be as small as one clock cycle.

The superthreaded approach can lead to better use of hardware resources in a superscalar proces-
sor due to mitigation of dependency-based hazards, since instructions from one thread are unlikely to 
depend on results from instructions belonging to other threads. It can also reduce cycles wasted due to 
access latencies since instructions from other threads can still execute, while a given thread is waiting 
on data from memory. However, the utilization of hardware resources is still limited by the inherent ILP, 
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or lack thereof, in the individual threads. (Studies have shown that, on average, a single thread only has 
sufficient ILP to issue about 2.5 instructions per clock cycle.) To address this limitation, simultaneous 
multithreading (SMT), also known as hyper-threading [43], goes a step beyond superthreading.

Compared to superthreading, hyper-threading (which is used in the some of the latest generation CPUs 
from Intel [44]; the IBM POWER5, POWER6, and POWER7 processors [45]; and others) gives the sched-
uling logic more flexibility in deciding which instructions to issue at what time. In a hyper-threaded pro-
cessor, it is not necessary that all the instructions issued during a given clock cycle belong to the same 
thread [43]. For example, a 6-issue superscalar machine could issue 3 instructions from thread 0 and 3 
from thread 1 at the same time, or four from thread 0 and two from thread 1 as illustrated in Figure 22.14.

In effect, SMT internally splits a single, physical superscalar processor into two or more logically sepa-
rate CPUs, each executing its own instruction stream by sharing processor resources that might otherwise 
go unused if only a single thread were executing. (Of course, some CPU resources including the program 
counter and certain other system registers may have to be replicated to allow for hyper-threading.) SMT 
implementation can significantly increase the efficiency of resource utilization and improve overall system 
performance as seen by the user when multiple tasks (or a single application coded with multiple threads) 
are running [43]. Because of its adoption by the largest manufacturer of microprocessors and other indus-
try giants, SMT/hyper-threading could prove to be the most lasting legacy of the dataflow approach.

22.4 R esearch Issues

Pipelined mainframe processors have been in use since the 1960s, and pipelined microprocessors since 
the 1980s; so much of the basic research in the field was done decades ago. The use of delay slots to miti-
gate the performance penalty associated with control transfers is “old hat” among RISC architectures 
but cannot readily be retrofitted to legacy architectures such as the Intel x86 without destroying the 
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backward compatibility that is their chief competitive advantage. Likewise, the use of branch prediction 
is well established; algorithms that work well in most circumstances have been developed, and future 
improvements in this area are likely to have only marginal effects on performance. OOE coupled with 
scheduling techniques such as scoreboarding and Tomasulo’s algorithm can improve single-threaded 
performance only to the extent that ILP exists within that thread, but most general-purpose, scalar 
applications exhibit relatively limited ILP. This restricts the performance that can be achieved using 
superscalar (or even VLIW) approaches.

For applications that have large amounts of inherent data parallelism, the most promising current 
research area appears to be GPU computing [46]—a subject that is addressed in another chapter of this 
handbook. In just 1 year between the release of the November 2011 and 2012 lists of the world’s top 
500 supercomputers [47], the number of systems using GPU accelerators/coprocessors increased from 
39 to 62. All signs point to a continuation of this trend for the foreseeable future, and there is still much 
research and development to be done in the area of GPU computing.

For more conventional applications that are better parallelized at the process or thread level, multicore 
(see Chapters 23 and 24) and multithreaded architectures provide the most likely path to continuing per-
formance increases. Since the vast majority of general-purpose and high-performance systems use Intel 
processors [48] and since most modern Intel processors (with the exception of the previous generation 
Core architecture CPUs) including the Core i7, Xeon 5500 and 5600 (Nehalem and Westmere) series, 
Itanium 9300, and Atom use hyper-threading, this technology seems likely to see continued use in larger 
systems. Chips such as the IBM POWER5, POWER6, and POWER7 series processors as well as the Sun 
Microsystems’ (now Oracle) UltraSPARC T1, T2, T2 +, T3, and T4 processors demonstrate the commit-
ment of other major computer manufacturers to multithreading as well.

Some of the issues that are significant to multithreaded architectures include limitations on single-
threaded performance when multiple threads are running and disadvantages associated with shar-
ing of memory resources including cache and translation lookaside buffers (TLBs). It is an observed 
fact that some applications perform noticeably worse on hyper-threaded processors due to contention 
with other threads for CPU resources such as instruction decoding logic, execution units, and branch 
predictors [43,49]. With each new design, manufacturers must struggle to balance hardware resources 
with the anticipated needs of applications. As an alternative, some multithreaded CPUs, for example, 
the UltraSPARC T4, provide a mechanism for multithreading to be effectively turned off—temporarily 
dedicating an entire core’s hardware to running a single thread that had been suffering from a bottle-
neck using the Solaris operating system’s “Critical Thread Optimization” feature [50]. However, more 
research and development are needed to provide convenient and efficient means for systems to detect 
when this is occurring and to use this information to switch back and forth between single-threaded 
and multithreaded modes for optimum overall performance.

Sharing of memory resources between threads running on a common core creates issues not only for 
performance but also for security. Obviously, when the instruction and/or data caches belonging to a core 
are shared between two or more threads, the effective cache size available to each thread—and thus the 
hit ratio for each—is less than it would be if only one thread were running. Effective cache size may not 
be cut exactly in half if two running threads share some common code or data, but it is extremely unlikely 
that they would share everything; thus, some degradation of performance is almost inevitable. Important 
research questions here involve determining the optimum cache size, line size, and other design param-
eters for multiple threads to share a common cache with the least disruption. But perhaps an even more 
important topic is preventing threads from sharing the cache “too much”—in other words, spying on data 
belonging to other threads. As far back as 2005, researcher Colin Percival discovered that it was possible 
for a malicious thread running on a Pentium 4 CPU with hyper-threading to use cache access patterns to 
steal a cryptographic key from another thread running on the same core [51]. While operating systems 
can be configured to block this attack vector, manufacturers of multithreaded CPUs now know they must 
keep information security in mind when designing cache line replacement policies; this will surely be an 
ongoing concern as more processors of this type are designed.
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22.5  Summary

No other part of a modern computer system is as complex as its CPU(s). In this chapter, we have exam-
ined several advanced design concepts involving internal concurrency of operations within a single 
CPU core. (Multicore/multiprocessing systems will be addressed in Chapters 23 and 24.) The concept of 
pipelining was the main focus of our attention, since almost all commonly used methods for enhancing 
the performance of a CPU are based on pipelining and since, as a result, almost all modern micropro-
cessors are internally pipelined to some extent. As the reader has seen, while the potential performance 
benefits of pipelining are obvious, “the devil is in the details”—particularly when pipelines become very 
“deep” and/or when multiple pipelines are used in one processor core.

Of course, the examples provided earlier as illustrations of pipelined, superpipelined, superscalar, 
VLIW, and multithreaded architectures were kept relatively simple so as not to lose the reader in a 
myriad of implementation details—details that would have to be addressed in any practical, real-world 
design. Put another way, we have only scratched the surface of the intricacies of this subject. Computer 
engineers may spend their entire careers designing high-performance microprocessors and not learn 
everything there is to know about it—and even comprehensive knowledge of technical details can 
quickly become obsolete as technology changes. Certainly no single handbook chapter can do full jus-
tice to this highly specialized discipline. However, it is hoped that the information in this chapter will be 
sufficient to provide most computing professionals with a sufficient understanding of these techniques 
and their implications for performance, to make them better equipped to make wise choices among the 
many competing computer systems in the constantly changing market of the present and the future.

Key Terms

Arithmetic pipeline: A pipeline designed to perform a given arithmetic operation repetitively. 
Arithmetic pipelines are often used in vector supercomputers due to the nature of their oper-
ands and the operations performed on them but are rarely found in general-purpose machines.

Branch penalty: The time wasted when instructions that sequentially follow a control transfer instruc-
tion are brought into the pipeline but must be aborted (nullified) by the control logic because 
the control transfer causes nonsequential execution. Depending on the specifics of the instruc-
tion set and the details of the pipeline’s implementation, the branch penalty may be as little 
as one clock cycle or as great as the time required to drain the entire pipeline of instructions.

Branch prediction: A technique that attempts to improve the performance of an instruction-pipelined 
processor by guessing whether or not a given conditional control transfer instruction will suc-
ceed or fail and fetching subsequent instructions into the pipeline accordingly. Branch predic-
tion can be done either statically (before the program is run) or dynamically (by the pipeline 
control logic, while the program is running).

Central Processing Unit (CPU): The portion of a digital computer system that performs computational 
work by fetching program instructions from memory and executing them. A CPU normally 
consists of a control unit, which controls and sequences hardware operations, plus a datapath 
that consists of storage registers and computational hardware (e.g., an ALU) for performing 
binary calculations.

Data forwarding: A technique in which the result of a computation, which is needed for use in a sub-
sequent computation, is delivered directly to the hardware functional unit performing the 
second computation rather than being stored into its destination register and then read back 
out for use in the second computation. Data forwarding can improve the performance of a 
pipelined machine by eliminating or reducing pipeline stalls.

Dataflow computer: A computer in which the order of performing operations is determined by the 
availability of operands and computational hardware, rather than by the sequential program-
ming paradigm associated with von Neumann-type computing architectures.
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Delayed branch: A conditional control transfer instruction that attempts to eliminate or reduce the 
branch penalty (wasted clock cycles) of a successful branch by documenting, as an architec-
tural feature, the execution of one (or more) instruction immediately following the branch, 
whether or not the branch succeeds. The instruction(s) following the branch is said to be in the 
branch delay slot(s).

Flow-through time: The time taken for the first iteration of a task to be completed by a pipeline. 
Assuming that each subtask is performed by one pipeline stage, that a clock signal is used to 
advance operations to the next stage, and that the pipeline does not stall for any reason, the 
flow-through time of a pipeline with s stages will be s clock cycles.

ILP: A measure of how many instructions within a computer program can be executed at the same time 
without altering the results that would be produced by executing them sequentially according to 
the von Neumann paradigm. The more inherent parallelism a program has at the instruction level, 
the better it can take advantage of internally parallel processor designs (e.g., superscalar or VLIW).

Instruction-unit pipeline: A pipeline used to process a variety of machine instructions that may 
perform different functions but can be subdivided into a similar number and type of steps. 
Instruction-unit pipelines are common in modern scalar, general-purpose microprocessors.

Pipeline register: A parallel-in, parallel-out storage register comprising a set of flip-flops or latches, which 
is used to separate the logic used in different pipeline stages in order to keep one stage from 
interfering with the operation of another. The pipeline registers are clocked with a common sig-
nal such that each stage’s outputs are advanced to the following stage’s inputs simultaneously.

Pipeline throughput: The number of task iterations completed by a pipeline per clock cycle. In a pipe-
lined instruction-processing unit, throughput is the number of instructions executed per clock 
cycle (IPC). The ideal throughput of a single pipeline is one IPC, but in practice it is always less 
due to control transfers, memory accesses, and/or stalls due to data hazards.

Pipelining: A technique used to improve performance when a task is performed repetitively. A pipe-
line breaks the task into several subtasks, each performed by a different stage of the pipeline, 
and overlaps the performance of subtasks for subsequent task iterations. Since successive task 
iterations are started before previous ones have completed, a given number of iterations can be 
completed in less time as compared to a purely sequential implementation.

RAW hazard: Also known as a true data dependence, this is a relationship between instructions that 
exist when an instruction reads a datum that was produced by a previous instruction. In a 
purely sequential processor, correct operation would be guaranteed, but in a pipelined proces-
sor, it is possible that the subsequent instruction could read the datum before the previous 
instruction’s write was completed, leading to erroneous use of “old” data.

Simultaneous multithreading: Also known as hyper-threading, this is a CPU design technique in 
which the processor executes instructions from multiple threads concurrently. During any 
given clock cycle, instructions from more than one thread may be issued.

Superpipelined processor: A CPU that uses a deep pipeline structure; in other words, one that has 
a large number of very simple stages. By finely subdividing the processing of instructions, a 
superpipelined processor may be able to sustain a higher clock frequency than other proces-
sors built using similar technology. Because of the large number of stages, control transfers 
can cause performance problems.

Superscalar processor: A CPU in which more than one instruction can be issued for execution per 
clock cycle, and thus, more than one instruction may be completed per clock cycle. This is gen-
erally accomplished by having more than one pipeline available for processing instructions. 
The decision about which instructions can be issued simultaneously without producing incor-
rect results is made by the pipeline control logic while the program is running.

Time-slice multithreading: Also known as superthreading, this is a CPU design technique in which the 
processor executes instructions from different threads during successive clock cycles. During 
any given clock cycle, instructions from only one thread are issued.
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Very long instruction word (VLIW) processor: A CPU with multiple pipelined functional units, simi-
lar in hardware design to a superscalar processor. Because of its internally parallel structure, 
the CPU can issue (and thus complete) multiple instructions per clock cycle. However, the 
scheduling of instruction issue is done largely (or completely) by the compiler at program 
translation time, rather than by the control unit at run time.

Write after read (WAR) hazard: Also known as an antidependence, this is a relationship between 
instructions that exist when an instruction writes a datum that was to have been read by a pre-
vious instruction. In a processor with in-order execution, correct operation would be guaran-
teed, but in a processor with multiple pipelines leading to the possibility of OOE, it is possible 
that the subsequent instruction could overwrite the datum before the previous instruction’s 
read was completed, leading to erroneous use of “too new” data.

Write after write (WAW) hazard: Also known as an output dependence, this is a relationship between 
instructions that exist when more than one instruction writes a common datum. In a proces-
sor with in-order execution, correct operation would be guaranteed, but in a processor with 
multiple pipelines (and/or multiple write stages) leading to the possibility of OOE, it is possible 
that a previous instruction could write its result after a subsequent instruction had already 
done so, leading to an erroneous final value of the datum in question.
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Much of the computing done today is performed using parallel computers—searching for information 
(such as used by Google across its applications), analyzing data (such as enabled by the Apache Hadoop 
map–reduce system for scalable distributed computing), and simulating complex systems (such as done 
for weather prediction by NOAA). Even the computer present in cell phones is often a parallel processor 
(handling the user interface, applications, and radio)! In many cases, the exact nature of the parallel 
computer is hidden from the user—the hardware details are abstracted away from both the user and the 
programmer. However, understanding the basics of how parallel architectures work will help both users 
and programmers appreciate, optimize, and improve their ability to use these systems.

Parallel or concurrent execution has many different forms within a computer system. Multiple com-
puters can be executing pieces of the same program in parallel, a single computer can be executing 
multiple operations or instructions in parallel, or there can be some combination of the two. Parallelism 
can be exploited at several levels: thread or task level, operation or instruction level, or even some lower 
machine level (such as done in many AMD and Intel processors). Parallelism may be exhibited in space, 
with multiple independent computation units (commonly referred to as function units (FU)) or, in time, 
with a single FU that is many times faster than several instruction or operation issuing units and is 
shared between them. This chapter attempts to remove some of the complexity regarding parallel archi-
tectures but necessarily leaves out significant detail; however, we try to provide suitable references to 
the reader to follow up for more details both within these volumes and in the open literature. Two 
recommended introductions to uniprocessor computer architecture are Flynn [7] and Hennessy and 
Patterson [8]; a recommended introduction to multiprocessor systems is Culler, Singh, and Gupta [4].

With many possible forms of parallelism, we need a framework to describe parallel architectures. One 
of the oldest and simplest such structures is the stream approach (sometimes called the Flynn taxonomy) 
[6] that is used here as a basis for describing parallel architectures; it is fundamentally implementation 
agnostic and can apply to traditional processors as well as to custom computation engines. We will place 
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modern variations and extensions in this framework to show how even what appear to be radically new 
ideas have their basic characteristics grounded in this fundamental model. These characteristics provide 
a qualitative feel for the architecture for high-level comparisons between different processors.

23.1  Stream Model

A parallel architecture has, or at least appears to have, multiple interconnected processor elements (PE) 
that operate concurrently to solve a single overall problem. PE may operate independently or may exe-
cute in lockstep with other PE depending on the nature of the architecture; a PE that operates indepen-
dently of the other PE is typically referred to as a core. Cores are capable of executing independently of 
other cores but are distinguished from processors in that they do not have the interface and communi-
cations logic to interface with the rest of a system; processors are typically packaged in a chip or other 
self-contained module* that is integrated into the system as a major design element.

Initially, the various parallel architectures can be described using the stream concept. A stream is 
simply one (single; S) or more (multiple; M) actions on data objects or the actual data themselves. There 
are both actions (instructions; I) and objects (data; D), and the four combinations of these streams 
describe most familiar parallel architectures (illustrated in Figure 23.1):

	 1.	 SISD—single instruction stream, single data stream. This classification is the traditional unipro-
cessor (Figure 23.1a).

	 2.	 SIMD—single instruction stream, multiple data streams. This classification includes both vec-
tor processors and massively parallel processors as well as general-purpose graphics processors 
(Figure 23.1b).

	 3.	 MISD—multiple instruction streams, single data stream. This classification includes data stream-
ing processors, data flow machines, and systolic arrays (Figure 23.1c).

	 4.	 MIMD—multiple instruction streams, multiple data streams. This classification includes both 
traditional multiprocessors (including chip multiprocessors) and networks of workstations and 
cloud-computing environments (Figure 23.1d).

*	 In times past, processors were in equipment racks, chassis, boards, chips, etc. Going forward, there is no telling how 
processors may be packaged or integrated with other features in the future.
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FIGURE 23.1  The stream model. (a) SISD, (b) SIMD, (c) MISD, (d) MIMD.
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The key point to keep in mind is that the stream description of architectures uses the programmer’s 
view of the machine (the architecture) as its reference point—the designer’s view of the machine (the 
implementation) may be very different and is likely to be much more detailed and complex.* For a 
programmer to exploit parallelism in their application, they usually need to understand how a parallel 
architecture is organized; there is the dream of automatic parallelism by either hardware or software, 
but as of yet that dream is still far from what can be realized in most cases. Note that the stream clas-
sification describes only the high-level interaction between instruction and data streams—it does not 
describe a particular hardware implementation or the means that the various streams are coordinated 
and synchronized. Thus, a real implementation may be very different than the architecture represented 
by the stream classification but must ensure that any difference between architecture and implementa-
tion is completely transparent to the programmer. Even though an SISD processor can be highly parallel 
in its execution of operations (as is the case in both superscalar and very long instruction word proces-
sors), it still appears to the programmer that the processor executes a single stream of instructions on a 
single stream of data objects. Understanding the details of a particular implementation may enable the 
programmer (or compiler) to produce optimized and better-performing code for a particular imple-
mentation, but such understanding is not necessary to be able to produce functional (and, typically, 
reasonably well-performing) code.

There are many factors that determine the overall effectiveness of a parallel processor organization and 
hence its performance improvement when implemented. What is particularly challenging is that perfor-
mance can have many different measurements, or metrics, depending on what is desired by the analyst or 
reviewer of this information. Performance may be the speedup of the measured system compared to the a 
particular reference system as determined by the observed (wall-clock) time to execute a program, it may 
be the power consumed to execute the program, or it may be any other definable and measurable value 
that is of interest. Both Jain [12] and Lilja [15] provide background on performance analysis.

23.2  SISD

The SISD class of processor architecture is the most familiar class to most people—it is found in older 
video games, home computers, engineering workstations, mainframe computers, cell phones, automo-
biles, toaster ovens, and even digital watches. From the programmer’s view, there is no parallelism in an 
SISD organization, yet a good deal of real concurrency can be present and can be exploited, resulting in 
improved performance, or can be abused, resulting in reduced performance. Pipelining is an early tech-
nique to improve performance that is still used in almost all current processor implementations. Other 
techniques, such as executing multiple operations or instructions concurrently (in parallel), exploit par-
allelism using a combination of hardware and software techniques.

23.2.1  Pipelined Processors

Pipelining is a straightforward approach to exploiting parallelism that allows concurrent processing of 
different phases from multiple instructions in an instruction stream rather than requiring completing 
the processing of all phases of a single instruction in an instruction stream before starting to process the 
next instruction. These phases often include fetching an instruction from memory (instruction fetch; IF), 
decoding an instruction to determine its operation and operands (decode; DE), accessing its operands 
(register fetch; RF), performing the computation as specified by the operation (execution; EX), and stor-
ing the computed value (writeback; WB). Timing diagrams showing the processing of an operation with 
execution following these phases is shown in Figure 23.2a for a non-pipelined processor and in Figure 
23.2b for a pipelined processor.

*	 Ideally, the user’s view is much simpler than either the programmer’s or the designer’s view and is limited to the observ-
able behavior of the application.
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For both cases, the latency, or execution time, of each individual instruction is the same but the 
overall execution throughput, or bandwidth, in terms of cycles per instruction (CPI) or instructions 
per cycle (IPC) is improved by pipelining; pipelining results in execution requiring fewer CPI (effective 
execution latency) or completing more IPC (execution bandwidth). The advantage of using pipelining is 
that multiple instructions have their processing overlapped with each instruction at a different phase of 
its processing, effectively eliminating all non-computation overhead (where EX is the computationally 
limiting phase and the rest are overhead). For our hypothetical pipeline, the non-pipelined case has a 
throughput of five cycles per one instruction or 5 CPI; with the addition of pipelining, we get a through-
put of 1 CPI in steady state. This performance is the best that can be achieved by a processor without 
true concurrent execution—that is, overlapping execution phases for multiple operations in addition to 
overlapping their overhead phases.

Implementing pipelining assumes that the phases are completely independent between different 
instructions and therefore can be overlapped—when this assumption does not hold, hardware* must 
delay processing the dependent later operations or instructions producing a pipeline stall; this stall 
enforces (avoids) the dependency as shown in Figure 23.2c; however, it does increase the latency of the 
dependent instruction and reduces the overall throughput. In this example, the result from the first 
instruction is delayed and the second instruction must delay the execution phase until the required 
result becomes available. However, because the result of the first instruction is bypassed directly from 
output of the execution phase of the first instruction to the input of the execution phase of the second 
instruction the second instruction is then able to begin execution immediately resulting in a two-cycle 
stall (for the additional two EX phase cycles for the first instruction); without bypassing, execution would 
have to wait until after the results are available in the register file after WB and then would have to begin 
executing from the RF phase resulting in a four-cycle stall (now including the WB and and additional 
two EX phase cycles for the first instruction as well as the RF phase cycle for the second instruction). 

*	 Note that some processors have relied on the programmer, or compiler, to ensure that there are no dependencies between 
instructions; sometimes this condition required using special no-operation instructions to avoid dependencies. Delayed 
branches were one instruction that required great care by the programmer (or compiler) to get the correct execution behavior.
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FIGURE 23.2  Instruction issue for scalar processors. (a) Canonical non-pipelined execution. (b) Pipelined execution. 
(c) Pipelined execution with dependency stall and result bypass.
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Although  the first instruction must still perform its register write (during WB), bypassing allows a 
subsequent instruction to use the value earlier than a simple pipeline would make it available thereby 
reducing its latency and increasing overall throughput.

23.2.2  Superscalar Processors

To do better than we can with pipelining, we need to use new techniques to discover or to expose the 
parallelism in the instruction stream. These techniques use some combination of static scheduling (per-
formed by the programmer or the compiler before execution) and dynamic analysis (performed by the 
hardware during execution) to allow the execution phase of different operations to overlap—potentially 
yielding an execution rate of greater than one operation every cycle. Because historically most instruc-
tions consist of only a single operation (and thus a single computation), this kind of parallelism has been 
named instruction-level parallelism (ILP).

Two common high-performance SISD architectures that exploit ILP are superscalar and VLIW pro-
cessors. A superscalar processor uses hardware to analyze the instruction stream and to determine 
which operations are independent and can be executed concurrently by the hardware; these ready 
operations are selected by the hardware and routed to the appropriate FU. Figure 23.3a shows the issue 
of ready operations from a window of available operations. These operations are executed out of order 
which requires additional hardware to make sure that all operations see the proper results. A larger 
instruction window makes more operations available for dependency analysis and issue; however, it 
also increases the hardware cost and complexity used to ensure that all dependencies are correctly 
satisfied and that all operations execute correctly.

An additional problem with executing operations out of order is how to handle exceptions and 
interruptions that occur during execution in an out-of-order processor—there may be many opera-
tions before the problem operation which have not executed and many operations after it which have. 
One solution is for hardware to handle the problem precisely* by determining the affected operation or 
instruction—then waiting for all previous operations or instructions to complete; at that point, either 
hardware or software can handle the problem precisely at the affected operation or instruction. Another 
solution is to handle the problem imprecisely† taking action at the point that the problem is detected and 
requiring software to fix up any complications resulting from operations or instructions that are incom-
plete prior to or already executed following the problem operation; the imprecise approach simplifies the 
hardware dramatically at the expense of software complexity and can result in unrecoverable problems 
that might have been recoverable with precise exceptions. Some processors, such as the DEC Alpha, 

*	 Precise ⇒ associated with the causing operation or instruction
†	 Imprecise ⇒ not associated with the causing operation or instruction
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FIGURE 23.3  Instruction issue for superscalar processors. (a) Superscalar. (b) VLIW.
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use a hybrid precise–imprecise approach that handles problems precisely for most operations (integer 
and other short-latency operations) but imprecisely for others (long-latency floating-point operations), 
optimizing the common case and minimizing both hardware and software complexity.

In contrast to superscalar processors, a VLIW processor depends on the programmer or the com-
piler to analyze the available operations and to schedule independent operations into wide instruc-
tion words; the operations in a wide instruction word can be routed without hardware analysis to the 
appropriate FU. Because operation scheduling is performed statically by the compiler, it is possible to 
have very wide issue widths without excessive hardware complexity; however, in order to use all of the 
resources for a wide machine, the compiler must be able to find and schedule enough operations to fill 
the machine which can be a significant problem. Figure 23.3b shows the direct issue of operations from 
a wide instruction word to all FU in parallel. VLIW processors have significant challenges associated 
with exceptions and interrupts as well, but because their execution is always in the order scheduled by 
the compiler, software has a better chance of success in recovering from the problem than it does with 
imprecise interrupts in a superscalar processor. Note that there is no reason that VLIW processors could 
not apply superscalar techniques to execute operations out of order and to handle exceptions and inter-
rupts smoothly (e.g., see Rudd [18] or Wang et. al [21]) however, this approach has not been implemented 
commercially to the authors’ knowledge.

Both superscalar and VLIW use the same compiler techniques to achieve their superscalar perfor-
mance with the main differences being the complexity of the hardware (superscalar is much more com-
plex) and the tolerance that the processor has to how well the schedule is matched to the processor 
(VLIW is very intolerant). The practical difference between superscalar and VLIW is that if a program is 
scheduled inappropriately for the processor a superscalar processor will still execute correctly and may 
find parallelism from the instruction stream; however, a VLIW processor may fault or, worse, silently 
produce incorrect answers in the same situation. However, a VLIW processor is likely to have more 
predictable execution behavior and may prove to be more efficient (in terms of hardware complexity or 
power consumption); on some applications, a VLIW processor may even have higher performance than 
a superscalar processor in spite of its execution inflexibility.

23.2.3  SISD Wrap-Up

A SISD processor has four primary characteristics. The first characteristic is whether or not the proces-
sor is capable of executing multiple operations concurrently. The second characteristic is the mechanism 
by which operations are scheduled for execution—statically at compile time, dynamically at execution, 
or possibly both. The third characteristic is the order that operations are issued and retired relative to the 
original program order—these can be in order or out of order. The fourth characteristic is the manner in 
which exceptions are handled by the processor—precise, imprecise, or a combination of the two based 
on the executing instruction type.

Tables 23.1 through 23.3 present early representative (pipelined) scalar and super scalar (both supers-
calar and VLIW) processor families. These processor designs migrated from scalar to compatible super-
scalar processor (except for the DEC Alpha and the IBM/Motorola/Apple PowerPC processors that were 
designed from the ground up to be superscalar). Since these processors were designed, the trend has 

TABLE 23.1  Typical Scalar Processors

Processor
Year 

of Introduction
Number 

of FU Issue Width Scheduling
Issue/Complete 

Order

Intel x86 1978 2 1 Dynamic In order/in order
Stanford MIPS-X 1981 1 1 Dynamic In order/in order
Sun SPARC 1987 2 1 Dynamic In order/in order
MIPS R4000 1992 2 1 Dynamic In order/in order
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been toward improving the resources and capabilities for a processor than their issue width. Common 
approaches have included increasing the number and type of FU to enable more complex operations 
to be issued concurrently, increasing the frequency and pipeline depth to increase throughput, and 
increasing the size and performance of caches to reduce the effective memory latency. More recently, 
with reaching the “power wall,” the trend has been to replicate cores on a processor enabling greater 
parallelism by executing more threads concurrently but also reducing the performance of an individual 
thread; these processors exploit MIMD parallelism. Table 23.7 (in Section 23.5) shows the trend for 
cores in Intel multicore processors. The high-level characteristics for these processors have stabilized on 
a per-core basis but performance improves each generation from process changes, design optimizations, 
and new computation capabilities; in addition, die-size reductions enable more cores per die that is not 
seen at the core level. See Section 23.5 for more information on MIMD processors.

There have been very few VLIW processors to date although advances in compiler technology may 
cause this to change. VLIW processors have not been very successful as general-purpose processors 
primarily because of the challenges finding sufficient ILP using only static analysis in the compiler or 
hand coding and optimizing by experienced programmers. However, there are applications where the 
VLIW processors are very effective and most current VLIW processors are used as embedded proces-
sors, multimedia accelerators, or graphics processors (GPU); for these applications, there can be signifi-
cant performance advantages and the cost–performance trade-offs are more important than increased 
software-development costs.

23.3  SIMD

The SIMD class of processor architecture includes both array and vector processors. The SIMD proces-
sor is a natural response to the use of certain regular data structures, such as vectors and matrices. From 
the programmer’s view, an SIMD architecture appears very similar to programming a simple SISD 

TABLE 23.2  Typical Superscalar Processors

Processor
Year 

of Introduction
Number 

of FU
Issue 

Width Scheduling Issue/Complete Order

DEC 21064 1992 4 2 Dynamic In order/in order
Sun UltraSPARC 1992 9 4 Dynamic In order/out of order
MIPS R8000 1994 6 4 Dynamic In order/in order
HP PA-RISC 8000 1995 10 4 Dynamic Out of order/out of order
AMD K5 1996 6 4 Dynamic In-order x86, out of order 

ROPs/out of order
Intel Pentium 4 2000 7 6a Dynamic In-order x86, out of order 

uops/out of order

a	Although the Pentium 4 can issue 6 uops per cycle, it can only retire 3 uops per cycle.

TABLE 23.3  Typical VLIW Processors

Processor
Year 

of Introduction
Number 

of FU Issue Width Scheduling
Issue/Complete 

Order

Cydrome Cydra 5 1987 7 7 Static In order/in order
Multiflow Trace 

28/200
1987 28 28 Static In order/in order

Philips TM-1 1996 27 5 Static In order/in order
Intel Itanium 2 2002 9a 6 Static In order/in order

a	There are actually many more than 9 FU, but there are 9 issue ports that limit the possible combina-
tions of operation issue into the larger pool of physical FU.
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processor in that there is a single instruction stream; however, the key difference is that many of these 
operations perform computations on aggregate data. For example, one instruction might add each pair 
of elements of two vectors or matrices. Because regular structures are widely used in scientific comput-
ing, the SIMD processor has been very successful in these environments.

Two types of SIMD processor will be considered: the array processor and the vector processor that dif-
fer both in their implementations and in their data organizations. An array processor consists of many 
interconnected PE that are dependent and which share a common instruction stream; these PE operate 
on the aggregate data elements concurrently across all of the PE. A vector processor consists of a single 
PE that has both traditional scalar instructions and FU as well as special vector instructions and vector 
FU; the vector units operate on vectors executing the computation sequentially, one element at a time, 
but very efficiently, initiating computations rapidly and possibly overlapping computations as the com-
putation on one element is independent of the computations on all other elements.

23.3.1 A rray Processors

The array processor is a set of interconnected parallel PE (typically hundreds to tens of thousands). PE 
operate in lockstep in response to a single broadcast instruction from a control processor and thus all PE 
synchronously execute exactly the same instruction in each cycle. If supported, when the execution path 
in different threads diverges, the control processor must issue instructions from each divergent thread 
to all PE until their paths reconverge; only those PE associated with the execution path for that divergent 
thread then execute the instructions. When divergence occurs, this method results in a significant slow-
down and performance penalty as many of the PE are idle during divergent execution.

Each PE has its own private memory and data are distributed across the elements in a regular fashion 
that is dependent on both the structure of the data and the structure of the computation to be per-
formed on the data. When allowed, direct access to global memory or to another PE’s local memory 
is expensive; however, constant scalar values can be broadcast by the control processor along with the 
instruction to all PE. The high remote-data access cost requires that the data be distributed carefully. 
For performance reasons, it is sometimes easier to duplicate data values and computations than it is to 
route the intermediate data between PE.

A suitable application for use on an array processor has several key characteristics: a significant 
amount of data that have a regular structure; computations on the data that are uniformly applied to 
many or all elements of the data set; simple and regular patterns relating the computations and the 
data; and minimal communications requirements between computations on individual elements. An 
example of an application that has these characteristics is the solution of the Naviér–Stokes equations; 
however, applications that have significant matrix computations and very little execution divergence are 
likely to benefit from the concurrent capabilities of an array processor.

The programmer’s reference point for an array processor is typically the high-level language level—
the programmer is concerned with describing the relationships between the data and the the computa-
tions on the data but is not directly concerned with the details of scalar and array instruction scheduling. 
In fact, in many cases, the programmer is not even concerned with the size of the array processor. In 
general, the programmer specifies the size and structure of the data along with distribution informa-
tion and the compiler maps the implied virtual processor array (which is sized and shaped based on the 
size of the data and computation) onto the physical PE (which are actually implemented in hardware); 
it then generates code to perform the required computations and the management of virtual-to-real PE 
mappings is performed by some combination of hardware and software methods.

The primary characteristic of an SIMD processor is whether the memory model is shared or distributed. 
The interconnect network is also important; for more information on interprocessor interconnects, see 
Chapter ??. Table 23.4 shows several representative SIMD architectures. Note that there have not been a 
significant number of SIMD architectures developed recently due to a limited application base and market 
requirement for SIMD processors. In addition, the ready availability of high-performance general-purpose 
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multiprocessor (MIMD) systems and general-purpose graphics processors (GP-GPU) allows exploiting 
similar parallelism with more flexibility and broader capabilities than available with traditional SIMD 
processors. Section 23.5 discusses MIMD systems and Section 23.6.1 discusses GP-GPU systems.

23.3.2  Vector Processors

A vector processor is a single processor that resembles a traditional SISD processor except that some 
of the FU (and registers) operate on vectors—aggregate data comprising sequences of data values—
which are operated on as a single entity by the hardware. Vector processor FU typically have a very high 
clock rate enabling them to be deeply pipelined; in addition, execution phases are overlapped, which 
is allowed because the calculations are defined on individual data elements and cross element depen-
dencies are not allowed. Although this deep pipeline results in as long or longer latency than a normal 
scalar FU to compute on the first data element, it produces the results of computations on the remaining 
elements very rapidly. The vector-processor computation process results in a significant speedup for the 
overall vector computation that cannot be matched by scalar FU that must explicitly perform the same 
set of computations on each element in turn.

Early vector processors computed on vectors that were stored in memory. The primary advantage 
of this approach is that the vectors could be of arbitrary lengths and were not limited by processor 
resources; however, memory-based vector operations have a high start-up cost due to the long latency to 
get the vector from main memory, limited memory system bandwidth, and memory system contention 
which all proved to be significant limitations. Modern vector processors require that vectors be explic-
itly loaded from memory into special vector registers and stored back into memory—the same approach 
that modern scalar processors have taken for similar reasons. However, because vector registers have 
low latency and preserve intermediate values for reuse without passing back through memory, modern 
register-based vector processors achieve significantly higher performance than the earlier memory-
based vector processors for the same implementation technology.

Vector processors improve performance further using result bypassing (chaining) that allows a fol-
low-on vector computation to commence as soon as the first value is available from the preceding com-
putation, pipelining the execution of different vector instructions across different FU. Instead of waiting 
for the entire vector to be processed, the follow-on computation can be significantly overlapped with the 
preceding computation that it is dependent on as long as there are available FU. Chaining allows sequen-
tial computations to be efficiently compounded and to behave as if they were performed by a single 
operation with a total latency equal to the latency of the first operation with the pipeline and chaining 
latencies of the remaining operations but without the per-instruction start-up overhead that would be 
incurred to perform the same vector computations without chaining. For example, division could be 
synthesized by chaining a reciprocal operation with a multiply operation at only incrementally greater 
execution latency than either operation alone (although requiring two FU to perform the chained com-
putation). Chaining typically works for the results of load operations as well as normal computations.

As with the array processor, the programmer’s view for a vector machine is the high-level language. 
In most cases, the programmer sees a traditional SISD machine; however, because vector machines excel 
on computing with vectors, the programmer typically writes code with simple vectorizable loops that 

TABLE 23.4  Typical Array Processors

Processor
Year 

of Introduction Memory Model PE
Number 

of Processors

Burroughs BSP 1979 Shared General purpose 16
Thinking Machines CM-1 1985 Distributed Bit-serial up to 65,536
Thinking Machines CM-2 1987 Distributed Bit-serial 4,096–65,536
MasPar MP-1 1990 Distributed Bit-serial 1,024–16,384
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can be recognized by the compiler and converted into individual vector instructions. Programmers can 
also help the compiler by providing hints that help the compiler to locate the vectorizable sections of the 
code. This situation is purely an artifact of the fact that the programming languages are typically scalar 
oriented and do not support the treatment of vectors as an aggregate data type but only as a collection 
of individual values. As new languages are defined that make vectors a fundamental data type, then the 
programmer is exposed less to the details of the machine and to its SIMD nature; although programs 
in these languages include more information available to enable automatic parallelization, the compiler 
may still not be able to exploit all of the performance in a given machine, trading off performance for 
portability just as we saw previously with superscalar.

The vector processor has two primary characteristics. One characteristic is the location of the 
vectors—vectors can be memory or register based; the other characteristic is the vector length. Vector 
processors have developed dramatically from simple memory-based vector processors to modern mul-
tiple-processor vector processors that exploit both SIMD vector and MIMD-style processing. Table 23.5 
shows some representative vector processors.

There are fewer and fewer big-iron SIMD processors. Currently, SIMD computations are performed 
on general-purpose SISD processors using instructions that operate on sub-elements of small fixed-
length aggregate data structures. These special SIMD instructions look like register-based instructions 
in a vector processor but instead perform computations in parallel on sub-elements from wide data 
registers that have far fewer data elements than a vector processor would have in its vector registers. For 
example, Intel’s current version of their Advanced Vector Instructions operate on 256-bit aggregate data 
structures; the sub-elements of this aggregate data structure can represent four 64-bit values or eight 
32-bit values. Other vector extensions may support different aggregate-data sizes and data sub-element 
sizes. These new SIMD are often programmed explicitly by the programmer using custom libraries or 
explicit vector primitives inserted manually into the code rather than being directly supported in tradi-
tional programming-language; however, over time new programming languages and improved compil-
ers will extend their ability to perform SIMD computations without explicit programmer involvement.

23.4  MISD

Although the term MISD processor is not widely used, conceptually this is an important architectural 
classification. Here the instructions (or functional operations) are in a fixed configuration specific to 
an application and the data are streamed across the operation configuration. It is, in many respects, a 
pipelined processor wherein the programmer can rearrange or create pipeline stages to match the appli-
cation. Physically, realizing this programmable pipeline has been a challenge.

Abstractly, the MISD can be represented as multiple independently executing FU operating on a 
single stream of data, forwarding results from one FU to the next. On the microarchitecture level, 
this is exactly what the vector processor does. However, in the vector pipeline, the operations are 
simply fragments of an assembly level operation, as distinct from being a complete operation in 
themselves. Surprisingly, some of the earliest attempts at computers in the 1940s could be seen as 
the MISD concept. They used plugboards for programs, where data in the form of a punched card 
were introduced into the first stage of a multistage processor. A sequential series of actions was taken 

TABLE 23.5  Typical Vector Processors

Processor
Year 

of Introduction
Memory or 

Register Based
Number 

of Processor Units
Number of Vector 

Units

Cray 1 1976 Register 1 7
CDC Cyber 205 1981 Memory 1 2–5
Cray T90 1995 Register 4–32 2
NEC SX-9 2008 Register 4–8192 48
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where the intermediate results were forwarded from stage to stage until at the final stage a result 
would be punched into a new card.

There are more interesting examples of the MISD organization. Data flow machines were pioneered 
by Prof. Jack Dennis of MIT in the 1970s and 1980s [5]. These machines can use either static or dynamic 
data flow, the latter allowing limited run time reconfiguration of the data flow pipeline; they can also use 
either synchronous or asynchronous clocking; finally, they can use either a single data or data stream-
ing. It is only the data-streaming data flow machine that matches the MISD category.

In a more recent development, the Maxeler Technologies Maximum Performance Computing (MPC) 
products [16] implement static, synchronous data flow machines that are custom designed to match an 
application’s data flow graph. FPGAs are used to realize the data flow machine.

The systolic array [14] is a special form of MISD wherein all nodes of an (usually rectangular) array 
consist of data processing units (DPU). These are minimally configured PE. Each node is activated by 
the arrival of data and the result is shared with its neighbors in a mesh topology. It has been effectively 
used in computations such as matrix multiply.

The programmer’s view of an MISD machine depends very heavily on the specific machine organiza-
tion. It is hard to generalize without this machine knowledge.

23.5  MIMD

The MIMD class of parallel architecture interconnects multiple cores (typically SISD) into a multicore 
processor (when combining multiple cores onto a single die) or multiprocessor (when combining mul-
tiple processors into a single system). A core is a single hardware structure that executes one or more 
threads but that is not a stand-alone processor, lacking general communications and peripheral sup-
port. A thread is the combination of an instruction stream with all of its execution state and data—it 
represents the programmer’s view of an SISD processor. Each core supports the execution of one or 
more threads.

Although there is no requirement that all processor cores or processors be identical, most MIMD 
configurations are homogeneous with identical cores throughout the system. Homogeneity simplifies 
the hardware design, operating system implementation, and the programmer’s challenge to use the sys-
tem effectively. Most multicore processors and multiprocessor systems are homogeneous. One well-
known example of a heterogeneous MIMD processor is the IBM/Sony Cell processor [9], which has a 
single conventional RISC main core (SPU) and eight computation cores (SPE).

For simplicity, in this section, we limit ourselves to homogeneous MIMD organizations. However, 
although each individual core in the system is identical, the notion of homogeneity is complicated by the 
multiple levels of hierarchy in current multicore and multiprocessor systems. We have multiple threads 
on a core, multiple cores on a processor, multiple processors on a board, multiple boards in a box, and 
so forth—so even though each core in such a homogeneous system is the same, different pairs of cores 
have access to different resources and may also have different communication characteristics resulting 
in very nonhomogeneous behavior. Because performance may vary depending on where the threads 
in an application are executing, there are many challenges for the programmer to use such a system 
effectively. Although it is important to appreciate the kinds of hierarchy associated with multicore or 
multiprocessor systems (especially if trying to optimize an application on a particular multicore or mul-
tiprocessor system), we only discuss the general concept of MIMD here as the variables are many and all 
are system and configuration dependent.

Both SIMD and MIMD systems are similar in some respects in that they perform many computations 
concurrently; the greatest difference between SIMD array processors and an MIMD multiprocessor is that 
the SIMD array processor executes a single instruction stream executing the same instruction synchro-
nously across all PE in the array, while an MIMD multiprocessor executes different instruction streams 
asynchronously across all cores in the system. Although it may be the case that each core in an MIMD 
system is running the same program (sometimes referred to as single program multiple data (SPMD)), 
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there is no reason that different cores should not run different programs that are completely unrelated. In 
fact, most use of multiprocessor systems is to run multiple independent programs concurrently—not to 
run a single program (or even multiple programs) cooperatively—across all cores in the system; this 
usage is common across workstations, desktops, laptops, and even mobile devices running multiple 
applications on mainstream operating systems such as Microsoft Windows, Apple OS-X, Linux, Apple 
IOS, and Google Android.

The interconnection network in both the SIMD array processor and the MIMD processor passes data 
between PE. However, in the MIMD processor, the interconnection network is typically much more gen-
eral and is used to share data as well as to synchronize the independent cooperating threads running 
across the MIMD processor. Interconnection networks are very diverse including bus interconnects, 
where all cores share a common bus to communicate; star interconnects, where all cores interconnect via a 
common hub; ring interconnects, where all cores connect to two other cores and each core forward nonlo-
cal communications to cores further around the ring; and multidimensional interconnects where cores 
are connected in complex ways requiring careful routing to get the data from the source to the requester. 
There are many variations on interconnects including multi-level interconnects with different intercon-
nect topologies at each level. For more information on interprocessor interconnects, see Chapter ??.

One key characteristic of a multiprocessor system is the location of memory in the system; the location 
affects the latency to access the memory and optimizing memory accesses is one of the programmer’s 
key performance challenges. When the memory of the processor is distributed across all processors 
and only the cores local to that processor have access to it, all sharing and communications between 
processors (both sharing of data and synchronizing threads) must be done explicitly using messages 
between processors. Such an architecture is called a message-passing architecture. When the memory 
of the processor is shared across all processors and all cores have access to it, sharing and communicat-
ing between threads can be done explicitly or implicitly (and, unfortunately, sometimes inadvertently) 
through normal memory operations. Such an architecture is called a shared-memory architecture. If 
the shared memory is in a central location and all processors have the same access latency to the shared 
memory, then it is called a uniform memory access (UMA) latency multiprocessor; bus-based multi-
processors with a centralized main-memory system are a common example of a UMA processor. If the 
shared memory is distributed across the processors in the system, then it is called a distributed shared-
memory (DSM) architecture processor; in a DSM architecture, processors see different access latencies 
to different memory locations and it is thus called a non-uniform memory access (NUMA) latency multi-
processor. Because of their hierarchical nature, most multiprocessor systems are NUMA although even 
a single-processor multicore system locally be an NUMA  system depending on its internal architecture 
of caches and memory channels.

In any multiprocessor system where data are shared, producing the right observable memory behav-
ior is a challenge; in fact, one problem with shared memory is that the “right” behavior for shared 
memory is not well defined. There are two significant problems that arise when sharing data. One is 
memory consistency describing the ordering constraints for sequences of memory accesses that may be 
observed by different threads in the system; the other is memory coherency, also called cache coherency, 
describing the value constraints on memory accesses to the same location that may be observed by dif-
ferent threads in the system.

Memory consistency is the programmer-visible ordering effects of memory references both within a 
core and between different cores and processors in a multicore or multiprocessor system. The memory 
consistency problem is usually solved through a combination of hardware and software techniques. The 
appearance of perfect memory consistency may be guaranteed for local memory references only—and 
thus different processors may see different memory content depending on the implemented memory 
consistency policy. In the most unconstrained case, memory consistency is only guaranteed through 
explicit synchronization between processors to ensure that all processors see the same memory content.

Memory coherency, or cache coherency, is the programmer invisible mechanism to ensure that all 
PE see the same value for a given memory location and is normally associated with how caches behave. 
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The memory coherency problem is usually solved exclusively through hardware techniques. This prob-
lem is significant because of the possibility that multiple cores have copies of data from the same address 
in their local caches and cache coherency describes whether or not different threads accessing this data 
see the same value as well as the protocol used to ensure this coherency requirement.

There are two primary techniques to maintain cache coherency. The first is to ensure that all affected 
cores are informed of any change to the shared memory state—these changes are broadcast throughout 
the MIMD processor and each core monitors the interconnect to track these state changes (commonly 
by “snooping” communications on the interconnect). The second is to keep track of all cores using 
a memory address in a directory entry for this address; when there is a change made to the shared 
memory state for a shared address, each core in the directory for that address is informed. In either case, 
the result of a change can be one of two things—either the new value is provided to the affected cores, 
allowing them to update their local value, or other copies of the value are invalidated, forcing these cores 
to request the data again when it is needed.

Both memory consistency and memory coherency are complex problems and there are many asso-
ciated trade-offs in hardware and software complexity as well as in performance. There are certainly 
complexity and scalability advantages to relaxing both memory consistency and coherency, but whether 
the programmer is able to use such a system effectively is a difficult question to answer. For more infor-
mation on memory consistency and memory coherency, see Chapter ??.

Scalability for multicore and multiprocessor systems can be challenging as well. For small systems, 
a few cores are directly connected (typically by a common system bus, but more and more by a point-
to-point link such as AMD HyperTransport [10] or Intel QuickPath Interconnect [11]); in these sys-
tems, snooping is adequate and minimizes complexity at the cost of coherency traffic on the bus or 
interconnect traffic. However, as the number of cores in a system increases, it is more likely that there 
will be a large multi-hop or multidimensional interconnect requiring significant latency to get between 
cores; there may also be significantly more data sharing that increases the communications bandwidth 
through the network, further exacerbating the problem. The resulting traffic on the interconnect as 
well as the long communication latencies associated with these larger systems may make broadcast 
and snooping undesirable or unusable. In large systems, directory-based memory coherency becomes 
significantly better because the amount of communications required to maintain coherency is limited 
to only those processors requesting, owning, and holding copies of the data. Snooping may still be used 
within a small cluster of PE to track local changes and the cluster would appear to behave as a single 
memory consumer to the rest of the network.

The hardware implementation of a distributed memory machine is far easier than that of a shared 
memory machine when memory consistency and cache coherency are taken into account as all informa-
tion sharing between processors on a distributed memory system is performed through explicit mes-
sages rather than through shared memory. However, programming a distributed memory processor can 
be much more difficult because the applications must be written to exploit, and to not be limited by, the 
requirement to use of message passing to communicate between threads. On the other hand, despite 
the problems associated with maintaining consistency and coherency, programming a shared memory 
processor can take advantage of whatever communications paradigm is appropriate for a given com-
munications requirement and can be much easier to program.

Early multiprocessor systems had few processors; Table 23.6 shows some classic multiprocessor sys-
tems. Over time, systems grew larger and the complexity of the systems increased significantly although 
the basic concepts did not change dramatically through the years. More recently, there have been signif-
icant practical changes in multiprocessor systems with single-processor multicore systems becoming 
common—although these processors are similar to multiprocessor systems through the years, they 
are often used to run multiple independent programs rather than collaborative programs. In addi-
tion, these multicore processors are then used to build larger multiprocessor systems which may then 
be used for a single application, much like was the case for earlier multiprocessor systems. Table 23.7 
shows a few of these processors that can be assembled into much larger multiprocessor systems. 
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Table 23.8 shows the current top three systems in the Supercomputer Top 500 [20]. These systems use 
large numbers of high-performance general-purpose multicore processors and the top-ranked Titan 
system is a hybrid system containing general-purpose processors and GP-GPU processors to achieve 
its performance.

The primary characteristic of an MIMD processor is the nature of the memory address space—it is 
either local to each processor or shared across all processors. The number of cores in a processor, the 
number of processors in the system, the memory hierarchy including both caches and memory (and the 
constraints associated with memory accesses), and the interconnection are also important in character-
izing an MIMD processor.

23.6  High-Performance Computing Architectures

Up to this point, we have focused on traditional multiprocessor systems that can be readily described 
using the Flynn taxonomy. Many of these systems have high performance and fall neatly into the tax-
onomy. In this section, we discuss three high-performance computing approaches that are becoming 
ubiquitous but are not readily placed into this simple taxonomy. First, we discuss GPU used for highly 
parallel general-purpose computing, thus referred to as GP-GPU; we also discuss manycore proces-
sors that address similar parallelism but instead use general-purpose CPU cores. Finally, we discuss 

TABLE 23.7  Intel Multicore Processors for MIMD Server Systems

Processor
Year 

of Introduction
Number 
of Cores

Threads per 
Core

Effective Cache 
Size

Xeon (Paxville) 2005 2 2 4 MB
Itanium 2 9050 (Montecito) 2006 2 1 24 MB
Xeon X3350 (Yorkfield) 2008 4 1 12 MB
Xeon E7-8870 (Westmere-EX) 2011 10 2 30 MB
Itanium 9560 (Poulson) 2012 8 2 32 MB

TABLE 23.8  TOP500 Supercomputers (The Top Three) as of November 2012

Rank System Core Interconnect Total Cores

1 Titan – Cray XK7 Opteron 6274 16C, 
NVIDIA K20x

Cray Gemini 560,640

2 Sequoia – BlueGene/Q Power BQC 16C Custom 1,572,864
3 K computer SPARC64 VIIIfx Tofu 705,024

TABLE 23.6  Representative Discrete MIMD Systems

System
Year 

of Introduction PE
Number of 
Processors

Memory 
Distribution

Programming 
Paradigm

Interconnection 
Type

Alliant FX/2800 1990 Intel i860 4–28 Central Shared memory Bus + crossbar
Stanford DASH 1992 MIPS 

R3000
4–64 Distributed Shared memory Bus + mesh

MIT Alewife 1994 Sparcle 1–512 Distributed Message passing Mesh
Tera Computers 

MTA
1995 Custom 16–256 Distributed Shared memory 3D torus

Network 
of Workstations

1995 Various Any Distributed Message passing Ethernet

CRAY T3E 1996 DEC Alpha 
61164

16–2048 Distributed Shared memory 3D torus
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cloud-computing architectures that are, in a sense, virtual MIMD systems rather than multiprocessor 
systems themselves but that distinction can be easily transparent to the programmer.

23.6.1  GP-GPU and Manycore Systems

General-purposes use of graphics processors has skyrocketed and resulted in new graphics processors 
being designed for highly parallel general-purpose use; these processors are called general-purpose 
GPU (GP-GPU) processors. Parallel applications for GP-GPU are becoming more and more com-
monplace as the availability of GP-GPU systems (including sharing compatible GPU processors in the 
graphics subsystem to perform GP-GPU computations in addition to processing graphics) is becoming 
more common. Unfortunately, GP-GPU have some of the same performance complications of SIMD 
processors as they are not as flexible as general-purpose processors; thus, they are difficult to program 
and have a limited range of applications that are suitable for execution on them. In contrast, manycore 
architectures are derived from general-purpose multiprocessors and although are not as highly parallel 
as GP-GPU processors are programmed more like traditional multiprocessors and have a broader range 
of applications that are suitable for execution on them.

NVIDIA calls their Tesla GP-GPU architecture a Single Instruction Multiple Thread (SIMT) archi-
tecture; SIMT is a hierarchical hybrid architecture comprising MIMD and SIMD elements that is capa-
ble of running many threads across the processor. In this high-level description, we use terms consistent 
with the rest of the chapter; NVIDIA has their own terminology that is matched to the SIMT architec-
ture and their GP-GPU implementations. For more information on the Tesla GP-GPU architecture, 
see [13,19].

An SIMT processor contains one or more streaming multiprocessors (the MIMD element) running 
one or more threads; each streaming multiprocessor comprises a large number of PE running in lock-
step (the SIMD element), specialized computing resources, and a memory hierarchy. Both the stream-
ing multiprocessors and the PE are virtualized; thread scheduling is performed using a combination 
of hardware and software and is very efficient. As with SIMD processors, divergent execution within a 
streaming multiprocessor still suffers significant performance penalties just as in an SIMD processor 
under similar execution conditions; however, because each streaming multiprocessor is independent, 
divergent execution between streaming multiprocessors is not a problem.

The GP-GPU programmer develops an application specifying the number of threads and how those 
threads are to be distributed across streaming multiprocessors and their PE. By structuring the program 
carefully, it may be possible (but challenging!) to avoid some of the SIMD complications while achieving 
the same kind of performance as a SIMD processor.

In contrast to the GP-GPU, the Intel Many Integrated Core (MIC) manycore processor has far fewer 
cores on the processor than the GP-GPU has PE, but each core is a complete processor that executes 
independently and can execute the same or different program. Where the flexibility of the manycore 
processor comes into its own is when each thread is running the same application but follows a differ-
ent thread of execution—something that the manycore processor is very good at but that the GP-GPU 
processor is unable to do without suffering significant performance penalties. The manycore processor 
uses many more cores that are much smaller and simpler than are used in a typical multicore processor; 
however, in principle, it is very similar to a traditional MIMD processor as discussed in Section 23.5.

What is common across both GP-GPU and manycore architectures is the ability to execute a large 
number of threads very efficiently. In the case of the GP-GPU processor, these threads tend to be short 
and execute very quickly along the same execution path; in the case of the manycore processor, these 
threads tend to be longer and more heavyweight and can execute arbitrary execution paths. Both are 
used as coprocessors and are controlled by a separate main processor that offloads computations to 
them and then may be able to continue on with other work (increasing system parallelism) until the 
coprocessor computations are complete. Table 23.9 shows representative GP-GPU and manycore sys-
tems that are currently available.
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23.6.2  Cloud Computing

A cloud-computing architecture is significantly different from the rest of the multiprocessor architec-
tures discussed in this chapter in that it is essentially a virtual MIMD multiprocessor system (and prob-
ably runs on multiple physical multiprocessor systems as well). Early forms of cloud computers were 
very ad hoc creations, mostly for scientific applications. One well-known community-based virtual 
cloud computer is the SETI@home project; botnets use similar techniques although, unlike the SETI@
home project, they use stolen resources for malicious and criminal purposes. Early workgroup-level 
cloud computers include the Beowulf computer [17] and Network of Workstations (NOW) [1], but there 
have been many variations on this theme.

Modern cloud computing is often done in large server farms and uses the notion that computer systems 
can be aggregated to form a loosely coupled virtual multiprocessor system that can be shared across mul-
tiple users. Cloud-computing systems can provide either direct or indirect access to a virtual computer 
system using SISD, MIMD, or even GP-GPU systems. With direct access, users are provided with their 
own virtual multiprocessor system and associated administration, application, and development soft-
ware for their use. With indirect access, users are provided with access to specific services through a ser-
vice-oriented architecture (SOA) that is an application provided by the cloud-computing infrastructure.

One advantage of cloud computing is that the physical computer systems assigned to a customer can be 
scaled and configured to adapt to customer demands; they may also be distributed geographically so that the 
physical computer systems are located near customer centers or low-cost power sources. Another advantage 
is that physical computer systems are shared among many customers so that the customers do not have to 
purchase and maintain their own cluster. The individual computer systems may also have diverse function-
ally (in both performance capabilities and software resources) to provide both cost and performance flex-
ibility and to allow tailoring the compute resources used to each application’s computation requirements.

23.7 A fterward

In this chapter, we have reviewed a number of different parallel architectures organized by the stream 
model. We have described some general characteristics that offer some insight into the qualitative differ-
ences between different parallel architectures but, in the general case, provide little quantitative infor-
mation about the architectures themselves—this would be a much more significant task although there 
is no reason why a significantly increased level of detail could not be described. Any model, such as the 
stream model, is merely a way to categorize and characterize processor architectures and if it becomes 
too detailed and complicated, then it may lose its benefits; the stream model’s main benefits are its high-
level nature and simplicity. However, there is a place for more detailed models as well; for a more compre-
hensive characterization of processor characteristics, see Blaauw and Brooks [3] or Bell and Newell [2].

Just as the stream model is incomplete and overlapping (consider that a vector processor can be con-
sidered to be a SIMD, MISD, or SISD processor depending on the particular categorization desired), the 
characteristics for each class of architecture are also incomplete and overlapping. However, the insight 
gained from considering these general characteristics leads to an understanding of the qualitative dif-
ferences between gross classes of computer architectures, so the characteristics that we have described 
provide similar benefits and liabilities.

TABLE 23.9  Massively Parallel GP-GPU and Manycore Coprocessors

Coprocessor
Independent 

Cores
PE/FU per 

Core
Threads per 

Core Local Memory

NVIDIA Tesla Keppler K20X 14 192 PE 2048 6 GB
AMD Radeon™ HD 7970 32 64 PE 10 3 GB
Intel Xeon Phi 5110P 60 2 FU 4 8 GB
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This is not meant to imply that the aggregate of the stream model along with the relevant charac-
teristics is a complete and formal extension to the original taxonomy—far from it. There are still a 
wide range of processors that are problematic to describe well in this (and likely in any) framework. 
Whatever the problems with classifying and characterizing a given architecture, processor archi-
tectures, particularly multiprocessor architectures, are developing rapidly. Much of this growth is 
the result of significant improvements in compiler technology that allow the unique capabilities of 
an architecture to be efficiently exploited by the programmer with more and more assistance by the 
compiler.

In many cases, the design (or, perhaps more properly, the success) of a system is based on the ability 
of a compiler to produce code for it. It may be that a feature is unable to be utilized if a compiler cannot 
exploit it and thus the feature is wasted (although perhaps the inclusion of such a feature would spur 
compiler development—there is the chicken-and-egg conundrum). It may also be that an architectural 
feature is added specifically to support a capability that a compiler can easily support (or already sup-
ports in another processor), and thus performance is immediately improved. And in the future, it may 
be that dynamic code optimization or translation could exploit these new features even in code that was 
not compiled to take advantage of them; however, that capability is still a research effort. Whether for 
producing great code or for taking advantage of new features, compiler development is clearly an inte-
gral part of system design and architectural effectiveness is no longer limited only to the processor itself. 
System models must keep up with architecture development and be updated appropriately and new 
models must be developed to account for these new architectures; these models may include software 
aspects as well to account for the close coupling between hardware and software that makes these new 
architectures function to their fullest potential.

Defining Terms

Array processor: An array processor is an SIMD processor that executes a single instruction stream on 
many interconnected that are execute in lockstep. Data are distributed across the array and PE 
processed in parallel by all the PE.

Bandwidth: Bandwidth represents the rate (volume) of computation or data passing through the system 
or interconnect.

Bypass: A bypass is the mechanism used in a pipelined processor to route the result of an operation or 
instruction to a dependent operation or instruction before the result is available for reading 
from its register or memory location.

Cache coherency: See Memory coherency.
Chaining: Chaining is used in vector processors where the results between dependent operations are 

bypassed element by element from one FU to another. The end result is that compound opera-
tions have a latency only incrementally longer than an individual operation resulting in sig-
nificantly increased execution bandwidth.

Core: A core is a logic structure that comprises decode and control logic in addition to PE and provides 
the ability to execute an instruction stream independently from other cores. As used in this 
chapter, a core is distinguished from a processor in that a core does not have the communica-
tions and peripheral logic to integrate into a system. Cores are the primary logic structures in a 
processor and include one or more PE.

Dependency: Dependency describes the relationship between operation and instruction where the 
results produced by one instruction are consumed by a subsequent instruction. Dependent 
instructions must be executed sequentially.

Distributed shared-memory architecture: A DSM is a multiprocessor system where the memory 
is distributed across all processors; although the memory is shared, the distributed nature 
of the memory results in having a NUMA latency that makes thread and data placement a 
significant factor in realized performance.
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Exception: An exception refers to an unexpected event produced internal to the core or processor as a 
side effect of executing operations or instructions; in contrast, an interrupt is produced exter-
nal to the core or processor.

Instruction: An instruction is the machine-readable representation of one or more independent opera-
tions that may be executed concurrently by a core or PE. Although often used indistinguishably 
with instruction (because most processors use instructions containing only one operation), as 
used in this chapter, an instruction is distinguished from an operation by being the container 
of operations rather than the specification of the computation to be performed.

Instruction-level parallelism: ILP is when multiple operations or instructions are extracted from the 
instruction stream and executed concurrently; it differs from pipelined parallelism in that 
not only is the overhead overlapped but also the execution as well. Operation or instruction 
execution may be performed in order or out of order depending on the processor capabilities.

Interrupt: An interrupt refers to an unexpected event produced external to the core or processor; it may 
come from a peripheral or another processor. In contrast, an exception occurs internal to the 
core or processor as a result of executing operations or instructions.

Latency: Latency is the time required to complete an action. For execution of an operation or instruc-
tion, latency is the time required from the initial fetch to the successful completion of the 
operation or instruction; execution results may be available prior to the end of the execution 
process through bypassing. For memory, latency is the time required to make the request to 
memory and to receive the result.

Memory coherency: Memory coherency is the programmer-invisible mechanism to ensure that all PE 
see the same value for a given memory location and is normally associated with how caches 
behave. It is also known as cache coherency.

Memory consistency: Memory consistency is the programmer-visible ordering effect of memory refer-
ences both within a core and between different cores and processors in a multicore or multi-
processor system.

Message-passing architecture: A message-passing architecture is a multiprocessor system that uses 
messages for all communications between processors (or other computer systems) including 
sharing data as well as synchronization.

Multicore processor: A multicore processor comprises a number of cores that share communications 
and peripheral logic to integrate into a system.

Multiprocessor: A multiprocessor comprises multiple interconnected processors.
Nonuniform memory access: An NUMA architecture has memory access latencies that are a factor of 

the location of the processor and referenced data within the system.
Operand: An operand specifies the constant value or a storage location—typically either a register or 

a memory location—that provides data that are used in the execution of the operation or that 
receives data from the results of an operation.

Operation: An operation is the specification of the computation to be performed by a core or PE. It 
specifies the computation to be performed as well as the operands and other details used to 
produce the desired computation result. Although often used indistinguishably with opera-
tion, as used in this chapter, an instruction is distinguished from an operation by being the 
container rather than the specification of the computation to be performed.

Pipelining: Pipelining is the mechanism that partitions the execution of an instruction into independent 
phases that be performed in sequence by a core or PE. In addition, these phases can be over-
lapped with phases from other instructions. Because of overhead, the latency of an individual 
instruction may be increased, but pipelining improves the resource utilization and execution 
bandwidth in the core or PE. When there is a dependence or conflict between two instructions, 
the later instruction is delayed (or stalled) until the dependence or conflict is resolved.

Processor: A processor is a stand-alone element in a computer system. As used in this chapter, a 
processor is distinguished from a core in that a processor has the communications and 
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peripheral logic to integrate into a system with other processors, memory, and other devices. 
Processors include one or more cores along with other resources that add additional fea-
tures and functionality to the processor.

Processor element: A PE is a logic structure that provides computation functions to a processor. As 
used in this chapter, a PE is distinguished from a core in that a PE does not have the decode 
and control logic to give it the ability to execute an instruction stream independently. PE are 
the primary logic structures in SIMD and GP-GPU processors.

Shared-memory architecture: A shared-memory architecture is a multiprocessor system using shared 
memory for all communications between processors. Memory may be located anywhere in the 
system and accessed by all interconnected processors.

Stall: A stall is the delay inserted during execution so that an operation or instruction is that is depen-
dent on (or conflicts with) a previous operation or instruction is properly executed.

Superscalar: Superscalar describes an instruction-level parallel processor that dynamically analyzes 
the instruction stream and executes multiple operation or instruction as dependencies and 
operand availability allow. Most processors today are superscalar processors and have one 
operation per instruction.

Thread: A thread is an independent instruction stream that includes its own unique execution context. 
Although related, hardware threads and software threads are at significantly different abstrac-
tion levels. Hardware threads are low-level threads that are managed and executed directly by 
hardware; software threads are high-level threads that have much more information on how 
they relate to each other including thread priority, inter-thread dependencies, and data sharing.

Uniform memory access: A UMA architecture has memory access latencies that are constant indepen-
dent of the location of the processor and referenced data within the system.

Vector processor: A vector processor is an SIMD processor that executes a single instruction stream 
on vector objects computing element-by-element on deeply pipelined FU. Operations may be 
chained to reduce the latency of compound operations.

Very long instruction word: VLIW describes an instruction-level parallel processor that relies on the 
compiler to statically analyze the program and to produce an instruction stream where the 
operations in every instruction are dependence-free. The hardware executes all of the opera-
tions in an instruction in parallel without further dependence analysis.

Further Information

There are many good sources of information on different aspects of parallel architectures. The refer-
ences for this chapter provide a selection of of texts that cover a wide range of issues in this field. There 
are many professional journals that cover different aspects of this area either specifically or as part of a 
wider coverage of related areas. Some of these are the following:

•	 IEEE Transactions on Computers, Transactions on Parallel and Distributed Systems, Computer, Micro
•	 ACM Transactions on Computer Systems, Computing Surveys
•	 Journal of Supercomputing
•	 Journal of Parallel and Distributed Computing
•	 Journal of Instruction-Level Parallelism

There are also a number of conferences that deal with various aspects of parallel processing. The 
proceedings from these conferences provide a current view of research on the topic. Some of these are 
the following:

•	 International Symposium on Computer Architecture (ISCA)
•	 Supercomputing (SC)
•	 International Symposium on Microarchitecture (MICRO)
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•	 International Conference on Parallel Processing (ICPP)
•	 International Symposium on High Performance Computer Architecture (HPCA)
•	 Symposium on the Frontiers of Massively Parallel Computation
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24.1  Introduction

In the decade 1990–2000, processor chip architectures have benefited from tremendous advances in 
manufacturing processes, enabling cheap performance increases from both increasing clock frequen-
cies and decreasing gate size on silicon. These advances in turn enabled an explosive expansion of the 
software industry, with a large focus on computers based on general-purpose uni-processors. This archi-
tecture model, which is of the Von Neumann computer, had emerged at the end of the 1980s as the 
de facto target of all software developments.

Until the turn of the twenty-first century, system engineers using uni-processors as building blocks 
could assume ever-increasing performance gains, by just substituting a processor by the next generation 
in new systems. Then they ran into two obstacles. One was the memory wall [45], that is, the increas-
ing divergence between the access time to memory and the execution time of single instructions. To 
overcome this wall, architects have designed increasingly complex uni-processors using techniques 
such as branch predictors and out-of-order execution OoOE to automatically find parallelism in sin-
gle-threaded programs and keep processor pipelines busy during memory accesses. The second is the 
sequential performance wall [1,34], also called “Pollack’s rule” [31], that is, the increasing divergence in 
single processors between performance gains by architectural optimizations and the power-area cost of 
these optimizations.
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To “cut the Gordian knot,” in the words of Ronen et al. [34], the industry has since (post-2000) shifted 
toward multiplying the number of processors on chip, creating increasingly larger chip multiprocessors 
(CMPs) by processor counts, now called cores. The underlying motivation is to exploit explicit concurrency 
in software and distribute workloads across multiple processors to increase performance. The responsi-
bility to find parallelism was pushed again to the software side, where it had been forgotten for 15 years.

During the period 2000–2010, this shift to multicore chips has caused a commotion in those software 
communities that had gotten used to transparent frequency increases and implicit instruction-level 
parallelism (ILP) for sequential programs without ever questioning the basic machine model targeted by 
programming languages and complexity theory. “The free lunch is over” [40], and software ecosystems 
then had to acknowledge and understand explicit on-chip parallelism and energy constraints to fully 
utilize current and future hardware.

This transition was disruptive for audiences used to systems where the processor fetches instruc-
tions one after another following the control flow of one program. Yet the commotion was essentially 
specific to those traditional audiences of general-purpose uni-processors that had grown in the period 
1990–2000. In most application niches, application-specific knowledge about available parallelism had 
long mandated dedicated support from the hardware and software toward increased performance: 
scientific and high-performance computing (HPC) have long exploited dedicated single instruction, 
multiple data (SIMD) units; embedded applications routinely specialize components to program fea-
tures to reduce logic feature size and power requirements; and server applications in data center have 
been optimized toward servicing independent network streams, exploiting dedicated I/O channels and 
hardware multithreading (HMT) for throughput scalability. Moreover, a host of research on parallel 
systems had been performed in the previous period, up to the late 1980s, and best practices from this 
period are now surfacing in the software industry again.

In the rest of this chapter, we review the development of multicore processor chips during the last 
decade and their upcoming challenges.

24.2  Underlying Principles

24.2.1  Multicore Architecture Principles

Two observations from circuit design have motivated the transition to multicore processor chips.
As noted by Bell et al. [4], the scalability of multiple-instruction issue in conventional processors 

is constrained by the fact that ILP is not improved linearly with the addition of silicon. Scaling up 
implicit concurrency in superscalar processors gives very large circuit structures. For example, the logic 
required for out-of-order issue scales quadratically with issue width [22] and would eventually dominate 
the chip area and power consumption. This situation had been summarized by Pollack [31] who stated 
that the performance of a single core increased with the square root of its number of transistors.

Meanwhile, the power cost of single-core ILP is disadvantageous. Not only does Pollack’s rule suggest 
more power consumption due to the growing silicon cost per core, to increase the instructions per sec-
ond (IPS) count, the processor’s clock frequency must also increase. As noted in [34], maximum power 
consumption (Power) is increased with the core operating voltage (V) and frequency (F) as follows:

	 Power C V F= × ×2

where C is the effective load capacitance of all units and wires on core. Within some voltage range, F may 
go up with supply voltage V (F = k × Vα − 1, α ≤ 1). This is a good way to gain performance, but power is 
also increased (proportional to V 2+α). For a given core technology, this entails that a linear increase in 
IPS via frequency scaling requires at least a quadratic increase in power consumption.

From this circuit perspective, the advantage of explicit parallelism by investing transistor counts 
toward multiple, simpler cores becomes clear: assuming available concurrency in software, two cores 
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running at half the frequency can perform together the same IPS count at less than half the power usage. 
Moreover, by keeping the cores simple, more transistors are available to increase the core count on chip 
and thus maximum IPS scalability.

This perspective also reveals the main challenge of multicore chips: the purported scalability is 
strongly dependent on the ability of software to exploit the increasing core counts. This is the issue of 
programmability, covered in the rest of this chapter.

Beyond issues of power and performance, another factor has become visible in the last decade: fault 
management.

Both transient and permanent faults can be considered. Transient faults are caused mostly by unex-
pected charged particles traversing the silicon fabric, either emitted by atomic decay in the fabric itself 
or its surrounding packages, or by cosmic rays, or by impact from atmospheric neutrons; as the density 
of circuits increases, a single charged particle will impact more circuits. Permanent faults are caused 
by physical damage to the fabric, for example, via heat-induced stress on the metal interconnect or 
atomic migration. While further research on energy efficiency will limit heat-induced stress, atomic 
migration unavoidably entails loss of function of some components over time. This effect increases as 
the technology density increases because the feature size, that is, the number of atoms per transistor/
gate, decreases.

To mitigate the impact of faults, various mechanisms have been used to hide faults from software: 
redundancy, error correction, etc. However, a fundamental consequence of faults remains: as fault toler-
ance kicks in, either the latency changes (e.g., longer path through the duplicated circuit or error correc-
tion logic) or the throughput changes (e.g., one circuit used instead of two).

To summarize, the increasing number of faults is a source of unavoidable dynamic heterogeneity in 
larger chips. Either components will appear to enter or leave the system dynamically, for example, when 
a core must stop due to temporary heat excess, or their characteristics will appear to evolve over time 
beyond the control of applications. This in turn requires to evolve the abstract model of the chip that 
programmers use when writing software.

Exposing the chip’s structure in abstract models as a network of loosely coupled cores, that is, a 
distributed system on chip, instead of a tightly coupled “central processing unit,” will facilitate the man-
agement of this dynamic heterogeneity in software.

24.2.2  Multicore Architecture Models

Any computing system today is a composition of memories, caches, processors, I/O interfaces, and data 
links as “basic blocks.” A given architecture is a concrete assembly of these components. In contrast, an 
architecture model is an abstract description of how components are connected together, to capture the 
general properties common to multiple concrete architectures. Architecture models are in turn charac-
terized by their typology, their topology, and the concurrency management primitives they expose at the 
hardware/software interface.

The typology reports which different types of components are used. In multicore chips, we can 
distinguish homogeneous or “symmetric” designs, where all repeated components have the same type, 
from heterogeneous designs that may use, for example, general-purpose cores in combination with 
on-chip accelerators, cores with different cache sizes, or cores with different instruction sets. Historically, 
homogeneous designs have been preferred as they were simpler to program: most multicores prior to 
2010 were so-called symmetric multiprocessor (SMP) systems. However, some heterogeneity has since 
become mandatory: not only as a way to manage faults and energy usage, as highlighted earlier, but also 
to increase execution efficiency for fixed applications by specializing some functional units to the most 
demanding software tasks.

The topology indicates how components are connected together. In multicores, the topology deter-
mines how cores can communicate with each other and the latency and bandwidth of communication. 
We can distinguish three design spectra for topologies.
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The first is the memory topology, that is, how cores are connected to main memory. At one end of 
this spectrum, “UMAs” describe interconnects where a single memory is shared symmetrically by all 
cores and hence provides homogeneous latency/bandwidth constraints. At the other end, individual or 
groups of cores have their own local memory, and remote accesses become orders of magnitude more 
expensive than local accesses. This is where one finds “NUMAs.” The position of any specific architec-
ture on this spectrum is a cost trade-off: UMAs are simpler to program but require more silicon and 
energy to provide increased bandwidth to the shared memory.

The second spectrum is the cache topology, that is, how caches are connected to cores, memory, and 
other caches. At one end of this spectrum, congruent with UMAs, the cache topology can be represented 
as a cache tree, where the common memory forms the root of the tree and the cores form the leaves. This 
topology fully preserves the notion of “cache hierarchy” from the perspective of individual cores, where 
there is only one path to main memory and local performance is determined only by the hit and miss 
rates at each level of requests emitted locally. At the other end, congruent with NUMAs, more diversity 
exists. With distributed coherent cache architectures, a network protocol between caches ensures that 
updates by one part of the system are consistently visible from all other parts. These are also called 
cache-coherent NUMAs (ccNUMAs) or distributed shared memory (DSM) architectures. Again, the 
choice is a cost trade-off: cache trees provide a shorter latency of access to main memory on average but 
cost more silicon and energy to operate than loosely coupled caches.
Example memory and cache topologies are given in Figure 24.1.

The third spectrum is the inter-core topology, that is, what direct links are available between cores 
for direct point-to-point communication. In most multicores, regardless of the memory architec-
ture, a dedicated signaling network is implemented to notify cores asynchronously upon unexpected 
events. The exchange of notifications across this network is commonly called inter-processor interrupt 
(IPI) delivery. Inter-core networks-on-chip (NoCs) also exist that offer arbitrary data communication 
between cores; 2D mesh topologies are most common as they are cheap to implement in tiled designs.

Finally, the concurrency management primitives determine how software can exploit the hardware 
parallelism. There are three aspects to this interface: control, synchronization, and data movement.

In most designs that have emerged from the grouping of cores previously designed for single-core exe-
cution, such as most general-purpose SMP chips in use today, the interface for control and synchroniza-
tion is quite basic. For control, cores execute their flow of instructions until either a “halt” instruction 
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FIGURE 24.1  Example memory and cache topologies. (a) UMA with no caches. (b) UMA with cache tree. 
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is encountered or an IPI is delivered that stops the current instruction flow and starts another. The only 
primitive for inter-core control is IPI delivery and regular load/store operations to a shared memory. In 
this context, the only synchronization mechanisms available to software are either busy loops that access 
a memory location until its contents are changed by another core or passive waiting that stops the cur-
rent core, to be awakened by a subsequent IPI from another core. Additional mechanisms may be pres-
ent but are still unusual. For example, hardware primitives for synchronization barriers may be available, 
whereby two or more cores that execute a barrier will automatically wait for one another.

For data movement, the near universal primitives are still memory load and store instructions: using 
a shared memory, programs running across multiple cores can emulate virtual channels by using buffer 
data structures at known common locations. In addition to loads and stores, dedicated messaging primi-
tives may exist to send a data packet to a named target core or wait upon reception of a packet, although 
they are still uncommon.

In any case, whichever primitives are available are typically abstracted by the operating systems in 
software to present a standardized programming interface to applications, such as those described in 
the remainder of this chapter. Thanks to this abstraction layer, most of the diversity in concurrency 
management interfaces is hidden to application programmers. However, it is still often necessary to 
obtain knowledge about which underlying primitives are provided by an architecture to understand its 
cost/performance trade-offs.

24.2.3  Multicores with Intra-Core Parallelism

Independently and prior to the introduction of multicores, architects had enhanced individual cores to 
offer internal parallelism. The purpose of internal parallelism is to increase utilization of the processor 
pipeline, by enabling the overlap of computations with waiting instructions such as I/O or memory 
accesses. When cores with internal parallelism are combined together to form a multicore chip, two 
scales of parallelism exist and their interaction must thus be considered.

24.2.3.1  Out-of-Order Execution

In processors with OoOE, instructions wait at the start of the pipeline until their input operands are 
available, and ready instructions are allowed to enter the pipeline in a different order than program 
order. Result order is then restored at the end of the pipeline. The key concept is that missing data oper-
ands do not prevent the pipeline from executing unrelated, and ready instructions, and utilization is 
increased. For more details, see [12, Chapters 2 and 3] and the chapter on performance enhancements 
in this volume.

OoOE introduces new challenges for multicore synchronization. For example, a common idiom is to 
place a computation result into a known memory cell, then write a flag “the result has been computed” 
into another. If memory stores are performed in order, another core can perform a busy loop, reading 
the flag until it changes, with the guarantee that the computation result is available afterwards. With 
OoOE, this pattern is invalidated: although the program on the producer core specifies to write the 
result and only then write the flag, instruction reordering may invert the two stores.

To address this type of situation, new primitives must be introduced to protect the order of externally 
visible side effects in presence of OoOE. The most common are memory barriers, or fences. These must 
be used by programs explicitly between memory operations used for multicore synchronization. When 
the processor encounters a fence, it will block further instructions until the memory operations prior to 
the fence have completed. This restores the effect order required by the program, at the expense of less 
ILP in the pipeline and thus lower utilization.

24.2.3.2  Hardware Multithreading

The key motivation for multithreading in a single core is to exploit the waiting time of blocked threads 
by running instructions from other threads [33,35]. This is called thread-level parallelism (TLP); it can 
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tolerate longer waiting times than ILP. To enable this benefit of TLP even for small waiting times like 
individual memory loads or floating-point unit (FPU) operations, multithreading can be implemented 
in hardware (HMT). With HMT, a processor core will contain multiple program counters (PCs) active 
simultaneously, together with independent sets of physical registers for each running hardware thread. 
The fetch unit is then responsible for feeding the core pipeline with instructions from different threads 
over time, switching as necessary when threads become blocked [23,38,39,41,42].

Because each hardware thread executes an independent instruction stream via its own PC, operat-
ing systems in software typically register the hardware threads as independent virtual processors in the 
system. Subsequently, from the perspective of software, care must be taken to distinguish virtual from 
hardware processors when enumerating hardware resources prior to parallel work distribution. Indeed, 
when work is distributed to two or more hardware threads sharing the same core pipeline, performance 
can only increase until all waiting times in that pipeline are filled with work. Once a pipeline is fully uti-
lized, no more performance can be gained with hardware threads on that core even though there may 
be some idle hardware threads available.

24.2.4  Programming Principles

As with all parallel computing systems, multicore programming is ultimately constrained by Amdahl’s 
and Gustafson’s laws.

In [2], Amdahl explains that the performance of one program, that is, its time to result or latency, 
will stay fundamentally limited by its longest chain of dependent computations, that is, its critical path, 
regardless of how much platform parallelism is available. The first task of the programmer is thus to 
shorten the critical path and instead expose more concurrent computations that can be parallelized. 
When the critical path cannot be shortened, the latency cannot be reduced further with parallelism. 
However, Gustafson’s law [11] in turn suggests that the problem sizes of the parallel sections can be 
expanded instead, to increase use of the available parallelism and increase throughput, that is, computa-
tions per second, at constant latency.

Within these boundaries, software design for multicores involves the following concerns:

•	 Programmers and software frameworks expose concurrency in applications. This activity takes two 
forms. An existing program is relaxed from ordering constraints to add concurrency; for example, 
a sequential loop may be annotated to indicate it can be carried out in parallel. Alternatively, new 
code can be composed from concurrent building blocks, such as primitive map/reduce operators. 
This activity typically occurs statically, during software development.

•	 Meanwhile, software frameworks and operating systems map and schedule program concurrency 
to the available hardware parallelism. This activity typically occurs at run-time, to carry out pro-
gram execution over the available cores.

The connection point between these two activities is the parallel programming model. Different lan-
guages or software libraries will offer different programming models; each offers both programming 
abstractions toward programmers to specify “what to do” and operational semantics that provide an 
intuition of “how the program will behave” at run-time. Parallel programming models typically diverge 
from traditional programming models in that they avoid letting the programmer specify “how” to carry 
out computations, so as to give maximum flexibility to the underlying platform.

Parallel programming models can be categorized along two axes, illustrated in Figure 24.2, depend-
ing on how they expose computations and communication.

In one corner, fork–join parallelism and bulk-synchronous parallelism (BSP) [44] are the most com-
mon. With fork–join, a program exposes concurrency by specifying at which points separate threads 
can start (fork) to compute separate parts of a computation; sequence is then enforced by expressing 
synchronization on termination (join) of previously created threads. In the higher-level variant BSP, an 
overall repetitive computation is expressed as a sequence of wide parallel sections, with computations 
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occurring during the parallel section and communication occurring during the synchronization step. 
With these models, control is specified by the structure of the program, while typically communication 
is left implicit.

At the corner of explicit control and communication, message passing describes a collection of idioms 
where a program specifies independent processes that act collectively by exchanging data across explicit 
channels. Message passing stems from decades of research over communicating processes [13,25–27]. It 
encompasses the most versatile techniques to program multicores, at the expense of a more explicit and 
error-prone model for programmers.

Diagonally opposed, functional programming models encompass the programming style of pure 
functional languages, where programmers are stimulated to specify only the input–output data rela-
tionships of their algorithms using symbolic operations, without introducing or assuming knowledge 
about the execution environment. These models provide the most flexibility for the platform by remov-
ing programmer involvement from mapping and scheduling concurrency, although it thus incurs the 
expense of a greater technology challenge to fully optimize execution.

Finally, data-flow programming models are related to functional models in that the programmer does 
not specify how to carry out computations. However, whereas with functional programs the data rela-
tionships may be implicitly carried by using references (pointers) in data structures, data-flow programs 
make data edges between computations explicit. This in turn simplifies the mapping of communication 
to the platform’s topology.

A given programming language or software library may expose multiple programming models. The 
choice of one over another in applications is mostly driven by the trade-off between programmer pro-
ductivity, technological maturity of the platform, and performance: more implicit models are easier to 
program with but more difficult to manage for the platform.

24.3  Impact on Practice

After the HPC and general-purpose computing industries stumbled on the sequential performance wall 
in the last decade, the move to multicore chips has enabled the following breakthroughs:

•	 For HPC, the grouping of multiple cores on the same chip has enabled an increase of intercon-
nect bandwidths by an order of magnitude, in turn enabling yet higher throughput scalability of 
supercomputers. As of 2012, nearly all systems from the supercomputer TOP500* are based on 
multicore chips.

*	 http://top500.org/.
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•	 For general-purpose computing, the investment of silicon toward multiple cores in combination 
with the general trend toward mobile computing has altered the marketing of processor prod-
ucts dramatically: instead of advertising on frequency alone, most manufacturers now effectively 
report on a combination of multiapplication benchmarks and energy consumption.

For personal computing, even without considering performance gains in individual applications, 
the democratization of multicore chips has enabled a separation of workload between user applications 
and system tasks such as user interface management, networking, or disk accesses and thus results in a 
smoother user experience overall. This effect is noticeable for desktop computers, smart phones, and tab-
lets, which all nowadays use general-purpose cores. For selected application domains, such as video games 
and image processing, significant performance gains have been reached successfully; this effect is even 
multiplied when combined with many-core compute accelerators and graphical processing units (GPUs).

In data centers, multicores have enabled a finer grain control over the resources handed over to cli-
ent applications. By separating client applications over separate cores, interference between clients is 
reduced and resource billing is simplified (resources can be billed per unit of space and time, instead of 
per actual workload that is more difficult to compute). Some throughput increases have also been pos-
sible thanks to multicores, most noticeably for database servers and networked processes such as web 
servers. However, the preferred way to increase throughput in data centers is still to extend the number 
of network nodes instead of replacing existing nodes by new nodes with larger core counts.

Meanwhile, multicore processors are a success story for embedded systems, where they are com-
monly called multiprocessor systems-on-chip (MPSoCs). In these systems, processor chips are typically 
co-designed with software applications; different cores are implemented on chip to support specific 
application components. For example, a mobile phone processor chip may contain separate cores for 
managing wireless networks, encoding/decoding multimedia streams and general-purpose application 
support. By specializing a processor design to an application, hardware and energy costs are reduced 
while taking advantage of the parallelism to improve performance. While the embedded landscape is 
still much focused on application-specific chip designs, it is expected that the field’s expertise with map-
ping and managing application components over heterogeneous resources will propagate to all other 
uses of multicores during the upcoming decade.

24.3.1  Current Landscape of Multicore Chips

All major technology vendors now have multicore product offerings and continue to invest towards 
increasing core counts.

After introducing its first mainstream dual-core offerings around 2005 via its Core and Xeon product 
lines, Intel’s processors now nearly all feature a minimum of 2–4 cores. As of this writing, the most 
popular Core i5 and i7 processors, based on the Sandy Bridge micro-architecture [46], feature 4 cores 
running at about 3 GHz. These chips use 32 nm silicon technology and nearly a billion transistors. They 
integrate an on-chip GPU accelerator with 6–12 additional compute cores; the general-purpose cores 
also optionally feature Hyper-Threading [23] for a maximum of 2 hardware threads per core. The next 
generation based on the Ivy Bridge micro-architecture is expected to offer similar features at a reduced 
silicon and power budget.

Meanwhile, AMD has reduced its competition push on single-threaded performance and pushed its 
multicore road map further. Its Opteron product line currently contains chips with up to 12 general-
purpose cores based on the Bulldozer micro-architecture [8]. Frequencies range from 1 to 3 GHz; the 
chips also use the 32 nm technology. The upcoming Fusion product line, which uses general-purpose 
cores based on both Bulldozer and the new Bobcat micro-architecture [7], invests more silicon real 
estate towards on-chip accelerator cores (e.g., 80 in Brazos chips, 160–400 in Lynx/Sabine chips).

On the embedded/mobile computing market, ARM leads the way towards the generalization of 
multicore platforms. The most licensed architecture towards general-purpose applications is the 
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Cortex-A design, now available with 2 to 4 cores on chip and frequencies up to 2 GHz in its “MPCore” 
variant. The most visible user of Cortex-A is currently Apple, which equips its smart phone and tablet 
offerings with its own A4 and A5 chips based on Cortex-A. The upcoming ARM design Cortex-A15 
is planned to feature up to 8 cores on chip, together with optional on-chip accelerators depending on 
vendor requirements.

On the server market, Oracle (previously Sun Microsystems) has stepped forward with its Niagara 
[21] micro-architecture. Niagara processors combine multiple cores with HMT, resulting in high core 
counts per chip: the most recent product, the SPARC T4 [37], exposes 64 hardware threads to software. 
Although Niagara was previously advertised for throughput due to its lower initial single-thread per-
formance, the latest generations running around 3 GHz with OoOE now compete across all general-
purpose workloads.

As can be seen in this overview, the trends suggest a continued increase of core counts on the main 
processor chip, together with the integration of accelerators. However, separately packaged many-core 
accelerator chips are still being developed. The two major vendors are nowadays NVidia and AMD, the 
latter having acquired ATI in 2006. With clock frequencies below 1 GHz but core counts in the hun-
dreds, their accelerator chips deliver orders of magnitude higher peak floating-point performance than 
general-purpose cores with twice the frequency at the same generation. The main challenge to these 
designs is bandwidth to memory, where communication between the accelerator and the main proces-
sor chip is constrained by the inter-chip system bus. This bottleneck constitutes the main push towards 
integration with general-purpose cores on the same silicon die.

24.3.2  Shared Memory Multiprogramming for Multicores

For shared memory multiprogramming, the common substrate underlying programming lan-
guages and libraries is constituted by threads, directly inherited from the era of time sharing 
on uni-processors. On multicores, threads execute simultaneously instead of interleaved, but 
these two abstractions remain otherwise identical to their original definition: programs create 
or spawn threads, then the operating system selects cores to execute the workload. The leading 
low-level application programming interfaces (APIs) to manage threads are the POSIX interface 
[15] (“pthreads”) and the Java virtual machine interface. To enable more fine-grained control over 
thread-to-core mappings, some operating systems also offer APIs to pin threads to specific cores 
(e.g., pthread _ setaffinity). These basic interfaces are there to stay: as of 2011, new stan-
dards for the C [18] and C++ [17] languages have been published that integrate a native standard 
threading API similar to POSIX.

Upon these basic interfaces, different programming languages and libraries provide different parallel 
programming models for application developers. With less than a decade of renewed interest in multi-
programming, these software frameworks for multicores have not yet stabilized and a large diversity of 
approach still exists across vendors, hardware platforms, and operating systems.

For performance-oriented applications, the leading interfaces are currently OpenMP [29] for C, 
C++, and FORTRAN and Intel’s Threading Building Blocks (TBB) [16,32] for C++. OpenMP is special-
ized towards the parallelization of existing sequential code by the addition of annotations, or pragmas, 
to indicate which portions of code can be executed concurrently. An example is given in Figure 24.3: 
A loop is annotated to declare it can be run in parallel when the function “scale” is called; at run-time, 
the value of “n” is inspected and the workload is distributed across the available cores.

In contrast to OpenMP, TBB is oriented towards the acceleration of new code, where programmers use 
TBB’s control and data structures directly. Primitive constructs are provided for parallel map/reduce, 
searches, pipelines, sorting algorithm, as well as parallel implementations of container data structures 
(queues, vectors, hash maps). An example is given in Figure 24.4: The object “scaler” is responsible for 
carrying out the computation over subranges of the array, and TBB ensures that scaler’s operator is 
called in parallel over the available cores.
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Both OpenMP and TBB manage program concurrency in a similar fashion. When reached dur-
ing execution, the program code generated by the compiler for concurrency constructs causes calls to 
the language run-time systems to define tasks. The run-time system in turn runs a task scheduler that 
spreads the tasks defined by the program over worker threads, which it has previously configured to 
match the number of underlying cores. In both interfaces, primitives are available to control the task 
scheduler and query the number of worker threads.

When accelerators are involved, typically the accelerator cores cannot run regular application code 
because they do not support recursion or arbitrary synchronization. To program them, it is still cus-
tomary to use a different set of APIs. The current leading standards are NVidia’s CUDA interface [20], 
specialized towards its own chips, and OpenCL [19] which intends to provide a unified interface to 
accelerators. With both interfaces, the application programmer defines computation kernels, which can 
execute on the accelerator cores, and uses the interface’s API to trigger data movement and computa-
tions using kernels.

An example is given in Figure 24.5. As the example suggests, the main challenge of accelerator-based 
programming is data movement between the accelerator and main memory. While it is often possible to 
combine accelerator computations and thus reduce the need for communication, many cases exist where 
the application structure prevents keeping the data on the accelerator’s memory. Again, the industry is 
moving towards tighter integration of accelerators and general-purpose cores on the same chip, in an 
effort to alleviate this communication overhead.

24.3.3  Distributed Programming on Chip

It is also possible to consider a multicore chip as a network of single-core nodes sharing a very efficient 
interconnect. Using this model, a multicore chip can be programmed using explicitly communicating 
processes instead of threads communicating implicitly via shared memory.

Abstractions to program multiple processing units using communicating processes had existed for 
decades and are now coming back with the advent of multicores. The typical interface for scientific comput-
ing, coming from the HPC community, is MPI [24]: it exposes a process management and message passing 
interface to C, C++, FORTRAN, and Java code. Implementations of MPI are nowadays able to distribute 
workloads over multiple cores in a single chip as well as over a network of nodes. Meanwhile, the advent of 
networked applications in the last decade has caused a large diversity of other frameworks for inter-process 

struct scaler {
  vector<int>& a_;
  scaler(vector<int>& a) : a_(a) {}
  void operator()(const blocked_range<size_t>& r) const {
     for (size_t i = r.begin(); i != r.end(); ++i)
         a_[i] = 2 * i;
  }
};
void scale(int n, vector<int>& a) {
  parallel_for(blocked_range<size_t>(0, n), scaler(a));
}

FIGURE 24.4  Example TBB program fragment.

void scale(int n, int a[]) {
    #pragma omp parallel for
    for (i = 0; i < n; i++)
        a[i] = 2 * i;
}

FIGURE 24.3  Example OpenMP program fragment.
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message queuing and brokering in business applications: Java Message Service (JMS), Microsoft Message 
Queuing (MSMQ), WebSphere Message Broker from IBM, and Apache ActiveMQ are examples. These 
interfaces are nowadays commonly used to drive processes running over separate cores in the same chip.

24.3.3.1  Post-2010: Era of Multiscale Concurrency

While general-purpose programmers have been struggling to identify, extract, and/or expose concur-
rency in programs during the last decade, a large amount of untapped higher-level concurrency has 
also appeared in applications, ready to be exploited. This is a consequence of the increasing number of 
features or services integrated into user-facing applications in the age of the Internet and ever-increasing 
support of computers for human activities. For example, while a user’s focus may be geared towards the 
decoding of a film, another activity in the system may be dedicated to downloading the next stream, 
while yet another may be monitoring the user’s blood nutrient levels to predict when to order food 
online, while yet another may be responsible for backing up the day’s collection of photographs on an 
online social platform, etc.

Even programs that are fundamentally sequential are now used in applications with high-level 
concurrency at scales that were unexpected. For example, the compilation of program source code to 
machine code is mostly sequential as each pass is dependent on the previous pass’ output. However, 
meanwhile entire applications have become increasingly large in terms of their number of program 
source files; so even though one individual compilation cannot be accelerated via parallelism, it is pos-
sible to massively parallelize an entire application build. While this form of parallelism had been known 
in large enterprise projects, the advent of multicores makes it accessible to any programmer working 
with commodity platforms.

24.4 R esearch Issues

As this book gets published, the multicore programming challenge has taken a new form. Explicit 
concurrency has appeared in software, both from increased understanding by programmers and by 
new technology in compilers and software run-time systems to discover concurrency automatically in 
applications. Meanwhile, CMPs now contain dozens of cores for general-purpose computations and 
accelerators offer hundreds of smaller cores for specialized computing, and the trends suggest at least a 
tenfold increase before the end of silicon scaling. The main challenge for software engineers is thus now 

// the following defines the kernel.
__kernel void scale_kernel(__global int *a) {
    size_t i = get_global_id(0);
    a[i] = 2 * i;
}
// the kernel is used as follows:
void scale(int n, int a[]) {
   /* need to copy the data to GPU memory first */
   void *gpu_mem = gcl_malloc(sizeof(int)*n, a,
                CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE);
   /* then define a range to operate over the data */
   cl_ndrange r = { 1, {0}, {n,0,0}, {0} };
   /* then call the kernel */
   scale_kernel(&r, gpu_mem);
   /* then copy back the data from GPU to main memory */
   gcl_memcpy(a, gpu_mem, sizeof(int)*n);
   /* then release the GPU memory */
   gcl_free(gpu_mem);
}

FIGURE 24.5  Example OpenCL program fragment.
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less to find concurrency, but rather to express and map it efficiently to the available parallel hardware. 
Meanwhile, the main challenge for architects is to balance the need of software practitioners to manipu-
late simple machine models while providing scalable systems. The architecture and software engineering 
communities have thus started to work together to overcome the following new challenges:

•	 Choose which parallel machine models to communicate to programmers to give them an intuition 
of the underlying hardware resources.

•	 Choose which programming abstractions to offer through the software stack to describe concur-
rency in applications.

•	 Determine how to schedule concurrency over parallel resources in operating software.
•	 For known application or fields, determine how to codesign hardware and software so that the 

hardware parallelism aligns with application concurrency.

24.4.1  Platform Challenge: Communication Costs

As the example from Figure 24.5 illustrates, the cost of communication is becoming a growing design 
constraint for algorithms. In upcoming multicore chips, the latency to access memory from cores, or 
even to communicate between cores, will become large compared to the pipeline cycle time. Any nonlo-
cal data access will become a serious energy and time expenditure in computation. This is a new concep-
tual development compared to the last decade, where processor speed was still the main limiting factor 
and memory access latencies were kept under control using ever-growing caches.

From the software architect’s perspective, this communication challenge takes two forms. For one, 
either programmers or the concurrency management logic in operating software must become increas-
ingly aware of the topology of the platform, so as to match the dependencies between application com-
ponents to the actual communication links present in hardware. This requirement will require new 
abstractions and investments in programming languages and operating software, since the current 
technology landscape still mostly assumes SMPs and UMAs. The second aspect is that the cost of com-
putations is no more a function only of the number of “compute steps,” correlated with CPU time; it 
must also involve the “communication steps” correlated with on-chip network latencies. This is a major 
conceptual shift that will require advances in complexity theory before algorithm specifications can be 
correlated to actual program behavior in massively parallel chips.

From the hardware architect’s perspective, the communication challenge takes three forms. One is 
to develop new memory architectures able to serve the bandwidth requirements of growing core num-
bers. Indeed, the energy and area costs of central caches that serve all cores symmetrically grow qua-
dratically with their capacity and number of clients; caches will thus dominate silicon usage until more 
distributed cache systems are developed. However, distributed caches in turn require weaker memory 
consistency semantics [28] to be cost advantageous; a generalization of weakly consistent memory archi-
tectures will in turn have a dramatic impact on software ecosystems. The second aspect to be covered by 
hardware architect is latency tolerance: as the time cost of nonlocal data accesses grows, individual cores 
must provide mechanism to overlap computation with communication. A step in this direction is HMT, 
which will be increasingly complemented with hardware support for point-to-point messaging between 
cores, such as found in the recent TILE architecture [5]. The third aspect is dark silicon [10]: any given 
design will be fully utilized only by some applications, while most of the silicon will be underutilized by 
most applications. The role of architects will thus be to determine the best trade-offs between investing 
silicon real estate towards cores or towards communication links.

24.4.2  Software Challenge: Matching Abstractions to Requirements

A lot of attention has been given on the parallelization of existing software and comparatively less on the 
improvement of software to better program parallel platforms. There are, in effect, three broad strategies 
to optimize performance and cost on multicore systems.
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The first is to provide better abstractions to programmers to compose subprograms so that the result-
ing critical path becomes shorter—that is, decrease the amount of synchronization programmers use—
for a given functional specification of the input–output relationship. This is the classical effort towards 
increasing the amount of concurrency, which must continue as the amount of on-chip parallelism 
increases; beyond parallelization of individual algorithms, this effort must now also take place at the 
level of entire applications.

The second strategy is to determine ways to shorten programs to describe less computations to be 
performed at run-time, that is, simplify the input–output relationship. There are two known strategies 
to do this:

•	 Let programmers use domain-specific knowledge that reduces expectations on program outputs, 
for example, reduce output “quality” in image processing by introducing non-determinism when 
the difference is not perceptible. This is the domain of approximate programming [36,43] and 
domain-specific languages (DSLs).

•	 When compilers and software run-time systems transform programs, exploit extra application-
level knowledge to remove excess code from the individual subprograms being combined [3].

The third strategy is for programmers to remove unnecessary constraints on the execution of algo-
rithms. This strategy stems from the observation that most control and data structures in use today have 
been designed at a time where computers were predominantly sequential and thus may carry implicit 
requirements to preserve ordering even when it is not relevant to the application. For example, many 
programmers use lists and arrays as containers, which implicitly carry a strong ordering guarantee. 
In contrast, languages like C++ or Haskell provide high-level type classes (contracts) that enable the 
programmers to state their requirements, for example, an non-iterable associative container, and let the 
implementation choose a suitable parallelizable implementation, for example, a distributed heap or hash 
table. Research is still ongoing in this direction [6,9,30].

24.5  Summary

The move towards increasing core counts on chip was both an answer to overcome the sequential 
performance wall [1,34] and to bring higher communication bandwidths to parallel computing. The 
expected benefits of multicores were both higher performance and lower energy costs, thanks to fre-
quency scaling.

The foremost challenge with multicores is not new, as it was shared by early practitioners with parallel 
architectures until the 1980s. This “concurrency challenge” requires software engineers to acknowledge 
platform parallelism and spend extra effort to express concurrency in applications. In response to this, 
new language and operating software technology has been developed in a short time, resulting in a large 
diversity of platforms, which have not yet matured nor stabilized. While this diversity creates opportu-
nities in the highly dynamic IT industry, it also means that experience gained by practitioners in the last 
decade will likely need to be revisited in the coming 10 years.

The move to CMPs, especially with increasing core counts and accelerators on chip, also entails 
new technological and conceptual issues. More active components in the system imply faults or 
otherwise resource heterogeneity that must be understood and modeled. Communication links 
between cores and between cores and memory must be accounted for when mapping application 
components to the chip’s resources. Real parallelism between application components implies that 
programmers cannot stop an application and observe a consistent global state. The benefits of mul-
tiple cores on performance can only be reaped by reducing synchronization, which for some appli-
cations means decreasing reliance on determinism. These issue in turn require new abstractions to 
describe and manipulate the computing system at a high level, and research has barely started to 
characterize which general aspects of multicore parallelism will be relevant in the next era of grow-
ing software concurrency.
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Defining Terms

Concurrency vs. parallelism: “Concurrency is non-determinism with regards to the order in which 
events may occur. Parallelism is the degree to which events occur simultaneously” [14].

Operating software: A software composed of operating systems, compilers, and language run-time 
systems, in charge of mapping the concurrency expressed in software to the available parallel 
resources in hardware.

Programming model: A conceptual model available to users of a given programming language. 
Consists of programming abstractions that allow programmers to specify “what to do” and 
operational semantics that give programmers an intuition of “how the program will behave.” 
Parallel programming models are special in that they discourage programmers from specify-
ing how to carry out computation, so as to leave operating software maximum flexibility to 
map and schedule the program’s concurrency.

Scalability: The ability of a system to approximate a factor N performance improvement for a factor N 
cost investment (e.g., silicon area, number of cores, energy, frequency).

Throughput vs. latency: Throughput is the number of computations achieved by unit of time, whereas 
latency is the number of seconds necessary to achieve a unit of computation. Parallelism can 
decrease latency down to a program’s critical path, whereas throughput typically remains scal-
able as the workload on concurrent sections can be arbitrarily increased.

Topology of architecture models: The topology of an architecture consists of how components are con-
nected to each other. On multicore processor chips, one can consider separately the memory 
topology, that is, how cores are connected to main memory; the cache topology, that is, how 
caches are connected to cores, main memory and each other; and the inter-core topology.

Typology of architecture models: The typology of an architecture consists of the set of component 
types that participate in the design. For example, heterogeneous multicore architectures have 
more than one processor type.

Acronyms

API	 application programming interface
BSP	 bulk-synchronous parallelism
ccNUMA	 cache-coherent NUMA
CMP	 chip multiprocessor
DSL	 domain-specific language
DSM	 distributed shared memory
FPU	 floating-point unit
GPU	 graphical processing unit
HMT	 hardware multithreading
HPC	 high-performance computing
ILP	 instruction-level parallelism
IPI	 inter-processor interrupt
IPS	 instructions per second
MIMD	 multiple instruction, multiple data
MPSoC	 multiprocessor system-on-chip
NoC	 network-on-chip
NUMA	 nonuniform memory architecture
OoOE	 out-of-order execution
PC	 program counter
SIMD	 single instruction, multiple data
SMP	 symmetric multiprocessor
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SPMD	 single program, multiple data
TBB	 threading building blocks
TLP	 thread-level parallelism
UMA	 uniform memory architecture
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Organization of Chapter

Molecular computing involves computation done at the molecular scale. DNA computing is a class of 
molecular computing that does computation by the use of reactions involving DNA molecules. DNA 
computing has been by far the most successful (in scale and complexity of the computations and molec-
ular assemblies done) of all known approaches to molecular computing, perhaps due in part to the very 
well-established biotechnology and biochemistry on which its experimental demonstration relies, as 
well as the frequent teaming of scientists in the field with multiple essential disciplines including chem-
istry, biochemistry, physics, material science, and computer science.

This chapter surveys the field of DNA computing. It begins in Section 25.1 with a discussion of the 
underlying principles, including motivation for molecular and DNA computations (Section 25.1.1), brief 
overviews of DNA structures (Section 25.1.2), chemical reaction systems (Section 25.1.3), DNA reac-
tions (Section 25.1.4), and classes of protocols and computations (Section 25.1.5). Then, the chapter dis-
cusses potential applications of DNA computing research (Section 25.2). The main section on research 
issues (Section 25.3) overviews how DNA computation is done, with a discussion of DNA hybridiza-
tion circuits (Section 25.3.1), including both solution-based and localized hybridization circuits. It also 
discusses design and simulation software for the same. We discuss DNA detectors in Section 25.3.2, 
DNA replicators in Section 25.3.3, DNA nanorobotic devices in Section 25.3.4, and DNA dynamical 
systems in Section 25.3.5. Section 25.3.6 overviews research on tiling assembly computations, including 
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theoretical models and results in Section 25.3.6.1, experimental methods for assembly of tiling lattices 
in Section 25.3.6.2, design and simulation software in Section 25.3.6.3, assembly in various dimen-
sions in Sections 25.3.6.4 and 25.3.6.5, stepwise tiling assemblies in Section 25.3.6.6, activatable tiles in 
Section 25.3.6.7, and tiling error-correction methods in Section 25.3.6.8.

25.1  Underlying Principles

25.1.1 � Motivation: Why Do Molecular Computation and Why Use 
DNA for Computation and Self-Assembly?

In an era where electronic computers are powerful and inexpensive, why do we need molecular computa-
tion? One response to this question is that conventional electronic devices have been miniaturized to 
the point where traditional top-down methods for manufacturing these devices are approaching their 
inherent limits due to constraints in photolithographic techniques and further miniaturization is not 
cost-effective. On the other hand, bottom-up manufacturing methods such as molecular self-assembly 
have no such scale size limits. Another response is that molecular computation provides capabilities that 
traditional computers cannot provide; there are computations that need to be done in environments 
and at scales where a traditional computer cannot be positioned, for example, within a cell or within a 
synthetic molecular structure or material.

Why use nucleic acids such as DNA for computation and self-assembly?
DNA and nucleic acids in general are unique in multiple aspects:

	 1.	 First of all, they hold and can convey information encoded in their sequences of bases. Most of 
their key physical properties are well understood.

	 2.	 Their tertiary structure is much more predictable, compared to molecules such as proteins.
	 3.	 Their hybridization reactions, which allow for addressing of specific subsequences, are also well 

understood and productively controllable.
	 4.	 They allow for a large set of operations to be performed on them. Well-known enzymatic reac-

tions for manipulation of DNA exist.
	 5.	 Finally, there is a well-developed set of methods such as gel electrophoresis, Förster Resonance 

Energy Transfer (FRET), Plasmonics, and Atomic Force Microscopy (AFM) imaging for quanti-
fying the success of experiments involving DNA and DNA nanostructures.

Before we delve into how molecular computation is done, we will discuss DNA structure and function, 
how information may be stored in it, and what environment it needs to efficiently do computation.

25.1.2  Brief Overview of DNA Structure

DNA is a polymer that can exist in either single- or double-stranded form. Each strand of DNA is made up 
of a repeating set of monomers called nucleotides. A nucleotide consists of three components, a 5-carbon 
sugar molecule, a nitrogenous base, and a phosphate group. The …-phosphate-sugar-phosphate-… cova-
lent bond forms the backbone of a DNA strand. The phosphate group is attached to the 5th carbon atom 
(C5) on one end and C3 on another end. This gives the DNA strand directionality, and the two ends of a 
DNA strand are commonly termed the 5′ (prime) and the 3′ ends. This can be seen in Figure 25.1.

25.1.2.1  DNA Bases

Nitrogenous bases are the component of nucleotides that are not involved in forming the backbone of 
a strand. There are five types of these bases, named adenine(A), guanine(G), cytosine(C), thymine(T), 
and uracil(U). Only four of these, A, G, C, and T, are present in DNA, while T is replaced by U in RNA.

Bases A and G belong to a class called purines, while C, T, and U fall under the pyrimidines class. Figure 
25.2 shows the difference in structure of purines and pyrimidines. A purine class has a pyrimidine ring fused 
to an imidazole ring and contains four nitrogen atoms as opposed to two nitrogen atoms in a pyrimidine class.
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25.1.2.2  ssDNA and dsDNA Structure: The Double Helix

DNA can exist either in single-stranded DNA (ssDNA) form or as a result of two complementary ssDNA 
binding together via hydrogen bonds to form double-stranded DNA (dsDNA). The two ssDNA are 
always antiparallel when bound, that is, one strand has 5′ to 3′ direction, while the other has a 3′ to 5′ 
direction. DNA exists as a double helix, as shown in Figure 25.3.

The nitrogenous bases in each ssDNA bind with a complementary base in the other strand to give 
rise to this structure: A binds with T, and G binds to C. This pairing of bases is called the Watson–Crick 
bonding in DNA, as shown in detail in Figure 25.4. An important note is that a purine always binds to a 
pyrimidine and this can be seen in Figure 25.1.

ssDNA and dsDNA can have different helical conformations, namely, the A, B, C, D, T, and Z forms. 
The most common dsDNA forms are A, B, and Z, and they can transform from one conformation to 
another based on the hydration conditions, the pH, and the ionic concentration of the environment. 
The most common form of DNA is the B form, which it assumes when hydrated. A relative comparison 
of the these three conformations is shown in Table 25.1.
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In its ssDNA form, DNA exists as a long single thread, or in many cases, it forms a secondary struc-
ture, where the strand loops around itself and forms hydrogen bonds with other bases on itself (called 
a random coil).

25.1.2.3  DNA Hairpins

DNA hairpins are a special secondary structure formed by an ssDNA, and contain a stem/neck double-
stranded region, and an unhybridized loop region, as seen in Figure 25.5. Hairpins have been recog-
nized as a useful tool in molecular computation because of three reasons: (1) Hairpins store energy in 
their unhybridized loop, and on hybridization, energy is released driving the reaction forward. (2) In 
their hairpin form, they are relatively unreactive with other DNA strands and act as excellent monomers 
until an external entity (usually another DNA strand) causes the stem region to open and react with 
other DNA complexes. Hence, they can persist with low leaks for a long amount of time. (3) A common 
way to create DNA complexes is to anneal them. DNA complexes usually contain a large number of 
strands, and multiple different structures can be formed because of varied interactions between dif-
ferent strands. In low concentrations, DNA hairpins usually form without error and are not involved 
in spurious structure formation. This is because their formation is not diffusion dependent, that is, the 
two ends of a hairpin hybridize with each other before two ends of different hairpins hybridize. This 
property is known as locality and is a strong motivation for the use of hairpins.

Hairpins [32] and metastable DNA hairpin complexes [85,102] have been used as fuel in chain reac-
tions to form large polymers [20], in programming pathways in self-assembly [119], and in logic circuits 
[84]. A common technique to help open a DNA hairpin is via a process known as toehold-mediated 
strand displacement, which we shall discuss in more detail in Section 25.1.4.1.
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FIGURE 25.5  Hairpin open and closed forms. (From Blicq, D., DNA hairpin, http://xnet.rrc.mb.ca/davidb/dna.htm.)

TABLE 25.1  Comparison of A, B, and Z Forms of DNA

Characteristic A-DNA B-DNA Z-DNA

Helix sense Right-handed Right-handed Left-handed
Residues per turn (base pairs) 11 10.4 12
Axial rise 2.55 Å 3.4 Å 3.8 Å
Helix pitch 28 Å 35 Å 45 Å
Base pair tilt 20° −6° 7°
Helix width (diameter) 23 Å 20 Å 18 Å
Phosphate–phosphate distance 5.9 Å 7.0 Å 5.9 Å
Dimension Broad Normal Narrow

Source: Data complied from Berg, J. M. et al.,. Biochemistry, 7th edn., W.H. 
Freeman Publishers, December 2010; Saenger, W., Principles of Nucleic Acid 
Structure, Springer-Verlag, New York, p. 556, 1984; Sinden, R.R., DNA Structure and 
Function, Academic Press Inc., San Diego CA, 1994, 398pp., 1994.
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25.1.3  Brief Overview of Chemical Reaction Networks in DNA Computing

Chemical reaction networks (CRNs) are becoming central tools in the study and practice of DNA com-
puting and molecular programming. Their role is twofold—as a model for analyzing, quantifying, and 
understanding the behavior of certain DNA computing systems and as a specification/programming lan-
guage for prescribing information processing (computational) behavior. The first of these roles is tradi-
tional and is analogous to the role played in biology by CRNs in describing biochemical processes and 
genetic reaction networks. The latter role—thinking of CRNs as a programming language—is unique to 
the field of DNA computing and is a consequence of the ability of DNA to act as an information processing 
medium and emulate (with certain restrictions) any CRN set down on paper. We will discuss both these 
roles briefly in the following paragraphs.

25.1.3.1  CRNs Model DNA Strand-Displacement Reaction Networks

Enzyme-free DNA computing devices can execute (1) Boolean circuits and linear threshold gate net-
works (the latter model neural networks) [68,69,83], (2) nucleic acid amplifiers [20,119,127], (3) finite 
state automata [30], and (4) molecular walkers [31,121]. All of these devices are examples of strand-
displacement reaction networks (SDRNs). In a toehold-mediated strand-displacement reaction, an 
incoming DNA strand displaces a competing DNA strand hybridized to a DNA substrate strand. The 
incoming strand first binds to a toehold—a short single-stranded portion of the substrate—and then 
competitively displaces the outgoing strand from the substrate by a 1D random walk process. A cascade 
(network) of such strand-displacement reactions are called SDRNs.

The modular design characteristics of SDRNs allow them to be modelled as CRNs. In particular, the types 
and rates of reactions are limited. We can infer them from prior experience and/or predict them from thermo-
dynamic parameters [129]. This allows us to predict the CRN model and verify its predictions experimentally.

25.1.3.2  CRNs as a Programming Language

In theory [95], SDRNs closely approximate the dynamic behavior of any CRN up to a time and concen-
tration scaling. They illustrate how any CRN that we set down upon paper can be translated into a set of 
DNA molecules that when mixed together in the appropriate concentrations will emulate the behavior 
of the CRN. Certain CRNs seem hard to emulate in practice, and no successful SDRN implementations 
currently exist for these, but many others have been successfully implemented.

CRNs are more abstract than SDRNs and can be thought of as a higher-level programming language. The 
process of translating a CRN into its corresponding SDRN is then analogous to compiling a higher-level pro-
gramming language down to a lower-level programming language. Programming in the CRN language has 
the advantages inherent in programming in higher-level languages vs. programming in lower-level languages.

How powerful is the CRN language? Quite powerful, it turns out. It is proven in [94] that a finite CRN 
obeying stochastic dynamics can achieve efficient Turing universal computation with arbitrarily small 
(nonzero) error. Error-free computation is impossible in this setting; only semilinear functions can be 
computed without errors [14].

25.1.4  DNA Reactions

In order to be able to efficiently compute with DNA, we should be aware of its properties and the types 
of reactions it can undergo. We classify this set of reactions into three types — DNA hybridization reac-
tions, DNA enzyme reactions, and DNAzyme reactions. (1) DNA hybridization reactions are usually 
enzyme-free and isothermal and encapsulate strand-displacement reactions. (2) DNA enzyme reactions 
are powerful reactions, which can help cut and join the backbone of DNA strands, as well as synthesize new 
strands, and are often employed due to this versatility. Enzymatic reactions are often extremely rapid and 
extremely low error, hence making them attractive to use. (3) More recently, deoxyribozymes (DNAzymes) 
and aptamers have been discovered and used similar to enzymes to manipulate DNA reactions.
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25.1.4.1  DNA Hybridization Reactions

A well-known example of DNA hybridization reactions is the Watson–Crick DNA hybridization 
between two complimentary ssDNA strands as discussed in Section 25.1.2.2. Two ssDNA strands can 
attach to each other. However, they can also detach from one another, if the temperature is greater than 
the melting temperature of the strands (Figure 25.6). The melting temperature of a dsDNA is defined as 
the temperature at which 50% of the dsDNA has converted to single-stranded form.

25.1.4.1.1  Toehold-Mediated Strand Displacement
Yurke et al. reported an interesting DNA hybridization reaction through their DNA tweezer system 
[124]. As illustrated in Figure 25.7a, two ssDNA strands (B) and CB) are bound to one another, with one 
strand called the incumbent strand (strand B) completely bound, while the other CB  has a few unbound 
bases. These bases (C ) can together be called a sticky end, overhang, or a toehold. A third ssDNA, called 
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Area of nucleation

A
T
G
C

Duplex
DNA As the temperature is

increased, the bases unstack,
and hydrogen bonds break.

At higher
temperatures, even
G/C-rich regions

are disrupted.When the solution is returned
to lower temperatures,

complementary regions on
separate strands form base

pairs.

Partially
unwound

DNA

Area rich
in A/T

base pairs

Totally denatured DNA
(separate strands)

FIGURE 25.6  DNA denaturation renaturation. (From Moran, L.A. et al., Biochemistry, 2nd edn., Neil Patterson 
publishers, distributed by Prentice Hall Inc., 1994.)
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the incoming strand (strand BC), complementary to the ssDNA with the toehold (CB), can hybridize to 
the toehold region (C ) and displace the incumbent strand (B). This process is termed toehold-mediated 
strand displacement. Typical toehold lengths used for toehold-mediated strand-displacement hybridiza-
tion reactions range from 3 to 7 nucleotides. The rate constant of the toehold-mediated strand displace-
ment ranges from 1 M−1 s−1 to 6 × 106 M−1 s−1.

25.1.4.1.2  Toehold Exchange
Toehold exchange is an extension to toehold-mediated strand displacement, but it is extremely power-
ful. Zhang and Winfree [129] made the reaction in the previous section reversible, by introducing a 
small exit toehold. As seen in Figure 25.7b, toehold exchange proceeds in the same manner as toehold-
mediated strand displacement. Strand B has been logically divided into two parts Bm and Bm, where 
Bm is a small segment (3–7 nt) long. The incoming strand is now shorter (Bm C). On toehold-mediated 
strand displacement, it does not completely dehybridize the incumbent strand (B = Bm Bm) and Bm of the 
incumbent bound. This segment floats away autonomously since its binding strength is too low to keep 
it in place at the current temperature (usually room temperature—25°C).

Note that now, the incumbent strand has a toehold (Bm ), which it can attach to and, in the process, dis-
place the strand BmC. By simply shortening the incumbent strand, the process has been made reversible. This 
set of reactions, as we shall see in Section 25.3.1, are extremely useful in designing hybridization circuits.

25.1.4.2  DNA Enzyme Reactions

Enzymes are proteins that facilitate biochemical reactions. Enzymes are highly specific and usually 
catalyze their desired reactions. Theoretically, enzymes can be reused in a biochemical reaction, without 
being consumed by the reactants. They also provide high efficiency to their reactions. For example, one 
enzyme named catalase in liver can break down roughly five million molecules of hydrogen peroxide 
into oxygen and water in 5 min.
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and Alfonso Rodrguez-Patn, Biosystems, 109(2), 91, 2012.)



25-9DNA Computing

In the field of DNA-based computation, scientists are currently working with a small subset of 
enzymes such as restriction enzymes, nicking enzymes, ligase enzymes, and polymerase enzymes. 
The purpose of restriction enzymes and nicking enzymes is to cleave the phosphodiester bond within 
a chain of nucleotides, whereas the purpose of ligase enzymes is to repair the phosphodiester bond 
as illustrated in Figure 25.8. In order for an enzyme to cleave or repair a specific location, the loca-
tion has to have a recognition site that is designated for that particular enzyme. A recognition site 
(depicted as triangles in Figure 25.8) is normally a few nucleotides along the DNA double helix. For 
example, a SmaI restriction enzyme cleaves two phosphodiester bonds on both sides of a given DNA 
double helix to give an end result of two blunted ends of DNA double helices (Figure 25.8). Similarly, 
an EcoRI restriction enzyme cleaves two phosphodiester bonds on both sides of a given DNA double 
helix to give an end result of two separated overhang DNA helices (Figure 25.8). A Nb.BsmI nick-
ing enzyme, on the other hand, cleaves a single phosphodiester bond on one side of a given DNA 
double helix. Furthermore, a broken phosphodiester bond can be repaired using a T4 ligase enzyme 
as illustrated in Figure 25.8. To amplify a particular DNA sequence, researchers often employ the 
polymerase chain reaction (PCR) technique. This technique involves the use of polymerase enzymes 
to catalyze the polymerization of nucleoside trisphosphates (dNTPs) into a multiple copies of the 
target DNA sequence.

25.1.4.3  DNAzyme Reactions

Recently, researchers have been using deoxyribozymes (DNAzymes) and aptamers to catalyze DNA 
hybridization reactions. DNAzymes and aptamers are discovered by in vitro evolution search. They 
are both DNA-based sequences that possess enzymatic activities, which extend beyond Watson–Crick 
hybridization, and they have highly specific binding to target molecules. An example of the use of 
DNAzyme for DNA computation was demonstrated by Stojanovic et al. by building a molecular autom-
aton using a network of DNAzymes [96].

EcoRI restriction enzyme—sticky ends

5΄ 3΄G A A T T CT C C T
5΄3΄ GAATTC AGGA

5΄ 3΄G A A T T CT C C T
5΄3΄ GAATTC AGGA

SmaI restriction enzyme—blunt ends

Nb.BsmI nicking enzyme

T4 ligase enzyme

5΄ 3΄A T C C C G G G T C
5΄3΄ GACCCGGGAT

5΄ 3΄A T C C C G G G T C
5΄3΄ GACCCGGGAT

5΄ 3΄C T G A A T G C T A
5΄3΄ TAGCATTCAG

5΄ 3΄C T G A A T G C T A
5΄3΄ TAGCATTCAG

5΄ 3΄A T C C C G G G T C
5΄3΄ GACCCGGGAT

5΄ 3΄A T C C C G G G T C
5΄3΄ GACCCGGGAT

5΄ 3΄G A A T T CT C C T
5΄3΄ GAATTC AGGA

5΄ 3΄G A A T T CT C C T
5΄3΄ GAATTC AGGA

SmaI

EcoRI

Nb.BsmI

T4

T4

T45΄ 3΄C T G A A T G C T A
5΄3΄ TAGCATTCAG

5΄ 3΄C T G A A T G C T A
5΄3΄ TAGCATTCAG

FIGURE 25.8  DNA enzymes.
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25.1.5  Classes of Protocols and Computations

Molecular computations, specifically DNA computations, are generally conducted by the use of well-
defined protocols that are reproducible. In the field of biochemistry, the term protocol denotes a precise 
method for the synthesis of materials such as preparing reagents, adding solutions and reagents to a test 
tube, and changing physical parameters (i.e., temperature), as well as separation of materials and read-
out of data. Most computations fall into one of the following classes of protocols.

25.1.5.1 A utonomous vs. Nonautonomous Molecular Computations

The execution of a lengthy protocol may require a very considerable human effort. A particularly favor-
able class of protocols are those that are autonomous, requiring no further externally mediated operations 
after the solutions and reagents are added together. (Otherwise, the protocol is termed nonautonomous.)

25.1.5.2  Stepped Protocols

Stepped protocols [71] are a more general class of protocols that proceed by a sequential series 
of steps, where each step is autonomous, but between each consecutive step, there may be an 
externally mediated operation involving a single test tube.

Staged protocols [19] are an even more general class of protocols that proceed by a sequential series 
of stages involving multiple test tubes at the same time, where each stage is autonomous, but 
between stages, there may be a single externally mediated operation involving each test tube 
or pairs of the test tubes.

25.1.5.3  Local vs. Solution-Based Protocols

A reaction is solution-based if it occurs within a solution, and materials have to diffuse to each other in 
order to interact. Likewise, it is local if it occurs between materials that are attached to a surface, thereby 
reducing/eliminating the diffusion time.

25.1.5.4 A ctivatable Molecular Devices

A molecular device is activatable if it has two classes of states: inactive, where it generally cannot undergo 
state transitions until an activating event occurs, and active, where it can undergo state transitions. An 
activatable device usually is initialized inactive and transitions to an active state after an activation event.

25.2  Impact on Practice

Some of the practical applications of DNA computations and DNA nanoassemblies include the following:

	 1.	 Detection of nucleic acid sequences: For many diseases, the detection of the disease is done via the 
determination of a characteristic sequence t of DNA or RNA, where t has base length no more 
than 20 or so base pairs. This detection is conventionally done via the well-known PCR protocol, 
but this requires somewhat bulky and expensive device for repeated thermocycles and optical 
detection. The market for these detection protocols is over a billion dollars. DNA computation 
protocols may provide a much more cost-effective and portable means for detection. Section 
25.3.2 describes various isothermal (requiring no thermal cycling) protocols for exquisite sensi-
tive detection of DNA and RNA sequences.

	 2.	 3D DNA nanoassemblies of proteins for x-ray crystallography structure determination: Almost half 
of all proteins of interest to medicine cannot be crystallized, and so their 3D structure can be 
determined from conventional x-ray crystallography studies. An important application of DNA 
nanoassembly, proposed by Seeman [88], is the assembly of 3D DNA lattices that can hold a given 
protein at regular positions in the crystalline lattice, allowing for x-ray crystallography studies 
of an otherwise uncrystallizable protein. For further discussion of this application, see Section 
25.3.6.5 discussion on 3D DNA nanoassemblies [130].
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	 3.	 3D DNA nanoassemblies for alignment of proteins for NMR structure determination: Douglas and 
Shih [22] have proposed and demonstrated a novel method for improved nuclear magnetic reso-
nance (NMR) studies of structure determination that makes use of long DNA nanoassemblies to 
partially align proteins.

	 4.	 2D DNA nanoassemblies for molecular patterning: DNA nanoassemblies can be used for pro-
grammed patterning of 2D molecular surfaces. This has applications to assembly of molecular 
electronic devices on molecular surfaces and 2D readout methods [47,76,118].

	 5.	 DNA nanorobotic devices for molecular assembly lines: Programmed control and sequencing 
of chemical reactions at the molecular scale have major applications in the chemical industry. 
DNA nanorobotic devices (see Section 25.3.4) have been demonstrated to execute a programmed 
sequence of chemical reactions at predetermined positions along a DNA nanostructure [33,57].

25.3 R esearch Issues

25.3.1  DNA Hybridization Circuits

The construction of circuits made out of DNA has been an area of interest since the advent of molecular 
computing. Having millions to billions of nanoscale DNA gates working in tandem, to accept an input 
and produce an unambiguous output, is a challenging task. There have been various designs to cre-
ate logic gates and Boolean circuits using DNA motifs [1,44,64,65,67,69,80,81,83,84,97,98,113,128]. We 
examine a few such attempts at creating these circuits and the advantages and pitfalls associated with 
each. We classify the circuits into two types: DNA circuits contain a large number of DNA molecules, 
and each molecule reacts with a small subset of other molecules. Circuits in which molecules diffuse 
through solution, to find a molecule from this subset, are said to be solution based. On the other hand, 
DNA molecules can be attached to a surface, and these molecules only interact with other molecules 
within their reach. Such circuits are known as localized hybridization circuits.

25.3.1.1  Solution-Based DNA Hybridization Circuits

Qian and Winfree developed a scalable solution-based DNA hybridization circuit system. Their basic 
motif is a seesaw gate based on the toehold-exchange protocol as seen in Section 25.1.4 developed by 
[129]. The system consists of a set of seesaw gates. Each gate can accept an input (strand) and produce an 
output(strand). The input strands act catalytically; hence, a single input strand can help release multiple 
output strands from one (or more) seesaw gates. The output strands act as inputs for the next seesaw 
gates downstream in the circuit. Figure 25.9 shows the basic mode of operation of a seesaw gate motif.

As an example, the input strand consists of three domains, S2, T, and S5, and the output strand con-
sists of S5, T, and S6. Note that the 5′ end of the input and the 3′ end of the output need to have the same 
set of domains, while the converse is not true (S2 and S6 can be different). These domains S2 and S6 can 
be used to help differentiate different input strands and different output strands that interact with the 
same gate. We now show how the authors use this difference to construct OR and AND gates.

25.3.1.1.1  Construction of AND–OR Gates
Having constructed the basic motif, the authors then constructed AND and OR gates using the same 
motif. In order to construct an OR gate, either one of the input strands (x1, x2) should release the output 
strand. That is, the presence of either x1 OR x2 gives the output. Take the following construction: x1 = 
(S10 T S5), x2 = (S10 T S5). We can trivially see that either one of x1 or x2 will release the output strand. 
Hence, this gate is equivalent to an OR gate.

The construction of an AND gate is nontrivial. Only when both x1 and x2 are present should the 
output strand be released. The authors introduce a gate called the “threshold gate” as seen in Figure 25.9. 
The threshold gate can be thought of as a garbage collector that sucks a strand in and makes it unusable 
for further reactions. By varying the concentration of the threshold gate, both AND and OR gates can 
be constructed. This is seen in Figure 25.9.
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25.3.1.1.2  A DNA Circuit That Computes the Square Root of n ≤ 15
Using the AND and OR gate motifs, we can now construct any circuit by connecting a set of such gates 
sequentially. The authors construct a circuit that computes the square root of all numbers up to 15. It 
takes in 8 inputs, a 0 or a 1 for each bit. The output set of strands denote the set of bits that are set to 1 
and hence encode the result.

The system described earlier is an example of how DNA can be used to do logical computation in vitro, and 
detect any input strands that are present in the vicinity. There are several disadvantages of this approach, with 
the primary one being that this methodology is slow, and as the depth of the circuit increases, the amount of 
time taken to perform a reliable computation increases linearly. Also, circuits such as these are susceptible to 
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erroneous reactions taking place between gates and strands that are not intended to happen, and this could 
lead to faulty outputs. In order to fix these problems, we discuss another set of circuits in the next section.

25.3.1.2  Localized DNA Hybridization Circuits

The solution-based systems described earlier demonstrate the enormous potential of DNA nanosystems. 
But most of the systems relied on diffusion-based hybridization to perform complex state changes/computa-
tion. At low concentrations and temperatures, diffusion can be quite slow and could impede the kinetics of 
these systems. At higher concentrations and temperature, unintended spurious interactions (often called 
leaks) could hijack the systems from its programmed trajectory. Localized hybridization networks are set of 
DNA strands attached to an addressable substrate. This localization increases the relative concentration of 
the reacting DNA strands thereby speeding up the kinetics. Diffusion-based systems possess global states 
encoded via concentration of various species and hence exhibit limited parallel ability. In contrast, localized 
hybridization systems allow for each copy of the localized hybridization network to operate independently 
of each other. Localized hybridization networks also allow one to reuse the same DNA sequence to perform 
different actions at distinct location on the addressable substrate, increasing the scalability of such systems 
by exploiting the limited sequence space. An advantage of localized hybridization computational circuit is 
sharper switching behavior as information is encoded over the state of a single molecule. This also eliminates 
the need for thresholding as computation is performed locally eliminating the need for a global consensus. 
These advantages are expounded in greater detail in Chandran et al. (2011). Quite recently, other articles such 
as Genot et al. (2011) and Aldaye et al. (2011), have also demonstrated that locality can be used successfully.

25.3.1.3  Design and Simulation Software

Computational tools are a growing necessity in order to design DNA strands for use in both simulations 
and experiments. Visual DSD from [42] is extremely useful in simulating DNA strand-displacement 
reactions. NUPACK [125] and MFOLD [132] help in design and analysis of sequences at the base level, 
in order to weed out wrong designs.

25.3.2 � Strand-Displacement Reaction Network 
(SDRN)-Based DNA Detectors

The detection problem is the problem of designing a solution-based chemical molecular circuit (hence-
forth, the detector) for detecting the presence of an input molecular species by producing an output 
molecule (or molecules) in sufficient quantities so that it can be detected by a measuring instrument. The 
detector must be sensitive to small amounts of input, specific to the correct type of input, and robust to 
stochastic variability in the operation of the CRN. We might also ask that the detector function correctly 
over a wide range of concentrations, temperatures, and buffer conditions.

In this section, we will concentrate on the problem of detecting a short piece of DNA of known 
sequence. Various other molecules can often be transduced into a short DNA sequence by means of 
aptamer technology. This problem, interesting in its own right, will not be discussed in this chapter.

25.3.2.1 A dvantages of SDRN Detectors

The canonical DNA detector is the PCR, an enzymatic detector that requires temperature cycling. 
Driven by exquisitely evolved enzymes and technological advances over the past 50 years, real-time 
PCR protocols are sensitive to as little as 2000 DNA molecules in an mL of solution. However, PCR is 
not often specific to single base mutations in input, requires temperature cycling, and works only in a 
narrow range of temperature and buffer conditions. Enzymatic detectors that seek to replace PCR have 
their own host of issues and rely on special enzymes.

In contrast, SDRN detectors are isothermal, easily modifiable to detect various sequences, can be made 
specific to single base mutations, and may work correctly over a wide range of temperature, concentra-
tion, and buffer conditions [126]. They can also function as a module (subroutine) within a larger SDRN 
performing a complex computation, for instance, an SDRN circuit that produces an output molecule only 
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in the presence of two types of inputs (AND logic) or one detecting either one of two types of inputs, but 
not both together (XOR logic) or any arbitrary Boolean predicate. The key limitation with current SDRN 
detectors is their lack of sensitivity to small amounts of input, but the hope is that this issue can be sur-
mounted [29]. A sensitive SDRN detector could have applications in a variety of settings, including in vivo.

25.3.2.2  Leaks Limit Sensitivity of Detectors

A sensitive detector must necessarily amplify small input signal into sufficiently large output signal. This 
amplification must be conditional; in the presence of input, the amplification must be switched on and 
switched off in its absence. In terms of CRNs, this implies that detectors must have catalytic reaction path-
ways. Thermodynamics tells us that if a reaction proceeds in the presence of a catalyst, it must also occur 
in the absence of that catalyst, typically at a slower rate. These unplanned reactions are termed as leaks, 
and they limit the sensitivity of detectors [28]. Even in the absence of input, the detector produces output 
due to leak reactions. If the quantity of output produced (as a function of time) in the presence of input is 
sufficiently larger (detectable by measuring instrument) than the output produced (as a function of time) 
in the absence of input, the input is detectable. Otherwise, the detector is not sensitive to the input.

Identifying and mitigating leak reactions is the key to implementing sensitive detectors. For simple 
CRNs, the leak reactions may be easily guessed, since catalytic reactions are easily identified. What are 
the correct leak reactions when implementing more complex CRNs? Do the leak reactions depend on the 
particular technology we use to implement the CRN? Ref. [28] hypothesizes that the correct leak model 
for a CRN is the saturation (defined in [27]) of that CRN. Informally, the saturation of a CRN introduces 
some basis set of leak reactions that gets rid of all purely catalytic pathways. There may be many choices 
for the basis. The rates of these reactions depend on the type of technology we use to implement them, 
but their nature (up to a choice of basis) is determined purely by the connectivity of the CRN.

In SDRN detectors, having identified the leak reactions, knowledge of strand-displacement kinetics 
[129] allows us to guess the rates of these reactions, and hence we have an accurate model of the dynamic 
behavior of the SDRN detector before implementing them in the laboratory.

25.3.2.3  Overview of SDRN Detectors

Various successful implementations of SDRN detectors have been demonstrated. The hybridization 
chain reaction (HCR) of [20] triggers the formation of a linear nicked double-stranded polymer in the 
presence of an input DNA strand. The polymer units are two DNA strands initially trapped in a meta-
stable hairpin form. The input triggers the opening of one the hairpins, which in turn triggers the other 
and a linear cascade of triggers results. The driving force for the reaction is the decrease in enthalpy due 
to the formation of additional hybridization bonds in the nicked double-stranded polymer as compared 
to the metastable hairpins. The system is described in Figure 25.10.
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is identical in sequence to I. Hence, each copy of I can propagate a chain reaction of hybridization events between 
alternating H1 and H2 hairpins to form a nicked double helix, amplifying the signal of initiator binding.
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Reference [127] demonstrated an SDRN detector driven by entropy increase. The input DNA strand dis-
places the output from the DNA substrate via a toehold-mediated strand-displacement reaction. The input 
is released back into the solution by a fuel strand that displaces it from the substrate. The net effect is the fuel 
replacing an output molecule on the substrate, with the input acting catalytically. The direct displacement 
of output by fuel, in the absence of the input, is kinetically infeasible due to the lack of a toehold. This simple 
SDRN detector, like HCR, exhibits linear kinetics. However, when the output from one such SDRN detec-
tor is funnelled as input to a second such detector, the overall detector exhibits quadratic kinetics. Even an 
auto catalytic system where the output feeds back into the detector and a cross-catalytic system were dem-
onstrated. These feedback systems exhibit exponential kinetics and hence detect input quickly. However, 
they suffer from higher leak rates, limiting sensitivity. The catalytic pathway is shown in Figure 25.11.

Reference [119] adapted a hairpin-based SDRN detector to allow it to exhibit exponential behavior. 
Their cross-catalytic system consists of two hairpins trapped in a metastable state. The hairpins are trig-
gered by input and form a double-stranded complex with single-stranded overhangs and, in the process, 
release the input back into the solution. One of the single-stranded overhangs of the complex also acts as 
a catalytic trigger, resulting in exponential kinetics (Figure 25.12). The sensitivity of this SDRN detector 
is comparable to that obtained in [127].

25.3.3  DNA Replicators

Scientists have long tried to discover the origin of life. What was the sequence of steps that nature took, 
in order to create life as we now know it. Given that initially there was just matter, nature used energy 
from different sources and made autonomous self-replicating cellular machinery. With the discovery of 
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the hereditary material DNA and RNA, it has been speculated that nucleic acids contain all the informa-
tion required in order to completely define an organism and that the replication of these constituents is 
sufficient to ensure the replication of the entire organism.

Scientists at the Craig Venter Institute have created synthetic life, by artificially synthesizing a bac-
terial chromosome, with all the genes necessary for self-replication, and using it to boot up a cell and 
creating many copies of the same [26]. They ruled out the cause of self-replication being some external 
contaminant, by placing watermarks within the artificial DNA and re-sequencing the DNA from the 
cell copies, to prove their claim. However, this cell makes use of various biological molecules (enzymes) 
already engineered by nature to aid in the replication of an organism. How did organisms first gain the 
ability to self-replicate in the absence of these enzymes?

Attempts to answer this question have been made by the RNA world, who believe RNA was the first 
self-sustaining molecule, before DNA was chosen to be the information-bearing constituent of a cell. 
RNA, unlike DNA, is highly versatile and can perform ligation [24] and polymerization [39], which 
argue in favor of it being enough to self-replicate an organism. However, the hypothesis that nature 
accidentally created RNA is highly debated. Many believe that in a pre-RNA world, another molecule(s) 
was the hereditary material, which could transfer information to and from RNA. Recent research in 
synthetic molecules such as XNA and TNA is an attempt to resolve questions in this direction.
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What about in the absence of enzymes? An example of a nonenzymatic self-replicating system is by 
Zhang and Yurke [17]. As in other template-based self-replication proposals, their initial system consists 
of a templated structure. In order to replicate, they exploit the physical properties of DNA (persistence 
length), in order to cause fission in this structure, leading to two partial copies. A sequential addition of 
constituents leads to two complete structures being formed. Another theoretical model is by Chandran, 
Gopalkrishnan, and Reif, which they term meta-DNA [13]. This system consists of a template based on 
DNA nanotechnology, where a basic unit is a T-junction tile. Coupling multiple such tiles together forms 
a template, and they emulate a huge set of enzymatic operations, including polymerization, that can be 
done in this model.

There have been a few experimental models of self-replication in DNA nanotechnology as well. 
Scientists at NYU [107] use the BTX tile motif and have created an organism P (parent) made up of 7 
such BTXtiles. Organism P acts as a template on which self-replication can be done. In order to self-
replicate, a set of BTX tiles that represent the complement of P are added to the mix. This aids the for-
mation of a daughter organism D, which in turn acts as a template again, and aids in the formation of a 
grandchild G, which is a duplicate of P, in terms of the set of tile motifs that both are made up of. This 
mechanism is depicted in Figure 25.13. In each replication step, a certain amount of error is introduced 
into the system, not unlike natural self-replication, where mutations are common. In this system, after 
two replications, about 31% of the original sequences are retained.

Another experimental demonstration of self-replication is by Schulman et al. [82], who attempt the 
problem of self-replication from a computer science perspective. They encode information in a set of 
DNA tiles and induce growth via self-assembly. They have a proofreading mechanism built in, in order 
to reduce the amount of errors in bit copying. Next, they induce scission in the tiles, that is, they break 
it apart by mechanical stress. These pieces of assemblies now act as separate growth fronts for self-
replication, hereby starting a new cycle of replication. As compared to Seeman’s model, about 76% of the 
original bits are propagated to the next set of organisms.

25.3.3.1  Conclusions and Open Problems

There have been several attempts to design enzyme free DNA/RNA-based replicators, but none are 
convincing enough to reliably say that life could have originated via a particular route. Indeed, there 
could be different pathways via which life came to exist as we know of it today, and building different 
systems will only bring us closer to discovering this. There are several characteristics of these systems, 
however, that one must appreciate. First, there is a distinction between self-replicating systems and self-
reproducing systems, and life, we believe, might have originated from the former. Also, we must account 
for the environmental conditions in which these systems might have evolved in nature. DNA replicators 
are an attempt to designing such robust template-based self-replicating systems.

25.3.4  DNA Nanorobotic Devices

25.3.4.1  DNA Walkers

25.3.4.1.1  Introduction
Molecular motors exist in nature, and many motor proteins of the dynein, kinesin, and myosin families—
that have been identified are known to support the tasks and functions that are essential to life. One 
of the goals of nanoscience is the ability to synthesize molecular motors that are programmable and 
capable of operating autonomously. Drawing inspiration from nature, many examples of such synthetic 
motors have been designed. DNA poses a relatively easy material to use as the building block for these 
motors, due to the fact that its components are well understood compared to other materials at the 
nanoscale [72].

Walkers are synthesized DNA systems that are able to move on a substrate. A major ambition for 
those designing and experimenting with DNA walkers is to be able to design autonomous systems that 
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can be easily controlled and programmed with specific functions. Autonomy in this case is defined as a 
system’s ability to function in an environment without external intervention such that when the source 
of energy that drives it is depleted, the system halts [123].

Investigators have attempted to alter the method by which the walker moves, the substrate that the 
walker is moving on, or the fuel source that powers the walker in order to fully realize these two goals. In 
addition, investigators have also shown that walkers can perform specific tasks as proof of their viability 
and potential, such as transporting cargo [121], moving along different programmable pathways [52,72], 
assembling other structures [33], or performing controlled multistep chemical reactions [35]. One can 
divide the different classes of walkers in terms of (1) their degree of autonomy or (2) the type of fuel that 
powers these walkers or (3) both. We will start by looking at walkers with minimal autonomy, which 
respond to changes in their environment. Next, we will cover walkers powered by enzymes, followed 
by those that are driven by strand-displacement reactions, and finally we will address walkers that are 
considered autonomous as of this writing. In this section, the terms stators, anchorage sites, or footholds 
on a track have been used interchangeably, to denote a place where the walker can attach to, on a track 
or substrate.

25.3.4.1.2  Environmentally Driven Walkers
Nanomachines that function through the introduction of environmental alterations, such as variations 
to the pH of the solution, salt concentration, or the introduction of agents that cause synthetic DNA to 
change its conformation or shape, are considered nonautonomous, due to the fact that these nanoma-
chines are heavily dependent on external intervention. Such environmental characteristics have been 
observed since the early 1970s (see [15,48,66] for some early examples) and later demonstrations of con-
formational changes based on the properties of the i-motif (see [46,48–51,58]). However, walkers that 
operate by means of environmental changes have only recently arisen.

Wang et al. [105] demonstrate the operation of a walker that switches back and forth between two 
sites on a track (Figure 25.14). Each site is made up of a single strand of DNA that is partially hybridized 
to the track, with a loose, dangling region (15 bp) that acts as the binding site for the walker. The sites are 
separated by 15 nt, and the first site is made up of an i-motif DNA strand, which collapses onto itself in 
an acidic environment (pH 5) and switches back to a loose conformation in an alkaline solution (pH 8; 
for more details, see [45]). Initially, when the walker is introduced, it hybridizes with the first site if the 
solution is alkaline. Once the solution becomes acidic, the strand of the first site forms a compact i-motif 
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OH
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H
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FIGURE 25.14  A walker powered by the pH levels of its environment. (From Wang, C. et al., Chem. Commun., 
47(5), 1428, 2011.)
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structure, which causes the walker to dissociate from the first site and hybridize with the second site. 
The limitation of this design is that the walker strand can only move back and forth between two sites, 
without progressing any further.

Another example is the bipedal walker and stepper by Wang et al. [109] (Figure 25.15). This walker 
operates using four footholds (I, II, III, IV), each having a partially complementary strand attached to 
the track, such that the noncomplementary site (1′, 2′, 3′, 4′) in Figure 25.15 acts as a sticky end for the 
walker to attach to. The sticky end of the second foothold is an i-motif. The walker is made up of two 
strands, each partially hybridized to a scaffold strand (8). Activation occurs by adding Hg2+, which 
causes the formation of a thymine–Hg2+–thymine bridge on the third site and moves the walker to the 
second and third footholds. If the acidity of the solution is increased (increasing H+), the i-motif on 
the second foothold creates a compact structure, leading the walker to disassociate from it and attach 
to the fourth site, such that it is now bound to the third and fourth sticky ends. This walker can cycle 
back to its original state. Increasing alkalinity, which causes the i-motif to deprotonate and take on the 
conformation of a random coil, causes the walker to dissociate from the last site and hybridize with the 
second site. Adding cysteine causes the thymine–Hg2+–thymine bonds to break from the third site and 
return to the original state of hybridization. The authors also describe an extension of this design to cre-
ate a bipedal walker that moves on a circular track, with footholds attaching outwardly on the scaffold 
of the track.

25.3.4.1.3  Enzymatically Driven Walkers
Next we discuss walkers that operate via enzymatic reactions. The first such walker was introduced by 
Reif et al. [121], where a unidirectional walker was able to move from one site to another by the introduc-
tion of cleaving and ligating enzymes that targeted specific sites between the walker and the footholds at 
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each state of movement. The walker is composed of 6 nt that walk over three anchorage sites (A,B,C) on 
a track (see Figure 25.16; the asterisk denotes the current location of the walker). The anchorage sites are 
attached via a “hinge,” a 4 nt single strand of DNA, which adds flexibility to the sites. The walker starts 
off at the first anchorage site (A), and when Ligase (step I) is added, it causes the walker to ligate with the 
second anchorage (B), which creates a recognition site.

When the restriction enzyme (Pf1M I) is added, it cleaves the two anchorages such that the walker 
ends up on the second site. This cycle gets repeated in steps III (ligase) and IV (restriction enzyme 
BstAPI). Note that the restriction sites of Pf1M I and BstAPI are different, causing the walker to move 
in a unique direction. Other notable bidirectional walkers [7,100] are enzymatically driven, such as the 
walker by Bath et al. [7]. This walker uses a “burnt-bridge” mechanism [54], where random walks are 
biased in one direction, preventing the walker from moving backwards with a certain probability on 
a track with weak “bridges” or stators. The walker in this case cleaves the stator that it is hybridized to 
through a restriction enzyme, which moves the walker forward to hybridize with the next stator. Since 
the previous stator(s) is “burnt,” the walker is much less likely to hybridize with them; then it is to stay 
with the current stator, until another restriction enzyme cut catalyzes its next move.
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FIGURE 25.16  A unidirectional walker powered by enzymatic reactions. (From Yin, P. et al., Angew. Chem. Int. 
Ed., 116(37), 5014, 2004.)
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Sekiguchi et al. [89] demonstrate another enzymatic walker. They designed a unidirectional walker 
which moves along a predetermined path composed of a pattern of footholds. The walker is composed of 
three legs, with additional parts that anneal and cleave the different stators on the track to move forward.

The last example is a walker by Wickham et al. [111] (based on their earlier walker [7]) where a walker 
of length 16 bp walks over 16 stators, each separated by approximately 6 nm in a track of approximately 
100 nm on a rectangular DNA origami (Figure 25.17a). The walker is powered by a nicking enzyme, 
which can only act once the walker strand is hybridized to the stator strand (hence, the enzyme oper-
ates in a stepwise fashion). The movement of the walker was directly observed using real-time AFM as it 
traversed the origami stators. The walker is initially hybridized to the starting stator. The addition Once 
the walker forms a duplex with the stator, the nicking enzyme targets a specific site on the backbone of 
the stator, creating a nick in the DNA backbone 6 nt from the 5′ end (Figure 25.17b). The nicked strand 
(6nt) dehybridizes and floats away, creating a toehold. The adjacent stator hybridizes to the walker via 
the toehold, and displaces the current stator via toehold mediated strand displacement, moving the 
walker to the adjacent stator. This process is repeated with each stator until the last stator is reached, 
which does not contain the nicking recognition site. This stops the walker from further movement. 
Hairpins were added as an AFM imaging reference parallel to the track. In addition, FRET experiments 
were run by having the walker carry a quencher with it that reacts with different fluorophores on the 
track to determine when the walkers reach specific points on their tracks.

25.3.4.1.4  Walkers Driven by Strand-Displacement Reactions
Strand-displacement reactions involve the use of a short, unhybridized portion (called a toehold) of a 
strand in a duplex to mediate the displacement of its complementary hybridized strand. These reactions 
can be designed to power walkers, as seen in the first demonstration by Seeman and Sherman [91], where 
a biped walker used set and unset strands to move along a three foothold track. Figure 25.18 shows a 
cartoon depicting individual steps of the walker. Figure 25.18a shows two sets of strands “Set 1A” and 
“Set 2B,” to keep the walker attached to the footholds. In Figure 25.18b, an unset strand “unset 2B” uses 
toehold-mediated strand displacement to unbind the “set 2B” strand from both the biped’s foot and the 
foothold strands. This creates a duplex waste product (Figure 25.18c), and causes the biped’s foot to dis-
sociate from the foothold. In Figure 25.18d, strand “set 2C” is added, which causes one foot of the walker 
to hybridize to foothold 2C. In Figure 25.18e, “unset 1A” detaches the left foot, and in Figure 25.18f, “set 
1B” attaches the left foot to foothold B. In this manner, the walker is propelled forward.

The walker by Shin and Pierce [92] is similar to Seeman’s walker, except that the trailing foot starts 
the motion forward along the track, while the leading foot keeps the walker attached to the track. 

(b)

(a)
–6nm

70nm

100nm

*

FIGURE 25.17  Stepwise observation of a walker moving along a DNA origami substrate. (From Wictham, S.J. 
et al., Nat. Nanotechnol., 6, 166, February 2011.)
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Other similar examples include Mao and Tian’s circular biped walker [101], Bath et al. ’s Brownian 
ratchet walker [31], and Dirks et al. ’s autonomous cargo transporter [103].

Muscat et al. [61] demonstrated a more recent example, where the walker is composed of a cargo 
strand, powered forward by the introduction of a fuel strand (Figure 25.19). What distinguishes this 
walker is its usage of a combination of toehold hybridization and junction migration. In addition, the 
fuel strands are able to provide the walker with direction instructions.

Anchorage sites attached to a double-stranded track are made up of the domains Xbc , where X  is unique 
to each site, while bc  are common to all. Note that X = X1 X2. A cargo strand abc can bind to anchorage site 
via hybridization with bc . The domain a is left to split (hence is called a split toehold) from the anchorage 
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site and expose X  (an addressing domain that identifies the anchorage site). This exposure is key for the 
walker to function. Another split toehold (between toehold y and domain c ) is made at the second anchorage 
site, where the strand Ry (composed of Y1, a, b and y) is partially complementary to the second anchorage site.

The fuel strand is made up of two main parts: one to hybridize with the first anchorage site and 
the other part to hybridize with the complementary strand of the second anchorage site (Figure 25.19a). 
The fuel strand starts by partially hybridizing to this identifying region first, which is called split toehold 
hybridization (Figure 25.19b). Afterwards, through junction migration, the fuel strand moves the cargo 
from the anchorage site onto its common binding domain (Figure 25.19c). Once that occurs, another 
split toehold hybridization reaction occurs, this time between y and c  and the now unsequestered com-
plementary domains y  and the split toehold on the cargo strand c (Figure 25.19d). Through junction 
migration (Figure 25.19e), the cargo strand is finally moved onto the second anchorage site, and the fuel 
strand anchors Ry to the first anchorage site (Figure 25.19f).

Another example includes a transporter by Wang et al. [110], which is composed of two parts. The 
main nanostructure is composed of a 3-arm structure that has four footholds, three on the circumference 
and one at the center (Figure 25.20a). To each foothold, there is attached one strand each (A, B, C, Ax). 
This structure is named Module I. The second part of the system (Module II) consists of an arm that can 
transport a cargo strand (Px) around the central axis in a circular fashion. Similar to the mechanism 
of set and unset strand displacement and unset strands seen earlier [91], the cargo strand is detached 
from the site; it is initially hybridized via the introduction of a fuel strand (Panel I, (Figure 25.20b)) 
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complementary to that site. The arm is free to attach to the next site, B, (Panel II) until another fuel 
strand is introduced that essentially displaces the cargo strand from B to attach to C (Panel III). Anti-fuel 
strands can be introduced to reverse the sequence of movement. In order to ensure that the walker moves 
in the order specified, the duplexes that the cargo forms at each site were made energetically less stable 
than the previous site, starting from the first site A, to the last site C.

25.3.4.1.5  Autonomous, Programmable Walkers
The class of walkers described here are those that are considered programmable and autonomous. Reif 
and Sahu [72] introduced the theoretical design of an autonomous programmable RNA walker that acts 
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as a finite state machine. The machine is given instructions as input, and based on the previous input, it 
transitions to the next state on a 2D addressable lattice. The input instructions are fed as a sequence of 
hairpins, and DNAzymes proceed to consume each instruction that the walker has already transitioned 
on, exposing the next instruction.

Another example is that of walkers that operate through multiple legs, or spiders in [64]. These spiders 
are comprised of a streptavidin core and DNAzymes for legs which bind and cleave RNA sites on a sub-
strate. The walker is biased and moves toward unvisited substrates. Dabby et al. [52] expanded on this 
work demonstrating a spider in Brownian motion on a preprogrammed pathway, in addition to making it 
respond to signals on the pathway which include stopping and turning.

One of the more recent examples given in [122] is an autonomous and controllable light-driven 
DNA walking device through the use of pyrene-assisted photolysis. The walker, a single strand, is 
thought of as having two legs, one on each end. The 3′ end is the shorter leg (7 nt), while the 5′ end 
has the longer leg (16 nt). Both the legs are linked together by pyrene (Figure 25.22—step 1). The 
anchorage segments are linked together by a weak disulfide bond (black dot). Using a fluorometer, a 
light source at 350 nm was used to initiate photolysis. The pyrene molecule cleaves the disulfide bond 
in the anchorage site, and as a result, the 7 nt segment on the anchorage site floats away. The short leg 
then hybridizes with the next anchorage site, and through toehold-mediated strand displacement, the 
long leg hybridizes to its complementary segment on the next anchorage site. This process is repeated 
up to step n, if there are n anchorage sites. To bias the direction of movement, a “burnt-bridge” 
mechanism was used.

However, this walker is difficult to control due to its autonomous movement. You et al. [123] altered 
this walker to make another light-powered DNA walker with reversible movement, depending on the 
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light’s wavelength. In visible light, the walker moves forward, whereas UV light irradiation moves 
the walker backwards on a track. The anchorage site toeholds, also known as anchorage extender 
segments, have a different number of azobenzene molecules (one incorporated between every two 
bases of the toeholds). Azobenzene is a chiral molecule, and it switches its conformation from cis to 
trans when it is exposed to light wavelengths greater than 465 nm. The reverse is also true, namely, it 
switches back to cis in the presence of light with wavelength less than 465 nm.

The trans conformation of azobenzene stabilizes the double helix, while the cis conformation desta-
bilizes it. Hence, in visible light, the walker moves from left to right towards the longer strand, which 
is the more stable duplex (Figure 25.21a). In UV light, however, azobenzene switches from trans to cis, 
destabilizing the helix. This causes the walker to reverse direction, preferring the more stable hybridiza-
tion with the first site, again moving via toehold-mediated strand displacement (Figure 25.21b).

25.3.4.1.6  Discussions
DNA walkers are stepping stones to constructing DNA systems that have dynamic behavior, and are 
able to perform mechanical tasks at the nanoscale. By programming the directed movement of DNA 
molecules along a track, we can target the walker to deliver cargo reliably, send or receive information, 
and achieve nanoscale synthesis.

Multistep biosynthesis has been demonstrated by Liu et al. [35]. They designed a DNA walker that 
performs the synthesis of a linear product, in the order specified by the placement of the anchorage sites 
on the DNA track. At each step, the walker builds on the product, by attaching the cargo at the current 
site to that of the prior sites. At the final step a resulting synthesized product is obtained, not unlike 
mRNA translation.
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25.3.5  DNA Dynamical Systems

The behavior of DNA complexes can be controlled via the action of DNA enzymes that act upon spe-
cific sequences of DNA strands [74], competitive DNA hybridization [131], or environmental changes 
such as pH or temperature [108]. One of the first applications of strand displacement to a DNA nano-
machine was the molecular tweezer by [124]. The dynamic behavior of the tweezer is controllable, 
using strand displacement. Other types of devices include walkers [70,121] and molecular detec-
tors [20], both in vitro and in vivo [59,104]. Delebecque et al. [18] also made nanostructures within 
a cell. Reference [33] made a molecular assembly line. These and many other devices have been con-
structed and studied.

25.3.6  DNA Tiling Assembly

25.3.6.1  Models of Tile Assembly

In this section, we give a brief review of the theoretical models of self-assembly. In DNA self-assembly, a 
tile is the basic unit of assembly, with the initial state consisting of a set of unordered tiles, and the final 
state consists of an assembly formed by some or all of these tiles sticking to one another. Theoretical 
models of tile assembly have been developed to study the computational properties of self-assembly. 
Tile assembly dates back to 1961, when Wang [106] proposed the Wang domino problem. In his tiling 
model, a tile is a square with a glue on each side. For two tiles to attach, their abutting glues should be 
the same. Retroflexion and rotation of tiles are not permitted. The problem statement is: “Given a finite 
set of tiles, can they tile the entire plane.” An infinite number of copies of each tile type are provided. 
A more general problem is: “Does there exist an algorithm that can decide if a finite set of tiles can tile 
the whole plane.” It has been proved that such an algorithm does not exist and that the tiling problem is 
undecidable [9,75]. The proof shows that any instance of the Turing halting problem can be reduced to 
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an instance of the Wang domino problem. Since the halting problem is not decidable, hence the Wang 
domino problem is not decidable either.

Rothemund and Winfree proposed the abstract tile assembly model (aTAM) in 2000 [78]. In aTAM, 
a tiling system is modelled as a quadruple < T, s0, τ, g >. (1) T here is the tile set. As in the Wang model, 
a tile in aTAM is a square with a glue on each side. All glues are from a glue set Σ. Retroflexion and 
rotation of tiles are forbidden. (2) s0 is a special tile called the seed tile. At the beginning of the assembly 
process, only the seed tile is fixed at a particular position and the other tiles are floating in the plane. 
Assembly begins from the seed tile. (3) τ is the temperature of the system. When a tile is at a position, 
it will be fixed at that position if and only if the accumulative glue strength between this tile and tiles 
around it is not less than τ. (4) g is the glue strength function. It defines the glue strength between two 
glues. An assembly that grows from the seed tile can grow infinitely large, or it may terminate. A con-
figuration is terminal if it cannot grow anymore. This happens when there is no additional site for a 
tile to attach to at temperature τ. In Winfree’s original definition [78], the aTAM is formally defined 
in 2D, but it can be extended to multidimensions. The 2D aTAM has been proved to be the Turing 
universal [117].

We begin by introducing some important definitions in aTAM. (1) The tile complexity of shapes [78]. 
The tile complexity of a shape is the minimum number of tile types that uniquely assemble that shape. 
(2) The time complexity of assembling a shape [3]. This models how fast a shape can be assembled. The 
assembly process assembly process of an aTAM system can be modelled by a continuous Markov pro-
cess. The states of the Markov process are the different tile assembly configurations. To proceed from 
one state to another, a tile(s) attaches or detaches from the growing assembly. The rate of transition from 
state S1 to state S2 is dependent on the concentration of tile x if S2 is formed by attaching x to S1. The 
time taken to reach the terminal state from the initial state is a random variable, and time complexity is 
defined as the expected value of this random variable.

One important problem in aTAM is the tile complexity and time complexity of assembling a fixed-
shaped assembly. The fixed shape used by Winfree and Rothemund is an N × N square, where N is any 
positive integer. In other words, “What is the minimum number of tile types needed to construct an 
N × N square at temperature τ?” and “What is the minimum expected time needed to construct an N × N 
square at temperature τ?”

Rothemund and Winfree give a construction to show that the upper bound of tile complexity of 
assembling N × N square in a τ = 2 system is O(logN) [78]. The basic idea of their construction is to use 
O(logN) tile types to build the frame of an N × N square and then use a constant number of tile types to 
fill the frame. The frame has two components: a counter of size N × logN that grows toward the north 
and a diagonal of the N × N square that grows toward the northeast. They also proved a tile complex-
ity lower bound Ω( )log log logN N/  for the same, using the Kolmogorov complexity. This lower bound is 
true for infinitely many N. The question is whether there exists a construction that can reach this lower 
bound to prove that it is tight.

In 2001, Adleman et al. [3] proved that the lower bound is indeed tight. Adleman et al. proposed a new 
construction of tile complexity Θ(log log logN N/ ) that reaches the lower bound proved by Rothemund 
and Winfree. Their original construction is a τ = 3 construction, but can be generalized to τ = 2. The 
trick to improve the tile complexity was the technique by which they encoded a number. Rothemund 
and Winfree encoded N in base 2 (binary), and this technique led to the O(logN) tile complexity. In the 
new design by Adleman et al., they encoded the number in base Θ(log log logN N/ ). This strategy reduced 
the tile complexity to Θ( )log log logN N/ .

Adleman et al. also generalized Winfree’s aTAM by incorporating time complexity to the original 
model. The construction of tile complexity O(logN) from Rothemund and Winfree was proved to have 
Θ(N logN) time complexity. Adleman et al. gave a time complexity of Θ(N), which is optimal for assem-
bling an N × N square.

Many variants of the aTAM have been developed. Winfree developed the kinetic tile assembly model 
(kTAM) [114] to model the kinetic properties of crystal growth. This model is based on four assumptions 
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that are essential to it. Aggarwal et al. [4] developed generalized models including the multiple temperature 
model, flexible glue model, and q-tile model. Sahu et al. [99] proposed the time-dependent glue strength 
model. In their model, the glue strength between two glues increases with time, until it reaches a maxi-
mum. The advantage of this model is that it can model catalysis and self-replication. Reif [71] proposed the 
stepwise assembly model in 1999. In this model, the assembly process is done by multiple steps. At each 
step, a separate assembly with a different tile sets and different temperature is created. Only the terminal 
product of one step is given as input to the next step. The terminal product of the final step is the terminal 
product of the whole system. We give more details of Reif ’s model in Section 25.3.6.6. In 2008, Demaine 
et al. proposed a generalized stepwise assembly model called the staged assembly model [19]. They also gave 
strategies to assemble shapes with O(1) glues under their model. It has been proved that both the stepwise 
assembly model and the staged assembly model are the Turing universal at temperature 1 [6].

25.3.6.1.1  Theoretical Results of Self-Assembled Shapes
All constructions earlier try to store the information of the target shape in the tile set. This implies the 
need for a larger tile set to, assemble a target shape of a larger size. However, it is not feasible to synthe-
size a large number of tile types in practice. There are many constraints to implementing large tile sets 
such as the length of the pad, spurious reactions among pads of same tile, and sequence design.

An alternate strategy is encoding the information of target shapes in the concentrations of tile types. 
By this strategy, we can reduce the tile complexity of some self-assembled shapes to O(1) [21,40]. Kao and 
Robert proposed a random assembly construction for approximate squares [40] by encoding the shape 
information in the tile concentration. By their construction, an N × N square can be assembled from a 
constant number of tile types with high approximation factor and high probability where N should be 
large enough. The question is whether there exists a construction of O(1) tile complexity that assembles 
an exact N × N square with high probability. Doty published such a design in 2009 [21].

The problem of storing shape information in the tile concentration is that it is difficult to control 
the concentration precisely during the reaction process. Other methods to reduce the tile complexity 
include attempts by Reif in 1999, the stepwise assembly model [71]. Demaine proposed a generalized 
version of the stepwise assembly model called the staged assembly model [19]. The basic idea of these 
two models is assembling the target shape by multiple steps. This strategy can reduce the tile complexity 
efficiently [19,38]. The cost is stage complexity and bin(or tube) complexity [19,38].

25.3.6.2 T ile Assembly Experimental Methods

There are several DNA motifs that are used to design DNA tiles. These include DX and TX motifs 
[41,116] (Figures 25.23 and 25.24). DNA holliday junctions [25], and DNA origami [76]. These motifs 
are made stable by the incorporation of crossover junctions, where a DNA strand is initially bound to a 
strand, crosses over, and starts binding to another strand.

A motif attaches to a growing assembly via intermolecular contacts called sticky ends. These are comple-
mentary single-stranded DNA, which bind to each other once in close proximity. Arbitrarily complex tile 

FIGURE 25.23  An example of a DX Tile. (From E. Winfree, F. Liu, L. Wenzler, and N. Seeman, Design and 
self-assembly of two-dimensional DNA crystals, Nature, 394:539–544, 1998.)
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assemblies can be made using a small number of component tiles where each tile specifies an individual 
step of the computation. One of the first 1D experimental demonstrations after Adleman’s travelling sales-
man [2] was the computation of a cumulative XOR function. The inputs were x1, x2, x3, x4, and the outputs 
were y1, y2, y3, y4 where yi = yi−1 XOR xi and y1 = x1. A sample computation with input x1x2x3x4 = 1110 and 
output y1y2 y3y4 = 1011 can be seen in Figure 25.25b in four steps by the self-assembly of DNA TX tiles [56]. 
Binary inputs are encoded in a DNA tile each, and the presence of a unique combination of input tiles 
results in the formation of a unique set of output tiles, seen in Figure 25.25a.

A more complex construction was the set of 2D DNA Sierpinski triangles made by Rothemund et al. 
[77]. They designed a 1D cellular automata, whose update rule computes a binary XOR, and the assem-
bly results in a fractal pattern. A detailed design is in Figure 25.26. AFM images can be seen in Figure 
25.27. These constructions give evidence that DNA can perform the Turing universal computation and 
has the ability to implement any algorithmically computable system.

25.3.6.3 T ile Assembly Design and Simulation Software

Computer-aided design (CAD) softwares help molecular architects in the design of DNA-based tiles. To 
design the DNA sequences of these tiles, sequence symmetry minimization [87] is a common technique 
used to avoid spurious DNA strand interactions. Tools used in the design of such tiles are NanoEngineer 
[36], Tiamat [112], TileSoft [120], and GIDEON [10]. Another tool, caDNAno, developed by Douglas 
et al. [23], primarily designed for the use of DNA origami, can also be used for the same.

Simulating the behavior of DNA-based tiles yields useful theoretical results, which can help predict 
the kind of errors we should expect when using DNA tiles for computation or construction. Winfree 
wrote a simulator Xgrow [114] as part of simulating the kTAM (kinetic TAM) model, with extensions to 
it from [5]. Another simulator is ISU TAS, developed by Patitz at Iowa State University [63].

25.3.6.4  One-Dimensional DNA Tiling Assemblies

In this section, we will give a brief review of probabilistic linear tile assemble model (PLTAM) and 
results under this model [12]. Assembling linear structure of given length is an important problem in 
self-assembly both theoretically and experimentally. Many complex structures can be made from linear 
structures. One question is how big the smallest tile set that assembles linear structure of length N is. If 
the linear assembly process is deterministic, it can be proved that the smallest tile set to assemble linear 
structure of length N is of size N.

FIGURE 25.24  An example of a TX Tile. (From T. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. Reif, and 
N. Seeman, Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes, Journal of the 
American Chemical Society, 122(9):1848–1860, 2000.)
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Chandran et al. proposed a probabilistic linear tile assembly model [12], where “probabilistic” means 
that given a tile type, there may be multiple tile types that can attach to its western or eastern pad and 
“linear” means that tiles in this model only have two pads: western pad and eastern pad. They also 
developed three schemes under PLTAM to assemble linear structure of expected length N with tile com-
plexity Θ(logN), O(log2N) and O(log3N). All schemes are for equimolar standard linear assembly system. 
A linear assembly system is standard if and only if it is haltable, east growing, diagonal, and uni-seeded 
where “haltable” means that the assembly process can stop, “east growing” means that the assembly 
process is from west to east, “diagonal” means that the glue strength between two glues is 0 if they are 
different and otherwise the strength is 1 if the glue is not null glue, and “uni-seeded” means that there is 
only one seed tile. It can be proved that standard systems can simulate a larger set of systems. The reason 
why they focus on equimolar system is that equimolar system is more practical.
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FIGURE 25.25  Calculation of cumulative XOR by self-assembly of DNA tiles. (a) Component tiles. The three 
helical domains are drawn as rectangles, flanked by sticky ends shown as geometrical shapes. The value of each tile 
is in the central rectangle. The meaning of each sticky end is also indicated. Shown are the two x tiles (top left), four 
y tiles (bottom row) and the initialization corner tiles C1 and C2 (top right). The yi tiles are upside down from the 
xi tiles. (b) The values of each tile are the same as in (a), and the sticky ends are the same. Note the complementarity 
of sticky-ended association at each molecular interface. The operations are designed to proceed from lower left to 
upper right, because the xi and C1 and C2 tiles have longer sticky ends than the yi tiles. (From Mao, C. et al., Nature, 
407, 493, 2000.)
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The basic trick of designing these three schemes is simulating some well-designed stochastic pro-
cesses by linear tile sets. One issue is that all three schemes do not have a sharp tail bound of assembly 
length for a general N. What has been proved is that the O(log3N) scheme has sharp tail bound for infi-
nite many N, and for large enough N, we can get sharp tail bound by dividing N into numerous identical 
chunks. Therefore, the open problem is whether there exists a scheme of o(N) tile complexity with sharp 
tail bound of assembly length for general N.

25.3.6.5 T hree-Dimensional DNA Tiling Assemblies

3D assemblies are a natural extension to the construction of 2D assemblies. Cook et al. [16] ask the ques-
tion: What is the number of tile types needed to create an N × N 2D square, using a 3D tile system? In a 
3D tile system, a Wang tile is replaced by a Wang cube, each cube having six faces and hence six glues. 
They give a construction showing that using O(logn) tile types (cubes in 3D) can be used to construct an 
nxn square, at temperature 1, as opposed to the temperature 2 result by Rothemund and Winfree [78].

Constructions have been done using 3D Wang assembly models that are used to solve NP-complete 
problems such as maximal clique [53]. The computational power of this system is the Turing universal as 
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sides of tiles match input from the layer below; upper binding domains provide output to both neighbors on the layer 
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suggested by Winfree in [117], since it is a superset of the 2D tiling problem, but the additional comput-
ing power of this system at different temperatures has still to be ascertained.

25.3.6.6  Stepwise Tiling Assemblies

In this section, we will give a brief review of Reif ’s stepwise assembly model [71]. Reif ’s model reduces 
the tile complexity by dividing the assembly process into steps. It has been proved that this strategy can 
efficiently reduce tile complexity [19,38]. A tiling system under the stepwise assembly model is a qua-
druple < T, s0, g, Φ >, where T = T1 ∪ T2 … ∪ Tm and Φ = {τ1, τ2, …, τm}. The assembly process has m steps. 
In the first step, tiles in T1 including s0 assemble in tube 1 at temperature τ1 for a long enough time. The 
terminal product of step 1 is delivered to tube 2. Add T2 to tube 2 and let tiles (or supertiles) in tube 2 
assemble at temperature τ2 for a long enough time. This process continues until the step m is complete. 
The terminal product of step m is the terminal product of the whole system. Maňuch et al. proposed 
schemes of O(1) tile complexity to assemble an N × N square [38]. Behsaz et al. proved that the stepwise 
assembly model is the Turing universal at temperature 1 [6]. Demaine et al. proposed the staged assem-
bly model in 2008 [19]. It is a generalized version of the stepwise assembly model.

25.3.6.7 A ctivatable Tiles: Transition of State across Tiles

Experimental demonstration of the Turing universal tile-based algorithmic DNA self-assembly has been 
limited by significant assembly errors. An important class of errors, called co-ordinated growth errors, 
occur when an incorrect tile binds to a growing assembly even when some of its pads are mismatched 
with its neighbors. Activatable DNA tiles, introduced originally by [55], employ a protection/deprotec-
tion strategy to strictly enforce the direction of tiling assembly growth that prevents these errors, ensur-
ing the robustness of the assembly process. Tiles are initially inactive, meaning that each tile’s pads are 
protected and cannot bind with other tiles. After an activation event, the tile transitions to an active 
state and its pads are exposed, allowing further growth.

(a) (b)

(c)

FIGURE 25.27  AFM images of DNA sierpinski triangles. (a) A large templated crystal in a 5-tile reaction. 
A single 1 in the input row initiates a Sierpinski triangle. (b) A zoomed in region of (a) containing roughly 1000 
tiles and 45 errors. (c) A close of up a Sierpinski triangle. Crosses in (b) and (c) indicate tiles that have been 
identified (by eye) to be incorrect with respect to the two tiles from which they receive their input. Scale bars are 
100 nm [77]. (From Rothemund, P. et al., PLoS Biol., 2, 424, 2004).
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25.3.6.8  Error Correction in Tiling Assemblies

In this section, we give a brief review of error-correction techniques in self-assembly. Tile assembly has 
been beset with different types of errors. These are broadly classified into growth errors and nucleation 
errors. Growth errors happen when a tile incorrectly binds to a growing assembly and propagates this 
error by causing other incorrect tiles to attach. Nucleation errors happen when an assembly does not 
grow from the seed tile, but it randomly starts growing using other tiles from the tile set.

Errors in assembly are usually reduced by two approaches. (1) Reducing the errors by optimizing 
the reaction environment [114]. By this approach, the inherent error rate is reduced. (2) Reducing the 
errors by optimizing the tile set design [73,115]. However, this approach can only reduce the amount of 
errors in the assembled pattern and cannot improve the inherent error rate. Winfree proposed an error 
resilient scheme by the second approach called proofreading tile sets [115]. The basic idea of his scheme 
is using a k × k block of tiles to replace each tile in the original tile set. Although it does bring down the 
error from ϵ to ϵk, this scheme has two problems. (1) It amplifies the assembly size. (2) It can only reduce 
the errors in the output, while the errors inside the assembly pattern are dismissed.

Reif et al. proposed a compact error resilient scheme [73]. The basic idea of their scheme is adding 
proofreading portions to pads. Their scheme does not amplify the assembly size and can reduce the 
errors inside the assembly pattern. The problem of this scheme is that it is not suitable to general case.

25.4  Summary

DNA computing has matured since Adleman used it to solve a 7-node instance of the Hamiltonian path 
problem. Adleman’s original aim was to leverage the inherent parallelism of DNA for computation and 
its high information density for storage. DNA computation started with solving a set of “hard” problems 
interesting to computer scientists but has since evolved to have other applications. Scientists have used 
DNA devices for a variety of uses, such as in biosensors for molecular detection, diagnostic applications, 
in nanofabrication, for structure determination, and as potential drug delivery devices.

It is important to analyze the power of any computational device. This is in order to be able to judge 
it against other devices with similar functionality and to get an estimate of the theoretical limits of any 
device. This is why CRNs (Section 25.1.3) are important to model the DNA strand-displacement tech-
niques that are inherent to quite a few DNA devices.

DNA can be used to perform complex nanofabrication tasks. Both periodic structures such as lattices 
[34,86] and nonperiodic structures such as a smiley face and world map [76] have been constructed 
using DNA. These structures can be used as scaffolds to place gates, transistors, and routing elements 
at precise locations and thus create circuits from the bottom-up, as opposed to traditional top-down, 
lithographic techniques. However, as we discussed in Section 25.3.6.8, errors are inherent to scaffold 
construction, and even without errors, the size of the scaffolds that can be created pales in comparison 
to that achievable by silicon-based lithography. A parallel line of research is not in using DNA as a scaf-
fold but in using DNA itself to construct the circuit elements. These designs are quite promising as dis-
cussed in Section 25.3.1. Using such devices, it would be possible to have medical diagnostic biochemical 
circuits, with applications similar to Benenson’s DNA doctor [90].

DNA devices that are involved in detection have been a steady focus area among scientists. There 
exists a large set of techniques that has led to the construction of these devices. DNA machines typically 
respond to external stimuli such as pH, salt concentration, temperature, and other signalling molecules 
(DNA, proteins) that lead to a change in their state. This mechanical state change is detectable by tech-
niques such as FRET and has led to the development of sensors. In addition, logical operations can be 
performed on DNA motifs, and coupled with sensors, complex biological systems can be designed as 
drug delivery systems.

The programmable self-assembly of DNA has also enabled us to construct biochemical circuits that 
can perform synthesis of complex molecules. For example, DNA-directed synthesis has been shown to 
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be achievable using a variant of DNA walker systems [33,35]. Being programmable, the synthesis of any 
oligomer can be controlled at every step, not unlike the central dogma that dictates protein synthesis.

One of Seeman’s original goals of constructing lattices of DNA was to use it to determine the struc-
ture of other foreign (protein) molecules via x-ray crystallography [88]. Most lattices created with DNA 
have a lot of defects, hence not making DNA very suitable for this use. However, with the latest advances 
in structural DNA nanotechnology, that goal and others seem to be finally in sight.

Key Terms

Antiparallel: Each DNA strand has a 5′ and 3′ end. When two strands bind to each other, the 5′ end of 
one strand is adjacent to the 3′ end of the other strand.

Aptamer: DNA molecule that binds to a select target molecule such as other nucleic acids and proteins.
Base pairing: The binding of A (adenine) to T (thymine) or G (guanine) to C (cytosine).
DNAzyme: A molecule made of DNA that possesses enzymatic activity, not unlike that shown by 

protein enzymes.
Locality: The property of different reactants being in close proximity, due to structural or environmen-

tal constraints, causing them to react faster.
Nucleotide: A molecule made up of three components, a 5-carbon (pentose) sugar molecule, a nitrog-

enous base (one of A, T, G, C), and a phosphate group.
Random walk: A random walk in 1D is the path taken by an object, in either one of the two directions: 

left or right. At each step, the next direction is determined by an independent fair coin toss.
Secondary structure: The entire set of base pairs formed in a given set of DNA strands, where nucleo-

tides in a pair may lie on either the same strand or on different strands.
Sensitivity: Probability of an actual target (strand) being correctly identified.
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26.1  Introduction

Computational electromagnetics (CEM) is a natural extension of the analytic approach in solving the 
Maxwell equations. In spite of the fundamental difference between representing the solution in a con-
tinuum and in a discretized space, both approaches satisfy all pertaining theorems rigorously. The ana-
lytic approach to electromagnetics is elegant, and the results can describe the specific behavior as well 
as the general patterns of a physical phenomenon in a given regime. However, exact solutions to the 
Maxwell equations are usually unavailable. Some of the closed-form results that exist have restrictive 
underlying assumptions that limit their range of validity (Harrington 1961). Solutions of CEM generate 
only a point value for a specific simulation, but complexity of the physics or of the field configuration is 
no longer a limiting factor. The numerical accuracy of CEM is an issue to be addressed. Nevertheless, 
with the advent of high-performance computing systems, CEM is becoming a mainstay for engineering 
applications (Taflove 1992, Shang 2002).

In the tier-structured CEM discipline, the time-domain method or the frequency domain method 
is restricted mostly to Rayleigh and resonance regions where the characteristic electric length is of the 
same order in magnitude as the electromagnetic wavelength. In a high-frequency spectrum or the opti-
cal region, all practical applications are supported by the ray tracing of the shooting-and-bouncing 
(SBR) ray technique. This approximation is based on either physical optics, theory of diffraction, or a 
combination of both (Bowman et al. 1987). The SBR algorithm is naturally suitable for concurrent com-
puting. Exceptionally high computational efficiency has been consistently demonstrated in the appli-
cations for broadband antenna design, ultraband and optical communication, and synthetic aperture 
radar imaging. In order for the time-domain method to effectively venture into the optical domain, a 
combination of spectral-like numerical algorithm and concurrent computing is essential.
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CEM in the present context is focused on simulation methods for solving the Maxwell equations 
in the time domain. First of all, time dependence is the most general form of the Maxwell equations, 
and  the dynamic electromagnetic field is not confined to a time-harmonic phenomenon. Therefore, 
CEM in the time domain has the widest range of engineering applications. In addition, several new 
numerical algorithms for solving the first-order hyperbolic partial-differential equations, as well as 
coordinate transformation techniques, were introduced recently to the CEM community. These finite-
difference and finite-volume numerical algorithms were devised specifically to mimic the physics 
involving directional wave propagation. Meanwhile, very complex shapes associated with the field can 
be easily accommodated by incorporating a coordinate transformation technique. These methodologies 
have the potential to radically change future research in electromagnetics (Taflove 1992, Shang and 
Gaitonde 1995, Shang and Fithen 1996).

In order to use CEM effectively, it will be beneficial to understand the fundamentals of numerical sim-
ulation and its limitations. The inaccuracy incurred by a numerical simulation is attributable to the math-
ematical model for the physics, the numerical algorithm, and the computational accuracy. In general, 
differential equations in CEM consist of two categories: the first-order divergence–curl equations and the 
second-order curl–curl equations (Harrington 1961, 1968, Elliott 1966). In specific applications, further 
simplifications into the frequency domain or the Helmholtz equations and the potential formulation have 
been accomplished. Poor numerical approximations to physical phenomena can result, however, from 
solving overly simplified governing equations. Under these circumstances, no meaningful quantifica-
tion of errors for the numerical procedure can be achieved. Physically incorrect values and inappropriate 
implementation of initial and/or boundary conditions are another major source of error. The placement 
of the far-field boundary and the type of initial or boundary conditions have also played an important 
role. These concerns are easily appreciated in the light of the fact that the governing equations are identi-
cal, but the different initial or boundary conditions generate different solutions (Shang 2009).

Numerical accuracy is also controlled by the algorithm and computing system adopted. The error 
induced by the discretization consists of the roundoff and the truncation error. The roundoff error is con-
tributed by the computing system and is problem-size dependent. Since this error is random, it is the most 
difficult to evaluate. One anticipates that this type of error will be a concern for solution procedures involv-
ing large-scale matrix manipulation such as the method of moments and the implicit numerical algo-
rithm for finite-difference or finite-volume methods. The truncation error for time-dependent calculations 
appears as dissipation and dispersion, which can be assessed and alleviated by mesh-system refinements.

Finally, numerical error can be the consequence of a specific formulation. The error becomes pro-
nounced when a special phenomenon is investigated or when a discontinuous and distinctive stratifi-
cation of the field is encountered, such as a wave propagating through the interface between media of 
different characteristic impedances, for which the solution is piecewise continuous. Only in a strongly 
conservative formulation can the discontinuous phenomenon be adequately resolved. Another exam-
ple is encountered in radar cross-sectional simulation, where the scattered-field formulation has been 
shown to be superior to the total-field formulation.

The Maxwell equations in the time domain consist of a first-order divergence–curl system and are dif-
ficult to solve by conventional numerical methods. Nevertheless, the pioneering efforts by Yee and others 
have attained impressive achievements (Yee 1966, Taflove 1992). Recently, numerical techniques in CEM 
have been further enriched by development in the field of computational fluid dynamics (CFD). In CFD, 
the Euler equations, which are a subset of the Navier–Stokes equations, have the same classification in the 
partial-differential system as that of the time-dependent Maxwell equations. Both are hyperbolic systems 
and constitute initial-value problems (Sommerfeld 1949). For hyperbolic partial-differential equations, the 
solutions need not be analytic functions. More importantly, the initial values together with any possible dis-
continuities are continued along a time–space trajectory, which is commonly referred to as the character-
istic. A series of numerical schemes have been devised in the CFD community to duplicate the directional 
information-propagation feature. These numerical procedures are collectively designated as the charac-
teristic-based method, which in its most elementary form is identical to the Riemann problem (Roe 1986). 



26-3Computational Electromagnetics

The characteristic-based method when applied to solve the Maxwell equations in the time domain has 
exhibited many attractive attributes. A synergism of the new numerical procedures and scalable parallel-
computing capability will open up a new frontier in electromagnetics research. For this reason, a major 
portion of the present chapter will be focused on introducing the characteristic-based finite-volume and 
finite-difference methods (Shang 1995, Shang and Gaitonde 1995, Shang and Fithen 1996).

26.2  Governing Equations

The time-dependent Maxwell equations for the electromagnetic field can be written as (Harrington 
1961, Elliott 1966)

	

∂
∂

+∇× =B
E

t
0 	 (26.1)
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	 ∇ ⋅ =B 0 	 (26.3)

	 ∇ ⋅ =D ρ 	 (26.4)

The only conservation law for electric charge and current densities is
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+∇ ⋅ =ρ
t

J 0 	 (26.5)

where ρ and J are the charge and current density, respectively, and represent the source of the field. The 
constitutive relations between the magnetic flux density and intensity and between the electric displace-
ment and field strength are B = μH and D = ∈E. Equation 26.5 is often regarded as a fundamental law 
of electromagnetics, derived from the generalized Ampere’s circuit law and Gauss’s law. Since Equation 
26.1 and 26.2 contain the information on the propagation of the electromagnetic field, they constitute 
the basic equations of CEM.

The previous partial-differential equations also can be expressed as a system of integral equations. 
The following expression is obtained by using Stokes’ law and the divergence theorem to reduce the 
surface and volume integrals to a circuital line and surface integrals, respectively (Elliott 1966). These 
integral relationships hold only if the first derivatives of the electric displacement D and the magnetic 
flux density B are continuous throughout the control volume:
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The integral form of the Maxwell equations is rarely used in CEM. They are, however, invaluable as a 
validation tool for checking the global behavior of field computations.

The second-order curl–curl form of the Maxwell equations is derived by applying the curl operator 
to get
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The outstanding feature of the curl–curl formulation of the Maxwell equations is that the electric 
and magnetic fields are decoupled. The second-order equations can be further simplified for har-
monic fields. If the time-dependent behavior can be represented by a harmonic function eiωt, the 
separation-of-variable technique will transform the Maxwell equations into the frequency domain 
(Harrington 1961, Elliott 1966). The resultant partial-differential equations in spatial variables 
become elliptic:

	 ∇×∇× − = −E E Jk i2 ω µ( ) 	 (26.12)

	 ∇×∇× − = ∇×B B Jk2 ( )µ 	 (26.13)

where k = ω/c is the so-called propagation constant or the wave number and is the angular frequency of 
a component of a Fourier series or a Fourier integral (Harrington 1961, Elliott 1966). The previous equa-
tions are frequently the basis for finite-element approaches (Rahman et al. 1991).

In order to complete the description of the differential system, initial and/or boundary values are 
required. For Maxwell equations, only the source of the field and a few physical boundary conditions at 
the media interfaces are pertinent (Harrington 1961, Elliott 1966):

	 n × (E1 − E2) = 0	 (26.14)

	 n × (H1 − H2) = Js	 (26.15)

	 n × (D1 − D2) = ρs	 (26.16)

	 n × (B1 − B2) = 0	 (26.17)

where
The subscripts 1 and 2 refer to media on two sides of the interface
Js and ρs are the surface current and charge densities, respectively

Since all computing systems have finite memory, all CEM computations in the time domain must be 
conducted on a truncated computational domain. This intrinsic constraint requires a numerical far-
field condition at the truncated boundary to mimic the behavior of an unbounded field. This numerical 
boundary unavoidably induces a reflected wave to contaminate the simulated field. In the past, absorb-
ing boundary conditions at the far-field boundary have been developed from the radiation condition 
(Sommerfeld 1949, Enquist and Majda 1977, Mur 1981, Higdon 1986). In general, a progressive order-
of-accuracy procedure can be used to implement the numerical boundary conditions with increasing 
accuracy (Enquist and Majda 1977, Higdon 1986).
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The most popular approaches in the CEM community are the absorbing boundary condition or 
the perfectly matched-layer scheme (Mur 1981, Berenger 1994). The latter is actually derived from the 
characteristics or the domain of dependence of the hyperbolic partial-differential equation system. The 
detailed eigenvector and eigenvalue analyses of the characteristic formulation for the 3D Maxwell equa-
tions have been performed (Shang 1995). In this formulation, the flux vector of the governing equations 
is split according to the signs of the eigenvalue to honor the domain of dependence. The flux-vector 
splitting formulation is utilized in the present investigation.

On the other hand, the characteristic-based methods that satisfy the physical domain of influence 
requirement can specify the numerical boundary condition readily. For this formulation, the reflected 
wave can be suppressed by eliminating the undesirable incoming numerical data. Although the accu-
racy of the numerical far-field boundary condition depends on the coordinate system, in principle, this 
formulation under ideal circumstances can effectively suppress artificial wave reflections.

26.3  Characteristic-Based Formulation

The fundamental idea of the characteristic-based method for solving the hyperbolic system of equations 
is derived from the eigenvalue–eigenvector analyses of the governing equations. For Maxwell equations 
in the time domain, every eigenvalue is real, but not all of them are distinct (Shang 1995, Shang and 
Gaitonde 1995, Shang and Fithen 1996). In a time–space plane, the eigenvalue actually defines the slope 
of the characteristic or the phase velocity of the wave motion. All dependent variables within the time–
space domain bounded by two intersecting characteristics are completely determined by the values 
along these characteristics and by their compatibility relationship. The direction of information propa-
gation is also clearly described by these two characteristics (Sommerfeld 1949). In numerical simula-
tion, the well-posedness requirement on initial or boundary conditions and the stability of a numerical 
approximation are also ultimately linked to the eigenvalues of the governing equation (Richtmyer and 
Morton 1967, Anderson et al. 1984). Therefore, characteristic-based methods have demonstrated supe-
rior numerical stability and accuracy to other schemes (Roe 1986, Shang 1995). However, characteristic-
based algorithms also have an inherent limitation in that the governing equation can be diagonalized 
only in one spatial dimension at a time. The multidimensional equations are required to split into mul-
tiple 1D formulations. This limitation is not unusual for numerical algorithms, such as the approximate 
factored and the fractional-step schemes (Anderson et al. 1984, Shang 1995). A consequence of this 
restriction is that solutions of the characteristic-based procedure may exhibit some degree of sensitivity 
to the orientation of the coordinate selected. This numerical behavior is consistent with the concept of 
optimal coordinates.

In the characteristic formulation, data on the wave motion are first split according to the direc-
tion of phase velocity and then transmitted in each orientation. In each 1D time–space domain, the 
direction of the phase velocity degenerates into either a positive or a negative orientation. They are 
commonly referred to as the right-running and the left-running wave components (Sommerfeld 1949, 
Roe 1986). The sign of the eigenvalue is thus an indicator of the direction of signal transmission. The 
corresponding eigenvectors are the essential elements for diagonalizing the coefficient matrices and 
for formulating the approximate Riemann problem (Roe 1986). In essence, knowledge of eigenvalues 
and eigenvectors of the Maxwell equations in the time domain becomes the first prerequisite of the 
present formulation.

The system of governing equations cast in the flux-vector form in the Cartesian frame becomes 
(Shang 1995, Shang and Gaitonde 1995, Shang and Fithen 1996)
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where U is the vector of dependent variables. The flux vectors are formed by the inner product of the 
coefficient matrix and the dependent variable, Fx =CxU, Fy =CyU, and Fz =CzU, with

	 U = {Bx, By, Bz, Dx, Dy, Dz}T	 (26.19)
and
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The coefficient matrices or the Jacobians of the flux vectors Cx, Cy, and Cz are (Shang 1995)
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where ε and μ are the permittivity and permeability, which relate the electric displacement to the electric 
field intensity and the magnetic flux density to the magnetic field intensity, respectively.

The eigenvalues of the coefficient matrices Cx, Cy, and Cz in the Cartesian frame are identical and 
contain multiplicities (Shang 1995, Shang and Gaitonde 1995). Care must be exercised to ensure that all 
associated eigenvectors
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are linearly independent. The linearly independent eigenvectors associated with each eigenvalue are 
found by reducing the matrix equation, (C − Iλ)U = 0, to the Jordan normal form (Shang 1995, Shang 
and Fithen 1996).

Since the coefficient matrices Cx, Cy, and Cz can be diagonalized, there exist nonsingular similar 
matrices Sx, Sy, and Sz such that
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where the Λs are the diagonalized coefficient matrices. The columns of the similar matrices Sx, Sy, and Sz 
are simply the linearly independent eigenvectors of the coefficient matrices Cx, Cy, and Cz, respectively.

The fundamental relationship between the characteristic-based formulation and the Riemann prob-
lem can be best demonstrated in the Cartesian frame of reference. For the Maxwell equations in this 
frame of reference and for an isotropic medium, all the similar matrices are invariant with respect to 
temporal and spatial independent variables. In each time–space plane (x–t, y–t, and z–t), the 1D govern-
ing equation can be given just as in the x–t plane:
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Substitute the diagonalized coefficient matrix to get
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Since the similar matrix in the present consideration is invariant with respect to time and space, it can 
be brought into the differential operator. Multiplying the previous equation by the left-hand inverse of 
Sx, Sx

−1, we have
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One immediately recognizes the group of variables Sx
−1 U as the characteristics, and the system of equa-

tions is decoupled (Shang 1995). In scalar-variable form and with appropriate initial values, this is the 
Riemann problem (Sommerfeld 1949, Courant and Hilbert 1965). This differential system is specialized 
to study the breakup of a single discontinuity. The piecewise continuous solutions separated by the sin-
gular point are also invariant along the characteristics. Equally important, stable numerical operators 
can now be easily devised to solve the split equations according to the sign of the eigenvalue. In practice, 
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it has been found that if the multidimensional problem can be split into a sequence of 1D equations, this 
numerical technique is applicable to those 1D equations (Roe 1986, Shang 1995).

The gist of the characteristic-based formulation is also clearly revealed by the decomposition of the 
flux vector into positive and negative components corresponding to the sign of the eigenvalue:

	 Λ Λ Λ= + = ++ − + −, F F F 	 (26.26)

	 F S S F S S+ + − − − −= =Λ Λ1 1, 	 (26.27)

where the superscripts + and − denote the split vectors associated with positive and negative eigenval-
ues, respectively.

The characteristic-based algorithms have a deep-rooted theoretical basis for describing the wave 
dynamics. They also have however an inherent limitation in that the diagonalized formulation is 
achievable only in one dimension at a time. All multidimensional equations are required to be split into 
multiple 1D formulations. The approach yields accurate results so long as discontinuous waves remain 
aligned with the computational grid. This limitation is also the state-of-the-art constraint in solving 
partial-differential equations (Anderson et al. 1984, Roe 1986, Shang 1995).

26.4  Maxwell Equations in a Curvilinear Frame

In order to develop a versatile numerical tool for CEM in a wide range of applications, the Maxwell 
equations can be cast in a general curvilinear frame of reference (Shang and Gaitonde 1995, Shang 
and Fithen 1996). For efficient simulation of complex electromagnetic field configurations, the adoption 
of a general curvilinear mesh system becomes necessary. The system of equations in general curvi-
linear coordinates is derived by a coordinate transformation (Thompson 1982, Anderson et al. 1984). 
The mesh system in the transformed space can be obtained by numerous grid generation procedures 
(Thompson 1982). Computational advantages in the transformed space are also realizable. For a body-
oriented coordinate system, the interface between two different media is easily defined by one of the 
coordinate surfaces. Along this coordinate parametric plane, all discretized nodes on the interface are 
precisely prescribed without the need for an interpolating procedure. The outward normal to the inter-
face, which is essential for boundary-value implementation, can be computed easily by n = ∇S/║∇S║. 
In the transformed space, computations are performed on a uniform mesh space, but the corresponding 
physical spacing can be highly clustered to enhance the numerical resolution.

As an illustration of the numerical advantage of solving the Maxwell equations on nonorthogonal 
curvilinear, body-oriented coordinates, a simulation of the scattered electromagnetic field from a 
reentry vehicle has been performed (Shang and Gaitonde 1995). The aerospace vehicle, X24C- 10D, 
has a complex geometric shape (Figure 26.1). In addition to a blunt leading-edge spherical nose 
and a relatively flat delta-shaped underbody, the aft portion of the vehicle consists of five control 

FIGURE 26.1  Radar-wave fringes on X24C-10D, grid 181 × 59 × 62, TE excitation, L/λ = 9.2.
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surfaces—a central fin, two middle fins, and two strakes. A body-oriented, single-block mesh system 
enveloping the configuration is adopted. The numerical grid system is generated by using a hyper-
bolic grid generator for the near-field mesh adjacent to the solid surface and a transfinite technique 
for the far field.

The two mesh systems are merged by the Poisson averaging technique (Thompson 1982, Shang 
and Gaitonde 1995). In this manner, the composite grid system is orthogonal in the near field but less 
restrictive in the far field. All solid surfaces of the X24C-10D are mapped onto a parametric surface 
in the transformed space, defined by η = 0. The entire computational domain is supported by a 181 × 
59 × 162 grid system, where the first coordinate index denotes the number of cross sections in the 
numerical domain. The second index describes the number of cells between the body surface and 
the far-field boundary, while the third index gives the cells used to circumscribe each cross-sectional 
plane. The electromagnetic excitation is introduced by a harmonic incident wave traveling along the 
x-coordinate. The fringe pattern of the scattered electromagnetic waves on the X24C-10D is presented 
in Figure 26.1 for a characteristic-length-to-wavelength ratio L/λ = 9.2. A salient feature of the scat-
tered field is brought out by the surface curvature: the smaller the radius of surface curvature, the 
broader the diffraction pattern. The numerical result exhibits highly concentrated contours at the 
chine (the line of intersection between upper and lower vehicle surfaces) of the forebody and the lead-
ing edges of strakes and fins.

For the most general coordinate transformation of the Maxwell equations in the time domain, a 
one-to-one relationship between two sets of temporal and spatial independent variables is required. 
However, for most practical applications, the spatial coordinate transformation is sufficient:
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The governing equation in the strong conservation form is obtained by dividing the chain-rule dif-
ferentiated equations by the Jacobian of coordinate transformation and by invoking metric identities 
(Anderson et al. 1984, Shang and Gaitonde 1995). The time-dependent Maxwell equations on a general 
curvilinear frame of reference and in the strong conservative form are
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where the dependent variables are now defined as

	 U = U(BxV, ByV, BzV, DxV, DyV, DzV)	 (26.30)

Here, V is the Jacobian of the coordinate transformation and is also the inverse local cell volume. 
If the Jacobian has nonzero values in the computational domain, the correspondence between the 
physical and the transformed space is uniquely defined (Thompson 1982, Anderson et al. 1984). 
Since systematic procedures have been developed to ensure this property of coordinate transforma-
tions, detailed information on this point is not repeated here (Thompson 1982, Anderson et al. 1984). 
We have
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and ξx, ηx, and ζx are the metrics of coordinate transformation and can be computed easily from the 
definition given by Equation 26.24. The flux-vector components in the transformed space have the fol-
lowing form:
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After the coordinate transformation, all coefficient matrices now contain metrics that are posi-
tion dependent, and the system of equations in the most general frame of reference possesses 
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variable coefficients. This added complexity of the characteristic formulation of the Maxwell equations 
no longer permits the system of 1D equations to be decoupled into six scalar equations and reduced to 
the true Riemann problem (Shang 1995, Shang and Gaitonde 1995, Shang and Fithen 1996) like that 
on the Cartesian form.

26.5  Eigenvalues and Eigenvectors

As previously mentioned, eigenvalue and the eigenvector analyses are the prerequisites for character-
istic-based algorithms. The analytic process to obtain the eigenvalues and the corresponding eigenvec-
tors of the Maxwell equations in general curvilinear coordinates is identical to that in the Cartesian 
frame. In each of the temporal–spatial planes t–ξ, t–η, and t–ζ, the eigenvalues are easily found by solv-
ing the sixth-degree characteristic equation associated with the coefficient matrices (Sommerfeld 1949, 
Courant and Hilbert 1965):
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where

	 α ξ ξ ξ β η η η γ ζ ζ ζ= + + = + + = + +x y z x y z x y z
2 2 2 2 2 2 2 2 2, , and

One recognizes that the eigenvalues in each 1D time–space plane contain multiplicities, and 
hence the eigenvectors do not necessarily have unique elements (Courant and Hilbert 1965, Shang 
1995). Nevertheless, linearly independent eigenvectors associated with each eigenvalue still have 
been found by reducing the coefficient matrix to the Jordan normal form (Shang 1995, Shang 
and Fithen 1996). For reasons of wide applicability and internal consistency, the eigenvectors are 
selected in such a fashion that the similar matrices of diagonalization reduce to the same form as 
in the Cartesian frame. Furthermore, in order to accommodate a wide range of electromagnetic 
field configurations such as antennas, waveguides, and scatterers, the eigenvalues are no longer 
identical in the three time–space planes. This complexity of formulation is essential to facili-
tate boundary-condition implementation on the interfaces of media with different characteristic 
impedances.

From the eigenvector analysis, the similarity transformation matrices for diagonalization in each 
time–space plane are formed by using eigenvectors as the column arrays as shown in the following equa-
tions. For example, the first column of the similar matrix of diagonalization
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in the t–ξ plane is the eigenvector corresponding to the eigenvalue λ α εµξ = − /V . We have

	

S

y z y z

x z

x

y z

x

x

ξ

µ
ε
ξ
α

µ
ε
ξ
α

µ
ε
ξ
α

µ
ε
ξ
α

µ
ε

ξ ξ
αξ

µ
ε
ξ ξ
αξ

µ
ε

ξ

=

− −

+ − +

1 0

2 2 2( ) ( ξξ
αξ

µ
ε
ξ ξ
αξ

ξ
ξ

µ
ε
ξ ξ
αξ

µ
ε

ξ ξ
αξ

µ
ε
ξ ξ
αξ

µ
ε

z

x

y z

x

y

x

y z

x

x y

x

y z

x

2

2 2

0
)

( )− − + (( )ξ ξ
αξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ
ξ
ξ

x y

x

z

x

z

x

y

x

z

x

y

x

y

x

z

x

2 2

0

0 1

0 1 0 1 0

1 0 1 0 0

+

− − − −

��

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	 (26.38)

	

S

y z

y

x z

y

y z

y

x z

y

x

y

η

µ
ε

η ξ
βη

µ
ε
η η
βη

µ
ε

η ξ
βη

µ
ε
η η
βη

η
η

µ
ε

=

− + − +( ) ( )2 2 2 2

0

ηη
β

µ
ε

η
βη

µ
ε
η
β

µ
ε

η
βη

µ
ε
η η
αη

µ
ε

η ξ
αη

µ
ε
η η
α

x z

y

x z

y

x z

y

x y

y

x z

− −

− +

1 0

2 2( )

ηη
µ
ε

η ξ
βη

η
η

η
η

η
η

η
η

η
η

η
η

y

y y

y

z

y

x

y

z

y

x

y

x

y

x

y

− +

− − − −

( )2 2

0

0 1 0 1 0

0 1

1 0 1 0 00
η
η

z

y

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	 (26.39)

	

S

y z

z

x y

z

y z

z

x y

z

x

z

ζ

µ
ε

ζ ζ
γζ

µ
ε
ζ ζ
γζ

µ
ε

ζ ζ
γζ

µ
ε
ζ ζ
γζ

ζ
ζ

µ

=

+ − + −

−

( ) ( )2 2 2 2

0

εε
ζ ζ
γζ

µ
ε

ζ ζ
γζ

µ
ε
ζ ζ
γζ

µ
ε

ζ ζ
γζ

ζ
ζ

µ
ε
ζ
γ

x y

z

x z

z

x y

z

x z

z

y

z

x

− + +

−

( ) ( )2 2 2 2

0

µµ
ε
ζ
γ

µ
ε
ζ
γ

µ
ε
ζ
γ

ζ
ζ

ζ
ζ

ζ
ζ

ζ
ζ

ζ
ζ

ζ
ζ

y x y

x

z

y

z

y

z

x

z

y

z

x

z

−

− − − −

1 0

0 1 0 1 0

1 0 1 0 0

1

00 1

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	 (26.40)



26-13Computational Electromagnetics

Since the similar matrices of diagonalization, Sξ, Sη, and Sζ, are nonsingular, the left-hand inverse 
matrices Sξ

−1, Sη
−1, and Sζ

−1 are easily found. Although these left-hand inverse matrices are essential to 
the diagonalization process, they provide little insight for the following flux-vector splitting procedure. 
The rather involved results are omitted here, but they can be found in Shang and Fithen (1996).

26.6  Flux-Vector Splitting

An efficient flux-vector splitting algorithm for solving the Euler equations was developed by Steger 
and Warming (1987). The basic concept is equally applicable to any hyperbolic differential system 
for which the solution need not be analytic (Sommerfeld 1949, Courant and Hilbert 1965). In most 
CEM applications, discontinuous behavior of the solution is associated only with the wave across 
an interface between different media, a piecewise continuous solution. Even if a jump condition 
exists, the magnitude of the finite jump across the interface is much less drastic than the shock 
waves encountered in supersonic flows. Nevertheless, the salient feature of the piecewise continuous 
solution domains of the hyperbolic partial-differential equation stands out: the coefficient matrices 
of the time-dependent, 3D Maxwell equations cast in the general curvilinear frame of reference 
contain metrics of coordinate transformation. Therefore, the equation system no longer has constant 
coefficients even in an isotropic and homogeneous medium. Under this circumstance, eigenvalues 
can change sign at any given field location due to the metric variations of the coordinate trans-
formation. Numerical oscillations have appeared in results calculated using the flux-vector split-
ting technique when eigenvalues change sign. A refined flux-difference splitting algorithm has been 
developed to resolve fields with jump conditions (Van Leer 1982, Anderson et al. 1985). The newer 
flux-difference splitting algorithm is particularly effective at locations where the eigenvalues van-
ish. Perhaps more crucial for electromagnetics, the polarization of the medium, making the basic 
equations become nonlinear, occurs only in the extremely high-frequency range (Harrington 1961, 
Elliott 1966). In general, the governing equations are linear; at most, the coefficients of the differ-
ential system are dependent on physical location and phase velocity. For this reason, the difference 
between the flux-vector splitting (Steger and Warming 1987) and flux-difference splitting (Van Leer 
1982, Anderson et al. 1985) schemes, when applied to the time-dependent Maxwell equations, is not 
of great importance.

The basic idea of the flux-vector splitting of Steger and Warming is to process data according to 
the direction of information propagation. Since diagonalization is achievable only in each time–space 
plane, the direction of wave propagation degenerates into either the positive or the negative orientation. 
This designation is consistent with the notion of the right-running and the left-running wave compo-
nents. The flux vectors are computed from the point value, including the metrics at the node of interest. 
This formulation for solving hyperbolic partial-differential equations not only ensures the well posed-
ness of the differential system but also enhances the stability of the numerical procedure (Richtmyer and 
Morton 1967, Anderson et al. 1984, Roe 1986, Shang 1995). Specifically, the flux vectors Fξ, Fη, and Fζ 
will be split according to the sign of their corresponding eigenvalues. The split fluxes are differenced by 
an upwind algorithm to allow for the zone of dependence of an initial-value problem (Roe 1986, Shang 
1995, Shang and Gaitonde 1995, Shang and Fithen 1996).

From the previous analysis, it is clear that the eigenvalues contain multiplicities, and hence the split 
flux of the 3D Maxwell equations is not unique (Shang and Gaitonde 1995, Shang and Fithen 1996). All 
flux vectors in each time–space plane are split according to the signs of the local eigenvalues:
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The flux-vector components associated with the positive and negative eigenvalues are obtainable by a 
straightforward matrix multiplication:
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It is also important to recognize that even if the split flux vectors in each time–space plane are no unique, the 
sum of the split components must be unambiguously identical to the flux vector of the governing Equation 
26.29. This fact is easily verifiable by performing the addition of the split matrices to reach the identities in 
Equation 26.32 through 26.34. In addition, if one sets the diagonal elements of metrics, ξx, ηy, and ζz, equal 
to unity and the off-diagonal elements equal to zero, the coefficient matrices will recover the Cartesian form:
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26.7  Finite-Difference Approximation

Once the detailed split fluxes are known, the formulation of the finite-difference approximation is 
straightforward. From the sign of an eigenvalue, the stencil of a spatially second- or higher-order-
accurate windward differencing can be easily constructed to form multiple 1D difference operators 
(Richtmyer and Morton 1967, Anderson et al. 1984, Shang 1995). In this regard, the forward difference 
and the backward difference approximations are used for the negative and the positive eigenvalues, 
respectively. The split flux vectors are evaluated at each discretized point of the field according to the 
signs of the eigenvalues.
For the present purpose, a second-order accurate procedure is given:
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The necessary metrics of the coordinate transformation are calculated by central differencing, except at 
the edges of computational domain, where one-sided differences are used. Although the fractional-step or 
the time-splitting algorithm (Richtmyer and Morton 1967, Anderson et al. 1984, Shang 1995) has demon-
strated greater efficiency in data storage and a higher data-processing rate than predictor–corrector time 
integration procedures (Shang 1995, Shang and Gaitonde 1995, Shang and Fithen 1996), it is limited to sec-
ond-order accuracy in time. With respect to the fractional-step method, the temporal second-order result 
is obtained by a sequence of symmetrically cyclic operators (Richtmyer and Morton 1967, Shang 1995):

	 U L L L L L L Ui
n

i
n+ =1

ξ η ζ ζ µ ξ 	 (26.50)

where Lξ, Lη, and Lζ are the difference operators for 1D equations in the ξ, η, and ζ coordinates, 
respectively.

In general, second-order and higher temporal resolution is achievable through multiple-time-step 
schemes (Richtmyer and Morton 1967, Anderson et al. 1984). However, one-step schemes are more 
attractive because they have less memory requirements and do not need special start-up procedures 
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(Shang  and  Gaitonde 1995, Shang and Fithen 1996). For future higher-order accurate solution 
development potential, the Runge–Kutta family of single-step, multistage procedure is recommended. 
This choice is also consistent with the accompanying characteristic-based finite-volume method (Shang 
and Gaitonde 1995).
In the present effort, the two-stage, formally second-order accurate scheme is used:
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where ∆U comprises the incremental values of dependent variables during each temporal sweep. The 
resultant characteristic-based finite-difference scheme for solving the 3D Maxwell equations in the time 
domain is second-order accurate in both time and space.

The most significant feature of the flux-vector splitting scheme lies in its ability to easily suppress 
reflected waves from the truncated computational domain. In wave motion, the compatibility condition 
at any point in space is described by the split flux vector (Shang 1995, Shang and Gaitonde 1995, Shang 
and Fithen 1996). In the present formulation, an approximated no-reflection condition can be achieved 
by setting the incoming flux component equal to zero:

	
either orlim ( , , ) lim ( , , )

r r
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→∞
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→∞

−= =ξ η ζ ξ η ζ0 0 	 (26.52)

The 1D compatibility condition is exact when the wave motion is aligned with one of the coordinates 
(Shang 1995). This unique attribute of the characteristic-based numerical procedure in removing a fun-
damental dilemma in CEM will be demonstrated in detail later.

26.8  Finite-Volume Approximation

The finite-volume approximation solves the governing equation by discretizing the physical space into 
contiguous cells and balancing the flux vectors on the cell surfaces. Thus, in discretized form, the inte-
gration procedure reduces to evaluation of the sum of all fluxes aligned with surface-area vectors:
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In the present approach, the continuous differential operators have been replaced by discrete operators. 
In essence, the numerical procedure needs only to evaluate the sum of all flux vectors aligned with 
surface-area vectors (Van Leer 1982, Anderson et al. 1985, Shang and Gaitonde 1995, Shang and Fithen 
1996). Only one of the vectors is required to coincide with the outward normal to the cell surface, and 
the rest of the orthogonal triad can be made to lie on the same surface. The metrics, or more appropri-
ately the direction cosines, on the cell surface are uniquely determined by the nodes and edges of the 
elementary volume. This feature is distinct from the finite-difference approximation. The shape of the 
cell under consideration and the stretching ratio of neighbor cells can lead to a significant deterioration 
of the accuracy of finite-volume schemes (Leonard 1988).

The most outstanding aspect of finite-volume schemes is the elegance of its flux-splitting process. 
The flux-difference splitting for Equation 26.25 is greatly facilitated by a locally orthogonal system in 
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the transformed space (Van Leer 1982, Anderson et al. 1985). In this new frame of reference, eigen-
values and eigenvectors as well as metrics of the coordinate transformation between two orthogonal 
systems are well known (Shang 1995, Shang and Gaitonde 1995). The inverse transformation is simply 
the transpose of the forward mapping. In particular, the flux vectors in the transformed space have 
the same functional form as that in the Cartesian frame. The difference between the flux vectors in the 
transformed and the Cartesian coordinates is a known quantity and is given by the product of the 
surface outward normal and the cell volume, V(∇S/‖∇S‖) (Shang and Gaitonde 1995). Therefore, the 
flux vectors can be split in the transformed space according to the signs of the eigenvalues but without 
detailed knowledge of the associated eigenvectors in the transformed space. This feature of the finite-
volume approach provides a tremendous advantage over the finite-difference approximation in solving 
complex problems in physics.

The present formulation adopts Van Leer’s kappa scheme in which solution vectors are reconstructed 
on the cell surface from the piecewise data of neighboring cells (Van Leer 1982, Anderson et al. 1985). 
The spatial accuracy of this scheme spans a range from first-order to third-order upwind-biased 
approximations:
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where ∆Ui = Ui − Ui−1 and ∇Ui = Ui+1 − Ui are the forward and backward differencing discretizations. 
The parameters φ and κ control the accuracy of the numerical results. For φ = 1, κ = −1, a two-point 
windward scheme is obtained. This method has an odd-order leading truncation-error term; the dis-
persive error is expected to dominate. If κ = 1/3, a third-order upwind-biased scheme will emerge. In 
fact both upwind procedures have discernible leading phase error. This behavior is a consequence of 
using the two-stage time integration algorithm, and the dispersive error can be alleviated by increasing 
the temporal resolution. For φ = 1, κ = 0, the formulation recovers the Fromm scheme (Van Leer 1982, 
Anderson et al. 1985). If κ = 1, the formulation yields the spatially central scheme. Since the fourth-order 
dissipative term is suppressed, the central scheme is susceptible to parasitic odd–even point decoupling 
(Anderson et al. 1984, 1985).

The time integration is carried out by the same two-stage Runge–Kutta method as in the present 
finite-difference procedure (Shang 1995, Shang and Gaitonde 1995). The finite-volume procedure is 
therefore second-order accurate in time and up to third-order accurate in space (Shang and Gaitonde 
1995, Shang and Fithen 1996). For the present purpose, only the second-order upwinding and the third-
order upwind-biased options are exercised. The second-order windward schemes in the form of the flux-
vector splitting finite-difference and the flux-difference splitting finite-volume schemes are formally 
equivalent (Van Leer 1982, Anderson et al. 1985, Leonard 1988, Shang and Gaitonde 1995, Shang and 
Fithen 1996).

26.9  Summary and Research Issues

The technical merits of the characteristic-based methods for solving the time-dependent, 3D Maxwell 
equations can best be illustrated by the following two illustrations. In Figure 26.2, the exact electric 
field of a traveling wave is compared with numerical results. The numerical results were generated at 
the maximum allowable time-step size defined by the Courant–Friedrichs–Lewy (CFL) number of 2 
(λ∆x/∆t = 2) (Richtmyer and Morton 1967, Anderson et al. 1984). The numerical solutions presented 
are at instants when a right-running wave reaches the midpoint of the computational domain and exits 
the numerical boundary, respectively. For this 1D simulation, the characteristic-based scheme using the 
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single-step upwind explicit algorithm exhibits the shift property, which indicates a perfect translation 
of the initial value in space (Anderson et al. 1984). As the impulse wave moves through the initially 
quiescent environment, the numerical result duplicates the exact solution at each and every discretized 
point, including the discontinuous incoming wave front. Although this highly desirable property of a 
numerical solution is achievable only under very restrictive conditions and is not preserved for multi-
dimensional problems (Richtmyer and Morton 1967, Anderson et al. 1984), the ability to simulate the 
nonanalytic solution behavior in the limit is clearly illustrated.

In Figure 26.3, another outstanding feature of the characteristic-based method is highlighted by 
simulating the oscillating electric dipole. For the radiating electric dipole, the depicted temporal cal-
culations are sampled at the instant when the initial pulse has traveled a distance of 2.24 wavelengths 
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from the dipole. The numerical results are generated on a 48 × 48 × 96 mesh system with the second-
order scheme. Under that condition, each wavelength is resolved by 15-mesh points, and the difference 
between numerical results by the finite-volume and the finite-difference method is negligible. However, 
on an irregular mesh like the present spherical polar system, the finite-volume procedure has shown a 
greater numerical error than the finite-difference procedure on highly stretched grid systems (Anderson 
et al. 1985, Shang and Fithen 1996). Under the present computational conditions, both numerical proce-
dures yield uniformly excellent comparison with the theoretical result. Significant error appeared only 
in the immediate region of the coordinate origin. At that location, the solution has a singularity that 
behaves as the inverse cube of the radial distance. The most interesting numerical behavior, however, is 
revealed in the truncated far field. The no-reflection condition at the numerical boundary is observed 
to be satisfied within the order of the truncation error. For a spherically symmetric radiating field, the 
orientation of the wave is aligned with the radial coordinate, and the suppression of the reflected wave 
within the numerical domain is the best achievable by the characteristic formulation.

The corresponding magnetic field intensity computed by both the second-order accurate finite-
difference and the finite-volume procedure is given in Figure 26.4. Again, the difference in solution 
between the two distinct numerical procedures is indiscernible. For the oscillating electric dipole, only 
the x- and y-components of the magnetic field exist. Numerical results attain excellent agreement with 
theoretical values (Shang and Gaitonde 1995, Shang and Fithen 1996). The third-order accurate finite-
volume scheme also produces a similar result on the same mesh but at a greater allowable time-step 
size (a CFL value of 0.87 is used vs. 0.5 for the second-order method). A numerically more efficient and 
higher-order accurate simulation is obtainable in theory. However, at present, the third-order wind-
ward-biased algorithm cannot reinforce rigorously the zone-of-dependence requirement; therefore, the 
reflected-wave suppression is incomplete in the truncated numerical domain. For this reason, the third-
order accurate results are not included here.

Numerical accuracy and efficiency are closely related issues in CEM. A high-accuracy requirement of 
a simulation is supportable only by efficient numerical procedures. The inaccuracies incurred by numer-
ical simulations are attributable to the mathematical formulation of the problem, to the algorithm, to the 
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numerical procedure, and to computational inaccuracy. A basic approach to relieve the accuracy limita-
tion must be derived from using high-order schemes or spectral methods. The numerical efficiency of 
CEM can be enhanced substantially by using scalable multicomputers (Shang et al. 1993). The effective 
use of a distributed-memory, message-passing homogeneous multicomputer still requires a judicious 
trade-off between a balanced work load and interprocessor communication. A characteristic-based 
finite-volume computer program has been successfully mapped onto distributed-memory systems by 
a rudimentary domain decomposition strategy. For example, a square waveguide, at five different fre-
quencies up to the cutoff, was simulated.

Figure 26.5 displays the x-component of the magnetic field intensity within the waveguide. The simu-
lated transverse electric mode, TE1,1, Ex = 0, which has a half period of π along the x- and y-coordinates, 
is generated on a (24 × 24 × 128) mesh system. Since the entire field is described by simple harmonic 
functions, the remaining field components are similar, and only half the solution domain along the 
z-coordinate is presented to minimize repetition. In short, the agreement between the closed-form and 
numerical solutions is excellent at each frequency. In addition, the numerical simulations duplicate the 
physical phenomenon at the cutoff frequency, below which there is no phase shift along the waveguide 
and the wave motion ceases (Harrington 1961, Elliott 1966). For simple harmonic wave motion in an 
isotropic medium, the numerical accuracy can be quantified. At a grid-point density of 12 nodes per 
wavelength, the L2 norm (Richtmyer and Morton 1967) has a nearly uniform magnitude of order 10−4. 
The numerical results are fully validated by comparison with theory. However, further efforts are still 
required to substantially improve the parallel and scalable numerical efficiency. In fact, this is the most 
promising area in CEM research.

The pioneering efforts in CEM usually employed the total-field formulation on staggered-mesh sys-
tems (Yee 1966, Taflove 1992). That particular combination of numerical algorithm and procedure has 
been proven to be very effective. In earlier RCS calculations using the present numerical procedure, 
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the total-field formulation was also utilized (Shang 1995, Shang and Gaitonde 1995). However, for 3D 
scatterer simulation, the numerical accuracy requirement for RCS evaluations becomes extremely strin-
gent. In the total-field formulation, the dynamic range of the field variables has a substantial difference 
from the exposed and the shadow region, and the incident wave must also traverse the entire computa-
tion domain.

Both requirements impose severe demands on the numerical accuracy of simulation. In addi-
tion, the total field often contains only the residual of partial cancelations of the incident and the 
diffracted waves. The far-field electromagnetic energy distribution becomes a secular problem—a 
small difference between two variables of large magnitude. An alternative approach via the scattered-
field formulation for RCS calculations appears to be very attractive. Particularly in this formula-
tion, the numerical dissipation of the incident wave that must propagate from the far-field boundary 
to the scatterer is completely eliminated from the computations. In short, the incident field can be 
directly specified on the scatterer’s surface. The numerical advantage over the total-field formulation 
is substantial.
The total-field formulation can be cast in the scattered-field form by replacing the total field with scat-
tered-field variables (Harrington 1961, Elliott 1966):

	 U U Us t i= − 	 (26.55)

Since the incident field Ui must satisfy the Maxwell equations identically, the equations of the scattered 
field remain unaltered from the total-field formulation. Thus, the scattered-field formulation can be 
considered as a dependent-variable transform of the total-field equations. In the present approach, both 
formulations are solved by a characteristic-based finite-volume scheme.

The comparison of horizontal polarized RCS of a perfect electrically conducting (PEC) sphere, 
σ(θ, 0.0), from the total-field and scattered-field formulations at ka = 5.3 (where k = wave number and 
a = diameter of the sphere) is presented in Figure 26.6. The validating datum is the exact solution for 
the scattering of a plane electromagnetic wave by a PEC sphere, which is commonly referred to as the 
Mie series (Elliott 1966). Both numerical results are generated under identical computational condi-
tions. The location of the truncated far-field boundary is prescribed at 2.5 wavelengths from the center 
of the PEC sphere. Numerical results of the total-field formulation reveal far greater error than for the 
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scattered-field formulation. The additional source of error is incurred when the incident wave must 
propagate from the far-field boundary to the scatterer. In the scattered-field formulation, the incident 
field data are described precisely by the boundary condition on the scatterer surface. Since the far-
field electromagnetic energy distribution is derived from the near-field parameters (Sommerfeld 1949, 
Taflove 1992, Shang and Gaitonde 1995), the advantage of describing the data incident on a scatterer 
without error is tremendous. Numerical errors of the total-field calculations are evident in the exagger-
ated peaks and troughs over the entire viewing-angle displacement.

In Figure 26.7, the vertically polarized RCS σ(θ, 90.0°) of the ka = 5.3 case substantiates the previous 
observation. In fact, the numerical error of the total-field calculation is excessive in comparison with the 
result of the scattered-field formulation. Since the results are not obtained for the optimal far-field place-
ment for RCS computation, the results of the scattered-field formulation overpredict the theoretical val-
ues by 2.7%. The deviation of the total-field result from the theory, however, exceeds 25.6% and becomes 
unacceptable. In addition, computations by the total-field formulation exhibit a strong sensitivity to 
placement of the far-field boundary. A small perturbation of the far-field boundary placement leads to a 
drastic change in the RCS prediction: a feature resembling the ill-posedness condition, which is highly 
undesirable for numerical simulation. Since there is very little difference in computer coding for the two 
formulations, the difference in computing time required for an identical simulation is insignificant. On 
the Cray C90, 1,505.3 s at a data-processing rate of 528.8 Mflops and an average vector length of 62.9 
is needed to complete a sampling period. At present, the most efficient calculation on a distributed-
memory system, Cray T3-D, has reduced the processing time to 1204.2 s using 76 computing nodes.

More recent progress of CEM in the time domain can be illustrated in three aspects: the vastly 
increased data processing on multicomputers, the modeling and simulation of increasingly complex 
scatters, and the removing the fundamental limitation in conducting wave propagation in a finite com-
putational domain without reflection.

Just a few years ago, an order of tenfold speedup and immense increase in memory size by parallel-com-
puting system permitted an RCS calculation of a PEC sphere at a wave number beyond 100, (ka = 50.0). 
The calculation is carried on a (91 × 241 × 384) mesh system, and the bistatic RCS was sampled for the 
elapse time of three periods. The RCS computation requires 2887.6 s on an IBM SP 256 node system, 
which is the first generation commercially available of massive parallel-computing system. The calcu-
lated horizontal polarized bistatic RCS distribution σ(θ, 90°) is presented in Figure 26.8 to exhibit an 
excellent agreement with the theoretical results by the Mie series over a dynamic range of six decades 

Theory
Scattered-field
Total-field

Effect of formulation, ka = 5.3, Grid (73, 60, 96), Ro = 2.52102

101

100

σ 
(θ

, 9
0°

)

10–1

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
Looking angle θ (deg)

FIGURE 26.7  Comparison of total-field and scattered-field RCS calculations of σ(θ, 90°), ka = 5.3.



26-24 Computational Science and Graphics

(Bowman et al. 1987). Today, the speedup of modern concurrent computers increases almost exponen-
tially to expand the predictable frequency range of incident wave approaching the lower optical regime.

In 1999, the time-domain computational procedure using the structured, overset grid generation 
process has applied to a scattering simulation of a full-scale B1-B aircraft. This particular simulation 
is intended to demonstrate the range of practical application of time-domain methods and to seek an 
alternative grid topology for the discretized field approximation. Two separate multiblock grids for the 
fore and aft portion of the B1-B are constructed according to the distinct geometric features of the 
aircraft. A widely used grid generation package from the CFD community is adopted for the process 
(Shang 2009). The two major multiblock grid systems are overlapped to allow the information exchange 
between the two systems during the data processing. The level of effort required to generate this over-
all grid system is substantial; nearly nine months of man-hour has been devoted from the time of the 
available computer-aided design (CAD) model of the aircraft until a workable grid is completed. The 
overset grid system was used to produce the electromagnetic scattering field at 100 MHz that consists 
of a total of 711 grid blocks with 383 and 328 blocks distributed between the fore and aft grid systems, 
respectively. The fringe pattern on the B1-B aircraft is displayed by Figure 26.9. A total of 34.5 million 
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grid cells were used and with 23.5 million cells are concentrated in describing the fore body of this 
aircraft including the complex engine nacelles with the air breathing inlet. The aft body configuration 
is equally challenging with rudder and elevator assembly. The numerical simulation requires then the 
unprecedented problem size of more than 192,000,000 unknowns. On a 258-node SGI Origin 2000 
system, which is another first-generation parallel computer, the data-processing rate is estimated to be 
about 24.32 Gflops (giga floating point per second). This speedup benchmark in data-processing rate by 
parallel computing is easily surpassed by the new generation of multicomputer.

Meanwhile, the progress in the technique of grid generation is shifting to the unstructured grid 
approach, which represents the most general grid connectivity. Basically, the discretized field points are 
constructed by a group of contiguous tetrahedrons from the solid surface of a complex electric objective 
extending to far field. This coordinate transforming process requires an explicit connectivity of adjacent 
grid points. The identical need also exists for the mapping of a numerical procedure to multicomputers 
by the domain decomposition approach. The explicit connectivity of adjacent grid cells or data blocks 
for grid generation is also optimal for load balancing and limiting interprocessor communication for 
concurrent computing to become the most attractive approach for simulating the complex scatter con-
figuration (Shang 2009).

The fundamental challenge for CEM is that the hyperbolic differential system must be solved on a 
truncated physical domain due to a finite size of computer memory. The limitation was remedied earlier 
by the absorbing far-field boundary condition of Enquist and Majda (1977) and later by the perfectly 
matching layer (PML) of Berenge (1992). Both approaches alleviate the wave reflection from the far-field 
computational domain by numerical dissipation. In the middle 1990s, Shang and Fithen (1996) and 
Shang and Gaitonde (1995) formally derived the 3D characteristic formulation for the time-dependent 
Maxwell equation on a generalized curvilinear coordinates. In the characteristic-based formulation, the 
no-reflection far-field boundary condition is readily achievable by imposed vanishing incoming flux-
vector component at the computational domain.

The effectiveness of the characteristic formulation is demonstrated by the numerical simulation of the 
near-field, microwave radiation from a rectangular pyramidal horn shown in Figure 26.10. In this fig-
ure, the transmit wave is the principal transverse electric mode, TE1,0, at a frequency of 12.56 GHz with 

FIGURE 26.10  Near-field wave pattern of a pyramidal antenna, TE1,0 = 12.56 GHz.
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a wavelength of 2.398 cm, and the aperture of the antenna has a dimension of 3.05 by 3.64 wavelength. 
The far-field boundary condition for this numerical simulation is placed just at a few wavelengths from 
the exit of the antenna. The graph is presented at the time frame when the transmitting wave front 
has just passed through the computational outer domain. The contour of electric intensity exhibits no 
detectable distortion of any reflected waves from the computational boundary.

In summary, recent progress in solving the 3D Maxwell equations in the time domain has opened a 
new frontier in electromagnetics, plasmadynamics, and optics, as well as the interface between electro-
dynamics and quantum mechanics (Taflove 1992). The progress in microchip and interconnect network 
technology has led to a host of high-performance distributed-memory, message-passing parallel com-
puter systems. The synergism of efficient and accurate numerical algorithms for solving the Maxwell 
equations in the time domain with high-performance multicomputers will propel the new interdisci-
plinary simulation technique to practical and productive applications.

Nomenclature

B	 magnetic flux density
C	 coefficient matrix of flux-vector formulation
D	 electric displacement
E	 electric field strength
F	 flux-vector component
H	 magnetic flux intensity
i, j, k	 index of discretization
J	 electric current density
N	 index of temporal level of solution
S	 similarity matrix of diagonalization
t	 time
U	 dependent variables
V	 elementary cell volume
x, y, z	 Cartesian coordinates
∆	 forward difference operator
λ	 eigenvalue
ξ, η, ζ	 transformed coordinates
∇	 gradient, backward difference operator
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27.1  Introduction

The use of computer-based methods for the prediction of fluid flows has seen tremendous growth in the 
past half century. Fluid dynamics has been one of the earliest, and most active, fields for the application 
of numerical techniques. This is due to the essential nonlinearity of most fluid flow problems of practical 
interest—which makes analytical, or closed-form, solutions virtually impossible to obtain—combined 
with the geometrical complexity of these problems. In fact, the history of computational fluid dynamics 
(CFD) can be traced back virtually to the birth of the digital computer itself, with the pioneering work 
of John von Neumann and others in this area. Von Neumann was interested in using the computer not 
only to solve engineering problems but to understand the fundamental nature of fluid flows themselves. 
This is possible because the complexity of fluid flows arises, in many instances, not from complicated 
or poorly understood formulations but from the nonlinearity of partial differential equations that have 
been known for more than a century. A famous paragraph, written by von Neumann in 1946, serves to 
illustrate this point. He wrote [16]:

“Indeed, to a great extent, experimentation in fluid mechanics is carried out under conditions where 
the underlying physical principles are not in doubt, where the quantities to be observed are com-
pletely determined by known equations. The purpose of the experiment is not to verify a proposed 
theory but to replace a computation from an unquestioned theory by direct measurements. Thus, 
wind tunnels are, for example, used at present, at least in part, as computing devices of the so-called 
analogy type … to integrate the non-linear partial differential equations of fluid dynamics.”

This chapter article provides some of the basic background in fluid dynamics required to understand 
the issues involved in numerical solution of fluid flow problems, then outlines the approaches that have 
been successful in attacking problems of practical interest, and identifies areas of current research.
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27.2  Underlying Principles

In this section, we will provide the background in fluid dynamics required to understand the principles 
involved in the numerical solution of the governing equations. The formulation of the equations in 
generalized, curvilinear coordinates and the geometrical issues involved in the construction of suitable 
grids will also be discussed.

27.2.1  Fluid Dynamical Background

As can be inferred from the quotation of von Neumann presented in the introduction, fluid dynam-
ics is fortunate to have a generally accepted mathematical framework for describing most problems of 
practical interest. Such diverse problems as the high-speed flow past an aircraft wing, the motions of the 
atmosphere responsible for our weather, and the unsteady air currents produced by the flapping wings 
of a housefly, all can be described as solutions to a set of partial differential equations known as the 
Navier–Stokes equations. These equations express the physical laws corresponding to conservation of 
mass, Newton’s second law of motion relating the acceleration of fluid elements to the imposed forces, 
and conservation of energy, under the assumption that the stresses in the fluid are linearly related to 
the local rates of strain of the fluid elements. This latter assumption is generally regarded as an excellent 
approximation for everyday fluids such as water and air—the two most common fluids of engineering 
and scientific interest.

We will describe the equations for problems in two space dimensions, for the sake of economy of 
notation; here, and elsewhere, the extension to problems in three dimensions will be straightforward 
unless otherwise noted. The Navier–Stokes equations can be written in the form
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∂

+ ∂
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+ ∂
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= ∂
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+ ∂
∂

w f g R S

t x y x y
	 (27.1)

where w is the vector of conserved quantities

	 w = { , , , }ρ ρ ρu v e T 	 (27.2)

where
ρ is the fluid density
u and v are the fluid velocity components in the x and y directions, respectively
e is the total energy per unit volume

The inviscid flux vectors f and g are given by

	 f = + +{ , , , ( ) }ρ ρ ρu u p uv e p u T2 	 (27.3)

	 g = + +{ , , , ( ) }ρ ρ ρv uv v p e p v T2 	 (27.4)

where p is the fluid pressure, and the flux vectors describing the effects of viscosity are

	 R = −{0, , , + }τ τ τ τxx xy xx xy x
Tu v q 	 (27.5)

	 S = −{0, , , + }τ τ τ τxy yy xy yy y
Tu v q 	 (27.6)
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The viscous stresses appearing in these terms are related to the derivatives of the components of the 
velocity vector by
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and the x and y components of the heat flux vector are

	
q k

T

x
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	 (27.10)

	
q k
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y = − ∂

∂
	 (27.11)

according to Fourier’s Law. In these equations, μ and k represent the coefficients of viscosity and thermal 
conductivity, respectively.

If the Navier–Stokes equations are nondimensionalized by normalizing lengths with respect to a rep-
resentative length L, velocities by a representative velocity V∞, and the fluid properties (such as density 
and coefficient of viscosity) by their values in the free stream, an important nondimensional parameter, 
the Reynolds number,

	
Re = ∞ ∞

∞

ρ
µ
V L 	 (27.12)

appears as a parameter in the equations. In particular, the viscous stress terms on the right-hand side 
of Equation 27.1 are multiplied by the inverse of the Reynolds number. Physically, the Reynolds number 
can be interpreted as an inverse measure of the relative importance of the contributions of the viscous 
stresses to the dynamics of the flow; that is when the Reynolds number is large, the viscous stresses are 
small almost everywhere in the flow field.

The computational resources required to solve the complete Navier–Stokes equations are enor-
mous, particularly when the Reynolds number is large and regions of turbulent flow must be resolved. 
In 1970, Howard Emmons of Harvard University estimated the computer time required to solve a 
simple, turbulent pipe-flow problem, including direct computation of all turbulent eddies containing 
significant energy (Emmons [11]). For a computational domain consisting of approximately 12 diam-
eters of a pipe of circular cross section, the computation of the solution at a Reynolds number based 
on pipe diameter of Red = 107 would require approximately 1017 s on a 1970s mainframe computer. Of 
course, much faster computers are now available, but even at a computational speed of 100 gigaflops—
that is 1011 floating-point operations per second—such a calculation would require more than 3000 
years to complete.

Because the resources required to solve the complete Navier–Stokes equations are so large, it is com-
mon to make approximations to bring the required computational resources to a more modest level for 
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problems of practical interest. Expanding slightly on a classification introduced by Chapman [9], the 
sequence of fluid mechanical equations can be organized into the hierarchy shown in Table 27.1.

Table 27.1 summarizes the physical assumptions and time periods of most intense development 
for each of the stages in the fluid mechanical hierarchy. Stage IV represents an approximation to the 
Navier–Stokes equations in which only the largest, presumably least isotropic, scales of turbulence are 
resolved; the sub-grid scales are modeled. Stage III represents an approximation in which the solution 
is decomposed into time- (or ensemble-) averaged and fluctuating components for each variable. For 
example, the velocity components and pressure can be decomposed into

	 u U u= + ′ 	 (27.13)

	 v V v= + ′ 	 (27.14)

	 p P p= + ′ 	 (27.15)

where U, V, and P are the average values of u, v, and p, respectively, taken over a time interval that is long 
compared to the turbulence time scales, but short compared to the time scales of any nonsteadiness of 
the averaged flow field. If we let <u> denote such a time average of the u component of the velocity, then, 
for example,

	 < > =u U 	 (27.16)

When a decomposition of the form of Equations 27.13 through 27.15 is substituted into the Navier–
Stokes equations and the equations are averaged as described previously, the resulting equations 
describe the evolution of the mean flow quantities (such as U, V, and P). These equations, called 
the Reynolds-averaged Navier–Stokes (RANS) equations, are nearly identical to the original Navier–
Stokes equations written for the mean flow variables because terms that are linear in <u′>, <v′>, <p′>, 
etc., are identically zero. The nonlinearity of the equations, however, introduces terms that depend 
upon the fluctuating components. In particular, terms proportional to <ρu′v′>, <ρu′2>, and <ρv′2> 
appear in the averaged equations. Dimensionally, these terms are equivalent to stresses; in fact, these 
quantities are called the Reynolds stresses. Physically, the Reynolds stresses are the turbulent coun-
terparts of the molecular viscous stresses and appear as a result of the transport of momentum by 
the turbulent fluctuations. The appearance of these terms in the equations describing the mean flow 
makes it impossible to determine even the mean flow without some knowledge of these fluctuating 
components.

In order to solve the RANS equations, the Reynolds stresses must be related to the mean flow at some 
level of approximation using a phenomenological model. The simplest procedure is to try to relate the 

TABLE 27.1  Hierarchy of Fluid Mechanical Approximations

Stage Model Equations Time–Frame

I Linear potential Laplace’s equation 1960s
IIa Nonlinear potential Full potential equation 1970s
IIb Nonlinear inviscid Euler equations 1980s
III Modeled turbulence Reynolds-averaged Navier–Stokes 

(RANS) equations
1990s

IV Large-eddy simulation (LES) Navier–Stokes equations with sub-grid 
turbulence model

1980s–

V Direct numerical simulation (DNS) Fully resolved Navier–Stokes equations 1980s–

Source:	 Chapman, D.R., AIAA J., 17, 1293, 1979.
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Reynolds stresses to the local mean flow properties. Since the turbulence that is responsible for these 
stresses is a function not only of the local mean flow state but also of the flow history, such an approxi-
mation cannot have broad generality, but such local, or algebraic, turbulence models based on the anal-
ogy of mixing length from the kinetic theory of gases are useful for many flows of engineering interest, 
especially for flows in which boundary-layer separation does not occur.

A more general procedure is to develop partial differential equations for the Reynolds stresses them-
selves or for quantities that can be used to determine the scales of the turbulence, such as the turbulent 
kinetic energy k and the dissipation rate ε. The latter, so-called k-ε model, is widely used in engineering 
analyses of turbulent flows. These differential equations can be derived by taking higher-order moments 
of the Navier–Stokes equations. For example, if the x-momentum equation is multiplied by v and then 
averaged, the result will be an equation for the Reynolds stress component <ρu′v′>. Again because of 
the nonlinearity of the equations, however, yet higher moments of the fluctuating components (e.g., 
terms proportional to <ρu′2v′> <ρu′v′2>) will appear in the equations for the Reynolds stresses. This is an 
example of the problem of closure of the equations for the Reynolds stresses; that is, to solve the equa-
tions for the Reynolds stresses, these third-order quantities must be known. Equations for the third-order 
quantities can be derived by taking yet higher-order moments of the Navier–Stokes equations, but these 
equations will involve fourth-order moments. Thus, at some point, the taking of moments must be ter-
minated and models must be developed for the unknown higher-order quantities. It is hoped that more 
nearly universal models may be developed for these higher-order quantities, but the superiority of second-
order models, in which the equations for the Reynolds stress components are solved, subject to modeling 
assumptions for the required third-order quantities, has yet to be established in any generality.

For many design purposes, especially in aerodynamics, it is sufficient to represent the flow as that 
of an inviscid, or ideal, fluid. This is appropriate for flows at high Reynolds numbers that contain only 
negligibly small regions of separated flow. The equations describing inviscid flows can be obtained as a 
simplification of the Navier–Stokes equations in which the viscous terms are neglected altogether. This 
results in the Euler equations of inviscid, compressible flow

	

∂
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+ ∂
∂

+ ∂
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=w f g

t x y
0 	 (27.17)

This approximation corresponds to stage IIb in the hierarchy described in Table 27.1.
The Euler equations comprise a hyperbolic system of partial differential equations, and their solu-

tions contain features that are absent from the Navier–Stokes equations. In particular, while the viscous 
diffusion terms appearing in the Navier–Stokes equations guarantee that solutions will remain smooth, 
the absence of these dissipative terms from the Euler equations allows them to have solutions that are 
discontinuous across surfaces in the flow. Solutions to the Euler equations must be interpreted within 
the context of generalized (or weak) solutions, and this theory provides the mathematical framework 
for developing the properties of any discontinuities that may appear. In particular, jumps in dependent 
variables (such as density, pressure, and velocity) across such surfaces must be consistent with the origi-
nal conservation laws upon which the differential equations are based. For the Euler equations, these 
jump conditions are called the Rankine–Hugoniot conditions.

Solutions of the Euler equations for flows containing gasdynamic discontinuities, or shock waves, can 
be computed using either shock-fitting or shock-capturing methods. In the former, the shock surfaces 
must be located, and the Rankine–Hugoniot jump conditions enforced explicitly. In shock-capturing 
methods, artificial viscosity terms are added in the numerical approximation to provide enough dissipa-
tion to allow the shocks to be captured automatically by the scheme, with no special treatment in the 
vicinity of the shock waves. The numerical viscosity terms usually act to smear out the discontinuity 
over several grid cells. Numerical viscosity also is used when solving the Navier–Stokes equations for 
flows containing shock waves, because usually it is impractical to resolve the shock structure defined by 
the physical dissipative mechanisms.
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In many cases, the flow can further be approximated as steady and irrotational. In these cases, it is 
possible to define a velocity potential Φ such that the velocity vector V is given by

	 V = ∇Φ 	 (27.18)

and the fluid density is given by the isentropic relation
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where
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Φ 	 (27.20)

	
v
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and M∞ is a reference Mach number corresponding to the free stream state in which ρ = 1 and u2 + v2 = 1. 
The steady form of the Euler equations then reduces to the single equation
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Equation 27.19 can be used to eliminate the density from Equation 27.22, which then can be expanded 
to the form
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where a is the local speed of sound, which is a function only of the fluid speed V u v= +2 2 . Thus, 
Equation 27.23 is a single equation that can be solved for the velocity potential Φ.

Equation 27.23 is a second-order quasi-linear partial differential equation whose type depends on the 
sign of the discriminant 1 − M2, where M = V/a is the local Mach number. The equation is elliptic or 
hyperbolic depending upon whether the Mach number is less than, or greater than, unity, respectively. 
Thus, the nonlinear potential equation contains a mathematical description of the physics necessary to 
predict the important features of transonic flows. It is capable of changing type, and the conservation form 
of Equation 27.22 allows surfaces of discontinuity, or shock waves, to be computed. Solutions at this level 
of approximation, corresponding to stage IIa, are considerably less expensive to compute than solutions of 
the full Euler equations, since only one dependent variable need be computed and stored. The jump rela-
tion corresponding to weak solutions of the potential equation is different than the Rankine–Hugoniot 
relations, but is a good approximation to the latter when the shocks are not too strong.

Finally, if the flow can be approximated by small perturbations to some uniform reference state, 
Equation 27.23 can further be simplified to
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	 (27.24)
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where ϕ is the perturbation velocity potential defined according to

	 Φ = +x φ 	 (27.25)

if the uniform velocity in the reference state is assumed to be parallel to the x-axis and be normalized to 
have unit magnitude. Further, if the flow can be approximated as incompressible, that is, in the limit as 
M∞ → 0, Equation 27.23 reduces to
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Since Equations 27.24 and 27.26 are linear, superposition of elementary solutions can be used 
to construct solutions of arbitrary complexity. Numerical methods to determine the singularity 
strengths for aerodynamic problems are called Panel methods, and constitute stage I in the hierarchy of 
approximations.

It is important to realize that, even though the time periods for development of some of the different 
models overlap, the applications of the various models may be for problems of significantly differing 
complexity. For example, DNS calculations were performed as early as the 1970s, but only for the sim-
plest flows—homogeneous turbulence—at very low Reynolds numbers. Flows at higher Reynolds num-
bers and nonhomogeneous flows are being performed only now, while calculations for 3-D flows with 
modeled turbulence were performed as early as the mid-1980s.

27.2.2 T reatment of Geometry

For all numerical solutions to partial differential equations, including those of fluid mechanics, it is nec-
essary to discretize the boundaries of the flow domain. For the panel method of stage I, this is all that is 
required since the problem is linear, and superposition can be used to construct solutions satisfying the 
boundary conditions. For nonlinear problems, it is necessary to discretize the entire flow domain. This 
can be done using either structured or unstructured grid systems. Structured grids are those in which 
the grid points can be ordered in a regular Cartesian structure; that is, the points can be given indices 
(i, j) such that the nearest neighbors of the (i, j) point are identified by the indices (i ± 1, j ± 1). The grid 
cells for these meshes are thus quadrilateral in two dimensions and hexahedral in three dimensions. 
Unstructured grids have no regular ordering of points or cells, and a connectivity table must be main-
tained to identify which points and edges belong to which cells. Unstructured grids most often consist 
of triangles (in 2-D), tetrahedra (in 3-D), or combinations of these and quadrilateral and hexahedral 
cells, respectively. In addition, grids having purely quadrilateral cells may also be unstructured, even 
though they have a locally Cartesian structure—for example, when multilevel grids are used for adap-
tive refinement.

Implementations on structured grids are generally more efficient than those on unstructured 
grids since indirect addressing is required for the latter, and efficient implicit methods often can 
be constructed that take advantage of the regular ordering of points (or cells) in structured grids. 
A  great deal of effort has been expended to generate both structured and unstructured grid sys-
tems, much of which is closely related to the field of computational geometry (see Chapter 32 of this 
volume).

27.2.2.1  Structured Grids

A variety of techniques are used to generate structured grids for use in fluid mechanical calculations. 
These include relatively fast algebraic methods, including those based on transfinite interpolation 
and conformal mapping, as well as more costly methods based on the solution of either elliptic or 
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hyperbolic systems of partial differential equations for the grid coordinates. These techniques are dis-
cussed is a review article by Eiseman [10].

For complex geometries, it often is not possible to generate a single grid that conforms to all the 
boundaries. Even if it is possible to generate such a grid, it may have undesirable properties, such as 
excessive skewness or a poor distribution of cells, which could lead to poor stability or accuracy in the 
numerical algorithm. Thus, structured grids for complex geometries are generally constructed as com-
binations of simpler grid blocks for various parts of the domain. These grids may be allowed to overlap, 
in which case they are referred to as “Chimera” grids, or be required to share common surfaces of inter-
section, in which case they are identified as “multi-block” grids. In the latter case, grid lines may have 
varying degrees of continuity across the interblock boundaries, and these variations have implications 
for the construction and behavior of the numerical algorithm in the vicinity of these boundaries. Grid 
generation techniques based on the solution of systems of partial differential equations are described by 
Thompson et al. [52].

Numerical methods to solve the equations of fluid mechanics on structured grid systems are imple-
mented most efficiently by taking advantage of the ease with which the equations can be transformed 
to a generalized coordinate system. The expression of the system of conservation laws in the new, body-
fitted coordinate system reduces the problem to one effectively of Cartesian geometry. The transforma-
tion will be described here for the Euler equations.

Consider the transformation of Equation 27.17 to a new coordinate system (ξ, η). The local properties 
of the transformation at any point are contained in the Jacobian matrix of the transformation, which 
can be defined as
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for which the inverse is given by
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where h = xξyη − yξxη is the determinant of the Jacobian matrix. Subscripts in Equation 27.27 and 27.28 
denote partial differentiation.

It is natural to express the fluxes in conservation laws in terms of their contravariant components. 
Thus, if we define

	 { , } { , }F G f gT TJ= −1 	 (27.29)

then the transformed Euler equations can be written in the compact form
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if the transformation is independent of time (i.e., if the grid is not moving). If the grid is moving or 
deforming with time, the equations can be written in a similar form, but additional terms must be 
included that account for the fluxes induced by the motion of the mesh.

The Navier–Stokes equations can be transformed in a similar manner, although the transformation 
of the viscous contributions is somewhat more complicated and will not be included here. Since 
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the nonlinear potential equation is simply the continuity equation (the first of the equations that com-
prise the Euler equations), the transformed potential equation can be written as
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are the contravariant components of the velocity vector.

27.2.2.2  Unstructured Grids

Unstructured grids generally have greater geometric flexibility than structured grids, because of the 
relative ease of generating triangular or tetrahedral tessellations of 2- and 3-D domains. Advancing-
front methods and Delaunay triangulations are the most frequently used techniques for generating tri-
angular/tetrahedral grids. Unstructured grids also can be more efficiently adapted locally to resolve 
localized features of the solution.

27.3  Best Practices

27.3.1  Panel Methods

The earliest numerical methods used widely for making fluid dynamical computations were devel-
oped to solve linear potential problems, described as stage I calculations in the previous section. 
Mathematically, panel methods are based upon the fact that Equation 27.26 can be recast as an inte-
gral equation giving the solution at any point (x, y) in terms of the free stream speed U (here assumed 
unity) and angle of attack α and line integrals of singularities distributed along the curve C represent-
ing the body surface:
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In this equation, σ and δ represent the strengths of source and doublet singularities, respectively, dis-
tributed along the body contour, r is the distance from the point (x, y) to the boundary point, and n is the 
direction of the outward normal to the body surface. When the point (x, y) is chosen to lie on the body 
contour C, Equation 27.33 can be interpreted as giving the solution Φ at any point on the body in terms 
of the singularities distributed along the surface. This effectively reduces the dimension of the problem 
by one (i.e., the 2-D problem considered here becomes essentially 1-D, and the analogous procedure 
applied to a 3-D problem results in a 2-D equation requiring the evaluation only of integrals over the 
body surface).

Equation 27.33 is approximated numerically by discretizing the boundary C into a collection of pan-
els (line segments in this 2-D example) on which the singularity distribution is assumed to be of some 
known functional form, but of an as yet unknown magnitude. For example, for a simple non-lifting 
body, the doublet strength δ might be assumed to be zero, while the source strength σ is assumed to be 
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constant on each segment. The second integral in Equation 27.33 is then zero, while the first integral can 
be written as a sum over all the elements of integrals that can be evaluated analytically as
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where
Ci is the portion of the body surface corresponding to the ith segment
N is the number of segments, or panels, used

The source strengths σi must be determined by enforcing the boundary condition

	

∂
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0 	 (27.35)

which specifies that the component of velocity normal to the surface be zero (i.e., that there be no flux of 
fluid across the surface). This is implemented by requiring that Equation 27.35 be satisfied at a selected 
number of control points. For the example of constant-strength source panels, if one control point is 
chosen on each panel, the requirement that Equation 27.35 be satisfied at each of the control points will 
result in N equations of the form
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where
Ai, j are the elements of the influence coefficient matrix that give the normal velocity at control point 

j due to sources of unit strength on panel i
U is a unit vector in the direction of the free stream

Equation 27.36 constitutes a system of N linear equations that can be solved for the unknown source 
strengths σi. Once the source strengths have been determined, the velocity potential, or the velocity 
itself, can be computed directly at any point in the flow field using Equation 27.34. A review of the devel-
opment and application of panel methods is provided by Hess [24].

A major advantage of panel methods, relative to the more advanced methods required to solve the 
nonlinear problems of stages II – V, is that it is necessary to describe (and to discretize into panels) 
only the surface of the body. While linearity is a great advantage in this regard, it is not clear that the 
method is computationally more efficient than the more advanced nonlinear field methods. This results 
from the fact that the influence coefficient matrix in the system of equations that must be solved to give 
the source strengths for each panel is not sparse; that is, the velocities at each control point are affected 
by the sources on all the panels. In contrast, the solution at each mesh point in a finite-difference 
formulation (or each mesh cell in a finite-volume formulation) is related to the values of the solution at 
only a few neighbors, resulting in a very sparse matrix of influence coefficients that can be solved very 
efficiently using iterative methods. Thus, the primary advantage of the panel method is the geometrical 
one associated with the reduction in dimension of the problem. For nonlinear problems, the use of 
finite-difference, finite-element, or finite-volume methods requires discretization of the entire flow 
field, and the associated mesh-generation task has been a major pacing item limiting the application of 
such methods.



27-11Computational Fluid Dynamics

27.3.2  Nonlinear Methods

For nonlinear equations, superposition of elementary solutions is no longer a valid technique for con-
structing solutions, and it becomes necessary to discretize the solution throughout the entire domain, 
not just the boundary surface. In addition, since the equations are nonlinear, some sort of iteration 
must be used to compute successively good approximations to the solution. This iterative process may 
approximate the physics of an unsteady flow process or may be chosen to provide more rapid conver-
gence to the solution for steady-state problems. Solutions for both the nonlinear potential and Euler 
equations are generally determined using a finite-difference, finite-volume, or a finite-element method. 
In any of these techniques, a grid, or network of points and cells, is distributed throughout the flow 
field. In a finite-difference method, the derivatives appearing in the original differential equation are 
approximated by discrete differences in the values of the solution at neighboring points (and times, if the 
solution is unsteady), and substitution of these into the differential equation yields a system of algebraic 
equations relating the values of the solution at neighboring grid points. In a finite-volume method, the 
unknowns are taken to be representative of the values of the solution in the control volumes formed by 
the intersecting grid surfaces, and the equations are constructed by balancing fluxes across the bound-
ing surfaces of each control volume with the rate of change of the solution within the control volume. 
In a finite-element method, the solution is represented using simple interpolating functions within each 
mesh cell, or element, and equations for the nodal values are obtained by integrating a variational or 
residual formulation of the equations over the elements. The algebraic equations relating the values 
of the solution in neighboring cells can be very similar (or even identical) in appearance for all three 
methods, and the choice of method often is primarily a matter of taste. Stable and efficient finite-differ-
ence and finite-volume methods were developed earlier than finite-element methods for compressible 
flow problems, but finite-element methods capable of treating very complex compressible flows are now 
available. A review of recent progress in the development of finite-element methods for compressible 
flows and remaining issues is given by Glowinski and Pironneau [14].

Since the nonlinear potential, Euler and Navier–Stokes equations all are nonlinear, the algebraic 
equations resulting from these discretization procedures also are nonlinear, and a scheme of succes-
sive approximation usually is required to solve them. As mentioned earlier, however, these equations 
tend to be highly local in nature and efficient iterative methods have been developed to solve them in 
many cases.

27.3.2.1  Nonlinear Potential Equation Methods

The primary advantage of solving the potential equation, rather than the Euler (or Navier–Stokes) equa-
tions, derives from the fact that the flow field can be described completely in terms of a single scalar 
function, the velocity potential Φ. The formulation of numerical schemes to solve Equation 27.22 is com-
plicated by the fact that, as noted earlier, the equation changes type according to whether the local Mach 
number is subsonic or supersonic. Differencing schemes for the potential equation must, therefore, be 
type dependent—that is, they must change their form depending on whether the local Mach number is 
less than, or greater than, unity. These methods usually are based upon central, or symmetric, differenc-
ing formulas that are appropriate for the elliptic case (corresponding to subsonic flows), which are then 
modified by adding an upwind bias to maintain stability in hyperbolic regions (where the flow is locally 
supersonic). This directional bias can be introduced into the difference equations either by adding an 
artificial viscosity proportional to the third derivative of the velocity potential Φ in the streamwise 
direction or by replacing the density at each point in supersonic zones with its value at a point slightly 
upstream of the actual point. Mathematically, these two approaches can be seen to be equivalent, since 
the upwinding of the density evaluation also effectively introduces a correction proportional to the third 
derivative of the potential in the flow direction.

It is important to introduce such artificial viscosity (or compressibility) terms in such a way that 
their effect vanishes in the limit as the mesh is refined. In this way, the numerical approximation will 
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approach the differential equation in the limit of zero mesh spacing, and the method is said to be consis-
tent with the original differential equation. In addition, for flows with shock waves, it is important that 
the numerical approximation be conservative; this guarantees that the properties of discontinuous solu-
tions will be consistent with the jump relations of the original conservation laws. The shock jump rela-
tions corresponding to Equation 27.22, however, are different from the Rankine–Hugoniot conditions 
describing shocks within the framework of the Euler equations. Since entropy is everywhere conserved 
in the potential theory and since there is a finite entropy jump across a Rankine–Hugoniot shock, it is 
clear that the jump relations must be different. For weak shocks, however, the differences are small and 
the economies afforded by the potential formulation make computations based on this approximation 
attractive for many transonic problems.

Perturbation analysis can be used to demonstrate that the effect of entropy jump across the shocks is 
more important than the rotationality introduced by these weak shocks. Thus, it makes sense to develop 
techniques that account for the entropy jump, but still within the potential formulation. Such tech-
niques have been developed (see, e.g., Hafez [20]), but have been relatively little used as developments in 
techniques to solve the Euler equations have mostly overtaken these approaches.

The nonlinear difference equations resulting from discrete approximations to the potential equation 
generally are solved using iterative, or relaxation, techniques. The equations are linearized by comput-
ing approximations to all but the highest (second) derivatives from the preceding solution in an iterative 
sequence, and a correction is computed at each mesh point in such a way that the equations are identi-
cally satisfied. It is useful in developing these iterative techniques to think of the iterative process as a 
discrete approximation to a continuous time-dependent process (Garabedian [12]). Thus, the iterative 
process approximates an equation of the form
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The parameters β0, β1, and β2, which are related to the mix of old and updated values of the solution used 
in the difference equations, can then be chosen to ensure that the time-dependent process converges 
to a steady state in both subsonic and supersonic regions. The formulation of transonic potential flow 
problems and their solution is described by Caughey [7].

Even when the values of the parameters are chosen to provide rapid convergence, many hundreds 
of iterations may be necessary to achieve convergence to acceptable levels, especially when the mesh 
is very fine. This slow convergence is a characteristic of virtually all iterative schemes and is a result 
of the fact that the representation of the difference equations must be highly local if the scheme is 
to be computationally efficient. As a result of this locality, the reduction of the low-wave-number 
component of the error to acceptable levels often requires many iterations. A powerful technique for 
circumventing this difficulty with the iterative solution of numerical approximations to partial dif-
ferential equations, called the multigrid technique, has been applied with great success to problems 
in fluid mechanics.

The multigrid method relies for its success on the fact that, after a few cycles of any good iterative 
technique, the error remaining in the solution is relatively smooth and can be represented accurately on 
a coarser grid. Application of the same iterative technique on the coarser grid soon makes the error on 
this grid smooth as well, and the grid coarsening process can be repeated until the grid contains only a 
few cells in each coordinate direction. The corrections that have been computed on all coarser levels are 
then interpolated back to the finest grid, and the process is repeated. The accuracy of the converged solu-
tion on the fine grid is determined by the accuracy of the approximation on that grid, since the coarser 
levels are used only to effect a more rapid convergence of the iterative process.

A particularly efficient multigrid technique for steady transonic potential flow problems has been 
developed by Jameson [26]. It uses a generalized alternating-direction implicit (ADI) smoothing 
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algorithm in conjunction with a full-approximation scheme multigrid algorithm. In theory, for a wide 
class of problems, the work (per mesh point) required to solve the equations using a multigrid approach 
is independent of the number of mesh cells. In many practical calculations, 10 or fewer multigrid cycles 
may be required even on very fine grids.

27.3.2.2  Euler Equation Methods

As noted earlier, the Euler equations constitute a hyperbolic system of partial differential equations, 
and numerical methods for solving them rely heavily upon the rather well-developed mathematical 
theory of such systems. As for the nonlinear potential equation, discontinuous solutions corresponding 
to flows with shock waves play an important role. Shock-capturing methods are much more widely used 
than shock-fitting methods, and for these methods, it is important to use schemes that are conservative.

As mentioned earlier, it is necessary to add artificial, or numerical, dissipation to stabilize the Euler 
equations. This can be done by adding dissipative terms explicitly to an otherwise non-dissipative, 
central difference scheme or by introducing upwind approximations in the flux evaluations. Both 
approaches are highly developed. The most widely used central difference methods are those modeled 
after the approach of Jameson et al. [31]. This approach introduces an adaptive blend of second and 
fourth differences of the solution in each coordinate direction; a local switching function, usually based 
on a second difference of the pressure, is used to reduce the order of accuracy of the approximation to 
first order locally in the vicinity of shock waves and to turn off the fourth differences there. The second-
order terms are small in smooth regions where the fourth-difference terms are sufficient to stabilize 
the solution and ensure convergence to the steady state. More recently, Jameson [28] has developed 
improved symmetric limited positive (SLIP) and upstream limited positive (USLIP) versions of these 
blended schemes (see also Tatsumi et al. [51]).

Much effort has been directed toward developing numerical approximations for the Euler equations 
that capture discontinuous solutions as sharply as possible without overshoots in the vicinity of the 
discontinuity. For purposes of exposition of these methods, we consider the 1-D form of the Euler equa-
tions, which can be written as
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where
w = {ρ, ρu, e}T

f = {ρu, ρu2 + p, (e + p)u}T

Not only is the exposition clearer for the 1-D form of the equations, but the implementation of these 
schemes for multidimensional problems also generally is done by dimensional splitting in which 1-D 
operators are used to treat variations in each of the mesh directions.

For smooth solutions, Equation 27.38 is equivalent to the quasi-linear form
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where A = {∂f/∂w} is the Jacobian of the flux vector with respect to the solution vector. The eigenvalues of 
A are given by λ = u, u + a, u − a, where a p= γ ρ/  is the speed of sound. Thus, for subsonic flows, one of the 
eigenvalues will have a different sign than the other two. For example, if 0 < u < a, then u − a < 0 < u < u + a. 
The fact that various eigenvalues have different signs in subsonic flows means that simple one-sided dif-
ference methods cannot be stable. One way around this difficulty is to split the flux vector into two parts, 
the Jacobian of each of which has eigenvalues of only one sign. Such an approach has been developed by 
Steger and Warming [50]. Steger and Warming used a relatively simple splitting that has discontinuous 
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derivatives whenever an eigenvalue changes sign; an improved splitting has been developed by van Leer 
[55] that has smooth derivatives at the transition points.

Each of the characteristic speeds can be identified with the propagation of a wave. If a mesh surface is 
considered to represent a discontinuity between two constant states, these waves constitute the solution 
to a Riemann (or shock tube) problem. A scheme developed by Godunov [15] assumes the solution to 
be piecewise constant over each mesh cell and uses the fact that the solution to the Riemann problem 
can be given in terms of the solution of algebraic (but nonlinear) equations to advance the solution 
in time. Because of the assumption of piecewise constancy of the solution, Godunov’s scheme is only 
first-order accurate. van Leer [53,54] has shown how it is possible to extend these ideas to a second-
order monotonicity-preserving scheme using the so-called monotone upwind scheme for systems of 
conservation laws (MUSCL) formulation. The efficiency of schemes requiring the solution of Riemann 
problems at each cell interface for each time step can be improved by the use of approximate solutions 
to the Riemann problem (Roe [42]).

More recent ideas to control oscillation of the solution in the vicinity of shock waves include the con-
cept of total-variation diminishing (TVD) schemes, first introduced by Harten (see, e.g., Harten [21,22]) 
and essentially non-oscillatory (ENO) schemes introduced by Osher and his coworkers (see, e.g., Harten 
et al. [23] and Shu and Osher [45]).

Hyperbolic systems describe the evolution in time of physical systems undergoing unsteady pro-
cesses governed by the propagation of waves. This feature frequently is used in fluid mechanics, even 
when the flow to be studied is steady. In this case, the unsteady equations are solved for long enough 
times that the steady state is reached asymptotically—often to within round-off error. To maintain the 
hyperbolic character of the equations and to keep the numerical method consistent with the physics 
it is trying to predict, it is necessary to determine the solution at a number of intermediate time levels 
between the initial state and the final steady state. Such a sequential process is said to be a time march-
ing of the solution.

The simplest practical methods for solving hyperbolic systems are explicit in time. The size of the time 
step that can be used to solve hyperbolic systems using an explicit method is limited by a constraint 
known as the Courant–Friedrichs–Lewy (CFL) condition. Broadly interpreted, the CFL condition states 
that the time step must be smaller than the time required for the fastest signal to propagate across a 
single mesh cell. Thus, if the mesh is very fine, the allowable time step also must be very small, with the 
result that many time steps must be taken to reach an asymptotic steady state.

Multistage, or Runge–Kutta, methods have become extremely popular for use as explicit time-
stepping schemes. After discretization of the spatial operators, using finite-difference, finite-volume, or 
finite-element approximations, the Euler equations can be written in the form
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where
wi represents the solution at the ith mesh point, or in the ith mesh cell
Q and D are discrete operators representing the contributions of the Euler fluxes and numerical dis-

sipation, respectively

An m-stage time integration scheme for these equations can be written in the form
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n( ) = +1 and αm = 1. The dissipative and dispersive properties of the scheme can 

be tailored by the sequence of αi chosen; note that, for nonlinear problems, this method may be only 
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first-order accurate in time, but this is not necessarily a disadvantage if one is interested only in the 
steady-state solution. The principal advantage of this formulation, relative to versions that may have 
better time accuracy, is that only two levels of storage are required regardless of the number of stages 
used. This approach was first introduced for problems in fluid mechanics by Graves and Johnson [18] 
and has been further developed by Jameson et al. [31]. In particular, Jameson and his group have shown 
how to tailor the stage coefficients so that the method is an effective smoothing algorithm for use with 
multigrid (see, e.g., Jameson and Baker [29]).

Implicit techniques also are highly developed, especially when structured grids are used. Approximate 
factorization of the implicit operator usually is required to reduce the computational burden of solving 
a system of linear equations for each time step. Methods based on ADI techniques date back to the 
pioneering work of Briley and McDonald [6] and Beam and Warming [5]. An efficient diagonalized 
ADI method has been developed within the context of multigrid by Caughey [8], and a lower–upper 
symmetric Gauss–Seidel method has been developed by Yoon and Kwak [58]. The multigrid implemen-
tations of these methods are based on the work of Jameson [27]. Arguably the fastest convergence for 
transonic airfoil problems has been achieved by a multigrid implementation of the symmetric Gauss–
Seidel algorithm by Jameson and Caughey [30].

An excellent summary of the development of higher-order methods for unstructured grid computa-
tions is provided by Vincent and Jameson [56].

27.3.3  Navier–Stokes Equation Methods

As described earlier, the relative importance of viscous effects is characterized by the value of the 
Reynolds number. If the Reynolds number is not too large, the flow remains smooth, and adjacent 
layers (or laminae) of fluid slide smoothly past one another. When this is the case, the solution of the 
Navier–Stokes equations is not too much more difficult than solution of the Euler equations. Greater 
resolution is required to resolve the large gradients in the boundary layers near solid boundaries, espe-
cially as the Reynolds becomes larger, so more mesh cells are required to achieve acceptable accuracy. 
In most of the flow field, however, the flow behaves as if it were nearly inviscid, so methods developed 
for the Euler equations are appropriate and effective. The equations must, of course, be modified to 
include the additional terms resulting from the viscous stresses, and care must be taken to ensure that 
any artificial dissipative effects are small relative to the physical viscous dissipation in regions where the 
latter is important. The solution of the Navier–Stokes equations for laminar flows, then, is somewhat 
more costly in terms of computer resources, but not significantly more difficult from an algorithmic 
point of view, than solution of the Euler equations. Unfortunately, most flows of engineering interest 
occur at large enough Reynolds numbers that the flow in the boundary layers near solid boundaries 
becomes turbulent.

27.3.3.1 T urbulence Models

Solution of the RANS equations requires modeling of the Reynolds stress terms. The simplest models, 
based on the original mixing-length hypothesis of Prandtl, relate the Reynolds stresses to the local prop-
erties of the mean flow. The Baldwin–Lomax model [3] is the most widely used model of this type and 
gives good correlation with experimental measurements for wall-bounded shear layers so long as there 
are no significant regions of separated flow. Attempts have also been made to include nonequilibrium 
effects in algebraic turbulence models, see, for example [1].

The most complete commonly used turbulence models include two additional partial differential 
equations that determine characteristic length and time scales for the turbulence. The most widely used 
of these techniques is called the k-ε model, since it is based on equations for the turbulence kinetic 
energy (usually given the symbol k) and the turbulence dissipation rate (usually given the symbol ε). 
This method has grown out of work by Launder and Spaulding [34]. Another variant, based on a formu-
lation by Kolmogorov, calculates a turbulence frequency ω instead of the dissipation rate (and hence is 
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called a k-ω model). More complete models that compute all elements of the Reynolds stress tensor have 
also been developed. The common base for most of these models is the work of Launder, Reese and Rodi 
[33], with more recent contributions by Lumley [36], Speziale [49], and Reynolds [40]. These models, as 
well as the k-ε and k-ω models, and their implementation within the context of CFD are described in 
the book by Wilcox [57].

More limited models, based on a single equation for a turbulence scale, also have been developed. 
These include the models of Baldwin and Barth [4] and the widely used model of Spalart and Allmaras 
[48]. These models are applicable principally to boundary layer flows of aerodynamic interest.

27.3.3.2  Large-Eddy Simulations

The difficulty of developing generally applicable phenomenological turbulence models on the one hand 
and the enormous computational resources required to resolve all scales in turbulent flows at large 
Reynolds number on the other have led to the development of LES techniques. In this approach, the 
largest length and time scales of the turbulent motions are resolved in the simulation, but the smaller 
(sub-grid) scales are modeled. This is an attractive approach because it is the largest scales that contain 
the preponderance of turbulent kinetic energy and that are responsible for most of the mixing. At the 
same time, the smaller scales are believed to be more nearly isotropic and independent of the larger 
scales and thus are less likely to behave in problem-specific ways—that is, it should be easier to develop 
universal models for these smaller scales.

A filtering technique is applied to the Navier–Stokes equations that results in equations having a form 
similar to the original equations, but with additional terms representing a sub-grid-scale tensor that 
describes the effect of the modeled terms on the larger scales. The solution of these equations is not well 
posed if there is no initial knowledge of the sub-grid scales; the correct statistics are predicted for the 
flow, but it is impossible to reproduce a specific realization of the flow without this detailed initial condi-
tion. Fortunately, for most engineering problems, it is only the statistics that are of interest.

LES techniques date back to the pioneering work of Smagorinsky [46], who developed an eddy-
viscosity sub-grid model for use in meteorological problems. The model turned out to be too dissipative 
for large-scale meteorological problems in which large-scale, predominantly 2-D, motions are affected 
by 3-D turbulence. Smagorinsky’s model and subsequent developments of it find wide application in 
engineering problems, however. Details of the LES approach are discussed by Rogallo and Moin [43], 
and more recent developments and applications are described by Lesieur and Métais [35], Meneveau and 
Katz [37], Sagaut [44], and Garnier et al. [13].

There is a school of thought that believes that the details of the sub-grid model are not important, so 
long as the kinetic energy of the turbulence is dissipated at the correct rate at the sub-grid scales. Such 
implicit, or ILES, methods rely simply upon the (artificial) dissipation of the numerical scheme to pro-
vide this dissipation. A recent summary of these techniques is provided by Grinstein et al. [19].

LES continues to pose problems for wall-bounded flows, for which attached boundary layers require 
near-DNS resolution in the absence of adequate wall models. An effective approach for many such cases 
is detached-eddy simulation (DES), which combines the features of RANS turbulence models within 
the attached boundary layers with an LES approach within regions of massively separated flow. A recent 
review of this approach is given by Spalart [47].

27.3.3.3  Direct Numerical Simulations

DNS codes generally use spectral or pseudo-spectral approximations for the spatial discretization of the 
Navier–Stokes equations (see, e.g., Gottleib and Orszag [17] or Hussaini and Zang [25]). The difference 
between spectral and pseudo-spectral methods is in the way that products are computed; the advantage 
of spectral methods, which are more expensive computationally, is that aliasing errors are removed 
exactly (Orszag [39]).

A description of the issues involved and results are given by Rogallo and Moin [43]. DNS results are 
particularly valuable for the insight that they provide into the fundamental nature of turbulent flows. 
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The computational resources required for DNS calculations grow so rapidly with increasing Reynolds 
number that they are unlikely to be directly useful for engineering predictions, but they will remain an 
invaluable tool providing insight needed to construct better turbulence models for use in LES and with 
the Reynolds-averaged equations.

27.3.3.4  Verification, Validation, and Uncertainty Quantification

With the ever-widening use of CFD for increasingly complex physical problems, increasing efforts are 
focused on determining the credibility of predictions based on CFD analyses; these efforts are similar to 
and, in fact, build upon efforts in related fields, especially operations research.

Because of the inherent difficulty of developing numerical methods to solve highly nonlinear systems 
of partial differential equations, standards have not yet been developed to certify the accuracy of flow 
simulations, although some progress has been made in developing a common vocabulary and guide-
lines for the process; see, for example, the guidelines document developed by the American Institute of 
Aeronautics and Astronautics (AIAA) [2].

It is generally agreed that verification of a code or solution generated by a code refers to the pro-
cess of determining that the instantiation of a conceptual model as a computer program accurately 
represents the conceptual model—that is, that the algorithm used is a consistent representation of 
the conceptual model and that the computer program contains no coding errors. Thus, verification 
can be carried out without reference to the physical world or to data from experiments; it is an issue 
purely of the accuracy of the numerical method and its implementation within a particular computer 
program. Computer codes can be verified for a given range of parameters (e.g., Reynolds number and 
Mach number):

•	 By comparing computed solutions with exact solutions of the governing equations. This is pos-
sible only in those very limited cases for which exact solutions of the governing equations are 
known.

•	 By ascertaining that the convergence rates of solutions over the specified range of parameter val-
ues are consistent with those predicted by theory for the numerical methods used. Note that this 
technique verifies only that the solutions to some system of equations converge at the correct 
rate, but will not detect coding errors that result in an error in the system of equations actually 
encoded.

•	 Using the method of manufactured solutions, in which source terms are determined that allow a 
specified function to be a solution to the governing equations. For complex systems of equations, 
these source terms often are computed using numerical algebra packages to “write” the code rep-
resenting the source terms, as they can be too complex to derive and code by hand.

The term validation refers to the adequacy of the conceptual model to represent the physical phenom-
ena of interest. As such, it requires comparison of the results of a simulation with experimental mea-
surements. The true complexity of validation can be understood when one realizes that the solution(s) 
one would usually like to verify are those for which no comparable experimental measurements exist; 
the role of the simulation is, in fact, to replace an (usually expensive and/or time-consuming) experi-
ment with the results of the simulation. Thus, what one would really like to do is to quantify the uncer-
tainty in the result of a simulation, where the uncertainty arises from both numerical inaccuracies in the 
instantiation of the model (e.g., errors associated with truncation or lack of iterative convergence) and 
inadequacies in the conceptual model. Some information about the uncertainty of simulation results 
can be provided by sensitivity studies, in which parameters upon which the simulation depends are 
varied in a systematic way. There are also attempts to develop models for the inadequacy of the models 
themselves within the context of Bayesian inference.

Recent books focusing on these issues in the broader context of scientific simulation include those by 
Roache [41] and Oberkampf and Roy [38].
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27.4 R esearch Issues and Summary

The field of CFD continues to be a field of intense research activity. The development of accurate algo-
rithms based on unstructured grids for problems involving complex geometries and the increasing appli-
cation of CFD techniques to unsteady problems, including aeroelasticity and acoustics, are examples of 
areas of great current interest, as are extensions to multiphase and reacting flows. Algorithmically, the 
incorporation of adaptive grids that automatically increase resolution in regions where it is required to 
maintain accuracy and the development of inherently multidimensional high-resolution schemes con-
tinue to be areas of fertile development. Finally, the continued expansion of computational capability 
allows the application of DNS and LES methods to problems of higher Reynolds number and increas-
ingly realistic flow geometries.

Key Terms

Artificial viscosity: Terms added to a numerical approximation that provide artificial—that is, non-
physical—dissipative mechanisms to stabilize a solution or to allow shock waves to be cap-
tured automatically by the numerical scheme.

CFL condition: The CFL condition is a stability criterion that limits the time step of an explicit time-
marching scheme for hyperbolic systems of differential equations. In the simplest 1-D case, if 
∆x is the physical mesh spacing and ρ(A) is the spectral radius of the Jacobian matrix A, cor-
responding to the fastest wave speed for the problem, then the time step for explicit schemes 
must satisfy the constraint ∆t ≤ K ∆x/ρ(A), where K is a constant. For the simplest explicit 
schemes, K = 1, which implies that the time step must be less than that required for the fastest 
wave to cross the cell.

Conservative: A numerical approximation is said to be conservative if it is based on the conservation 
(or divergence) form of the differential equations, and the net flux across a cell interface is 
the same when computed from either direction; in this way the properties of discontinuous 
solutions are guaranteed to be consistent with the jump relations for the original integral 
form of the conservation laws.

Direct numerical simulation (DNS): A solution of the complete Navier–Stokes equations in which all 
length and time scales, down to those describing the smallest eddies containing significant 
turbulent kinetic energy, are fully resolved.

Euler equations: The equations describing the inviscid flow of a compressible fluid. These equations 
comprise a hyperbolic system of differential equations; the Euler equations are non-dissipa-
tive, and weak solutions containing discontinuities (which can be viewed as approximations to 
shock waves) must be allowed for many practical problems.

Explicit method: A method in which the solution at each point for the new time level is given explicitly 
in terms of values of the solution at the previous time level, to be contrasted with an implicit 
method in which the solution at each point at the new time level also depends on the solution at 
one or more neighboring points at the new time level, so that an algebraic system of equations 
must be solved at each time step.

Finite-difference method: A numerical method in which the solution is computed at a finite number of 
points in the domain; the solution is determined from equations that relate the solution at each 
point to its values at selected neighboring points.

Finite-element method: A numerical method for solving partial differential equations in which the solu-
tion is approximated by simple functions within each of a number of small elements into which 
the domain has been divided.

Finite-volume method: A numerical method for solving partial differential equations, especially those 
arising from systems of conservation laws, in which the rate of change of quantities within 
each mesh volume is related to fluxes across the boundaries of the volume.
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Inviscid: A model for fluid flow in which the stresses due to internal friction, or viscosity, are neglected; 
it is also called an ideal fluid. The equations describing the motion of an inviscid, compressible 
fluid are called the Euler equations.

Large-eddy simulation (LES): A numerical solution of the Navier–Stokes equations in which the larg-
est, energy-carrying eddies are completely resolved, but the effects of the smaller eddies, which 
are more nearly isotropic, are accounted for by a sub-grid model.

Mach number: The ratio M = V/a of the fluid velocity V to the speed of sound a. This nondimensional 
parameter characterizes the importance of compressibility to the dynamics of the fluid motion.

Mesh generation: The field directed at the generation of mesh systems suitable for the accurate repre-
sentation of solutions to partial differential equations.

Method of manufactured solutions: A technique used in the verification of simulation programs in 
which source terms are determined that, when added to the right-hand side of the system of 
equations being solved, allow a specified function to be an exact solution.

Panel method: A numerical method to solve Laplace’s equation for the velocity potential of a fluid flow. 
The boundary of the flow domain is discretized into a set of non-overlapping facets, or panels, 
on each of which the strength of some elementary solution is assumed constant. Equations for 
the normal velocity at control points on each panel can be solved for the unknown singularity 
strengths to give the solution. In some disciplines, this approach is called the boundary inte-
gral element method (BIEM).

Reynolds-averaged Navier–Stokes (RANS) equations: Equations for the mean quantities in a turbulent 
flow obtained by decomposing the fields into mean and fluctuating components and averaging 
the Navier–Stokes equations. Solution of these equations for the mean properties of the flow 
requires knowledge of various correlations, the Reynolds stresses, of the fluctuating components.

Shock capturing: Numerical method in which shock waves are treated by smearing them out with arti-
ficial dissipative terms in a manner such that no special treatment is required in the vicinity 
of the shocks; to be contrasted with shock-fitting methods in which shock waves are treated as 
discontinuities with the jump conditions explicitly enforced across them.

Shock wave: Region in a compressible flow across which the flow properties change almost discontinu-
ously; unless the density of the fluid is extremely small, the shock region is so thin relative to 
other significant dimensions in most practical problems that it is a good approximation to 
represent the shock as a surface of discontinuity.

Turbulent flow: Flow in which unsteady fluctuations play a major role in determining the effective 
mean stresses in the field; regions in which turbulent fluctuations are important inevitably 
appear in fluid flow at large Reynolds numbers.

Upwind method: A numerical method for CFD in which upwinding of the difference stencil is used to 
introduce dissipation into the approximation, thus stabilizing the scheme. This is a popular 
mechanism for the Euler equations, which have no natural dissipation, but is also used for 
Navier–Stokes algorithms, especially those designed to be used at high Reynolds number.

Validation: The process of determining the degree to which a model is an accurate representation of the 
real world from the perspective of the intended uses of the model.

Verification: The process of determining that an implementation of a model accurately represents the 
developer’s conceptual description of the model and/or that a particular solution is a suffi-
ciently accurate solution to the model equations.

Visualization: The use of computer graphics to display features of solutions to CFD problems.

Further Information

Several organizations sponsor regular conferences devoted completely, or in large part, to CFD. The 
AIAA sponsors the AIAA Computational Fluid Dynamics Conferences in odd-numbered years, usu-
ally in July; the proceedings of this conference are published by AIAA. In addition, there typically are 
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many sessions on CFD and its applications at the AIAA Aerospace Sciences Meeting, held every January, 
and the AIAA Fluid and Plasma Dynamics Conference, which is held every summer, in conjunction with 
the AIAA CFD Conference in those years when the latter is held. The Fluids Engineering Conference 
of the American Society of Mechanical Engineers, held every summer, also contains sessions devoted 
to CFD. In even-numbered years, the International Conference on Computational Fluid Dynamics is 
held. This biennial event began in 2000 with the merger of the International Conference on Numerical 
Methods in Fluid Dynamics and the International Symposium on Computational Fluid Dynamics. The 
2012 conference was held in Hawaii.

The Journal of Computational Physics contains many articles on CFD, especially covering algorith-
mic issues. The AIAA Journal also has many articles on CFD, including aerospace applications. The 
International Journal for Numerical Methods in Fluids contains articles emphasizing the finite-element 
method applied to problems in fluid mechanics. The journals Computers and Fluids and Theoretical 
and Computational Fluid Dynamics are devoted exclusively to CFD, the latter journal emphasizing the 
use of CFD to elucidate basic fluid mechanical phenomena. The first issue of the CFD Review, which 
attempts to review important developments in CFD, was published in 1995. The Annual Review of Fluid 
Mechanics also contains a number of review articles on topics in CFD.

The European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) has held 
nearly biennial meetings since 1994 on DNS and LES; proceedings of the most recent workshop are 
contained in the volume edited by Kuerten et al. [32].

The following textbooks provide excellent coverage of many aspects of CFD:

•	 D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computational Fluid Mechanics and Heat 
Transfer, Hemisphere, Washington, DC, 1984.

•	 C. Hirsch, Numerical Computation of Internal and External Flows, Vol. I: Fundamentals of 
Numerical Discretization, 1988; Vol. II: Computational Methods for Inviscid and Viscous Flows, 
1990; John Wiley & Sons, Chichester, U.K.

•	 D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries, La Cañada, CA, 1993.

Up-to-date summaries on algorithms and applications for high Reynolds number aerodynamics are 
found in the following references:

•	 Frontiers of Computational Fluid Dynamics – 1994, Caughey, D. A. and Hafez, M. M., Eds., John 
Wiley & Sons, Chichester, U.K.

•	 Frontiers of Computational Fluid Dynamics – 1998, Caughey, D. A. and Hafez, M. M., Eds., World 
Scientific Publishing Company, Singapore.

•	 Frontiers of Computational Fluid Dynamics – 2002, Caughey, D. A. and Hafez, M. M., Eds., World 
Scientific Publishing Company, Singapore.

•	 Frontiers of Computational Fluid Dynamics – 2006, Caughey, D. A. and Hafez, M. M., Eds., World 
Scientific Publishing Company, Singapore.
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28.1  Introduction

Modern astronomy and astrophysics is a computationally driven discipline. Even during the 1980s, 
it was said that an astronomer would choose a computer over a telescope if given the choice of only 
one tool. However, just as it is impossible to separate “astronomy” from astrophysics, almost all 
astrophysicists would no longer be able to separate the computational components of astrophysics 
from the processes of data collection, data analysis, and theory. The links between astronomy and 
computational astrophysics are so close that a discussion of computational astrophysics is essentially 
a summary of the role of computation in all of astronomy. We have chosen to concentrate on a few 
specific areas of interest in computational astrophysics rather than attempt the monumental task 
of summarizing the entire discipline. We further limit the context of this chapter by discussing 
astronomy rather than related disciplines such as planetary science and the engineering-oriented 
aspects of space science.
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28.2 A stronomical Databases

Physics and astronomy have been leaders among the sciences in the widespread use of and access to 
online access and data retrieval. This has most likely occurred because the relatively small number of 
astronomers is broadly distributed so that few astronomers typically reside in any one location; it also 
perhaps results because astronomy is less protective of data rights than other disciplines, which tend to 
be more driven by commercial spin-offs. Astronomers regularly enjoy online access to journal articles, 
astronomical catalogs/databases, and software.

28.2.1  Electronic Information Dissemination

Astronomical journals have been available electronically since 1995 [101]; now all major journals are 
available electronically. In recent years, several new open access journals have also appeared as alterna-
tives to the highly visible, well-known, yet sometimes costly established journals; astrophysics has not 
fully moved in the direction of open access but has the possibility of doing so [86]. Meanwhile, astro-
physicists tend to make heavy use of electronic preprint servers (e.g., [54]), and these have increased 
accessibility and citation rates (e.g., [41,65,91]).

The Astrophysical Data Service (ADS) [80] is the electronic index to all major astrophysical publica-
tions; it is accessible from a variety of mirror sites worldwide. The ADS is a data retrieval tool allowing 
users to index journal articles, other publications, and preprints by title, keyword, and author and even 
by astronomical object. The ADS is also a citation index that can be used to analyze the effectiveness 
of astronomical dissemination (e.g., [65]). The ADS is capable of accessing the complete text of articles 
and in many cases original data via electronic files. Although the integrated data management from 
all astrophysics missions was one of the ADS original purposes, the large amount of astronomical data 
available, coupled with preprocessing and data analysis tools often needed to analyze these data, has led 
to the parallel development of astronomical data depositories that will be described later.

Electronic dissemination plays a critical role in the collection of astronomical data. One of the newest 
frontiers in astronomy has been in the time domain: many variable sources (such as high-energy tran-
sients and peculiar galaxies) often exhibit changes on extremely short timescales. Follow-up observa-
tions require the community to rapidly disseminate source locations, brightnesses, and other pertinent 
information electronically (notification sometimes must go out to other observatories on timescales as 
short as seconds). There are a variety of electronic circulars available to the observational community: 
these include the GRB Coordinates Network (GCN; [12]) and circulars distributed by the International 
Astronomical Union (http://www.iau.org).

28.2.2  Data Collection

Astronomy is generally an observational rather than an experimental science (although there are labo-
ratory experiments that emulate specific astronomical conditions). Modern astronomical observations 
are made using computer-controlled telescopes, balloon instruments, and/or satellites. Many of these 
are controlled remotely, and some are robotic.

All telescopes need electronic guidance because they are placed on moving platforms; even the Earth 
is a moving platform when studying the heavens. From the perspective of the terrestrial observer, the sky 
appears to pivot overhead about the Earth’s equatorial axis; an electronic drive is needed to rotate the 
telescope with the sky in order to keep the telescope trained on an object. However, the great weight of 
large telescopes is easier to mount altazimuthally (perpendicular to the horizon) than equatorially. A pro-
cessor is needed to make real-time transformations from equatorial to altazimuth coordinates so that the 
telescope can track objects; it is also needed to accurately and quickly point the telescope. Precession of 
the equinoxes must also be taken into account; the direction of the Earth’s rotational axis slowly changes 
position relative to the sky. Computers have thus been integrated into modern telescope control systems.
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Additional problems are present for telescopes flown on balloons, aircraft, and satellites. The tele-
scopes need to either be pointed remotely or at least have the directions they were pointed while observ-
ing accessible after the fact. Flight software (which has now evolved because of increased modern 
processor speeds to the point where it can be compiled and uploaded) was originally written in machine 
code to run in real time. Stability in telescope pointing is required because astronomical sources are 
distant; long observing times are needed to integrate the small amount of light received from sources 
other than the sun, the moon, and the planets.

As an example, we mention computer guidance on the Hubble Space Telescope (HST). HST has differ-
ent sensor types that provide feedback in order to maintain a high degree of telescope pointing accuracy; 
the Fine Guidance Sensors have been key since their installation in 1997. The three Fine Guidance Sensors 
provide an error signal so that the telescope has the pointing stability needed to produce high-resolution 
images. The first sensor monitors telescope pitch and yaw, the second monitors roll, and the third serves 
both as a scientific instrument and as a backup. Each sensor contains lenses, mirrors, prisms, servos, beam 
splitters, and photomultiplier tubes. The software coordinates the pointing of the sensors onto entries in 
an extremely large star catalog. The guidance sensors lock onto a star and then deviations in its motion to 
a 0.0028 arc second accuracy. This provides HST with the ability to point at the target to within 0.007 arc 
seconds of deviation over extended periods of time. This level of stability and precision is comparable to 
being able to hold a laser beam constant on a penny 350 miles away.

Robotic telescopes are becoming more common in astronomy [21]. Observations from robotic telescopes 
can be scheduled in advance (such as observations of variable stars and active galaxies), thus reducing 
manpower costs because users do not have to travel to an observatory or even be awake when observa-
tions are being made. Robotic telescopes also allow real-time follow-up observations to be made, includ-
ing observations of supernovae, gamma-ray bursts (GRBs), minor planets, and extrasolar planet transits. 
They are also being used as educational tools to bring astronomy into the classroom [39]. Scheduling and 
control software are key to the development of a successful robotic telescope design (e.g., [78]).

Many telescopes are designed to observe in electromagnetic spectral regimes other than the visible. 
An accurate computer guidance system is needed to ensure that the telescope is correctly pointing even 
when a source cannot be identified optically and that the detectors are integrated with the other elec-
tronic telescope systems. Many bright sources at nonvisible wavelengths are extremely faint in the vis-
ible spectral regime. Furthermore, telescopes must be programmed to avoid pointing at bright objects 
that can burn out photosensitive equipment and sometimes must avoid collecting data when conditions 
arise that are dangerous to operation. For example, orbital satellites need to avoid operating when over 
the South Atlantic Ocean—in a region known as the South Atlantic Anomaly, where the Earth’s mag-
netic field is distorted—because high-energy ions and electrons can interact with the satellite’s elec-
tronic equipment. This can cause faulty instrument readings and/or introduce additional noise.

There are other examples where computation is necessary to the data collection process. In particular, 
we mention the developing field of adaptive optics. This process requires the fast, real-time inversion of 
large matrices [14]. Speckle imaging techniques (e.g., [119]) also remove atmospheric distortion by simul-
taneously taking short-exposure images from multiple cameras.

Detectors and electronics often need to be integrated by a single computer system. Many interesting 
specific data collection problems exist that require modern computer-controlled instrumentation. For 
example, radio telescopes with large dishes cannot move, and sources pass through the telescope’s field 
of view as the Earth rotates. Image reconstruction is necessary from the data stream, since all sources in 
the dish’s field of view are visible at any given time. Another interesting data collection problem occurs 
in infrared astronomy. The sky is itself an infrared emitter, and strong source signal to noise can only 
be obtained by constantly subtracting sky flux from that of the observation. For this reason, infrared 
telescopes are equipped with an oscillating secondary mirror that wobbles back and forth, and flux 
measurements alternate between object and sky. A third example concerns the difficulty in observing 
x-ray and gamma-ray sources. X-ray and gamma-ray sources emit few photons, and these cannot be eas-
ily focused due to their short wavelengths. Computational techniques such as Monte Carlo analysis are 
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needed to deconvolve photon energy, flux, and source direction from the instrumental response. Often 
this analysis needs to be done in real time, requiring a fast processor. The telescope guidance system 
must also be coordinated with onboard visual observations, since the visual sky still provides the basis 
for telescope pointing and satellite navigation.

28.2.3 A ccessing Astronomical Databases

Database management techniques have allowed astronomers to address the increasing problem of storing 
and accurately cross-referencing astronomical observations. Historically, bright stars were given catalog 
labels based on their intensities and on the constellation in which they were found. Subsequent catalogs 
were sensitive to an increased number of fainter objects and thus became larger while simultaneously 
assigning additional catalog numbers or identifiers to the same objects. The advent of photographic and 
photoelectric measurement techniques and the development of larger telescopes dramatically increased 
catalog sizes. Additional labels were given to stars in specialty catalogs (e.g., those containing bright 
stars, variable stars, and binary stars). Solar system objects such as asteroids and comets are not station-
ary and have been placed in catalogs of their own.

28.2.4  Catalogs and Online Databases

In 1781, Charles Messier developed a catalog of fuzzy objects that were often confused with comets. 
Subsequent observations led to identification of these extended objects as star clusters, galaxies, and 
gaseous nebulae. Many of these extended astronomical sources (particularly regions of the interstel-
lar medium) do not have easily identified boundaries (and the observed boundaries are often func-
tions of the passband used); this inherent fuzziness presents a problem in finding unique identifiers as 
well as a database management problem. Furthermore, sources are often extended in the radial direc-
tion (sources are 3-D), which presents additional problems since distances are among the most difficult 
astrophysical quantities to measure.

As astronomy entered the realm of multi wavelength observations in the 1940s, observers realized the 
difficulty in directly associating objects observed in different spectral regimes. An x-ray emitter might 
be undetectable or appear associated with an otherwise unexciting stellar source when observed in 
the optical. Angular resolution is a function of wavelength, so it is not always easy to directly associate 
objects observed in different passbands.

Temporal variability further complicates source identification. Some objects detected during one epoch 
are absent in observations made during other epochs. Signal-to-noise ratios (SNRs) of detectors used in 
each epoch contribute to the source identification problem. Additionally, gamma-ray and x-ray sources 
tend to be more intrinsically variable due to the violent, nonthermal nature of their emission. Examples of 
sources requiring access via their temporal characteristics include supernovae, GRBs, high-energy tran-
sient sources, and some variable stars and extragalactic objects.

There are tremendous numbers of catalogs available to astronomers, and many of these are found 
online. Perhaps the largest single repository of online catalogs and metadata links is VizieR (http://
vizier.u-strasbg.fr/viz-bin/VizieR) [99]. Online catalogs also exist at many other sites such as High-
Energy Astrophysics Science Archive Research Center (HEASARC) (at http://heasarc.gsfc.nasa.gov), 
HST (at http://www.stsci.edu/resources/), and NASA/IPAC Extragalactic Database (NED) (at http://
nedwww.ipac.caltech.edu).

Due in part to the strong public financing of astronomy in the United States and Europe, signifi-
cant amounts of astronomical data are publicly available. As a result, large astronomical databases 
exist for specific ground-based telescopes and orbital satellites. Some of these databases are large 
enough to present information retrieval problems. Examples of these databases are Two Micron 
All  Sky Survey (2MASS) [77], Digitized Palomar Observatory Sky Survey (DPOSS) [42], Sloan 
Digital Sky Survey (SDSS) [135], and the National Radio Astronomy Observatory (NRAO) VLA Sky 
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Survey (NVSS) [36]. Databases span the range of astronomical objects from stars to galaxies, from 
active galactic nuclei to the interstellar medium (ISM), and from GRBs to the cosmic microwave 
background (CMB). Databases are often specific to observations made in predefined spectral regimes 
rather than specific to particular types of sources; this reflects the characteristics of the instrument 
making the observations.

28.2.5  Virtual Observatories

Perhaps one of the greatest additions to astronomical databases in the recent years has been the intro-
duction and development of virtual observatories (VOs). VOs are designed to improve accessibility, 
retrieval, and data analysis from international astronomical catalogs and archives. Currently, twenty 
international VOs are members of the International Alliance (http://www.ivoa.net): this includes 
VOs from Europe, North America, South America, Asia, and Australia. Although these cover a wide 
range of astronomical data, other VOs are more specific (such as the Virtual Solar Observatory [40], 
the Virtual Wave Observatory, [51]) and the Information and Distributed Information Service, which 
aims to become the European Virtual Observatory devoted to planetary sciences [32]).

The US Virtual Astronomical Observatory (VAO) was proposed in 2001 and began operations around 
2005 [62]. It was established under a cooperative agreement in 2010 with support from the NSF and 
NASA. The VAO at last count contained over 9000 data collections, tables, and/or databases through 
interfaces supported at 80 different organizations [44].

28.2.6  Data File Formats

The astronomical community has evolved a standard data format for the transfer of data. The Flexible 
Image Transport System (FITS) has broad general acceptance within the astronomical community and 
can be used for transferring images, spectroscopic information, time series, etc. [63]. It consists of an 
ASCII text header with information describing the data structure that follows. Although originally 
defined for 9-track half-inch magnetic tape, FITS format has evolved to be generic to different storage 
media. The general FITS structure has undergone incremental improvements, with acceptance deter-
mined by vote of the International Astronomical Union.

Despite the general acceptance of FITS file format, other methods are also used for astronomical data 
transfer. This is not surprising given the large range of data types and uses. Some data types have been 
difficult to characterize in FITS formats (such as solar magnetospheric data). Satellite and balloon data 
formats are often specific to each instrument and/or satellite.

Due to the large need for storing astronomical images, a wide range of image compression techniques 
have been applied to astronomy. These include fractal, wavelets, pyramidal median, and JPEG (e.g., [84]).

28.3  Data Analysis

Mathematical and statistical analyses, and their applications to large electronic astronomical databases 
being archived annually, have been among the driving forces behind the use of computation in astro-
physics. This has led in the past 10 years to the formal recognition of new astronomy subdisciplines: 
astrostatistics and astroinformatics [23].

Data analysis and theoretical software can be accessed at a variety of sites worldwide. A few of the most 
well-known sites are the Astrophysics Source Code Library (http://ascl.net/), the UK Starlink site (http://
star-www.rl.ac.uk), and the Astronomical Software and Documentation Service at STScI (http://asds.stsci.
edu). Data analysis tools written in RSI’s proprietary interactive data language (IDL) programming language 
are available at the IDL Astronomy User’s Library (http://idlastro.gsfc.nasa.gov/homepage.html). IDL has 
become a computing language of choice by many astronomers because of its design as an image-processing 
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language, because it has been written with mathematical and statistical uses in mind, because it can handle 
multidimensional arrays easily, and because it has many built-in data visualization tools.

28.3.1  Data Analysis Systems

In the fall of 1981, astronomers at Kitt Peak National Observatory began developing the Image Reduction 
and Analysis Facility (IRAF), to serve as a general-purpose, flexible, extendable data reduction package. 
IRAF replaced a myriad of different data analysis systems that had existed within astronomy, where 
separate data analysis packages were often supported at an institution (or sometimes individual groups 
within an institution), such that compatibility between these packages was limited or nonexistent. IRAF 
has grown beyond its original use primarily by ground-based optical astronomers to encompass space-
based experiments as well at wavelengths ranging from x-ray to infrared.

IRAF is currently a mature system, with new releases occurring roughly annually, and is operated 
by about 5000 users at 1500 distinct sites. It is supported under a number of different computer archi-
tectures running Unix or Unix-like (e.g., Linux) operating systems. Oversight of IRAF development is 
formalized, with a Technical Working Group and various User’s Committees overseeing evolution of 
the software. Numerous large astronomical projects have adopted IRAF as their data analysis suite of 
choice, typically by providing extensions to the basic system. These projects include the x-ray “Great 
Observatory” Chandra, the HST, PROS (ROSAT X-Ray Data Analysis System), and FTOOLS (a FITS 
utility package from HEASARC).

The IRAF core system provides data I/O tools, interactive graphics and image display tools, and a 
variety of image manipulation and statistical tools. Commonly available “packages” that are part of the 
standard installation include tools for basic CCD data reduction and photometry and support 1-D, 2-D, 
echelle, and fiber spectroscopy. Most tasks can be operated in either interactive or batch mode.

IRAF supports the FITS file format, as well as its own internal data type. In addition, extensions exist 
to handle other data types. Currently, those include STF format (used for HST data), QPOE format (used 
for event list data such as from the x-ray and EUV satellites), and PLIO for pixel lists (used to flag indi-
vidual pixels in a region of interest). IRAF uses text files as database or configuration files and provides 
a number of conversion tools to produce images from text-based data. Binary tables can be manipulated 
directly using the TABLES package.

Other general-purpose data reduction packages coexist with IRAF. These include the Astronomical 
Image Processing System (AIPS) and its successor, AIPS++, developed at the US NRAO, and still the 
image analysis suite of choice for radio astronomy. Image processing has been a very important subdis-
cipline within computational astrophysics, and we mention a number of image reconstruction methods 
with special applications to astronomy: the maximum entropy method (e.g., [83]), the Pixon method 
[106], and massive inference [114]. XIMAGE and its relatives, XSPEC and XRONOS, serve a similar 
function for the x-ray astronomy community. A significant number of optical astronomers use Figaro, 
developed at the Anglo-Australian telescope and particularly popular throughout Australia and the 
United Kingdom. Recently, Figaro has been adapted to run within the IRAF system, allowing users to 
have the best of both worlds. While there is no formal software system operating under IDL, the profu-
sion of programs available in that proprietary language to do astronomy makes it worthy of mention as 
well, while a small but growing subset of astronomers makes use of Matlab for similar purposes.

One of the most significant drivers for the development of mission-independent data analysis soft-
ware within astronomy has been NASA’s Applied Information Systems Research Program (AISRP). 
This program has encouraged the development of software to serve community-wide needs and has also 
fought the recurrent tendency for each project to develop its own software system, but instead to write 
software “packages” within the IRAF or IDL architecture. Of course, a general data analysis system is 
not the best solution for all specialized needs, particularly for space-based astronomy. In these cases, 
many missions have developed their own packages, and not all of these exist within an IRAF/AIPS/
XIMAGE/IDL universe.
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28.3.2  Data Mining

The topic of data mining in astronomy has become increasingly important in recent years, as databases 
have become large and more complex [10,75]. These large databases have arisen in both ground-based 
observatories and orbital ones, and they represent data collected from countries around the world. Most 
of these archives are available online, though the heterogenous nature of user interfaces and metadata 
formats—even when constrained by HTML and CGI—can make combining data from multiple sources 
an unnecessarily involved process. In addition, astronomical archives are growing at rates unheard of 
in the past: terabytes per year are now typical for most significant archives. Two recently established 
databases that illustrate the trend are the MACHO database (8 TB) and the SDSS (15 TB). Space-based 
missions are beginning to approach these data rates as well, with NASA’s Kepler mission generating 
and downlinking approximately 2.5 TB annually [79]. Even these rates will seem small when the Large-
Scale Synoptic Telescope (LSST) comes online, as LSST will generate a data rate of roughly 0.5 GB per 
second [8].

The simplest kinds of questions one might ask of these kinds of data sets involve resource discov-
ery, for example, “find all the sources within a given circle on the sky,” or “list all the observations 
of a given object at x-ray wavelengths.” Facilities such as SIMBAD [129], VisieR [99], NED [87], and 
Astrobrowse [64] permit these kinds of queries, though they are still far from comprehensive in their 
selection of catalogs and/or data sets to be queried. One problem arises from the nature of the FITS for-
mat, which is poorly defined as far as metadata are concerned—XML may provide a solution here, but 
astronomers have yet to agree on a consistent common set of metadata tags and attributes.

Difficulties due to heterogeneous formats and user interfaces are being addressed by VO projects, 
such as the US VAO [109]. The most basic intent of all of these projects, which are coordinated with 
one another at some level, is to deliver a form of integrated access to the vast and disparate collection of 
existing astronomical data. In addition, all are in the process of providing data visualization and min-
ing tools.

In its most encompassing form, astronomical data mining involves combining data from disparate 
data sets involving multiple sensors, multiple spectral regimes, and multiple spatial and spectral resolu-
tions. Sources within the data are frequently time variable. In addition, the data are contaminated with 
ill-defined noise and systematic effects caused by varying data sampling rates and gaps and instru-
mental characteristics. Finally, astronomers typically wish to compare observations with the results of 
simulations, which may be performed with mesh scales dissimilar to that of the observations and which 
suffer from systematic effects of their own. It has been observed [103] that data mining in astronomy 
presently (and in the near future) focuses on the following functional areas:

	 1.	 Cross-correlation to find association rules
	 2.	 Finding outliers from distributions
	 3.	 Sequence analysis
	 4.	 Similarity searches
	 5.	 Clustering and classification

In spite of the difficulties previously outlined, the nature of astronomical data—it is generally freely 
available and in computer-accessible form—has led to numerous early applications of data mining tech-
niques in the field. As far back as 1981, Faint Object Classification and Analysis System (FOCAS) [73] 
was developed for the detection and classification of images on astronomical plates for the automatic 
assembly of catalogs of faint objects. Neural nets and decision trees have also been applied for the pur-
poses of discriminating between galaxies and stars in image data [100,134] and for morphological clas-
sification of galaxies [117].

There has been an increasing need for astronomers to use data mining techniques in recent years, as 
large astronomical data sets now contain data collected in a variety of detector formats, observed by a 
range of telescopes and space instruments, and spanning a large range of spectral characteristics. As a 
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result, data mining has progressed from individual tools and techniques developed for specific purposes 
to toolkits containing a wide range of data mining tools in the tradition of WEKA [61]. Toolkits con-
tain standard data mining tools spanning supervised methods (e.g., artificial neural networks, decision 
trees, support vector machines, and k nearest neighbor analyses) and unsupervised methods (e.g., kernel 
density estimation, k-means clustering, mixture models, expectation maximization, Kohonen self-
organizing maps, and independent component analysis), as well as other algorithms (including genetic 
algorithms [GAs], the information bottleneck method, association rule mining, and graphical models) 
(e.g., [10,27,43,88]).

The greatest successes of data mining are likely to arise from its application to large but coherent data 
sets. In this case, the data have a common format and noise characteristics, and data mining applica-
tions can be planned from the beginning. Recent projects satisfying these conditions have included the 
SDSS [135] and the 2MASS (e.g., [98]). SDSS uses a dedicated 2.5 m telescope to gather images of approx-
imately 25% of the sky (some 108 objects), together with spectra of approximately 105 objects of cosmo-
logical significance. Pipelines were developed to convert the raw images into astrometric, spectroscopic, 
and photometric data, which were stored in a common science database that is indexed in a hierarchical 
manner. The science database is accessible via a specialized query engine. The SDSS required Microsoft 
to put new features into their SQL server; in particular they added a tree structure into it to allow 
rapid processing of queries containing massive amounts of data for discrete as well as nebulous sources. 
Future astronomical observatories will continue this trend; the ground-based 8.4 m LSST, the Chinese 
Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) (with its 6.67 m × 6.05 m mir-
ror), and the orbital James Webb Space Telescope are some examples of this trend.

The key problem in astronomical data mining will most likely continue to revolve around interpreta-
tion of discovered classes. Astronomy is ruled by instrumental and sampling biases; these systematic 
effects can cause data to cluster in ways that mimic true source populations statistically. Since data 
mining tools are capable of finding classes that are only weakly defined statistically, these tools enhance 
the user’s ability to find “false” classes. Subtle systematic biases are present (but minimized) even in 
controlled cases when data are collected from only one instrument. The astronomical community must 
be careful to test the hypothesis that class structures are not produced by instrumental and/or sampling 
biases before accepting the validity of newly discovered classes.

28.3.3  Multiwavelength Studies

Multiwavelength studies have become of ever-increasing importance in astronomy, as new spectral 
regimes (x-ray, extreme UV, gamma ray) have opened to practitioners, and astronomers have become 
aware that most problems cannot be adequately addressed by studies within any one spectral band. 
Such studies are now recognized as essential to the understanding of objects ranging from the sun and 
stars through x-ray bursters and classical novae to the ISM and active galactic nuclei. The computational 
requirements peculiar to multiwavelength astrophysics essentially fall into one of two categories, where 
the distinction is in the time rather than spectral domain.

In the first case, we have situations where the timescales associated with the phenomena under study 
are long compared with typical observational timescales. One such case is studies of the ISM, which 
is important in astrophysics because galactic gas and dust clouds are the source of new generations of 
stars. The ISM becomes more enriched as generations of stars die and return heavy elements to it. In the 
study of the ISM, one can identify three characteristic temperature scales, <100 K, ≈104 K, and ≈107 K—
these temperatures necessitate observations at radio/infrared, optical/UV, and x-ray wavelengths, 
respectively (e.g., [136]). In each case, the strength of its emission or absorption depends on the local 
density, composition, metallicity, temperature, and distribution of ambient photons. Since this causes 
the ISM (and to a lesser extent the intergalactic medium) to interfere with observations of other galac-
tic and extragalactic sources, stellar, galactic, and extragalactic astronomers are interested in knowing 
the radiative properties of the ISM, which is by definition nebulous and 3-D, as well as knowing where 
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this material is located. An example of code used to locate the ISM in the visual spectral regime can be 
found at http://ascl.net/extinct.html [59]. Since the characteristic evolutionary timescale of the ISM is 
long by human standards, simultaneous (and even contemporaneous) multiwavelength observations 
are unnecessary. In this milieu, catalogs and databases come into their own, and archival multiwave-
length research is possible, focusing on spatial rather than temporal correlations. An idea of the numer-
ous databases and collections of online data available on the ISM can be found at http://adc.gsfc.nasa.
gov/adc/quick_ref/ref_ism.html.

A different situation pertains with variable sources such as gamma-ray bursters, extremely short-
duration and high-energy events occurring at cosmological distances. The source of the bursts is as yet 
unknown, and they may be created by mergers of a pair of neutron stars or black holes or by a hypernova, 
a type of exceptionally violent exploding star. GRBs have been detected at gamma-ray, x-ray, and opti-
cal wavelengths, and further study of these objects clearly calls for multiwavelength studies (e.g., [57]). 
However, unlike the case obtaining for the ISM, GRBs have timescales ranging from milliseconds up 
to perhaps ≈103 s, and thus, coordinated and simultaneous (or near-simultaneous) multiwavelength 
observations are essential. In this case, the computational demand is more on rapid deployment of vari-
ous computer-controlled telescopes (both on the ground and in space) than on correlation analyses of 
existing databases. Thus, systems such as GCN and Virtual Observatory Events (VOEvents) have been 
developed [12] to distribute locations of GRBs to observers in real time or near real time and to distrib-
ute reports of the resulting follow-up observations.

28.3.4  Specific Examples

28.3.4.1  Cosmic Microwave Background Data Analysis

One of the main goals of CMB data analysis is to derive the power spectrum of the temperature fluctua-
tions that correlates directly to fluctuations in the density of matter in the early universe. The precise 
spectrum of matter perturbations depends acutely on cosmological parameters, and hence, CMB data 
are an excellent diagnostic for determining the parameters of cosmological models. However, the task 
of constructing the power spectrum is daunting since the raw CMB signal has instrument noise, as well 
as noise from the ISM and other astrophysical objects, imposed upon it. To further complicate matters, 
all of these sources of noise are often correlated.

Analysis proceeds by first creating a physical map from the time series of instrument pointings. 
A pixel map is first constructed by dividing up the area of sky surveyed. For the COBE experiment [115], 
only a few thousand pixels were necessary, while for the PLANCK Surveyor satellite (http://planck.esa.
int), tens of millions of pixels are required. The main step in creating the map is then the separation of 
noise, which can be done under the assumption that the time series of noise signals is drawn from a 
Gaussian distribution. Linear algebra methods are used to calculate the pixel–pixel noise correlation, 
which is then used to calculate the map. However, brute force methods on large maps are intractable, 
and exploiting efficient methods for sparse matrices is the only way to do the calculation. Even so, 
regardless of the method adopted, the calculation is still sufficiently large that massively parallel com-
puting is necessary.

Having constructed the map, the next step is to calculate the power spectrum. This is a significantly 
more difficult process than map creation, since each pixel contains information about the signal on 
all scales within the map. During the early development of the field maximum likelihood, approaches 
were used that relied upon iterative convergence methods, such as Newton–Raphson schemes. However, 
for very large maps, the correlation matrices and numerical derivatives that must be calculated make 
this method too costly. Reducing the resolution of the data is possible, but that limits the resolution of 
the entire map. More recently Monte Carlo frequentist approaches to calculating the power spectrum 
have become popular. These methods essentially calculate the harmonics of the power spectrum con-
volved with all the noise, filters, and mixing (called the pseudo power spectrum) and then attempt to 
recover the original power spectrum through an inversion of a relationship between the true and pseudo 
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power spectra. Monte Carlo sampling is used in this last step [68]. While such approaches make the cal-
culations more tractable, they require an extremely detailed knowledge of the noise statistical properties 
that is a considerable challenge in itself. Nonetheless, it seems probably that the Monte Carlo approaches 
will remain the preferred method for very large data sets for the foreseeable future.

28.3.4.2  Gamma-Ray Burst Data Analysis

GRBs are short bursts of primarily gamma radiation having flux and spectra that evolve on short times-
cales. Evidence suggests that GRBs result from relativistic shock waves that collide with each other and 
with the ambient ISM. The source of the shocks is currently presumed to originate from two types of 
sources: hypernovae (supernovae in which a significant portion of the collapsing stellar core’s energy is 
focused into shocked bipolar accelerated particle beams) or colliding binary neutron stars. GRBs exhibit 
a wide variety of complex behaviors and yet there is evidence of multiple GRB classes. Class identifica-
tion is as important in astrophysics as it is in other sciences; the properties of distinct GRB classes can 
lead to a better general understanding of GRB physics as well as to a better understanding of the differ-
ent sources and/or environments producing the classes. However, class identification is not helpful if the 
mechanisms responsible for producing the classes cannot be determined.

Data mining techniques have proven useful in the study of GRB classes. Data mining techniques are 
needed to identify clusters in the GRB attribute space because individual GRB behaviors overlap. Some 
overlap results from the large intrinsic range of GRB behaviors, some is due to distinctly different prop-
erties of GRB classes, and some is due to observational and instrumental bias. Bias can cause phantom 
classes to appear by creating clustering where no distinct source populations exist.

GRB data mining has been used primarily with the large GRB database collected by the Burst 
And Transient Source Experiment (BATSE on NASA’s Compton Gamma-Ray Observatory) and 
Swift because the instrumental characteristics of these experiments are well-documented properties 
[52,102]. Data mining tools identify three distinct GRB classes rather than two known historically 
(e.g., [71,94]). Interpretation of the data mining data suggests that the third GRB class does not rep-
resent a separate source population; it is instead produced by observational biases resulting primarily 
from low signal-to-noise observations and from the instrumental trigger characteristics [58]. This 
successful result indicates that scientific data mining can be used not just to determine that classes 
exist but also to determine why they exist. As a further clue behind why these class differences exist, 
recent observations indicate that the pulses making up GRBs have similar, correlated properties 
regardless of the class to which a GRB belongs [60]. Data mining classification of the pulses, however, 
does not yield a clear delineation between pulses belonging to different classes [3]; this suggests that 
it is the distribution of pulses that indicates the class to which a GRB belongs, rather than the pulse 
properties.

28.3.4.3 T ime Series Analysis

Astronomers make use of time series analysis techniques for a variety of purposes, including studies 
of variable stars and cataclysmic variables [104,133], pulsating or oscillating stars [7,72], asteroid rota-
tion rates [128], active galactic nuclei [47], sunspot number [118], and extrasolar planets [24]. Typically, 
astronomical time series suffer from relatively low SNRs, uneven sampling, and numerous gaps, at times 
leading to severe aliasing at the 1 day−1 frequency and diffculties in estimating a traditional autocor-
relation function. In addition, some applications (Active Galactic Nuclei [AGN] studies and planetary 
detection) are dominated by nonsinusoidal signals or pulses.

Historically, the primary tools used to support these efforts have been discrete Fourier transforms 
and periodograms [111]. Both of these estimators of the autocorrelation function can be defined in such 
a way as to satisfactorily represent unevenly sampled data, and small gaps in the time series can be han-
dled using clever binning or interpolation techniques, but these necessarily distort the data and lead to 
the loss of information. In some cases, aliasing can be minimized or eliminated by experimental design 
(e.g., GONG), but more often astronomers are confronted with this fundamental problem and this has 
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driven numerous recent efforts in the area. Recent developments in this area focus on the application 
of nonlinear, nonstationary techniques and Bayesian methods. The wavelet transformation shows great 
promise [130], as unlike the DFT it can be used to construct power spectrum estimators that are nearly 
independent of the signal shape and amplitude in the presence of noise. Such estimators are likely to 
find increasing use in the planetary detection and AGN modeling communities. Perhaps an even more 
useful application of wavelets is to the denoising of power spectra, a technique pioneered by the solar 
physics community. Bayesian methods are also increasing in popularity, as they are well-suited to find-
ing change points in long series of time-tagged data such as is typically obtained from high-energy 
astrophysics experiments [49,112].

A rapidly growing difficulty is the size of power spectra produced by astronomical experiments. 
Helioseismological observations can easily give rise to time series with in excess of 107 points, and astero-
seismological observations are rapidly approaching this level [113]. Achieving the maximum time resolution 
inherent in data such as time-tagged x-ray photon lists can require estimators with in excess of 109 points 
[108]. Furthermore, upcoming space-based experiments, such as European Space Agency’s (ESA) PLATO 
mission [34], will give rise to data sets that are so large as to mandate the use of automated techniques.

28.4 T heoretical Modeling

Prior to the advent of computers, theoretical modeling consisted largely of solving idealized systems 
of equations for a given problem. Very often, to make problems tractable, simplifying assumptions like 
spherical symmetry and linearization of the problem would be necessary. Rapid numerical solutions of 
equations avoid the need for simplifying assumptions, but at a cost: one can no longer achieve an elegant 
formula for the solution to the problem, and insight often derived from solving the equations by hand 
is lost.

28.4.1 R ole of Simulation

Although computation is commonplace in theoretical modeling, perhaps the most heavily computa-
tionally biased aspect is simulation. Simulation can be viewed as an extension of finding numerical 
solutions to a given equation set; however, the set of equations is often enormous in size (such as that 
produced by the gravitational interaction problem between a large number of bodies). Simulation also 
often involves visualizing the “data set” to help understand the phenomenon being studied, and the 
systems under investigation are almost always cast as an initial value problem.

The roots of simulation in astrophysics can be traced back to at least the 1940s. Driven by a desire 
to understand the clustering of galaxies, Holmberg built an analog computer consisting of light 
sources and photocells to simulate the mutual interaction of two galaxies via gravity. Today, almost 
all simulation is conducted on digital computers. Development of fast efficient algorithms for solv-
ing complex equation sets can often lead to programs containing tens of thousands of lines of code. 
Although it has been the tradition for individual researchers to develop codes in isolation, the last 
few years have seen the appearance of collaborations of researchers who work together on large cod-
ing projects. This trend is likely to continue, and it is probable that in the near future researchers will 
converge to using a handful of readily available simulation packages (e.g., NEMO, http://bima.astro.
umd.edu/nemo/).

28.4.2  Gravitational n-Body Problem

Although Newton’s law of universal gravitation has been supplanted by General Relativity, Newton’s 
law remains highly accurate for a very large number of astrophysical problems. However, solving the 
interaction problem for any number of bodies (“n” bodies) is difficult because at first appearances the 
number of operations scales as n2. However, provided small errors in the force calculation are acceptable 
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(RMS errors typically less than 0.5%), then approximate solutions can be found using order n log n 
operations. Roughly speaking, the algorithms used by researchers fall into two categories: treecodes [11] 
and grid (FFT) methods [70]. Treecodes are usually about an order of magnitude slower than grid codes 
for homogeneous distributions of particles, but are potentially much faster for very inhomogeneous 
distributions. To date, the largest gravitational simulations conducted contain over 300 billion particles 
and have been used to coarsely simulate volumes representing as much as 30% of the entire visible uni-
verse at high resolution (http://www.hits.org/english/research/tap/projects.php).

28.4.3  Hydrodynamics

Hydrodynamic modeling, or equivalently computational fluid dynamics, plays an extremely impor-
tant role in astrophysics. Although most astrophysical plasmas are not fluids in the everyday sense, the 
physical description of them is the same. Modern hydrodynamic methods fall into two main groups: 
Eulerian (fixed) descriptions and Lagrangian (moving) descriptions. Eulerian descriptions can be 
broadly decomposed into finite difference and finite element methods. In astrophysics, the finite dif-
ference method is by far the most common approach. Lagrangian descriptions can be decomposed into 
“moving mesh” methods where the grid deforms with the flow in the fluid, and particle methods of 
which smoothed particle hydrodynamics (SPH) is a popular example [53].

Because shocks play an important role in the evolution of stars and the ISM, a significant amount 
of research has focused on “shock-capturing methods”. Most early approaches to shock capturing, 
and indeed a number of methods still in use today, provide stability by using an artificial viscosity to 
smooth out flow discontinuities (shocks). Although these methods work well, they often introduce addi-
tional, unwanted, dissipation into the simulation. Perhaps the best alternative approach is “Godunov’s 
method” [55], which is a simple example of a first-order method where the Riemann shock tube problem 
is solved at the interface of each grid cell. More modern algorithms have extended this idea to higher-
order integration schemes, such as the piecewise-parabolic method [35].

28.4.4  Magnetohydrodynamics and Radiative Transfer

Magnetic fluid dynamic modeling, or MHD, is the source of a large amount of research in computa-
tional astrophysics [116]. The system of equations for MHD is that of hydrodynamics plus the addition 
of coupling terms corresponding to magnetic and electric forces and Maxwell’s equations that constrain 
and evolve the magnetic and electric fields. Because of severe complexities arising from the divergence-
less nature of the magnetic field, most MHD methods are finite difference, and although particle meth-
ods have been used, quite often they produce significant integration errors.

Modern methods, as in hydrodynamics, often cast the problem in terms of a system of conservation 
laws. It is usual to look at variation along a given axis direction and to recast the problem in terms of 
“characteristic variables” that are constructed from eigenvalues and the primitive variables, such as 
density, pressure, and flow speed. Such recasting aids development of the numerical method since time 
stepping can be viewed as propagating the system an infinitesimal amount along a characteristic. This 
formulation often allows development of stable integration schemes that produce accurate numerical 
solutions even when large time steps are used.

Radiative Transfer (RT), the study of how radiation interacts with gaseous plasmas, is an extremely 
difficult problem. It bears parallels to gravity in that all points within a system can usually affect all 
others, but is further complicated by the possibility of objects along any given direction producing 
nonisotropic attenuation. The radiation intensity is a function of position, two angles for direction of 
propagation, and frequency, a total of six independent variables. There any many different approaches to 
solving RT, ranging from explicit ray tracing to Monte Carlo methods as well as characteristic methods 
[105]. Much of the modern research effort is focused on deriving useful approximation methods that 
ease the computational effort required.
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28.4.5  Planetary and Solar System Dynamics

Recent advances in telescope instrumentation have lead to a cascade of discoveries of extrasolar planets, 
and at the time of writing, over 700 extrasolar planets are known, and over 2000 candidates awaiting 
confirmation. Consequently, there is now a large amount of interest in studying planet and solar system 
formation. Solarsystem formation occurs during star formation, and the inherent differences in the 
planets are due to a differentiation process that enables different elements to condense out of the solar 
nebula at different radii.

Planets form by a hierarchical merging processes within the disk of the solar nebula. Dust grains 
form the first level of the hierarchy and planets the last, while objects of all mass scales and sizes exist in 
between. It should be noted that representing this variation of masses and sizes within a simulation is 
impossible since resolution is always limited by the available computing power and memory. Theoretical 
models of the agglomeration process must include hydrodynamics and gravity, although currently there 
is debate about the role of hydrodynamics in gas giant planet formation. At present, theory can be 
roughly divided into two approaches: the first being the study of stability properties of the solar nebula 
disk from an analytic perspective and the second being simulation of the process from a first principle 
perspective. Simulations with a million mass elements, designed to follow the agglomeration process in 
the inner part of the solar system, were conducted in 1998 [110].

The realization that our solar system contains many small asteroids and meteorites capable of caus-
ing severe damage to the Earth has renewed interest in solar system dynamics. Calculating accurate 
orbits for these systems is hard since very often they may have chaotic orbits. Chaotic systems place 
great demands on numerical integrations because truncation errors can rapidly pollute the integration. 
Thus, the integration schemes used need to be highly accurate (often quadruple precision is used), and 
much effort has been devoted into “long term” integrators (such as “symplectic integrators”, see [33]) 
that preserve numerical stability over long periods of simulation time. The chaos observed in long-term 
simulations of the solar system inspired a new theory [95] that demonstrates the solar system is chaotic 
(Uranus could possibly be ejected) but the timescale for this is extremely long (1017 years).

28.4.6  Exoplanets

Searches for exoplanets have come of age in astronomy, with 553 confirmed exoplanets as of this writing 
(the most current count is available at http://www.planetary.org/exoplanets/list.php). Searches generally 
proceed using Doppler spectroscopy to search for radial velocity variations or high-precision photometry to 
search for exoplanet transits. NASA’s Kepler mission and ESA’s Convection Rotation and Planetary Transits 
(COROT) telescope both adopt the latter approach. Kepler observes some 156,000 stars with 30-min cadence 
(and a smaller number with 1-min cadence), and data processing and conditioning is hence demanding [74]. 
In addition to large-scale traditional photometry, the transit search involves application of a wavelet-based, 
adaptive matched filter to identify transit-like features with durations in the range of 1–16 h. Light curves 
with transit-like features whose combined (folded) transit detection statistic exceeds 7.1σ for some trial 
period and epoch are designated as threshold crossing events (TCEs) and subjected to further scrutiny.

One outstanding issue with such programs involves the validation of planet candidates that have been 
detected photometrically. Space-based missions such as COROT and Kepler, as well as their ground-
based counterparts, including OGLE [123], HATNeT [9], and TrES [5], typically give rise to a large 
number of false positives for each true detection (see, e.g., [13]). The most common form of false positive 
involves an unresolved eclipsing binary star in the same field of view as the planet candidate; dilution 
of the binary eclipse can mimic a planetary transit. Generally, differentiating between the two cases 
involves high-SNR, high-resolution, time-resolved spectroscopy, which is both time- and resource-
prohibitive, particularly for the smaller planets that are of the most interest.

Instead, a technique nicknamed BLENDER has been developed that makes use of the photometric 
light curves themselves [120,121]. BLENDER compares the transit photometry of the planet candidate 
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against a suite of synthetic light curves of eclipsing binaries, attenuated by the light of the planet can-
didate star. Models account for depth, duration, ingress, and egress time of the candidate, as well as 
accounting for stellar astrophysical effects including limb darkening, gravity brightening, mutual 
reflection, oblateness, and differential extinction. The code can also account for more complex systems, 
including hierarchical triples with multiple planets. The numerous free parameters are varied to map 
a multidimensional χ2 surface, with the goal of determining the probability that the observed transit 
might possess a non-planetary cause.

28.4.7  Stellar Astrophysics

Among the first astrophysical problems to be addressed using modern computational methods were 
models of stellar interiors [38,66] and atmospheres [81]. One simplifying assumption needed for early 
stellar codes was that of local thermodynamic equilibrium, which meant that stellar structural varia-
tions were not expected to occur on short timescales. Such assumptions are no longer necessary: stel-
lar interior and atmosphere codes have become increasingly complex as computers and computational 
techniques have evolved. Theoreticians have been able to study rapid evolutionary phases and complex 
atmospheric processes in stars. Some of the difficult problems currently being addressed include evolu-
tion of rotating stars [93], radial and nonradial stellar pulsations [29,37], stellar magnetospheres [124], 
evolution of stars in binary systems [15], and supernovae [132].

28.4.8  Star Formation and the Interstellar Medium

One of the greatest challenges in astrophysics is understanding the star formation process. Star forma-
tion is an enormously difficult problem since it encompasses gravity, hydrodynamics, RT, and magnetic 
fields. Further, the difference in density between the initial gas cloud from which the star forms and 
the final star itself is 21 orders of magnitude or, equivalently, a change in physical scale of 7 orders of 
magnitude.

One of the most significant questions in this field is: Why do most stars form in binary systems? 
To address this question, numerical simulations have been run that follow the fragmentation of a 
large cloud of gas. The methods used have been primarily Lagrangian ones (such as SPH) although 
adaptive mesh refinement (AMR) techniques [17] are becoming more popular. The reason for the 
growth of interest in AMR is that recent results have demonstrated a severe error in a large body of 
numerical simulations of the cloud fragmentation process: they lacked resolution to adequately fol-
low the balance between gravitational forces and local pressure forces [122]. Simulations currently 
suggest that turbulent fragmentation plays a critical role in determining the formation of multiple 
star systems and that a filamentary structure is the main mechanism for transferring mass to the 
protostellar disk [76]. A not dissimilar process seems to govern formation of the first stars in the 
universe [1].

Studying the ISM presents different challenges. Traditionally the ISM is understood as having a series 
of distinct phases that determine local star formation [89], with regulation of the phases provided by 
heating and cooling mechanisms. Stellar winds and supernovae are the primary heating mechanism, 
while radiative cooling is the dominant cooling mechanism for the hot gas phases. The supernovae and 
winds also constantly stir the ISM, which, in combination with rapid radiative cooling, serves to make 
it a highly turbulent medium. Turbulent media are difficult to understand because motions on very 
large scales can quickly couple to motions on much smaller scales, and thus accurate modeling requires 
resolution of large and small scales [85]. Because of this range of scales, achieving sufficient resolution 
to be able to accurately model turbulence is difficult, and a number of researchers rely on 2-D models to 
provide sufficient dynamic range. Recent 3-D simulations have shown that self-gravity alone, without 
the stirring provided from supernova explosions, is sufficient to produce the spectrum of perturbations 
expected from analytical descriptions of turbulence [25].
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28.4.9  Cosmology

The study of the Big Bang and quantum gravity epoch is still largely conducted analytically, although 
some aspects of this research lend themselves to computer algebra. Following these earliest moments, 
the universe undergoes a series of phase transitions (or “symmetry breaking”) as the forces of nature 
separate out of the “unified field” [127]. Computation has been used to examine the nature of the phase 
transitions that occur as each of the forces separates. For example, the electroweak phase transition has 
been extensively examined using lattice calculations to explore whether the phase transition is first or 
second order (e.g., [82]). Current constraints on the measurement of the mass of Higgs boson from the 
Large Hadron Collider in combination with the lattice models strongly suggest that the phase transition 
must be second order. Numerical simulations of the early universe have also investigated how nonuni-
form symmetry breaking can lead to the formation of defects [2].

Computation is used extensively in the study of Big Bang Nucleosynthesis (BBN) and the relic CMB. 
However, at present, CMB data analysis probably represents the biggest challenge computationally. 
Theoretical modeling of BBN dates back to the 1940s [6], and a very detailed numerical approach to 
solving the coupled set of equations describing the reaction network was developed comparatively 
early [125]. Currently there are a number of BBN codes available, and considerable effort has been put 
into reconciling results from different codes. CMB modeling is comparatively straightforward since 
the equations describing the evolution of a thermal spectrum of radiation in an expanding universe are 
not overly complex. However, because the CMB spectrum we measure has foreground effects superim-
posed upon it (such as clusters of galaxies), a large amount of effort is expended simulating the effect of 
foreground pollution [22]. Indeed in the past few years, CMB experiments have provided new ways of 
detecting previously unobserved objects like galaxy clusters (e.g., [107]).

The theoretical modeling of large-scale structure in the universe has relied heavily on computa-
tion. Because on large scales “dark matter” dominates dynamics, only gravity need be included, and a 
Newtonian approximation can be used without significant error. Particle-based algorithms are used to 
evolve an initially smooth distribution of particles into a clustered state representative of the universe 
at its current epoch. The first simulations with moderate resolution (3 × 105 mass elements) of the dis-
tribution of galaxies were conducted in the early 1980s [45]. Simulations have played a leading role in 
establishing the accuracy of the Cold Dark Matter (CDM) model of structure formation [20]. In this cos-
mological model, structures are formed via a hierarchical merging process. Simulation has also shown 
that dark matter tends to form cuspy halos that have a universal core profile [96], while the large-scale 
distribution of matter is dominated by filamentary structures.

28.4.10  Galaxy Clusters, Galaxy Formation, and Galactic Dynamics

Modeling of clusters of galaxies and galaxy formation relies upon the same codes as the study of large-
scale structure, with the addition of hydrodynamics to model the gas that condenses to form stars and 
nebulae within galaxies. Typically the hydrodynamic methods used are either Eulerian grid-based algo-
rithms or Lagrangian particle-based methods [50] although, as in star formation, AMR methods are 
being adopted. Modeling of galaxy clusters is comparatively straightforward since the intracluster gas 
tends toward hydrostatic equilibrium. However, simulations have shown that the gas in galaxy clusters 
shows evidence of an epoch of preheating [46].

Galaxy formation is an exceptional difficult problem to study numerically because the evolu-
tion of the gas is strongly affected by supernova explosions and heating from supermassive black 
holes in active galactic nuclei, both of which processes occur initially on scales smaller than the best 
simulations can currently simulate (e.g., [16]). The physics is also technically challenging since gal-
axy formation occurs in the very nonlinear regime of gravitational collapse while simultaneously 
being a radiation hydrodynamics problem (although an optically thin approximation for the gas 
works moderately well, at least in the late time universe). Only within the last 2 years has a sufficient 
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understanding evolved to enable simulations of galaxy formation to produce moderate facsimiles of 
the galaxies we observe [56]. In the near future, increases in resolution should provide a significant 
step forward in the accuracy of star formation modeling as the sites of star formation, namely, giant 
molecular clouds, should be resolved.

The first large-scale numerical studies of galactic dynamics were conducted in the 1960s [69]. At least 
initially, and to a large extent today, most n-body simulations are used to confirm analytic solutions 
derived from idealized models of galactic disks [19]. Typically these simulations begin with a model 
of a given galaxy, which usually consists of a disk of stars and an extended dark halo, which is then 
perturbed in some fashion to mimic the phenomenon under study. Recently it has been highlighted 
that accurate modeling of galactic dynamics in CDM universes is exceptionally hard due to coupling 
between the substructure in the larger galactic halo and the galactic disk [126]. Traditionally, research-
ers believed that approximately 1 million particles was sufficient to model galaxies reasonably; however, 
these new results have pushed that estimate at least an order of magnitude higher. Although researchers 
in this field use codes similar to those in large-scale structure, specialist codes, which are designed to 
reduce numerical noise, have been developed (i.e., the self consistent field code of [67]).

28.4.11  Numerical Relativity

General relativity calculations are extremely computationally demanding as not only is the theory excep-
tionally nonlinear, but also there are a number of elliptic constraint equations that must be satisfied at 
each iteration. Further, the rapid change of scales that can accompany collapse problems often requires 
adaptive methods to resolve. There are also other subtleties related to the boundary conditions around 
black holes that present severe intellectual challenges. Currently the strongest science driver behind 
these calculations is the need to calculate the gravitational wave signal of cataclysmic events (such as 
binary black hole coalescence) that may be detectable with the LIGO gravitational wave detector (http://
www.ligo.caltech.edu). Because of the large amount of computation involved in computing space-time 
geometry and the comparatively low amount of communication between processors, numerical relativ-
ity is an ideal candidate for grid-based computation. The Cactus framework has been developed to aid 
such calculations (http://www.cactuscode.org).

Relativity calculations are most often grid based (although spectral methods are used occasionally). 
Before determining the evolution equations for the space-time, a gauge must first be decided upon, and 
the most common gauge is the so-called “3 + 1 formalism” where the space-time is sliced into a one-
parameter family of space-like slices. Other formulations exist, such as the characteristic formalism, 
and in general, the gauge is chosen to suit the problem being studied. Initial conditions for the space-
time are provided, and then the simulation is integrated forward, with suitable boundary conditions 
being applied. Building upon this body of research, the first calculation of the gravitational waveform 
from binary black hole coalescence was performed in 2001 [4].

28.4.12  Compact Objects

The study of compact objects such as white dwarf and neutron stars presents a formidable theoretical 
challenge. These systems exhibit extreme density, in turn requiring detailed nuclear physics as well as 
relativistic descriptions. Compact objects are widely believed to be the source of energy behind GRBs, 
with energetic scenarios, such as sudden mergers, driving a highly relativistic “fireball” shock wave that 
produces an extreme amount of γ-ray radiation during collisions with other shock waves or the ISM [90].

Neutron star collisions have been simulated for similar reasons to black holes: the calculation 
of their gravitational wave spectrum [31]. Neutron stars are also the beginning point of core col-
lapse (type II) supernovae, and the simulation of the ignition process has attracted much attention. 
Fully general relativistic models are now beginning to appear [28]. Of particular interest is how the 
neutrinos drive a wind shortly after collapse begins [30].
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Type I supernovae occur when white dwarfs accrete sufficient mass to exceed the Chandrasekhar 
limit and subsequently undergo collapse. The physics is challenging because the process occurs far from 
equilibrium and entails RT as well as hydrodynamic instabilities. As in studies of type II supernovae, 
to date most calculations use a 2-D approximation [97] and Eulerian approaches; however, some explo-
rations have used SPH in 3-dimensions [26]. The push toward full high-resolution 3-D calculations is 
gathering momentum (e.g., /citeHillebrandt2010). Such simulations are necessary to fully understand 
instabilities and include more accurate physics. However, the computational challenge is significant and 
ultimately progress awaits the development of 100 teraflop computers.

28.4.13  Parallel Computation in Astrophysics

Parallel computing in astrophysics is often used to examine problems that simply cannot be addressed 
on a desktop computer, regardless of how long one could wait. The primary driver in this case is the 
large amounts of memory available in parallel computers as compared to serial ones: the largest parallel 
computations just don’t fit into a desktop. The secondary use of parallel computation is to speed up data 
analysis that involves performing the same analysis on many subsets of data. In this case, parallel com-
puters significantly help in lowering the data reduction time. Along similar lines, the significant com-
putational requirements of many astrophysics calculations can utilize special-purpose computational 
hardware. The rise of general-purpose computing on graphics processors (GPGPU) is attracting much 
interest within the astrophysics community (e.g., [48]). A number of simulation and analysis codes have 
already been ported to this specialist hardware.

Around 10% of the total cycles at supercomputing centers are typically devoted to astrophysics. This 
share is lower than in previous decades as there has been significant growth in parallel computation in other 
fields, in many cases benefitting directly from new codes and approaches developed within astrophysics. 
Astrophysicists have a history of developing unique and ingenious parallel algorithms to solve the problems 
they face. Indeed, a number of research problems in astrophysics, such as binary black hole coalescence and 
the formation of galaxies, have long been considered computational “grand challenges.” These problems 
have computing demands that are similar to the nuclear ignition codes in the Advanced Simulation and 
Computing Program, which is an integral element of the US Government Stockpile Stewardship Program.

Parallel codes for distributed memory platforms are most often developed using the Message Passing 
Interface (MPI). Higher-performance Application Programming Interfaces (APIs), such as the remote 
direct memory access provided by MPI-2, are yet to receive significant attention primarily because ven-
dors have failed to provide full support for this emerging standard. All of these APIs can lead to a 
significant increase in the size of a parallel program compared to the serial one. It is not uncommon 
for parallel codes to be over twice the length of serial ones. Codes written using these APIs have the 
potential to scale to many thousands of processors.

Shared memory parallel codes are most often developed using the standardized OpenMP API. This 
API is particular simple to use since it enables simple parallelization of codes by using “pragmas” that 
are inserted into the code before iterative loops. The iterations within the loop, provided that they meet 
certain data independence requirements, can then be distributed to different CPUs, thereby speeding 
up execution speeds. The OpenMP API often does not lead to significantly longer parallel programs, but 
is limited in terms of scalability by the requirement of running on shared memory computers that typi-
cally have a maximum of around 32 processors.

Over the past few years, it has become increasingly apparent that although often the physics being 
simulated by two codes is quite different, the underlying data structures being used, such as grids or 
trees, are quite similar. This has lead to the development of skeleton packages in which a researcher 
needs only to add the numerical implementation of their equations and the communication between 
processors is handled by the package. Cactus and Paramesh are an example of this type of framework. 
However, most researchers seem reluctant to rely on these packages and instead develop an optimized 
communication layers themselves.



28-18 Computational Science and Graphics

The Asteroseismic Modeling Portal (AMP) provides a web-based interface to the MPIKAIA astero-
seismology pipeline [92,131], allowing astronomers to run and view simulations that derive the prop-
erties of sunlike stars from observations of their pulsation frequencies. AMP represents a simplified 
orchestration of TeraGrid computational resources; the web-based interface was developed as a tradi-
tional stand-alone database-backed web application using the Python-based Django web development 
framework, leveraging the Django frameworks capabilities while cleanly separating the user interface 
development from the grid interface development.

The motivation for the interface structure arises from the fact that running a single MPIKAIA simu-
lation requires propagating several independent batches of MPI jobs and can consume 512 processors 
for over a week of wall-clock time. A complete optimization run to determine the best-fit model for a 
single Kepler target star consists of four GAs runs executed in parallel, with each GA run modeling a 
population of 126 stars, using 128 processors, for 200 iterations. Using the science gateway approach 
allows researchers to run the model without using local resources, disseminates model results to the 
community, and introduces a uniform analysis structure.

Cloud computing is particularly attractive for a number of problems in analyzing astrophysical 
data, such as image processing [18]. But it is unclear what role cloud environments will play in the 
development of theoretical modeling. Large parallel computations remain nontrivial to implement 
and web-based interfaces to large codes run at supercomputing centers are, at least at present, not 
widely used.

28.5 R esearch Issues and Summary

In this section, we first highlight a number of key areas in computational astrophysics that will receive 
increasing attention in the future. No significance should be attached to the ordering of the items:

	 1.	 Data analysis and visualization in the age of VOs: The complexity and large size of VO databases 
will increase the need for powerful data analysis, visualization, and data mining toolkits for the 
effective and rapid scientific exploration of the resulting massive data sets. VOs are enabled by 
technology but driven by science, so data mining tools need to recognize the need to incorporate 
measurement uncertainty, incomplete sampling, and measurement bias. Visualization tools need 
to have flexible scaling parameters and resolution, as well as the ability to visualize multidimen-
sional data. Many pattern recognition algorithms currently define classes without regard to data 
quality; poorly measured data can smear out true clusters that would be easily visible if the data 
were limited to that of high quality. In some cases, poor-quality measurements can cause data to 
artificially cluster (e.g., when an upper flux limit is used in lieu of a measurement). Since the scien-
tific method is statistical in nature, computational tools for science are needed that better reflect 
statistical uncertainties.

	 2.	 Planet formation: Current observations are already challenging theoretical models for planet for-
mation and dynamical evolution. Future models need to include radiation, chemistry, hydrody-
namics, and dust to better understand both formation and migration processes.

	 3.	 Star formation: Following the full collapse of a gas cloud through to nuclear ignition remains an 
enormously challenging theoretical proposition. A large number of outstanding questions relat-
ing to the role of turbulence and magnetic fields remain, and a better understanding of the forma-
tion of high-mass stars has a number of implications for other areas of astrophysics, most notably 
galaxy formation.

	 4.	 Galaxy formation: Progress is limited by both a lack of numerical resolution and an incomplete 
understanding of the physics of the process. It is currently unclear how to model the extremely 
important effect of heating from supernovae and active galactic nuclei on protogalactic collapse. 
New discoveries will depend heavily on the growth of understanding of the star formation and 
black hole growth processes.
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	 5.	 CMB data analysis: While new approximation algorithms have been developed to reduce the 
enormity of the analysis calculations for high-resolution data sets, their accuracy is questioned. 
Brute force and larger computers are not the answer, as their computational requirements exceed 
the capacity of even the soon to be built exaflop class supercomputers.

	 6.	 Black hole coalescence: Despite a vast growth in technical capabilities over the past decade, calcu-
lations still have significant room for adding additional physics (incorporating drag from gas disks 
remains a notable challenge). In addition to the value of calculating gravitational wave forms for 
future detectors, these calculations have significant implications for galaxy formation scenarios.

	 7.	 Supernovae ignition and modeling: Advances in computational power have shown notable dif-
ferences in the 2-D versus 3-D results, highlighting that hydrodynamic instabilities need much 
further study. A coherent theory will require developing a clear understanding of the ignition 
process through to the observational signals (especially transients).

	 8.	 Autonomous spacecraft/instrumentation operation: Autonomous spacecraft are being designed 
to carry out day-to-day operations independent of ground control. Some of these operations 
include navigation and the scheduling and execution of observations and experiments. Support 
technologies for autonomous spacecraft include robotics, artificial intelligence, and control the-
ory. This approach will reduce mission operation costs while simultaneously allow orbital satel-
lites to work dynamically rather than passively.

Astrophysics is gradually and irreversibly becoming a computational science. Astronomical data are 
being stored in and retrieved from progressively large databases; data and metadata are being used by 
larger audiences. The analyses of these data are aided by pattern recognition algorithms and improved 
data visualization tools. Theoretical modeling has developed beyond the point where elegant calcula-
tions using relatively simple assumptions suffice; detailed models with many physical parameters are 
often required to adequately explain the detailed observations made by the newest orbital and ground-
based telescopes spanning the electromagnetic spectrum. Parallel computation is often used in carrying 
out time-consuming calculations. High-precision is needed to accurately calculate model parameters, 
and computationally-intensive statistical tools are required to evaluate theoretical model efficacies. 
Astrophysics is thus evolving, and the new generation of astrophysicist is increasingly well-versed in 
the use of computational tools. This can only help us to better understand the structure, evolution, and 
nature of the universe.

Glossary

Adaptive optics: An active form of observing light (rather than a passive one) in which lasers are fired 
at the sky from the telescope site, and the reflected laser light is used to differentially correct 
observed starlight for atmospheric refraction and convection.

Astrophysics: The study of the physical properties, structure, kinematics, dynamics, and evolution of 
celestial objects.

Big Bang nucleosynthesis: The epoch of the early universe when the nuclei of atoms were formed. 
Theories of this epoch reproduce observations of elemental abundances exceptionally well, 
strongly supporting the hot Big Bang theory.

Cold dark matter: Hypothesized subatomic particles that contribute roughly 30% of the mass in the 
universe. Although in the early universe these particles interacted vigorously, their influence is 
now seen only via gravitation. Theories that include the effects of these particles match obser-
vations exceptionally accurately.

Cosmic microwave background: Relic electromagnetic radiation left over from 300,000 years after the 
Big Bang. The distribution of radiation is very close to being homogeneous and isotropic, but 
carries small perturbations on it that correspond to perturbations of the matter density in the 
early universe.
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Cosmology: The branch of astrophysics dealing with the structure and evolution of the universe on the 
largest scales.

Electromagnetic spectrum: Classification of light by wavelength (which is inversely related to energy). 
Ranging from light with the shortest wavelength (and largest energy) to that with the longest 
wavelength (and smallest energy), the electromagnetic spectrum includes gamma-ray, x-ray, 
ultraviolet, visible, infrared, and radio.

Galaxy: A large, gravitationally-bound ensemble of stars, gas, and dust. Galaxies are traditionally 
classified as spiral, elliptical, irregular, or peculiar based on their morphological struc-
ture. Our Milky Way galaxy is a large spiral galaxy containing more than a hundred billion 
stars.

General relativity: Einstein’s theory of gravitation that casts gravity not as a force, but rather a conse-
quence of warping in the local space-time continuum. The theory relies strongly upon geo-
metrical concepts of distance and curvature.

Interstellar Medium (ISM): The material between the stars. It is composed primarily of hydrogen and 
helium gas, with 1%–2% heavy elements chemically mixed to form larger molecules (“dust”). 
Dense, cool molecular clouds are the seeds of star formation.

Passband: An electromagnetic regime defined by the spectral response of a particular filter and/or 
instrument.

Plasma: An ionized gas. A plasma behaves differently than a normal gas (which can often be modeled 
as a fluid) because a treatment of electromagnetic theory is needed to address the electrical 
charges found within it.

Supernova: A massive stellar explosion during which a star can briefly brighten to almost one billion 
times its original luminosity. Such events can be seen at enormous distances, although maxi-
mal luminosity usually lasts only for tens of days.

Virtual observatory: Publicly accessible metadatabase of archived ground-based, balloon, and satel-
lite astronomical observations. The database will also be associated with a variety of search 
engines and data mining tools.
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29.1  Introduction

Computational chemistry is now firmly established as an integral part of chemistry at all levels. It has 
made its way into introductory level textbooks, and it has become a standard tool in many research 
applications. However, it is still a work in progress. The use of computational programs cannot be 
expected to provide a perfect solution, but it almost always affords chemists better insights into chemi-
cal processes and theoretical issues than would otherwise be available.

In this chapter, we present perspectives from generalists who use computational methods to solve or 
understand complex problems, and we provide perspectives from specialists who have made careers out 
of improving or creating new computational methods for their own uses and use by others. This is reflec-
tive of the state of the art in the use of computational chemistry. It has progressed from being an area of 
use only dared by those most intimately aware of the underlying programming and mathematical the-
ory to those who recognize the value and limits of the methods provided in readily available resources.
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29.2  Computational Resources

Computational chemistry requires computational resources that are varied and in proportion to the 
specific problem at hand. The speed, power, and location of the resources needed to conduct computa-
tional investigations can also depend on the purpose of the computation, be it education or research. 
Software licensing issues also impact hardware decisions; hence, decisions require consideration of 
many factors. Complicating this is the reality that advances in computational chemistry and the state 
of computational resources are not static; there is a constant need for new upgrades to software and 
hardware—not just to avoid obsolescence but to ensure the reliability of the computing platform. In 
most cases, trade-offs must be made to balance time, cost, and accessibility, so there are no absolutes 
except for “there are no absolutes.”

29.2.1  Software Impact on Hardware Decisions

This discussion could just as easily been titled, “Hardware Impact on Software Decisions,” but more 
frequently than not the software decisions are made sooner, based on the desired chemistry applica-
tion. Since they have been described elsewhere in some detail, for purposes of illustrating the process 
of choosing hardware based on a prior software decision, consider the trade-offs between Gaussian, 
MOPAC, and GAMESS, assuming the user is looking for the highest efficiency generated by their com-
putation and communication technology budget. (It should be noted that software providers may argue 
with the gross generalizations made here, but the characterizations of performance are based on real 
tests on real hardware in a variety of settings and are therefore considered firm opinion of the authors.)

Given the kinds of problems that one would address with Gaussian, experience shows that this pack-
age requires substantial CPU (computing) and RAM (cache and memory) resources, but minimal I/O. 
In single processor mode then, hardware needed to support a Gaussian installation would be the fastest 
machine with the most memory that one can afford per processor, without regard for memory or net-
work speed. Choices would range from a stand-alone personal computer or workstation to a loosely cou-
pled cluster of many nodes and cores, each with sufficient memory to support an instance of Gaussian 
running independently. The licensing details of proprietary software per core or per cpu then will limit 
the number of copies of Gaussian that can be run simultaneously, but each run of the code will finish 
in optimal time.

For a single chemist running multiple jobs, or multiple students running a single job, having suf-
ficiently rapid response will require enough computing to handle the “throughput” of many jobs rather 
than needing to apply multiple processors to accelerate the completion of any given large computation. 
The total computing infrastructure needed to support a Gaussian installation, therefore, depends on the 
number of jobs to be run and the average runtime of each job. On a single laptop/desktop/workstation 
computer, having the faster processor and most memory may keep a small research effort fully produc-
tive. For a class of users, a multiprocessor server with substantial core memory to enable multiple jobs 
to run at the same time would suffice. Faster turnaround times are achieved by getting more processors, 
assuming the cost of acquiring additional licenses for the software is within the budget. While Gaussian 
has some parallel capability, it is rather modest at the time this chapter is written, and few users report 
substantial benefit for single runs on multicore/many-core computer architectures.

Any given run of MOPAC has lower memory requirements along with a light I/O load when compared 
to Gaussian, but it still requires substantial computing resources. MOPAC, therefore, is best imple-
mented on single machines, or very loosely coupled clusters of single machines. Again, throughput—
running as many jobs as possible in the least amount of time rather than getting any single job to run 
faster—is achieved by having more processors available to distribute the workload of the multiple jobs. 
As with Gaussian, a well-provisioned individual computer could be fine for a small effort. Large num-
bers of runs by a single user or a class of students would require many more cores, so a multicore server 
or massive cluster with sufficient memory per core would be called for.
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While the cost may be attractive for GAMESS, among the three exemplars, it has the greatest need 
for fast communication between the processor and disk memory, since it needs really fast disk access 
for scratch space. The computing requirements are still substantial, but each run requires less memory 
than other software packages. If run on a server with slow disks, even for smaller jobs, actual time to 
completion for multiple jobs running at the same time can be compromised.

29.2.2  Locality and Control

Besides the actual hardware decisions to support a satisfactory experience, there are other issues that 
impact getting real work done in real time, and whether the chemist must also augment deep knowledge 
of DFT and molecular orbital theory with substantial system programming, hardware optimization, 
HVAC, electrical loads, and grant writing.

For a modest research effort, “having your own” computing resource that is managed by the chemist 
could be sufficient. The user has universal access to the use of the computer as much or little as needed at 
any hour of the day. There are many chemists who resign themselves to having to run their own cluster. 
However, for them, the frustration of becoming more of a computing administrator than a chemist must 
be outweighed by maintaining control over their own computing resources. For a shared resource at the 
department, lab, or campus level, one has to trade away full-control accessibility for the lower workload 
and stress of maintaining the computing resources as an operational tool, including acquiring space 
in a building, system maintenance, storage backups, power, and cooling requirements. Many chem-
ists engaged in education and research adopt a hybrid approach, having one computing infrastructure 
for their research and another for the class computing laboratories and exercises. Again, this usually 
requires one or more trade-offs starting with choice of software, size of the problems to be addressed, 
and expected time to completion.

A growing need is for more and more long-term storage of the results of one’s computations. The 
National Science Foundation (NSF) is now mandating, for instance, a data management plan for all of 
its grants that requires grantees to assure long-term access to the results of funded research. In similar 
fashion to the raw computing needs, the need for storage and backup and online repositories is large 
and growing and has the same local versus control trade-off. The costs of providing this storage, with 
rare exception, have not been adequately addressed by most individuals, departments, or organizations.

A growing solution to the problem of acquiring substantially more computing resources to imple-
ment and support a computational chemistry effort has been to access resources on a network. This 
solution can range from free resources funded by the NSF for research and class accounts for educa-
tion (http://www.gridchem.org, http://www.xceded.org) to cloud resources from commercial pro-
viders (e.g., http://www.amazon.com/ec2/). While ceding most control to someone else to provide the 
resource, these remote resources give substantial flexibility to grow or contract computing resources. In 
the case of NSF resources, many of the software licensing issues have been addressed, but commercial 
providers have more layers of licensing to go through, depending on the choice of software.

29.3  Computation in Chemical Education

Computational chemistry has transitioned from the developmental stages to become an essential tool 
used to understand the structure, reactivity, and spectroscopic details of the new compounds. It is fit-
ting that chemistry education should mirror this (Gilbert, 2002). In the chemistry classroom, computa-
tion ranges from various forms of modeling (molecular and mathematical modeling, solving complex 
simulation problems, and molecular visualization/animation) to text and classroom supplements 
(homework and testing, computational tools, demonstrations and simulations, and interactive figures). 
Computation appears in all aspects of teaching laboratories: prelaboratory assignments (discussion of 
theoretical concepts and the proper use of equipment), simulated experiments and instrument use, 
and the use of computational tools for data analysis. The use of computers and electronic media for 
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data storage/sharing in the academic laboratory as a replacement for the traditional written laboratory 
notebook is not yet commonplace, but it seems inevitable (especially given the NSF mandate for data 
management plans and the impending demand to train health-care professionals for mandated use of 
electronic medical records).

The use of computation helps students understand chemistry, keeps them more engaged, and takes 
advantage of their accumulated interest and familiarity with technology.

The quality and quantity of computational work by the student continues to increase as the available 
technology has become more robust. Today, students are using supercomputers, workstation clusters, 
desktop and laptop computers, classroom “clickers,” “smart” phones, and tablet PCs. Common compu-
tational tools are readily available with access to classroom software often controlled through a “learn-
ing management system” (LMS), a local installation, or a third-party website. The software may be 
provided by the publisher of a specific textbook or from a more generic commercially available package. 
Inexpensive software is available in “special issue software collections” from the Journal of Chemical 
Education’s JCE software. Some web-based software is available for use at no charge. Appropriate sites 
can most readily be found through a hosted collection such as the Computational Science Education 
Reference Desk (CSERD) or the Chemistry Education Digital Library (ChemEd DL) pathways to the 
National Science Digital Library (NSDL) (Sendlinger, 2008).

Computational chemistry education involves both pedagogical (chemical education) and dis-
ciplinary (computational chemistry) focus. In chemical education, developments include new 
approaches to the use of existing software, models, apps, visualizations, and other tools to enhance 
the educational environment. These materials, usually prepared by others, often include visualiza-
tions of phenomena occurring at the atomic or molecular level that cannot be easily relayed by other 
means (Gordon, 1995). In the arena of computational chemistry, the aim is to enable students to 
learn the process of using software to build models. Workshops and websites are available for this 
purpose (Sendlinger, 2011). The computational tools used usually include spreadsheets, mathemat-
ics software, and molecular modeling programs. The details of model building might require cod-
ing cells in a spreadsheet, writing a subroutine or complete program in a programming language, 
or learning to use advanced graphical user interface (GUI)–enabled molecular modeling software. 
Students building models also should learn about verification, validation, and accreditation (VVA) 
of their work. The verification process involves checking that the model is correct, runs properly, 
uses the correct algorithm, etc. Validation is the process of comparing calculated and experimental 
data. Accreditation insures that the model achieves the educational purpose and is appropriate for 
the intended audience.

29.3.1  Computational Chemical Education

A vast number of websites have been created to assist the chemistry educator. To help the educator 
find quality websites, the NSDL bills itself as the “nation’s online portal for education and research on 
learning in Science, Technology, Engineering, and Mathematics (STEM)” (Zielinski, 2009). A wide 
variety of Pathway Partners of the NSDL focuses on providing content to specific types of user com-
munities. A key resource for computational chemistry materials is the CSERD (Sendlinger, 2009). 
The goals of CSERD include assisting students in learning about computational science and helping 
teachers incorporate effective material into the classroom. CSERD account holders can suggest addi-
tions to the computational resources collected and can also sign up to become reviewers. Many of the 
resources include these reviews, based on the VVA process. The collection can be browsed by several 
means, and the search functionality offers a quick and convenient method for finding appropriate 
computational resources.

One example is the molecular model for an ideal gas. The corresponding CSERD site provides a 
description of the applet along with detailed reviews. In a classroom or laboratory setting, the instruc-
tor (with an LCD projector) or individuals/groups of students with computers can be assigned to collect 
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volume (V) data while varying the pressure (P), number of particles (N), particle velocity (v), or the 
temperature (T). Appropriate graphs of the data reveal V ∝ 1/P under conditions of fixed N and v, V ∝ N 
under conditions of fixed P and v, and V ∝ v2 (or V ∝ T) under conditions of fixed P and N. Thus, Boyle’s, 
Avogadro’s, and Charles’s law can all be deduced. Combining these relationships with the postulates of 
an ideal gas, a derivation of PV ∝ nT can be completed. Instead of being told, the mathematical relation-
ship in each law, the students have had the opportunity of discovering these laws for themselves. Recent 
work provides evidence for increased student conceptual understanding through the use of this type of 
inquiry-based approach (Bridle, 2012).

The American Chemical Society (ACS) provides the ChemEd DL as a Pathway Partner of the NSDL 
(Moore, 2009). This pathway includes resources from the JCE Digital Library, the ACS Education 
Division, and the ChemCollective project. High school lesson plans that include online resources, a 
Moodle-based course management system where personalized resources can be added, a question data-
base for tests and homework, and a wide variety of visualization resources are available.

29.3.2  Computational Chemistry in Education: Molecular Modeling

Using available software, students build their own molecular models in order to better understand 
chemistry in both classroom work and research projects. Students can investigate energy differences 
of various molecular conformations, calculate and visualize dipole moments, look at molecular orbital 
energy levels and shapes, visualize electron distributions and electrostatic potentials to investigate 
reactivity, calculate vibrational and UV–Vis transition frequencies, identify transition structures and 
reaction pathways, determine NMR chemical shifts and coupling constants, etc. Educational uses of 
molecular modeling allow the student to visualize key chemical concepts that are difficult to share in 
another manner. Molecular modeling has become another tool to assist chemists in doing what they do, 
just as various forms of spectroscopy became important tools in the mid-twentieth century. Compared 
to spectroscopic techniques (Alexander, 1999), computation is a recent newcomer to the mix (McDougal, 
2012). Technological advances such as WebMO software that uses the web browser as a computational 
interface have made research-grade computational tools readily available.

An example of the educational use of molecular modeling appropriate for general chemistry includes 
investigating different bond types. Geometry optimization followed by calculation of the electron den-
sity for H2 (covalent bonding), HF (polar covalent bonding), and LiH (ionic bonding) provides the 
results summarized in Figure 29.1.

After learning about covalent, polar covalent, and ionic bonding, students can easily perform the 
calculations and visualize results such as those in Figure 29.1 to cement this knowledge and deepen their 
understanding. Visual learners also greatly benefit from this approach.

Another example of molecular modeling suitable for use in an organic chemistry class would be to 
calculate potential energy conformational profiles as in an examination of the rotational barrier for the 
C2–C3 bond in n-butane. The calculated results at the density functional theory (DFT) B3LYP/6–31G(d) 
level are shown in Figure 29.2 (experimental results in parentheses, units of kcal/mol).

H-H H-F H-Li

FIGURE 29.1  Electron density calculated using semiempirical PM3 and visualized at an isovalue of 0.01 e−/Å3.
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Students at the undergraduate level can also become involved in research projects that utilize compu-
tation. For example, an undergraduate research student attempted the synthesis of I but considered that 
tautomer II might also be produced during the synthesis (Knight, 2007). A clear distinction between 
these tautomers (see Figure 29.3) is difficult to determine from elemental analysis, nuclear magnetic 
resonance (NMR) spectroscopy, and infrared (IR) spectroscopy.

A molecular model of each tautomer was constructed and the energy was minimized using B3LYP/6-
31G(d). The energy minimization was followed by a vibrational calculation at the same level to assure 
that a minimum energy structure had been attained. The results showed that I was more stable than II—
approximately 0.9 kcal/mol lower in energy than II. Theoretical calculations of NMR and IR spectra for 
I at the same level were useful in interpreting the experimental spectra.

Suitable single crystals of the compound were obtained and an x-ray diffraction dataset was collected. 
That structure analysis, available free of charge from the Cambridge Crystallographic Data Centre, indi-
cated that I was the preferred structure. In this case, an assumption was made that results of molecular 
modeling for a single gaseous molecule and x-ray diffraction for a solid crystal will agree with each 
other. This is not always true. However, molecular modeling can be used as one of the tools just as NMR, 
IR, etc., to help determine the outcome of a chemical synthesis.
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29.3.3  Computational Chemistry in Education: Mathematical Modeling

Pedagogical applications of mathematical modeling in chemistry include statistical analysis of data, 
database searching, and reaction mechanisms in chemical kinetics. The software programs associated 
with these topics range from highly specialized programs to simple spreadsheets. Student involvement 
with this software can be a straightforward use of preexisting applications to record data and print 
results, or it can involve having students create an application from “scratch.”

A mechanism, sometimes referred to as a chemical reaction sequence (CRS), consists of a theoretical 
series of elementary steps that describes the interactions of the various species involved in the chemi-
cal reaction. Based on the law of mass action, differential rate equations can be written for each spe-
cies involved in the CRS. To decide whether or not a proposed CRS is an acceptable description of the 
chemical reaction, either the set of differential rate equations needs to be converted into concentration–
time information that can be compared directly with experimental data or the experimental dataset 
needs to be converted into rate information using a mathematic method or a graphical technique (e.g., a 
Lineweaver–Burk plot).

There are two major approaches used to convert the differential rate equations from a CRS into the 
time dependence of concentration. The first approach is to either derive the integrated form of the dif-
ferential form or locate the solution in a suitable reference (Andraos, 1999, 2008). Robust mathematics 
programs such as Mathcad, Mathematica, MATLAB®, and Sage have various differential equation solv-
ers that might be successful. Some of these solvers are capable of working with systems of stiff differ-
ential systems. The second approach is to solve the differential equations using numerical integration. 
Numerical integration can be performed using any of these four mathematics programs or for simple 
systems, using a spreadsheet.

There is another group of programs (e.g., Vensim PLE, Berkeley Madonna, and STELLA) known as 
system dynamics software that is capable of performing numerical integrations. These programs range 
from being a free download to being rather expensive. Some of these programs are able to handle sets of 
stiff differential equations. The numerical integration methods generally range from Euler’s method to 
the Runge–Kutta 4 method and results are available in graphical and tabular formats. The modeling of 
the differential equations usually uses rectangles (known as box variables, stocks, or reservoirs) to rep-
resent quantities of substances, circles (known as variables or constants) to represent time independent 
quantities, arrows (known as connectors) to represent mathematical connections of various quantities, 
and a pipe/valve symbol (known as a rate or flow) to represent the flow of substances into or out of box 
variables. Most mathematical programs, spreadsheets, and system dynamics programs permit adding 
scroll bars (or sliders) to control the values of the rate constants kij so that the values can be changed 
conveniently for instructional purposes or for matching experimental data to the theoretical results.

The system dynamics software can be used to describe complex kinetics systems such as competing 
reactions, higher-order reactions, Michaelis–Menten systems, and cyclic reaction systems such as the 
Belousov–Zhabotinskii reaction. In addition, numerical integration calculations can be used to generate 
acid–base titration curves, perform general and limiting reagent system stoichiometric calculations, and 
predict various thermodynamic properties (U–U0, CV, S, A) using the Debye theory for crystals contain-
ing monatomic species. There are many more computational tools available to the researcher in chemi-
cal kinetics. Often, these are based on Monte Carlo methods involving probabilities of energy, position, 
etc. Available as a free download, Chemical Kinetics Simulator is a software package that is based on a 
stochastic algorithm and is capable of handling stiff systems. This program can model complex reactions 
such as explosions, systems in which volume changes occur during the reaction, and very small systems.

As one example, consider the use of system dynamics software to model a two-step consecutive, 
reversible unimolecular reaction. Such a reaction is described as compound A being converted into 
compound B, then compound B being converted into compound C. This two-step mechanism would be 
described by the rate equation shown in Figure 29.4, where the equations for the time dependencies of 
A, B, and C are as described.
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Although available in the literature, the integrated concentration–time equations are rather com-
plicated. However, the system dynamics model is straightforward, as seen in Figure 29.5. This system 
dynamics model can be used to describe less complicated systems by setting the values of the respective 
rate constants equal to zero. For example, setting kBC = kCB = kBA = 0 gives the model for a unimolecular 
forward reaction A to B. Setting kCB = kBA = 0 gives the model for a consecutive, nonreversible unimo-
lecular system A to B and B to C. Or setting kBC = kCB = 0 gives a reversible CSR system A to B and B to 
A for which equilibrium studies are possible.

Note that the integrated concentration–time equations become more complicated as the number of 
steps in the consecutive reaction system increases. Analytical expressions for the integrated rate laws 
are available for n consecutive steps, but the equations cited in the literature are difficult to use and often 
contain typographical errors. It is easy to add additional sets of reservoirs, constants, and flows to the 
system dynamics model to describe the exact system under consideration.

29.4  Chemical Principles of Absorption Spectroscopy

The use of ultraviolet–visible (UV–Vis) spectroscopy is one of the oldest forms of characterization of 
compounds. In the visible range (400–800 nm), the absorption of light gives rise to complimentary colors 
characteristic of dyes and pigments. The absorption of both visible and ultraviolet light (200–400 nm) pro-
vides a means of nondestructive characterization that requires only a very small quantity of a compound 
to yield both quantitative and qualitative information. Two of the major disadvantages of characteriza-
tion by UV–Vis spectroscopy are the low resolution of the observed spectrum and the relatively poor fit 

d[A] = – kAB[A] + kBA[B]
dt

d[B]
dt

kAB[A] – kBA[B] – kBC[B] + kCB[C]=

BA
kAB

kBA

C
kBC

kCB

d[C]
dt

kBC[B] – kCB[C]=

FIGURE 29.4  Mathematical relationships for modeling a simple CRS system. The use of [] indicates the concen-
tration of a value: [A] = concentration of A.
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between experimental observation and theoretical prediction. These limitations are especially evident 
when compared to the advances made over the past 50 years in matching experimental spectra and 
theoretical simulations for other common spectroscopic techniques such as IR, Raman, and nuclear 
magnetic resonance.

The chemical basis of the UV–Vis characterization begins with the chromophore. Organic 
chromophores possess conjugated pi systems that can readily absorb UV–Vis energy light. Inorganic 
chromophores may also possess d/f-type electrons that can accomplish the same result. In either case, 
the general process of the UV–Vis experiment is that the incident light results in promotion of an electron 
in the chromophore from a position of low energy known as the ground-state electronic configuration 
into a higher-energy electronic configuration, the excited state. The relaxation of the excited state to the 
lower-energy ground state is sometimes associated with the emission of UV energy that gives rise to two 
other spectrophotometric characterizations (fluorescence and phosphorescence). The characteristics of 
those relaxation processes are associated with many fundamental studies of biological systems.

A particular chromophore is associated with an ability to absorb light of a particular wavelength. But 
structural alterations to the chromophore can cause relatively large alterations to those initial excitation 
wavelength expectations. For example, this might be brought about by extending the length of the pi 
system in an organic system or changes of the conformation of the chromophore.

The chemical problem of understanding the UV–Vis process is further compounded by the fact that 
the absorption of light is most often measured for compounds in solution. This leads to slight varia-
tions in absorption wavelengths due to the interactions of solvent molecules with the solute molecules 
that are absorbing the light. It also results in the presence of multiple conformational structures of the 
same compound in solution at the same time, where each conformer can have a different absorption. 
And a final consideration is that compounds do not absorb light with equal efficiency. Experimentally, 
the efficiency with which a compound absorbs UV–Vis light is a quantifiable measure called molar 
absorptivity.

The absorption of light in organic compounds involves molecular orbitals, where electrons from 
highest energy–filled molecular orbitals (HOMO) or orbitals with energies just below that of the 
HOMO (designated as HOMO-1 or HOMO-2, etc.) are promoted to the lowest energy–unoccupied 
molecular orbital (LUMO) or orbitals just above the energy of the LUMO (designated as LUMO+1, 
LUMO+2, etc.). For organic compounds, this generally involves molecular orbitals associated with pi 
bonds and lone pairs.

29.4.1  Computational Approaches to Predicting UV–Vis Spectra

Initial approaches to the prediction and correlation of observed UV–Vis spectra to chemical struc-
tures were developed in the 1950s and are based entirely on experimental correlations. Once a common 
feature of intermediate level spectroscopic analysis course texts (Shriner, 1998; Silverstein, 1991), the 
results of chemists like Woodward, Hoffman, and Smith established nominal excitation values for vari-
ous structural organic chromophores (e.g., dienes, enones, and benzenoid aromatic compounds) and 
a set of rules for increases or decreases from those values based on well-defined placements of specific 
auxochromes, the extension of the conjugated systems, and corrections for use of different solvents. 
These correlation rule predictions are still the best predictor for simple organic compounds of an abso-
lute value for the key characteristic feature of the UV–Vis spectrum of a compound, the lambda max. 
However, the use of these rules cannot be extended to new systems.

One of the two most widely used computational methods to predict UV–Vis spectra was developed 
initially by Zerner and is called the ZINDO method (Ridley, 1973). The ZINDO method is a semiem-
pirical approach based on application of molecular orbital theory. The primary strengths of the ZINDO 
method for absorption spectroscopy are its speed and reliability. With greater speed comes the abil-
ity to predict values for large molecules in reasonable time periods (minutes to hours using common 
desktop single-core machines). The primary computational limitation of the ZINDO method is that 
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it is applicable only to molecules composed of atoms for which spectroscopic INDO/S parameters are 
provided (H, Li, B, C, N, O, F, P, S, Cl, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). A recent improvement of 
the ZINDO/S method, ZINDO-MN (Zerner, 2011) provides enhancements for solvent molecule interac-
tions, partial charges, and inclusion of better parameters for oxygen.

The other commonly used computational method for predicting UV–Vis spectra is the time-
dependent DFT, called TD-DFT (Lewars, 2011; Marques, 2003). TD-DFT is often considered to be an ab 
initio method, but that it is not a true ab initio method is important in the context of spectroscopic pre-
dictions. TD-DFT does make certain assumptions in order to make the computation effort manageable. 
Key among these assumptions is distinguishing between valence electrons that are involved in bonding 
and the core electrons that are not involved in bonding. As the principal quantum number of an atom 
increases, the ratio of valence to core electrons exhibits a significant decline. Since it is generally agreed 
that the UV–Vis excitation involves the valence electrons, this is not considered to be a significant issue. 
In most respects however, TD-DFT is considered to be an ab initio method. Since TD-DFT is not limited 
to specific atoms, it is not limited by molecular composition. Its primary limitation is that it is a more 
expensive computation (requiring hours to days with a desktop computer).

29.4.2  Computational Chemistry Impact on Use of UV–Vis

Despite the elegance and sophistication of the semiempirical and ab initio computational methods, the 
older empirical rules are superior for accurately predicting the lambda max with simple systems, as, for 
example, with acetophenones (Doig, 2008). The ZINDO and TD-DFT methods are both generally reli-
able in correctly predicting relative lambda max absorbances of a related series—although the base pre-
diction of wavelength is expected to be shorter than the experimental value in most cases because of a 
systematic overestimation for the different in energy between the HOMO and LUMO orbitals. However, 
there are cases where these methods result in predictions of longer wavelength, illustrating the need to 
calibrate the results to known values for any computational methods.

Both computational methods continue to be used effectively to predict UV–Vis spectral data in a 
variety of interesting applications ranging from characterizations of potential new dyes (Fleming, 2011) 
to art history (Fantacci, 2010) to the design of tunable initiators for radical polymerization processes 
(Jankowiak, 2009). There are numerous studies where either method has been shown to be effective; one 
such example dealt with substituted coumarins, compounds used as laser dyes (Xu, 2009). One issue in 
considering the choice of ZINDO or TD-DFT is intramolecular charge transfer (ICT). The successful 
study of oxazine dyes using TD-DFT is particularly illustrative of the difficulty in dealing with ICT and 
the need to carefully consider the possibility of failure of the TD-DFT method in such cases (Fleming, 
2011). Other systems with large ITC characteristics are dealt with adequately with ZINDO, as in the 
case of 5-(3-indolyl)oxazoles (Grotkopp, 2011) where the structure shown in Figure 29.6 had a calcu-
lated absorbance predicted at 344 nm and an observed absorbance at 306 nm. The HOMO coefficients 
were most centered the oxazole extending into the indole ring, and the LUMO coefficients were most 
centered on the aromatic ring attached to the indole at the 2 position extending into the indole ring, 
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FIGURE 29.6  Substituted 5-(3-indolyl)oxazole.
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indicative of ITC. Numerous studies that provide direct comparisons of TD-DFT and ZINDO methods 
generally have led to the following conclusions. ZINDO is preferred when speed is important, the major 
expected transitions include n to p* or p to p* transitions, and ITC is a dominant factor. TD-DFT is 
preferred when economy is not essential, if ITC is not problematic and a close fit to experimental data is 
desired, or if atom parameterization is not available in ZINDO.

UV–Vis is most useful in structural characterization of species that are found in solution but not 
easily isolated or stable out of solution. Figure 29.7 illustrates structures associated with two recent 
examples of this application. The first example is a use of ZINDO to differentiate intermolecular charge 
transfer alignment of electron donor in a species like pyridine with an electron acceptor like chloranil 
(Pandey, 2011). In this example, two prominent coordination geometries are proposed, a T-shaped 
structure where the primary electron donation from pyridine is derived from the lone pair (n type) 
electrons on nitrogen and the other geometry largely results in electron donation from the aromatic 
ring electrons (p type). As part of the solution to this differentiation, the authors compared observed 
and computationally predicted transitions related to excitation of n and p electrons from pyridine to the 
LUMO π* orbitals of chloranil (Pandey, 2011). These results (observed transitions 374 nm for π to π* and 
466 nm for n to π*, T-shaped predicted absorptions 310 and 448 nm, cofacial predictions 380 and 435 
nm) pointed, unexpectedly, toward the cofacial geometry. The computational work used self-consistent 
reaction field (SCRF) to model the influence of solvent on the absorption predictions.

In another application for proof of structure, the ZINDO-MN program available in Gaussian was 
used in order to identify a transient chromophore generated in the oxidation of para-aminophenol 
(Lerner, 2011). This required predicted absorptions of four proposed structural candidates for compari-
son to the observed solution chromophore, Chromogen 550. The UV–Vis predictions (550 and 366 nm) 
were a far better fit for both the longer and shorter wavelengths absorptions (experimentally observed 
values were 550 and 380 nm; the next closest computational fits were for a different proposed struc-
ture, 436 and 343 nm). The problem was compounded by the fact that there are actually two different 
structures present in solution, both of which have absorbance at 380 nm. The less stable chromophore, 
Chromogen 550, had absorptions at 550 and 380 nm.

The final research application involves the use of computational ZINDO UV–Vis spectral predic-
tions as a key element in the de novo synthesis of new materials designed for use as photovoltaics 
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used in solar energy production (Boyle, 2011). These authors performed a computational investigation 
of 132 monomers that could be cross-coupled to produce over 90,000 oligomeric copolymers with 
potential application as photovoltaic materials. The compounds were refined geometrically using a fast 
empirical MMFF94 optimization, then by a PM6 semiempirical method. The authors noted that a more 
robust geometry optimization might have yielded better UV–Vis predictions because the semiempiri-
cal methods generally yield geometries that are underrepresentative of the extent of pi conjugation 
(the geometries are not as planar as seems evident based on experimental data). However, a subset of 
60 oligomers were used to calibrate the UV–Vis spectral predictions to known experimental absorp-
tions (∼ +40 to −4 nm variance, with only two predictions of lower energy than the experimental val-
ues) indicating that the computational predictions could be used as a starting point to guide selecting 
the best candidates for synthetic consideration. As interest in materials science grows, the demands for 
improved computational methods to accurately predict molecular properties such as optical absorp-
tion will increase.

29.5  Computational Medicinal Chemistry

The development of new, safe, and effective drugs is one of the most interesting and challenging areas 
of research today. Scientists involved in drug discovery are at the interface of chemistry and the bio-
medical sciences. Medicinal chemistry is therefore inherently an interdisciplinary field. Medicinal 
chemistry includes many of the traditional branches of chemistry (organic, inorganic, physical, ana-
lytical, and biochemistry) coupled with pharmacology, physiology, anatomy, statistics, biophysics, 
and computer sciences. Historically, in collaboration with pharmacologists, medicinal chemists were 
primarily synthetic organic chemists who prepared novel molecules with desired biological activities. 
Today, medicinal chemistry may be more broadly defined to include virtually any chemically oriented 
endeavor related to drug discovery. Pharmaceutical companies, however, still may divide scientists into 
organizational sections emphasizing their specialties.

29.5.1  Critical Issues in Medicinal Chemistry

The challenges that stand between the preparation of an investigational new drug (IND) to a new drug 
approval (NDA) application and final approval by the Food and Drug Administration (FDA) are daunt-
ing. Traditionally, thousands of compounds are prepared and screened for biological activity against 
some specific disease target(s). Structural modifications are made, and the compounds are then sub-
jected to a new round of biological tests. The most active, least toxic, and pharmacokinetically viable 
compounds move into animal model studies and ultimately into human clinical trials. Approximately 
14 years pass from laboratory inception to market availability. Moving a chemical entity from the labo-
ratory to human clinical trials is no guarantee that the drug candidate will be approved. Many drug 
candidates fail in clinical trials, most typically due to poor pharmacokinetic profiles. Other factors that 
impact the rate of attrition may include safety concerns, toxicity, poor patient compliance, and corpo-
rate decisions (Hale, 2005).

The costs of successfully bringing a drug from the laboratory to the market are simply staggering. In 
the United States, for example, approximately $800 million was spent in 2001, and this price escalated 
in 3 years by more than $100 million (Kola, 2004). Prior to the 1970s, the pharmaceutical industry was 
built on a model where random screening was essentially the only method available. Medicinal chemists 
would modify functional groups and/or the molecular skeleton of lead compounds through a systematic 
trial-and-error approach, and the compounds would be tested in animal model studies by pharmacolo-
gists until clear correlations between structure and biological function were established. The process 
is iterative and time-consuming. For example, the sulfa drugs originally developed in the 1930s in 
Germany and later in France established the optimal molecular geometry (Hager, 2006): a sulfonamide 
group that was bound to an aromatic ring with a para-amino group (Brunton, 2010). Figure 29.8 shows 
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the structure of sulfanilamide and p-aminobenzoic acid (PABA). Sulfanilamide resembles PABA and 
prevents this metabolite from being used in the synthesis of folic acid. Microorganisms generate their 
own folic acids, whereas humans get folic acid through the consumption of foods.

29.5.2  Drug Design in Medicinal Chemistry

From the perspective of the practicing medicinal chemist, the combination of the 3D arrangement of 
functional groups of a molecular structure that is required to produce the desired biological response 
is known as the pharmacophore. The concept was developed by Paul Ehrlich who many considered to 
be the father of medicinal chemistry. The knowledge gained about the correlation of biological activity 
with molecular structure was important. As the biochemical basis of drug action became better under-
stood over time, a more “rational” approach to drug discovery was undertaken.

The objective of rational drug design was to develop a drug by understanding the mechanism of action. 
A classic example is the discovery and development of captopril (Capoten®), the first FDA-approved 
angiotensin-converting enzyme (ACE) inhibitor (Cushman, 1977; Ondetti, 1977, 1982). Captopril along 
with the many fast follow-up drugs revolutionized hypertension therapy. ACE, a Zn(II)-containing 
enzyme, is responsible for the peptide bond cleavage of two terminal amino acids of the decapeptide 
angiotensin I to yield the octapeptide angiotensin II. Angiotensin II is a potent vasoconstrictor. In the 
1970s, it was hypothesized that inhibition of angiotensin II would be an effective treatment for hyperten-
sion and cardiovascular diseases. The story of the development of captopril is an exciting precomputer 
exercise in rational drug design (Silverman, 2004). At the Royal College of Surgeons, Vane, Ferreira, and 
Bakhle discovered that the venom of the Brazilian pit viper (Bothrops jararaca) was a potent vasodila-
tor (Bakhle, 1968, 1969; Ferreira, 1971). At the University of North Carolina at Chapel Hill, research 
by Byers and Wolfenden demonstrated that (R)-2-benzylsuccinic acid was an inhibitor of carboxypep-
tidase A (Byers, 1972, 1973). Ondetti, Cushman, and coworkers at Squibb (now Bristol-Myers Squib, 
BMS) skillfully merged the knowledge of small peptides ACE inhibitors with small molecule inhibitors 
of carboxypeptidase A to generate captopril (Figure 29.9).
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FIGURE 29.8  Sulfanilamide, an antimetabolite and the first of the sulfa drugs, is shown in a side-by-side com-
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FIGURE 29.9  Captopril (Capoten®), introduced in 1978, was the first FDA-approved angiotensin-converting 
enzyme (ACE) inhibitor. The drug works by inhibiting ACE, which is the enzyme responsible for the conversion of 
angiotensin I to angiotensin II. The latter is a potent vasoconstrictor, and its use ushered in a new age in hyperten-
sion therapy.



29-14 Computational Science and Graphics

29.5.3  Computational Chemistry in Drug Design

Any methodology that would allow pharmaceutical companies to bring a drug to the market more 
rapidly has huge financial rewards as well as the obvious benefits of a potential new therapeutic treat-
ment for patients. Since the first commercial computers became available in the 1950s, there has been an 
explosion of computer-based applications in chemistry. Most of the fundamental concepts of quantum 
mechanics (QM) and molecular mechanics (MM) were developed or outlined in the 1920s and 1940s, 
respectively. The methodology of treating a system of particles classically with mathematical physics 
was worked out in the days of Sir Isaac Newton, and this serves as the foundation of modern molecular 
dynamics (MD) simulations.

The ability to solve complex equations through computations truly has ushered in a new age in science, 
and the impact in drug discovery has been no less dramatic (Bowen, 2004). The field of computer-assisted 
drug design (CADD) emerged in the 1970s with the introduction of quantitative structure–activity rela-
tionships (QSAR) by Corwin Hansch (Hansch, 1995). Currently, the in silico–based methods available 
to medicinal chemists are far-reaching, but drug discovery is ultimately an experimental science involv-
ing in vitro biological assays, in vivo animal testing, human clinical trials, and long-term postapproval 
studies. Computer-based methods are clearly reducing experimental efforts, but not replacing them. It is 
better to view CADD as an exciting and robust set of tools to help medicinal chemists understand drug–
receptor interactions at the molecular level and make predictions about biological activity.

29.5.4  Pharmacophore Development and QSAR

The ability to understand interactions at the molecular level with computer-based methodologies is the 
basis of CADD. There is a full range of potential strategies that may be useful when approaching a drug 
design problem. The specific methods that may be used range from traditional computational chemistry 
(e.g., MM, QM, and MD simulations, which are described elsewhere in this chapter) to information-
based methods (e.g., QSAR, 3D-QSAR, and database searching that are described herein). In many 
cases, the methodologies that are used to tackle a problem are a function of the scientists who have been 
hired, their backgrounds, resources, and available data. The corporate cultural environment of each 
pharmaceutical company also plays a role. For example, Merck seems to have a greater overall focus on 
structure-based drug discovery approaches compared to Pfizer, where the focus has been on the devel-
opment of leads generated from high throughput screening with subsequent synthetic modifications.

Biological activity induced by a drug is a direct result of its molecular structure and ability to inter-
act with the target macromolecule. In addition to the size and shape of the drug, the combination of 
organic chemistry functional groups and their 3D orientation when interacting with a macromolecular 
target is responsible for the biological activity of the vast majority of drugs. This simple yet powerful 
idea of the pharmacophore was first proposed by Paul Ehrlich as the molecular framework that carries 
(phoros), the essential features responsible for a drug’s (pharmacon) biological activity (Ehrlich, 1909). 
Contrast this original definition to a more modern one as presented by Peter Gund who suggested that 
the pharmacophore is a set of structural features in a molecule that is recognized at a receptor site and 
is responsible for that molecule’s biological activity (Gund, 1977). The definition of pharmacophore has 
been generalized in recent years to avoid the use of specific functional groups and highlighting regions 
of electron density, H-bond donors, H-bond acceptors, etc.

The development of a hypothesis of drug action as a function of molecular structure is the basis of 
structure–activity relationships (SAR), where structural modifications are made systematically to exist-
ing lead compounds to generate new compounds. The new compounds are then tested in animals for 
biological activity. The process, as indicated earlier, was the foundation of drug discovery, and it was 
only restricted to the imagination of medicinal chemists and the scientific limitations of the specific 
times. Knowledge of SAR is critical, but the data are qualitative or semiquantitative at best. It was in 
the 1960s that Corwin Hansch developed a simple yet powerful mathematical method that correlates 
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biological activity with mathematical equations (Hansch, 1969). His work quantified SAR and is known 
as QSAR. The QSAR approach introduced the age of CADD in the 1970s.

The basic idea behind QSAR is the recognition that molecular structure determines the physical proper-
ties of a compound. Since the biological activity of a compound is a consequence of its molecular structure, 
it should also be related to the physical properties. For the correlation and prediction of biological activi-
ties, some physical properties are more important than others. For example, the narcotic action of a set 
of compounds on tadpoles was correlated to the oil–water partition coefficients, P, by Meyer and Overton 
over a century ago. There is a thermodynamic tendency of a compound to distribute itself between the two 
phases of a water–hydrocarbon mixture. The partition coefficient, P, (where P = [drug]organic/[drug]aqueous) 
is the ratio of the drug concentration in an organic phase compared to an aqueous phase. For ionizable 
compounds, the situation is more complicated and a function of the pH of the medium.

The partition coefficient is an equilibrium constant and therefore related to the differences in the 
Gibbs energy at standard state conditions for the phase distribution. The relationship between K and P 
is given by the famous equation, ∆G° = −2.303RT log K, where K is P. The more positive the value of the 
partition coefficient, the greater is the tendency for a drug to move from the water phase to the hydro-
carbon phase. Typically, log P is used rather than P because of the direct relationship to the Gibbs 
energy. Octanol has been the organic solvent of choice for many years. Instead of using log P values, 
a substituent hydrophobicity constant π is often used. It is defined as the difference between the log P 
values of the parent compound and a derivative of the parent structure, where a functional group has 
replaced a hydrogen atom (πx = log Px − log PH). Positive values of π mean that the derivative is more 
hydrophobic than hydrogen, while negative values of π mean that the derivative is less hydrophobic 
than hydrogen. In this formulation, it is straightforward to use the π values in an additive scheme 
along with the original log P value of the parent compound to estimate the log P of a new compound.

Hansch recognized this term as a physical observable that could be related to the hydrophobic nature 
of a drug’s ability to cross cell membranes and/or interact with hydrophobic regions within the receptor. 
Other important factors are sterics and electrostatics. The original Hansch approach relied on the data 
generated by physical organic chemists who examined steric effects (Taft Es parameters) or electrostatic 
effects (Hammett σ parameters). The Hansch equation describes the biological activity as a function 
of sterics, electrostatics, and hydrophobicity (biological activity = f [sterics, electrostatics, hydropho-
bicity]). This methodology relies on the use of statistical correlation methods (regression analyses) to 
develop valid and predictive equations.

The QSAR method has been widely used since the 1970s. Consider the example of hydrochlorothia-
zide. Hydrochlorothiazide is a specific example of a thiazide diuretic. The drug is administered orally 
and used extensively in the treatment of high blood pressure, edema, and congestive heart failure. The 
drug inhibits reabsorption of NaCl in the distal convoluted tubules of the kidney through inhibition of 
the Na+/Cl− cotransporter. The net effect is diuresis, increased excretion of urine. Note the 1,3 relation-
ship between the two sulfonamide groups (–SO2NH2) on the aromatic ring and shown in Figure 29.10. 
One of the sulfonamide groups is part of another ring system. The requirement of the locations and 
types of functional groups necessary for diuresis in this class of diuretics was determined by observa-
tion and SAR.
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FIGURE 29.10  Hydrochlorothiazide blocks the reabsorption of NaCl, which leads to diuresis. The drug is used 
primarily in the treatment of hypertension and other disease states affecting the cardiovascular system. In many 
cases, hydrochlorothiazide is used in combination with other drugs (e.g., Avalide® is a combination of hydrochlo-
rothiazide and irbesartan, an angiotensin II receptor antagonist, which is used for hypertension management).
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Like all methods, the Hansch approach has advantages and disadvantages. Overall, traditional 
QSAR studies are usually (not always) straightforward and predictive. The computing time is minimal. 
However, the method does require a minimum number of compounds to be prepared and some trial 
and error in determining the best descriptors. Over the years, scientists have extended the descriptors 
to include other representative experimental data and/or calculated values (equilibrium A values, dipole 
moments, charge densities, molecular orbitals, etc.).

Orita et al. published a study that illustrates the QSAR method reasonably well (Orita, 1983) as a 
working example. They examined thirteen analogs with group variations in the 6- and 7-positions of 
the core structure. The diuretic activity (A) could be predicted with a formal charge (FC7) calculated for 
the 7-position, as well as a van der Waals (VW) steric parameter and a hydrophobic parameter (π) at the 
6-position. This results in an equation [ln A = (0.2695 × 10−3) π + (7.62535)VW + (15.7681)FC7 + 0.98502] 
generated through a nonlinear regression analysis (n = 13, r = 0.98). The relationship shows a positive 
correlation with the diuretic activity and the VW, π, and FC7 descriptors.

The Hansch formulation traditionally has correlated biological activities with the physical proper-
ties of the compounds being studied. Some physical properties can be calculated readily. For example, 
strategies have been developed to generate log P values in silico–based on the additive scheme of π values 
and are incorporated into software such as ClogP (Daylight Chemical Information Systems, Inc.; http://
www.daylight.com). Perhaps the major complication is that π values are not only additive, but they are 
also constitutive. This means they are a function of their molecular environment. Such computational 
approaches are quite sophisticated when taking into account the branching, molecular connectivity, and 
other structural characteristics that contribute to the overall value of log P. This additive scheme is simi-
lar to how net dipole moments and thermodynamic properties are generated in MM. Notwithstanding, 
the QSAR correlation was primarily between experimental biological data and physical properties. 
More recent methodologies, often referred to as 3D-QSAR, have attempted to make correlations directly 
with the molecular structure and not the physical properties per se.

The comparative molecular field analysis (CoMFA) ushered in a new age for QSAR (Cramer, 1988). 
CoMFA is available in the program SYBYL (Tripos® a Centara™ Company; http://www.tripos.com). 
The basic idea is to calculate steric and electrostatic interactions at various positions in space for a set of 
molecular structures with a probe atom the size of a sp3 carbon and a positive point charge. The steric 
and electrostatic interactions are determined by Lennard–Jones and Coulomb’s law equations, which are 
shown in Figure 29.11. Both of these types of equations are found in many MM force fields. The optimal 
alignment of the structures is critical for CoMFA. The calculated steric and electrostatic information are 
placed in a table, and a partial least squares (PLS) statistical analysis is carried out to prepare a math-
ematical model. From the mathematical model, color-coded steric and electrostatic fields are displayed 
to inform medicinal chemists of the regions in space where molecules may be altered to enhance activity.

3D-QSAR validation is necessary. Unlike the r2 regression factor that is a positive value ranging from 0.0 
to 1.0, where the latter represents a model in perfect agreement with the experimental data, the cross-vali-
dated R2 used in 3D-QSAR is something different. It has been argued that instead of using a cross-validated 
R2, it may be better to refer to this result as q2 to avoid confusion with r2 because the regression variance 
may be negative. Therefore, cross-validated numbers range from –1.0 to 1.0. Essentially negative values 
indicate that random numbers provide a better fit to the experimental data than does the 3D-QSAR model.

Since CoMFA was introduced other methodologies have been developed. An improved method, known 
as comparative molecular similarity indices analysis (CoMSIA), is now widely used (Klebe, 1994). In this 
approach, property fields based on similarity indices of drug molecules with a common alignment and 
fields are calculated. Like CoMFA, a mathematical model is generated and evaluated by a PLS analysis.

Molecular skeleton analysis (MoSA) is a 3D-QSAR program that was developed and presented but never 
released (Liang, 1996, 2004). Similar to other methodologies, a set of molecular structures are aligned. 
Physicochemical properties (e.g., partial charge, atomic volume, and H-bonding potential) are assigned 
to each atom of the set of molecular structures. A 3D grid box is constructed for each property included. 
Gaussian functions are used in the calculations of molecular property distributions for all the atoms on 
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the grid points. The accumulated property distributions at grid points serve as descriptors. PLS is used to 
generate the final QSAR model. MoSA has the advantage that it does not use a probe atom, it is force field 
independent, and multiple conformations with a flexible weighting scheme can be used in the analysis.

29.5.5  Gibbs Free Energy Calculations in Medicinal Chemistry

The free energy perturbation (FEP) method is a computational stratagem used to calculate ∆∆G energy 
differences (Jorgensen, 1989; McCammon, 1987). Consider a lead compound (A) that binds with a 
receptor (R) to generate a molecular complex (A–R) in Figure 29.12. The Gibbs energy for this reaction 
is ∆G1, whereas a similar reaction with a modified lead compound (B) would yield a different molecular 
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FIGURE 29.11  CoMFA creates a 3D grid around molecular structures and uses a probe atom to determine the 
steric and electrostatic fields at the grid points. The steric energy is based on a simple Lennard–Jones potential and 
the electrostatic calculations are based on Coulomb’s law. Both equations are presented. (Adapted with permis-
sion from Cramer III, R. D., Patterson, D. E., Bunce, J. D. Comparative Molecular Field Analysis (CoMFA). 1. 
Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967. Copyright 1988 
American Chemical Society.)
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FIGURE 29.12  The thermodynamic cycle depicts the possible formation of the drug–receptor complexes A–R 
and B–R when drug candidate A reacts with receptor R (A + R→ A–R, ∆G1) and drug candidate B reacts with recep-
tor R (B + R → B–R, ∆G2). Both reaction ∆G values can be measured experimentally. The conversion of A → B and 
A–R → B–R are nonphysical processes, and the associated ∆G3 and ∆G4 values may be determined computationally. 
This process is known as the FEP method, and it is computationally demanding.
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complex (B–R) with a different Gibbs energy ∆G2. Both ∆G1 and ∆G2 may be obtained experimentally, 
but the determination of the data can be challenging. From a drug discovery perspective, the goal is to 
know the differences in the Gibbs energy for the two reactions. The vertical conversions of A → B and 
A–R → B–R are in silico processes. These transformations and the associated ∆G3 and ∆G4 are fictitious. 
Taking advantage of a thermodynamic cycle, ∆∆G can be calculated by recognizing that ∆G3 + ∆G2 = 
∆G1 + ∆G4 and rearranging to yield ∆∆G = ∆G2 − ∆G1 = ∆G4 − ∆G3. Thus, the desired ∆∆G may be 
obtained by computational chemistry methods rather than by experiments.

29.5.6  Computational Structure-Based Drug Design

The use of macromolecular structures, most typically protein structures, is the starting point in a drug 
discovery project. This approach is known as structure-based drug design (SBDD). SBDD has been an 
extremely productive field. There are now many examples of FDA-approved medicines that are based on 
CADD methods. A few examples are discussed.

The 3D protein structures used in SBDD are based on (1) x-ray crystallography, (2) NMR spectroscopy, 
and (3) homology modeling. X-ray and NMR are experimental techniques, whereas homology model-
ing relies on computational methods and the similarity between various folding patterns in proteins. The 
explosion of protein x-ray data (RCSB Protein Data Bank: http://www.pdb.org) is due in part to progress 
in the field but more importantly to the ready availability of proteins through the advances in molecular 
biology. Ironically, molecular biology can trace its roots to the correct prediction of the DNA double helix 
structure by Watson and Crick who used precomputer molecular modeling methods. The development and 
use of macromolecular structures derived from in silico methods (e.g., homology modeling) is important.

Dorzolamide (Trusopt®) is used in the treatment of open-angle glaucoma and hypertension of the 
eye. The drug, shown in Figure 29.13, reduces intraocular pressures by inhibiting carbonic anhydrase 
and is administered as an eyedrop. After a decade in development, dorzolamide holds the distinction of 
being the first FDA-approved drug (1995) that was designed with structure-based methods to reach the 
market (Greer, 1994). Among the computational chemistry methods used, ab initio calculations played 
a role in the prediction of substitution patterns.

All diseases are cruel, but Alzheimer’s disease (AD) seems to strike a particular fear, especially among 
seniors. There is no cure at this time. It was shown that patients with AD have decreased levels of acetylcho-
line in their brains. A combination of QSAR, molecular shape analysis, molecular modeling, docking, and 
related CADD methods resulted in donepezil (Aricept®) being introduced into the market (Kawakami, 
1996). This drug, shown in Figures 29.14 and 29.15, is a reversible inhibitor of acetylcholinesterase (AChE).

Another noteworthy example where SBDD played a significant role was in the development of 
human immunodeficiency virus type 1 (HIV-1) protease inhibitors. The US FDA has approved sev-
eral HIV protease inhibitors since 1995. They include (in chronological order) saquinavir (Invirase®, 
Roche, 1995; Fortovase®, Roche, 1997), indinavir (Crixivan®, Merck, 1996), ritonavir (Norvir®, Abbott, 
1996), nelfinavir (Viracept®, Pfizer, 1997), amprenavir (Agenerase®, GlaxoSmithKline, 1999), lopi-
navir (Kaletra®, Abbott, 2000), atazanavir (Reyataz®, BMS, 2003), tipranavir (Aptivus®, Boehringer 
Ingelheim, 2005), and darunavir (Prezista®, Tibotec, 2006).
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FIGURE 29.13  Dorzolamide (Trusopt®) was approved for use in the United States in 1995. The drug is an eyedrop 
that is used to treat glaucoma. It has the distinction of being the first FDA-approved drug that was designed with structure-
based methods to reach the market. Inhibition of carbonic anhydrase is the mechanism of action for this drug.
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HIV protease, a member of the aspartyl protease family, is a symmetrical dimer with 99 amino 
acids in each monomer and has been a target for successful drug discovery (Huff, 1991). The protease 
is expressed as part of the reproductive cycle of the virus. It is one of several viral enzymes that are ini-
tially expressed as a large polyprotein encoded by the HIV-1 pol gene, one of the three major genes of 
the retroviral genome. The retroviral genome also encodes various small auxiliary proteins. It is known 
that during the maturation of nascent viral particles, via hydrolysis reactions catalyzed by the catalytic 
aspartate residues, the protease enzyme cleaves the viral polyproteins at specific sites to generate the 
structural proteins and enzymes essential for viral replication. A water molecule presumably assists in 
the peptide bond hydrolysis. X-ray crystal structures show that the NH groups of the protein are bound 
to the water molecule as well as to the carbonyl groups of the inhibitor. Figures 29.16 and 29.17 illustrate 
computational modeling of saquinavir.
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FIGURE 29.14  Donepezil (Aricept®), a reversible inhibitor of AChE, was developed by Eisai and marketed by 
Pfizer. QSAR, molecular modeling, and SBDD methods were used in its development.

FIGURE 29.15  The energy minimized structure of Donepezil (Aricept®) is shown with a molecular surface 
displayed.

FIGURE 29.16  Saquinavir (Invirase®; Fortovase®) was the first FDA-approved HIV inhibitor developed. It 
was developed by Roche and, like all drugs in this class, was developed with structure-based CADD methods. 
Saquinavir, in the center, is shown bound to HIV-1, rendered as a ribbon.
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29.5.7  Informatics in Medicinal Chemistry

CADD methods are employed by medicinal and/or computational chemists to enhance understanding of 
the factors that contribute to the stabilization of the drug–receptor complex. The potency, solubility, and 
permeability are the physical variables that may be modified to enhance the activity of drug candidates. 
Maximizing the thermodynamic interactions between a drug and its receptor is not, however, the only 
aspect involved in successful drug design. The absorption, distribution, metabolism, and excretion proper-
ties of a drug are vitally important. It may be more beneficial to sacrifice some favorable thermodynamic 
interaction energies in a drug–receptor complex in order to minimize some undesired biotransformations 
or to maximize solubility and permeability. In this vein, Lipinski has championed the idea of predictive 
ADME. The potential that a drug candidate will have poor absorption or permeation may be expected 
when at least one of the following four properties is present: (1) more than 5 hydrogen bond donors, (2) more 
than 10 hydrogen bond acceptors, (3) more than a 500 molecular weight, and (4) more than a 5 computed 
logP (Lipinski, 1997). There have been other equivalent ways to include these factors in the analysis of small 
molecule preclinical candidates (e.g., the number of nitrogen centers, the number of oxygen centers).

In many cases, ADME and toxicity are easier to predict than biological activity. Lipinski’s rules may work 
well because absorption is in part a function of solubility. There are relatively few physicochemical prin-
ciples underlying solubility. Today, many pharmaceutical companies have invested significant resources 
into screening virtual libraries and using a scoring function to rank the compounds prior to their synthesis.

Database searching is also a popular and successful endeavor (Martin, 1992). For example, Zhong 
et al. created a pharmacophore model based on five potent MMP-9 inhibitors (Zhong, 2011). A database 
search of thousands of structures resulted in nine hits from commercial or in-house sources of com-
pounds. The compounds identified in the database search were then subjected to an SVR proliferation 
assay. Several of the compounds were promising inhibitors. There are many similar examples for suc-
cessful database mining techniques.

29.5.8  Future Trends in Drug Discovery

Large pharmaceutical companies are undergoing dramatic changes in their approach to research, 
which includes mergers, downsizing, outsourcing, and even reexamining their research commitments 

FIGURE 29.17  This image is a close-up view of saquinavir bound to HIV-1. The bridging water molecule between 
the ligand and the receptor can be seen readily. Note the hydrogen bonding interactions, which are depicted by the 
football-shaped objects. The greater the hydrogen bonding interactions, the larger the objects. This image of the 
drug–receptor complex was prepared in Benchware 3D Explorer (Tripos® a Centara™ Company). (Courtesy of 
Dr. Tom Jones.)
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to future drug discovery projects. The use of computational chemistry and computer-based method-
ologies will be a part of most future drug discovery projects because of the reasonable success that has 
been demonstrated. Unfortunately, the success rate has been much less than desired, which may in part 
be due to overexpectations and the inherent difficulty of designing compounds that do not have some 
hidden flaw that is eventually discovered in human clinical trials. There have been a number of specula-
tions for the problems facing drug approval, and it is beyond the scope of this book chapter to review 
them. Drug discovery, however, is too important to disappear altogether. Most probably there will be 
a new emphasis on drug discovery in academic centers and small biopharmaceutical companies. The 
use of computational chemistry and CADD methods in the right hands can be very effective tools for 
medicinal chemists.

29.6  Computational Inorganic Chemistry

The improvements in methods and computational power have not yet equaled the challenges presented 
by large atoms and molecules (Gladysz, 2011). The computational chemistry tools were originally devel-
oped for small systems with limited atomic diversity. One of the key decisions in determining how 
to model an inorganic compound is the trade-off between accuracy and the computational expense. 
Despite this limitation, computational chemistry has been applied effectively in many areas of inor-
ganic chemistry, including the study of structure and bonding in complex systems; solvation effects 
on reactive species; chemical catalysis, especially the nature of transient species and energy changes; 
electrochemical as related to electron transport and storage of organometallic complexes; and the 
properties of new materials.

29.6.1  Computational Methods for Inorganic Chemistry

Empirical methods, like MM2, do not contain most of the atoms and geometries needed to predict 
reasonable inorganic structures. Semiempirical methods suffer from the same limitation. Complete 
ab initio calculations using either Hartree-Fock or Møller–Plesset treatments are generally too time-
consuming to run for inorganic compounds. Even generally accepted modifications to the complete 
wave functions like the Born–Oppenheimer approximation for fixed nuclear geometries cannot sim-
plify the calculations enough for these molecules that often contain hundreds to thousands of electrons 
(Stradi, 2011). It is often necessary to model a portion of the molecule containing just the active metal 
or other heavy atom center with theories taking into account unpaired delocalized electrons using post 
self-consistent field models to get an accurate single-point energy calculation after completing a series of 
modeling trials that use more approximations to gain a good geometric representation. The optimized 
fragment geometry can then be incorporated into the full structure. Another significant area of research 
within ab initio modeling studies is using plane wave basis sets for the valence electrons with a correc-
tion for the effective core potential (ecp) to study conduction in metals instead of Slater- or Gaussian-
type orbitals to better match the long-range nature of electron transfer in these materials (Lopez, 2011).

The major computational tools used in all branches of inorganic chemistry utilize DFT models with 
basis set polarization corrections to take into account d and f orbital contributions and diffuse functions 
for electronic excited-state calculations. The most frequently used basis sets also take into account the 
ecp approximations, where the electron interactions for the inner shell electrons are frozen and coupled 
with the cationic atomic nuclei as a rigid, nonpolarizable core. Even evaluations of ligands like bipyri-
dine, which is among the most studied bidentate organic ligands used in organometallic chemistry, can 
yield interesting results by utilizing broken symmetry DFT functionals ranging from the oft-referenced 
B3LYP through more complicated hybrid systems that take into account additional correlation and elec-
tron exchange terms in the integrals (Scarborough, 2011). The best fit to the experimental spectral data 
for the titanium(III) cyclopentadienyl bipyridine diradical complex was seen using B3LYP compared 
to three other more complex hybrid functionals. Furthermore, for systems that contain a wide range of 
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atom types, a different basis sets need to be used for different atoms within one computational study. 
Highly complex basis sets that take into account d and f orbitals using polarization and diffusion at long 
distance from the core are used for the metal atoms, and simpler Pople basis sets are used for the main 
group atoms and hydrogen.

29.6.2  Main Group Computational Chemistry

A recent study is representative of this type of work (Wittmaack, 2011). A series of derivatives of halo-
genated structures (XnA) for the group 4A elements carbon through lead was evaluated to see how 
the charge transfer from the halides to the group 4A elements was impacted by the number of halides 
attached to the molecule and by the atomic number of the group 4A central atom. Since these are small, 
discrete molecules, it was possible to use full ab initio Møller–Plesset (MP2) and coupled cluster cal-
culations to incorporate electron correlation effects. For the smaller atoms, full MP2 evaluations were 
completed; for the largest atoms like lead (Pb) and tin (Sn), approximations to incorporate electron core 
potential effects were included. Additional calculations using natural bond order rather than molecular 
orbital calculations were then carried out on the optimized geometries to determine point charges for all 
of the atoms. These studies have shown that after a certain level of substitution, the charge on the central 
atom does not change much regardless of the addition of more halides to the structure. This approach of 
multiple steps in model refinement is again typical of most modeling studies for inorganic compounds.

29.6.3  Computations with Metal-Containing Compounds

New density functionals have been developed that incorporate relativistic effects, ecp’s, and electronic 
correlation effects. For heavier atoms, the near-relativistic speeds of inner shell electrons results in 
higher effective electron masses that can skew results tremendously. In addition to the hybrid functional 
B3LYP, many researchers in organometallic chemistry are using the Perdew, Burke, and Ernzerhof 
(PBE) or the Heyd–Scuseria–Ernzerhof (HSE) generalized gradient approximation hybrid functionals 
when studying metal atoms as they give good geometrical matches to published crystal structures and 
available vibrational spectroscopy (Stradi, 2011). Metal phthalocyanine systems have been modeled to 
determine the source of bands in the emission spectra of these compounds. The major goal of the study 
was to evaluate the energy minima and vibrational spectra of the materials adsorbed as a thin film on a 
solid surface to compare the results to the available gas-phase data. The best agreement from the model 
data in this case came with the HSE hybrid functionals compared to all of the other systems tested.

Sometimes, modeling is a useful method for evaluating chemicals that are difficult to isolate and work 
with because of stability problems and air sensitivity. While neutral, +2, and +4 oxidation states of pal-
ladium have been extensively studied, there are few reports on +3 oxidation state (Pd(III)) complexes. 
A recent synthetic study on the isolation and x-ray analysis of these compounds used DFT to explain 
the distorted octahedral geometry for these complexes, and the DFT-derived singly occupied molecular 
orbital descriptions for these species gave a very accurate prediction for EPR signals that matched the 
experimental data for these paramagnetic species, showing how complex computational studies are now 
used by synthetic chemists in conjunction with spectral analysis (Khusnutdinova, 2010).

Molecular modeling using high-level DFT studies have been used in the past few years to study 
whether assumptions made concerning the non-innocence (lack of involvement in the oxidative process) 
of homoleptic dithiolene ligands in metal complexes from x-ray, spectral, and simple MO calculations 
were correct. The models showed that on changing the redox state of the overall organometallic complex 
the oxidation state changed not just on the metal but on the ligand as well, hence the “non-innocence” 
sobriquet given this class of ligands. Using modern computational techniques, electron density dis-
tributions that matched the spectral data and supported this theory were completed, confirming this 
long-debated point (Eisenberg, 2011). A recent review highlights many of the uses that have been made 
of these computational studies in evaluating bonding in very complex compounds (Lin, 2010).
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Many inorganic reactions can only be studied effectively by taking into account interactions between 
the reaction center and its surroundings. A recent study highlights the difficulty in modeling the forma-
tion of large clusters that contain highly charged metals, where ion–dipole effects present from solvation 
change the calculated energy levels of the molecule (López, 2011). The possibility of modeling all of 
the solvent–solute interactions is very challenging from a computational standpoint, so solvent effects 
are taken into account using a conductor-like screening model (COSMO) that approximates the elec-
trostatic interactions between the model complex and the solvent by treating the solvent as a set con-
tinuum governed by the solvent dielectric constant to give a much more realistic representation of the 
zero point energies and corresponding vibrational frequencies in highly polarized molecules. These 
COSMO studies are generally in good agreement with more rigorous molecular dynamic studies using 
Car–Parrinello simulations where all solvent molecules are treated explicitly and motion of the solvent 
molecules is allowed during the computational cycle.

29.6.4  Computational Issues Related to Catalysis

Understanding the mechanisms, intermediate structures, and reaction kinetics of catalytic cycles is 
central to process improvement. Often, these properties can be evaluated by use of molecular models 
as well as using mathematical models to model rates. In the case of the Suzuki–Miyaura coupling 
reaction, a system whose discovery was chosen as part of the Nobel Prize in chemistry in 2010, the 
mechanism is not well understood. The Suzuki–Miyaura coupling reaction uses a palladium catalyst 
to form new carbon–carbon bonds. The active species in the oxidative addition, transmetallation, 
and reductive elimination steps in the catalytic cycles are not clearly understood, and experimental 
characterization does not clarify the structure of these species, so a number of computational stud-
ies have been undertaken recently (Jover, 2010). All of the key reaction intermediates were evaluated 
using very standard DFT functionals and basis sets except for the transition metal palladium and 
bromine, where basis sets taking into account the ecp as well as triple-zeta orbital descriptions are 
needed to describe the more complex bonding. The study results were in good agreement with spec-
tral data obtained during actual catalyst trials, and based on variations in the models, the reasons 
large electron-donating phosphine ligands improve catalytic efficiency was explained, even though 
the actual energies were not in total agreement with the actual data as fairly simple calculations were 
attempted. The use of DFT-based molecular modeling is now so pervasive in organometallic catalysis 
that even groups whose primary goal is the synthetic utility of a catalyst will run DFT studies to con-
firm proposed reaction cycles.

One of the key parameters in evaluating any catalyst system is the turnover frequency, which measures 
the number of molecular transformations over a period of time catalyzed by a single active catalytic site; 
thus, it is a measure of catalytic efficiency. A recent study develops a new computational model for all 
of the steps in a catalytic cycle using the energetic span model (Kozuch, 2011). The goal of the study was 
to link experimentally derived rate constants (kinetics) with energy level descriptions of the transitions 
states (thermodynamics) calculated using modeling by linking the results using the transition state 
theory developed by Eyring. A computational model developed from this connection between kinetics 
and thermodynamics was successfully employed with a series of nickel center–catalyzed cross-coupling 
reactions of anhydrides with organozinc compounds. The resulting transition state measure of turnover 
frequency was able to accurately predict the experimentally observed turnover frequencies, and the 
technique is being expanded to other catalyst systems.

29.6.5  Electrochemistry

There has been a tremendous upsurge in interest in electrochemical systems involving inorganic 
chemistry over the last 5 years, and very often computational methods using DFT analysis are being 
utilized to evaluate the reduction and oxidation potentials in these systems (Geiger, 2011). Now that 
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there is a wide availability of tools to study these systems, many groups are modeling the changes in the 
valence-state electrons of the metals using DFT models coupled with basis sets optimized for use with 
ecp approximations (Roy, 2009). One of the results of these studies on well-understood systems like the 
one electron oxidation of the iron ferrocene complex is the determination that the choice of the basis sets 
has less of an impact on the energy and geometry calculations than does the choice of the DFT func-
tionals. Using a wide range of DFT models including generalized gradient approximations and hybrid-
ized approximations had a major impact on the overall calculated oxidation potential. By varying the 
basis set on the iron core atom from all electron triple-zeta models to basis sets with ecp approximations, 
or with ecp approximations with relativistic effects taken into account, the overall calculated oxidation 
potentials changed dramatically. Only the basis set taking into account the ecp with relativistic effects 
incorporated into the approximation matched the experimental data. In the same study, changing the 
solvent used from acetonitrile to acetone or DMSO resulted in having to change the DFT used from a 
hybridized DFT to an unhybridized version of the same DFT. Just using one model without evaluating 
other possibilities can lead to very uncertain results.

29.6.6  Clusters and Nanomaterials

The area of chemistry that results in the most public interest, outside of medicinal chemistry, is the study 
of nanomaterials. Many metal-containing species are being studied in regard to these nanomaterials; two 
of the areas of greatest interest involve graphene nanomaterials and metal–organic frameworks (MOFs). 
These systems are so large and entail so many atoms and electrons that fully modeling them is impossible, 
but it also increasingly evident that the chemistry of these complexes changes as the size of the clusters grow 
from localized single metal centers to clusters with thousands to millions of metal centers. The interaction 
of the first-row transition metal centers with the six-member carbon rings found in graphene nanotubes 
has now been modeled using computational methods (Valencia, 2010). To be of practical interest, these 
studies need to take into account enough atoms to allow for measurement of electron transfer across the 
entire model surface to emulate the band structure for electrical conduction, as well as model the Brillouin 
zone of the nanomaterial, as that is the representative lattice cell of interest for the determination of the 
macro properties. The necessity of modeling enough atoms and electrons to take into account these lattice 
properties is computationally expensive. Since the electrical conduction of these materials is a very impor-
tant property, the modeling is often done using plane wave basis sets instead of Gaussian-type orbitals.

The study of MOFs is another area of nanomaterials where modeling is being used to predict relevant 
properties. MOFs are extended 3D cage-like crystal lattices containing multidentate organic ligands 
that are coordinatively bound to metal centers. These MOFs are being evaluated as catalyst supports, gas 
storage matrixes, and drug delivery vehicles among many end uses. Since DFT can be used to measure 
bond strength, it is possible to relate calculated energy profiles and geometries from modeling studies in 
the MOF to overall mechanical properties such as shear modulus, by determining the individual bond 
stiffness over the entire unit cell of the lattice in all planes of the cell (Tan, 2011). Actual experimental 
measurement of these MOF materials is primarily limited to the technique of nanoindentation, since 
large individual crystals have not yet been created. Nanoindentation only measures penetration distance 
and applied force, which is of limited utility when comparing to applied shear forces, since many of these 
compounds exhibit differing levels of dimensional stability. Overall, the comparison to the calculated 
shear forces is interesting as the shear forces and the force of indentation have a strong linear correlation.

29.6.7  Future Issues for Computational Inorganic Chemistry

Dealing with the lanthanides and actinides, with f orbital electrons, might be the ultimate challenge since 
the energy levels are nearly degenerate many different electronic orientations are possible. Coordination 
numbers of as great as 12 are possible and a wide range of oxidation states from 1 to 7 can be seen in some 
complexes. A recent survey on the use of computational studies in the evaluation of actinide containing 
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molecules summarized these challenges (Schreckenbech, 2010). For bioinorganic structures, the problems 
are additionally compounded (Ghosh, 2011). Researchers often use combined QM/MM; however, this can 
lead to large discrepancies in the calculated results. The choice of exchange correlation functionals has a 
huge impact on the final agreement between computational and experimental results, and occasionally, no 
DFT models come close to the experimentally determined spectra (Gutten, 2011). Uncertainty in valence 
electron location between the metal center and the ligand shell makes it difficult to explain electron transfer 
mechanisms. One group overcomes this problem with DFT methods; some groups are completing complex 
high-level ab initio studies on iron(III) porphyrin studies using post-SCF methods including the complete 
active space self-consistent field model (CASSCF). By using more rigorous computational models, they 
are able to predict the spectral properties and give insight into the actual mechanism of electron transfer.

New functional descriptions for DFT to improve the incorporation of long-range electron interac-
tions need to be created. In the absence of a reliable single method, computational chemists must try 
several different modeling protocols and chose the one that best matches the experimental data. The 
field of computational inorganic chemistry is just starting to deal with all the complexity inherent in 
large molecules containing elements with many electrons in a series of atomic orbitals that extend across 
all available orbitals.

29.7  Summary

There is obviously still room for improvements in computational chemistry. But the role of computation 
in chemistry is now essential to most areas of chemical inquiry. Perhaps this is most evident in a quick 
glance at some recent special issues of leading review journals and communications from journal editors. 
In the opening to the 2006 special issue in Accounts of Chemical Research, the editors wrote: “At the outset 
of the twenty-first century, theoretical and computational chemistry has arrived at a position of central 
importance not only for theorists but also in the laboratories of most experimentalists and in many disci-
plines” (Carter, 2006). The December 2011 issue of Chemical Physics and Physical Chemistry, dedicated to 
computational chemistry, includes the following editorial comment: “… the development of new methods 
and density functionals continues to be a vibrant field of research in a sustained effort to develop reliable 
approaches for almost any problem in chemistry” (Batista, 2011). Another 2011 editorial attests to the 
widespread acceptance of computational chemistry: “Approximately one-third of current submissions to 
the Journal of Medicinal Chemistry report computational work of varying weight and complexity.” The 
editors go on to describe a new set of standards for computational chemistry in that journal (Stahl, 2011). 
The January 2012 issue of Chemical Reviews is dedicated to quantum chemistry. In the opening introduc-
tion to that section is the following statement: “… quantum chemistry has yielded a very important prod-
uct: software packages, some of them representing commercial enterprise and others given away freely … 
In either case, these programs are being used by an ever growing base of users” (Pyyjkko, 2012). It seems 
clear that computational chemistry is here to stay and that we can look forward to advances and improve-
ments that will increase the foothold of computation in the myriad disciplines of chemistry.

Key Terms

Acetophenones: A class of organic compounds that have a methyl carbonyl (CH3–CO–) attached to a 
benzenoid aromatic ring.

Auxochromes: A term derived from the Greek aux, meaning to grow, and the Greek chroma, meaning 
color. An auxochrome is any group added to a chromophore that causes a change in the inter-
action of the group with UV–Vis light.

Belousov–Zhabotinskii: The specific reaction is the oscillating reaction involving BrO3
−, HBrO2, H+ 

to give BrO2, H2O, and BrO2, Ce3+, H+ to give HBrO2, Ce4+, H2O. Reactions that oscillate are 
sometimes referred to as Belousov–Zhabotinskii–type reactions. They are representative of 
reactions that are not in chemical equilibrium but instead are treated as dynamic systems.
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Benzenoid aromatic: A compound that has a six-membered ring with alternating single and double 
bonds is a benzenoid aromatic compound (e.g., benzene, molecular formula C6H6).

Bipyridine: A common organic ligand composed of two pyridine rings, where each ring contains one 
nitrogen and five carbons in a six-member aromatic structure.

Brillouin zone: The unit cell in a crystal lattice that fully describes the electron distribution and elec-
tronic band structure.

Broken symmetry approximations: Single determinant wave functions that are not pure spin states and 
therefore are not expected to represent the true wave functions of the system. Unsymmetrical 
determinants are used to represent uneven distribution of electrons in a molecule.

Catalysis: Using a reagent in a chemical reaction that significantly increases the rate at which the reac-
tion proceeds, without using up any of the reagent.

Chromophore: Derived from the Greek chroma, for color, and phoros, for bearing, the chromophore is 
the core structural feature of a compound that gives rise to its ability to absorb UV–Vis light.

Conjugated: If atomic orbitals that make up pi bonds can overlap in a side-to-side manner with pi bonds 
or atomic orbitals on contiguous positions, then the electrons in all of the overlapping orbitals 
are treated as a single integrated system that is said to be conjugated.

d/f-type electrons: Atoms with a principal quantum number of 3 or higher can have d-type electrons. 
For each d-type principal quantum number, there are five atomic orbitals with an allowed 
capacity of 10 d-type electrons. Atoms with a principal quantum number of 4 or higher can 
also have f-type electrons. For each f-type principal quantum number, there are seven atomic 
orbitals with an allowed capacity of 14 f-type electrons.

De novo: From Latin dē, from, and novō, new, de novo refers to a process of discovery that makes mini-
mal preliminary assumptions, thus representing a new approach.

Dentate, mono, bi, multi: Binding of atoms to the central atom in a coordination complex is referred to 
as denticity, where every point of contact is a bond to the central atom.

Dienes: Dienes are compounds that contain two pi bonds between two different sets of carbon atoms. In 
UV–Vis, the term diene almost always refers to conjugated dienes.

Dyes: Dyes are compounds that both absorb visible light causing the appearance coloration and 
have intermolecular attractions to compounds/materials to which they are applied, such as 
textiles.

Electrochemistry: Chemistry occurring at the interface of an electrical conductor, where the flow of 
electrons either to or from the interface impacts the chemical reaction that occurs.

Enones: Enones refer to a conjugated system composed of a C=C pi bond and a C=O pi bond, as found 
in the compound methyl vinyl ketone: CH2=CH−CO−CH3.

Ferrocene: An organometallic species containing an iron atom bound to two five-member aromatic 
rings so that the rings are centered perpendicularly above and below the iron atom.

Fluorescence: The emission of light energy of a lower-energy and longer wavelength than the con-
currently applied light energy, or other forms of energy, used to generate the excited state, is 
known as fluorescence.

Functional: A mathematical operation that converts a vector into a scalar field; an example would be 
the scalar field of temperature gradients around a solid body. A functional is a function that is 
a function of another function.

Graphene: A form of pure carbon that exists as an extended sheet of six member rings in a very stable 
form. Sheets of graphene combine to form the mineral graphite.

Halides: Elements in group 17, formerly 7A, on the periodic table that are characterized by high electron 
affinity (e.g., F, Cl)

Homoleptic: Any organometallic complex in which all of the attached ligands are identical.
INDO/S: It is the acronym for intermediate neglect of differential overlap/screened approximation. The 

ZINDO method is the Zerner modification of the INDO/S method.
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In silico: A process or test or evaluation performed on a computer is termed in silico, in deference to the 
use of silicon chips.

In vitro: A process or test or evaluation performed in glassware is termed in vitro.
In vivo: A process or test or evaluation performed in living systems is termed in vivo.
Intramolecular charge transfer: The shifting of electron density from an electron-donor region or sub-

stance to an electron-accepting region or substance creates a weak attractive force between the 
two regions. When this occurs between two molecules, it is called a charge transfer complex, 
when it occurs within one molecule, it is called ICT.

Lambda max: A peak in a UV–Vis spectrum is broad, on the order of 10−100 nm wide, and the identity 
of the peak is based on the point of highest absorptivity of light in that range, called the lambda 
(λ) maximum (max), given the notation λmax.

Law of mass action: The law of mass action states that the rate of a chemical reaction at each instant is 
proportional to the concentrations of the reactants, with each concentration raised to a power 
equal to the number of molecules of each species participating in the process. If the reaction 
involves more than one step, the rate of formation or removal of a given substance will contain 
terms for each step in which the substance is involved. Once overall equilibrium is reached, 
the law predicts the usual expression for the equilibrium constant K in which the numerator is 
the product of the concentrations (partial pressures, etc.) of the products raised to the respec-
tive stoichiometric coefficient in the overall chemical equation divided by the product of the 
concentrations of the reactants raised to the respective stoichiometric coefficient.

Ligand: A molecule or ion that donates electrons to the central atom, usually a metal, in an organome-
tallic coordination compound.

Michaelis–Menten: This is the relationship used to describe rates of enzyme-substrate process in bio-
chemical reactions, where the rate of conversion, V, equals the maximum rate of conversion, 
Vmax, times the concentration of the substrate, [S], that quantity divided by the sum of the rate 
constant, Km, and the concentration of the substrate: V = (Vmax[S])/(Km + [S]).

Molar absorptivity: Molar absorptivity, also known as extinction coefficient in older literature, 
describes the quantification of light apportion as a function of the amount of the chromophore 
molecule present in solution. Beer’s law (A = εcb) is used to define the relationship, where A = 
measured absorbance intensity, ε is the molar absorptivity, c is the concentration of the mol-
ecule, and b is the path length of the sample cell.

Molecular orbitals: As atoms are combined to make molecules, the atomic orbitals and associated elec-
trons from the atoms are combined to produce new orbitals, called molecular orbitals, into 
which the molecules electrons are placed.

Oxidation potential: A measure in electron volts of the energy required to remove an electron from a 
compound.

Pharmacokinetic: The description for the rates of the fundamental processes that a drug undergoes 
in the body is called pharmacokinetics. Those processes include absorption, bioavailability, 
distribution, metabolism, and excretion.

Phosphine: An organophosphorus compound with an easily donated electron pair on a phosphorus 
atom that can act as a ligand.

Phosphorescence: The delayed emission of light energy of a lower-energy and longer wavelength than 
the concurrently applied light energy, or other forms of energy, used to generate the excited 
state, is known as phosphorescence.

Photovoltaics: The process of capturing sunlight and using that energy to generate electrical energy is 
known as photovoltaics.

Phthalocyanine: A cyclic organic species with 4 nitrogens on the inside of the cyclic ring that readily 
binds metals. Structurally related to the porphyrin ring seen in many biological enzymes like 
hemoglobin.
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Pi bond/electrons: If two atomic orbitals on adjacent atom are coplanar so that they can overlap in a 
side-to-side manner and they share a pair of electrons, the result is covalent bond known as a 
pi bond, and the electrons in the pi bond are called pi electrons. The pi covalent bond electrons 
are less tightly held by the two atoms than the initial sigma bond that if formed between the 
two atoms.

Principal quantum number: The principal quantum number, n, describes the average size of an atomic 
orbital, where a larger number represents a larger orbital that is located on the average a greater 
distance away from the nucleus of an atom. In general, as electrons get farther away from a 
nucleus, they become more susceptible to excitation by UV–Vis light.

Sigma bond/electrons: If two overlapping atomic orbitals on adjacent atom are aligned along the same 
line, they can overlap in an end-to-end manner and share a pair of electrons to form a strong 
covalent bond known as a sigma bond. The electrons in the sigma bond are called sigma 
electrons.

Solvation: The interaction of solvent molecules with a solute, or dissolved species, which leads to an 
overall stabilization of the solute.

Tautomers: Two compounds are tautomers of each other if they are structural isomers that can be 
converted one into the other in a rapid equilibrium controlled process. The process generally 
involves a structural change in connectivity of a hydrogen atom and a pi bond within the 
molecule.

TD-DFT: The acronym for time-dependent dentistry functional theory. The TD-DFT adds in a time 
delay to allow for calculation of molecular orbitals and associated properties after a system has 
been perturbed, such occurs in the excitation.

Valence: The number of electrons in the outer shell of an atom that determines how many bonds an 
atom can form. The valency of an atom is the number of bonds that atom generally makes.

Zeta: The zeta value is used to describe how diffuse or large an orbital can be. A double-zeta orbital is 
composed of two separate type orbitals, for instance, an s- and a p-type orbital. Triple zeta is 
composed of three types of orbitals.

ZINDO: This is the acronym for the computational model developed by Dr. Zerner, of the University of 
Florida, based on modification of the INSO/S routine.

Further Information

Books
Collett, C.T. and Robson, C.D. 2010. Handbook of Computational Chemistry Research. New York: Nova 

Science.
Heine, T., Joswig, J., and Gelessus, A. 2009. Computational Chemistry Workbook. Learning through 

Examples. Weinheim, Germany: Wiley-VCH.
Rode, B.H., Hofer, T.S., and Kugler, M.D. 2007. The Basics of Theoretical and Computational Chemistry. 

Weinheim, Germany: Wiley-VCH.

Websites (All are accessed on October 4, 2013)
Berkeley Madonna: http://www.berkeleymadonna.com.
CCCE: http://www.computationalscience.org/ccce/
Cambridge Crystallographic Data Centre: http://www.ccdc.cam.ac.uk/data_request/cif (CCDC 615918 
contains the supplementary crystallographic data for I).
CSERD: http://www.shodor.org/refdesk/.
Chemical Kinetics Simulator: http://www.almaden.ibm.com/st/computational_science/ck.
JCE software: http://www.jce.divched.org/jce-products
Mathcad: http://www.ptc.com/mathcad.
Mathematica: http://www.wolfram.com.
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MATLAB®: http://www.mathworks.com.
Molecular Model for an Ideal Gas: http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=25
NSDL: http://nsdl.org.
Sage: http://www.sagemath.org.
STELLA: http://www.iseesystems.com.
Vensim PLE: http://www.vensim.com.
WebMO: http://www.webmo.net/
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30.1  Introduction

The subdisciplines within computational biology, especially those of bioinformatics, are relatively new, 
the word “bioinformatics” not being coined until the early to mid-1970s by Hesper and Hogeweg, 2011. 
With roots in computer science, information theory, biochemistry, and biology, it was and is a natu-
ral nexus of the four disciplines. However, before it could really take off, two essential factors had to 
become a reality, that of readily and freely available sequence and 3D structural databases and the 
development of powerful and relatively inexpensive computing power. Both of these are now very much 
a reality, having followed and/or exceeded the 18 month doubling exponential growth rate of Moore’s 
law (e.g., Moore, 1965; Wetterstrand, 2012; and see GenBank growth statistics at ftp://ftp.ncbi.nih.gov/
genbank/gbrel.txt) since their development. Within this entire field, one of the most important develop-
ments has been the ability for researchers to gain biological understanding of molecules and organismal 
systems based solely on sequence data.

So, given the nucleotide or amino acid sequence of a biological molecule, what can be known about 
that molecule? Searching for small relevant patterns in sequences that may reflect some function 
allows for the inference of biologically relevant information. These can be cataloged motifs ascribed 
to catalytic activities; restriction enzyme or protease cut sites; regional physical attributes, such as 
secondary structure predictions, hydrophobicities; or even a sequence’s overall content and composi-
tion, as is used in some of the gene finding techniques. However, what about comparisons with other 
sequences? Can one molecule tell another’s story? Yes, naturally it can; inference through homology 
is a fundamental principle to all the biological sciences. A tremendous amount of knowledge can be 
gained by comparing one sequence against others. When a sequence is found to fall into a preexisting 

30
Computational Biology:

The Fundamentals 
of Sequence-Based 

Techniques

30.1	 Introduction.....................................................................................30-1
30.2	 Databases..........................................................................................30-2
30.3	 Primary Algorithms: Just the Basics.............................................30-3

Pair-Wise Methods  •  Multiple-Sequence Analysis
30.4	 Complications................................................................................30-20
30.5	 Conclusions....................................................................................30-21
Key Terms...................................................................................................30-22
References...................................................................................................30-23

Steven M. Thompson
BioInfo 4U



30-2 Computational Science and Graphics

biological gene family, function, enzymatic mechanism, evolution, and possibly even structure can 
all be inferred based on homology with its neighbors.

However, in order to learn anything by comparing sequences, one needs to know how to compare 
them. Constrained sequence portions, common patterns between them, could be used as “anchors” to 
create sequence alignments allowing comparison, but this brings up the alignment problem and “simi-
larity.” It is easy to see that sequences are aligned when they have identical symbols at identical posi-
tions, but what happens when symbols are not identical and sequences are not the same length? How can 
anybody know when the most similar portions of sequences are aligned, when is an alignment optimal, 
and does optimal mean anything as far as biology is concerned?

30.2  Databases

Sequence-based methods more often than not compare similar sequences one way or another. Acquiring 
the similar sequences usually requires sequence databases. These began with Dayhoff et al.’s hardbound 
Atlas of Protein Sequence and Structure in the mid-1960s (1965–1979). Databases have long since out-
grown a hardbound atlas. They have become huge and have evolved considerably. In the United States, 
the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/), a division 
of the National Library of Medicine (NLM), at the National Institute of Health (NIH), supports and 
distributes the GenBank nucleic acid sequence database, which began in 1982 (Bilofsky et al., 1986), and 
the GenPept coding sequence (CDS) translations database, as well as a host of specialized sequence data-
bases (in particular see the non-redundant RefSeq genomic, complementary DNA (cDNA), and protein 
databases). The National Biomedical Research Foundation (NBRF) (http://www-nbrf.georgetown.edu/), 
an affiliate of Georgetown University Medical Center, maintains the protein identification resource (PIR) 
(George et al., 1986) database of polypeptide sequences. In Europe, the European Molecular Biology 
Laboratory (EMBL) (http://www.embl.de/) and the European Bioinformatics Institute (EBI) (http://
www.ebi.ac.uk/) maintain the EMBL nucleotide sequence database, which began in 1980 (Hamm and 
Cameron, 1986), and the excellently annotated Swiss-Prot (Bairoch, 1991) protein sequence database 
(also supported by the Swiss Institute of Bioinformatics [SIB] http://www.isb-sib.ch/), as well as the 
minimally annotated translations from EMBL (TrEMBL)—those EMBL translations not yet in Swiss-
Prot—protein sequence databases, in Heidelberg, Germany; Cambridge, United Kingdom; and Geneva, 
Switzerland. EBI, SIB, and PIR coordinate to maintain the Universal Protein Resource (UniProt) (http://
www.uniprot.org/), which is a single, nearly non-redundant, comprehensive, fully classified, richly and 
accurately annotated protein sequence knowledge base, with extensive cross-references and querying 
interfaces, all freely accessible to the scientific community. Additional, less well-known, sequence data-
bases include sites with the military, with private industry, and in Japan (the DNA Data Bank of Japan, 
DDBJ, http://www.ddbj.nig.ac.jp/). In most cases data are openly exchanged between the databases so that 
many sites “mirror” one another. This is particularly true with GenBank, EMBL, and DDBJ, organized 
under the auspices of the International Nucleotide Sequence Databases Collaboration (INSDC). There is 
never a need to look in more than one of these databases; they all contain the same organized, reliable, 
comprehensive, and openly available libraries of genetic sequence data.

Additionally, a myriad of specialized sequence databases exist. These include sequence pattern 
databases such as restriction enzyme (e.g., http://rebase.neb.com/rebase/rebase.html) and prote-
ase (e.g.,  http://merops.sanger.ac.uk/) cleavage sites, promoter sequences and their binding regions 
(e.g.,  http://www.gene-regulation.com/pub/databases.html and http://epd.vital-it.ch/), protein motifs 
(e.g., http://prosite.expasy.org/) and profiles (e.g., http://pfam.janelia.org/), and organism or system-
specific databases such as the sequence portions of A C. elegans database (ACeDb) (http://www.acedb.
org/), FlyBase (the Drosophila database, http://flybase.org/), the Saccharomyces Genome Database 
(SGD) (http://www.yeastgenome.org/), and the Ribosomal Database Project (RDP) (http://rdp.cme.
msu.edu/). Many sites present their data in the context of a genome map browser, for example, the 
University of California, Santa Cruz, bioinformatics group’s genome browser (http://genome.ucsc.edu/), 
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and the  Ensembl project (http://www.ensembl.org/), jointly hosted by the Wellcome Trust Sanger 
Institute and EBI. Genome map browsers attempt to tie together as many data types as possible using 
a physical map of a particular genome as a framework. They are a particularly effective way to explore 
bioinformatics and a great starting point for many analyses. This is but the “tip of the iceberg” when it 
comes to specialized sequence databases—visit the major sites and explore.

Two other types of databases are commonly accessed in bioinformatics: reference and 3D structure. 
Reference databases run the gamut from Online Mendelian Inheritance in Man (OMIM) (Pearson et al., 
1994), which catalogs human genes and phenotypes, particularly those associated with human disease 
states, to PubMed (http://www.ncbi.nlm.nih.gov/pubmed), which provides free public access to more 
than 22 million citations from MedLine (the NLM’s citation and author abstract bibliographic database 
of over 5500 biomedical research and review journals), other life science journals, and online books. In 
nearly all cases, complete abstracts are supplied, and in many cases, links are provided to full-length 
text content. Other databases that could be put in this class include things like proprietary medical 
records databases and population studies databases. Finally, the Research Collaboratory for Structural 
Bioinformatics (RCSB) (http://home.rcsb.org/), a consortium of three institutions: the State University 
of New Jersey, Rutgers; the San Diego Supercomputer Center at the University of California, San Diego; 
and the University of Wisconsin–Madison, supports the 3D structure Protein Data Bank (PDB) 
(Bernstein et al., 1977). RCSB PDB is now a member of a World Wide PDB organization (http://www.
wwpdb.org/, Berman et al., 2003), along with centers in Japan and Europe, whose mission “is to main-
tain a single Protein Data Bank Archive of macromolecular structural data that is freely and publicly 
available to the global community.” The NIH maintains “Molecules To Go” (http://helixweb.nih.gov/
cgi-bin/pdb) as a very easy-to-use interface to PDB. Other 3D structure databases include the Nucleic 
Acid Databank (NDB) at Rutgers (http://ndbserver.rutgers.edu/) and the proprietary Cambridge small 
molecule crystallographic structural database (CSD) (http://www.ccdc.cam.ac.uk/products/csd/).

30.3  Primary Algorithms: Just the Basics

Even with the ready availability of sequence databases, the methods of computational biology can be 
daunting. The bases of the necessary algorithms were already developed within and before the time 
period when bioinformatics began. Many are discussed elsewhere in this computing handbook series. 
In particular, various pattern recognition algorithms have been adopted for use in bioinformatics. 
Computer science concepts used in bioinformatics include dynamic programming, hash tables, edit 
distances, hierarchical clustering, suffix-trees, hidden Markov models (HMMs), statistical methods of 
maximum likelihood and Bayesian inference, neural networks, and genetic algorithms. This chapter 
will concentrate on only those fundamental concepts upon which the entire discipline has grown, that 
of pair-wise and multiple-sequence alignment, database searching, and their applicability.

Many other realms of computational biology not reviewed in this chapter overlap with the basic concepts 
of bioinformatics discussed. These include 3D data analysis such as x-ray crystallography, nuclear magnetic 
spectroscopy, and high-resolution microscopy; “next-generation” DNA sequence assembly; protein and 
RNA microchip analysis; all the “omics”—genomics, transcriptomics, and proteomics; and, importantly, 
molecular phylogenetics, population biology, and biogeography. Some of these topics will be discussed else-
where in this series; all have foundations laid in the fundamental bioinformatics principles discussed here.

30.3.1  Pair-Wise Methods

This category includes all of the programs that perform full length and best segment pair-wise sequence 
alignment and the numerous database similarity searching algorithms that incorporate alignment. 
A fundamental aspect of most of these types of programs is a variation of a standard computer science 
dynamic programming algorithm. The biggest problem is that a “brute force” approach just won’t work. 
Even without considering the introduction of gaps, the computation required to compare all possible 
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alignments between two sequences requires time proportional to the product of the lengths of the two 
sequences. Therefore, if the two sequences are approximately the same length (N), this is a N2 problem. 
To include gaps, one would have to repeat the calculation 2N times to examine the possibility of gaps 
at each possible position within the sequences, now a N4N problem. Waterman (1989) pointed out that 
using this naïve approach to align two sequences, each 300 symbols long, would require 1088 compari-
sons, more than the number of elementary particles estimated to exist in the universe and clearly impos-
sible to solve! Part of the solution to this problem is the dynamic programming algorithm, as applied to 
sequence alignment.

However, first, a very simple method that provides a “gestalt” of all the various ways that two sequences 
can be compared will be described. This is the dot matrix or “dot plot” technique of sequence analysis, 
and it can often show things not seen by any other technique, as well as provide a great introduction to 
all of the pair-wise comparison techniques.

30.3.1.1  Dot Matrix (Plot) Methods

Dot matrix analysis is performed by plotting one sequence on a vertical axis against another on a 
horizontal axis, upon a grid, using a very simple approach: wherever the two match according to 
some specified scoring and filtering criteria, a dot is generated in the intersecting cell. So, why use 
dot matrix analysis? Dot matrices can point out areas of similarity between two sequences that all 
other methods might miss. This is because most other methods align either the overall length of two 
sequences or just the “best” parts of each to achieve optimal alignments. Dot matrix methods enable 
the user to visualize the entirety of both sequences all at the same time; all alignments can be seen, the 
“less than best” comparisons as well as the main one. Regions of interest can then be “zoomed in” on 
using more detailed procedures, if desired. The human eye and brain are still better than a computer 
at discerning complex visual patterns, especially when more than one pattern is being considered. 
This is what makes the technique such a powerful analytic tool with sequences, from short fragments 
through complete genes or even chromosomes, all the way to entire genomes (see, e.g., MUMmer, 
Delcher et al., 1999).

Even comparing a sequence to itself can be informative. A main identity diagonal is obvious; however, 
other features such as palindromes can also be seen. Perfect palindromes directly cross the main diago-
nal, and if comparing double-stranded DNA or RNA to itself, these inverted repeat regions could be 
indicative of potential cruciform pseudoknots at that point. Inverted repeats that are not palindromes 
show up as perpendicular lines to the diagonals but lie off the main diagonal. Direct internal repeats, 
duplicated sequence regions, will show up as parallel diagonals off of the main diagonal. Rows or col-
umns of diagonals in any dot plot, whether the sequences are the same or different, clearly point out 
multiple duplications. Comparing different sequences to one another allows for the immediate recogni-
tion of insertions and deletions between the two. It is impossible to tell whether an evolutionary event 
that caused this sort of discrepancy between two sequences was an insertion or a deletion, and hence 
this phenomenon is called an “indel.” Jumps or shifts in the register of the main diagonal on a dot plot 
clearly points out the existence of an indel. Diagonals displaced off the center of the plot can also show 
the occurrence of “transposition.” In fact, dot matrix analysis is one of the few ways transpositions can 
be recognized in sequences.

However, the use and interpretation of dot plots is entirely up to the user—one must know how to 
successfully filter out extraneous background noise with appropriate parameters and what the plots 
mean—to identify areas between sequences that may have significant matches that no other method 
would ever notice. Much of sequence analysis is all about balancing signal to noise, and this is particu-
larly important with dot plots. Often a filtered windowing approach is used—a dot will only be placed 
on the plot if some “stringency” is met. Within some defined window size, and when some defined 
criteria is met, then and only then will a dot be placed at the middle of that window. The window is then 
shifted over one position and the entire process is repeated. This process allows extraneous, random 
noise, due merely to the composition of the sequences, to be eliminated, while allowing any significant 
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similarity to come through. As a general guide to stringency levels, pick whatever window size is most 
appropriate for the analysis at hand, that is, about the size of the feature trying to be recognized, if 
known, and then choose a stringency within that window that produces the cleanest plot, without filter-
ing out too much of the signal.

Dot plots can be particularly helpful in the analysis of small nucleic acid sequences, such as transfer 
RNAs (tRNAs). Consider the set of examples in Figure 30.1 using the phenylalanine tRNA molecule 
from yeast, GenBank:K01553, compared against itself. The sequence and structure are both known 
for this molecule, and the illustration shows how simple dot matrix procedures can quickly lead to 
functional and structural insights, even without complex folding algorithms, such as Zuker’s (1989). 
Figure 30.1 illustrates many of the previous concepts and how dot plots work using this yeast tRNA 
molecule as an example.

30.3.1.2  Dynamic Programming

Dynamic programming is a widely applied computer science technique, often used in many disciplines 
whenever optimal substructure solutions can provide an optimal overall solution. The technique applied 
to sequence alignment will be illustrated using an overly simplified visualization method. Instead of 
calculating the “score matrix” on the fly, as is often taught as one proceeds through the graph, a “match 
matrix” will be completely filled in first, and then points will be added to those positions that produce 
favorable alignments next. Therefore, the solution will occur in two stages. The first begins very much 
like the dot matrix methods previously shown; the second is totally different. Furthermore, the process 
will be illustrated working through the cells, in spite of the fact that many authors prefer to work through 
the edges; they provide equivalent solutions. Points will be added based on a “looking-back-over-your-
left-shoulder” algorithm rule where the only allowable trace-back is diagonally behind and above any 
particular cell. Matching sequence characters will be worth one point; nonmatching characters will be 
worth zero points. Subtracting one point for initially creating a gap, and subtracting another point per 
gap for extending a gap, will penalize the scoring scheme, unless the gaps are at the beginning or end of 
the sequence. In other words, end gaps will not be penalized; therefore, both sequences do not have to 
begin or end at the same point in the alignment. This zero penalty end-weighting scheme is the default 
for most alignment programs but can often be changed with program options, if desired. The gap pen-
alty function described here, and illustrated in Table 30.1, is called an “affine,” function, the standard 
“y = mx + b” equation for a line that does not cross the X,Y origin, where “b,” the Y intercept, describes 
how much initial penalty is imposed for creating each new gap (Gotoh, 1982): total penalty = ([length 
of gap] × [gap extension penalty]) + gap opening penalty. The affine function is the usual gap pen-
alty scheme in most pair-wise alignment programs; however, the gap “creation” or “opening” penalties 
and gap “extension” penalties used in the example are not typical of most programs. Furthermore, the 
one/zero match/mismatch scoring scheme is also not typical. These scores are used here for the sake of 
simplicity. Available program default values are usually quite appropriate and attempt to balance bio-
logical feasibility and sensitivity.

The example in Table 30.1 uses two random sequences that happen to fit the TATA promoter region 
consensus of eukaryotes and of bacteria. The most conserved bases within the consensus are capitalized 
by convention. The eukaryote promoter sequence is along the X-axis, and the bacterial sequence is along 
the Y-axis in the example. There may be more than one best path through the matrix. This time, with 
the relatively simple scoring function used, starting at the top and working down, and then tracing back, 
only one optimal alignment, with a final score of five, was discovered. This score is the highest, bottom-
right value in the trace-back path graph, the sum of five matches minus no interior gaps. Notice that this 
would not be the optimal alignment, and the matrices would be all wrong, if end gap penalties had been 
imposed. Also notice that its 62.5% identity score could be improved by sliding the first “c” on the lower 
sequence to the left but that the gap cost scheme used prevented that from happening. The alignment 
score, based on the scoring scheme used, is the only number optimized by the algorithm, not any type 
of a similarity or identity percentage!
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FIGURE 30.1  A dot plot analysis of the yeast phenylalanine tRNA. (a) Here the yeast tRNA is compared to itself 
with a window size of 7 and a stringency value of 5. Several direct repeats are obvious as off-diagonal alignment 
segments. (b) The yeast tRNA sequence compared to its reverse complement is shown next, using the same 5 out of 
7 stringency setting. Now the potential for inverted repeats becomes obvious; these are the well-known stem-loop 
structures of the tRNA cloverleaf molecular shape. They appear as clearly delineated diagonals. These diagonals 
are now perpendicular to an imaginary main diagonal running opposite to the previous case, since the orientation 
of the second sequence was reversed. For example, examine the middle stem; the region of the molecule centered 
at approximately base number 38 has a clear propensity to base pair with itself without creating a loop, since it 
crosses that imaginary main diagonal, and then just after a small unpaired gap, another stem is formed between the 
region from about base number 24 through 30 with approximately 46 through 40. (c) The middle stem described 
earlier most likely corresponds to the bottom-most stem represented here in a “ribbon” style model of the tRNA. 
(Drawn from Rotkiewicz, P., iMol molecular visualization program, http://www.pirx.com/iMol, 2007.) This loop 
is the anticodon region of the yeast phenylalanine tRNA deposited in the 3D PDB under access code 1TRA. (From 
Sundaralingam, M. et al., Nucleic Acids Res., 10, 2471, 1976.)
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TABLE 30.1  Dynamic Programming (One Point for Match, Zero Points for Mismatch, Less One Point 
for Creating a Gap, Plus Less One Point per Gap for Extending the Gap)

a. First complete the match matrix using whatever match/mismatch scoring scheme used:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0 1 1

T 0 1 0 1 0 1 0 0 0 0

A 0 0 1 0 1 0 1 1 0 0

t 0 1 0 1 0 1 0 0 0 0

A 0 0 1 0 1 0 1 1 0 0

a 0 0 1 0 1 0 1 1 0 0

T 0 1 0 1 0 1 0 0 0 0

b. �Now add and subtract points based on the best path through the matrix, working diagonally, left to right and top to 
bottom. However, whenever a box is jumped to make the path, subtract one point for doing so and an additional 
point per box jumped, except at the beginning or end of the alignment, so that end gaps are not penalized. Fill in all 
additions and subtractions, calculate the sums and differences along the way, and keep track of all the best paths. The 
score matrix is shown with all calculations in the following:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 0 + 1 = 1 0 + 0 = 0 0 + 0 = 0 0 + 0 = 0 0 + 0 = 0 0 + 0 = 0 0 + 0 = 0 1 + 0 = 1 1 + 0 = 1

T 0 1 + 0 = 1 0 + 1 = 1 1 + 0 = 1 0 + 0 = 0 1 + 0 = 1 0 + 0 = 0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1

A 0 0 + 0 = 0 1 + 1 = 2 0 + 1 = 1 1 + 1 = 2 0 + 0 = 0 1 + 1 = 2 1 + 0 = 1 0 + 0 = 0 0 + 0 = 0

t 0 1 + 0 = 1 0 + 0 = 0 1 + 2 = 3 0 + 1 = 1 1 + 2 = 3 0 + 0 = 0 0 + 2 = 2 0 + 1 = 1 0 + 0 = 0

A 0 0 + 0 = 0 1 + 1 = 2 0 + 0 = 0 1 + 3 = 4 0 + 1 = 1 1 + 3 = 4 1 + 3 − 2 = 2 0 + 2 = 2 0 + 1 = 1

a 0 0 + 0 = 0 1 + 0 = 1 0 + 2 = 2 1 + 3 − 2 
= 2

0 + 4 = 4 1 + 4 − 2 
= 3

1 + 4 = 5 0 + 2 = 2 0 + 2 = 2

T 0 1 + 0 = 1 0 + 0 = 0 1 + 1 = 2 0 + 2 = 2 1 + 2 = 3 0 + 4 = 4 0 + 3 = 3 0 + 5 = 5 0 + 5 − 2 = 3

c. Clean up the score matrix next. Just the totals are shown in each cell in the matrix in the following.
All best paths are highlighted:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 1 0 0 0 0 0 0 1 1

T 0 1 1 1 0 1 0 0 0 1

A 0 0 2 1 2 0 2 1 0 0

t 0 1 0 3 1 3 0 2 1 0

A 0 0 2 0 4 1 4 2 2 1

a 0 0 1 2 2 4 3 5 2 2

T 0 1 0 2 2 3 4 3 5 3

(continued)
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Another way to explore the dynamic programming solution space is to reverse the entire process. 
This can often discover alternative alignments. To recap, and for those people that like mathematics, 
an optimal pair-wise alignment is defined as an arrangement of two sequences, 1 of length i and 2 of 
length j, such that the following holds true:

	 1.	 The number of matching symbols between 1 and 2 are maximized.
	 2.	 The number of gaps within 1 and 2 are minimized.
	 3.	 The number of mismatched symbols between 1 and 2 are minimized. Therefore, the actual 

solution can be represented by the following recursion:
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where
Sij is the score for the alignment ending at i in sequence 1 and j in sequence 2
sij is the score for aligning i with j
wx is the score for making a x long gap in sequence 1
wy is the score for making a y long gap in sequence 2, allowing gaps to be any length in either sequence

However, just because dynamic programming guarantees an optimal alignment, it is not necessar-
ily the only optimal alignment. Furthermore, the optimal alignment is not necessarily the “right” 

TABLE 30.1 (continued)  Dynamic Programming (One Point for Match, Zero Points for Mismatch, Less One 
Point for Creating a Gap, Plus Less One Point per Gap for Extending the Gap)

d. �Finally, convert the score matrix into a trace-back path graph by picking the bottom-most, furthest right and highest 
scoring coordinate. Then choose the trace-back route that created that cell, to connect the cells all the way back to the 
beginning using the same “over-your-left-shoulder” rule. Only the best trace-back route is now highlighted with an 
outline font in the trace-back matrix in the following:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 1 0 0 0 0 0 0 1 1

T 0 1 1 1 0 1 0 0 0 1

A 0 0 2 1 2 0 2 1 0 0

t 0 1 0 3 1 3 0 2 1 0

A 0 0 2 0 4 1 4 2 2 1

a 0 0 1 2 2 4 3 5 2 2

T 0 1 0 2 2 3 4 3 5 3

e. �The final alignment is shown here. It shows the random eukaryotic promoter TATA Box sequence, with a preferred 
region centered between −36 and −20 of the start codon, versus the random bacterial sequence that fits the consensus 
from the standard Escherichia coli RNA polymerase promoter “Pribnow” box −10 region. (Gap cost: 1, length cost: 1, 
match score: 1, mismatch: 0. Alignment score: 5, percent identity: 62.5.)
cTATAtAagg

   |||||

.cgTAtAaT.
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or biologically relevant alignment! Significance estimators can provide some handle on this, but 
always question the results of any computerized solution based on what is known about the biol-
ogy of the system. The example shown in Table 30.1 illustrates the Needleman and Wunsch (1970) 
global solution, as generalized by Gotoh (1982). Later refinements (Smith and Waterman, 1981) 
demonstrated how dynamic programming could also be used to find optimal local alignments. To 
solve dynamic programming using local alignment (without going into all the details) algorithms, 
do the following:

	 1.	 Scoring functions penalize mismatches by assigning negative numbers for them. Therefore, bad 
paths quickly become very bad. This leads to a trace-back path matrix with many alternative 
paths, most of which do not extend the full length of the graph.

	 2.	 The best trace-back within the overall graph is chosen. This does not have to begin or end at the 
edges of the matrix—it’s the best segment of alignment.

30.3.1.3  Significance

A particularly common misunderstanding in this field regards the concept of homology versus that 
of similarity: there is a huge difference! Similarity and identity are merely statistical parameters 
that describe how much two sequences, or portions of them, are alike according to some set scoring 
criteria. It can be normalized to ascertain statistical significance, as is done in database searching, 
but it’s still just a number. Homology, in contrast and by definition, implies an evolutionary rela-
tionship—but more than just the fact that all life on Earth evolved from some common ancestor. 
One needs to be able to demonstrate an evolutionary lineage between the organisms or genes of 
interest to claim homology. Better yet, provide experimental evidence, structural, morphological, 
genetic, or fossil, that corroborates the assertion. There really is no such thing as percent homol-
ogy; something is either homologous or it’s not. Walter Fitch (personal communication) explains 
with the joke: “Homology is like pregnancy—you can’t be 50% pregnant, just like something can’t 
be 50% homologous. You either are or you are not.” Do not make the mistake of calling any old 
sequence similarity homology. Highly significant similarity can argue for homology, but not the 
other way around.

So, how does one tell if a similarity, in other words, an alignment discovered by some program, 
means anything? Is it statistically significant, is it truly homologous, and, even more importantly, does 
it have anything to do with real biology? Many programs generate percent similarity scores; however, as 
seen earlier, these really don’t mean a whole lot. Don’t use percent similarities or identities to compare 
sequences except in the roughest way. They are not optimized or normalized in any manner. Alignment 
quality scores mean more but are difficult to interpret. At least they take the length of similarity, all of 
the necessary gaps introduced, and the matching of symbols all into account; however, quality scores are 
only relevant within the context of a particular comparison or search and are relative to the particular 
scoring matrix and gap penalties used.

A traditional way of ascertaining alignment significance relies on an old statistics trick—Monte Carlo 
simulations. This type of significance estimation has implicit statistical problems; however, few practical 
alternatives exist when just comparing two sequences, and they are fast and easy. Monte Carlo random-
ization options in dynamic programming alignment algorithms compare an original alignment score 
against the distribution of scores from alignments where one of the sequences is repeatedly shuffled, 
at least 100 times after the initial alignment, each with its own alignment score. A standard deviation 
is calculated based on that distribution. Comparing the mean of the randomized sequence alignment 
scores to the original score using a “Z-score,” calculation can help decide significance. A “rule of thumb” 
is if the actual score is much more than three standard deviations above the mean of the randomized 
scores, the analysis may be significant; if it is much more than five, than it probably is significant; and 
if it is above ten, than it definitely is significant. Many Z-scores measure this distance from the mean 
using a simplistic Monte Carlo model assuming a normal Gaussian distribution, in spite of the fact that 
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“sequence space” actually follows an “extreme value distribution”; however, this simplistic approxima-
tion actually estimates significance quite well:

	
Z-score

Actual score Mean of randomized scores

Stan
=

( ) − ( ) 
ddard deviation of randomized score distribution( )

When the two TATA sequences from the previous dynamic programming example are compared to 
one another using the same scoring parameters as before, but incorporating a Monte Carlo Z-score cal-
culation, their similarity is found not at all significant. The mean score based on 100 randomizations is 
around 42, with a standard deviation around 8. Therefore, the Z-score is only one, so there is no signifi-
cance to the match in spite of 62.5% identity! Composition can make a huge difference—the similarity 
seen here is merely a reflection of the relative abundance of A’s and T’s in both sequences!

The FastA (Pearson and Lipman, 1988; Pearson, 1990, 1998), Basic Local Alignment Search Tool 
(BLAST) (Altschul et al., 1990, 1997), Profile (Gribskov et al., 1987, 1989), and HMMer (Eddy, 1996, 
1998) database search algorithms and their extensions all use a similar approach but base their statistics 
on the distance of the query matches from the actual, or a simulated, extreme value distribution of the 
rest of the, “insignificantly similar,” members of the database being searched. The statistics are well 
characterized for alignments without gaps. The number of ungapped alignments to be expected between 
any two sequences of length m and n, with a score greater than or equal to a particular score S, is gen-
eralized such that the expectation value E relates to S through the function E = Kmne−λs (Karlin and 
Altschul, 1990, and see http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html). This is called 
the E-value for score S. In a database search, m is the length of the query and n is the size of the database 
in residues, so N = mn is the complete search space size. K and −λ are supplied by statistical theory, 
dependent on the scoring system and the background amino acid or nucleotide frequencies, calculated 
from actual or simulated database alignment distributions. These two parameters define the statistical 
significance of an E-value. Expectation values are given in scientific notation; the smaller the number, 
that is, the closer it is to zero, the more significant the match.  In other words, the less likely a particular 
alignment is due to chance alone. Expectation values provide evidence for the inference of homology, 
or not, by showing how often to expect a particular alignment to occur as a random phenomenon in a 
search of that size database. Rough, conservative guidelines to Z-scores and expectation values from 
a typical protein search are shown in Table 30.2.

Be very careful with guidelines such as these, though, because they are entirely dependent on both the 
size and content of the database being searched as well as how often the search is performed! Think about 
it: the odds are very different for rolling dice depending on how many dice are rolled at a time, whether 
they are “loaded” or not and how many times they are rolled. Another very powerful empirical method 
of determining significance is to repeat a database search with an entry of questionable significance 
discovered by the previous search. If the new entry finds more significant “hits” of the same biochemical 
“family” of sequence as the original search did, then the entry in question is undoubtedly homologous 
to the original entry. That is, homology is transitive. If it finds entirely different types of sequences, 
then it probably is not homologous. Modular proteins with distinctly separate domains confuse issues 

TABLE 30.2  Rough, Conservative Guidelines to Z-Scores 
and Expectation Values from a Typical Protein Search

∼Z-Score ∼E Value Inference

≥3 ≤0.1 Little, if any, evidence for homology, 
but impossible to disprove!

≈5 ≈10−2 Probably homologous, but may be due 
to convergent evolution

≤10 ≥10−3 Definitely homologous



30-11Computational Biology

considerably, but the principles remain the same and can be explained through domain swapping and 
other examples of non-vertical transmission. And, finally, the “gold standard” of homology is shared 
structural folds—if two proteins have the same structural fold, then, regardless of similarity, at least that 
particular domain is homologous between the two.

30.3.1.4  Scoring Matrices

This is all fine, but what about protein sequences—conservative amino acid replacements, as opposed to 
identities? The scoring functions discussed so are far only allow match or mismatch.

Allowing similarities is certainly an additional complication that would seem important. Particular 
amino acids are very much alike, structurally, chemically, and genetically. How can the similarity of 
amino acids be taken advantage of in alignments? People have been struggling with this problem since 
the late 1960s.

Dayhoff (Schwartz and Dayhoff, 1979) unambiguously aligned closely related protein datasets (no 
more than 15% difference, and in particular cytochrome c) available at that point in time and noticed 
that certain residues, if they mutate at all, are prone to change into certain other residues. As it turns 
out, these propensities for change fell into the same categories that chemists had known for years—
those same chemical and structural classes mentioned earlier—conserved through the evolutionary 
constraints of natural selection. Dayhoff’s empirical observation quantified these changes. Based on the 
multiple-sequence alignments that she created, the empirical amino acid frequencies within those align-
ments, and the assumption that estimated mutation rates in closely related proteins can be extrapolated 
to more distant relationships, she was able to empirically specify the relative probabilities at which differ-
ent residues mutated into other residues through evolutionary history, as appropriate within some level 
of divergence between the sequences considered. This is the basis of the famous PAM (corrupted acro-
nym of “accepted point mutation”) 250 (meaning that the matrix has been multiplied by itself 250 times) 
log-odds matrix.

Since Dayhoff’s time, other biomathematicians (e.g., Henikoff and Henikoff’s [1992] BLOSUM 
[BLOcks SUbstitution Matrix] series of matrices and the Gonnet et al. matrix [1992]) have created 
matrices regarded more accurate than Dayhoff’s original, but the concept remains the same. Plus, 
the PAM series remains a classic as historically the most widely used. Confusingly these matrices are 
known variously as symbol comparison, log-odds, substitution, or scoring tables or matrices, but they 
are fundamental to all sequence comparison techniques. The default amino acid scoring matrix for most 
protein similarity comparison programs is now the BLOSUM62 table (Henikoff and Henikoff, 1992). 
The “62” refers to the minimum level of identity within the ungapped sequence blocks that went into the 
creation of the matrix. Lower BLOSUM numbers are more appropriate for more divergent datasets. The 
BLOSUM62 matrix is shown in Table 30.3.

30.3.1.5  Database Searching

Database searching programs use elements of all the concepts discussed earlier; however, classic dynamic 
programming techniques are far too slow when used against an entire sequence database. Therefore, the 
algorithms use tricks to make things happen faster. These tricks fall into two main categories, that of 
hashing and that of approximation. Hashing is the process of breaking a sequence into small “words” or 
“k-tuples” of a set size and creating a “lookup,” “hash” table with those words keyed to numbers. Then 
when any of the words match part of an entry in the database, that match is saved. In general, hashing 
reduces the complexity of the search problem from N2 for dynamic programming to N, the length of all 
the sequences in the database.

Approximation techniques are collectively known as “heuristics.” Webster’s (1973) defines heu-
ristic as “providing aid or direction in the solution of a problem, but otherwise unjustified or inca-
pable of justification.” In database searching techniques, the heuristic usually restricts the necessary 
search space by calculating some sort of a statistic that allows the program to decide whether further 
scrutiny of a particular match should be pursued. This statistic may miss things depending on the 
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parameters set—that’s what makes it heuristic. The exact implementation varies between the different 
programs, but the basic ideas follow in all of them.

Two predominant versions exist: the Fast and BLAST programs. Both return local alignments. Both 
are not a single program but rather a family of programs with implementations designed to compare a 
sequence to a database every which way imaginable: a DNA sequence against a DNA database (not rec-
ommended unless forced to do so because of dealing with a nontranslated genomic region), a translated 
(where the translation is done “on-the-fly” in all six frames) version of a DNA sequence against a trans-
lated (“on-the-fly”) version of a DNA database (not available in Fast), a translated (“on-the-fly”) version 
of a DNA sequence against a protein database, a protein sequence against a translated (“on-the-fly”) 
version of a DNA database, or a protein sequence against a protein database. Many implementations 
allow the recognition of frame shifts in translated comparisons. In more detail:

30.3.1.5.1  FastA and Family (Pearson and Lipman, 1988; Pearson, 1990, 1998)
	 1.	 Works well for DNA against DNA searches (within limits of possible sensitivity)
	 2.	 Can find only one gapped region of similarity per search
	 3.	 Relatively slow, should often be run in the background
	 4.	 Does not require specially prepared, preformatted databases

The Fast programs are older than BLAST. They were the first widely used, powerful sequence database search-
ing programs available. Pearson continually refines the algorithms such that they remain a viable alternative 
to BLAST, especially if one is restricted to searching DNA against DNA without translation. The Fast pro-
grams also may be more sensitive than BLAST in situations where BLAST finds no significant alignments.

30.3.1.5.1.1  Algorithm  The Fast programs build words of a set k-tuple size, by default two for pep-
tides. The program then identifies all exact word matches between the sequence and the database 
members. Scores are assigned to each continuous, ungapped, diagonal by adding all of the exact match 
BLOSUM values. The 10 highest scoring diagonals for each query–database pair are then rescored 
using BLOSUM similarities as well as identities, and ends are trimmed to maximize the score. The best 
of each of these is called the Init1 score.

Next the program “looks” around to see if nearby off-diagonal Init1 alignments can be combined 
by incorporating gaps. If so, a new score, Initn, is calculated by summing up all the contributing Init1 
scores, penalizing gaps with a penalty for each. The program then constructs an optimal local alignment 
for all Initn pairs with scores better than some set threshold using a variation of dynamic programming 
“in a band” (Pearson and Lipman, 1988). A sixteen residue band centered at the highest Init1 region is 
used by default with peptides. The score generated from this step is called the opt score.

Then Fast uses a simple linear regression against the natural log of the search set sequence length to 
calculate a normalized z-score for the sequence pair (Pearson, 1998). It compares the distribution of 
these z-scores to the actual extreme value distribution of the search. Using this distribution, the pro-
gram estimates the number of sequences that would be expected to have, purely by chance, a z-score 
greater than or equal to the z-score obtained in the search. This is reported as the expectation value. 
Unfortunately, the z-score used in the Fast programs and the Monte Carlo style Z-score discussed pre-
viously are quite different and cannot be directly compared; however, the expectation values between 
Fast and other programs are equivalent. Finally, the program uses full Smith–Waterman local dynamic 
programming, not “restricted to a band,” to produce its final alignments.

30.3.1.5.2  BLAST: Basic Local Alignment Search Tool (Altschul et al., 1990, 1997)
	 1.	 Normally not a good idea to use for DNA against DNA searches (not optimized)
	 2.	 Prefilters repeat and “low complexity” sequence regions by default
	 3.	 Can find more than one region of gapped similarity
	 4.	 Very fast heuristic and parallel implementation
	 5.	 Restricted to precompiled, specially formatted databases
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30.3.1.5.2.1  Algorithm  After BLAST has sorted its lookup table, it tries to find all double-word hits 
along the same diagonal within some specified distance using a discrete finite automaton (DFA) 
(NCBI). Word hits of size W do not have to be identical; rather, they have to be better than some 
threshold value T. To identify double-word hits, the DFA scans through all strings of words (typically 
W = 3 for peptides) that score at least T (usually 11 for peptides). Each double-word hit that passes 
this step then triggers a process of ungapped extension in both directions, such that each diagonal is 
extended as far as it can, until the running score starts to drop below a predefined value X within a cer-
tain range A. The result of this pass is called a high-scoring segment pair (HSP). HSPs then, are those 
stretches of sequence pairs that cannot be further improved by extension or trimming. Those HSPs 
that pass this step with a score better than S then begin a gapped extension step utilizing dynamic 
programming. Those gapped alignments with expectation values better than the user specified cutoff 
are reported. The extreme value distribution of BLAST expectation values is pre-computed against 
each precompiled database available to the program—this is one area that speeds up the algorithm 
considerably.

30.3.1.5.3  Database Searching Conclusions
In review, both the Fast and BLAST family of programs calculate their Expectation “E” values on a 
more realistic “extreme value distribution,” based on either real or simulated “not significantly simi-
lar” database alignments, than do most Monte Carlo style Z-scores, since Monte Carlo techniques are 
often based on the normal distribution, although they do parallel Monte Carlo style Z-scores fairly 
well. Regardless, the higher an E-value, the more probable that the observed match is due to chance in 
a search of that size database, and the lower its Z-score will be. Conversely, the smaller an E-value, that 
is, the closer it is to zero, the more significant it is, and the higher its Z-score will be. The E-value is the 
number that really matters. A value of 0.01 is usually a decent starting point for significance in most 
typical searches.

Furthermore, all database searching, regardless of the algorithm, is far more sensitive at the 
amino acid level than at the DNA level. This is because proteins have twenty match criteria, the 20 
naturally occurring amino acids, versus DNA’s four nucleotides, and those four DNA nucleotides 
can only be identical or not, not similar, to each other. Furthermore, many DNA base changes 
(especially third position changes) do not change the encoded protein at all because of the redun-
dancy of the genetic code. All of these factors drastically increase the “noise” level of a DNA against 
DNA search and give protein searches a much greater “look-back” time, typically five to ten times 
longer back in evolutionary history. Therefore, whenever dealing with coding sequence, it is always 
prudent to search at the protein level. Furthermore, even without a protein sequence query, one 
can use programs that take a DNA query, translate it in all six frames, and then compare protein 
databases.

30.3.2  Multiple-Sequence Analysis

The power and sensitivity of sequence-based computational methods dramatically increase with the 
addition of more data. More data yield stronger analyses—if done carefully! Otherwise, it can con-
found the issue. The patterns of conservation become ever clearer by comparing the conserved por-
tions of sequences among a larger and larger dataset. Those areas most resistant to change are most 
important to the molecule. The basic assumption is that those portions of sequence of crucial structural 
and functional value are most constrained against evolutionary change. They will not tolerate many 
mutations. Not that mutation doesn’t occur in these regions, it is just that most mutation in the area 
is lethal, so it is never seen. Other areas of sequence are able to drift more readily, being less subject to 
this evolutionary pressure.

Therefore, sequences end up a mosaic of quickly and slowly changing regions over evolutionary 
time.
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However, a big problem exists. As we’ve seen, dynamic programming reduces the pair-wise 
alignment problem’s complexity down to order N2—the solution of a 2D matrix, so the complexity 
of the solution is equal to the length of the longest sequence squared. But how are more than just 
two sequences at a time aligned? It becomes much harder. Sequences can be manually aligned with 
an editor, but some type of an automated solution is desirable, at least as a starting point to manual 
alignment. Solving the dynamic programming algorithm for more than just two sequences rapidly 
becomes intractable. Dynamic programming’s complexity, and hence its computational requirements, 
increases exponentially with the number of sequences in the dataset being compared (complexity = 
[sequence length]number of sequences), an N-dimensional matrix. So a three-sequence dynamic program-
ming alignment would require the solution of a three-axis matrix, with complexity equal to the length 
of the longest sequence cubed, and so forth. A 3D matrix can at least be drawn, but more dimensions 
than that quickly become impossible to even visualize!

Several different heuristics have been employed over the years to simplify the complexity of the prob-
lem. One classic program, multiple sequence alignment (MSA) (Gupta et al., 1995), attempts to globally 
solve the N-dimensional matrix recursion using a bounding box trick. However, the algorithm’s com-
plexity precludes its use in most situations, except with very small datasets. Another way to globally solve 
the algorithm, and yet reduce its complexity, is to restrict the search space to only the most conserved 
“local” portions of all the sequences involved. This approach is used by the program pattern-induced 
multi-sequence alignment (PIMA) (Smith and Smith, 1992). Neither program ever really caught on 
though, as both require relatively small datasets.

30.3.2.1  Heuristic Solutions: How the Algorithms Work

Most multiple-sequence alignment implementations do not attempt to globally solve the algorithm; they 
modify dynamic programming by establishing a pair-wise order in which to build the alignment. This 
heuristic modification is known as pair-wise, progressive dynamic programming. Originally attributed 
to Feng and Doolittle (1987), this variation of the dynamic programming algorithm creates a global 
alignment but restricts its search space to a local neighborhood of the full length of only two sequences, 
at any one time. Consider a dataset of sequences. First all are compared to each other, pair-wise, using 
some quick variation of standard dynamic programming. This establishes an order for the dataset, most 
to least similar, known as the “guide tree.” The algorithm then takes the top two most similar sequences 
and aligns them. It creates a quasi-consensus of those two and aligns that to the third sequence. Next 
it creates the same sort of quasi-consensus of the first three sequences and aligns that to the forth most 
similar. Subgroups are clustered together similarly. The way the various implementations make and use 
this “consensus” is one of the biggest differences between them. This process, all using standard, pair-
wise dynamic programming, continues until it has worked its way through all of the sequences and/or 
sets of clusters, to complete the full multiple-sequence alignment. The pair-wise, progressive solution 
is implemented in several programs. Perhaps the most popular is ClustalW of Thompson et al. (1994) 
and its graphical user interface ClustalX (Thompson et al., 1997). This program achieved the first major 
advances over the basic Feng and Doolittle algorithm by incorporating variable sequence weighting, 
dynamically varying gap penalties and substitution matrices, and a neighbor-joining (NJ, Saitou and 
Nei, 1987) guide tree. Several more variations on the theme have come along since ClustalW. Tree-based 
consistency objective function for alignment evaluation (T-Coffee) (Notredame et al., 2000) was one of 
the first and has gained much favor. Its biggest innovation is the use of a preprocessed, weighted library 
of all the pair-wise global alignments between the sequences in a dataset plus the ten best local align-
ments associated with each pair of sequences. This helps build both the NJ guide tree and the progressive 
alignment. Furthermore, the library is used to assure consistency and help prevent errors, by allowing 
“forward thinking” to see whether the overall alignment will be better one way or another after particu-
lar segments are aligned one way or another. Notredame (2006) uses the analogy of school schedules—
everybody, students, teachers, and administrators, with some folk being more important than others, 
that is, the weighting factor, puts the schedule they desire in a big pile, that is, T-Coffee’s library, and 
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the trick is to best fit all the schedules to one academic calendar, so that everybody is happiest, that is, 
T-Coffee’s final multiple-sequence alignment. The M-Coffee version (Wallace et al., 2006) can even tie 
together multiple methods as external modules, making consistency libraries from the results of each. 
T-Coffee is one of the most accurate multiple-sequence alignment methods available because of this 
consistency-based rationale, but it is not the fastest.

Muscle (Edgar, 2004; Edgar and Batzoglou, 2006) is another multiple-sequence alignment program 
that came after ClustalW. It is incredibly fast, yet nearly as accurate as T-Coffee with protein data. 
Muscle is an iterative method that uses weighted log-expectation profile scoring along with a slew of 
optimizations. It proceeds in three stages—draft progressive using k-tuple counting, improved progres-
sive using a revised tree from the previous iteration, and refinement by sequential deletion of each tree 
edge with subsequent profile realignment. Two other programs that claim speed and accuracy beyond 
standard progressive multiple-sequence alignment are partial order alignment (POA) and profile con-
sistency multiple-sequence alignment (PCMA). POA (Lee et al., 2002) uses graph theory to represent 
an alignment as a partial order graph and allows for a new edit operator, homologous recombination. 
PCMA (Pei et al., 2003) combines Clustal-style progressive alignment of very similar sequences with a 
T-Coffee-like strategy of profile–profile consistency comparison. Perhaps the most accurate multiple-
sequence alignment program is ProbCons (Do et al., 2005). It uses HMM techniques and posterior 
probability matrices that compare random pair-wise alignments to expected pair-wise alignments. 
Probability consistency transformation is used to reestimate the scores, and a guide tree is then con-
structed, which is used to compute the alignment, which is then iteratively refined.

The MAFFT (Katoh et al., 2002, 2005) multiple-sequence alignment suite is also quite powerful. It can 
be run many different ways—a couple of progressive, approximate modes, using a fast Fourier trans-
form (FFT); a couple of iteratively refined methods that add in weighted-sum-of-pairs (WSP) scoring; 
and several iterative methods that use the WSP scoring combined with a T-Coffee-like consistency-
based scoring scheme. Speed and accuracy are inversely proportional for these from fast and rough, to 
slow and accurate, respectively. MAFFT’s FFT provides a huge speedup over most previous methods. 
Homologous regions are quickly identified by converting amino acid residues to vectors of volume and 
polarity, thus changing a 20-character alphabet to six, rather than by using an amino acid similarity 
matrix. Similarly, nucleotide bases are converted to vectors of imaginary and complex numbers. The 
FFT trick then reduces the complexity of the subsequent comparison to order N logN. FFT identifies 
potential similarities though, without localizing them; a sliding window step using the BLOSUM62 
matrix is used for this. Then MAFFT constructs a distance matrix, and hence a progressive guide tree, 
on the number of shared six-tuples from this Fourier transform, rather than on a ranking based on 
full-length, pair-wise sequence similarity. The user can specify how many times a new guide tree is 
subsequently recalculated from a previous alignment as many times as desired; the alignment is recon-
structed using the Needleman–Wunsch algorithm for each pass.

The iterative refinement modes build on this foundation by adding steps that adjust the alignment 
back and forth until there is either solely no improvement in the WSP score (or the number of cycles has 
reached a set limit), or it adds both this WSP score and a T-Coffee-like consistency score between pair-
wise and multiple alignments to the refinement procedure. Differences in the iterative methods that com-
bine WSP and consistency scores are based on how the pair-wise scores are calculated, globally, locally 
with affine gap costs, or locally with generalized affine gap costs. Knowing which to choose, especially 
when dealing with sequences too diverged for the fast methods to work well, depends on the nature of the 
data. MAFFT’s algorithm page (http://mafft.cbrc.jp/alignment/software/algorithms/algorithms.html) 
explains where and when each mode is most appropriate. If sequences have full-length, but low, similar-
ity, then the global option is appropriate (ginsi); if sequences have one similar domain among a bunch 
of “junk,” then the local affine gap option works best (linsi); whereas if sequence data are composed of 
multiple, yet alignable domains, then the local generalized affine gap scheme is appropriate (einsi).

MAFFT’s capability to handle large datasets and its speed is similar to or greater than Muscle’s in its faster 
modes; its results and capabilities are similar to T-Coffee in its slow, iteratively refined, optimized modes.
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30.3.2.2  Coding DNA Issues

As discussed in the database searching section, all alignment algorithms, be they pair-wise, multiple, or 
database similarity searching, are far more sensitive at the amino acid level than at the DNA level. The 
signal-to-noise ratio is just so much better with amino acids, for all the reasons previously described. 
Therefore, database searching and sequence alignment both should always be done at the protein level, 
unless forced otherwise by dealing with noncoding DNA, or if the sequences are so very similar as to not 
cause any problems. Therefore, usually, if dealing with coding sequences, translate DNA to its protein 
counterpart, before performing multiple-sequence alignment. Even if dealing with very similar coding 
sequences, where the DNA can be directly aligned, it is often best to align the DNA along with its cor-
responding proteins. In addition to the much more reliable alignment, this also insures that alignment 
gaps are not placed within codons, which would not make sense biologically. DNA indels in coding 
regions need to be in multiples of three to avoid frameshift errors. Phylogenetic analysis can then be 
performed on the DNA rather than on the proteins, if desired. This is especially important when dealing 
with datasets that are quite similar, since the proteins may not reflect differences hidden in the DNA. 
Furthermore, many people prefer to run phylogenetic analyses on DNA rather than protein regardless 
of how similar they are—the multiple substitution models have a long and well-accepted history, and yet 
are far simpler. However, the more diverged a dataset becomes, the more random third and eventually 
first codon positions become, which introduces noise (error) into the analysis. Therefore, often third 
positions and sometimes first positions are masked out of datasets for phylogenetic analysis. Just like in 
most of computational molecular biology, one is always balancing signal against noise. Too much noise 
or too little signal, both degrade the analysis to the point of nonsense.

Several scripts and programs, as well as some web servers, can perform this sort of codon-based 
alignment, but they can be a bit tricky to run. Examples include mrtrans (Pearson, 1990) (also avail-
able in EMBOSS [Rice et al., 2000] as tranalign and in BioPerl [Stajich et al., 2002] as aa_to_dna_aln), 
transAlign (Bininda-Emonds, 2005), RevTrans (Wernersson and Pedersen, 2003), PAL2NAL (Suyama 
et al., 2006), and TranslatorX (Abascal et al., 2010). Some multiple-sequence alignment editors, such as 
SeaView (Galtier et al., 1996), can also help with this process.

Multiple-sequence alignment is much more difficult if forced to align nucleotides because a sequence 
does not code for a protein. Automated methods may be able to help as a starting point, but they are 
certainly not guaranteed to come up with a biologically correct alignment. The resulting alignment will 
probably have to be extensively edited, if it works at all. Success will largely depend on the similarity of 
the nucleotide dataset.

30.3.2.3 R eliability?

One liability of most global, progressive, pair-wise methods is they are entirely dependent on the order 
in which the sequences are aligned. Fortunately, ordering them from most similar to least similar makes 
biological sense and works well. However, most of the techniques are very sensitive to the substitution 
matrix and gap penalties specified. Some programs allow “fine-tuning” areas of an alignment by realign-
ment with different scoring matrices and/or gap penalties; this can be extremely helpful. Regardless, any 
automated multiple-sequence alignment program should be thought of only as a tool for offering a start-
ing alignment that can be improved upon, not the “end-all-to-meet-all” solution, guaranteed to provide 
the “one-true” answer. Although, in this post-genomics era, especially when dealing with giga-bases of 
data, it does make sense to start with the “best” solution possible. This is the premise of using a very 
accurate multiple-sequence alignment package, such as T-Coffee (Notredame et al., 2000), ProbCons 
(Do et al., 2005), POA (Lee et al., 2002), PCMA (Pei et al., 2003), or MAFFT (Katoh et al., 2002, 2005).

Whichever program used to create an alignment, always use comparative approaches to help assure 
its reliability. After the program has offered its best guess, try to improve it further. Think about it—a 
sequence alignment is a statement of positional homology—it is a hypothesis of evolutionary his-
tory. It establishes the explicit homologous correspondence of each individual sequence position, 
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each column in the alignment. Therefore, insure that it is as good as it can be. Be sure that it makes 
biological sense—align things that make sense to align! Beware of comparing “apples and oranges.” Be 
particularly suspect of sequence datasets found through text-based database searches such as NCBI’s 
Entrez (Schuler et al., 1996) or the EMBL/EBI sequence retrieval system (SRS) (Etzold and Argos, 1993). 
For example, don’t try to align receptors and/or activators with their namesake proteins or with each 
other. Be wary of trying to align genomic sequences with cDNA when working with DNA; the introns 
will create big problems, unless using software specifically designed for the task. Similarly, align-
ing mature and precursor proteins, or alternate splicing forms, from the same organism and locus, 
doesn’t make evolutionary sense, as one is not evolved from the other, rather one is the other. Watch 
for redundant sequences; there are lots of them in the databases. Some programs can automatically 
cull them from a dataset. If creating alignments for phylogenetic inference, make either paralogous 
comparisons (evolution via gene duplication) to ascertain gene phylogenies within one organism or 
orthologous (within one ancestral loci) comparisons to ascertain gene phylogenies between organisms 
(which should imply organismal phylogenies). Try not to mix the two without complete data represen-
tation. Otherwise, confusion can mislead interpretation, especially if the sequences’ nomenclature is 
inconsistent. These are all easy mistakes to make; try to avoid them.

Devote considerable time and energy toward developing the best alignment possible. Use biologi-
cal understanding to help guide judgment. Look for conserved functional, enzymatic, regulatory, 
and structural elements and motifs—they should all line up. Searches of the PROSITE database of 
protein families and domains (Bairoch, 1992) for cataloged structural, regulatory, and enzymatic 
consensus patterns or “signatures” can help, as can searches of the Pfam protein family database 
of HMM profiles (Eddy, 1996, 1998), and de novo motif discovery tools like MEME (Bailey and 
Elkan, 1994) and MotifSearch (Bailey and Gribskov, 1998). Look for columns of strongly conserved 
residues such as tryptophans, cysteines, and histidines; important structural amino acids such as 
prolines, tyrosines, and phenylalanines; and conserved isoleucine, leucine, and valine substitutions. 
The conservation of covarying sites in ribosomal and other structural RNA alignments can be very 
helpful in refining RNA alignments. That is, as one base in a stem structure changes, the corre-
sponding Watson–Crick paired base will change in a corresponding manner. This principle has 
guided the assembly of ribosomal RNA (rRNA) structural alignments at the Ribosomal Database 
Project at Michigan State University (RDP, Cole et al., 2007), at the University of Gent, Belgium 
European Ribosomal RNA database (Wuyts et al., 2004), and at the German SILVA database system 
(Pruesse et al., 2007).

Editing alignments to insure that all columns are truly homologous should be encouraged, not dis-
couraged. Dedicated sequence alignment editing software such as the genetic data environment (GDE) 
(Smith et al., 1994), Jalview (Clamp et al., 2004), Se-Al (Rambaut, 1996), and SeaView (Galtier et al., 
1996) are great for this, but any editor will do, as long as the sequences end up properly formatted after-
ward. Structural alignment is the “gold standard,” but the luxury of having homologous, experimentally 
solved structures is often not available. Even with a structural alignment, there’ll often be questionable 
regions of sequence data within it.

These highly saturated regions have the property known as “homoplasy.” This is a region of a sequence 
alignment where so many multiple substitutions have occurred at homologous sites that it is impossible 
to know if those sites are properly aligned and, thus, impossible to ascertain relationships based on those 
sites. The primary assumption of all phylogenetic inference algorithms is most violated in these regions, 
and this phenomenon increasingly confounds evolutionary reconstruction as divergence between the 
members of a dataset increases.

Therefore, only analyze those sequences and those portions of an alignment that assuredly do align. 
This often means trimming down or somehow excluding those homoplastic regions, some of the inter-
nal gaps, and, minimally, the alignment’s extreme amino- and carboxy-termini (5′ and 3′ in DNA), 
which seldom align well. Sequence editors such as SeaView can do this. Those portions excluded will not 
be used in subsequent analyses. These decisions are somewhat subjective by nature, experience helps, 
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and some software, such as Gblocks (Talavera and Castresana, 2007), ASaturA (Van de Peer et al., 
2002), and T-Coffee (Notredame et al., 2000), has the ability to evaluate the quality of particular regions 
of an alignment. If, after all else, some region, or an entire sequence, just can’t be aligned, if there is any 
doubt, then do not use it. Cutting an entire sequence out of an alignment may leave columns of gaps 
across the entire alignment that will need to be removed. Most alignment editors have a function for 
closing these common gaps. The validity of all subsequent analyses is absolutely dependent upon the 
quality and accuracy of the input multiple-sequence alignment. Remember the old adage “garbage in—
garbage out!” Some general guidelines to remember (Olsen, 1992) include the following:

•	 If the homology of a region is in doubt, then throw it out
•	 Avoid the most diverged parts of molecules; they are the greatest source of systematic error
•	 Do not include sequences that are more diverged than necessary for the analysis at hand

Biocomputing is always a delicate balance—signal against noise—and sometimes it can be quite the 
balancing act!

30.3.2.4 A pplicability

So what’s the big deal about multiple-sequence alignment; why would anyone want to bother?
Multiple-sequence alignments can be

•	 Extremely useful in the development of PCR primers and hybridization probes
•	 Great for producing annotated, publication quality, graphics, and illustrations
•	 Required for building HMM profiles for remote homology similarity searching and alignment
•	 Invaluable for structural and functional analyses via homology inference
•	 Absolutely necessary for molecular evolutionary phylogenetic inference

Multiple-sequence alignments can be very helpful for designing phylogenetic-specific probes and 
primers by allowing for the clear visualization and localization of the most conserved and the most 
variable regions within an alignment. Depending on the dataset being analyzed, any level of phylo-
genetic specificity can be achieved. Areas of high variability in the overall dataset that correspond 
to areas of high conversation in phylogenetic category subset datasets can differentiate between 
universal and phylo-specific potential probe sequences. Any of several primer discovery programs, 
such as MIT’s Primer3 (Rozen and Skaletsky, 2000) or the commercial Oligo program (National 
Biosciences, Inc.), can be used to find and test the best primers within the target areas localized by 
this method.

Graphics prepared from multiple-sequence alignments can dramatically illustrate functional and 
structural conservation as it relates to sequence similarity. These can take many forms of all or portions 
of an alignment—shaded or colored boxes or letters for each residue or base (e.g., BoxShade [Hofmann 
and Baron] and PrettyPlot in EMBOSS [Rice et al., 2000]), cartoon representations (e.g., WebLogos 
[Schneider and Stephens, 1990]), running line graphs of overall similarity (as displayed by ClustalX 
[Thompson et al., 1997] and others), overlays of attributes, various consensus representations, etc.—all 
can be printed with high-resolution equipment, usually in color or gray tones. These can make a big dif-
ference in a poster or manuscript presentation.

Profiles are position-specific scoring matrices (PSSM) that describe a sequence alignment or a portion 
of an alignment. These powerful tools are created from an existing alignment of similar sequences and 
can be used to perform the most sensitive database remote similarity search possible. Another advan-
tage of profile techniques is they can be used to build ever-larger multiple-sequence alignments much 
faster and more accurately than any of the progressive multiple-sequence alignment methods. This abil-
ity to easily create larger and larger multiple-sequence alignments is incredibly powerful and much 
faster than starting all over each time another sequence needs to be added to an alignment. Originally 
described by Gribskov et al. (1987, 1989), and then automated by NCBI’s PSI-BLAST (Altschul et al., 
1997), later refinements have added more statistical rigor (see, e.g., Eddy’s HMM HMMer profiles and 
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Pfam profile database [1996, 1998] and Bailey and Elkan’s Expectation Maximization [1994]). Briefly 
described profiles upweight conserved regions such that the more highly conserved a residue is, the 
more important it becomes, and, in those profiles that allow gaps, gap insertions are penalized more 
heavily in conserved areas of the alignment than in variable regions.

Conserved sequence really does matter. In addition to the conservation of primary sequence, struc-
ture and function are also conserved in these crucial regions. In fact, recognizable structural con-
servation between true homologues extends way beyond statistically significant sequence similarity. 
The serine protease superfamily contains a good example. Streptomyces griseus protease A shows 
remarkably little sequence similarity when compared to the rest of the superfamily (expectation val-
ues 101.8 in a typical protein database search), yet it clearly is a serine protease as its 3D structure can 
be superimposed over most other members of the family with a root mean square deviation (RMSD) 
of less than 3 Å (Pearson, W.R., personal communication). These comparative principles are the 
premise of “homology modeling,” which works remarkably well. One of the best applications of these 
principles is PredictProtein, which uses weighted dynamic programming multiple-sequence align-
ment methods (MaxHom, Sander and Schneider, 1991), along with neural net technology, to predict 
protein secondary structure by the profile network method (PHD, Rost and Sander, 1993, 1994) at an 
expected 70.2% average accuracy for the three states helix, strand, and loop. Furthermore, even 3D 
modeling without crystal coordinates is possible, if a sequence is similar enough to an experimentally 
solved structure. In fact, the SWISS-MODEL (Guex and Peitsch, 1997; Guex et al., 1999) system at 
the ExPASy server in Switzerland, supported by SIB and GlaxoSmithKline, automates the homology 
modeling process, given similar enough sequence data to at least one solved structure, though as 
in most cases, a multiple-sequence alignment of solved structure sequences makes the theoretical 
model even more probable.

Finally, multiple-sequence alignments are required for phylogenetic inference. Many different com-
putational methods can estimate the most reasonable evolutionary tree for a sequence alignment based 
on the assertion of homologous positions within that alignment. Computational tools that incorporate 
these methods include Phylogenetic Analysis Using Parsimony (PAUP*) (and other methods) (Swofford, 
1989–2012), PHYLogeny Inference Package (PHYLIP) (Felsenstein, 1980–2012), MrBayes (Ronquist and 
Huelsenbeck, 2003), GARLI (Zwickl, 2006), and RAxML (Stamatakis, 2006). This is a huge and compli-
cated field of study and will not be discussed further here. However, always remember that regardless of 
the algorithm used—any form of parsimony, all of the distance methods, all maximum likelihood tech-
niques, and even all types of Bayesian phylogenetic inference—all make the absolute validity of the input 
alignment matrix their first and most critical assumption (but see, e.g., Lunter et al., 2005). The famous 
Darwinian evolutionist Theodosius Dobzhansky summarized the importance of phylogenetic analyses 
in 1973, provided as an inscription on the inner cover of the classic organic evolution text Evolution: 
“Nothing in biology makes sense except in the light of evolution” (Dobzhansky et al., 1977). Evolution 
provides the single, unifying, cohesive force to explain all life.

30.4  Complications

Sequence data format is a huge problem in bioinformatics. The major databases all have their own dis-
tinct format, plus many of the different programs and packages require their own. Clustal (Higgins 
et al., 1992) has a specific format associated with it. The Fast package (Pearson and Lipman, 1988) uses a 
very basic sequence format that many programs recognize. NCBI uses a library standard called Abstract 
Syntax Notation One (ASN.1), plus it provides GenBank flat file format for all sequence data. PAUP* 
(Swofford, 1989–2012), MrBayes (Ronquist and Huelsenbeck, 2003), and many other phylogenetic 
analysis packages have a required format called the NEXUS file (Maddison et al., 1997). Even PHYLIP 
(Felsenstein, 1980–2012) has its own unique data format. Standards have been argued over for years, 
such as using XML for everything, but until everybody agrees, which is not likely to happen, it just 
won’t happen. Fortunately several programs are available to convert formats back and forth between 
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the required standards; however, it can all get quite confusing. BioPerl’s SeqIO system (Stajich et al., 
2002) and ReadSeq (Gilbert, 1990–2008) are two very helpful tools for format conversion. T-Coffee 
(Notredame et al., 2000) comes with one built in, and the SeaView (Galtier et al., 1996) editor recog-
nizes NEXUS, Clustal, FastA, PHYLIP, and MASE format. Alignment gaps are still another problem. 
Different program suites may use different symbols to represent them. Most programs use hyphens “-” 
but some do not. Furthermore, not all gaps in sequences should be interpreted as deletions. Interior gaps 
are probably okay to represent this way, as regardless of whether a deletion, insertion, or a duplication 
event created the gap, logically they are the same. These are the indels mentioned previously. However, 
end gaps should not be represented as indels, because a lack of information before or beyond the length 
of any given sequence may not be due to a deletion or insertion event. It may have nothing to do with 
the particular stretch being analyzed at all. It just may not have been sequenced! These gaps are just 
placeholders for the sequence. Therefore, it is safest to manually edit an alignment to change leading 
and trailing gap symbols to “x”’s, which mean “unknown amino acid,” or “n”’s, which mean “unknown 
base,” or “?”’s, which is supported by many programs, but not all, and means “unknown residue or 
indel.” This will assure that incorrect assumptions are not made, though most phylogenetic inference 
algorithms treat indels and missing data equivalently by default.

30.5  Conclusions

The comparative method is a cornerstone of the biological sciences. Multiple-sequence alignment and 
database searching are the comparative method on a molecular scale and are a vital prerequisite to some 
of the most powerful computational biology techniques available. Understanding something about the 
algorithms and the program parameters of each is the only way to rationally know what is appropriate. 
Knowing and staying well within the limitations of any particular method will avert much frustra-
tion. One point that needs to be emphasized is sequence analysis techniques generally have appropriate 
default parameters. This will usually work just fine, but it is a good idea to think about what these default 
values imply and adjust them accordingly, especially if the results seem inappropriate after a first pass 
with the default parameters intact.

Furthermore, the dramatic importance of a multiple-sequence alignment cannot be understated. All 
subsequent analyses are absolutely dependent upon it, especially phylogenetic inference. Also, if build-
ing multiple-sequence alignments for phylogenetic inference, do not base an organism’s phylogeny on 
just one gene. Many complicating factors can produce weird phylogenies: bad alignments, insufficient 
data, abjectly incorrect models, saturated positions (homoplasy), compositional biases, and/or hori-
zontal gene transfer. Therefore, use several genes—the Ribosomal Database Project (Cole et al., 2007) 
provides a good, largely accepted alignment and phylogenetic framework with which other phylogenies 
can be compared. Anytime the orthologous phylogenies of organisms based on two different genes do 
not agree, there is either some type of problem with the analysis, or lateral gene transfer has occurred. 
Paralogous gene phylogenies are another story altogether and should be based, if at all possible, on 
sequences all from the same organism.

Gunnar von Heijne (1987) in his quite readable but very dated treatise, Sequence Analysis in Molecular 
Biology; Treasure Trove or Trivial Pursuit, provides an appropriate conclusion:

Think about what you’re doing; use your knowledge of the molecular system involved to guide both 
your interpretation of results and your direction of inquiry; use as much information as possible; 
and do not blindly accept everything the computer offers you.
He continues:
… if any lesson is to be drawn … it surely is that to be able to make a useful contribution one must 
first and foremost be a biologist, and only second a theoretician …. We have to develop better algo-
rithms, we have to find ways to cope with the massive amounts of data, and above all we have to 
become better biologists. But that’s all it takes.
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Key Terms

Affine: An affine function is a linear function, described by the algebraic formula y = mx + b.
Expectation value (E-value): The likelihood that a particular sequence alignment is due to chance. 

The value is dependent on sequence and database composition and size and on how often a 
researcher performs database searches. Most modern sequence database similarity programs 
such as BLAST and FastA provide this statistic based on the extreme value distribution. The 
closer the value is to zero, the more significant the match.

Exon: A defined stretch of DNA within a gene that is transcribed into a corresponding complimentary 
message RNA molecule and that is maintained after RNA processing into mature mRNA, such 
that only those portions not excised follow the relevant genetic code to be translated into cor-
responding amino acids.

Gap penalties: In the context of affine gap penalties, the creation or opening penalty is how many points 
a dynamic programming algorithm is penalized for imposing a gap in an alignment (the b in 
the previous equation).

The extension or lengthening penalty describes how many additional points the algo-
rithm is penalized for each additional gap added to the first one after it is introduced (the 
x in the previous equation).

Gene: A defined stretch of DNA nucleotides that encodes either a protein, with or without introns and 
exons, or a structural or regulatory RNA (e.g., tRNAs, rRNAs, microRNAs, siRNAs, and 
snRNAs), which is inherited from one generation to the next.

Global alignment: As opposed to local alignment, which is the alignment of only the best regions within 
sequences, global alignment is the alignment of the full length of a sequence set and generally 
applies to the multiple-sequence alignment problem. However, it should be realized that global 
alignment can be restricted to subsequences within sequences, the distinction being that local 
alignment “picks” the best regions, whereas global alignment uses the full length of whatever 
is specified.

HMM: In sequence analysis, HMMs contain the statistical description of a recognized functional unit 
of some particular biological gene family or superfamily, assembled under the probabilistic 
model of hidden Markov chains (see profile).

Homology: An organ, trait, gene, or even DNA nucleotide position shared with a common ancestor. 
Homology, as opposed to sequence identity and similarity, can have no level.

A sequence and, in fact, a position within an alignment, is either demonstrably related via 
evolution to another or not. Statistically significant similarity can argue for homology; how-
ever, a lack of statistically significant similarity cannot be used to argue against homology.

Homology modeling: The secondary and often tertiary, 3D structure of proteins can be inferred by 
alignment with proteins whose 3D structure has been experimentally determined. Obviously 
the more similar the sequences are, the more successful the theoretical model will be.

Homoplasy: A region of a sequence alignment where so many multiple substitutions have occurred 
at homologous sites that it is impossible to know if those sites are properly aligned and, thus, 
impossible to ascertain relationships based on those sites.

Indel: An indel is a gap introduced into a sequence alignment necessary to reconcile differing lengths 
due to differing evolutionary histories. It is impossible to ascertain whether an insertion or a 
deletion event created the discrepancy, hence the term indel.

Intron: A defined stretch of DNA within a gene that is transcribed into a corresponding complimentary 
message RNA molecule, but that is not retained after RNA processing into a mature mRNA 
and, therefore, is not translated into amino acids.

Matrices: A match matrix is the first step in dot plot techniques and in the visualization of the dynamic 
programming algorithm illustrated. Its cells contain the value each position receives for 
matching (aligning) respective X- and Y-axis characters.
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A score matrix also has two meanings. In the context of dynamic programming, it is the matrix 
in which cell values have received initial match values adjusted by gap penalties and trace-back 
paths. The alternative meaning describes the values that amino acid residues or nucleotide 
bases receive for aligning with one another, also known as symbol substitution tables, or log-
odds matrices, for example, the PAM and BLOSUM matrix series.

The trace-back path matrix delineates the alignments discovered by the dynamic program-
ming algorithm; it illustrates the optimal paths through the matrix.

Motif: A motif is a described and cataloged region of a sequence, usually shorter than a domain and 
often, but not always, associated with some biological structural, functional, or regulatory role. 
Motifs are commonly represented as consensus patterns but are often described by HMM pro-
files as well.

Orthology and paralogy: Two major classes of sequence homology exist. Orthology describes homolo-
gous sequences present in different organisms as a result of speciation processes. Paralogy 
describes homologous sequences within the same organism as a result of gene duplication. 
Major confusion can result from mixing paralogues and orthologues in the same analysis.

Profile: A profile is a statistical description of a multiple-sequence alignment, commonly of a region or 
a motif within a multiple-sequence alignment. Profiles take many forms associated with the 
particular programs that create them, for example, ProfileBuild, HMMer, MEME, but always 
increase the importance of conserved residues or bases and decrease the importance of vari-
able areas.

z-score and Z-score: The Z-score is usually based on a normal Gaussian distribution and describes 
how many standard deviations a particular score is from the distribution’s mean, though 
it may be based on the extreme value distribution. This is confusingly in contrast to Bill 
Pearson’s z-score in the FastA programs that is a linear regression of the opt score against the 
natural log of the search set sequence length. The two values, Z and z, have entirely different 
magnitudes and should not be correlated.
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31.1  Introduction

Terrain models are used for many purposes in a variety of hydrological, geomorphological, and biological 
applications. Examples include estimation of river networks and watersheds, soil moisture and runoff 
behavior, soil erosion, long-term water availability, delineation of land slide areas, and land cover classifi-
cation [68]. In the past decades, it has become increasingly easy to collect high-precision elevation samples 
of the Earth surface and the floors of water bodies. However, many other types of terrain properties are 
not as easy to collect, because they are not readily observed or measured from above. Examples include 
the flow of water across the surface or the daily amount of sunlight per square meter. To make maps of 
such properties across a terrain, scientists use models to compute an estimation of the required data from 
the available elevation data. Other uses of elevation data include computations for planning purposes, 
such as computing a least-cost path to construct a road between two given points or to find a location 
for a building that minimizes or maximizes its visual impact. The increasing availability of ever-higher-
resolution elevation data poses an ever-increasing computational challenge, since higher resolutions come 
with more noise, and the data sets grow too big to be loaded into the main memory of a computer at once.

Terrains have been studied in many different research areas including computational geometry, com-
putational topology, computer graphics, geomatics engineering, civil engineering, hydrology, ocean-
ography, and other earth sciences. It is practically impossible to produce a complete survey of terrain 
models and applications including results from all these disciplines. On top of that, terrain data are 
often provided in the form a regular grid of elevation samples, and thus, it is very similar to a large 
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gray-scale image. Therefore, it is not surprising that many of the problems in terrain data processing are 
similar to problems in image processing. For example, to estimate the slope and aspect at any point on 
a terrain, one may first have to smoothen the terrain; otherwise, small bumps in the terrain (whether 
real or the result of errors in the data) would dominate the results; image smoothing techniques can be 
applied. In this chapter, we highlight algorithmic approaches and challenges that concern some of the 
most important problems in terrain processing and that are typical to geographic terrain data: removal 
of noise from light detection and ranging (LiDAR) and sound navigation and ranging (SONAR) data, 
model construction, the computation of contour maps, water flow analysis, and visibility analysis.

Since terrain data sets acquired with recent technology may be as large as hundreds of gigabytes, they 
often do not fit in the main memory of a computer at once. Working with such data requires efficient 
algorithms that scale well and are designed to minimize the i/o: the swapping of data between a fast 
main memory (or cache) and a larger but slower memory such as a disk. The efficiency of such algorithms 
is assessed not only by studying the computational complexity (see Chapter 4) and by measuring run-
ning times in practical experiments but also by studying how the number of i/o operations grows with 
the input size. The standard model to do so was defined by Aggarwal and Vitter [5]. In this model, a 
computer has a memory of size M and a disk of unbounded size. The disk is divided into blocks of size B. 
Data are transferred between memory and disk by transferring complete blocks: transferring one block is 
called an i/o operation or, simply, an i/o. Algorithms can only operate on data that are currently in main 
memory; to access the data in any block that is not in main memory, it first has to be copied from the disk. 
The i/o efficiency of an algorithm can be assessed by analyzing the number of i/o’s it needs as a function 
of the input size n, the memory size M, and the block size B. Fundamental building blocks for i/o-efficient 
algorithms are scanning and sorting: scanning n consecutive records from disk takes scan n

n

B
( ) =  i/o’s; 

sorting takes sort n
n

B

n

B
M B( ) log /=  i/o’s in the worst case [5]. A more restrictive model for algorithms for 

large data is the streaming model [57]. Algorithms that conform to this model make only a small number 
of sequential passes over the data while processing the data using a small memory buffer.

In Section 31.2, we describe the sources and formats of terrain elevation data, the problem of cleaning 
and filtering raw elevation data, common interpolation methods used on such data, and how to con-
struct terrain models in the most common formats. In Sections 31.3 through 31.5, we review the state 
of the art in three applications of terrain models: computing contour maps, computing water flow and 
watershed hierarchies, and computing viewsheds (visibility maps).

31.2  Data Collection and Model Construction

In this section, we discuss how terrain models are obtained. Section 31.2.1 describes sources of terrain 
elevation data and in particular LiDAR data, which have recently become the best source of terrain 
data because of its high resolution and accuracy. We overview cleaning and filtering raw LiDAR data 
in Section 31.2.2. Next, we describe the most commonly used terrain data formats and interpolation 
methods (Sections 31.2.3 and 31.2.4). Finally, we overview methods for converting LiDAR data to the 
main terrain formats (Sections 31.2.5 and 31.2.6).

31.2.1  Digital Elevation Data Sources

Most digital elevation data are obtained from stereoscopic interpretation of aerial photographs and 
satellite imagery. Elevation data can also be obtained by ground survey, by digitizing the contour lines 
on existing topographic maps, and, more recently, from technology like LiDAR. The LiDAR technology 
is one of the most accurate and cost-effective ways to collect elevation data for large areas. The LiDAR 
technology is based on sending laser signals from an aircraft down to a point on earth and measur-
ing the time it takes for the pulse to reflect back. The reflection time, together with the exact position 
and orientation of the aircraft, allows us to compute the elevation of that point on the earth. LiDAR 



31-3Terrain Modeling for the Geosciences

measurements can be collected at .5–3 m resolution and are very accurate (15–30 cm) [56]. The resulting 
product is a densely spaced collection of three-dimensional points, often called a point cloud.

A technology similar to LiDAR, called SoNAR, can be used in water to measure the elevation of the 
seafloor. The SoNAR technology operates in a similar way as LiDAR, except that, instead of laser, it uses 
sound. Seafloor data is used for applications such as searching for oil or maintaining pipes.

In the recent years LiDAR and SoNAR data have become increasingly available. Data from LiDAR 
and SoNAR are usually massive, have high resolution, high redundancy and contain noise. To be useful, 
they need to be cleaned and thinned/simplified, and the algorithms for doing so need to be efficient and 
able to handle huge inputs.

31.2.2  Cleaning and Filtering LiDAR and SoNAR Data

Raw LiDAR and SoNAR data contain a point cloud of elevation measurements representing the surface. 
In fact, several returns may be collected for each pulse emitted. The last return of a pulse may be associ-
ated with reflection of the bare ground (or ocean floor), while the first returns may represent reflections 
of birds, fish, tree tops, etc. Furthermore, the data may contain noise resulting from, for example, refrac-
tion in gas bubbles, influences of the ship’s propeller or differences in sound speed.

Applications usually need a digital terrain model, that is, a model of the bare ground. Such a model 
is obtained from the raw data by cleaning the data, that is, detecting and eliminating noise, and filtering 
the data, that is, distinguishing and removing all features such as vegetation and buildings. The criteria 
and approaches used for cleaning and filtering may differ depending on the morphology of the data 
(seafloor vs. surface, urban vs. agricultural or forested) and the density of points.

For a review of cleaning and filtering algorithms for LiDAR data we refer to Sithole and Vosselman [61] 
and Meng et al. [50] and the references therein.

A common method for cleaning SoNAR data is through the use of the CUBE algorithm (Combined 
Uncertainty and Bathymetry Estimator) developed by Calder and Mayer [18]. The CUBE algorithm com-
putes depth estimates at the vertices of a grid laid over the terrain, and in doing so it gives a mechanism 
to remove noise in the data. The method attributes to each point an estimate of uncertainty, propagates 
these uncertainties in the local neighborhood, and based on them it estimates the true depth at the points 
in the grid. The CUBE algorithm is implemented by most hydrographic software. It has a low memory 
footprint, it is fast on large data sets and is suitable for real-time use. However, according to Arge et al. 
[11], CUBE works well for isolated outliers, but not so well for clustered noise. Their solution is to define a 
graph that represents the topology of the data, and to clean the data by removing connected components 
of the graph that appear to represent noise clusters. To construct the graph they start with the Delaunay 
triangulation of the points,* for each edge they add its corresponding diagonal, and then they remove all 
edges of which the elevations of the endpoints differ by more than a user-specified threshold τ. Thus, areas 
that are delineated by abrupt changes in depth, for example the back of a fish that swims at a height at least 
τ above the seabed, will be disconnected from the rest. The largest connected component in the resulting 
graph is assumed to represent the seabed, while the others represent noise. Using i/o-efficient algorithms 
and under realistic assumptions on the size of the graph (n = O(M2)), the algorithm runs in O(sort(n)) 
i/o’s on a SoNAR data set of n points. The authors analyse the accuracy of the algorithm and compare it 
to a manually cleaned data set [11].

31.2.3  Data Models/Representation

Digital elevation data can be structured in several ways: the most common data formats are regular 
grids and triangulated irregular networks (TINs) of elevation samples.

*	 The Delaunay triangulation is the triangulation in which the interiors of the circumcircles of the triangles do not contain 
any vertices, see Chapter 6.
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Grid data consists of a set of elevation values in a regular pattern, typically the intersection points of a reg-
ular grid of squares formed by equally spaced longitudinal and latitudinal lines. Thus, the data is essentially 
a matrix of elevation values. When the surface covered is not too large, each pair of neighboring elevation 
samples can be considered to have equal distance between them; otherwise algorithms will have to include 
corrections to account for the curvature of the earth surface and the decreasing distance between samples 
as one moves away from the equator. Grid data is most commonly stored in row-major order: row by row, 
and in each row, from west to east. This makes it easy to convert between coordinates of a grid point and its 
position in the file, and it guarantees that neighboring grid points are stored relatively close to each other in 
the file. Alternatively, Z-order (also known as Morton layout) could be used: the terrain is subdivided into 
an NW, NE, SW and SE quadrant, which are stored one by one in that order, each ordered recursively in the 
same way [64]. This order tends to optimize the number of cache misses (accesses to main memory or disk) 
needed when arbitrary long paths through the grid need to be traversed. Grids with sample points on the 
vertices of a grid of equilateral triangles have also been considered but do not seem to have found their way 
into common practice in the geosciences. There does not seem to be an inherent algorithmic reason for this: 
all algorithms for grid terrains discussed in this survey can easily be adapted to triangular grids.

A more flexible alternative to grid formats is provided by triangulated irregular networks (TINs). 
Here the elevation samples lie in an irregular pattern, and a triangulation on these points is provided. 
Typically the triangulation forms a Delaunay triangulation when projected on the horizontal plane 
(or rather, the reference ellipsoid of the Earth). For high-quality flow and visibility computations it may 
be advantageous to make sure that known valley and ridge lines are approximated by paths that are 
composed of edges of the triangulation. This can be done by using a constrained Delaunay triangulation 
(see Section 31.2.5). While for grid formats it suffices to store the elevation data itself, for TINs one also 
needs to store the horizontal coordinates of the sample points and the topology, that is, what are the 
edges and the triangles of the triangulation. To allow the TIN to be traversed efficiently, a non-trivial 
data structure is needed, for example a doubly-connected edge list or half-edge structure [30], or a more 
efficient data structure specifically designed for triangulations [20,49].

The choice between a grid format or a TIN format is not obvious. On one hand, grid models are very 
restrictive: they require an exact spacing of sample points, and equal spacing everywhere. Elevations that 
have actually been measured cannot be used since the measured elevation samples seldom lie exactly on a 
grid point, so the whole grid has to be constructed by interpolation. Furthermore, if high-resolution data 
is required or available to model any part of the terrain, then the complete terrain model must be given at 
high resolution, even where high-resolution data is unavailable or simply not required. Thus, grid formats 
may carry a substantial storage overhead in the form of interpolated sample points that do not carry any 
information from actual measurements. On the other hand, algorithms operating on TINs tend to be more 
complicated than algorithms on grid formats. Furthermore, one should choose the data structure to store 
the topology information of a TIN carefully. Commonly used data structures store at least seven pointers 
per vertex on average [49], plus the coordinates of each vertex: thus the total amount of storage needed for 
a TIN is at least an order of magnitude more than what is needed for the mere elevation data. Recently, 
Castelli Aleardi and Devillers published a data structure that uses only four pointers and, in our case, three 
coordinates per vertex [20]—i/o-efficient construction has not been studied yet. Theoretically, data struc-
tures exist that use as little as 2 bits per vertex to store the topology [21], but construction and navigation of 
such data structures is much more difficult and time-consuming and researchers in the field consider them 
to be of “mainly theoretical interest” [20]. In the end, because of their simple structure, grids are probably 
the most commonly used and most widely available format in geographic information systems.

Naturally, researchers have been researching the possibilities to overcome the disadvantages of grid 
and TIN formats. As an alternative to regular grids, grids based on quadtrees could be used: starting 
from a single square grid cell, we keep subdividing cells into four quadrants recursively until each cell is 
small enough to allow the morphology of the local terrain to be captured adequately [30]. Thus, the cell 
size may vary across the terrain. However, algorithms for applications such as those mentioned in the 
remaining sections of this chapter, have generally not been adapted to work with such formats.
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31.2.4  Spatial Interpolation

Terrain elevation data must be considered, either explicitly or implicitly, with an interpolation method 
that describes how to obtain the elevation values for points other than the sampled points. More pre-
cisely, let P = {p1, p2, … pn} be a set of points, each specified by their latitude and longitude, and denote the 
measured elevation of pi by z[pi]. To be able to construct and interpret a terrain model, we need to define 
an elevation function z that gives an elevation value for any two-dimensional point p, also for points p 
that are not in P. This function z should respect the data, that is, z(p) should be (approximately) equal to 
z[p] for all p ∈ P. In this section we discuss several common methods to define such a function z. For a 
more thorough survey, see Mitas and Mitásová [51].

Interpolation by Thiessen polygons or nearest neighbors: With this technique, the interpolated elevation 
z(q) of any point q is the elevation z[p] of the point p ∈ P that is nearest to q, when distances are measured 
in the projection on the horizontal plane. This leads to a partitioning of the terrain into regions called 
Thiessen polygons. The region T(p) containing a point p of P is exactly the set of points that are closer to 
p than to any other point of P, and within each region, each point has the same elevation. Interpolation 
with Thiessen polygons is often used for grids; in that case the Thiessen polygons are simply rectangu-
lar cells centered at the grid points. This interpolation method is simple, but has the problem that the 
(interpolated) values change sharply across polygon boundaries, which is not necessarily plausible. The 
partitioning in Thiessen polygons is also known as a Voronoi diagram; it is the dual of the Delaunay 
triangulation that usually underlies a TIN [30].

Interpolation on triangular facets: This interpolation method models the surface as a tessellation of tri-
angular facets. To be able to apply this technique, we first compute a triangulation of the elevation 
samples P. The elevation of any other point q is then obtained by linear interpolation between the three 
vertices of the triangular facet that contains q. Although simple, linear TIN interpolation is not accu-
rate; see Mitas and Mitásová [51] and the references therein. Variants of this method use non-linear 
interpolation functions for each triangle to ensure additional continuity across boundaries and the exis-
tence of derivatives.

Inverse-distance-weighting (IDW): This method is reported to be the most commonly used method 
in geographic information systems [48]. The value z(q) is defined as a weighted average of all points 
p ∈ P, where the weights depend on q, that is, z(q) = ∑iwi(q)z[pi]/∑iwi(q). More precisely, we define wi(q) 
as 1/|piq|2, where |piq| is the distance between pi and q. The IDW technique produces a smooth surface 
but can produce counterintuitive results like fake pits and peaks, that is, peaks that are higher than 
any elevation that was actually measured in its neighborhood [48]. Applications that use IDW often 
give the option to ignore points that are further away than a specified distance, or to consider only a 
specified number of nearest points, or to average only over the closest points in each of a number of 
directions [48].

Natural-neighbor interpolation: Like IDW, the value of z(q) is defined as a weighted average of all points 
p ∈ P. Each weight wi(q) is now defined as the size of the part of the Thiessen polygon T(pi) that would 
be lost to the Thiessen polygon T(q) when q would be inserted in P. In other words, wi(q) is the size of 
the intersection of T(pi) in the Voronoi diagram of P and T(q) in the Voronoi diagram of P ∪ {q}. An 
implementation that exploits the parallel processing power of a graphics processing unit was recently 
presented by Beutel et al. [16].

Kriging: This is another method in which the value of z(q) is defined as a weighted average of all points 
p ∈ P. The weights are now derived from a geostatistical analysis of the data. The structural variation 
in the data is captured by the variogram, which is the function that gives an estimate of the average 
squared elevation difference between pi and pj as a function of their horizontal distance. More pre-
cisely, if N(h) is set of pairs (i, j) such that |pipj| = h, then the variogram is obtained by fitting a cer-
tain type of function (for example, a Gaussian, spherical, or exponential function) to the function 
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detailed discussion of Kriging see Longley et al. [48] and Burrough and McDonnell [17].

Regularized spline with tension (RST): Proposed by Mitásová and Mitas [52], this method consists in 
defining and minimizing a certain smoothness function. It includes a tension parameter which changes 
the character of the resulting surface from a thin metal plate to a membrane, which is pinned to the 
data points. The value of the tension has to be determined empirically in each application. The method 
enables the computation of local derivatives of all orders, which is useful in various applications. The 
authors report that RST is more accurate than alternative methods, such as thin plate spline, Hardy 
quadric, etc. [52]. The authors implemented RST in GRASS [53]; an implementation that can handle 
larger data sets was recently presented by Danner et al. [27].

31.2.5  From Point Cloud to TIN

As discussed above, terrain data often comes in the form of a point cloud obtained by LiDAR or other 
means. For further processing, this data is usually transformed to a grid or a TIN. As LiDAR data tend 
to be very large (hundreds of millions of points), the grid or TIN construction algorithm needs to be 
i/o-efficient in order to handle such data sets. Below we focus on algorithms that have been proposed for 
and/or tested on very large data sets. In this subsection we discuss algorithms to construct TINs; in the 
next subsection we discuss algorithms to construct grid models.

To construct a TIN from a point cloud, one needs to triangulate the point set. Typically a Delaunay 
triangulation based on the horizontal coordinates of the points—the elevation values are not taken into 
account—is used. Several O(n lg n)-time, but not necessarily i/o-efficient, algorithms for Delaunay tri-
angulations are known [13]. A state-of-the-art implementation is Triangle, developed by Shewchuck [59]. 
Several i/o-efficient algorithms to compute Delaunay triangulations have been proposed as well [3,26,40].

The first i/o-efficient algorithm accompanied by an experimental evaluation is by Agarwal et al. [3], 
based on Crauser et al. [26]. The implementation actually solves a more general problem, the constrained 
Delaunay triangulation: given a set V of vertices in the plane together with a set S of predetermined 
edges, compute the triangulation of V that includes all predetermined edges in S and is “as close as pos-
sible” to the Delaunay triangulation (for a more precise definition, see the original publication). This 
allows us to ensure that the triangulation respects, for example, valley and ridge lines that are known 
from other sources. The algorithm works in rounds which triangulate increasingly bigger sets of points 
from the input, in each round using the results of the previous round to divide the problem into sub-
problems that are solved with the Triangle package mentioned above. The algorithm remains efficient 
if V is huge as long as S is modest: if S does not require more storage than a certain constant fraction 
of the main memory, the expected number of i/o’s required by the algorithm is O(sort(n)). The authors 
report that their algorithm can process 10 GB of LiDAR data (about 500 million points from the Neuse 
river basin of North Carolina) using 128 MB of main memory in roughly 7.5 h.* This is several orders of 
magnitude faster than a direct application of Shewchuck’s Triangle.

A different approach is described by Isenburg et al. [44]. They advocate processing large datasets using 
the streaming paradigm. Streaming algorithms make only a few sequential passes over the data, do not 
create intermediate files, and perform computations only on the part of the data that is in memory. 
During each pass, as more data and more partial results are computed, the algorithm needs to decide 
which previously read data and previously computed results still need to be retained in memory and 
which data and results can make place for new data and results. The Delaunay triangulation algorithm 
by Isenburg et al. does this as follows. The algorithm first reads the input point cloud to determine its 
bounding box. Next the algorithm divides the bounding box in a regular grid of rectangular cells such 

*	 Considering machines with so little RAM is done to illustrate the scalability of the algorithm to data that is much larger 
than main memory.
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that one can easily keep a counter for each cell in memory. The input is then read once more to count 
the number of points in each cell. Finally the input is read a third time. This time the points of each cell 
are collected in memory. As soon as all points of a cell have been read, the whole cell is triangulated 
using the Triangle package. Triangles whose circumcircles lie entirely inside the current and previously 
processed cells are written to the output immediately. The remaining triangles may still change, subject 
to the contents of the unprocessed cells: only these triangles and their vertices are retained in memory. 
Isenburg et al. report that the algorithm can process the above mentioned data set of the Neuse river 
basin in 48 min using 70 MB of memory on a laptop, using a slower processor and slower disk than 
Agarwal et al. [3]. However, the implementation by Isenburg et al. does not take a set of predetermined 
edges into account.

Note that the approach taken by Isenburg et al. is very fast in practice, but its worst-case complexity 
is not. The algorithm exploits the natural spatial coherence of raw LiDAR data sets: points that are close 
to each other in space tend to be close to each other in the file. Thus the algorithm does not need to keep 
many points of incomplete cells in memory. Furthermore, the algorithm by Isenburg et al. requires that 
most triangles do not span many regions: thus the algorithm will not need to keep many triangles that 
may still change in memory. It seems that this requirement is met in practice. Thus the memory foot-
print of the algorithm by Isenburg et al. stays small and i/o remains limited to sequentially reading the 
input and sequentially writing the output.

31.2.6  From Point Cloud to Grid Model

Different approaches to compute a grid model from a point cloud i/o-efficiently were again proposed by 
Agarwal et al. [1] and Isenburg et al. [45].

The solution proposed by Agarwal et al. [1] is a standard i/o-efficient algorithm, designed and ana-
lyzed in the i/o-model. Their approach is based on Mitásová and Mitas [52] and has three steps: first, 
they process the point cloud into a quadtree (the segmentation phase) with at most a user-specified num-
ber of points in each leaf; second, for each leaf in the quadtree they find out which cells are its neighbors 
(the neighbor finding phase); and third, they interpolate elevations for the grid points within each cell 
using the points in the cell and its neighboring cells (the interpolation phase). In their implementa-
tion, interpolation with regularized splines with tension (RST) is used, but other interpolation methods 

might be substituted. The complete algorithm runs in O N
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the quadtree. Agarwal et al. implemented and evaluated their approach on some practical examples. 
A grid of 1300 million points is reported to be constructed from a LiDAR data set of 390 million points 
(the Neuse river basin data set from http://www.ncfloodmaps.com) in 53 h on an Intel 3.4 GHz Pentium 
4 with 1 GB of main memory. This is reported to be faster than two popular geographic information 
system packages, ArcGIS and GRASS. Of the three phases of the algorithm, interpolation is by far the 
most time-consuming, accounting for 50%–80% of the running time, with the bottleneck being the 
required computational effort for RST interpolation, rather than i/o. A new implementation of this 
approach has been recently described by Danner et al. [27]. This version, designed to take advantage of a 
modern platform containing multi-core processors and modern graphics processors, is at least an order 
of magnitude faster than the implementation by Agarwal et al. [1].

Isenburg et al. [45] again adopt the streaming paradigm. Their algorithm is based on the point-cloud-
to-TIN algorithm described in Section 31.2.5, which is extended as follows. Instead of writing the tri-
angles produced by the algorithm to an output file, the triangles and the vertices are piped through to 
another process, the rasterizer. The rasterizer receives each triangle and each vertex exactly once and 
uses the triangles to estimate the elevation at the grid points by linear interpolation. The stream of 
triangles and vertices that is fed to the rasterizer is interleaved with vertex tags that mark when all the 
triangles incident on a vertex have appeared in the stream: thus the rasterizer knows when a vertex still 
needs to be retained in memory and when it can be discarded. More advanced interpolation methods, 
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in which the interpolation within a triangle also depends on the neighboring triangles, may be imple-
mented by keeping triangles in memory until all neighboring triangles of its neighboring triangles have 
been received. The elevations of grid points as computed by the rasterizer, are immediately written to a 
file and are not kept in memory. Upon completion of the algorithm, the output is sorted into row-major 
order to obtain the grid model. The overall process is extremely fast: a grid of 1500 million points is 
constructed by linear interpolation from a 10 GB LiDAR data set of 500 million points from the Neuse 
river basin of North Carolina in 67 min on a laptop using less than 100 MB of memory and with a 5400 RPM 
disk. Although this is much faster than the 53 h of Agarwal et al. [1], a direct comparison cannot be 
made because Agarwal et al. implement a more complex interpolation method (RST), while Isenburg 
et al. report running times for linear interpolation.

31.3  Computing Contours and Contour Maps

One of the main applications on terrain models is computing contours and contour maps. A contour 
(or isoline) of a terrain T at a given level (elevation) is a connected component of a level set of T, that is, 
the set of points of T at a given elevation. A contour map consists of contours at regular elevation inter-
vals. Contour maps have been used historically in cartography to represent terrains; recently they are 
used for visualization, where isosurface extraction in general is one of the most effective techniques for 
the investigation of volume datasets [22].

A straightforward way to compute a contour is to start from a cell intersecting the contour (for exam-
ple a triangle, if the terrain is represented as a TIN) and trace the contour from cell to cell until coming 
back to the starting point. The question is how to find a start cell. Traversing the entire dataset to con-
struct a single contour is not efficient, since the size of contours is usually small. Therefore research has 
focused on finding data structures that can be queried for contours and report them efficiently.

One solution is to associate each cell in the data set (grid cell or triangle) with an interval representing 
the elevation range of the cell; for example, if the terrain is represented as a TIN, each triangle is associ-
ated with the interval bounded by the elevations of its lowest and highest vertices. Computing contours 
now reduces to an interval search problem, namely finding all intervals that contain a given query eleva-
tion h. In the first phase of contour extraction one finds all cells whose elevation range includes h; such 
cells are called active. In the next phase one can apply an algorithm to actually generate the contours 
from the active cells. An algorithm based on this idea was given by Cignoni et al. [24], using interval 
trees to store the intervals corresponding to the dataset. After preprocessing in O(n lg n) time, contours 
at a given elevation can be found in optimal O(lg n + k) time, in internal memory, where k is the size 
(total number of edges) of the contours. In external memory the same approach was used by Chiang 
and Silva to propose an i/o-efficient algorithm [22,23]. Using the i/o-efficient interval tree developed by 
Arge and Vitter [12], Chiang and Silva describe a linear-size data structure to store a TIN on disk such 
that all edges in the contours at elevation h can be reported in O(logB n + k/B) i/o’s, where k is the size of 
the contours. Agarwal et al. [2] note that this algorithm does not sort the edges along a contour. Using 
standard techniques (list ranking) this would require another O(sort(k)) i/o’s (possibly with relatively 
high constant factors hidden in the O-notation) in the worst case, but as long as the contours at any 
given elevation fit in memory, it is not a problem.

A different approach uses the contour tree, which is a data structure that encodes the starting point(s) 
for each contour and can be used to compute contours and contour maps efficiently. Van Kreveld et al. 
[67] gave an O(n lg n) time algorithm for constructing a contour tree of a terrain represented as a TIN. 
In the i/o-model, an algorithm to compute the contour tree efficiently in O(sort(n)) i/o’s was proposed by 
Agarwal et al. [4]. This can be used to find the starting points for a contour efficiently, however it is not 
clear how to efficiently trace the contour in the i/o-model, since a naive implementation would require 
one i/o per segment, and thus O(k) i/o’s in total.

Agarwal et al. proposed a different i/o-efficient data structure for answering contour queries on TINs 
[2]. They show how how to construct a linear-size data structure in O(sort(n)) i/o’s, so that all contours 
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at a given elevation can be reported using O(logB n + k/B) i/o’s, where k is the size of the contours. Each 
contour is reported with its segments in sorted order. Their solution is based on exploiting the topol-
ogy of the contours as analyzed by Edelsbrunner et al. [36], and computing a certain ordering of the 
triangles in the TIN such that for any contour, the segments in the contour are in order and contours 
do not interleave.

Unfortunately, none of the i/o-efficient algorithms mentioned above come with experimental results.
When a complete contour map needs to be produced, one may be able to afford to scan the complete 

input. In this case one can simply scan all cells of the data set to find all edges of the contours. Again, 
this does not generate the edges of the contours in sorted order. Arge et al. [9] describe an algorithm and 
implementation to compute and simplify contour maps of massive terrain data sets. As a first step, their 
algorithm indeed generates the (unsimplified) contours by simply scanning all triangles of a TIN and 
generating the contour segments that intersect them. For further processing, the contour segments need 
to be sorted by and along each contour. Arge et al. implement an algorithm that does this i/o-efficiently 
as long as certain assumptions can be made, such as that each contour by itself is not larger than a cer-
tain constant fraction of main memory.

31.4  Flow Analysis

One important application of terrain models is in predicting the flow of water on terrains, for example 
to predict the risks of floods and the impact of pollution, or, in combination with other parameters, to 
predict rates of erosion, vegetation cover, or suitability for agriculture. The catchment area or watershed 
of a location on a terrain is the region from where water flows to that location. The size of the catchment 
area of a location (possibly weighted according to variations in rainfall) is also known as the location’s 
flow accumulation. The specific catchment area or specific flow accumulation would be the flow accumu-
lation of a section of a contour, divided by the length of the section. The specific catchment area can be 
defined at any single point of the terrain by estimating the limit value for a contour section that contains 
that point and shrinks to zero length. Typically a terrain drains through a network of streams and rivers, 
which are exactly the locations that have relatively high flow accumulation. The watersheds on a terrain 
form a hierarchical structure, in which the watershed of each location in the river network is contained 
in the watershed of all locations downstream of it. In particular, watersheds of rivers are composed of 
watersheds of tributaries. Efficient computation of a (specific) flow accumulation map of a terrain, pos-
sibly together with a representation of the watershed hierarchy, is at the core of many applications of 
water flow analysis on terrains. Furthermore, many other computational problems related to the drain-
age structure of a terrain can be solved with similar algorithmic techniques.

In this section we will first give an overview of the state of the art in the computation of flow accu-
mulation maps and watershed hierarchies, assuming a perfect terrain model that is nowhere horizontal. 
Two main approaches can be distinguished: the continuous-surface approach and the discrete-surface 
approach. The first approach, discussed in Section 31.4.1, treats the terrain as a continuous surface, of 
which the exact shape is estimated by interpolating between sample points for which an elevation is 
given. The second approach, discussed in Section 31.4.2, treats the terrain as a network of cells, in which 
each cell is treated as an atomic unit, and water that arrives in any cell continues its course down-hill 
to one or more neighboring cells. Both approaches can produce reasonable results only if water always 
follows a course that, according to the terrain model, leads strictly downhill. However, in practice this 
is not always the case, due to the presence of sampling or interpolation errors in the model and the 
presence of flat areas in the actual terrain. To make a terrain model suitable for flow accumulation 
computations, it needs to be hydrologically corrected and one needs to compute how water may find its 
way on flat surfaces. This is discussed in Section 31.4.3. Finally, in Section 31.4.4, we discuss the main 
challenges for further development of flow analysis algorithms: how to deal with imprecision, how to 
improve hydrological correction, and how to take into account the limited capacities of drainage chan-
nels and the passing of time.
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31.4.1  Flow in the Continuous-Surface Model

In the continuous-surface model, water is usually assumed to follow the exact direction of steepest 
descent on the interpolated terrain. Thus, water is not bound to flow from sample point to sample point, 
but it can also flow across the surface between sample points. This approach allows for a relatively pre-
cise representation of valley and ridge lines with relatively few sample points, and it avoids certain 
artifacts that result from the representation of the terrain. For example, streams are not limited to fol-
low the edges of a triangulation, or to follow strictly the eight cardinal and ordinal directions in a grid. 
Continuous-surface models can be based on elevation samples in a grid, in a triangulated irregular 
network, or without structure, and the interpolation may produce a smooth surface (without disconti-
nuities in the gradients) or one with sharp folds (with discontinuities in the gradients).

In the context of geographic information science, research has mostly focussed on the setting where 
the continuous surface is defined by a triangulation on the sample points and linear interpolation within 
each triangle—resulting in a surface with sharp folds at the edges of the triangulation. In this setting 
we can distinguish valley edges, transfluent edges, and ridge edges. Valley edges receive water from 
both incident triangles. On transfluent edges, water arrives from one incident triangle and continues 
its course down the other incident triangle. All other edges are ridge edges: on both incident triangles, 
the gradient is directed away from the edge, so that no water ever flows across or along the edge. In this 
model, two categories of points in the terrain can be distinguished: those that lie on a steepest-descent 
path starting from a valley edge, and those that do not. The first category of points form the skeleton of 
the drainage network. They have non-zero flow accumulation and infinite specific flow accumulation. 
Each point p of the second category only catches water from an infinitely thin course that can be traced 
back up from p by following the direction of steepest ascent until reaching a ridge. Thus, such points p all 
have zero flow accumulation, but they may still have meaningful, non-zero specific flow accumulation.

Steepest-ascent paths starting at ridges form a skeleton that encodes the boundaries between water-
sheds [69]. The drainage network and the watershed boundary skeletons, together with the steepest-
ascent and steepest-descent paths from other vertices in the terrain, decompose the terrain into strips. 
This decomposition, called a strip map, can be stored in a data structure from which the catchment area, 
the flow accumulation and the specific flow accumulation of any point on the terrain can be retrieved 
efficiently [29]. Unfortunately, the whole structure has relatively high complexity. Theoretically, by lin-
ear interpolation of a triangulated irregular network on n sample points, one can construct a surface 
that has a drainage network skeleton and a strip map consisting of Θ(n3) line segments—even when the 
triangulation is a Delaunay triangulation [29]. When all triangles are equilateral triangles of the same 
size, the complexity is still Θ(n2) in the worst case [29]. In practice, it has been reported that the drainage 
network skeleton has size only O(n) [69]. However, De Berg and Tsirogiannis found that explicit compu-
tation and storage of the strip map is a major bottleneck, with the computation requiring at least 16 KB 
of working memory per input vertex and 8 KB per input vertex in the final result [32].

Flow structures in the continuous-surface model have also been studied for smooth surfaces. Paths 
of steepest ascent/descent between peaks (local maxima), pits (local minima) and saddle points form a 
structure known as a Morse-Smale complex in computational topology [42], or a surface network in geo-
graphic information science. On a linearly interpolated surface, paths of steepest ascent or descent do not 
usually cross many edges before they meet a ridge or valley edge, but in a smooth terrain, such paths may 
extend a long way, slowly converging towards valley lines without actually meeting them. Thus, a gen-
eralization of the approach discussed above for linearly interpolated terrains is unlikely to be practical.

31.4.2  Flow in the Discrete-Surface Model

In practice, usually a discrete-surface model is used. In its simplest form (the D8 model), the model 
consists of elevation samples arranged in rows and columns. Each sample point represents a cell of unit 
size. Water arriving in any cell continues to one of the eight neighbors of the cell; more precisely, from 
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a cell c it continues to the lower neighbor c′ such that the elevation difference between c and c′, divided 
by the distance between the center points of c and c′, is largest. This approach is also called single-
directional flow. A disadvantage of this approach is that it is prone to artifacts, such as a tendency for 
streams to follow the ordinal or cardinal directions of the grid model, even on slopes that have a differ-
ent orientation. More advanced models use multi-directional flow: they distribute the water that arrives 
in a cell among multiple lower neighbors to model dispersion on convex slopes, or to model directions 
of steepest descent that are not exactly one of the cardinal or ordinal directions [41]. The latter may also 
be achieved by routing flow over the edges of a TIN that is constructed such that all known valley and 
ridge lines approximately follow edges of the TIN.

In the discrete-surface model, the difference between flow accumulation and specific flow accumula-
tion is subtle. To compute the specific flow accumulation in a cell from its flow accumulation, one should 
divide by the length of the contour section that is covered by the cell—but this is not well-defined. 
Gruber and Peckham [41] discuss some of the subtleties to consider.

In this section, we focus on the algorithmic aspects of flow accumulation computation, rather than 
the modeling aspects. From an algorithmic point of view, the challenge is not how to distribute flow of 
a single cell to its multiple lower neighbors, but rather how to visit all cells in the most efficient order. 
As long as the full terrain model fits in memory, computation of flow accumulation for all cells is rela-
tively easy. Here is just one example of a linear-time algorithm to do so. We start the computation by 
giving each cell one unit of water and marking each cell as unprocessed. Then we go through all cells 
one by one, calling a flow distribution algorithm on each cell. When called on a cell that has already 
been processed, or on a cell that is still to receive flow from unprocessed higher neighbors, the flow dis-
tribution algorithm does not process the cell and it returns immediately. Otherwise, it marks the cell 
as processed, distributes its water to its neighbors, and makes a recursive call on each of the neighbors.

When processing large grids that are stored on a hard disk and do not fit in the main memory of a 
computer at once, computation becomes more complicated. The simple algorithm sketched above may 
access the cells of the terrain model in an order that requires many accesses to each block of data on 
disk and renders caching ineffective, making the computation prohibitively slow. Haverkort and Janssen 
showed that in practice, the simple algorithm can still be very fast when processing a 28 GB terrain 
model on a computer with only 1 GB of memory, provided the D8 model is used and a regular grid 
model. The grid model is best stored and traversed in Z-order, that is, recursively subdivided in square 
blocks, instead of row by row [43]. Haverkort and Janssen also present a more complicated algorithm 
that has theoretically optimal performance in terms of disk i/o (even on a worst-case input) and that 
is equally fast in practice. The algorithm first divides the terrain into square blocks that fit in memory 
one by one, and computes a small “summary” of each block: this summary captures, for each point 
on the boundary of the block, how much water flows to that point from the interior of the block, and 
which other points on the boundary of the block are upstream of it. The summaries are then processed 
together and used to compute the flow of water between blocks; finally the blocks are processed one by 
one once more, to distribute the incoming water from the boundary into each block. The amount of disk 
i/o needed is proportional to the amount needed to scan the input.

When multi-directional flow models or triangulated network models are used, the results of Haverkort 
and Janssen are not applicable. Instead, one can use algorithms based on time-forward processing: here 
cells are processed in order of decreasing elevation; when a cell is processed, it receives messages that 
say how much flow comes in from each upstream neighbor, and it sends a message to the downstream 
neighbors, saying how much flow they will receive. If the message passing is handled by a data struc-
ture such as an i/o-efficient priority queue, the total amount of disk i/o needed is proportional to the 
amount needed to sort the input. The approach has successfully been implemented in the TerraFlow [7] 
and TerraStream [28,55] packages. The algorithms appear to be an order of magnitude slower than the 
algorithms of Haverkort and Janssen [43], but they allow a far wider range of flow models.

When a single-directional flow model is used, it is also possible to compute the hierarchical water-
shed structure: each cell can be given a decimal label such that, given two cells, one can decide if one 
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cell is in the other cell’s watershed by only examining their labels. Under the reasonable assumption 
that in practice, the number of significant digits of a label is bounded by a small constant, the labeling 
can be computed efficiently with the algorithm of Arge et al. [8], which has also been implemented in 
TerraStream [28]. Unfortunately, the results are not applicable to multi-directional flow models, because 
multi-directional flow results in unbounded overlap between watersheds: two cells p and q could have 
partially overlapping watersheds even when none is inside the watershed of the other.

Thus, while discrete-surface models are attractive because of the availability of efficient algorithms, 
they also have inherent limitations: single-directional flow is prone to artifacts; multi-directional flow 
may mitigate the worst artifacts but renders the analysis of watershed hierarchies problematic.

31.4.3  Hydrological Correction and Routing

The flow models and algorithms described above are all based on the assumption that water always flows 
downhill. However, there are two problems with this assumption. First, due to the presence of sampling or 
interpolation errors, the course that water follows in the real terrain may not always lead downhill in the 
model. Problematic areas in the model are characterized by the presence of local minima that one would 
not expect to find in the real terrain. Second, the real terrain may actually contain flat areas or even local 
minima from which water still finds a way out, for example because these areas are actually flooded (such as 
lakes), because they drain slightly below the surface, or because they are the result of man-made structures 
(such as bridges) under which water actually passes through. The last is especially a problem with high 
resolution terrain models, where small features become visible; in this case bridges appear as elevated areas 
which, if not removed, can block the flow of water under the bridge and produce unrealistic river networks.

To make a terrain model suitable for flow accumulation computations, small local minima and 
bridges have to be removed, and flat areas (such as lakes) have to be preprocessed so that the algorithms 
of Sections 31.4.1 and 31.4.2 can deal with them. In this section we discuss algorithms that can be 
used to preprocess terrain models so that they can be used for flow analysis under the discrete-surface 
model, or under the linearly-interpolated continuous-surface model. The removal of local minima and 
bridges is known as hydrological correction or hydrological conditioning. Hydrological correction typi-
cally removes local minima by filling them up (known as flooding), by carving a way out into the terrain 
(known as breaching), or by a combination of these approaches.

Indiscriminate flooding raises the elevation of every point of a terrain until for each point there is a path 
to the edge of the terrain and that never leads up-hill. In practice, one should not always flood all local 
minima—typically, larger local minima correspond to real features in the terrain, such as quarries, where 
water does indeed collect, and only smaller local minima should be removed. TerraStream [28,55] imple-
ments a method to automatically flood (and thus remove) all local minima smaller than a user-defined 
threshold. The size of a local minimum is defined based on volume and/or topological persistence [36], that 
is, the height difference between the lowest point in the local minimum and the lowest point on its bound-
ary. TerraStream also works for large triangulated models that do not fit in main memory.

As noted by Carlson and Danner [19], not all spurious local minima have small persistence. In 
particular, local minima behind bridges in a terrain model may have large persistence—and these are 
particularly problematic because they tend to arise exactly along locations of water flow. Carlson and 
Danner [19] describe a system for automatically detecting bridges and bridge-like features using super-
vised learning. Once identified, the bridges are cut out. Both the detection and the cutting algorithms 
process the data using small neighborhood windows and the whole process is efficient and scalable. The 
authors give an extensive analysis of the accuracy of their method including cross-validation. Their 
method modifies the terrain model significantly less as compared to a flooding approach.

When parts of the drainage network are known from other data sources, one may also correct the 
terrain model by changing the elevation of points along known streams such that these streams follow 
an always-descending path in the model. When elevations are only lowered, this approach is known as 
stream burning. Van Kreveld and Silveira discuss how to minimize the total amount of elevation change 
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(up and down), using a linear-programming approach that is fast enough for terrains of moderate size, 
and they discuss what side-effects of the process to watch out for [66].

After hydrological correction, the terrain model may still contain flat areas: groups of vertices at the 
same elevation. Typically, only one or some of these vertices have a lower neighbor. Flow from the other 
vertices in a flat area must somehow find its way across the flat area to one of the vertices that have a 
lower neighbor. Several heuristics have been developed to direct the edges in a flat area such that from 
each point in the flat area, all directed paths eventually lead to a point that has a lower neighbor. One 
approach is to simply compute a breadth-first search tree, starting from a point that has a lower neigh-
bor, and direct all edges of the tree towards the root, but heuristics that result in more natural-looking 
flow networks have also been proposed [62] and implemented in TerraStream [55]. Depending on the 
algorithms used to compute flow accumulation, the directed edges can be given directly to the flow 
accumulation algorithm, or flow in the right direction can be enforced by (symbolically) modifying the 
elevations of the vertices, so that each edge is directed down-hill.

31.4.4  Challenges

31.4.4.1  Imprecision

A major challenge with flow analysis on terrain models, is that small differences in elevation can have large 
consequences. A small error is sufficient to divert a river that passes close to a natural or artificial saddle 
point into the wrong valley. One way to deal with this, is to make many (hundred or more) different versions 
of the terrain model, each constructed from the original model by applying random noise according to some 
probability distribution. Flow accumulation and watershed hierarchy computations are then performed on 
each version of the model, and results are considered more reliable when they are consistent across the dif-
ferent versions of the model [58,63]. A disadvantage of this approach is that it is computationally expensive 
(not only flow accumulation but also hydrological correction needs to be computed for each version of the 
model), it is sensitive to the distribution of noise and the dependencies between the errors on different ver-
tices, and results come without any guarantees even if bounds on the error of the terrain model are known.

Alternatively, one may try to compute the smallest and the largest possible flow accumulation val-
ues (and watersheds) for each point in the terrain. Theoretically, it is NP-hard to do so for a linearly-
interpolated continuous-surface model, but it can be done in O(n lg n) time for single-directional 
discrete-flow models of n vertices, provided bounds on the elevation error of each vertex are known [35]. 
The algorithm has not been evaluated in practice and raises several questions for further research. 
One of its shortcomings may be that is gives extreme lower and upper bounds on flow accumulation 
values without any probability distribution on the range between these extremes. Furthermore, multi-
directional flow has not been investigated.

31.4.4.2  Hydrological Correction

Automated hydrological correction still remains a challenge. To our knowledge, bridge detection algo-
rithms have not been implemented for triangulated irregular networks. A natural optimization cri-
terion for hydrological correction could be to apply a combination of raising vertices (flooding) and 
lowering vertices (breaching) that minimizes the total change in elevation and removes all spurious 
local minima. Thus, one would avoid flooding large areas where a breach would be the more natural 
solution. Unfortunately, hydrological correction under this optimization criterion is NP-hard [60] (for a 
description of NP-hardness see Chapter XXX). Approximation algorithms (see Chapter 7) and/or (i/o-
efficient) algorithms that work well under realistic conditions still remain to be developed.

31.4.4.3  Volume and Time

All the techniques discussed above ignore the fact that water has volume: narrow and/or shallow 
pits and channels cannot process unlimited amounts of water without flooding and diverting flow 
onto other paths than the path of steepest descent on the surface. In particular, when the purpose of 
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analyzing the flow of water on a terrain is to predict risks of floods, the limited capacity of pits and 
channels cannot be ignored. In addition, the time component becomes essential: many floods are not 
the result of structural undercapacity of a channel over a large time span, but rather the result of too 
much water from one big shower reaching the same location in the landscape at the same time. Such 
floods could, for example, be prevented by selectively slowing down or speeding up the drainage from 
some areas, but the effects of this are not captured by steady-state flow accumulation computations as 
described in Sections 31.4.1 and 31.4.2. Algorithmic techniques that take volume and time into account 
and can handle high-resolution terrain models—necessary to capture essential features such as dikes 
and other barriers adequately—are still in an early stage of development. Arge et al. [10] published an 
algorithm that can compute the flooding times of all terrain vertices in the discrete-surface model, 
under the assumption that channels have unlimited capacity but pits fill up as more water arrives. Their 
algorithm is asymptotically i/o-efficient (running in roughly O(sort(n)) i/o’s), but there are no reports 
on implementations and experiments.

31.5  Visibility Analysis

Another application of terrain models is the computation of visibility. Visibility computations are at the 
core of many applications, such as planning the placement of communication towers or watchtowers, plan-
ning of buildings such that they do not spoil anybody’s view, finding routes on which you can travel while 
seeing a lot or without being seen, and computing solar irradiation maps—which can in turn be used in 
predicting vegetation cover. A variety of problems pertaining to visibility have been researched in com-
putational geometry and computer graphics, as well as in geographic information science and geospatial 
engineering.

Two points a and b are visible to each other if the interior of their line of sight ab  (the line segment 
from a to b) lies entirely above the terrain. Given a terrain and an arbitrary (view)point v (not necessar-
ily on the terrain), the visibility map or viewshed of v is the set of all points of the terrain that are visible 
from v. As discussed in Section 31.2.3, the standard terrain models are the grid and the TIN. Viewshed 
algorithms can be grouped in two classes: discrete approaches mark each vertex of a grid or TIN as vis-
ible or invisible; continuous approaches compute the exact boundaries of the viewshed. Both approaches 
can be used with both terrain models (grid or TIN), although the discrete approach is usually used on 
grids, while the continuous approach is usually used on TINs.

Since terrain datasets may be as large as tens and even hundreds of gigabytes, they may not fit in the 
main memory of a computer all at once and most of the data may have to reside on disk during computa-
tions. Hence, computing visibility requires i/o-efficient algorithms. In this section we give an overview 
of i/o-efficient algorithms for computing viewsheds on terrains, with emphasis on algorithms for grids 
(Section 31.5.1). We also present some results and considerations for TINs in Section 31.5.2, and end 
with a set of challenges and open problems in Section 31.5.3.

There are other visibility-related problems on terrains, such as answering point-to-point and region-
to-region intervisibility queries, computing horizons, computing depth-under-horizon maps, comput-
ing a map that shows the size of each point’s viewshed, etc. For brevity, in this chapter we only discuss 
viewsheds. For other visibility problems and results we refer the interested reader to the surveys by De 
Floriani and Magillo [33,34] and the references therein.

31.5.1  Visibility on Grids

Viewsheds on grids are usually modeled in a discrete way: each point in the grid is marked as visible or 
invisible, and the viewshed of v is defined as the set of all grid points that are visible from v. To decide 
whether a point p is visible, one needs to interpolate the elevation of the terrain along the line of sight pv  
between p and v (more precisely, along the projection of the line of sight on the horizontal plane) and check 
whether the interpolated elevations are below the line of sight. Various algorithms differ in what and 
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how many points they select to interpolate along the line of sight, and in the interpolation method used. 
These choices crucially affect the efficiency and accuracy of the algorithms. Below we discuss a number of 
viewshed algorithms. For simplicity, we assume that the grid is square and has size n  by n .

Some of the early algorithms for computing viewsheds have been described by Franklin and Ray [39]. 
The method called R3 calculates the intersections between the horizontal projection of the line of sight 
and the grid lines, and computes the elevation at these intersection points by linear interpolation. Since 
a line of sight intersects O n( ) grid lines, determining the visibility of a point takes O n( ) time, and 
determining the visibility of all points in the grid takes O n n( ) time. Franklin and Ray also describe 
two algorithms that are faster, running in O(n) time, at the expense of accuracy. The algorithm known 
as R2 examines lines of sight as above but only for the O n( ) grid points on the boundary of the grid; 
a grid point that is not on the boundary is considered to be visible if and only if the nearest point of 
intersection between a grid line and one of the examined lines of sight is determined to be visible. The 
other algorithm, XDraw, computes the visibility of the grid points incrementally in concentric layers 
around the viewpoint, starting at the viewpoint and working its way outwards. For a grid point v in layer 
i, the algorithm computes whether v is visible, and what is the maximum height above the horizon along 
the line of sight to v. To do so, it determines which are the two grid points q and r in layer i − 1 that are 
nearest to pv , and then it estimates the maximum height above the horizon along pv  by interpolating 
between the lines of sight to q and r. Thus, the visibility of each point is determined in constant time 
per point. XDraw is the fastest of the three algorithms, due to the simplicity of the calculations, but it 
is also the least accurate. Izraelevitz [46] presented a generalization of XDraw that allows to user to set 
a parameter k, which is the number of previous layers that are taken into account when computing the 
visibility of a grid point. Thus the user can choose how much speed he is willing to sacrifice for accuracy. 
For k = 1 Izraelevitz’s algorithm becomes XDraw, and for k n=  it becomes R3.

A different approach for computing viewsheds was described by Van Kreveld [65]. In his model, the 
terrain is seen as a tessellation of square cells, where each cell is centered around a grid point and has the 
same view angle as the grid point throughout the cell, that is, the cell appears as a horizontal line seg-
ment to the viewer—somewhat similar to R3 if nearest-neighbor interpolation is used instead of linear 
interpolation. Van Kreveld describes how to compute the viewshed by a radar-like algorithm, rotating a 
ray around the viewpoint while maintaining a data structure that stores the cells that intersect the ray. 
This data structure supports insertions of cells, deletions of cells, and visibility queries for a point along 
the ray in O(lg n) time per operation, and thus the whole viewshed can be computed while rotating the 
ray in O(n lg n) time. Unfortunately the data structure functions correctly only under the assumption 
that each cell appears as a horizontal segment to the viewer, so that it is not readily adapted to use linear 
interpolation or other interpolation methods.

None of the algorithms mentioned above are i/o-efficient. I/O-efficient viewshed algorithms have 
been proposed by Fishman et al. [37] and Andrade et al. [6]. The algorithm by Andrade et al. [6], based 
on Franklin et al. [38], runs in O(n lg n) time and O(sort(n)) i/o’s in the worst case. As in R2, the idea 
is to evaluate lines of sight only to the points on the perimeter of the grid. To do this i/o-efficiently, the 
algorithm first copies all grid points from the input file row by row, annotating each point p with the 
endpoints of the lines of sight whose evaluation requires the elevation of p. Next, all annotated points 
are sorted by line of sight. The algorithm then evaluates each line of sight, determining for each point 
on a line of sight whether it is visible or not, and writes the results to a file, in order of computation. As a 
result, the file contains the visibility map, ordered by line of sight. The algorithm finishes by sorting this 
file into row-by-row order. The algorithm is very fast in practice. For example, using at most 1.0 GB of 
memory and a 7200 RPM hard drive, viewsheds on grids of 1600 million points (6.0 GB, using 4 bytes 
per elevation value) are computed within 2 h, that is, in 4.4 μs per point.

Fishman et al. describe two i/o-efficient viewshed algorithms based on Van Kreveld’s approach [37]. 
A direct implementation of Van Kreveld’s algorithm would result in inefficient i/o-behavior. This can be 
solved by first sorting all grid cells by the time at which they will be hit by the rotating ray—similar to the sort-
ing by line of sight in the algorithm of Andrade et al. To save on the time needed for sorting, Fishman et al. sort 
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the grid cells only partially, but still enough to make the evaluation phase run i/o-efficiently. Two solutions are 
considered: sorting into concentric bands around the viewpoint, or sorting into sectors. Both solutions run 
in O(n lg n) time and O(scan(n)) i/o’s on inputs of reasonable size, and can be extended to run in O(sort(n)) 
i/o’s on larger inputs. The algorithms are very fast in practice and scale up to terrains that are more than order 
of magnitude larger than the available memory. For example, on a machine with 512 MB of memory and a 
laptop-speed (5400 RPM) hard drive, the viewshed of a terrain of 7600 million points (28.4 GB using 4 bytes 
per elevation value) is computed in 430 min, that is, in 3.4 μs per point.

Fishman et al. also describe a different, faster approach, which runs in O(n) time and O(scan(n)) I/Os 
with a cache-oblivious algorithm, that is, an algorithm that is i/o-efficient even if not tuned explicitly to a 
specific memory and block size. It is somewhat similar to XDraw: it grows a region around the viewpoint, 
while maintaining the horizon of the terrain within the region seen so far. The horizon is represented 
by a grid model itself: the algorithm maintains the maximum elevation angle (the “height”) of the hori-
zon for a discrete set of regularly spaced azimuth angle intervals. The horizontal resolution of the horizon 
model is chosen to be similar to the horizontal resolution of the original terrain model, so that elevation 
angles are maintained for Θ( )n  azimuth angle intervals. Note that this gives the algorithm the potential 
for higher accuracy than XDraw, which represents the horizon up to a given layer by only as many grid 
points as there are in that layer—which can be quite inaccurate close to the viewpoint. Another difference 
with XDraw is that the algorithm of Fishman et al. does not proceed layer by layer, but instead grows the 
region in a recursive, more i/o-efficient way. This results in a significant speed-up and makes the algo-
rithm of Fishman et al. the fastest of the i/o-efficient algorithms presented here (provided it is tuned to 
the available amount of memory, like the algorithms mentioned above). For example, on a machine with 
512 MB of memory and a laptop-speed (5400 RPM) hard drive, the viewshed of a terrain of 7600 million 
points (28.4 GB using 4 bytes per elevation value) is computed in only 200 min, that is, in 1.6 μs per point.

A proper comparison of viewshed algorithms needs to include both efficiency and accuracy. While effi-
ciency is easy to compare, even accounting for different platforms, comparing accuracy is much harder. 
The straightforward way to assess accuracy is to compare the results of the computations with ground 
truth data. Ideally one would consider a large sample of viewpoints, compute the viewshed from each 
one in turn, compare it with the real viewshed at that point, and aggregate the differences. Unfortunately, 
ground truth viewsheds are hard, if not impossible, to obtain for larger grids. Thus one needs to define 
accuracy in relative terms, with respect to a base algorithm that is considered exact. An experimental 
evaluation of the accuracy of the various viewshed algorithms proposed so far remains an open problem.

31.5.2  Visibility on TINs

Visibility on TINs is usually modeled with a continuous model, in which the elevation of any point p on 
the terrain is defined by linear interpolation between the vertices of the triangle that contains p. Given 
a point v, the goal of a viewshed computation is to determine, for each triangle τ in the TIN, what part 
of τ is visible. Several algorithms are known for computing viewsheds on a TIN. The algorithm with the 
best known theoretical bounds on the number of computational steps is by Katz et al. [47] and runs in 
O((nα(n) + k)lg n) time, where n is the number of triangles of the TIN, k is the size of the output and α() 
is the inverse Ackermann function.*

In the worst case, the size of the output could be quite big. The boundary of the visible part of a 
triangle is basically the boundary of the shadow cast by other, possibly many, triangles of the TIN 
when a light source is placed at v. In the worst case, in a TIN of size n there may be Θ(n) triangles 
such that the boundary of the visible part of each of them consists of Θ(n) line segments, and thus a 
complete visibility map may have size Θ(n2) [25]. Such high complexity of the viewshed would make 
its computation unfeasible, especially on large TINs.

*	 We note that α(n) ≤ 4 as long as n is at most the estimated number of atoms in the observable universe; therefore α(n) can 
be considered constant for all practical purposes.



31-17Terrain Modeling for the Geosciences

Fortunately, in practice the complexity of viewsheds seems to be close to linear. Moet et al. [54] and 
De Berg et al. [31] give a theoretical explanation based on assumptions on the shape of the terrain. Given 
arbitrary constants α > 0, θ π<

2
, σ ≥ 1, we say that a set of terrain triangles is fat if all angles (in the pro-

jection on the plane) are at least α; the set is non-steep if the angle of each triangle with the horizontal 

plane is at most θ; the set has bounded scale factor if the length ratio of the longest and the shortest edge 
is at most σ. Furthermore, given an arbitrary constant ρ ≥ 1, we say a terrain has bounded aspect ratio 
if its projection on the horizontal plane is a rectangle with aspect ratio at most ρ. Moet et al. [54] prove 
that the worst-case complexity of the viewshed is Θ( )n n  if the terrain has bounded aspect ratio and 
its triangles are fat and have bounded scale factor (the constants in the asymptotic bound depend on α, 
σ, and ρ). De Berg et al. [31] prove that the expected complexity of any viewshed on any terrain is O(n) 
provided all except O n( ) triangles are fat, non-steep and of bounded scale factor and the elevation of 
each TIN vertex is subject to random noise that is proportional to the length of the longest edge.

Many applications need to compute viewsheds from many viewpoints, for example an application 
that tries to find a small number of locations that can together oversee a complete terrain. Such applica-
tions cannot afford to spend linear time on each viewshed. The complexity of the output can be reduced 
by only reporting the boundary of the complete viewshed and not the visible parts of each triangle, but 
in the worst case this will not help (even under the assumptions of De Berg et al.). To be sure to obtain 
a viewshed in sublinear time, one needs to resort to approximations. In many cases the digital terrain 
model itself is not completely accurate, so an algorithm that gives good approximations fast is a good 
trade-off.

Several algorithms to compute an approximation of the viewshed on a TIN together with an experi-
mental analysis are described by Ben-Moshe et al. [14]. Their best algorithm works by dividing the area 
around the viewpoint into a number of slices: each slice is bounded by two rays from the viewpoint. The 
algorithm computes a one-dimensional visibility map along each ray. If the visibility maps of the two 
rays bounding a slice are similar enough, the visibility map of the whole slice is constructed by interpo-
lation between the bounding rays; otherwise the slice is subdivided into smaller slices.

Another approach to approximating visibility is to simplify the terrain to reduce its size and compute 
visibility on the simplified terrain; see, for example, Ben-Moshe et al. [15]. Standard simplification meth-
ods typically simplify the terrain such that the vertical distance between the simplified terrain and the 
original terrain is within a user defined margin ϵ. The idea of Ben-Moshe et al. [15] is that vertical dis-
tance does not matter much for visibility: the most important features that need to be preserved are the 
ridges. Their algorithm computes the ridge network and simplifies it (by keeping only a small number of 
its vertices); this induces a subdivision of the terrain into “patches,” which they simplify, one at a time, 
using one of the standard methods. To compare visibility on the original terrain T and simplified terrain T′, 
they compute, given a set of points X, the fraction of pairs of points in X that have the same visibility in T 
and T′ (i.e. they are both visible or both invisible). Their experimental analysis shows that this approach 
preserves visibility better (according to their metric) than standard simplification methods.

31.5.3  Challenges

As already mentioned, a question that remains to be addressed is how various viewshed algorithms 
proposed so far compare with respect to accuracy. Without such a comparison the relative merits and 
tradeoffs of the algorithms cannot be judged.

Another question is how to compute viewsheds of sublinear complexity in sublinear time, that is, 
can we preprocess grids and TINs such that we can compute a viewshed of k grid points, or a viewshed 
bounded by k line segments, in time linear in k but sublinear in n? In practice viewsheds tend to be 
very small compared to the size of the terrain, especially on very large terrains. An output-sensitive 
(and preferably i/o-efficient) algorithm with running time sublinear in n, may significantly improve the 
overall running time in practice.
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Although the i/o-efficient viewshed algorithms proposed by Andrade et al. and by Fishman et al. are 
fast, their running times are still too high to make them suitable for the computation of many vieswheds of 
the same terrain, or for online calculations. A challenge is to develop viewshed approximation algorithms 
that trade off speed and accuracy, and for which the error can be quantified and bounded in some way.

Viewsheds on TINs have been less studied from a practical point of view, probably because continu-
ous viewsheds are more complex and therefore less appealing in practice. Exploring viewsheds on TINs, 
testing the scalability of the algorithms to very large TINs and developing i/o-efficient algorithms for 
TINs are problems yet to be considered.

31.6  Concluding Remarks

In this chapter we discussed some basic problems and solutions regarding the analysis of terrain data. 
We have seen a number of efficient and effective algorithms that have been implemented in commercial 
and academic geographic information systems. However, there are also many problems for which satis-
factory solutions do not exist yet.

Dealing with increasingly high-resolution data means dealing with increasing amounts of noise 
and errors that cannot be corrected by hand. This requires increasingly better techniques for cleaning, 
filtering and hydrological correction. Dealing with increasingly high-resolution data also means run-
ning into the limits of the simplifying assumptions that were made in the past—such as ignoring the 
volume of water; new algorithmic techniques need to be brought to the geosciences to deal with this in 
an efficient way. Last but not least, dealing with increasingly high-resolution data means that we need 
increasingly fast algorithms. It is therefore important to take full advantage of the parallel computing 
power that is becoming increasingly available, for example in the form of graphics processing units.

A shortcoming of many of the algorithms presented in this chapter, is that it is not clear what exactly 
they compute. There is no analysis of how accurate the output of the algorithms is as compared to a 
ground truth. Algorithms do not take the error margins on the input into account and do not output 
error margins with their results. This holds for algorithms on grid models as well as for algorithms on 
(usually linearly interpolated) TIN models, both of which are just approximations of an actual terrain. 
This leads not only to inherently unreliable results, but also to a wasteful use of computational resources. 
Lacking a thorough analysis of what errors in the input may cause what errors in the output, we may run 
hundreds of computations on ever-higher-resolution terrain models, requiring ever-more-sophisticated 
noise removal techniques, but the extent of uncertainty remains unknown.

Acknowledgments

Laura Toma was supported by NSF award no. 0728780.

References

	 1.	 P. K. Agarwal, L. Arge, and A. Danner. From point cloud to grid DEM: A scalable approach. In Proc. 
12th Symp. Spatial Data Handling (SDH 2006), Vienna, Austria, pp. 771–788. Springer, 2006.

	 2.	 P. K. Agarwal, L. Arge, T. Mølhave, and B. Sadri. I/O-efficient algorithms for computing contours on a 
terrain. In Proc. 24th Symp. Computational Geometry (SoCG 2008), College Park, MD, pp. 129–138, 2008.

	 3.	 P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient construction of constrained delaunay triangulations. 
In Proc. 13th Eur. Symp. Algorithms (ESA 2005), Palma de Mallorca, Spain, vol. 3669 of Lecture 
Notes in Computer Science, pp. 355–366, 2005.

	 4.	 P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its applications to terrain 
analysis. ACM Transactions on Algorithms, 7(1):11, 2010.

	 5.	 A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. 
Communications of the ACM, 31(9):1116–1127, 1988.



31-19Terrain Modeling for the Geosciences

	 6.	 M. V. A. Andrade, S. V. G. Magalhães, M. A. Magalhães, W. R. Franklin, and B. M. Cutler. 
Efficient viewshed computation on terrain in external memory. Geoinformatica, 15(2):381–397, 
2011.

	 7.	 L. Arge, J. S. Chase, P. N. Halpin, L. Toma, J. S. Vitter, D. Urban, and R. Wickremesinghe. Flow com-
putation on massive grid terrains. GeoInformatica, 7(4):104–128, 2003.

	 8.	 L. Arge, A. Danner, H. Haverkort, and N. Zeh. I/O-efficient hierarchical watershed decompo-
sition of grid terrain models. In Proc. 12th Symp. Spatial Data Handling (SDH 2006), Vienna, 
Austria, pp. 825–844. Springer, 2006.

	 9.	 L. Arge, L. Deleuran, T. Mølhave, M. Revsbæk, and J. Truelsen. Simplifying massive contour maps. 
In Proc. 20th Eur. Symp. Algorithms (ESA 2012), Ljubljana, Slovenia, vol. 7501 of Lecture Notes in 
Computer Science, pp. 96–107, 2012.

	 10.	 L. Arge, M. Revsbæk, and N. Zeh. I/O-efficient computation of water flow across a terrain. In Proc. 
26th Symp. Computational Geometry (SoCG 2010), Snowbird, UT, pp. 403–412, 2010.

	 11.	 L. Arge, K. G. Larsen, T. Mølhave, and F. van Walderveen. Cleaning massive sonar point clouds. 
In Proc. 18th ACM SIGSPATIAL Symp. Geographic Information Systems (GIS 2010), San Jose, CA, 
pp. 152–161, 2010.

	 12.	 L. Arge and J. S. Vitter. Optimal interval management in external memory. SIAM Journal on 
Computing, 32(6):1488–1508, 2003.

	 13.	 F. Aurenhammer and R. Klein. Voronoi diagrams. In Handbook of Computational Geometry, J.-R. Sack, 
J. Urrutia (eds.), pp. 201–290, Elsevier, 2000.

	 14.	 B. Ben-Moshe, P. Carmi, and M. J. Katz. Approximating the visible region of a point on a terrain. 
Geoinformatica, 12(1):21–36, 2008.

	 15.	 B. Ben-Moshe, M. J. Katz, and I. Zaslavsky. Visibility preserving terrain simplification: An experi-
mental study. Computational Geometry, 28(2–3):175–190, 2004.

	 16.	 A. Beutel, T. Mølhave, and P. K. Agarwal. Natural neighbor interpolation based grid DEM con-
struction using a GPU. In Proc. 18th ACM SIGSPATIAL Symp. Geographic Information Systems (GIS 
2010), San Jose, CA, pp. 172–181, 2010.

	 17.	 P. Burrough and R. McDonnell. Optimal interpolation using geostatistics. In Principles of Geographic 
Information Systems, pp. 132–161. Oxford University Press, 1998.

	 18.	 B. R. Calder and L. A. Mayer. Automatic processing of high-rate, high-density multibeam echo-
sounder data. Geochemistry Geophysics Geosystems, 4(6):1048, 2003.

	 19.	 R. Carlson and A. Danner. Bridge detection in grid terrains and improved drainage enforcement. 
In Proc. 18th ACM SIGSPATIAL Symp. Geographic Information Systems (GIS 2010), San Jose, CA, 
pp. 250–260, 2010.

	 20.	 L. C. Aleardi and O. Devillers. Explicit array-based compact data structures for triangulations. In 
Proc. 22nd Int. Symp. Algorithms and Computation (ISAAC 2011), Yokohama, Japan, vol. 7074 of 
Lecture Notes in Computer Science, pp. 312–322, 2011.

	 21.	 L. C. Aleardi, O. Devillers, and G. Schaeffer. Succinct representations of triangulations with a 
boundary. In Proc. 9th Workshop Algorithms and Data Structures (WADS 2005), Waterloo, Canada, 
vol. 3608 of Lecture Notes in Computer Science, pp. 134–145, 2005.

	 22.	 Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In Proc. Visualization 1997, Phoenix, 
AZ, pp. 293–300, 1997.

	 23.	 Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core isosurface extraction. In Proc. 
Visualization 1998, Research Triangle Park, NC, pp. 167–174, 1998.

	 24.	 P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurface extraction from irregular 
volume data. In Proc. Symp. Volume Visualization, San Francisco, CA, pp. 31–38, 1996.

	 25.	 R. Cole and M. Sharir. Visibility problems for polyhedral terrains. Journal of Symbolic Computation, 
7:11–30, 1989.

	 26.	 A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos. Randomized external-memory 
algorithms for some geometric problems. Computational Geometry, 11(3):305–337, 2001.



31-20 Computational Science and Graphics

	 27.	 A. Danner, J. Baskin, A. Breslow, and D. Wilikofsky. Hybrid MPI/GPU interpolation for grid DEM 
construction. In Proc. 20th ACM SIGSPATIAL Symp. Geographic Information Systems (GIS 2012), 
Redondo Beach, CA, 2012.

	 28.	 A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitásová. Terrastream: From eleva-
tion data to watershed hierarchies. In Proc. 15th ACM SIGSPATIAL Symp. Geographic Information 
Systems (GIS 2007), Seattle, WA, pp. 212–219, 2007.

	 29.	 M. de Berg, O. Cheong, H. Haverkort, J.-G. Lim, and L. Toma. The complexity of flow on fat terrains 
and its I/O-efficient computation. Computational Geometry, 43(4):331–356, 2010.

	 30.	 M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational Geometry: Algorithms 
and Applications. Springer, 1997, 2000, 2008.

	 31.	 M. de Berg, H. Haverkort, and C. P. Tsirogiannis. Visibility maps of realistic terrains have linear 
smoothed complexity. Journal of Computational Geometry, 1(1):57–71, 2010.

	 32.	 M. de Berg and C. P. Tsirogiannis. Exact and approximate computations of watersheds on triangu-
lated terrains. In Proc. 19th ACM SIGSPATIAL Symp. Geographic Information Systems (GIS 2011), 
Chicago, IL, pp. 74–83, 2011.

	 33.	 L. de Floriani and P. Magillo. Visibility algorithms on digital terrain models. International Journal of 
Geographic Information Systems, 8(1):13–41, 1994.

	 34.	 L. de Floriani and P. Magillo. Algorithms for visibility computation on terrains: A survey. Environment 
and Planning B—Planning and Design, 30(5):709–728, 2003.

	 35.	 A. Driemel, H. Haverkort, M. Löffler, and R. I. Silveira. Flow computations on imprecise terrains. 
Journal of Computational Geometry, 41(1):38–78, 2013.

	 36.	 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. 
Discrete and Computational Geometry, 28:511–533, 2002.

	 37.	 J. Fishman, H. Haverkort, and L. Toma. Improved visibility computations on massive grid terrains. 
In Proc. 17th ACM SIGSPATIAL Symp. Geographic Information Systems (GIS 2009), Seattle, WA, 
pp. 121–130, 2009.

	 38.	 W. R. Franklin. Siting observers on terrain. In Proc. 10th Symp. Spatial Data Handling (SDH 2002), 
Ottawa, Ontario, Canada, pp. 109–120, 2002.

	 39.	 W. R. Franklin and C. Ray. Higher isn’t necessarily better: Visibility algorithms and experiments. In 
Proc. 6th Symp. Spatial Data Handling (SDH 1994), Edinburgh, Scotland, pp. 751–763, 1994.

	 40.	 M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational geometry. 
In Proc. 34th IEEE Symposium on Foundations of Computer Science (FOCS 1993), Palo Alto, CA, 
pp. 714–723, 1993.

	 41.	 S. Gruber and S. D. Peckham. Land-surface parameters and objects in hydrology. In Developments 
in Soil Science, vol. 33, pp. 171–194. Elsevier, 2008.

	 42.	 A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. A practical approach to Morse-Smale com-
plex computation: Scalability and generality. IEEE Transactions on Visualization and Computer 
Graphics, 14(6):1619–1626, 2008.

	 43.	 H. Haverkort and J. Janssen. Simple I/O-efficient flow accumulation on grid terrains. In Abstracts 
Workshop Massive Data Algorithms, Aarhus, Denmark. University of Aarhus, 2009.

	 44.	 M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Streaming computation of Delaunay triangula-
tions. ACM Transactions on Graphics, 25(3):1049–1056, 2006.

	 45.	 M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion. Generating raster DEM from mass 
points via TIN streaming. In Proc. GIScience 2006, Muenster, Germany, pp. 186–198, 2006.

	 46.	 D. Izraelevitz. A fast algorithm for approximate viewshed computation. Photogrammetric Engineering 
and Remote Sensing, 69(7):767–774, 2003.

	 47.	 M. J. Katz, M. H. Overmars, and M. Sharir. Efficient hidden surface removal for objects with small 
union size. Computational Geometry, 2(4):223–234, 1992.

	 48.	 P. Longley, M. Goodchild, D. Maguire, and D. Rhind. Spatial data analysis. In Geographic Information 
Systems and Science, Wiley, New York, pp. 351–379, 2011.



31-21Terrain Modeling for the Geosciences

	 49.	 A. Mebarki. Implantation de structures de données compactes pour les triangulations. PhD. thesis, 
Université de Nice-Sophia Antipolis, Nice, France, 2008.

	 50.	 X. Meng, N. Currit, and K. Zhao. Ground filtering algorithms for airborne LiDAR data: A review of 
critical issues. Remote Sensing, 2(3):833–860, 2010.

	 51.	 L. Mitas and H. Mitásová. Spatial interpolation. In Geographical Information Systems: Principles, 
Techniques, Management and Applications, Wiley, New York, pp. 481–492, 1999.

	 52.	 H. Mitásová and L. Mitas. Interpolation by regularized spline with tension: I. Theory and implemen-
tation. Mathematical Geology, 25(6):641–655, 1993.

	 53.	 H. Mitásová, L. Mitas, W. Brown, D. Gerdes, and I. Kosinovsky. Modelling spatially and tempo-
rarilly distributed phenomena: New methods and tools for GRASS GIS. International Journal of 
Geographic Information Systems, 9(4):433–446, 1995.

	 54.	 E. Moet, M. van Kreveld, and A. F. van der Stappen. On realistic terrains. Computational Geometry, 
41:48–67, 2008.

	 55.	 T. Mølhave, P. K. Agarwal, L. Arge, and M. Revsbæk. Scalable algorithms for large high-resolution 
terrain data. In Proc. 1st Int. Conf. and Exhib. on Comp. for Geospatial Research & Application 
(COM.Geo’10), Washington, DC, 2010.

	 56.	 National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center. 2012. 
“Lidar 101: An Introduction to Lidar Technology, Data, and Applications.” Revised. Charleston, SC: 
NOAA Coastal Services Center. http://hurricane.csc.noaa.gov/digitalcoast/_/pdf/lidar101.pdf

	 57.	 M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. In External Memory 
Algorithms, vol. 50, DIMACS series in discrete mathematics and theoretical computer science, 
pp. 107–118. 1999.

	 58.	 H. I. Reuter, T. Hengl, P. Gessler, and P. Soille. Preparation of DEMs for geomorphometric analysis, 
Volume 33 of Developments in Soil Science, pp. 112–117. Elsevier, 2008.

	 59.	 J. R. Shewchuck. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In 
Proc. FCRC’96 Workshop Applied Computational Geometry: Towards Geometric Engineering (WACG 
1996), Volume 1148 of Lecture Notes in Computer Science, pp. 203–222, 1996.

	 60.	 R. I. Silveira and R. van Oostrum. Flooding countries and destroying dams. International Journal of 
Computational Geometry, 20(3):361–380, 2010.

	 61.	 G. Sithole and G. Vosselman. Experimental comparison of filter algorithms for bare-earth extrac-
tion from airborne laser scanning point clouds. ISPRS Journal Photogrammetry and Remote Sensing, 
59:85–101, 2004.

	 62.	 P. Soille, J. Vogt, and R. Colombo. Carving and adaptive drainage enforcement of grid digital eleva-
tion models. Water Resources Research, 39(12):1366–1375, 2003.

	 63.	 A. J. A. M. Temme, G. B. M. Heuvelink, J. M. Schoorl, and L. Claessens. Geostatistical Simulation 
and Error Propagation in Geomorphometry, Volume 33 of Developments in Soil Science, pp. 121–140. 
Elsevier, 2008.

	 64.	 J. Thiyagalingam and O. Beckmann. Is Morton layout competitive for large two-dimensional arrays 
yet? Concurrency and Computation: Practice and Experience, 18(11):1509–1539, 2006.

	 65.	 M. van Kreveld. Variations on sweep algorithms: efficient computation of extended viewsheds and 
class intervals. In Proc. Seventh Symposium of Spatial Data Handling (SDH 1996), pp. 15–27, 1996.

	 66.	 M. van Kreveld and R. I. Silveira. Embedding rivers in triangulated irregular networks with linear 
programming. International Journal of Geographic Information Science, 25(4):615–631, 2011.

	 67.	 M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore. Contour trees and 
small seed sets for isosurface traversal. In Proc. 13th Symp. Computational Geometry (SoCG 1997), 
pp. 212–220, 1997.

	 68.	 J. Wilson and J. Gallant. Terrain Analysis: Principles and Applications, Chapter Digital terrain analy-
sis. Wiley, 2000.

	 69.	 S. Yu, M. van Kreveld, and J. Snoeyink. Drainage queries on TINs: From local to global and back 
again. In Proc. 7th Symp. Spatial Data Handling (SDH 1996), pp. 13A.1–13A.14, 1997.





32-1

32.1  Introduction

Geometric primitives are the basic building blocks for creating sophisticated objects in computer graph-
ics and geometric design. They provide familiarity, uniformity, and standardization and also enable 
hardware support.

Initially, the definition of geometric primitives was driven by the capabilities of the hardware. Only 
simple primitives were available, for example, points, line segments, and triangles. In addition to hard-
ware constraints, other driving forces in the development of geometric primitives have been either gen-
eral applicability to a broad range of needs or wide applicability in restricted domains. The triangular 
facet is an example of a primitive that is simple to generate, easy to support in hardware, and widely used 
to model many graphics objects. The sphere is included in the primitive set of most software libraries 
and software products, for example, AutoCAD, Maya, Rhinoceros, SketchUP, and CATIA. More spe-
cialized primitives have also been developed, for example, in architectural modeling where a door might 
be considered as a primitive in a building information model (BIM) or in chemical modeling where a 
particular molecule configuration would be considered as primitive. So, what is a geometric primitive? 
Here we qualify the definition based on simplicity of the object and frequency of use based on com-
puter-aided design (CAD)/computer-aided manufacturing (CAM), computer-aided engineering (CAE), 
computer graphics, animation, and industrial styling systems. We are cognizant that other readers may 
choose a somewhat different set of primitives based on their experiences, for example, editing operations 
like push/pull, but we have strived to select the most comprehensive base available in current software.

As hardware, central processing unit (CPU), and the number of specialized applications increased 
in capability, sophistication of primitives grew as well. Primitives became somewhat less dependent 
on hardware and subsequently software primitives became more common. For raw speed, however, 
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hardware primitives still dominate, for example, it is widespread practice in computer graphics 
engines to partition any primitive object into triangles.

One direction for the expansion of graphics primitives has been in the geometric order of the primi-
tive. Initially, primitives were discrete or first-order approximations of objects, that is, collections of 
points, lines, and planar polygons. This has been extended to higher-order primitives represented by 
polynomial or rational curves and surfaces in any direction. The other direction for the expansion of 
primitives has been in attributes that are assigned to the geometry. Color, transparency, associated 
bitmaps and textures, surface normals, and labels are examples of attributes attached to a primitive 
for use in its display. Since the focus of this chapter is on geometry, attributes are beyond the scope of 
this discussion.

This summary of graphics primitives will first describe representative examples used in practice. We 
then draw upon these examples to discuss the fundamental principles underlying primitives. Finally, 
we highlight some future directions in the field of geometric primitives being pursued in academia 
and industry.

32.2  Examples in Practice

32.2.1  Screen Specification

Screen specification is closely related to object geometry and is the coordinate frame wherein all primi-
tives lie. The problem of rendering a graphics primitive on a raster screen is called scan conversion. It 
is the scan conversion method that is embedded in hardware to accelerate and improve the display of 
graphics in a system.

32.2.2  Simple Primitives

The primitives are described here in roughly the chronological order of their development, which basically 
corresponds to their increase in complexity. This chapter concentrates on common primitives. We will 
distinguish between design primitives and database primitives. A design primitive is input data that form 
an integral part of the geometric model, whereas a database primitive is a tool that is used to assist in the 
design process or the way in which it is saved in memory, but does not form part of the model (Figure 32.1).

32.2.2.1  Points

A point represents a zero-dimensional object. A point can be part of a bitmap representation of an 
object, for example, line and text, or used as a construction tool, for example, control vertex (CV). The 
classic example of point as design primitive is its use in text. There are two standard ways to represent 
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(a) (b) (c) (d)

FIGURE 32.1  Example of database primitive vs. design primitive. The design primitive is the sphere, deformed here, 
for example. Database primitives are seen in each screen capture: (a) CVs and isocurves, (b) universal manipulator 
frame, (c) normals to surfaces, and (d) underlying triangulated surface tessellation. Model created in Autodesk Maya.
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textual characters for graphics purposes. The first method is to save a representation of the characters as 
a bitmap, called a font cache. This method allows fast reproduction of the character on-screen. Usually 
the font cache has more resolution than needed, and the characters are pixelated. Even on high-resolu-
tion devices such as a quality laser printer, the discrete nature of the bitmap can be apparent, creating 
jagged edges. When transformations are applied to bitmaps such as rotations or shearing, aliasing prob-
lems can also be apparent. See the examples in Figure 32.2.

To improve the quality of transformed characters and to compress the amount of data needed to transfer 
text, a second method for representing characters was developed using polygons or curves. When the text is 
displayed, the curves or polygons are scan-converted; thus, the quality is constant regardless of the transfor-
mation. The transformation is applied to the curve or polygon basis before the scan conversion. PostScript 
is a well-known product based on text transferal (see Adobe Systems Inc., 1999). In a PostScript printer, for 
instance, the definition of the fonts resides in the printer where it is scan-converted. Transfer across the 
network requires only a few parameters to describe font size, type, style, etc. Those printers that do not have 
resident PostScript databases and interpreters must transfer bitmaps with a resulting loss of quality and 
time. PostScript is based on parametrically defined curves called Bézier curves (see Section 32.3).

An important trend in 3D surface representation is using points instead of polygons, that is, a point 
cloud may be used where a dense set of points defines the surface of an object (Figure 32.3a). Unlike 
triangular meshes, points do not require connectivity data. For further information see Levoy and 
Whitted (1985), Rockwood (1986), Rockwood (1987), and Pauly et al. (2003).

(a) (b) (c) (d)

FIGURE 32.2  The drawing in (a) represents the Arabic letter hamza (ء). Details show the effect of (b) anti-aliasing 
to smooth out jagged edges; (c) bitmap pixilation, jagged edges, as the result of aliasing; and (d) rotation on pixila-
tion; note how transformation changes the pixilation.

(a) (b) (c)

FIGURE 32.3  Three renderings of a camel head model: (a) point cloud model (rendered in MeshLab), (b) trian-
gulated mesh model with bounding box (rendered in SketchUP), and (c) triangulated mesh model with CVs shown 
(ghosted rendering in Rhinoceros). Open source model “camello” by robertttittto in SketchUP 3D Warehouse 
(http://sketchup.google.com/3dwarehouse [accessed October 23, 2013]).
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32.2.2.2  Lines and Polylines

Together with points, one of the most prevalent graphics primitives is the line segment, typically speci-
fied by “move to (x1, y1)” and then “draw to (x2, y2)” commands, where (x1, y1) and (x2, y2) are the end 
points of the line segments. The end points can also be given as 3D points and then projected onto the 
screen through viewing transformations.

A line segment can be easily extended to a polyline graphics primitive, that is, to a piecewise polygonal 
path. It is usually stored as an array of 2D or 3D points. The first element of the array tells how many 
points are in the polyline. The remaining array elements are the arguments of the line drawing com-
mands. The first entry invokes the “move to” command; successive array entries use the “draw to” com-
mand as an operator.

Because of the discrete, pixel-based nature of the raster display screen, lines are prone to alias; that is, 
they may break apart or merge with one another to form distracting moiré patterns (Creath and Wyant 
1992). They are also susceptible to jagged edges, a signature of older graphics displays. Advanced line 
drawing systems found it therefore important to add hardware that would anti-alias their lines while 
drawing them (Freeman 1974; Crow 1977) (Figure 32.2b). Where aliasing produces false artifacts by 
under sampling, anti-aliasing reduces those artifacts either by more intelligent or higher resolution 
sampling.

32.2.2.3  Polygons

Closing a polyline by matching start and end points creates a polygon, for example, quadrangle and tri-
angle (see Appendices 32.A and 32.B). It is probably the most commonly employed primitive in graph-
ics, because it is easy to define an associated surface. Because of their usefulness for defining surfaces, 
polygons almost always appear as 3D primitives that subsume the 2D case.

The most sophisticated polygon primitive allows non-convex polygons that contain other polygons, 
called holes or islands depending on whether they are filled or not. A complex polygon is often made as 
a macro out of simple polygon primitives for example, in Open Graphics Library (OpenGL) it would be 
written as a strip of triangles (Figure 32.4). There are many triangulation routines to reduce polygons to 
simple triangular facets.

Associated surfaces, or faces, can be created with a polygon where the edges form the boundaries of 
the surface. Vertices represent the positions where the end points of surface edges meet.

32.2.2.4 T riangular Facet

If the polygon is the most popular primitive, the simple triangle is certainly the most popular polygon. 
Figure 32.3b and c shows a model of a camel composed of triangular facets.

v1

v2

v3

FIGURE 32.4  Strip of triangular facets: lead triangle (thick lines), successive triangles (thin lines); vertices of start 
triangle indicated as v1, v2, and v3; “path” (lines that connect vertices 1–3); and bounding box of triangle (lines that 
form a square around the triangle and intersect with vertices).
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The triangular facet is fast to draw and supports more complex polygons as well as many more diverse 
and powerful operations. Another major advantage is that they are always flat; their vertices do not have 
to leave the plane and avoid numerical problems, data errors, or non-planar preserving transformations. 
Currently, graphics cards are designed to handle raw triangles in the order of millions, where the limit 
is given by the memory size of the graphics card and time required for the render process (measured in 
frames per second); the current limit in memory size is around 6GB.

In order to increase the performance of polygon rendering and decrease the size of the file database, 
triangular and quadrilateral facets can be stored and processed as meshes, that is, collections of facets 
that share edges and vertices. The triangular mesh, for instance, is given by defining three vertices for 
the “lead” triangle and then giving a new vertex for each successive triangle (Figure 32.4). The succeed-
ing triangles use the last two vertices in the list with the newly given one to form the next triangle. Such 
a mesh contains about one-third the data and uses the shared edges to increase processing speed. Most 
graphics objects have large contiguous areas that can take advantage of meshing, which turns out to be 
a compression technique. The quadrilateral mesh requires two additional vertices be used, with the last 
two given, and therefore has less savings.

Because of its benefits and ubiquity, many other primitives are defined in software as configura-
tions of the triangular facet. One example is the faceted sphere. With enough facets the sphere will 
look smooth (see Figure 32.9). It is commonly encountered in engineering applications and molecu-
lar modeling.

32.2.2.5  Elliptical Arcs

Elliptical arcs in 2D may be specified in many equivalent ways. One way is to give the center position, 
major and minor axes, and start and end angles. Both angles are given counterclockwise from the major 
axis. It should be mentioned that arcs can also be represented by a polyline with enough segments; thus, 
a software primitive for the arc that induces the properly segmented and positioned polyline may be a 
cost-effective macro for elliptical arcs (Figure 32.5). This macro should consider the effects of zoom 
and perspective to avoid revealing the underlying discretization of the arc. It is surprising how small 
a number of line segments, properly chosen, can give the impression of a smooth arc. One of the most 
commonly used elliptical arcs is, of course, the circular arc.

32.2.2.6  Curves: Bézier, Splines, and NURBS

The four most common design primitives for drawing more complex curves are the polynomial and 
rational Bézier, B-spline, nonuniform rational B-spline (NURBS), and interpolating splines, that is, fit 

(a) (b) (c) (d)

FIGURE 32.5  Ellipse with decreasing discretization of curve, that is, 226, 24, and 8 line segments, from right to 
left. Inset shows typical user interface for drawing ellipses using alternative input data options, that is, center point, 
axis direction and end point, or arc length. (Screen capture from AutoCAD.)
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points (AutoCAD) (Figure 32.6). See Section 32.3 for the theory underlying parametric modeling of 
curves. All polynomial curve types possess a specified degree (the degree implies the number of control 
points that influence any given point on the curve). Characteristics, such as editability, computational 
complexity, and ease of use, vary (see Table 32.1).

The Bézier method has a strict relation between degree and number of CVs (see Rockwood and 
Chambers 1996, p.55). End points are fixed and the other CVs lie off the curve. Each curve has gener-
ating functions and all CVs affect the curve. The Bézier curve is more difficult to edit due to the fact 
that moving a single CV changes the global shape of the curve. There is a generating (basis/blending) 
function for each CV, and at a particular parameter value, the basis functions yield the blending factor 
for the CV, for example, at t = 0, the basis function for C0 = 1 and the others are 0, which produces the 
interpolation. More details will follow.

The B-spline method (Birkhoff and de Boor 1965) concatenates Bézier curves in a succinct user inter-
face. Bézier end points automatically connect and tangents align, achieving continuity of curve, that is, 
if degree is n, we get n − 1 continuity.

TABLE 32.1  Curve Types and Characteristics

Curve Type Characteristics

Bézier Partition of unity Uniform Global influence End point interpolation
B-spline Partition of Unity Uniform Local influence Noninterpolating
NURBS Partition of unity Nonuniform Local influence Noninterpolating
Fit points Non-POU Nonuniform Local influence Interpolates every point

(a) (b) (c)

(d) (e) (f)

FIGURE 32.6  Typical curve types and effect of editing: (a) Bézier (dashed lines represent the curve’s control 
polygon); (b) Bézier converted to polyline; (c) NURBS, with moved point; (d) B-spline; and (e) fit points (Lagrange 
interpolation); and (f) NURBS, with moved tangent.
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Good editability requires that curves and surfaces allow options of degree and CV weight (influence) 
together with automatic curvature continuity when concatenating or adding new segments. NURBS 
stands for nonuniform rational B-spline, and the input required are degree, weighted CVs, and knot vec-
tors (a knot vector is a way to specify the weighting factors with a visually convenient sequence of points 
on the domain line; see Figure 32.12). Nonuniform means that the knots are not evenly spaced. Rational 
indicates that the CVs are weighted by a rational factor. Adding or removing interior control points, 
which requires adding or removing a corresponding knot, on a curve allows local refinement. This allows 
nonuniform subdivision of NURBS curves and surfaces making it a good way to add local complexity. 
Nonrational splines or Bézier curves may approximate a circle, but they cannot represent it exactly. 
Rational splines can represent any conic section exactly, including the circle (Piegl and Tiller 1987).

The fit point method uses Lagrange interpolation (Berrut and Trefethen 2004) to create an interpo-
latory B-spline. A special case of the fit point method includes two tangent controls at each point, for 
example, the “paths” in Adobe (see also Hermite interpolation, e.g., Bartels et al. 1987).

The optimal work flow for modeling curves would be to design and save in B-splines but operate in 
Bézier form, which provides greater stability and speed, and restore curves in B-spline or NURBS since 
these are more compact to store.

32.2.3  Solid Geometry Primitives

Before describing each solid geometry primitive, it is worth mentioning the importance of the Euler 
characteristic (see Richeson 2008). In mathematics and computer graphics, one can create objects that 
could never be built, for example, self-intersecting surfaces. The Euler characteristic is one way of iden-
tifying whether or not an object is buildable. The Euler characteristic, usually denoted as chi χ, was clas-
sically defined for the surfaces of polyhedra, according to the formula

	 χ = − +V E F

where V, E, and F are, respectively, the numbers of vertices, edges, and faces in the given polyhedron. 
Any deformation of the ball without self-intersection, including all convex polyhedra, has Euler charac-
teristic χ = 2, whereas with a torus, for example, χ = 0.

The most widely accepted solid geometry primitives are cube, pyramid, cylinder, cone, sphere, ellip-
soid, and torus, as briefly described in the following (Figure 32.7).

Apex

Base

(a) (b) (c)

FIGURE 32.7  The most fundamental solid geometry primitives: cube, sphere, pyramid, cylinder, ellipsoid, cone, and 
torus. The paraboloid and truncated cone are often considered primitives in many modeling software packages. Software 
used to create these images include Autodesk Maya, AutoCAD, Adobe Photoshop, SketchUP, MeshLab, and Rhinoceros.

(continued)
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32.2.3.1  Cube

A cuboid or rectangular box is bounded by six rectangular faces, three of which meet at each vertex. The 
special case is the cube, a platonic solid, which is bounded by six equal faces (Figure 32.7a).

32.2.3.2  Pyramid

A pyramid is formed by connecting a polygonal base, often a square, and a point, or apex. Each base edge 
and apex forms a triangle. A pyramid with an n-sided base will have n + 1 vertices, n + 1 faces, and 2n edges. 
A tetrahedron is a special type of pyramid with triangular base, often referred to as a “triangular pyramid” 
(Figure 32.7c). The generalization of the tetrahedron is the “simplex.” A simplex is the extension of a triangle 
into higher dimensions and always contains the minimum number of vertices, edges, faces, and hyperfaces 
for its dimension. See Boole Stott (1910), Coxeter (1988), and Grünbaum (2003) for more on polyhedra.

32.2.3.3  Cylinder and Cone

A cylinder is a solid of circular cross section in which the centers of the circles all lie on a single straight 
line (Figure 32.7d). A cone is a pyramid with a circular base and cross section (Figure 32.7f). Intersecting 
a double cone with an inclined plane is particularly instructive since the resultant conic sections repre-
sent the quadratic curves, that is, circles, ellipses, parabolas, and hyperbolas (Figure 32.8).

32.2.3.4  Sphere, Ellipsoid, and Torus

A sphere is defined as the set of all points in 3D Euclidean space ℝ3 that are located at a fixed distance, 
r (radius), from a given center point or origin (see Coxeter 1942) (Figure 32.7b). Figure 32.9d shows a 

(e)(d) (f)

(g) (h) (i)

FIGURE 32.7 (continued)  The most fundamental solid geometry primitives: cube, sphere, pyramid, cylinder, 
ellipsoid, cone, and torus. The paraboloid and truncated cone are often considered primitives in many modeling 
software packages. Software used to create these images include Autodesk Maya, AutoCAD, Adobe Photoshop, 
SketchUP, MeshLab, and Rhinoceros.
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faceted sphere resulting from a process of recursive subdivision (see the following) that started from a 
double pyramid. The problem of structuring the surface of a sphere and curved shapes, for example, 
with triangles, quadrilaterals, combination, or pentagons and hexagons, continues to be a challenging 
research issue in the field of geometric modeling. A torus, a closed surface with a single handle, is the 
only example thus far of a primitive higher than second order (Figure 32.7g).

Parabola

Circle

Ellipse

Hyperbola

FIGURE 32.8  Conic sections; when a cone is cut through by a plane, depending on the angle of the plane, the 
resultant section cut is a circle, ellipse, parabola, or hyperbola. (Adapted from Weissten, E.W., MathWorld—A wol-
fram web resource http://mathworld.wolfram.com/ConicSection.html [accessed October 23, 2011].)

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 32.9  (a)–(d) Loop subdivision of tetrahedron results in triangular faceted sphere; (e)–(h) first three steps 
of Catmull–Clark recursive subdivision algorithm applied to simple polyhedral. (Models created by Yongliang Yang.)
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32.2.3.5  Polygonal Extrusions (Prisms)

Modeling often starts with a geometric primitive, or combination of primitives, that is then modified 
according to design intent, for example, recursive subdivision shown in Figure 32.9e–h. When a polygo-
nal plane is extruded, it will form a prism or a polysolid. It should be noted here that as part of the 3D 
modeling working method, wireframe models are often used, particularly in engineering and drafting 
applications, because of their visual precision (pyramid in Figure 32.7c). Additional advantages with 
wireframe are improved working speeds and the ability to see parts of the object that would otherwise 
be obscured by surface attributes. Wireframe objects do not support realism, however, and most objects 
have a surface that is assigned attributes such as material, color, and reflectance.

32.3  Underlying Principles of Geometric Representation

32.3.1  Fundamental Theorem of Geometric Modeling

There are three ways of mathematically expressing geometric objects, namely, explicit, implicit, and 
parametric. An explicit representation of an object is an algebraic expression that associates an input 
from an arbitrary dimension to another quantity also known as the output such as

	 R Rf x y x y( , ) , mapping from2 2 2= + →

This form is probably the most familiar to the reader, but it has a caveat for geometric design because its 
shape requires multiple values, but it is a single value function, for example, in the definition of a circle:

	 x r y= ± −2 2

In general, another issue with this form is that derivatives cannot always be defined, for instance, at the 
intersection with the x-axis (see Figure 32.10).

The implicit form can be seen as an extension of the explicit form in one dimension higher, with an 
additional equation that is set equal to a constant and therefore limits the space, for instance,

	

f x y z x y r

x y r

( , ) = = + −

+ − =

2 2 2

2 2 2 0

Undefined derivatives

Multiple values

x = + r2 – y2

x = – r2 – y2

FIGURE 32.10  Diagram showing caveats for explicit representation of geometric design; undefined derivatives 
(points shown left and right on circle); vertical line test (dotted line through undefined derivative); multiple-valued 
function (solid vertical line intersecting two points on circle).
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This yields a system of 2 equations and 3 unknowns. A major advantage of this representation is that it 
allows us to determine where a point lies relative to the surface, that is,

	 F x( ) , " "> 0 if is outside the surfacex

	 F x( ) , " "= 0 if is on the surface

	 F x( ) , " "< 0 if is inside the surfacex

The parametric representation is a system of variables and constraints in which some of the variables, 
known as parameters, are used as generators and the other variables sweep out the object; this represen-
tation is helpful when the objective is to easily find points in a plot or to sweep a curve with an additional 
variable such as time. For example, the parametric equation of a unit circle is

	

x t

y t

=

=

cos( )

sin( )

with t varying across the interval [0, 2π].
In this example x, y specify the object, and t is the generating parameter. This representation also 

yields a system of equations that has 3 unknowns (x, y, t) and 2 constraints. Note that in order to trans-
form between implicit and explicit forms, the forms must satisfy certain conditions; see implicit and 
inverse function theorems (Spivak 1965).

32.3.1.1  Degrees of Freedom

If you subtract the number of equations from the number of variables, you can get the intrinsic dimen-
sion of the object (Table 32.2). Position in space given by a cubic Bézier curve at a certain time t can be 
represented as follows:

	 P t t P t tP t t P t P( ) ( ) ( ) ( )= − + − + − +1 3 1 3 13
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P represents a 3-tuple. This parametric form has 4 variables (x, y, z, t), described by 3 equations in x, y, 
and z, and the degree of freedom is then 1, which implies a curve.

TABLE 32.2  Dimension of Shape Can Be Deduced 
from Number of Unknowns and Equations

1 unknown 1 equation 0 dimension Point
3 unknowns 2 equations 1 dimension Curve
4 unknowns 2 equations 2 dimension Surface
5 unknowns 2 equations 3 dimension Volume
6 unknowns 2 equations 4 dimension Hypervolume
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32.3.2  Implicit Modeling

32.3.2.1  Implicit Primitives

The need to model mechanical parts drove the definition of implicitly defined primitives. These model-
ing primitives naturally became graphics primitives to serve the design industry. They have since been 
used in other fields such as animation and architecture.

An implicit function f maps a point x in ℝn to a real number, that is, f(x) = r. Usually, n = 3. By absorbing 
r into the function, we can view the implicit function as mapping to zero, that is, g(x) = f(x) − r = 0. The 
importance of implicit functions in modeling is that the function divides space into three parts: f(x) < 0, 
f(x) > 0, and f(x) = 0, as mentioned earlier. The last case defines the surface of an implicit object. The other 
two cases define, respectively, the inside and outside of the implicit object. Hence, implicit objects are 
useful in solid modeling where it is necessary to distinguish the inside and outside of an object. A polygon 
does not, for instance, distinguish between the inside and outside. It is, in fact, quite possible to describe 
an object in which inside and outside are ambiguous. This facility to determine inside and outside is fur-
ther enhanced by using Boolean operations on the implicit objects to define more complex objects (see 
CSG objects in the following) (Figure 32.11).

Another advantage of implicit objects is that the surface normal of an implicitly defined surface is 
given simply as the gradient of the function: N(x) = ∇f(x). Furthermore, many common engineering 
surfaces are easily given as implicit surfaces; thus, the plane (not the polygon) is defined by n · x + d = 0, 
where n is the surface normal and d is the perpendicular displacement of the plane to the origin. The 
ellipsoid is defined by (x/a)2 + (y/b)2 + (z/c)2 − r2 = 0, where x = (x, y, z). General quadratics, which include 
ellipsoids, paraboloids, and hyperboloids, are defined by xTMx + b · x + d = 0, where M is a 3-by-3 matrix 
and b and d are vectors in ℝ3. The quadrics include such important forms as the cylinder, cone, sphere, 
paraboloids, and hyperboloids of one and two sheets. Other implicit forms used are the torus, blends 
(transition surfaces between other surfaces), and superellipsoids defined by (x/a)k + (y/b)k + (z/c)k − ℝ = 0 
for any integer k.

32.3.2.2  CSG Objects

An important extension to implicit modeling arises from applying set operations such as union, inter-
section, and difference to the sets defined by implicit objects. The intersection of six half spaces defines 

Intersection

Subtraction
–

Union

FIGURE 32.11  Boolean principles of subtraction (−), union (∪), and intersection (∩) are shown here using the 
primitives sphere and box.
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a cube, for example. This method of modeling is called constructive solid geometry (CSG) (Foley 1990; 
Foley et al 1994). All set operations can be reduced to some combination of just union, intersection, and 
complementation (Figure 32.11). Because these create an algebra on the sets that is isomorphic to Boolean 
algebra, corresponding to multiply, add, and negate, respectively, the operations are often referred to as 
Booleans. Note that this is equivalent to directed acyclic graph (DAG) (Bang-Jensen and Gutin 2009). For 
example, an object could be made from Boolean parts of plane quadrics, a part torus, and blended transi-
tion surfaces. Unfortunately, implicit forms tend to be more expensive to render because algorithms for 
polygonizing implicit objects and CSG models tend to be quite complex (Bloomenthal 1988). The implicit 
object gives information about a point relative to the surface in space, but no information is given to tes-
sellate into rendering elements such as triangular facets. In the case of ray tracing, however, the paramet-
ric form of a ray x(t) = (x(t), y(t), z(t)) composed with implicit function f(x(t)) = 0 leads to a root-finding 
solution of the intersection points on the surface, which are critical points in the ray-tracing algorithm. 
Determining whether points are part of a CSG model is simply exclusion testing on the CSG tree.

32.3.3  Parametric Modeling

32.3.3.1  Parametric Curves

When modeling with implicit equations, as described earlier, we know whether a point is inside or out-
side the model. When modeling with parametric equations, on the other hand, we know exactly where 
a point is on the surface. This makes parametric modeling more convenient for rendering compared to 
implicit since we can triangulate or texture map.

An important class of geometric primitives is formed by parametrically defined curves and surfaces. 
These constitute a flexible set of modeling primitives that are locally parameterized; thus in space, the 
curve is given by P(t) = (x(t), y(t), z(t)) and the surface by S(u, v) = (x(u, v), y(u, v), z(u, v)). In this section 
and the next one, we will give examples of only the most popular types of parametric curves and sur-
faces. There are many variations on the parametric forms (Farin 2002).

32.3.3.1.1  Bézier Curves
A Bézier curve is a parametric curve widely used in computer graphics (De-Casteljau 1959; Bézier 1974). 
Bézier curves are used to model smooth curves that are not bound by the limits of rasterized images and 
that are intuitive to modify. In vector graphics software, Bézier curves are linked to form “paths” that 
are then used in image manipulation.

The general form of a Bézier curve of degree n is

	
f t b B ti i

n

i

n

( ) ( )=
=
∑

0

where bi are vector coefficients, the control points, and

	
B t i

n t ti
i n i( ) ( )= ( ) − −1

where

i
n( ) is the binomial coefficient

Bi(t) are Bernstein functions

They form a basis for the set of polynomials of degree n. Bézier curves have a number of characteristics, 
which are derived from the Bernstein functions and which define their behavior. Figure 32.12 shows 
examples of B-spline basis functions.



32-14 Computational Science and Graphics

End point interpolation: The Bézier curve interpolates the first and last control points, b0 and bn. In terms 
of the interpolation parameter t, f(0) = b0 and f(1) = bn.

Tangent conditions: The Bézier curve is cotangent to the first and last segments of the control polygon 
(defined by connecting the control points) at the first and last control points; specifically f′(0) = (b1 − b0)n 
and f′(1) = (bn − bn−1)n.

Convex hull: The Bézier curve is contained in the convex hull of its control points for 0 ≤ t ≤ 1 (note: the 
convex hull can be thought of as enclosing a rubber band around the control points of a curve).

Affine invariance: The Bézier curve is affinely invariant with respect to its control points. This means 
that any linear transformation or translation of the control points defines a new curve, which is just the 
transformation or translation of the original curve.

Variation diminishing: The Bézier curve does not undulate any more than its control polygon; it may 
undulate less.

Linear precision: The Bézier curve has linear precision: If all the control points form a straight line, the 
curve also forms a line.

32.3.3.1.2  B-Spline Curves
A single B-spline curve segment is defined much like a Bézier curve. It is defined as

	
d( ) ( )t d N ti i

i

n

=
=
∑

0

where di are control points, called de Boor points. The Ni(t) are the basis functions of the B-spline curve. 
The degree of the curve is n. Note that the basis functions used here are different from the Bernstein 
basis polynomials. Schoenberg first introduced the B-spline in 1949. He defined the basis functions 
using integral convolution (the “B” in B-spline stands for “basis”). Higher-degree basis functions are 

(a) (b)

(c) (d)

FIGURE 32.12  Comparison of basis functions with uniform and nonuniform knot vectors. (a) The uniform case; 
each basis function is an identical translated copy of all the others and knots are equally spaced; (b) nonuniform 
basis functions; the first three knots and the last three knots have zero spacing between them, the remaining knots 
are equally spaced; (c) and (d) cubic B-splines using the same control points but two different knot vectors, as 
seen in (a) and (b), respectively. (Adapted from Cashman, T.J., NURBS-compatible subdivision surfaces, Ph.D. 
University of Cambridge, Computer Laboratory, Queen’s College, Cambridge, U.K., p. 21, 2010.)
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given by convolving multiple basis functions of one degree lower. Linear basis functions are just “tents”; 
when convolved together they make piecewise parabolic “bell” curves.

The tent basis function (which has a degree of one) is nonzero over two intervals, the parabola is nonzero 
over three intervals, and so forth. This gives the region of influence for different degree B-spline control 
points. Note also that each convolution results in higher-order continuity between segments of the basis func-
tion. When the control points (de Boor points) are weighted by these basis functions, a B-spline curve results.

32.3.3.1.3  NURBS
NURBS curves and surfaces are generalizations of both B-splines and Bézier curves, the primary differ-
ence being the weighting of the control points, which makes NURBS curves rational and admits circles, 
spheres, cylinders, etc., which are rational. NURBS have become industry standard tools for the represen-
tation and design of geometry. Some reasons for the extensive use of NURBS are that they offer one com-
mon mathematical form for both standard analytical shapes, for example, conics, and free-form shapes; 
provide the flexibility to design a large variety of shapes; can be evaluated reasonably fast by numerically 
stable and accurate algorithms; are invariant under affine as well as perspective transformations such 
as rotations and scaling; and are generalizations of nonrational B-splines and nonrational and rational 
Bézier curves and surfaces (Piegl 1991; Rogers and Earnshaw 1991; Farin 2002). One drawback for NURBS 
is the extra storage required to define traditional shapes, for example, circles. This results from parameters 
in addition to the control points but finally allows the desired flexibility for defining parametric shapes.

32.3.3.2  Parametric Surfaces

32.3.3.2.1  Bézier and B-Spline Surfaces
Imagine moving the control points of the Bézier curve in three dimensions. As they move in space, new 
curves are generated. If they are moved smoothly, then the curves formed create a surface, which may be 
thought of as a bundle of curves (see Figure 32.13). If each of the control points is moved along a Bézier curve 
of its own, then a Bézier surface patch is created; the result of extruding a B-spline curve is a Bézier surface.

All operations used for B-spline curves carry over to the surface via the nesting scheme implied by 
its definition. We recall that B-spline curves are especially convenient for obtaining continuity between 
polynomial segments. This convenience is even stronger in the case of B-spline surfaces; the patches meet 
with higher-order continuity depending on the degree of the respective basis functions. B-splines define 
quilts of patches with “local support” design flexibility. Finally, since B-spline curves are more compact 
to store than Bézier curves, the advantage is “squared” in the case of surfaces. These advantages are tem-
pered by the fact that operations are typically more efficient on Bézier surfaces. Conventional wisdom says 
that it is best to design and represent surfaces as B-splines and then convert to Bézier form for operations.

Direction of extrusion

Input curve

FIGURE 32.13  The sweeping of a curve to make a surface.
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32.3.3.2.2  NURBS Surfaces
NURBS surfaces are functions of two parameters mapping to a surface in 3D space. The shape of the 
surface is determined by control points. A surface under construction, for example, the head of a camel, 
is usually composed of several NURBS surfaces known as patches. Continuity at the patch boundaries 
will determine the smoothness or otherwise of surface junctions (refer Wiki NURBS; Piegl 1991).

32.4  Standards

Several movements have occurred to standardize primitives. In academia, an early attempt at standard-
ization resulted in Programmer’s Hierarchical Interactive Graphics System (PHIGS) + (ISO/IEC 9592–
2:1997). Although it has never become the principle standard, many of the ideas were absorbed into later 
standards. Many standards grew out of the mechanical CAD/CAM industry, because of the early connec-
tion with graphics. One such prominent standard is the Initial Graphics Exchange Specification (IGES) 
(US PRO 1996). Because of its portability, the 3D ACIS format has become a standard in solid modeling 
(see ACIS Library Reference Documentation, R22). In industry each company has developed and lobbied 
for its particular set of graphics standards. In the computer graphics development area, the most widely 
used libraries are OpenGL developed by Silicon Graphics, Inc., and managed by the nonprofit technology 
consortium Khronos Group, and DirectX, a set of libraries owned and developed by Microsoft. For spe-
cific commands used by OpenGL and DirectX, refer to Appendices 32.A and 32.B, respectively.

In this chapter we have concentrated mostly on 3D primitives because they tend to be more complex 
and demanding. However, there has been great progress standardizing 2D graphics such as that epito-
mized by Flash, a format developed by Macromedia, now part of the Adobe suite (www.adobe.com/
flashplatform/). Indeed, Flash has been so successful that as a standard it dominates 2D graphics.

32.5  Future Directions

There have been efforts to cast higher-order primitives like parametric surfaces into graphics hardware, 
but the best approach seems to be to convert these into polygons and then render. There may yet be 
hardware support for higher-order primitives, but the polygon processing remains at the heart of graph-
ics primitives. This trend is likely to continue into the future if for no other reason than its own inertia. 
Special needs will continue to drive the development of specialized primitives.

One new trend that may affect development is that of volume rendering. Although it is currently quite 
expensive to render, hardware improvements that reduce memory needs, for example, in the architec-
ture of GPUs and parallel processing languages, should make it increasingly more viable. As a technique 
it subsumes many of the current methods, usually with better quality, as well as enabling the visualiza-
tion of volume-based objects. Volume-based primitives, that is, tetrahedral, cuboids, and curvilinear 
volume cubes, will receive more attention and be subject for additional research.
Recursive subdivision, a procedural modeling technique that begins with a polyhedral mesh in 3D and 
recursively chamfers the edges until a nicely smoothed object results (see Böhm et al 1984; Botsch et al 
2010), continues to be a focus area. This approach is widely used in animation and conceptual modeling. Its 
input structure is polyhedral mesh and a set of parameters that inform the algorithm of how to chamfer. The 
algorithm itself is becoming a primitive residing on the graphics card. Fractals would be another example of 
a geometry form, which relies on a procedure and may be common enough to warrant the title of primitive.

In architecture and engineering, BIM is becoming the standard for modeling and information manage-
ment. BIM systems represent a design model as a group of interrelated objects, each with its own geome-
try, relations, and attributes. Furthermore, specialized applications tailored to model dynamic, parametric 
designs will inevitably extend the definition and range of geometric primitives (see Pottmann et al 2012; 
Bury and Bury 2010).

Another example where primitives are currently evolving is in the area of 3D model compression akin 
to JPEG for images. There is a great need to visualize 3D models in a lightweight manner, for example, 
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through increased standardization. Unified Model Language (UML) has been developed jointly by indus-
try and academia to develop 3D standards for model compression and communication of those models.

This cycle of innovative user application, hardware development, and software standardization is never 
more apparent than now. One of the strongest growing trends that will affect primitives is the further 
development of digital handheld devices such as smart phones and tablets. A big effort in this direction 
is to develop OpenGL for their use. This means optimizing OpenGL for the frenetic development in the 
hardware abilities and imaginative applications. In fact, this trend will only intensify as intelligent com-
puting continues to miniaturize and finds its way into all aspects of our life. We see examples in control-
ling human implants, for example, digital cochlea, optical implants, and prosthetics. Also it will appear in 
everything from smart elevators to pilotless flight. Shape detection will play an increasing role, for exam-
ple, in medicine such as early tumor and aneurism detection, MRI data, and echocardiograms. As in all 
previous developments, good standards will improve collaboration, efficiency, and further innovation.

Virtual Reality is perhaps the greatest known unknown at present. This is the area of research and 
development that will push our definition of reality, challenge our physical being, and blur the boundar-
ies between the tangible and the perceptual.

32.6  Summary

Geometric primitives are the most fundamental components of computer visualization. They have been iden-
tified here as points, lines, polylines, polygons, triangular facets, elliptical arcs, and curves. Solid geometry 
primitives include the cube, pyramid, cone, sphere, ellipsoid, torus, and polygonal extrusions. A geometric 
primitive can be distinguished as either a design primitive or a database primitive, where a design primi-
tive forms part of the final visualized model, for example, the curve that defines the edge of a sphere, and a 
database primitive is part of the working process and is not visible in the final model, for example, bounding 
box and CV. Although simple in themselves, geometric primitives can be combined and manipulated, for 
example, with Boolean operations and recursive subdivision, to form complex and sophisticated objects.

Finding usable implicit forms for quadratic parametric surfaces, for example, sphere, plane, or parab-
ola, is easy and resolved in most software used today. However, the recurring challenge is to find intui-
tive and mathematically stable solutions for creating cubic patches and more complex shapes.

Key Terms

ACIS: The 3D ACIS Modeler is a geometric modeling kernel developed by Spatial Corporation
BIM: Building information modeling
Boolean: Booleans as used in CAD/CAM (distinguish from Boole’s algebra)
CAD: Computer-aided design
CAE: Computer-aided engineering
CAM: Computer-aided manufacturing
CPU: Central processing unit
CSG: Constructive solid geometry
Implicit objects: Defined by implicit functions, they define solid objects of which outside and inside can 
be distinguished. Common engineering forms such as the plane, cylinder, sphere, and torus are defined 
simply by implicit functions.
Parametrically defined curves and surfaces: Higher-order surface primitives used widely in industrial 
design and graphics. Parametric surfaces such as B-spline and Bézier surfaces have flexible shape attri-
butes and convenient mathematical representations.
Platonic solids: A convex solid composed of identical regular polygons. There are five in total.
Polygon: A closed object consisting of vertices, lines, and usually an interior. When pieced together it 
gives a piecewise (planar) approximation of objects with a surface. Triangular facets are the most com-
mon form and form the basis of most graphics primitives.



32-18 Computational Science and Graphics

Polytope: A polytope is a geometric object with flat sides, which exists in any general number of 
dimensions.
Wireframe: Simplest and earliest form of graphics model, consisting of line segments and possibly 
elliptical arcs that suggest the shape of an object. It is fast to display and has advantages in precision and 
“see-through” features.
Zero-dimensional: An object with no volume, area, length, nor any other higher-dimensional analogue.

32.A A ppendix A

The table that follows lists the geometric primitive specifications used in OpenGL. “GL” refers to graph-
ics library and “v” represents a vertex.

GL_POINTS
v0

v2
v4

v3

v1

GL_LINES
v0 v2

v4
v3

v1
v5

GL_LINE_STRIP v0

v1

v4

v3
v2

GL_LINE_LOOP

v4

v3
v2

v1
v0

GL_POLYGON

v3

v4

v0
v1

v2

GL_QUADS

v2

v3v0

v1

v6

v7 v4

v5

GL_QUAD_STRIP v5 v7

v3

v2

v4
v6

v0

v1

GL_TRIANGLES

v0

v2

v5

v3

v1

v4

GL_TRIANGLE_STRIP v5v3v1

v0 v2 v4

GL_TRIANGLE_FAN

v7

v8

v9
v1 v2

v3

v4
v5v6

v1

Source:	 Adapted from http://www.opentk.com/doc/chapter/2/opengl/geometry/primitives.
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32.B A ppendix B

The table that follows lists the geometric primitive specifications used in DirectX. A vertex is repre-
sented by either “v” or x, y, z coordinates.

Point lists 0, 5, 0 10, 5, 0 20, 5, 0

–5, –5, 0 5, –5, 0 15, –5, 0
Line lists 0, 5, 0 10, 5, 0 20, 5, 0

–5, –5, 0 5, –5, 0 15, –5, 0
Line strips

–5, –5, 0 5, –5, 0 15, –5, 0
Triangle lists 0, 5, 0 10, 5, 0 20, 5, 0

–5, –5, 0 5, –5, 0 15, –5, 0
Triangle strips v2 v4 v6

v3 v5

v1

v7
Triangle fans

v1

v2

v3

v4

v5

v6

v7
Source:	 Adapted from http://msdn.microsoft.com/en-us/library/windows/desktop/

bb147280(v=VS.85).aspx.
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33.1  Introduction

Most virtual worlds are dynamic; they change over time: objects move, rotate, and transform themselves; 
in inhabited virtual worlds, virtual characters come to life. Object and character motion is an essential 
part of these virtual worlds. The main goal of computer animation is to synthesize the desired motion 
effects, which are a mixing of natural phenomena, perception, and imagination. The animator designs 
the object’s dynamic behavior with his or her mental representation of causality. Animators imagine 
how each object moves, gets out of shape, or reacts when it is pushed, pressed, pulled, or twisted. So, 
the animation system has to provide the user with motion control tools that enable animators translate 
their wishes using their own language. Computer animation methods may also aid in the application of 
physical laws by adding motion control to data in order to show their evolution over time. Formally, any 
computer animation sequence may be defined as a set of objects characterized by state variables evolv-
ing over time. For example, a human character is normally characterized using its joint angles as state 
variables. To produce a computer animation sequence, the animator has several techniques available 
depending on the type of object to be animated. Our main focus will be character animation, which 
corresponds to the animation of articulated bodies (Magnenat-Thalmann 1987, 1991).

We will first explain a few basic animation methods, and then we discuss how to capture motion, 
which is the most popular technique today used in the production of movies and games. However, its 
main disadvantage resides in the lack of flexibility of recorded motions, especially when one wants 
to adapt the raw motion data to another human and/or environment. For this reason, motion editing 
methods have been developed and a key topic in this chapter. Then we will discuss two fundamental 
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problems for character animation, the deformation of the body and facial animation. Behavioral 
animation and autonomous characters (ACs) are very important aspects and will also be discussed. 
Finally, we will address two important topics that have attracted a lot of interest: crowd simulation 
and cloth simulation.

33.2  Basic Animation Methods

33.2.1  Key Frame

This is an old technique consisting of the automatic generation of intermediate frames, called in-
betweens, based on a set of key frames supplied by the animator. Originally, the in-betweens were 
obtained by interpolating the key frame images themselves. As linear interpolation produces undesir-
able effects such as lack of smoothness in motion, discontinuities in the speed of motion, and distor-
sions in rotations, spline interpolation methods are used. Splines can be described mathematically as 
piecewise approximations of cubic polynomial functions. Two kinds of splines are very popular: inter-
polating splines with C1 continuity at knots and approximating splines with C2 continuity at knots. For 
animation, the most used splines are the interpolating splines: cardinal splines, Catmull–Rom splines, 
and Kochanek–Bartels (1984) splines.

A way of producing better images is to interpolate parameters of the model of the object itself. This 
technique is called parametric key frame animation, and it is commonly found in most commercial 
animation systems. In a parametric model, the animator creates key frames by specifying an appropri-
ate set of parameter values. Parameters are then interpolated, and images are finally individually con-
structed from the interpolated parameters. Spline interpolation is generally used for the interpolation.

33.2.2  Inverse Kinematics

This direct kinematics problem consists in finding the position of end points (e.g., hand, foot) with 
respect to a fixed-reference coordinate system as a function of time without regard to the forces or the 
moments that cause the motion. Efficient and numerically well-behaved methods exist for the trans-
formation of position and velocity from joint-space (joint angles) to Cartesian coordinates (end of the 
limb). Parametric key frame animation is a primitive application of direct kinematics.

Basically, the problem is to determine a joint configuration for which a desired task, usually 
expressed in Cartesian space, is achieved. For example, the shoulder, elbow, and wrist configurations 
must be determined so that the hand precisely reaches a position in space. The equations that arise 
from this problem are generally nonlinear and are difficult to solve in general. In addition, a resolution 
technique must also deal with the following difficulties. For the positioning and animation of articu-
lated figures, the weighting strategy is the most frequent difficulty: some typical examples are given by 
Zhao and Badler (1994) for posture manipulation and by Phillips et al. (1990, 1991) to achieve smooth 
solution blending.

33.2.3  Dynamic Simulation

A great deal of work exists on the dynamics of articulated bodies (Huston 1990), and efficient direct 
dynamic algorithms have been developed in robotics for structures with many degrees of freedom 
(Featherstone 1986). In computer animation, these algorithms have been applied to the dynamic simu-
lation of the human body (MacKenna and Zeltzer 1996). Given a set of external forces (like gravity or 
wind) and internal forces (due to muscles) or joint torques, these algorithms compute the motion of the 
articulated body according to the laws of rigid body dynamics. Impressive animations of passive struc-
tures like falling bodies on stairs can be generated by this technique with little input from the animator. 
On the other hand, making adjustments is a tedious task as the animator has only indirect control over 
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the animation. Hodgins et al. (1995) achieved simulation of dynamic human activities such as running 
and jumping. Some controller architectures have also been proposed by Lazlo et al. (1996) to generate a 
wide range of gaits and to combine elementary behaviors (Faloutsos et al. 2001).

Dynamic approaches aim to describe motion by applying physics laws. For example, it is possible to 
use control algorithms based on finite state machine to describe a particular motion and proportional 
derivative servos to compute the forces (Wooten and Hodgins 2000). However, even if these methods 
produce physically correct animations, configuring their algorithms remains difficult. It is not easy to 
determine the influence of each parameter on the resulting motions. Many methods based on empiri-
cal data and biomechanical observations are able to generate walking (Boulic et al. 2004) or running 
patterns (Bruderlin and Calvert 1996), reactive to given user parameters. Other similar approaches take 
into account the environment, to walk on uneven or sloped terrains (Sun and Metaxas 2001) or to climb 
stairs (Chung and Hahn 1999). Despite their real-time capability, all these methods lack realism, as the 
legs’ motion is considered symmetrical, for example.

33.2.4  Collision Detection and Response

In computer animation, collision detection and response are obviously more important. Hahn (1988) 
presents bodies in resting contact as a series of frequently occurring collisions. Baraff (1989) presents an 
analytical method for finding forces between contacting polyhedral bodies, based on linear program-
ming techniques. He also proposed a formulation of the contact forces between curved surfaces that 
are completely unconstrained in their tangential movement. Bandi et al. (1995) introduced an adaptive 
spatial subdivision of the object space based on octree structure and presents a technique for efficiently 
updating this structure periodically during the simulation. Volino and Magnenat Thalmann (1994) 
described a new algorithm for detecting self-collisions on highly discretized moving polygonal surfaces. 
It is based on geometrical shape regularity properties that permit avoiding many useless collision tests. 
Vassilev and Spanlang (2001) propose to use the z-buffer for collision detection to generate depth and 
normal maps.

33.3  Motion Capture

Motion capture consists of measurement and recording of direct actions of a real person or animal for 
immediate or delayed analysis and playback. This technique is especially used today in production envi-
ronments for 3D character animation, like in movies and games. It involves mapping of measurements 
onto the motion of the digital character.

We may distinguish between the main two kinds of systems: optical and magnetic.
Optical motion capture systems are often based on small reflective sensors called markers attached 

to an actor’s body and on several infrared cameras focused on the performance space. By tracking posi-
tions of the markers, one can capture the locations for the key points in an animated model, for example, 
we attach the markers at joints of a person and record the position of the markers from several different 
directions. The 3D position of each key point is then reconstructed at each time point. The main advan-
tage of this method is freedom of movement; it does not require any cabling. There is however one main 
problem: occlusion, that is, lack of data resulting from hidden markers, for example, when the performer 
lies on his or her back. Another problem is the lack of an automatic way of distinguishing reflectors 
when they get very close to each other during motion. These problems may be minimized by adding 
more cameras but at a higher cost, of course. Most optical systems operate with four to six cameras, but 
for high-end applications like movies, 16 cameras are usual. A good example of optical system is the 
VICON system (Figure 33.1). In recent years, the motion capture technology has matured with the use 
of active optical markers (e.g., PhaseSpace), and some recent systems are much more affordable.

Researchers in computer vision have tried to develop similar systems based on simple video cameras 
without markers. In 2010, Microsoft introduces the Kinect sensor, which is a horizontal bar connected 
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to a small base with a motorized pivot, and it is designed to be positioned lengthwise above or below 
the video display. The device features an RGB camera, depth sensor, and multiarray microphone run-
ning proprietary software, which provide full-body 3D motion capture, facial recognition, and voice 
recognition capabilities. The depth sensor consists of an infrared laser projector combined with a 
monochrome CMOS sensor, which captures video data in 3D under any ambient light conditions. 
Although not very accurate, the Kinect (Figure 33.2) provides a cheap way of capturing motion that is 
becoming very popular.

Magnetic motion capture systems require a real actor to wear a set of sensors, which are capable 
of measuring their spatial relationship to a centrally located magnetic transmitter. The position and 
orientation of each sensor is then used to drive an animated character. One problem is the need for syn-
chronizing receivers. The data stream from the receivers to a host computer consists of 3D positions and 
orientations for each receiver. For human body motion, eleven sensors are generally needed: one on the 

MIRALab–University of Geneva

FIGURE 33.1  Optical motion capture based on markers at MIRALab.

FIGURE 33.2  The Kinect sensor.
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head, one on each upper arm, one on each hand, one in the center of the chest, one on the lower back, 
one on each ankle, and one on each foot. To calculate the rest of the necessary information, the most 
common way is the use of inverse kinematics (IK).

33.4  Motion Editing

Motion retargeting or motion editing is simply editing existing motions to achieve the desired effect. 
Since motion is difficult to create from scratch using traditional methods, changing existing motions is 
a quicker way to obtain the desired motion. This means that motion editing is a well-known approach 
used to produce new motions from existing ones. With space-time constraints (Witkin and Kass 1988), 
to generate an animation, the user may specify pose constraints that must be satisfied by the resulting 
motion sequence and also specify an objective function that is a metric of performance such as the 
total power consumption of all of the character’s muscles. Cohen (1992) constructed a more complete 
system and introduced the concept SpaceTime windows to enable the use of space-time constraints in 
an interactive framework, providing tools to the animator to examine and thus guide the optimization 
process. To achieve interactive editing, Gleicher (1997) provided a different formulation to the problem 
of space-time constraints, by combining displacement maps and space-time constraints. In Popović 
and Witkin (1999), Newton’s laws were applied on a simplified character to minimize computational 
costs and to preserve the essential physical properties of the motion. Liu and Popović (2002) introduced 
a method for rapid prototyping of realistic motions. Starting from a simple animation generated using 
key framing, physical laws are enforced to produce a more realistic one.

Frequency-based methods consider the animation curve as a time-varying signal; by applying signal 
processing techniques, the input motion is modified. In the field of character animation, Bruderlin and 
Williams (1995) adapted multiresolution filtering, multitarget motion interpolation with dynamic time 
warping, wave shaping, and displacement mapping for editing motion data. Witkin and Popović (1995) 
presented the motion warping method built from the combination of time warping and displacement 
mapping techniques. Unuma et al. (1995) described a simple technique to represent periodic motions 
using the so-called rescaled Fourier functional model.

Gleicher (2001) proposed a taxonomy of constraint-based techniques. Constraint-based techniques 
enable the user to specify constraints over the entire motion or at specific times while editing an anima-
tion. An IK solver computes the “best” motion, pose by pose, so that each pose achieves the predefined 
constraints as much as possible. Boulic and Thalmann (1992) presented the first work in motion editing 
using IK on a per-frame basis to enforce constraints. They used a numerical IK solver in order to simulta-
neously handle two tasks: the primary and the secondary. The primary task is responsible for kinematics 
constraints. The latter is in charge of tracking the original motion so that the corrected motion does not 
deviate too much from the initial one. Lee and Shin (1999) introduced the first example of per-frame plus 
filtering class of motion editing techniques. Their interactive motion editing system addresses many com-
mon tasks such as retargeting, transitions, and/or editing. Huang et al. (2006) proposed a motion editing 
technique with collision avoidance to prevent the character’s limbs to interpenetrate the body during edit-
ing. Callennec and Boulic (2006) proposed an off-line interactive motion editing technique with priori-
tized constraints. The characteristics of the original motion are preserved by adding the difference between 
the motion before and after editing as the lowest priority constraint by using an optimization vector.

Data-driven (or model-based) methods focus on the construction of a model from motion capture 
data and use the model to generate new motions from existing ones. Alexa and Muller (2000) used 
principal component analysis (PCA) to represent animations as a set of principal animation compo-
nents, with the aim of decoupling the animation from the underlying geometry. Glardon et al. (2004) 
generate walking, running, and jumping motions by exploring the low-dimensional space constructed 
from a hierarchical PCA. This further decomposition of the PCA space was used to extract high-level 
parameters (e.g., walking speed) to provide user manipulation guiding a character through the virtual 
environment from a small set of well-understood parameters. Glardon et al. (2006a) also integrated 
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an optimization-based IK solver for preventing foot sliding by exploiting the predictive capability of 
the PCA motion model (Figure 33.3). Glardon et al. (2006b) developed a motion blending technique 
in parameter space, such as locomotion speed and jump length, to handle two PCA motion models in 
order to treat transitions from walking/running to jump motions while guiding a virtual character to 
avoid obstacles through an environment. Motion graphs and motion interpolation are used to produce 
new motions from a database (Kovar and Gleicher 2004, Kovar et al. 2002). A number of researches have 
also developed techniques to synthesize human motion in a low-dimensional space, by using both linear 
and nonlinear models. Safanova et al. (2004) proposed a motion synthesis framework able to synthesize 
new motions by optimizing a set of constraints within a low-dimensional space constructed with PCA.

Carvalho et al. (2007) recently proposed a new approach for interactive low-dimensional human motion 
synthesis, by combining motion models and prioritized IK. They developed a constrained optimization 
framework to solve the synthesis problem within a low-dimensional latent space. In this space, a move-
ment enforcing a new set of user-specified constraints could be obtained in just one step (Figure 33.4).

FIGURE 33.3  PCA-based walking models. (From Glardon, P. et al., Visual Comput., 5(6), 194, 2006a.)

(a) (b)

(c)

FIGURE 33.4  Synthesized motions, from the swing motion shown in the left figure: (a) 7° down slope ground, 
(b) flat ground, and (c) 7° up slope ground. (From Carvalho, S. et al., Comput. Anim. Virtual Worlds, 18, 493, 2007.)
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33.5  Character Deformations

Many different approaches have been proposed to connect a deformable skin to its underlying skeleton. 
They can be roughly subdivided into the following main categories: subspace deformations (SSDs), skin 
mapping, anatomically based deformations, physics-based approaches, and example-based approaches.

33.5.1  Subspace Deformations

The skeleton-driven deformation, a classical method for basic skin deformation, is probably the most 
widely used technique in 3D character animation. In the literature, an early version was presented by 
Magnenat-Thalmann et al. (1988) who introduced the concept of joint-dependent local deformation 
with operators to deform smoothly the skin surface. This technique has been given various names such 
as SSD, linear blend skinning, or smooth skinning. This method works by assigning a set of joints with 
weights to each vertex of the character. The deformation of a vertex is then computed by a weighted com-
bination of the transformations applied to the influencing joints. Mohr et al. (2003) addresses a crucial 
issue related to linear blending skinning: setting the appropriate vertex weight values. Wang and Phillips 
(2002) propose an interesting extension of SSD-based approaches: the multiweighting approach assigns 
each vertex one weight for each coefficient of each influencing joint transformation matrix instead of a 
single weight per influencing joint. Mohr and Gleicher (2003) have presented an extension to SDD by 
introducing pseudojoints. The skeleton hierarchy is completed with extra joints inserted between exist-
ing ones to reduce the dissimilarity between two consecutive joints. Kavan and Zara (2005) are also 
aiming at addressing the intrinsic limitations of linear blending such as collapsing joints or twisting 
problem. To this end, they interpolate the transformations instead of the transformed vertex positions. 
Merry et al. (2006) proposed a framework called animation space, for generalizing SSD by keeping it 
linear and with the goal to reduce the initial shortcomings of SSD (especially collapses during bending).

33.5.2  Skin Mapping

An example of this approach is proposed by Thalmann et al. (1996) where ellipsoids are attached to 
the control skeleton to define a simplified musculature. Cani and Desbrun (1997) propose to use an 
automatic skinning algorithm based on swept surfaces. The skeleton is used as a path for extrusion of 
interpolating spline surfaces. More complex models include intermediate layers in order to improve 
and refine the control of the skin. For example, Chadwick et al. (1989) propose an intermediate muscle 
layer between the flexible skin and the rigid skeleton. This intermediate structure is made of free-form 
deformation (FFD) control boxes attached to the skeleton. Similar extended and optimized approaches 
have been proposed by Moccozet and Magnenat-Thalmann (1997) where the deformable skin is embed-
ded inside a control lattice. Singh and Kokkevis (2000) propose an alternate intermediate structure that 
consists of a low-resolution mesh instead of a control lattice. Kho and Garland (2005) propose a tech-
nique for implicitly defining skeleton-based deformation of unstructured polygon meshes. The implicit 
skeleton is defined by interactively sketching curves onto the 3D shape in the image plane. Zhou et al. 
(2005) describe a deformation system providing a close interaction scheme: the designer initially speci-
fies a curve on the mesh surface, called the original control curve. The resulting 3D curve is projected 
onto one or more planes to obtain 2D editable curves. Once edited, the modified 2D curves are projected 
back to 3D to get the deformed control curve, which is used to control the deformation.

33.5.3 A natomically Based

Skeleton skinning has also been investigated to simulate anatomy and reproduce as closely as possible 
the anatomical behavior of characters, such as the work reported by Scheepers et al. (1997) and Wilhems 
and Vangelder (1997). Aubel and Thalmann (2001) define a two-layered muscle model suitable for 
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computer graphics applications. A muscle is decomposed into two layers: a skeleton and a surface mesh. 
The skeleton is simply defined by the action lines of the muscle. This idea is based on the work by Nedel 
and Thalmann (1998). Each vertex of the muscle mesh is parametrized by one or two underlying action 
lines so that the deformations of the muscle shape are driven by the associated action lines. It therefore 
reduces the 3D nature of the elasticity problem to 1D for fusiform muscles (one action line) and 2D for 
flat muscles (several action lines). Pratscher et al. (2005) propose a different approach for anatomical 
models. Rather than modeling internal tissues and attaching a skin to it, they generate a musculature 
from a skeleton and a skin mesh at a rest pose, with what they called an outside–in approach.

33.5.4  Physics-Based Approaches

Since Terzopoulos and Fleischer (1988) and Terzopoulos and Witkin (1988), various approaches have been 
proposed to introduce more realism by using dynamic-based deformations such as those proposed by 
Faloutsos et al. (1997). Capell et al. (2002) introduce a framework for skeleton-driven animation of elasti-
cally deformable characters. They use continuum elasticity and finite element method (FEM) to compute 
the dynamics of the object being deformed. Huang et al. (2006) presented a method that extends existing 
gradient domain name mesh deformation approaches. Larboulette et al. (2005) present flesh elements to 
add secondary dynamic effects to the skinning, while Guo and Wong (2005) propose a pseudoanatomi-
cal skinning method. In this chapter, their purpose is to provide a simple intermediate layer between the 
skeleton and the skin, namely, the chunks, to avoid the tedious design of the anatomical layers.

33.5.5  Example-Based Approaches

The idea of pose space deformation (PSD) (Lewis et al. 2000) approaches is to use artistically sculpted 
skin surfaces of varying posture that blend them during animation. Each vertex on the skin surface is 
associated with a linear combination of radial basis functions (RBFs) that compute its position, given 
the pose of the moving character. Recently, Kry et al. (2002) propose an extension of that technique by 
using PCA, allowing for optimal reduction of the data and thus faster deformation. These methods have 
been recently developed because of the full-body 3D scanners. The basic idea of these approaches is to 
use real data that cover the space of shape variation of the character to train a deformable model. The 
method proposed by Allen et al. (2002) is based on skin pose examples. Similarly to animation by target 
morph, they use a set of poses as targets or examples in order to produce the skinning information, 
whereas traditional approaches rely on much less information, namely, a skeleton and a template skin 
in a neutral posture. The approach proposed by James and Twigg (2005), named skinning mesh anima-
tions (SMAs), presents an original skin example-based scheme. The main difference is that it does not 
require any predefined skeleton. Sand et al. (2003) propose a method for the acquisition of deformable 
human geometry from silhouettes. The technique involves a tracking system to capture the motion of 
the skeleton and estimates skin shape for each bone using constraints provided by the silhouettes from 
one or more cameras. Anguelov et al. (2005) introduce a data-driven method for building a character 
shape model. The method is based on a representation that incorporates both skeletal and body defor-
mations. Another recent approach is proposed by Der et al. (2006) extended from Sumner et al. (2005). 
It transforms a set of unarticulated example shapes into a controllable, articulated model, providing an 
IK method allowing the interactive animation of detailed shapes using a space learned from a few poses 
obtained from any source (scanned or hand sculpted).

33.6  Facial Animation

The goal of facial animation systems has always been obtaining a high degree of realism using opti-
mum resolution facial mesh models and effective deformation techniques. Various muscle-based facial 
models with appropriate parameterized animation systems have been effectively developed for facial 
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animation (Parke 1982, Terzopoulos et al. 1990, Waters 1987). The Facial Action Coding System (Friesen 
1978) defines high-level parameters for facial animation, on which several other systems are based. Most 
facial animation systems typically follow the following steps:

•	 Define an animation structure on a facial model by parameterization.
•	 Define “building blocks” or basic units of the animation in terms of these parameters, for exam-

ple, static expressions and visemes (visual counterparts of phonemes).
•	 Use these building blocks as key frames and define various interpolation and blending functions 

on the parameters to generate words and sentences from visemes and emotions from expressions. 
The interpolation and blending functions contribute to the realism for a desired animation effect.

•	 Generate the mesh animation from the interpolated or blended key frames. Given the tools of 
parameterized face modeling and deformation, the most challenging task in facial animation is 
the design of realistic facial expressions and visemes.

The complexity of the key frame-based facial animation system increases when we incorporate natural 
effects such as coarticulation for speech animation and blending between a variety of facial expressions 
during speech. The use of speech synthesis systems and the subsequent application of coarticulation 
to the available temporized phoneme information are a widely accepted approach (Hill et al. 1988). 
Coarticulation is a phenomenon observed during fluent speech, in which facial movements corre-
sponding to one phonetic or visemic segment are influenced by those corresponding to the neighbor-
ing segments. Two main approaches for coarticulation are the ones by Pelachaud (1991) and Cohen and 
Massaro (1993). Both these approaches have been based on the classification of phoneme groups and their 
observed interaction during speech pronunciation. Pelachaud arranged the phoneme groups accord-
ing to the deformability and context dependence in order to decide the influence of the visemes on each 
other. Muscle contraction and relaxation times were also considered, and the facial action units were 
controlled accordingly.

For facial animation, the MPEG-4 standard is particularly important (MPEG-4). The facial definition 
parameter (FDP) set and the facial animation parameter (FAP) set are designed to encode facial shape, 
as well as animation of faces, thus reproducing expressions, emotions, and speech pronunciation. The 
FDPs are defined by the locations of the feature points and are used to customize a given face model 
to a particular face. They contain 3D feature points such as mouth corners and contours, eye corners, 
and eyebrow centers. FAPs are based on the study of minimal facial actions and are closely related to 
muscle actions. Each FAP value is simply the displacement of a particular feature point from its neutral 
position expressed in terms of the facial animation parameter units (FAPUs). The FAPUs correspond to 
fractions of distances between key facial features (e.g., the distance between the eyes). For example, the 
facial animation engine developed at MIRALab uses MPEG-4 facial animation standard (Kshishagar 
et al. 2000) for animating 3D facial models in real time (see Figure 33.5). This parameterized model is 
capable of displaying a variety of facial expressions, including speech pronunciation with the help of 
66 low-level FAPs.

Recently, the efforts in the field of phoneme extraction have resulted into software systems capable of 
extracting phonemes from synthetic as well as natural speech and generating lip synchronized speech 
animation from these phonemes, thus creating a complete talking head system. It is possible to mix 
emotions with speech in a natural way, thus imparting the virtual character an emotional behavior. 
The ongoing efforts are concentrated on imparting “emotional” autonomy to the virtual face enabling 
a dialogue between the real and the virtual humans with natural emotional responses. Kshirsagar and 
Magnenat-Thalmann (2001) use statistical analysis of the facial feature point movements. As the data 
are captured for fluent speech, the analysis reflects the dynamics of the facial movements related to 
speech production. The results of the analysis were successfully applied for a more realistic speech ani-
mation. Also, this has enabled us to easily blend between various facial expressions and speech. The 
use of MPEG-4 feature points for data capture and facial animation enabled us to restrict the quantity 
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of data being processed, at the same time offering more flexibility with respect to the facial model. We 
would like to further improve the effectiveness of the expressive speech using various time envelopes for 
the expressions that may be linked to the meaning of sentences. Kshirsagar and Magnenat-Thalmann 
(2002) have also developed a system incorporating a personality model for an emotional autonomous 
virtual human.

Although MPEG-4 has mainly been used in animating virtual humans, it also proved to be useful 
for animating humanoid robots. Ben Moussa et al. (2010) and Kasap (2011) present a paradigm for 
controlling facial expressions using MPEG-4. Through interpolation between the extremes of robot 
servomotor values and MPEG-4 values, they succeeded in controlling the robot with the same anima-
tion mechanisms they use for the animation of virtual humans. This made it possible to perform lip 
synchronization, emotion expression, and gaze behavior management on the robot in the same way it 
is done with virtual humans.

In order to achieve realistic facial expressions, one should also take the eye movements into consid-
eration. As has been often expressed, the eyes are a window to the soul. They play an important role in 
many aspects of human interaction including emotion expression, conversation regulation, attention 
behavior, and instruction giving. Fukayama et al. (2002) investigated the relationship between gaze 
parameters (amount and mean duration of gaze at the user and the direction of the gaze when avert-
ing the user) and the impression the user gets from the agent’s gaze behavior (like/dislike, activity/ 
potency, strong/weak, cold/warm, etc.) and propose a gaze movement model that enables an embod-
ied agent to convey different impressions to users. Another eye movement model is presented by Park 
Lee et al. (2002), where the eye movement was based on empirical studies of saccades and statisti-
cal models of eye-tracking data collected in their study. Based on empirical data and psychological 
theories, Cig et al. (2010) propose a model where the head and the eyes are moved in accordance with 
the mood of the embodied agent. Furthermore, another role of gaze is the conversation regulation. 
Having realistic gaze behavior in a conversation improves the interaction between the user and the 
embodied agent. Lee et al. (2007) combine different existing psychological theories and present a 
gaze model guided by turn-taking, discourse, and attention in a conversion. Čereković et al. (2009) 

MIRALab–University of Geneva

FIGURE 33.5  Facial animation and recreation of expressions of an old man. (Courtesy of MIRALab, University 
of Geneva, Geneva, Switzerland.)
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implemented a more advanced multiparty dialogue management system that incorporates gaze track-
ing and motion detection to recognize the user’s conversational cues.

33.7  Behavioral Methods

33.7.1 A utonomous Characters

For games and virtual reality (VR), the animation of characters needs to be dynamically generated in 
response to the user behavior but not driven by the user. Characters should be able to act on their own; 
they should be ACs. Autonomy is generally the quality or state of being self-governing. Rather than act-
ing from a script, an AC is aware of its changing virtual environment, making its own decisions in real 
time in a coherent and effective way. To be autonomous, an AC must be able to perceive its environment 
and decide what to do to reach an intended goal. The decisions are then transformed into motor control 
actions, which are animated so that the behavior is believable. Therefore, an AC’s behavior often con-
sists of repeating the following sequence: perception of the environment, action selection, and reaction. 
There are several properties that determine how ACs make their decisions: perception, adaptation and 
intelligence, memory, emotions, personality, and motivation.

Perception of the elements in the environment is essential for ACs, as it gives them an awareness of what 
is changing. An AC continuously modifies its environment, which, in turn, influences its perceptions. 
Therefore, sensorial information drastically influences AC’s behavior. This means that one cannot build 
believable ACs without considering the way they perceive the world and each other. It is tempting to 
simulate perception by directly retrieving the location of each perceived object straight from the envi-
ronment. But, to realize believable perception, ACs should have sensors that simulate the functionality 
of their organic counterparts, mainly for vision, audition, and tactile sensation. These sensors should be 
used as a basis for implementing everyday behaviors, such as visually directed locomotion, responses to 
sounds and utterances, and the handling of objects. What is important is the functionality of a sensor 
and how it filters the information flow coming from the environment. In a typical behavioral animation 
scene, the actor perceives the objects and the other actors in the environment, which provides informa-
tion on their nature and position. This information is used by the behavioral model to decide the action 
to take, which results in a motion procedure. The AC perceives its environment from a small window 
in which the environment is rendered from its point of view. Synthetic vision was first introduced by 
Renault et al. (1990) where an actor navigates in a corridor avoiding obstacles by offscreen rendering 
of the scene from the point of view of the agent. This technique is later applied by Tu and Terzopoulos 
(1994) in the perception system of artificial fishes. Blumberg et al. (1996) used synthetic vision for his 
autonomous virtual dog in order to avoid obstacles. Noser et al. (1995) proposed a synthetic vision 
model based on false coloring and dynamic octrees. Peters and O’Sullivan (2002) extend the synthetic 
vision model in two different ways. In distinct mode, false coloring is applied to each distant object, 
and in some cases objects are grouped according to some different criteria that is called grouped vision 
mode. A different approach to synthetic vision is proposed in Bordeux et al. (1999) based on perceptual 
filters, which receives a perceptible entity from the scene and decides if it should pass or not. A main 
distinction between virtual human perception models is whether they are based on task perception 
or biological perception (Kim et al. 2005). Biological perception or bottom-up visual attention is an 
alerting mechanism to unexpected dangers as explained in Peters and O’Sullivan (2003). Task-based 
or top-down approaches such as Chopra-Khullar and Badler (1999) and Gillies and Dodgson (2002) 
consider task-related objects as the focus of attention. This may be extended to gaze attention behaviors 
for other ACs or even crowds (Grillon and Thalmann 2009). Despite it is rare, aural perception is also 
modeled and applied by some researchers like Noser and Thalmann (1995) who introduced the concept 
of synthetic audition. A recent example in Herrero and de Antonio (2003) framework is described to 
capture the position of the sound source. The concepts are related to human auditory perception such 
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as interaural differences, auditory acuity, and auditory. More recently, an artificial life environment 
(Conde and Thalmann 2006) framework equips a virtual human with the main virtual sensors, based 
on an original approach inspired by neuroscience in the form of a small nervous system with a simpli-
fied control architecture to optimize the management of its virtual sensors as well as the virtual per-
ception part. The processes of filtering, selection, and simplification are carried out after obtaining the 
sensorial information.

Adaptation and intelligence define how the character is capable of reasoning about what it perceives, 
especially when unpredictable events happen. An AC should constantly choose the best action so that 
it can survive in its environment and accomplish its goals. As the environment changes, the AC should 
be able to react dynamically to new elements, so its beliefs and goals may evolve over time. An AC 
determines its next action by reasoning about what it knows to be true at specific times. Its knowledge 
is decomposed into its beliefs and internal states, goals, and plans, which specify a sequence of actions 
required to achieve a specific goal.

Adding memory capabilities to models of human emotions, personality, and behavior traits is a step 
toward a more natural interaction style. It is necessary for an AC to have a memory so that similar 
behaviors can be selected when predictable elements reappear. Noser et al. (1995) proposed the use of 
an octree as the internal representation of the environment seen by an actor because it can represent 
the visual memory of an actor in a 3D environment with static and dynamic objects. Kasap et al. (2009) 
developed a memory-based emotion model that uses the memory of past interactions to build long-term 
relationships between the AC and users.

The believability of an AC is made possible by the emergence of emotions clearly expressed at the right 
moment. An emotion is an emotive reaction to a perception that induces a character to assume a physical 
response, facial expression, or gesture, or select a specific behavior. The apparent emotions of an AC and 
the way it reacts are what give it the appearance of a living being with needs and desires. Without them, 
an actor would just look like an automaton. There is a variety of psychological researches on emotion, and 
they are classified into four different theoretical perspectives: Darwinian, Jamesian, cognitive, and social 
constructivist approaches (Cornelius 1996). In order to create computational models of emotions, we need 
some annotation mechanisms. Ekman (1982) defines six basic labels for emotions: fear, disgust, anger, 
sadness, surprise, and joy following the Darwinian approach to emotions emphasizing the universality 
of human emotions. Recently, cognitive appraisal models of emotion are now preferred since they better 
explain the overall process of how emotions occur and affect our decision-making. Appraisal means a per-
son’s assessment of the environment including not only current conditions but past events as well as future 
prospects (Spindel et al. 1990). The OCC model of Ortony et al. (1988) is widely used for emotion simula-
tion of embodied agents. In the OCC model, the agent’s concerns in an environment are divided into goals, 
standards, and preferences, and twenty-two emotion labels are defined. In addition to the four theoretical 
approaches mentioned earlier, there are also some studies on emotions based on neurophysiology. The first 
representative of this approach is Plutchik (1980) who defines eight emotions in an emotion spectrum like 
the color spectrum, and it is possible to produce new emotions by combining these emotions (e.g., disap-
pointment = sadness + surprise). Other models of emotion such as activation–evaluation (Whissel 1980) 
define emotions according to abstract and continuous dimensions rather than discrete labels.

Personality influences the way a person perceives their environment, affects their behavior, and distin-
guishes one from another. Although there is no universally accepted theory of personality, five-factor 
model or OCEAN model (Mccrae and John 1992) are most widely used ones in the simulation of com-
puter characters. According to this model, the personality of a person can be defined according to five 
different traits: openness, conscientiousness, extroversion, agreeableness, and neuroticism, and they are 
explained in Hampson (1999). Openness means being open to experience new things, being imagina-
tive, intelligent, and creative, whereas conscientiousness indicates responsibility, reliability, and tidi-
ness. In other words, conscientious people think about all the outputs of their behaviors before taking 
action and take the responsibility for their actions. An extravert person is outgoing, sociable, assertive, 
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and energetic to achieve his or her goals. Agreeableness means a person is trustable, kind, and coopera-
tive considering other people’s goals and is ready to surrender his or her own goals. Finally, a neurotic 
person is anxious, nervous, and prone to depression and lacks emotional stability. Usually, a character 
is represented as a combination of these traits, possibly with emphasis on one of them. Although this 
static trait-based model of personality does not reflect the complexity of human behavior truly, it has 
been widely accepted to be used in computational models because of its simplicity.

Motivation is also a key cause of action, and we will consider basic motivations as essential to model life 
in the virtual world. When looking at the perspective of ACs, an AC can choose whether or not to pay 
attention and/or react to a given environmental stimulus according to its goals (Caamero 2000). The 
relation between motivations and emotions of a virtual human is simulated in de Sevin and Thalmann 
(2005). According to this framework, emotions influence motivations at qualitative levels such as length, 
perception, activation, and interruption.

33.8  Crowd Simulation

With the advent of crowd simulation (Thalmann and Musse 2007) technology, it becomes possible to 
create large-scale virtual environments populated by tens of thousands of virtual humans. Crowds have 
wide applications for both real-time simulation and non-real-time simulation. Virtual crowds are used 
to simulate epic battles in the movie industry; crowds are exploited to populate virtual worlds in com-
puter games; in the area of safety training, trainees can participate in evacuation scenarios to practice 
controlling crowds in emergency situations like earthquakes, fires, and floods. Rendering large crowds 
is usually based on the instantiation of a small set of human templates. McDonnell et al. (2008) showed 
that introducing color variety was paramount to avoid a clone effect. Maim et al. (2009a) introduced an 
approach to obtain improved color variety based on segmentation maps using graphics processing unit 
(GPU) shader programming (deHeras et al. 2005). An accessory is a simple mesh representing any ele-
ment that can be added to the original mesh of a virtual human (Maim et al. 2009b). Typical accessories 
include bags, glasses, hats, and mobile phones.

Crowd behavior and motion planning are two topics that have long been studied in fields such as 
robotics and sociology. More recently, however, and due to the technological improvements, these 
domains have aroused the interest of the computer graphics community as well.

The first approach studied was agent based and represents a natural way to simulate crowds as inde-
pendent individuals interacting with each other. Such algorithms usually handle short-distance collision 
avoidance, in which navigation remains local. Reynolds (1999) proposed to use simple rules to model 
crowds and groups of interacting agents. Musse and Thalmann (1997, 2001) used sociological concepts 
in order to simulate relationships among virtual humans. Shao and Terzopoulos (2005) used percep-
tual, behavioral, and cognitive models to simulate individuals. Kirchner and Shadschneider (2002) used 
static potential fields to rule a cellular automaton. Metoyer and Hodgins (2003) proposed an avoidance 
algorithm based on a Bayesian decision process. Nevertheless, the main problem with agent-based algo-
rithms is their low performance. With these methods, simulating thousands of pedestrians in real time 
requires the use of particular machines supporting parallelizations (Reynolds 2006). Moreover, such 
approaches forbid the construction of autonomous adaptable behaviors and can only manage crowds 
of pedestrians with local objectives. To solve the problems inherent in local navigation, some behav-
ioral approaches have been extended with global navigation. Bayazit et al. (2003) stored global informa-
tion in nodes of a probabilistic road map to handle navigation and introduced simple rules in order to 
manage groups. Sung et al. (2004) first introduced an architecture for developing situation-based crowd 
behavior, including groups. They later combined probabilistic road maps with motion graphs to find 
paths and animations to steer characters to a goal (Sung et al. 2005). Lau and Kuffner (2006) used pre-
computed search trees of motion clips to accelerate the search for the best paths and motion sequences 
to reach an objective. Lamarche and Donikian (2004) used automatic topological model extraction of 
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the environment for individual navigation. Another method, introduced by Kamphuis and Overmars 
(2004), allowed a group of agents to maintain a given cohesion while trying to reach a goal. Although 
these approaches offer appealing results, they are not fast enough to simulate thousands of pedestrians in 
real time. Loscos et al. (2003) presented a behavioral model based on a 2D map of the environment. Their 
method is suited for simulating wandering crowds but does not provide high-level control on pedestrian 
goals. Pettré et al. (2006, 2007) presented a novel approach to automatically extract a topology from the 
scene geometry and handle path planning using a navigation graph (see Figure 33.6). The main advan-
tage of this technique is that it handles uneven and multilayered terrains. Nevertheless, it does not treat 
interpedestrian collision avoidance. Finally, Helbing et al. (1994, 2000) used agent-based approaches to 
handle motion planning but mainly focused on emergent crowd behaviors, in particular scenarios.

Another approach to motion planning is inspired by fluid dynamics. Such techniques use a grid to dis-
cretize the environment into cells. Hughes (2002, 2003) interpreted crowds as density fields to rule the 
motion planning of pedestrians. The resulting potential fields are dynamic, guiding pedestrians to their 
objective while avoiding obstacles. Chenney (2004) developed a model of flow tiles that ensures, under rea-
sonable conditions, that agents do not require any form of collision detection at the expense of precluding 
any interaction between them. More recently, Treuille et al. (2006) proposed realistic motion planning for 
crowds. Their method produces a potential field that provides, for each pedestrian, the next suitable position 
in space (a waypoint) to avoid all obstacles. Compared to agent-based approaches, these techniques allow 
to simulate thousands of pedestrians in real time and are also able to show emergent behaviors. However, 
they produce less believable results, because they require assumptions that prevent treating each pedestrian 
with individual characteristics. For instance, only a limited number of goals can be defined and assigned to 
sets of pedestrians. The resulting performance depends on the size of the grid cells and the number of sets.

Hybrid approaches have been also proposed. Pelechano et al. (2007) combined psychological, physi-
ological, and geometrical rules with physical forces to simulate dense crowds of autonomous agents. 
In a recent work, Yersin et al. (2008) introduced a hybrid architecture offering a scalable solution for 
real-time crowd motion planning. Based on a navigation graph, the environment is divided into regions 

FIGURE 33.6  Crowd simulation. (From Maim, J. et al., IEEE Comput. Graphics Appl., 29(4), 44, 2009b.)
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of varying interest. In regions of high interest, a potential field-based approach is exploited. In other 
regions, motion planning is ruled by a navigation graph and a short-term collision avoidance algorithm.

Except the topological model of the environment and path planning, collision avoidance is another 
challenging problem that needs to be addressed. Collision avoidance techniques should be efficient 
enough to prevent a large number of agents from bumping into each other in real time. Considering the 
case in which each agent navigates independently without explicit communication with other agents, 
van den Berg et al. (2008) propose a new concept the “reciprocal velocity obstacle,” which takes into 
account the reactive behavior of the other agents by implicitly assuming that the other agents make a 
similar collision avoidance reasoning. This concept can be applied to navigation of hundreds of agents in 
densely populated environments containing both static and moving obstacles for real-time simulation.

Ondrej et al. (2010) explored a novel vision-based approach of collision avoidance between walkers 
that fits the requirements of interactive crowd simulation. By simulating humans based on cognitive 
science results, visual stimuli are used to detect future collisions as well as the level of danger.

33.9  Cloth Animation

Weil (1986) pioneered cloth animation using an approximated model based on relaxation of the surface. 
Kunii and Godota (1990) used a hybrid model incorporating physical and geometrical techniques to 
model garment wrinkles. Aono (1990) simulated wrinkle propagation on a handkerchief using an elastic 
model. Terzopoulos and Fleischer (1988) applied their general elastic to a wide range of objects including 
cloth. Lafleur et al. (1991) and Carignan et al. (1992) have described complex interaction of clothes with 
synthetic actors in motion, which marked the beginning of a new era in cloth animation (Figure 33.7).

The first particle systems for cloth simulation were grid based (Breen et al. 1994, Eberhardt et al. 1996) and 
already featured the simulation of nonlinear behavior curves through formulations that made them quite 
analogous to continuum mechanics models. Their accuracy was however fairly limited for large deformations 
and required quite long computation times. Faster models, based on mass-spring grids, have become popular 
since fast implicit numerical integration methods were used (Baraff and Witkin 1998), because they allow a 
simple expression of the Jacobian of the particle forces while requiring only simple computations (Choi and 
Ko 2002, Desbrun et al. 1999, Meyer et al. 2001). Combined with advanced implicit integration methods 
(Eberhardt et al. 2000, Hauth and Etzmuss 2001, Volino and Magnenat-Thalmann 2005b), these simulation 
schemes have become popular for real-time and interactive applications. Unfortunately, mass-spring systems 
are unable to model surface elasticity accurately (Wang and Deravajan 2005). Although some techniques 
have been developed to match their parameters with those of the simulated material, they do not allow full 

FIGURE 33.7  3D garment. (Courtesy of MIRALab, University of Geneva, Geneva, Switzerland.) 



33-16 Computational Science and Graphics

discrimination among deformation modes (Bianchi et al. 2004), and they remain particularly inaccurate for 
anisotropic and nonlinear models. Such issues have given particle systems a reputation for inaccuracy.

On the other hand, FEMs have a good maturity for mechanical simulation. Their traditional field 
of application is elastic solid or shell modeling for mechanical engineering purposes, a context where 
linear elasticity and small deformations are the underlying assumptions. These formulations have not 
adapted well to very deformable objects such as cloth, and early attempts to model cloth using high-
order elements (Eischen et al. 1996) led to impractically high computation times. Numerous authors 
have attempted to accelerate the computations required for finite elements. Preinverting the linear 
system matrix, used by Desbrun et al. (1999) for particle systems, may speed up the computation 
(Bro-Nielsen and Cotin 1996, Cotin et al. 1999) but is only practical when the mechanical system is 
small enough. Condensing the dynamics on the boundary of a closed volume can reduce the number 
of unknowns to solve at each time step (James and Pai 1999). These precomputations are possible 
when the force displacement relation is linear, which requires both geometrical and material linear-
ity measurements while keeping material linearity. This is called the Saint Venant–Kirchhoff model, 
and it is used in volume simulation (Barbic and James 2005, Debunne et al. 2001, Hauth et al. 2003, 
O’Brien and Hodgins 1999, Picinbobo et al. 2003, Zhuang and Canny 2000). Recently, a new approach 
has been proposed, where the strain tensor is factored as the product of a pure rotation with Cauchy’s 
linear strain tensor aligned along the strain eigendirections (Irving et al. 2004, Muller et al. 2002, 
Nesme et al. 2005).

Volino et al. (2009) present a model that only addresses tensile viscoelasticity, which deals with 
in-plane deformations. Meanwhile, bending elasticity deals with out-of-plane deformations (surface 
curvature), and its main visible effect is to limit fold curvature and wrinkle size. In the context of high-
accuracy simulations, this tensile model can easily be complemented by a bending model using the 
schemes defined by Grinspun et al. (2003) or Volino and Magnenat-Thalmann (2006).

33.10 R esearch Issues and Summary

Computer animation is no more just a tool to produce movies. It is now the basis for games, simulation, 
and VR. Moreover, real-time virtual humans are now part of virtual worlds, and people will increas-
ingly communicate with them through broadband multimedia networks. In the future, the applica-
tion of computer animation to the scientific world will become very common in scientific areas: fluid 
dynamics, molecular dynamics, thermodynamics, plasma physics, astrophysics, etc. Real-time complex 
animation systems will be developed taking advantage of VR devices and simulation methods. An inte-
gration between simulation methods and VR-based animation will lead to systems allowing the user to 
interact with complex time-dependent phenomena providing interactive visualization and interactive 
animation. The future will be intelligent virtual characters with memory and emotion and able to speak, 
to communicate, and to understand the situation. They will be able to dynamically react to the user 
and the environment. However, such future systems require real-time spontaneous animation for any 
situation. This is not possible today, and we are still far from this goal. But the current development is 
promising, and one will see more and more spectacular dynamic animations.

Further Information

Textbooks on computer

Parent, R. 2008. Computer Animation: Algorithms and Techniques, 2nd edn., Morgan-Kaufmann, 
Burlington, MA.

Kerlow, I. 2004. The Art of 3-D Computer Animation and Effects, John Wiley & Sons, Los Angeles, CA.
Magnenat Thalmann, N. and Thalmann, D. (eds.) 2004. Handbook of Virtual Humans, John Wiley & Sons, 

West Sussex, U.K.



33-17Computer Animation

Two books could be mentioned for Crowd Simulation and Cloth simulation:

Thalmann, D. and Musse, S.R. 2012. Crowd Simulation, 2nd edn., Springer, London, U.K.
Volino, P., Magnenat-Thalmann, N. 2000. Virtual Clothing: Theory and Practice, Springer, Berlin, Germany.
Journal dedicated to computer animation: Computer Animation and Virtual Worlds published by John 
Wiley & Sons, Chichester, U.K. (since 1990).

Although computer animation is always represented in major computer graphics conferences like 
SIGGRAPH, Computer Graphics International (CGI), Pacific Graphics, and Eurographics, there are 
only two annual conferences dedicated to computer animation:

Computer Animation and Social Agents (CASA), organized each year by the Computer Graphics 
Society. Proceedings are published as a Special Issue of Computer Animation and Virtual 
Worlds (John Wiley & Sons).

Symposium on Computer Animation (SCA) organized by SIGGRAPH and Eurographics.
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34.1  Introduction

Logical systems have been applied to various intelligent systems as their theoretical foundations or rea-
soning languages such as logic programming. However, some actual systems include a lot of incon-
sistency such as contradictions, dilemma, and conflicts. It is required to deal with such inconsistency 
in the same system if we formalize the system in logic aiming at an intelligent system. Ordinal logical 
systems can not deal with inconsistency such as p and ¬p consistently in the system. A logical system 
that can deal with inconsistency is known as paraconsistent logic. The main purpose of paraconsistent 
logic is to deal with inconsistency in a framework of consistent logical systems. It has been more than 
six decades since the first paraconsistent logical system was proposed by S. Jaskowski [8]. It was four 
decades later than that a family of paraconsistent logic called annotated logic was proposed in [3,44]. 
They can deal with inconsistency with many truth values called annotations that should be attached to 
each atomic formula, although their formula valuation is two-valued.

The paraconsistent annotated logic was developed from the viewpoint of logic programming 
[10], aimed at applications to computer science such as semantics for knowledge bases in [2,9,45]. 
Furthermore, in order to deal with inconsistency and nonmonotonic reasoning in a framework of 
annotated logic programming, the paraconsistent annotated logic programming was developed to treat 
ontological (strong) negation and the stable model semantics [7,6] in [13] and named annotated logic 
program with strong negation (ALPSN). It has been applied to some nonmonotonic systems, default 
logic [42], autoepistemic logic [12], and a nonmonotonic assumption based truth maintenance system 
(ATMS) [4] as their computational models in [14,31,32]. ALPSN can deal with not only inconsistency 
such as conflict but also nonmonotonic reasoning such as default reasoning. However, it seems to be 
more important and useful from a practical viewpoint to deal with resolving conflict in a logical way 
than just to express conflicts consistently. It is not so adequate for ALPSN to deal with resolving conflict 
or decision making based on resolving conflict in its logical framework. Defeasible logic [5] is known 
as one of formalizations for nonmonotonic reasoning called defeasible reasoning that can deal with 
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resolving conflict easily in a logical way [1,38,39]. However, defeasible logic cannot treat inconsistency 
in its syntax and its inference rules are too complicated to implement them easily. Therefore, in order to 
deal with defeasible reasoning in a framework of paraconsistent annotated logic programming, a new 
version of ALPSN called vector annotated logic program with strong negation (VALPSN) was also pro-
posed and applied to resolving conflict [15–17]. It also has been shown that VALPSN provides a com-
putational model of a defeasible logic [18]. Moreover, VALPSN has been extended to deal with deontic 
notions (obligation, forbiddance, and permission) [11], and the extended version of VALPSN was named 
extended vector annotated logic program with strong negation (EVALPSN) in [19,20]. EVALPSN can 
deal with defeasible deontic reasoning [40] and has been applied to various kinds of safety verification-
based control. The basic ideas of EVALPSN safety verification are that each control system has norms 
such as guidelines for safe control. Such norms can be formulated in EVALPSN deontic expressions; 
then the safety verification for control systems can be carried out by EVALPSN defeasible deontic 
reasoning. Compared to conventional safety verification methods, EVALPSN safety verification has 
some advantages such that it can provide a formal safety verification method and a computational 
framework for control systems as logic programming. Considering the safety verification for process 
control, there are cases in which the safety verification for process order is significant. EVALPSN has 
been applied to railway interlocking safety verification [23], robot action control [21,24,25,34], safety 
verification for air traffic control [22], traffic signal control [26], discrete event control [27–29], and 
pipeline valve control [30,33].

This chapter is organized as follows: in Section 34.2, the paraconsistent annotated logic program 
EVALPSN is reviewed; in Section 34.3, the outline of EVALPSN-based safety verification system is 
introduced and examples of its application to pipeline valve control are also given; in Section 34.4, we 
conclude this chapter by describing the advantages and disadvantages of applying EVLPSAN to intel-
ligent control systems.

We assume that the readers are familiar with the basic knowledge of logic and logic program.

34.2  EVALPSN

In this section, we review a paraconsistent annotated logic program EVALPSN briefly [20]. Generally, a 
truth value called an annotation is explicitly attached to each literal in annotated logic programs [2]. For 
example, let p be a literal, μ an annotation, then

	 p : μ

is called an annotated literal. The set of annotations constitutes a complete lattice. An annotation in 
EVALPSN has a form of

	 [(i, j), μ]

called an extended vector annotation. The first component (i, j) is called a vector annotation and the set 
of vector annotations constitutes the complete lattice,

	 Tv n x y x n y n x y n( ) {( , ) | , , , , int ,= ≤ ≤ ≤ ≤0 0 and are egers}

in Figure 34.1. The ordering (�v) of complete lattice Tv n( ) is defined as

	 let (x1, y1), (x2, y2) ∈ Tv n( ),

	 ( , ) ( , ) .x y x y x x y yv1 1 2 2 1 2 1 2� iff and≤ ≤
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For each extended vector annotated literal p : [(i, j), μ], integer i denotes the amount of positive infor-
mation to support literal p and integer j denotes the negative one. The second component μ is an index 
of fact and deontic notions such as obligation, and the set of the second components constitutes the 
complete lattice,

	 T �d { , , , , *1, *2, *3, }.⊥= α β γ

The ordering (�d) of complete lattice Td  is described by Hasse’s diagram in Figure 34.1. The intuitive 
meaning of each member of complete lattice Td  is as follows:

	 �(unknown), (inconsistency)⊥

	 α β γ( ), ( ), ( ),fact obligation non-obligation

	 * ( ), * ( ),1 2fact and obligation obligation and non-obligation

	 * ( ).3 fact and non-obligation

Then the complete lattice Te n( ) of extended vector annotations is defined as the product Tv n( ) × Td of 
complete lattices Tv n( ) and Td . The ordering (�e) of complete lattice Te n( ) is defined as
let [(i1, j1), μ1] and [(i2, j2), μ2] ∈ Te,

	 [( , ), ] [( , ), ] ( , ) ( , ) .i j i j i j i je v d1 1 1 2 2 2 1 1 2 2 1 2µ µ µ µ� � �iff and

There are two kinds of epistemic negation (¬1 and ¬2) in EVALPSN, both of which are defined as 
mappings over complete lattices Tv n( ) and Td , respectively.

Definition 34.1  (epistemic negations ¬¬1 and ¬¬2 in EVALPSN)

	 Tµ = µ ∀µ ∈([ , ), ]) [( , ), ], ,¬1 i j j i d

	 i j i j i j i j([( , ), ]) [( , ), ], ([( , ), ]) [( , ), ],¬ ⊥ ⊥ ¬2 2= α = α

	 β = γ γ = β([( , ), ]) [( , ), ], ([( , ), ]) [( , ), ],¬ ¬2 2i j i j i j i j

	 = =([( , ),* ]) [( , ),* ], ([( , ),* ]) [( , ),* ],1 3 2 2¬ ¬2 2i j i j i j i j

	 � �i j i j i j i j([( , ),* ]) [( , ),* ], ([( , ), ]) [( , ), ].3 1¬ ¬2 2= =

(1, 0)

(2, 1)

(0, 1)

(1, 2)

(0, 2) (2, 0)

(2, 2)

(1, 1)
α

βγ

*2

*1*3

(0, 0)

FIGURE 34.1  Lattice Tv(2) and lattice Td .
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If we regard epistemic negation as a syntactical operation, epistemic negations followed by literals 
can be eliminated by the syntactical operation. For example,

	 α = α β = γ( :[(2,0), ]) :[(0,2), ] and ( :[(1,0), ]) :[(1,0), ].¬ ¬1 2p p q p

There is another negation called strong negation (∼) in EVALPSN, and it is treated as well as classical 
negation.

Definition 34.2  (strong negation ∼) (see [3])

Let F be any formula and ¬ be ¬1 or ¬2:

	
= → → ∧ →~ (( ) ( )).¬F F F F F Fdef

Definition 34.3  (well-extended vector annotated literal)

Let p be a literal.

	 p : [(i, 0), μ]  and  p : [(0, j), μ]

are called weva (well-extended vector annotated) literals, where i, j ∈ {1, 2, …, n} and μ ∈ {α, β, γ}.

Definition 34.4  (EVALPSN)

If L0, ⋯, Ln are weva literals,

	 L L L L Li i n1 1 0∧ ∧ ∧ ∧ ∧ →+� �~ ~

is called an EVALPSN clause. An EVALPSN is a finite set of EVALPSN clauses.
Usually, a deontic operator ○ is used for expressing obligation in deontic logic; we describe the 

relation between deontic expressions and EVALPSN literals. Let ○ be a deontic operator representing 
obligation and p a literal and,

    	  p is represented by p : [(m, 0), α] (fact),

	        ○p is represented by p : [(m, 0), β] (obligation),

	    ○¬p is represented by p : [(0, m), β] (forbiddance),

	¬○¬p is represented by p : [(0, m), γ] (permission),

where m is a positive integer.
We now address the formal interpretation of EVALPSN literals. Generally, the interpretation of 

annotated proposition is defined as follows: let ν be the set of all propositional symbols, F  the set of all 
formulas, and T  the complete lattice of annotations; then, an interpretation I is a function:

	 I : ν →  T .
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To each interpretation I, the valuation function such that

	 vI : { , }F → 0 1

is defined as follows:

	 (1)	Let p be a propositional symbol and μ an annotation:

	 �v p I p v p I pI I( : ) 1 if ( ), ( : ) 0 if ( ),µ = µ ≤ µ = µ

where the symbol ≤ is the order over complete lattice T .
	 (2)	Let A and B be any formulas, and A not an annotated atom:

	 = = = =( ) 1 if ( ) 0, (~ ) 1 if ( ) 0;¬v A v A v B v BI I I I

other formulas, A → B, A ∧ B, A ∨ B are valuated as usual.

We here note that for any literal p, vI(p : ⊥) = 1 holds, which intuitively means that annotated literal p : ⊥ 
is always satisfied, where ⊥ is the bottom annotation of the complete lattice of annotations.

Example 34.1  Suppose an EVALPSN

	 P p q r= ∧ →{ :[( , ), ] ~ :[( , ), ] :[( , ), ],0 1 2 0 0 1α β γ 	 (34.1)

	 p :[( , ), ],2 0 α 	 (34.2)

	 p :[( , ), ],0 2 α 	 (34.3)

	 q :[( , ), ],2 0 γ 	 (34.4)

	 q :[( , ), ]},1 0 β 	 (34.5)

where p, q, and r are literals. We show the derivation of the head literal of EVALPSN clause 
(34.1), r : [(0, 1), γ] in EVALPSN P. In order to derive the head literal, we need to show that 
the body of EVALPSN clause (34.1) is satisfied, that is, EVALP literal p : [(0, 1), α] is satisfied 
and EVALP literal q : [(2, 0), β] is not satisfied in EVALPSN P. If we consider EVALP clause 
(34.2), as

	 [( , ), ] [( , ), ],0 1 2 0α α�e

it does not satisfy EVALP literal p : [(0, 1), α]; on the other hand, if we consider EVALP clause 
(34.3), as

	 [( , ), ] [( , ), ],0 1 0 2α α�e

it satisfies EVALP literal p : [(0, 1), α].
On the other hand, if we consider EVALP clause (34.4), as

	 [( , ), ] [( , ), ],2 0 2 0β γ�e
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it does not satisfy EVALP literal q : [(2, 0), β]; furthermore, even if we consider another EVALP 
clause (34.5), as

	 [( , ), ] [( , ), ],2 0 1 0β β�e

it does not satisfy EVALP literal q : [(2, 0), β]. Therefore, the head literal r : [(0, 1), γ] of EVALPSN 
clause (34.1) can be derived.

34.3  EVALPSN Safety Verification for Pipeline Control

This section introduces EVALPSN-based intelligent safety verification for a pipeline valve control with 
a simple brewery pipeline example.

34.3.1  Pipeline Network

The pipeline network described in Figure 34.2 is taken as an example of brewery pipeline valve control 
based on EVALPSN safety verification. In Figure 34.2, an arrow represents the direction of liquid flow, 
a home-plate pentagon does a liquid tank, and a cross does a valve. In the pipeline network, we consider 
three kinds of physical entities,

	 four tanks two valves and( , , , ), ( , ),T T T T V V0 1 2 3 0 1

	 five pipes ( , , , , ),Pi Pi Pi Pi Pi0 1 2 3 4

and three kinds of logical entities,

	 four processes two valves and( , , ), ( , ),Pr , Pr  Pr  Pr0 1 2 3 0 1V V

	 five subprocesses ( , , , , ),S S S S SPr Pr Pr Pr Pr0 1 2 3 4

T2

T1T0

T3

V0

V1

Pi2

Pi3

Pi4

Pi0 Pi1

FIGURE 34.2  Pipeline example.
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where the logical entities are used for EVALPSN-based safety verification. We suppose that a subprocess 
is defined as a logical process using a pipe, a valve is also defined to be a logically controlled entity, and 
a process is defined as a set of subprocesses and valves in the verification system. For example, process 
Pr0 consists of subprocesses SPr0 and SPr1 and valve V0.

We assume that the valves can physically control two liquid flows in the normal and cross directions 
as shown in Figure 34.3. Furthermore, each logical entity is supposed to have logical states:

•	 Subprocesses have two logical states locked (l) and free (f), where “the subprocess is locked” means 
that it is logically reserved for one kind of liquid and “free” means that it can be logically reserved 
for any kind of liquid but unlocked.

•	 Valves have two logical states, controlled mixture (cm), representing that the valve is controlled 
to mix the liquid flows in normal and cross directions, and controlled separate (cs), representing 
that the valve is controlled to separate the liquid flows in normal and cross directions as shown 
in Figure 34.4.

•	 Processes have two states set (s) and unset (xs), where “the process is set” means that all sub-
processes and valves in the process are locked and controlled consistently and “unset” means 
not set.

We also assume that there are five kinds of cleaning liquid for the pipeline network, cold water (cw), 
warm water (ww), hot water (hw), nitric acid (na), and caustic soda (cs). We now consider the following 
four processes:

Process Pr0  a beer process,

	 T V T0 0 1→ →(cs)

Normal Cross

FIGURE 34.3  Normal and cross directions.

SeparateMixture

FIGURE 34.4  Controlled mixture and separate.
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Process Pr1  a cleaning process by nitric acid,

	 T V V T3 1 0 2→ → →(cm) (cs)

Process Pr2  a cleaning process by cold water,

	 T V V T3 1 0 2→ → →(cm) (cs)

Process Pr3  a brewery process with mixing,

	 T2

	 ↑
	 T V T0 0 1→ →(cm)

	 ↑
	 T V3 1→ (cm)

In order to verify the safety for processes Pr0, Pr1, Pr2, and Pr3, the pipeline network operator issues 
process requests to be verified, which consists of an if-part and a then-part. The if-part of a process 
request describes the current logical state of the pipelines in the process to be safety verified, and the 
then-part of it describes permission for setting the process. For example, if a process request for verify-
ing the safety of process Pr1 is described as

	

if Subprocess is free subprocess is free
    valve is c

S S
V

Pr Pr0 1

0

, ,
oontrolled separate physically but not locked logically.

	 then ocess can be setPr .Pr0

We also consider the following process schedule including processes Pr0, Pr1, Pr2, and Pr3:

PRS-0	 process Pr0 must start before any other processes
PRS-1	 process Pr1 must start immediately before process Pr0

PRS-2	 process Pr2 must start immediately after process Pr1

PRS-3	 process Pr3 must start immediately after both processes Pr0 and Pr2 finished,

which are shown in the process schedule chart (Figure 34.5).

34.3.2  Pipeline Safety Property

We introduce some safety properties as the criteria of the pipeline process safety verification, SPr for 
subprocesses, Val for valves, and Pr for processes, which assure the safety for pipeline processes Pr0, Pr1, Pr2, 
and Pr3, that is, for avoiding unexpected mixtures of different kinds of liquid in the same pipeline and valve:

•	 SPr: It is a forbidden case that the sub process over a given pipe is simultaneously locked by dif-
ferent kinds of liquid.

Brewery

Cleaning

Pr0

Pr1 Pr2

Pr3

FIGURE 34.5  Process schedule chart.
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•	 Val: It is a forbidden case that valves are controlled for unexpected mixture of liquid.
•	 Pr: Whenever a process is set, all its component sub processes are locked and all its component 

valves are controlled consistently.

34.3.3  Predicates for Safety Verification

The EVALPSN-based safety verification is carried out by verifying whether the process request contra-
dicts the safety properties or not in EVALPSN. Then the following three steps have to be executed:

	 1.	 The safety properties and some other control policies are translated into EVALPSN clauses, and 
they are stored as EVALPSN Psc.

	 2.	 The if-part and then-part of the process request are translated into EVALPSN clauses as EVALPSNs 
Pi and Pt.

	 3.	 EVALPSN Pt is inquired from EVALPSN {Psc ∪ Pi}, then if yes is returned, the safety for the pipe-
line process is assured; otherwise it is not assured.

In the safety verification for pipeline processes, the following predicates are used in EVALPSN:

•	 Pr(i, l) represents that process i for liquid l is set(s) or unset(xs), where each i ∈ {p0, p1, p2, p3} is a 
process id corresponding to processes Pr0, Pr1, Pr2, and Pr3, and each l ∈ {b, cw, ww, hw, na, cs} is 
a liquid id corresponding to beer, cold water, warm water, hot water, nitric acid, and caustic soda, 
and we have EVALP clause Pr(i, l) : [μ1, μ2], where

	 T � T �v ds xs{ , , , } and { , , , ,*1,*2,*3, }.1 1 1 21 ⊥ ⊥µ ∈ = µ ∈ = α β γ

Complete lattice Tv1 is a variant of complete lattice Tv in Figure 34.6 as n = 1. Therefore, annota-
tions ⊥1, s, xs, and ⊤1 represent vector annotations (0, 0), (1, 0), (0, 1), and (1, 1), respectively. The 
epistemic negation ¬1 over Tv1 is defined by the following mapping:

	 s xs([ , ]) [ , ], ([ , ]) [ , ],1 1 2 1 2 2 2¬ ⊥ ⊥ ¬1µ = µ µ = µ

	 � �µ = µ µ = µxs s([ , ]) [ , ], ([ , ]) [ , ].1 1 2 1 2 2 2¬ ¬1

For example, EVALP clause Pr(p2, b) : [s, α] can be intuitively interpreted as “it is a fact that beer 
process Pr2 is set.”

(0, 1) (1, 0)

(1, 1)

(0, 0)

FIGURE 34.6  Complete lattice Tv (n = 1).
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•	 SPr(i, j, l) represents that the sub process from valve i (or tank i) to valve j (or tank j) occupied 
by liquid l is locked (l) or free (f). Moreover, if a sub-process is free, then the kind of liquid 
in the pipe does not matter, and the liquid is represented by symbol “0” (zero). Therefore, 
we have

	 l ∈ {b, cw, ww, hw, na, cs, 0} and i, j ∈ {v0, v1, t0, t1, t2, t3},

which are valve and tank ids corresponding to valves and tanks V0, V1, T0, T1, T2, and T3. Then we 
have EVALP clause SPr(i, j, l) : [μ1, μ2], where

	 T � T �v dl f{ , , , } and { , , , ,*1,*2,*3, }.1 2 2 22 ⊥ ⊥µ ∈ = µ ∈ = α β γ

Complete lattice Tv2 is a variant of complete lattice Tv in Figure 34.6 as n = 1. Therefore, annota-
tions ⊥2, l, f, and ⊤2 represent vector annotations (0, 0), (1, 0), (0, 1), and (1, 1), respectively. The 
epistemic negation ¬1 over Tv2 is defined by the following mapping:

	 l f([ , ]) [ , ], ([ , ]) [ , ],1 2 2 2 2 2 2¬ ⊥ ⊥ ¬1µ = µ µ = µ

	 � �µ = µ µ = µf l([ , ]) [ , ], ([ , ]) [ , ].1 2 2 2 2 2 2¬ ¬1

For example, EVALP clause SPr(v0, t1, b) : [f, γ] can be intuitively interpreted as “the subprocess 
from valve v0 to tank t1 is permitted to be locked under the beer process.”

•	 Val(i, ln, lc) represents that valve i occupied by two kinds of liquid ln, lc ∈ {b, cw, ww, hw, na, cs, 0} 
is controlled separate (cs) or mixture (cm), where i ∈ {v0, v1} is a valve id. We assume that there 
are two directed liquid flows in normal or cross directions of valves (Figure 34.3). Therefore, the 
second argument ln represents liquid flowing in normal direction and the third argument lc rep-
resents liquid flowing in cross direction. Generally, if a valve is released from the controlled state, 
liquid flow in the valve is represented by the specific symbol 0 that means “free.” We have EVALP 
clause Val(i, ln, lc) : [μ1, μ2], where

	 T � T �v dcm cs{ , , , } and { , , , ,* ,* ,* , }.1 3 3 2 1 2 33 ⊥ ⊥µ ∈ = µ ∈ = α β γ

Complete lattice Tv3 is a variant of complete lattice Tv in Figure 34.6 as n = 1. Therefore, annota-
tions ⊥3, cm, cs, and ⊤3 represent vector annotations (0, 0), (1, 0), (0, 1), and (1, 1), respectively. The 
epistemic negation ¬1 over Tv3 is defined by the following mapping:

	 cs cm([ , ]) [ , ], ([ , ]) [ , ],1 3 2 3 2 2 2¬ ⊥ ⊥ ¬1µ = µ µ = µ

	 � �µ = µ µ = µcm cs([ , ]) [ , ], ([ , ]) [ , ].1 3 2 3 2 2 2¬ ¬1

We assume that if a process finishes, all valves included in the process are controlled separate 
(closed). For example, EVALP clause Val(v0, 0, 0) : [cs, α] can be intuitively interpreted as “valve 
v0 has been released from controlled separate”; EVALP clause Val(v0, b, cw) : [cs, β] can be intui-
tively interpreted as both “it is forbidden for valve v0 to be controlled mixture with beer b in 
normal direction and cold water cw in cross direction,” and “it is obligatory for valve v0 to be con-
trolled separate with beer b in normal direction and cold water cw in cross direction”; and EVALP 
clause Val(v0, 0, b) : [cs, α] can be intuitively interpreted as “it is a fact that valve v0 is controlled 
separate with free flow 0 in normal direction and beer b in cross direction.”
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•	 Eql(l1, l2) represents that the kinds of liquids l1 and l2 are the same (sa) or different (di), where l1, 
l2 ∈ {b, cw, ww, hw, na, cs, 0}. We have EVALP clause Eql(l1, l2) : [μ1, μ2], where

	 T � T �v dsa di{ , , , } and { , , , ,*1,*2,*3, }.1 4 4 24 ⊥ ⊥µ ∈ = µ ∈ = α β γ

Complete lattice Tv4 is a variant of complete lattice Tv  in Figure 34.6 as n = 1. Therefore, annota-
tions ⊥4, sa, di, and ⊤4 represent vector annotations (0, 0), (1, 0), (0, 1), and (1, 1), respectively. The 
epistemic negation ¬1 is defined by the following mapping.

	 di sa([ , ]) [ , ], ([ , ]) [ , ],1 4 2 4 2 2 2¬ ⊥ ⊥ ¬1µ = µ µ = µ

	 � �µ = µ µ = µsa di([ , ]) [ , ], ([ , ]) [ , ].1 4 2 4 2 2 2¬ ¬1

Now we consider process release conditions when processes have finished and define some more 
predicates to represent the conditions. We assume that if the terminal tank Ti of process Prj is 
filled with one kind of liquid, the finish signal Fin(pj) of process Prj is issued.

•	 Tan(ti, l) represents that tank Ti has been filled fully (fu) with liquid l or empty (em). Then we have 
EVALP clause Tan(ti, l) : [μ1, μ2], where i ∈ {0, 1, 2, 3} and l ∈ {b, cw, ww, hw, na, cs, 0},

	 T � T �v dfu em{ , , , } and { , , , ,*1,*2,*3, }.1 5 5 25 ⊥ ⊥µ ∈ = µ ∈ = α β γ

Complete lattice Tv5 is a variant of complete lattice Tv  in Figure 34.6 as n = 1. Therefore, annota-
tions ⊥5, fu, em, and ⊤5 represent vector annotations (0, 0), (1, 0), (0, 1), and (1, 1), respectively. The 
epistemic negation ¬1 over Tv5 is defined by the following mapping:

	 fu em([ , ]) [ , ], ([ , ]) [ , ],1 5 2 5 2 2 2¬ ⊥ ⊥ ¬1µ = µ µ = µ

	 � �µ = µ µ = µem fu([ , ]) [ , ], ([ , ]) [ , ].1 5 2 5 2 2 2¬ ¬1

Note that annotation ⊥5 can be intuitively interpreted to represent “no information in terms of 
liquid amount.” For example, EVALP clause Tan(t2, 0) : [em, α] can be interpreted as “it is a fact 
that tank t2 is empty.”

•	 Str(pi) represents that the start signal for process Pri is issued (is) or not (ni).
•	 Fin(pj) represents that the finish signal for process Prj has been issued (is) or not (ni). Then we 

have EVALP clauses Str(pi) : [μ1, μ2] and Fin(pj) : [μ1, μ2], where i, j ∈ {0, 1, 2, 3},

	 T � T �v dni is{ , , , } and { , , , ,*1,*2,*3, }.1 6 6 26 ⊥ ⊥µ ∈ = µ ∈ = α β γ

Complete lattice Tv6 is a variant of complete lattice Tv  in Figure 34.6 as n = 1. Therefore, annota-
tions ⊥6, is, ni, and ⊤6 represent vector annotations (0, 0), (1, 0), (0, 1), and (1, 1), respectively. 
The epistemic negation ¬1 over Tv6 is defined by the following mapping:

	 is ni([ , ]) [ , ], ([ , ]) [ , ],1 6 2 6 2 2 2¬ ⊥ ⊥ ¬1µ = µ µ = µ

	 � �µ = µ µ = µni is([ , ]) [ , ], ([ , ]) [ , ].1 6 2 6 2 2 2¬ ¬1
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For example, EVALP clause Fin(p3) : [ni, α] can be interpreted as “it is a fact that the finish signal for 
process Pr3 has not been issued yet.”

34.3.4  Safety Property into EVALPSN

Here, we formalize all safety properties SPr, Val, and Pr in EVALPSN. Safety property SPr is intuitively 
interpreted as derivation rules of forbiddance. If a sub process from valve( or tank) i to valve( or tank) j 
is locked by one kind of liquid, it is forbidden for the subprocess to be locked by different kinds of liquid 
processes simultaneously. Thus, we have the following EVALPSN clauses:

	

S i j l Eql l l

S i j l

Pr

Pr

( , , ) :[ , ] ~ ( , ) :[ , ]

( , , ) :[ , ],

1 1 2

2

l sa

f

α α

β

∧

→ 	 (34.6)

where l1, l2 ∈ {b, cw, ww, hw, na, cs}. Moreover, in order to derive permission for locking subprocesses, we 
need the following EVALPSN clauses:

	 ~ ( , , ) :[ , ] ( , , ) :[ , ],S i j l S i j lPr Prf fβ γ→ 	 (34.7)

where l ∈ {b, cw, ww, hw, na, cs}.
Safety property Val is intuitively interpreted as derivation rules of forbiddance. We have to consider 

two cases: one is for deriving forbiddance from changing the control state of the valve and another one 
is for deriving forbiddance from mixing different kinds of liquid without changing the control state of 
the valve.

Case 1
If a valve is controlled separate, it is forbidden for the valve to be controlled mix; conversely, if a valve 
is controlled mix, it is forbidden for the valve to be controlled separate. Thus, we have the following 
EVALPSN clauses:

	

Val i l l Eql l

Eql l Va

n c n

c

( , , ) :[ , ] ~ ( , ) :[ , ]

~ ( , ) :[ , ]

cs sa

sa

α α

α

∧ ∧

→

0

0 ll i l ln c( , , ) :[ , ],cs β 	 (34.8)

	

Val i l l Eql l

Eql l Va

n c n

c

( , , ) :[ , ] ~ ( , ) :[ , ]

~ ( , ) :[ , ]

cm sa

sa

α α

α

∧ ∧

→

0

0 ll i l ln c( , , ) :[ , ],cm β 	 (34.9)

where ln, lc ∈ {b, cw, ww, hw, na, cs, 0}.

Case 2
Next, we consider the other forbiddance derivation case in which different kinds of liquid are mixed 
even if the valve control state is not changed. We have the following EVALPSN clauses:

	

Val i l l Eql l l

Eql l

n c n n

n

( , , ) :[ , ] ~ ( , ) :[ , ]

~ ( , ) :[

1 1 2

1

1

0

cs sa

sa

α α∧ ∧

,, ] ( , , ) :[ , ],α β→Val i l ln c2 2 cm 	 (34.10)

	

Val i l l Eql l l

Eql l

n c c c

c

( , , ) :[ , ] ~ ( , ) :[ , ]

~ ( , ) :[

1 1 2

1

1

0

cs sa

sa

α α∧ ∧

,, ] ( , , ) :[ , ],α β→Val i l ln c2 2 cm 	 (34.11)
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Val i l l Eql l l

Val i l l

n c n n

n c

( , , ) :[ , ] ~ ( , ) :[ , ]

( , , ) :

1 1 1 2

2 2

cm saα α∧

→ [[ , ],cs β 	 (34.12)

	

Val i l l Eql l l

Val i l l

n c c c

n c

( , , ) :[ , ] ~ ( , ) :[ , ]

( , , ) :

1 1 1 2

2 2

cm saα α∧

→ [[ , ],cs β 	 (34.13)

where l l b cw ww hw na csn c1 1 0, { , , , , , , }∈  and l l b cw ww hw na csn c2 2, { , , , , , }∈ .
Note that the EVALPSN clause ∼ Eql(ln, 0) : [sa, α] represents that there does not exist informa-

tion such that the normal direction with liquid ln in the valve is free (not controlled). As well as the 
case of subprocesses, in order to derive permission for controlling valves, we need the following 
EVALPSN clauses:

	 ~ ( , , ) :[ , ] ( , , ) :[ , ],Val i l l Val i l ln c n ccm cmβ γ→ 	 (34.14)

	 ~ ( , , ) :[ , ] ( , , ) :[ , ],Val i l l Val i l ln c n ccs csβ γ→ 	 (34.15)

where ln, lc ∈ {b, cw, ww, hw, na, cs, 0}.
Safety property Pr is intuitively interpreted as derivation rules of permission and directly translated 

into EVALPSN clauses as a rule: “if all the components of the process can be locked or controlled consis-
tently, then the process can be set.” For example, if beer process Pr0 consists of the subprocess from tank 
T0 to valve V0, valve V0 (beer in normal direction), and the subprocess from valve V0 to tank T1, then we 
have the following EVALP clause to obtain permission for setting process Pr0:

	

S t v b S v t b

Val v b l T
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∧

→ Pr 	 (34.16)

where l ∈ {b, cw, ww, hw, na, cs, 0}. We also have the following EVALP clauses for setting other processes 
Pr1, Pr2, and Pr3:
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S t v cw S v v cw

S v t cw

Pr Pr

Pr

( , , ) :[ , ] ( , , ) :[ , ]

( , , ) :[ ,

3 1 1 0

0 2

f f

f

γ γ

γ

∧ ∧

]] ( , , ) :[ , ]

( , , ) :[ , ] ( , ) :[ ,

∧ ∧

∧

Val v l cw

Val v cw Tan t cw

0

1 0 3

cm

cs fu

γ

γ αα

α γ

]

( , ) :[ , ] ( , ) :[ , ],

∧

→Tan t p cw2 0 2em xsPr 	 (34.18)
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where l ∈ {b, cw, ww, hw, na, cs, 0}.

34.3.5  Example

Now, let us show an example of EVALPSN safety verification-based pipeline control for processes Pr0, 
Pr1, Pr2, and Pr3. According to the process schedule chart (Figure 1.5), we describe each stage of the 
EVALPSN safety verification.

Initial stage: We assume that all subprocesses and valves in the pipeline network are free (unlocked) 
and no process has already started. In order to verify the safety for all processes Pr0, Pr1, Pr2, and 
Pr3, the following fact EVALP clauses (sensed information) are input to the safety verification 
EVALPSN:

	 SPr(t0, v0, 0) : [f, α],	 Val(v0, 0, 0) : [cs, α],

	 SPr(v0, t1, 0) : [f, α],	 Val(v1, 0, 0) : [cs, α],

	 SPr(v0, t2, 0) : [f, α],

	 SPr(v1, v0, 0) : [f, α],

	 SPr(t3, v1, 0) : [f, α],

	 Tan(t0, b) : [fu, α],	 Tan(t1, 0) : [em, α],	 (34.20)

	 Tan(t2, 0) : [em, α],	 Tan(t3, na) : [fu, α].	 (34.21)

Then, all the subprocesses and valves are permitted to be locked or controlled. However, the tank states 
(34.20) and (34.21) do not permit for processes Pr2 and Pr3 to be set. Beer process Pr0 can be verified to 
be set as follows.

We have neither the forbiddance from locking subprocesses SPr0 and SPr1 nor forbiddance from 
controlling valve V0 separate with beer in normal direction, by EVALPSN clauses (34.6), (34.9), 
(34.10), and (34.11) and the input fact EVALP clauses.

Then, we have permission for locking subprocesses SPr0 and SPr1 and controlling valve V0 sepa-
rate with beer in normal direction and any liquid in cross direction:

	 SPr(t0, v0, b) : [f, γ],	 Val(v0, b, l) : [cm, γ],

	 SPr(v0, t1, b) : [f, γ],

where l ∈ {b, cw, ww, hw, na, cs, 0}, by EVALPSN clauses (34.7) and (34.14).
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Moreover, we have the following EVALP clauses for the tank state:

	 Tan(t0, b) : [fu, α],  Tan(t1, 0) : [em, α].

Thus, we have permission for setting beer process Pr0,

	 Pr(p0, b) : [xs, γ],

by EVALPSN clause (34.16).
According to the process schedule, beer process Pr0 has to start first, then nitric acid process Pr1 has 

to be verified for safety and processed parallel to beer process Pr0 as soon as possible. We show the safety 
verification for process Pr1 at the following stage.

2nd stage: Beer process Pr0 has already started but not finished yet, then in order to verify the safety for other 
processes Pr1, Pr2, and Pr3, the following fact EVALP clauses are input to the safety verification EVALPSN:

	 SPr(t0, v0, b) : [l, α],	 Val(v0, b, 0) : [cs, α],

	 SPr(v0, t1, b) : [l, α],	 Val(v1, 0, 0) : [cs, α],

	 SPr(v0, t2, 0) : [f, α],

	 SPr(v1, v0, 0) : [f, α],

	 SPr(t3, v1, 0) : [f, α],

	 Tan(t2, 0) : [em, α],	 Tan(t3, na) : [fu, α].

The tank information permit neither cold water process Pr2 nor beer process Pr3 to be set. We show that 
only nitric acid process Pr1 can be verified to be set as follows:

We have neither forbiddance from locking three subprocesses SPr2, SPr3, and SPr4, forbiddance 
from controlling valves V0 separate with any liquid in normal direction, and nitric acid in cross 
direction nor forbiddance from controlling valve V1 mixture(open) with nitric acid in normal 
direction and no liquid in cross direction, by EVALPSN clauses (34.6), (34.8), (34.9), (34.10), 
(34.11), and (34.12), (34.13) and the earlier fact EVALP clauses.

Therefore, we have permission for locking three subprocesses SPr2, SPr3, and SPr4 and controlling 
valves V0 and V1 as described before,

	 SPr(v0, t2, na) : [f, γ],	 Val(v0, b, na) : [cm, γ],

	 SPr(v1, v0, na) : [f, γ],	 Val(v1, na, 0) : [cs, γ],

	 SPr(t3, v1, na) : [f, γ],

by EVALPSN clauses (34.7), (34.14) and (34.15).
Moreover, we have the following EVALP clauses for tank information:

	 Tan(t3, na) : [fu, α],	 Tan(t2, 0) : [em, α].

Thus, we have permission for setting nitric acid process Pr1,

	 Pr(p1, na) : [xs, γ],

by EVALPSN clause (34.17).
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Both beer process Pr0 and nitric acid process Pr1 have already started, then processes Pr2 and Pr3 have 
to be verified for safety. We show it at the following stage.

3rd stage: In order to verify the safety for cold water process Pr2 and beer process Pr3, the following fact 
EVALP clauses are input to the safety verification EVALPSN:

	 SPr(t0, v0, b) : [l, α],	 Val(v0, b, na) : [cs, α],

	 SPr(v0, t1, b) : [l, α],	 Val(v1, na, 0) : [cm, α],

	 SPr(v0, t2, na) : [l, α],

	 SPr(v1, v0, na) : [l, α],

	 SPr(t3, v1, na) : [l, α].

Apparently, neither cold water process Pr2 nor beer process Pr3 is permitted to be set, since there is no 
tank information in the input fact EVALP clauses. We show the safety verification for process Pr2 as an 
example.

We have forbiddance from locking three subprocesses SPr2, SPr3, and SPr4, forbiddance from 
controlling valve V0 under separating with beer in normal direction and cold water in cross 
direction, and forbiddance from controlling valve V1 under mixing with cold water in normal 
direction and no liquid in cross direction,

	 SPr(v0, t2, cw) : [f, β],	 Val(v0, b, cw) : [cm, β],

	 SPr(v1, v0, cw) : [f, β],	 Val(v1, cw, 0) : [cs, β],

	 SPr(t3, v1, cw) : [f, β],

by EVALPSN clauses (34.6), (34.11), and (34.12), and the input fact EVALP clauses.

The finish condition for nitric acid process Pr1 is that tank T2 is fully filled with nitric acid and tank 
T3 is empty. If nitric acid process Pr1 has finished and its finish conditions are satisfied, process Pr1 is 
permitted to be released (unset) and has been released. It is also assumed that tank T3 is filled with cold 
water and tank T2 is empty as preparation for cold water process Pr2 immediately after process Pr1 fin-
ished. Then, cold water process Pr2 has to be verified and start according to the process schedule. We 
show the safety verification for cold water process Pr2 at the following stage.

4th stage: Then, since only beer process Pr0 is being processed, the other three processes Pr1, Pr2, and Pr3 
have to be verified. In order to do that, the following fact EVALP clauses are input to the safety verifica-
tion EVALPSN:

	 SPr(t0, v0, b) : [l, α],	 Val(v0, b, 0) : [cs, α],

	 SPr(v0, t1, b) : [l, α],	 Val(v1, 0, 0) : [cs, α],

	 SPr(v0, t2, 0) : [f, α],

	 SPr(v1, v0, 0) : [f, α],

	 SPr(t3, v1, 0) : [f, α],

	 Tan(t2, 0) : [em, α],	 Tan(t3, cw) : [fu, α].
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Since beer process Pr0 is still being processed, neither nitric acid process Pr1 nor beer process Pr3 is per-
mitted to be set, and only cold water process Pr2 is permitted to be set as well as process Pr1 at the 2nd 
stage. Therefore, we have permission for setting cold water process Pr2,

	 Pr(p2, cw) : [xs, γ],

by EVALPSN clause (34.18).
Now, both beer process Pr0 and cold water process Pr2 are being processed. Then apparently any other 

process is not permitted to be set. Moreover, even if one of processes Pr0 and Pr2 has finished, beer pro-
cess Pr3 is not permitted to be set until both processes Pr0 and Pr2 finished. We show the safety verifica-
tion for beer process Pr3 at the following stages.

5th stage: If neither beer process Pr0 nor cold water process Pr2 has finished, we have to verify the safety 
for nitric acid process Pr1 and beer process Pr3. The following fact EVALP clauses are input to the safety 
verification EVALPSN:

	 SPr(t0, v0, b) : [l, α],	 Val(v0, b, cw) : [cs, α],

	 SPr(v0, t1, b) : [l, α],	 Val(v1, cw, 0) : [cm, α],

	 SPr(v0, t2, cw) : [l, α],

	 SPr(v1, v0, cw) : [l, α],

	 SPr(t3, v1, cw) : [l, α].

Then, since all subprocesses and valves are locked and controlled, neither processes Pr1 nor Pr3 is per-
mitted to be set. It is shown that beer process Pr3 is not permitted to be set as follows:

We have forbiddance from locking three subprocesses SPr2, SPr3, and SPr4 in process Pr3 and 
controlling both valves V0 and V1,

	 SPr(v0, t2, b) : [f, β],	 Val(v0, b, b) : [cs, β],

	 SPr(t3, v1, b) : [f, β],	 Val(v1, b, 0) : [cs, β],

	 SPr(v1, v0, b) : [f, β],

by EVALPSN clauses (34.6), (34.8), and (34.12), and the input fact EVALP clauses.

Therefore, we cannot have permission for setting process Pr3.
The finish condition for cold water process Pr2 is that tank T2 is fully filled with cold water and tank 

T3 is empty. If cold water process Pr2 has finished and its finish condition is satisfied, process Pr2 is per-
mitted to be released (unset). It is also assumed that tank T3 is filled with beer and tank T2 is empty as 
preparation for beer process Pr3 immediately after process Pr2 finished. Then, beer process Pr3 has to be 
verified and start according to the process schedule, but beer process Pr3 cannot be permitted to be set. 
We show the safety verification for process Pr3 at the following stage.

6th stage: Since only beer process Pr0 is being processed, the other three processes Pr1, Pr2, and Pr3 have 
to be verified for their safety. In order to do that, the following fact EVALP clauses are input to the safety 
verification EVALPSN:

	 SPr(t0, v0, b) : [l, α],	 Val(v0, b, 0) : [cs, α],

	 SPr(v0, t1, b) : [l, α],	 Val(v1, 0, 0) : [cs, α],
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	 SPr(v0, t2, 0) : [f, α],

	 SPr(v1, v0, 0) : [f, α],

	 SPr(t3, v1, 0) : [f, α],

	 Tan(t2, 0) : [em, α],	 Tan(t3, b) : [fu, α].

Since beer process Pr0 is still on being processed, beer process Pr3 is not verified for safety due to the tank 
conditions and safety property Val for valve V0. The safety verification is carried out as follows:

We have forbiddance from controlling valve V0 mixture,

	 Val(v0, b, b) : [cs, β],

by EVALPSN clause (34.8);

Therefore, we cannot have permission for setting the beer process Pr3 then.
On the other hand, even if beer process Pr0 has finished with cold water process Pr2 being processed, 
beer process Pr3 is not permitted to be set. If both processes Pr0 and Pr2 have finished, beer process Pr3 
is assured its safety and set. Then, process Pr3 starts according to the process schedule. For brevity, we 
omit the remaining of stages.

34.4  Summary

In this chapter, we have introduced a paraconsistent annotated logic program called EVALPSN that can 
deal with defeasible deontic reasoning and its application to intelligent safety verification-based control 
with an example of pipeline valve control. EVALPSN can be applied to various kinds of safety verifica-
tion and intelligent control. We summarize our chapter by showing the advantage and disadvantage of 
EVALPS safety verification and control.

Advantages

EVALPSN can be easily implemented in common programming languages such as Prolog or 
C language, moreover, if it is locally stratified [7,43], in a programmable logic controller (PLC) 
ladder program.

EVALPSN can be implemented as electronic circuits on micro chips [34]. Therefore, if real-time 
processing is required in the control system, EVALPSN should be very useful.

We have already another EVALPSN called bf(before–after)-EVALPSN, which can deal with 
before-after relation of processes, although we have not addressed bf-EVALPSN in this chap-
ter. bf-EVALPSN can provide safety verification systems for process order control [35–37]. 
As far as we know, there seems to be no other efficient computational tool for dealing with 
safety verification of process order control than bf-EVALPSN. If we use both EVALPSN and 
bf-EVALPSN, safety verification systems for both process and its order control can be imple-
mented under the same environment.

Disadvantages

Since basically EVALPSN itself is not a tool of logical safety verification, it includes a little compli-
cated and redundant expressions for safety verification systems. Therefore, it might be better 
to develop safety verification-oriented tools or programming languages based on EVALPSN, if 
EVALPSN is applied to logical safety verification.

It is difficult to understand how to utilize EVALPSN fully to do practical implementation due to 
paraconsistent annotated logic.
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35.1  Introduction

Qualitative reasoning is the area of artificial intelligence (AI) that creates representations for continu-
ous aspects of the world, such as space, time, and quantity, which support reasoning with very little 
information. Typically, it has focused on scientific and engineering domains, hence its other common 
name, qualitative physics. It is motivated by two observations. First, people draw useful and subtle 
conclusions about the physical world without equations. In our daily lives, we figure out what is hap-
pening around us and how we can affect it, working with far less data, and less precise data, than would 
be required to use traditional, purely quantitative methods. Creating software for robots that operate in 
unconstrained environments and modeling human cognition require understanding how this can be 
done. Second, scientists and engineers appear to use qualitative reasoning when initially understanding 
a problem, when setting up more formal methods to solve particular problems, and when interpreting 
the results of quantitative simulations, calculations, or measurements. Thus, advances in qualitative 
reasoning should lead to the creation of more flexible software that can help engineers and scientists 
solve problems.

Qualitative reasoning began with de Kleer’s investigation on how qualitative and quantitative knowl-
edge interacted in solving a subset of simple textbook mechanics problems (de Kleer, 1977). After 
roughly a decade of initial explorations, the potential for important industrial applications led to a surge 
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of interest in the mid-1980s, and the area grew steadily, with rapid progress. There have been a variety of 
successful applications, including supervisory process control, design, failure modes and effects analysis 
(FMEA), and educational software.

Given its demonstrated utility in applications and its importance in understanding human cognition, 
work in qualitative modeling will continue to remain an important area in AI.

This chapter first surveys the state of the art in qualitative representations and in qualitative reason-
ing techniques. The application of these techniques to various problems is discussed subsequently.

35.2  Qualitative Representations

As is the case with many other knowledge representation issues, there is no single best qualitative rep-
resentation. Instead, there exists a spectrum of choices, each with its own advantages and disadvantages 
for particular tasks. What all of them have in common is that they provide notations for describing and 
reasoning about continuous properties of the physical world. Two key issues in qualitative representa-
tion are resolution and compositionality. We discuss each in turn.

Resolution concerns the level of information detail in a representation. Resolution is an issue because 
one goal of qualitative reasoning is to understand how little information suffices to draw useful con-
clusions. Low-resolution information is available more often than precise information (“the car head-
ing toward us is slowing down” vs. “the derivative of the car’s velocity along the line connecting us is 
−28 km/h/s”), but conclusions drawn with low-resolution information are often ambiguous. The role of 
ambiguity is important: the prediction of alternative futures (i.e., “the car will hit us” vs. “the car won’t 
hit us”) suggests that we may need to gather more information, analyze the matter more deeply, or take 
action, depending on what alternatives our qualitative reasoning uncovers. High-resolution informa-
tion is often needed to draw particular conclusions (i.e., a finite element analysis of heat flow within a 
tablet computer design to ensure that the CPU will not cook the battery), but qualitative reasoning with 
low-resolution representations reveals what the interesting questions are. Qualitative representations 
comprise one form of tacit knowledge that people, ranging from the person on the street to scientists 
and engineers, use to make sense of the world.

Compositionality concerns the ability to combine representations for different aspects of 
a phenomenon or system to create a representation of the phenomenon or system as a whole. 
Compositionality is an issue because one goal of qualitative reasoning is to formalize the modeling 
process itself. Many of today’s AI systems are based on handcrafted knowledge bases that express 
information about a specific artifact or system needed to carry out a particular narrow range of tasks 
involving it. By contrast, a substantial component of the knowledge of scientists and engineers con-
sists of principles and laws that are broadly applicable, both with respect to the number of systems 
they explain and the kinds of tasks they are relevant for. Qualitative reasoning has developed ideas 
and organizing techniques for knowledge bases with similar expressive and inferential power, called 
domain theories.

The remainder of this section surveys the fundamental representations used in qualitative reasoning 
for quantity, mathematical relationships, modeling assumptions, causality, space, and time.

35.2.1 R epresenting Quantity

Qualitative reasoning has explored trade-offs in representations for continuous parameters ranging in 
resolution from sign algebras to the hyperreals. Most of the research effort has gone into understanding 
the properties of low-resolution representations because the properties of high-resolution representa-
tions tend to already be well understood due to work in mathematics.

The lowest resolution representation for continuous parameters is the status abstraction, which rep-
resents a quantity by whether or not it is normal. It is a useful representation for certain diagnosis 
and monitoring tasks because it is the weakest representation that can express the difference between 
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something working and not working. The next step in resolution is the sign algebra, which represents 
continuous parameters as either −, +, or 0, according to whether the sign of the underlying continuous 
parameter is negative, positive, or zero. The sign algebra is surprisingly powerful: because a param-
eter’s derivatives are themselves parameters whose values can be represented as signs, some of the main 
results of the differential calculus (e.g., the mean value theorem) can be applied to reasoning about sign 
values (de Kleer and Brown, 1984). This allows sign algebras to be used for qualitative reasoning about 
dynamics, including expressing properties such as oscillation and stability. The sign algebra is the weak-
est representation that supports such reasoning.

Representing continuous values via sets of ordinal relations (also known as the quantity space repre-
sentation) is the next step up in resolution (Forbus, 1984). For example, the temperature of a fluid might 
be represented in terms of its relationship between the freezing point and boiling point of the material 
that comprises it. Like the sign algebra, quantity spaces are expressive enough to support qualitative 
reasoning about dynamics. (The sign algebra can be modeled by a quantity space with only a single point 
of comparison, zero.) Unlike the sign algebra, which draws values from a fixed finite algebraic structure, 
quantity spaces provide variable resolution because new points of comparison can be added to refine 
values. The temperature of water in a kettle on a stove, for instance, will likely be defined in terms of 
its relationship with the temperature of the stove as well as its freezing and boiling points. There are 
two kinds of comparison points used in defining quantity spaces. Limit points are derived from general 
properties of a domain as applicable to a specific situation. Continuing with the kettle example, the 
particular ordinal relationships used were chosen because they determine whether or not the physical 
processes of freezing, boiling, and heat flow occur in that situation. The precise numerical value of limit 
points can change over time (e.g., the boiling point of a fluid is a function of its pressure). Landmark 
values are constant points of comparison introduced during reasoning to provide additional resolution 
(Kuipers, 1994). To ascertain whether an oscillating system is overdamped, underdamped, or critically 
damped, for instance, requires comparing successive peak values. Noting the peak value of a particular 
cycle as a landmark value, and comparing it to the landmarks generated for successive cycles in the 
behavior, provides a way of making this inference.

Intervals are a well-known variable-resolution representation for numerical values and have been 
heavily used in qualitative reasoning. A quantity space can be thought of as partial information about 
a set of intervals. If we have complete information about the ordinal relationships between limit points 
and landmark values, these comparisons define a set of intervals that partition a parameter’s value. This 
natural mapping between quantity spaces and intervals has been exploited by a variety of systems that 
use intervals whose end points are known numerical values to refine predictions produced by purely 
qualitative reasoning. Fuzzy intervals have also been used in similar ways, for example, in reasoning 
about control systems.

Order of magnitude representations stratify values according to some notion of scale. They can be 
important in resolving ambiguities and in simplifying models because they enable reasoning about 
what phenomena and effects can safely be ignored in a given situation. For instance, heat losses from 
turbines are generally ignored in the early stages of power plant design, because the energy lost is very 
small relative to the energy being produced. Several stratification techniques have been used in the lit-
erature, including hyperreal numbers, numerical thresholds, and logarithmic scales. Three issues faced 
by all these formalisms are (1) the conditions under which many small effects can combine to produce a 
significant effect, (2) the soundness of the reasoning supported by the formalism, and (3) the efficiency 
of using them (Travé-Massuyès et al., 2003).

Although many qualitative representations of number use the reals as their basis, another impor-
tant basis for qualitative representations of number is finite algebras. One motivation for using finite 
algebras is that observations are often naturally categorized into a finite set of labels (i.e., very small, 
small, normal, large, very large). Research on such algebras is aimed at solving problems such as how 
to increase the compositionality of such representations (e.g., how to propagate information across 
different resolution scales).
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35.2.2 R epresenting Mathematical Relationships

Like number, a variety of qualitative representations of mathematical relationships have been devel-
oped, often by adopting and adapting systems developed in mathematics. Abstractions of the analytic 
functions are commonly used to provide the lower resolution and compositionality desired. For exam-
ple, confluences are differential equations over the sign algebra (de Kleer and Brown, 1984). An equation 
such as V = I R can be expressed as the confluence

	 [V] = [I] + [R]

where [Q] denotes taking the sign of Q. Differential equations can also be expressed in this manner, for 
instance,

	 [F] = ∂v

which is a qualitative version of F = M A (assuming M is always positive). Thus, any system of algebraic 
and differential equations with respect to time can be described as a set of confluences.

Many of the algebraic operations taken for granted in manipulating analytic functions over the reals 
are not valid in weak algebras (Struss, 1988). Because qualitative relationships are most often used to 
propagate information, this is not a serious limitation. In situations where algebraic solutions them-
selves are desirable, mixed representations that combine algebraic operations over the reals and move to 
qualitative abstractions when appropriate provide a useful approach (Williams, 1991).

Another low-resolution representation of equations uses monotonic functions over particular ranges; 
that is,

	 M+(acceleration, force)

states that acceleration depends only on the force, and the function relating them is increasing mono-
tonic (Kuipers, 1994). Compositionality is achieved using qualitative proportionalities (Forbus, 1984) to 
express partial information about functional dependency; for example,

	 acceleration αQ+ force

states that acceleration depends on force and is increasing monotonic in its dependence on force but 
may depend on other factors as well. Additional constraints on the function that determines force can 
be added by additional qualitative proportionalities; for example,

	 acceleration αQ- mass

states that acceleration also depends on mass and is decreasing monotonic in this dependence. 
Qualitative proportionalities must be combined via closed-world assumptions to ascertain all the 
effects on a quantity. Similar primitives can be defined for expressing relationships involving deriva-
tives, to define a complete language of compositional qualitative mathematics for ordinary differential 
equations. As with confluences, few algebraic operations are valid for combining monotonic functions. 
Composition of functions of identical sign is safe; that is,

	 M  + (f,g) ∧  M  + (g,h) ⇒  M  + (f,h)

In addition to resolution and compositionality, another issue arising in qualitative representations of 
mathematical relationships is causality. There are three common views on how mathematical relation-
ships interact with the causal relationships people use in commonsense reasoning. One view is that 
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there is no relationship between them. The second view is that mathematical relationships should be 
expressed with primitives that also make causal implications. For example, qualitative proportionali-
ties include a causal interpretation, that is, a change in force causes a change in acceleration, but not 
the other way around. The third view is that acausal mathematical relationships give rise to causal rela-
tionships via the particular process of using them. For example, confluences have no built-in causal 
direction but are used in causal reasoning by identifying the flow of information through them while 
reasoning with a presumed flow of causality in the physical system they model. One method for impos-
ing causality on a set of acausal constraint equations is by computing a causal ordering (Iwasaki and 
Simon, 1994) that imposes directionality on a set of equations, starting from variables considered to be 
exogenous within the system.

Each view of causality has its merits. For tasks where causality is truly irrelevant, ignoring causal-
ity can be a reasonable approach. To create software that can span the range of human commonsense 
reasoning, something like a combination of the second and third views appears necessary because the 
appropriate notion of causality varies (Forbus and Gentner, 1986). In reasoning about chemical phe-
nomena, for instance, changes in concentration are always caused by changes in the amounts of the con-
stituent parts and never the other way around. In electronics, on the other hand, it is often convenient to 
consider voltage changes as being caused by changes in current in one part of a circuit and to consider 
current changes as being caused by changes in voltage in another part of the same circuit.

35.2.3  Ontology

Ontology concerns how to carve up the world, that is, what kinds of things there are and what sorts 
of relationships can hold between them. Ontology is central to qualitative modeling because one of its 
main goals is formalizing the art of building models of continuous systems. A key choice in any act of 
modeling is figuring out how to construe the situation or system to be modeled in terms of the available 
models for classes of entities and phenomena. No single ontology will suffice for the span of reasoning 
about continuous systems that people do. What has been developed instead is a catalog of ontologies, 
describing their properties and interrelationships and specifying conditions under which each is appro-
priate. While several ontologies are currently well understood, the catalog still contains many gaps.

An example of ontologies will make this point clearer. Consider the representation of liquids. Broadly 
speaking, the major distinction in reasoning about fluids is whether one individuates fluid according to 
a particular collection of particles or by location (Hayes, 1985). The former are called Eulerian, or piece 
of stuff, ontologies. The latter are called Lagrangian, or contained stuff, ontologies. The contained stuff 
view of liquids is used when one treats a river as a stable entity, although the particular set of molecules 
that comprises it is changing constantly. The piece of stuff view of liquids is used when one thinks about 
the changes in a fluid as it flows through a steady-state system, such as a working refrigerator. Ontologies 
multiply as we try to capture more aspects of human reasoning. For instance, the piece of stuff ontology 
can be further divided into three cases, each with its own rules of inference: (1) molecular collections, 
which describe the progress of an arbitrary piece of fluid that is small enough to never split apart but 
large enough to have extensive properties; (2) slices, which, like molecular collections, never subdivide 
but unlike them are large enough to interact directly with their surroundings; and (3) pieces of stuff 
large enough to be split into several pieces (e.g., an oil slick). Similarly, the contained stuff ontology can 
be further specialized according to whether or not individuation occurs simply by container (abstract-
contained stuffs) or by a particular set of containing surfaces (bounded stuffs). Abstract-contained 
stuffs provide a low-resolution ontology appropriate for reasoning about system-level properties in com-
plex systems (e.g., the changes over time in a lubricating oil subsystem in a propulsion plant), whereas 
bounded stuffs contain the geometric information needed to reason about the interactions of fluids and 
shape in systems such as pumps and internal combustion engines.

Cutting across the ontologies for particular physical domains are systems of organization for classes 
of ontologies. The most commonly used ontologies are the device ontology (de Kleer and Brown, 1984) 
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and the process ontology (Forbus, 1984). The device ontology is inspired by network theory and system 
dynamics. Like those formalisms, it construes continuous systems as networks of devices whose interac-
tions occur solely through a fixed set of ports. Unlike those formalisms, it provides the ability to write 
and reason automatically with device models whose governing equations can change over time.

The process ontology is inspired by studies of human mental models and observations of practice in 
thermodynamics and chemical engineering. It construes continuous systems as consisting of entities 
whose changes are caused by processes. Process ontologies thus postulate a separate ontological cat-
egory for causal mechanisms, unlike device ontologies, where causality arises solely from the interac-
tion of the parts. Another difference between the two classes of ontologies is that in the device ontology 
the system of devices and connections is fixed over time, whereas in the process ontology entities and 
processes can come into existence and vanish over time. Each is appropriate in different contexts: for 
most purposes, an electronic circuit is best modeled as a network of devices, whereas a chemical plant is 
best modeled as a collection of interacting processes.

35.2.4  State, Time, and Behaviors

A qualitative state is a set of propositions that characterize a qualitatively distinct behavior of a system. 
A qualitative state describing a falling ball, for instance, would include information about what physical 
processes are occurring (e.g., motion downward, acceleration due to gravity) and how the parameters 
of the ball are changing (e.g., its position is getting lower and its downward velocity is getting larger). A 
qualitative state can abstractly represent an infinite number of quantitative states: although the position 
and velocity of the ball are different at each distinct moment during its fall, until the ball collides with 
the ground, the qualitative state of its motion is unchanged.

Qualitative representations can be used to partition behavior into natural units. For instance, the 
time over which the state of the ball falling holds is naturally thought of as an interval, ending when 
the ball collides with the ground. The collision itself can be described as yet another qualitative state, 
and the fact that falling leads to a collision with the ground can be represented via a transition between 
the two states. If the ball has a nonzero horizontal velocity and there is some obstacle in its direction of 
travel, another possible behavior is that the ball will collide with that object instead of the ground. In 
general, a qualitative state can have transitions to several next states, reflecting ambiguity in the quali-
tative representations. Returning to our ball example, and assuming that no collisions with obstacles 
occur, notice that the qualitative state of the ball falling occurs again once the ball has reached its maxi-
mum height after the collision. If continuous values are represented by quantity spaces and the sources 
of comparisons are limit points, then a finite set of qualitative states is sufficient to describe every pos-
sible behavior of a system. A collection of such qualitative states and transitions is called an envision-
ment (de Kleer, 1977). Many interesting dynamical conclusions can be drawn from an envisionment. 
For instance, oscillations correspond to cycles of states. Unfortunately, the fixed resolution provided 
by limit points is not sufficient for other dynamical conclusions, such as ascertaining whether or not 
the ball’s oscillation is damped. If comparisons can include landmark values, such conclusions can 
sometimes be drawn, for example, by comparing the maximum height on one bounce to the maximum 
height obtained on the next bounce. The cost of introducing landmark values is that the envisionment 
no longer need be finite; every cycle in a corresponding fixed-resolution envisionment could give rise to 
an infinite number of qualitative states in an envisionment with landmarks.

A sequence of qualitative states occurring over a particular span of time is called a behavior. Behaviors 
can be described using purely qualitative knowledge, purely quantitative knowledge, or a mixture of 
both. If every continuous parameter is quantitative, the numerical aspects of behaviors coincide with 
the notion of trajectory in a state-space model. If qualitative representations of parameters are used, a 
single behavior can represent a family of trajectories through state space.

An idea closely related to behaviors is histories (Hayes, 1985). Histories can be viewed as local behav-
iors, that is, how a single individual or property varies through time. A behavior is equivalent to a 



35-7Qualitative Reasoning

global history, that is, the union of all the histories for the participating individuals. The distinction 
is important for two reasons. First, histories are the dual of situations in the situation calculus; histo-
ries are bounded spatially and extended temporally, whereas situations are bounded temporally and 
extended spatially. Using histories avoids the frame problem, instead trading it for the more tracta-
ble problems of generating histories locally and determining how they interact when they intersect 
in space and time. The second reason is that history-based simulation algorithms can be more effi-
cient than state-based simulation algorithms because no commitments need to be made concerning 
irrelevant information.

In a correct envisionment, every possible behavior of the physical system corresponds to some 
path through the envisionment. Because envisionments reflect only local constraints, the converse is 
not true; that is, an arbitrary path through an envisionment may not represent a physically possible 
behavior. When using an envisionment to generate hypotheses about possible behaviors, this can 
lead to over-generation. Paths must be tested against global constraints, such as energy conserva-
tion, to ensure their physical validity, or filtered by some other means. When using an envisionment 
to explain observed behaviors, this limitation is less serious, since the observed behavior, by its very 
nature, must be physically possible. A more serious limitation is that envisionments are often expo-
nential in the size of the system being modeled. This means that, in practice, envisionments often are 
not generated explicitly and, instead, possible behaviors are searched in ways similar to those used in 
other areas of AI.

Many tasks require integrating qualitative states with other models of time, such as numerical mod-
els. Including precise information (e.g., algebraic expressions or floating-point numbers) about the end 
points of intervals in a history does not change their essential character.

35.3  Space and Shape

Qualitative representations of shape and space play an important role in spatial cognition because they 
provide a bridge between the perceptual and the conceptual. By discretizing continuous space, they 
make it amenable to symbolic reasoning. As with qualitative representations of 1D parameters, task 
constraints govern the choice of qualitative representation. However, problem-independent purely 
qualitative spatial representations suffice for fewer tasks than in the 1D case, because of the increased 
ambiguity in higher dimensions (Forbus et al., 1991). Consider, for example, deciding whether a pro-
trusion can fit snugly inside a hole. If we have detailed information about their shapes, we can derive 
an answer. If we consider a particular set of protrusions and a particular set of holes, we can construct 
a qualitative representation of these particular protrusions and holes that would allow us to derive 
whether or not a specific pair would fit, based on their relative sizes. But if we first compute a qualita-
tive representation for each protrusion and hole in isolation, in general the rules of inference that can 
be derived for this problem will be very weak. Work in qualitative spatial representations thus tends 
to take two approaches. The first approach is to explore what aspects do lend themselves to purely 
qualitative representations. The second approach is to use a quantitative representation as a start-
ing point and compute problem-specific qualitative representations to reason with. We summarize 
each in turn.

An impressive catalog of qualitative spatial representations have been developed that can be used 
to reason about particular aspects of shape and space (Cohn and Renz, 2008). The general approach 
is to identify a set of relationships that provide natural decompositions of a spatial property, such 
as connectivity or orientation, and define calculi over these relationships to support inference. For 
example, the eight relationship versions of the region connection calculus (RCC) include disjoint, 
edge connected, partially overlapping, tangential proper part (and its inverse), non-tangential proper 
part (and its inverse), and equal as relationships. A transitivity table supports inference, that is, if a 
bird is inside a cage and a cat is outside the cage, then the bird and the cat are disjoint (and unless the 
connectivity changes, the bird is safe). Note that the sequence of relationships earlier also captures 
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some aspects of the relationships between two objects that are moving: they are apart, they touch, one 
enters the other, etc. Such physical interpretations have enabled such calculi to be used in reasoning 
about change and in interpreting visual information (Sridhar et al., 2010). The calculi vary in terms 
of expressiveness and efficiency: some have been shown to be NP-complete, but often tractable subsets 
can be found.

The use of quantitative representations to ground qualitative spatial reasoning can be viewed as a 
model of the ways humans use diagrams and models in spatial reasoning. For this reason such work is 
also known as diagrammatic reasoning (Glasgow et al., 1995). One form of diagram representation is the 
occupancy array that encodes the location of an object by cells in a (2D or 3D) grid. These representa-
tions simplify the calculation of spatial relationships between objects (e.g., whether or not one object 
is above another), albeit at the cost of making the object’s shape implicit. Another form of diagram 
representation uses symbolic structures with quantitative properties, for example, numerical, algebraic, 
or interval (e.g., Forbus et al., 1991). These representations simplify calculations involving shape and 
spatial relationships, without the scaling and resolution problems that sometimes arise in array repre-
sentations. However, they require a set of primitive shape elements that spans all the possible shapes of 
interest, and identifying such sets for particular tasks can be difficult. For instance, many intuitively 
natural sets of shape primitives are not closed with respect to their complement, which can make char-
acterizing free space difficult.

Diagram representations are used for qualitative spatial reasoning in two ways. The first is as a deci-
sion procedure for spatial questions. This mimics one of the roles diagrams play in human perception. 
Often, these operations are combined with domain-specific reasoning procedures to produce an analog 
style of inference, where, for instance, the effects of perturbations on a structure are mapped into the 
diagram, the effect on the shapes in the diagram noted, and the results mapped back into a physical 
interpretation. The second way uses the diagram to construct a problem-specific qualitative vocabulary, 
imposing new spatial entities representing physical properties, such as the maximum height a ball can 
reach or regions of free space that can contain a motion. This is the metric diagram/place vocabulary 
model of qualitative spatial reasoning.

Representing and reasoning about kinematic mechanisms was one of the early successes in qualita-
tive spatial reasoning. The possible motions of objects are represented by qualitative regions in the con-
figuration space representing the legitimate positions of parts of mechanisms (Faltings, 1990). Whereas, 
in principle, a single high-dimensional configuration space could be used to represent a mechanism’s 
possible motions (each dimension corresponding to a degree of freedom of a part of the mechanism), 
in practice a collection of configuration spaces, one 2D space for each pair of parts that can interact, 
is used. These techniques suffice to analyze a wide variety of kinematic mechanisms and can support 
design (Sacks and Joscowicz, 2010).

Another important class of spatial representations concerns qualitative representations of spatially 
distributed phenomena, such as flow structures and regions in phase space. These models use tech-
niques from computer vision to recognize or impose qualitative structure on a continuous field of infor-
mation, gleaned from numerical simulation or scientific data. This qualitative structure, combined with 
domain-specific models of how such structures tie to the underlying physics, enables them to interpret 
physical phenomena in much the same way that a scientist examining the data would (e.g., Yip, 1991; 
Huang and Zhao, 2000).

An important recent trend is using rich, real-world data as input for qualitative spatial reasoning. 
For example, several systems provide some of the naturalness of sketching by performing qualitative 
reasoning on spatial data input as digital ink, for tasks like mechanical design (Stahovich et al., 1998), 
reasoning about student’s sketches in geoscience and engineering design education (Forbus et al., 2011), 
and communicating tactics to robot soccer teams (Gspandl et al., 2010). Qualitative representations are 
being used in computer vision as well, for example, as a means of combining dynamic scenes across 
time to interpret events (e.g., Sridhar et al., 2010).
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35.3.1 � Compositional Modeling, Domain Theories, 
and Modeling Assumptions

There is almost never a single correct model for a complex physical system. Most systems can be mod-
eled in a variety of ways, and different tasks can require different types of models. The creation of a 
system model for a specific purpose is still something of an art. Qualitative reasoning has developed 
formalisms that combine logic and mathematics with qualitative representations to help automate the 
process of creating and refining models. The compositional modeling methodology (Falkenhainer and 
Forbus, 1991), which has become standard in qualitative reasoning, works like this: models are cre-
ated from domain theories, which describe the kinds of entities and phenomena that can occur in a 
physical domain. A domain theory consists of a set of model fragments, each describing a particular 
aspect of the domain. Creating a model is accomplished by instantiating an appropriate subset of model 
fragments, given some initial specification of the system (e.g., the propositional equivalent of a blue-
print) and information about the task to be performed. Reasoning about appropriateness involves the 
use of modeling assumptions. Modeling assumptions are the control knowledge used to reason about 
the validity or appropriateness of using model fragments. Modeling assumptions are used to express the 
relevance of model fragments. Logical constraints between modeling assumptions comprise an impor-
tant component of a domain theory.

An example of a modeling assumption is assuming that a turbine is isentropic. Here is a model fragment 
that illustrates how this assumption is used:

(defEquation Isentropic-Turbine
    ((turbine ?g ?in ?out)(isentropic ?g))
    (= (spec-s ?in) (spec-s ?out)))

In other words, when a turbine is isentropic, the specific entropy of its inlet and outlet are equal. Other 
knowledge in the domain theory puts constraints on the predicate isentropic,

(for-all (?self (turbine ?self))
   (iff (= (nu-isentropic ?self) 1.0) (isentropic ?self)))

That is, a turbine is isentropic exactly when its isentropic thermal efficiency is 1. Although no real 
turbine is isentropic, assuming that turbines are isentropic simplifies early analyses when creating a 
new design. In later design phases, when tighter performance bounds are required, this assumption is 
retracted and the impact of particular values for the turbine’s isentropic thermal efficiency is explored. 
The consequences of choosing particular modeling assumptions can be quite complex; the fragments 
shown here are less than one-fourth the knowledge expressing the consequences of assuming that a 
turbine is isentropic in a typical knowledge base.

Modeling assumptions can be classified in a variety of ways. An ontological assumption describes 
which ontology should be used in an analysis. For instance, reasoning about the pressure at the bottom 
of a swimming pool is most simply performed using a contained stuff representation, whereas describ-
ing the location of an oil spill is most easily performed using a piece of stuff representation. A perspec-
tive assumption describes which subset of phenomena operating in a system will be the subject. For 
example, in analyzing a steam plant, one might focus on a fluid perspective, a thermal perspective, or 
both at once. A granularity assumption describes how much detail is included in an analysis. Ignoring 
the implementation details of subsystems, for instance, is useful in the conceptual design of an artifact, 
but the same implementation details may be critical for troubleshooting that artifact. The relationships 
between these classes of assumptions can be complicated and domain dependent; for instance, it makes 
no sense to include a model of a heating coil (a choice of granularity) if the analysis does not include 
thermal properties (a choice of perspective).
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Relationships between modeling assumptions provide global structure to domain theories. 
Assumptions about the nature of this global structure can significantly impact the efficiency of model 
formulation, as discussed in the following. In principle, any logical constraint could be imposed between 
modeling assumptions. In practice, two kinds of constraints are the most common. The first are impli-
cations, such as one modeling assumption requiring or forbidding another. For example,

(for-all (?s (system ?s))
  (implies (consider (black-box ?s))
           (for-all (?p (part-of ?p ?s)) (not (consider ?p)))))

says that if one is considering a subsystem as a black box, then all of its parts should be ignored. Similarly,

(for-all (?l (contained-stuff ?l))
   (implies (consider (pressure ?l))
            (consider (fluid-properties ?l))))

states that if an analysis requires considering something’s pressure, then its fluid properties are relevant. 
The second kind of constraint between modeling assumptions is assumption classes. An assumption 
class expresses a choice required to create a coherent model under particular conditions. For example,

(defAssumptionClass (turbine ?self)
  (isentropic ?self) (not (isentropic ?self)))

states that when something is modeled as a turbine, any coherent model including it must make a choice 
about whether or not it is modeled as isentropic. The choice may be constrained by the data so far (e.g., 
different entrance and exit specific entropies), or it may be an assumption that must be made in order to 
complete the model. The set of choices need not be binary. For each valid assumption class, exactly one 
of the choices it presents must be included in the model.

35.4  Qualitative Reasoning Techniques

A variety of qualitative reasoning techniques have been developed that use the qualitative representa-
tions just outlined.

35.4.1  Model Formulation

Methods for automatically creating models for a specific task are one of the hallmark contributions of 
qualitative reasoning. These methods formalize knowledge and skills typically left implicit by most of 
traditional mathematics and engineering.

The simplest model formulation algorithm is to instantiate every possible model fragment from a 
domain theory, given a propositional representation of the particular scenario to be reasoned about. 
This algorithm is adequate when the domain theory is very focused and thus does not contain much 
irrelevant information. It is inadequate for broad domain theories and fails completely for domain theo-
ries that include alternative and mutually incompatible perspectives (e.g., viewing a contained liquid 
as a finite object vs. an infinite source of liquid). It also fails to take task constraints into account. For 
example, it is possible, in principle, to analyze the cooling of a cup of coffee using quantum mechan-
ics. Even if it were possible in practice to do so, for most tasks simpler models suffice. Just how simple a 
model can be and remain adequate depends on the task. If I want to know if the cup of coffee will still 
be drinkable after an hour, a qualitative model suffices to infer that its final temperature will be that of 
its surroundings. If I want to know its temperature within 5% after 12 min have passed, a macroscopic 
quantitative model is a better choice. In other words, the goal of model formulation is to create the sim-
plest adequate model of a system for a given task.
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More sophisticated model formulation algorithms search the space of modeling assumptions, because 
they control which aspects of the domain theory will be instantiated. The model formulation algorithm 
of Falkenhainer and Forbus (1991) instantiated all potentially relevant model fragments and used an 
assumption-based truth maintenance system to find all legal combinations of modeling assumptions that 
sufficed to form a model that could answer a given query. The simplicity criterion used was to minimize 
the number of modeling assumptions. This algorithm is very simple and general but has two major draw-
backs: (1) full instantiation can be very expensive, especially if only a small subset of the model fragments 
is eventually used; and (2) the number of consistent combinations of model fragments tends to be expo-
nential for most problems. The rest of this section describes algorithms that overcome these problems.

Efficiency in model formulation can be gained by imposing additional structure on domain theo-
ries. Under at least one set of constraints, model formulation can be carried out in polynomial time 
(Nayak, 1994). The constraints are that (1) the domain theory can be divided into independent assump-
tion classes and, (2) within each assumption class, the models can be organized by a (perhaps partial) 
simplicity ordering of a specific nature, forming a lattice of causal approximations. Nayak’s algorithm 
computes a simplest model, in the sense of simplest within each local assumption class, but does not 
necessarily produce the globally simplest model.

Conditions that ensure the creation of coherent models, that is, models that include sufficient infor-
mation to produce an answer of the desired form, provide powerful constraints on model formulation. 
For example, in generating “what-if” explanations of how a change in one parameter might affect par-
ticular other properties of the system, a model must include a complete causal chain connecting the 
changed parameter to the other parameters of interest. This insight can be used to treat model formu-
lation as a best-first search for a set of model fragments providing the simplest complete causal chain 
(Rickel and Porter, 1994). A novel feature of this algorithm is that it also selects models at an appropriate 
timescale. It does this by choosing the slowest timescale phenomenon that provides a complete causal 
model, because this provides accurate answers that minimize extraneous detail.

As with other AI problems, knowledge can reduce search. One kind of knowledge that experienced 
modelers accumulate concerns the range of applicability of various modeling assumptions and strategies 
for how to reformulate when a given model proves inappropriate. Dynamically constructing qualitative 
representations from more detailed models, driven by task requirements, has been explored (Sachenbacher 
and Struss, 2005). Model formulation often is an iterative process. For instance, an initial qualitative 
model often is generated to identify the relevant phenomena, followed by the creation of a narrowly 
focused quantitative model to answer the questions at hand. Similarly, domain-specific error criterion 
can determine that a particular model’s results are internally inconsistent, causing the reasoner to restart 
the search for a good model. One approach is to formalize model formulation as a dynamic preference 
constraint satisfaction problem, where more fine-grained criteria for model preference than “simplest” 
can be formalized and exploited (Keppens and Shen, 2004). Another promising approach is analogical 
model formulation, since similar models are likely to work in similar circumstances (Klenk et al., 2011).

35.4.2  Causal Reasoning

Causal reasoning explains an aspect of a situation in terms of others in such a way that the aspect being 
explained can be changed if so desired. For instance, a flat tire is caused by the air inside flowing out, 
either through the stem or through a leak. To refill the tire, we must both ensure that the stem provides 
a seal and that there are no leaks. Causal reasoning is thus at the heart of diagnostic reasoning as well 
as explanation generation.

The techniques used for causal reasoning depend on the particular notion of causality used, but they 
all share a common structure. First, causality involving factors within a state are identified. Second, 
how the properties of a state contribute to a transition (or transitions) to another state are identified, to 
extend the causal account over time. Because causal reasoning often involves qualitative simulation, we 
turn to simulation next.
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35.4.3  Simulation

The new representations of quantity and mathematical relationships of qualitative reasoning expand 
the space of simulation techniques considerably. We start by considering varieties of purely qualitative 
simulation and then describe several simulation techniques that integrate qualitative and quantitative 
information.

Understanding limit analysis, the process of finding state transitions, is key to understanding qualita-
tive simulation. Recall that a qualitative state consists of a set of propositions, some of them describing 
the values of continuous properties in the system. (For simplicity in this discussion, we will assume that 
these values are described as ordinal relations, although the same method works for sign representations 
and representations richer than ordinals.) Two observations are critical: (1) the phenomena that cause 
changes in a situation often depend on ordinal relationships between parameters of the situation, and (2) 
knowing just the sign of the derivatives of the parameters involved in these ordinal relationships suffices 
to predict how they might change over time. The effects of these changes, when calculated consistently, 
describe the possible transitions to other states.

An example will make this clearer. Consider again a pot of water sitting on a stove. Once the stove is 
turned on, heat begins to flow to the water in the pot because the stove’s temperature is higher than that 
of the water. The causal relationship between the temperature inequality and the flow of heat means that 
to predict changes in the situation, we should figure out their derivatives and any other relevant ordinal 
relationships that might change as a result. In this qualitative state, the derivative of the water’s tem-
perature is positive, and the derivative of the stove’s temperature is zero. Thus, one possible state change 
is that the water will reach thermal equilibrium with the stove and the flow of heat will stop. That is not 
the only possibility, of course. We know that boiling can occur if the temperature of the water begins 
to rise above its boiling temperature. That, too, is a possible transition that would end the state. Which 
of these transitions occurs depends on the relationship between the temperature of the stove and the 
boiling temperature of water.

This example illustrates several important features of limit analysis. First, surprisingly weak infor-
mation (i.e., ordinal relations) suffices to draw important conclusions about broad patterns of physical 
behavior. Second, limit analysis with purely qualitative information is fundamentally ambiguous: it 
can identify what transitions might occur, but cannot by itself determine in all cases which transition 
will occur. Third, like other qualitative ambiguities, higher-resolution information can be brought in to 
resolve the ambiguities as needed. Returning to our example, any information sufficient to determine 
the ordinal relationship between the stove temperature and boiling suffices to resolve this ambiguity. If 
we are designing an electric kettle, for instance, we would use this ambiguity as a signal that we must 
ensure that the heating element’s temperature is well above the boiling point; and if we are designing a 
drink warmer, its heating element should operate well below the boiling point.

Qualitative simulation algorithms vary along four dimensions: (1) their initial states, (2) what con-
ditions they use to filter states or transitions, (3) whether or not they generate new landmarks, and (4) 
how much of the space of possible behaviors they explore. Envisioning is the process of generating an 
envisionment, that is, generating all possible behaviors. Two kinds of envisioning algorithms have been 
used in practice: attainable envisioners produce all states reachable from a set of initial states, and total 
envisioners produce a complete envisionment. Behavior generation algorithms start with a single initial 
state, generate landmark values, and use a variety of task-dependent constraints as filters and termina-
tion criteria (e.g., resource bounds, energy constraints).

Higher-resolution information can be integrated with qualitative simulation in several ways. One 
method for resolving ambiguities in behavior generation is to provide numerical envelopes to bound 
mathematical relationships. These envelopes can be dynamically refined to provide tighter situation-
specific bounds. Such systems are called semiquantitative simulators (Kuipers, 1994).

A different approach to integration is to use qualitative reasoning to automatically construct a numer-
ical simulator that has integrated explanation facilities. These self-explanatory simulators (Forbus and 



35-13Qualitative Reasoning

Falkenhainer, 1990) use traditional numerical simulation techniques to generate behaviors, which are 
also tracked qualitatively. The concurrently evolving qualitative description of the behavior is used both 
in generating explanations and in ensuring that appropriate mathematical models are used when appli-
cability thresholds are crossed. Self-explanatory simulators can be compiled in polynomial time for 
efficient execution, even on small computers, or created in an interpreted environment. They have been 
deployed mostly in education, both as a web-based medium and within classroom activities for middle 
school students.

35.4.4  Comparative Analysis

Comparative analysis answers a specific kind of “what-if” questions, namely, the changes that result from 
changing the value of a parameter in a situation. Given higher-resolution information, traditional ana-
lytic or numerical sensitivity analysis methods can be used to answer these questions; however (1) such 
reasoning is commonly carried out by people who have neither the data nor the expertise to carry out 
such analyses, and (2) purely quantitative techniques tend not to provide good explanations. Sometimes, 
purely qualitative information suffices to carry out such reasoning, using techniques such as exaggera-
tion (Weld, 1990). Consider, for instance, the effect of increasing the mass of a block in a spring-block 
oscillator. If the mass were infinite, the block would not move at all, corresponding to an infinite period. 
Thus, we can conclude that increasing the mass of the block will increase the period of the oscillator.

35.4.5 T eleological Reasoning

Teleological reasoning connects the structure and behavior of a system to its goals. (By its goals, we are 
projecting the intent of its designer or the observer, because purposes often are ascribed to components 
of evolved systems.) To describe how something works entails ascribing a function to each of its parts 
and to explain how these functions together achieve the goals. Teleological reasoning is accomplished 
by a combination of abduction and recognition. Abduction is necessary because most components and 
behaviors can play several functional roles (de Kleer, 1984). A turbine, for instance, can be used to 
generate work in a power generation system and to expand a gas in a liquefaction system. Recognition 
is important because it explains patterns of function in a system in terms of known, commonly used 
abstractions. A complex power generation system with multiple stages of turbines and reheating and 
regeneration, for instance, still can be viewed as a Rankine cycle after the appropriate aggregation of 
physical processes involved in its operation (Everett, 1999).

35.4.6  Data Interpretation

There are two ways that the representations of qualitative reasoning have been used in data interpreta-
tion problems. The first is to explain a temporal sequence of measurements in terms of a sequence of 
qualitative states; the second is to create a qualitative model of spatially distributed numerical data, 
for example, phase spaces, by interpreting the results of empirical data measurements or successive 
numerical simulation experiments in terms of regions whose qualitative properties are constant. The 
underlying commonality in these problems is the use of qualitative descriptions of physical constraints 
to formulate compatibility constraints that prune the set of possible interpretations. We summarize 
each in turn.

In measurement interpretation tasks, numerical and symbolic data are partitioned into intervals, 
each of which can be explained by a qualitative state or sequence of qualitative states. Using precom-
puted envisionments or performing limit analysis online, possible transitions between states used as 
interpretations can be found for filtering purposes. Specifically, if a state S1 is a possible interpretation 
for interval I1, then at least one transition from S1 must lead to a state that is an interpretation for the 
next interval.
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This compatibility constraint, applied in both directions, can provide substantial pruning. Additional 
constraints that can be applied include the likelihood of particular states occurring, the likelihood of 
particular transitions occurring, and estimates of durations for particular states. Algorithms have been 
developed that can use all these constraints to maintain a single best interpretation of a set of incoming 
measurements that operate in polynomial time (de Coste, 1991).

In spatial data interpretation tasks, a physical experiment (e.g., Huang and Zhao, 2000) or numeri-
cal simulation (e.g., Yip, 1991) is used to gather information about the possible behaviors of a system 
given a set of initial parameters. The geometric patterns these behaviors form are described using vision 
techniques to create a qualitative characterization of the behavior. For example, initially, simulations 
are performed on a coarse grid to create an initial description of the system’s phase space. This initial 
description is then used to guide additional numerical simulation experiments, using rules that express 
physical properties visually.

35.4.7  Spatial Reasoning

Reasoning with purely qualitative representations uses constraint satisfaction techniques to determine 
possible solutions to networks of relationships. The constraints are generally expressed as transitiv-
ity tables. When metric diagrams are used, processing techniques adapted from vision and robotics 
research are used to extract qualitative descriptions (Bailey-Kellogg and Zhao, 2003). Some reasoning 
proceeds purely within these new qualitative representations, while other tasks require the coordination 
of qualitative and diagrammatic representations. There is now a robust flow in the other direction, that 
is, vision and robotics researchers adopting qualitative representations because they are more robust to 
compute from the data and are more appropriate for many tasks (e.g., Kuipers and Byun, 1991; Sridhar 
et al., 2010). For example, qualitative spatial models computed from sensors are being used by teams in 
RoboCup Soccer (e.g., Schiffer et al., 2006).

35.5 A pplications of Qualitative Reasoning

Qualitative reasoning began as a research enterprise in the 1980s, with successful fielded applications 
starting to appear by the early 1990s. For example, applications in supervisory process control (LeClair 
et al., 1989) have been successful enough to be embedded in commercial systems. Qualitative reasoning 
techniques have been used in the design of complex electromechanical systems, such as photocopiers, 
including the automatic generation of control software. A commercial tool using qualitative reasoning 
for FMEA in automobile electrical circuits was adopted by a major automobile manufacturer (Price, 
2000). Thus, some applications of qualitative reasoning have been in routine use for over a decade, and 
more applications continue to be developed, with efforts expanding to include education and scientific 
modeling as well as engineering. Here we briefly summarize some of these research efforts.

35.5.1  Monitoring, Control, and Diagnosis

Monitoring, control, and diagnosis, although often treated as distinct problems, are in many appli-
cations deeply intertwined. Because these tasks also have deep theoretical commonalities, they are 
described together here. Monitoring a system requires summarizing its behavior at a level of description 
that is useful for taking action. Qualitative representations correspond to descriptions naturally applied 
by system operators and designers and thus can help provide new opportunities for automation. An 
important benefit of using qualitative representations is that the concepts the software uses can be made 
very similar to those of people who interact with software, thus potentially improving human–computer 
interfaces. Qualitative representations are important for control because qualitative distinctions provide 
criteria that make different control actions appropriate. Diagnosis tasks impose similar requirements. It 
is rarely beneficial to spend the resources required to construct a very detailed quantitative model of the 
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way a particular part has failed when the goal is to isolate a problem. Qualitative models often provide 
sufficient resolution for fault isolation. Qualitative models also provide the framework for organizing 
fault detection (i.e., noticing that a problem has occurred) and for working around a problem, even when 
these tasks require quantitative information (e.g., Flad et al., 2010).

An early commercial success of qualitative reasoning was in supervisory process control, where qual-
itative representations are used to provide more robust control than statistical process control in curing 
composite parts (LeClair et al., 1989). In the early stage of curing a composite part, the temperature of 
the furnace needs to be kept relatively low because the part is outgassing. Keeping the furnace low dur-
ing the entire curing process is inefficient, however, because lower temperatures mean longer cure times. 
Therefore, it is more productive to keep temperature low until outgassing stops and then increase it to 
finish the cure process more quickly. Statistical process control methods use a combination of analytic 
models and empirical tests to figure out an optimal pattern of high/low cooking times. By incorporating 
a qualitative description of behavior into the controller, it can detect the change in qualitative regime 
and control the furnace accordingly, providing both faster curing times and higher yield rates than 
traditional techniques.

Another use of qualitative representations is in describing control strategies used by machine opera-
tors, such as unloading cranes on docks. By recording the actions of crane operators, machine learning 
techniques can be used to reverse-engineer their strategies (Suc and Bratko, 2002).

In some applications a small set of fault models can be pre-enumerated. A set of models, which 
includes the nominal model of the system plus models representing common faults, can then be used to 
track the behavior of a system with a qualitative or semiquantitative simulator. Any fault model whose 
simulation is inconsistent with the observed behavior can thus be ruled out. Relying on a preexisting 
library of fault models can limit the applicability of automatic monitoring and diagnosis algorithms. 
One approach to overcoming this limitation is to create algorithms that require only models of normal 
behavior. Most consistency-based diagnosis algorithms take this approach. For example, in developing 
onboard diagnostics for Diesel engines, qualitative representations have been found to be useful as a 
robust level of description for reasoning and for abstracting away from sensor noise (e.g., Sachenbacher 
et al., 2000).

One limitation with consistency-based diagnosis is that the ways a system can fail are still governed 
by natural laws, which impose more constraint than logical consistency. This extra constraint can be 
exploited by using a domain theory to generate explanations that could account for the problem, via 
abduction. These explanations are useful because they make additional predictions that can be tested 
and that also can be important for reasoning about safety in operative diagnosis (e.g., if a solvent tank’s 
level is dropping because it is leaking, then where is the solvent going?). However, in many diagnosis 
tasks, this limitation is not a concern.

35.5.2  Design

Engineering design activities are divided into conceptual design, the initial phase, when the overall 
goals, constraints, and functioning of the artifact are established, and detailed design, when the results 
of conceptual design are used to synthesize a constructible artifact or system. Most computer-based 
design tools, such as computer-aided design (CAD) systems and analysis programs, facilitate detailed 
design. Yet many of the most costly mistakes occur during the conceptual design phase. The ability to 
reason with partial information makes qualitative reasoning one of the few technologies that provides 
substantial leverage during the conceptual design phase (Klenk et al., 2012). Qualitative reasoning can 
also help automate aspects of detailed design.

One example was Mita Corporation’s DC-6090 photocopier (Shimomura et al., 1995), a self-maintenance 
machine, in which redundant functionality is identified at design time so that the system can dynamically 
reconfigure itself to temporarily overcome certain faults. An envisionment including fault models, created 
at design time, was used as the basis for constructing the copier’s control software. In operation, the copier 
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keeps track of which qualitative state it is in, so that it produces the best quality copy it can. More recently, 
fully automatic, real-time composition of control software for “plug and play” high-end printing systems 
has been fielded by Xerox, using planning techniques over qualitative compositional models to assemble 
model-based controllers as parts are added to a system in the field (Fromherz et al., 2003).

In some fields experts formulate general design rules and methods expressed in natural language. 
Qualitative representations can enable these rules and methods can be further formalized, so that they 
can be automated. In chemical engineering, for instance, several design methods for distillation plants 
have been formalized using qualitative representations, and designs for binary distillation plants com-
parable to those in the chemical engineering research literature have been generated automatically.

Automatic analysis and synthesis of kinematic mechanisms have received considerable attention. 
Complex fixed-axis mechanisms, such as mechanical clocks, can be simulated qualitatively, and a sim-
plified dynamics can be added to produce convincing animations. Initial forays into conceptual design 
of mechanisms have been made, for example, using configuration space-based techniques to analyze 
higher-pair mechanisms (Sacks and Joskowicz, 2010). Qualitative representations are also useful in case-
based design, because they provide a level of abstraction that simplifies adaptation (e.g., Faltings, 2001).

Qualitative reasoning also is being used to reason about the effects of failures and operating procedures. 
Such information can be used in FMEA. For example, potential hazards in a chemical plant design can be 
identified by perturbing a qualitative model of the design with various faults and using qualitative simulation 
to ascertain the possible indirect consequences of each fault. Commercial FMEA software using qualitative 
simulation for electrical system design is now being used commercially in automotive design (Price, 2000).

35.5.3  Scientific Modeling

Formalizing the art of modeling is one of the goals of qualitative reasoning, which has led to it being 
applied to scientific modeling in several ways. One approach is to use modeling ideas from qualitative rea-
soning to provide languages for organizing mathematical models in ways that support software-assisted 
model formulation and revision based on comparing numerical data to simulation results (e.g., Bridewell 
et al., 2006). Another approach is to use spatial aggregation to extract meaningful features from spatially 
distributed data to provide concise summarizations of structure and function (e.g., Ironi and Tentoni, 
2011). Finally, in some domains traditional mathematical models are too fine grained compared to the 
experimental data available; hence, qualitative models can provide a more natural language for expressing 
theories. Two examples are ecology, for example, Bredeweg et al. (2008), where qualitative models have 
been used to help articulate underlying assumptions in modeling, and biology, for example, Batt et al. 
(2012), where hypotheses about bacterial regulatory networks are being explored via qualitative simula-
tion with model checking. Qualitative models are also useful as an intermediate representation for elicit-
ing and formalizing knowledge. For example, the Agroecological Knowledge Toolkit helps agricultural 
scientists gather and distill local ecosystem knowledge in field studies (e.g., Cerdan et al., 2012). Another 
example is the Calvin system (Rassbach et al., 2011), which uses qualitative representations of evidence to 
help geoscientists construct arguments concerning the interpretation of cosmogenic isotope data in rocks.

35.5.4  Intelligent Tutoring Systems and Learning Environments

One of the original motivations for the development of qualitative reasoning was its potential applica-
tions in intelligent tutoring systems (ITSs) and intelligent learning environments (ILEs). Qualitative rep-
resentations provide a formal language for a student’s mental models (Gentner and Stevens, 1983), and 
thus they facilitate communication between software and student. For example, if a student modeling a 
block on a table leaves out the force the table exerts on the block, they can be shown a simulation where 
the block falls through the table, causing them to improve their model (Hirashima et al., 2009). Similarly, 
in learning organic chemistry, qualitative representations can provide explanations for what happens in 
reactions (Tang et al., 2010). For younger students, who have not had algebra or differential equations, 
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the science curriculum consists of learning causal mental models that are well captured by the formal-
isms of qualitative modeling. By using a student-friendly method of expressing models, such as concept 
maps, software systems have been built that help students learn conceptual models (Forbus et al., 2005; 
Leelawong et al., 2001), providing software support that scaffolds students in modeling (Bredeweg et al., 
2010). In more advanced courses and in industrial training, qualitative reasoning provides explanations 
that help students make sense of the results of simulators and quantitative analysis tools, for example, to 
explain why a student’s design violates the laws of thermodynamics when teaching about power plants.

35.5.5  Cognitive Modeling

Since qualitative reasoning was inspired by observations of how people reason about the physical world, 
one natural application of qualitative reasoning is cognitive simulation, that is, the construction of pro-
grams whose primary concern is accurately modeling some aspect of human reasoning and learning, as 
measured by comparison with psychological results. Some research has been concerned with modeling 
scientific discovery and conceptual change, for example, simulating the trajectories of mental models 
that students go through when learning intuitive notions of force (Friedman and Forbus, 2010). Several 
investigations suggest that qualitative representations have major role to play in understanding cognitive 
processes such as high-level vision. For example, Sridhar et al. (2010) describes how qualitative spatial 
representations can be used to help analyze video data, and Lovett et al. (2010) describes how analogical 
reasoning over automatically computed qualitative representations suffices to enable a computational 
model to outperform most adult Americans on Raven’s Progressive Matrices, a visual reasoning test that 
correlates well with general intelligence. Qualitative order of magnitude representations play a central 
role in a model of moral decision-making (Dehghani et al., 2008), providing the stratification needed to 
model the effects of sacred values in decision-making. Commonsense reasoning appears to rely heavily 
on qualitative representations, although human reasoning may rely more on reasoning from experience 
than first-principle reasoning (Forbus and Gentner, 1997). Understanding the robustness and flexibility 
of human commonsense reasoning is an important scientific goal in its own right and will provide clues 
as to how to build better AI systems. Thus, potential use of qualitative representations by cognitive sci-
entists may ultimately prove to be the most important application of all.

35.6 R esearch Issues and Summary

Qualitative reasoning is now a mature subfield with a mixture of basic and applied activities, includ-
ing a number of fielded applications. Its importance is likely to continue to grow, due to the increasing 
number of successful applications, the continued growth in available computing power, and the rapid 
digitization of workflows in many human endeavors.

Although there is a substantial research base to draw upon, there are many open problems and areas 
that require additional research. There are still many unanswered questions about purely qualitative 
representations (e.g., what is the minimum information that is required to guarantee that all predicted 
behaviors generated from an envisionment are physically possible?), but the richest vein of research 
concerns the integration of qualitative knowledge with other kinds of knowledge: numerical, analytic, 
teleological, etc. The work on modeling to date, although a solid foundation, is still very primitive; bet-
ter model formulation algorithms, well-tested conventions for structuring domain theories, and robust 
methods for integrating the results of multiple models are needed. Most domain modeling efforts have 
been driven by particular application domains and tasks, which is effective in the short run, but a more 
open development strategy would speed the development of integrated domain theories for a broad 
range of scientific and engineering knowledge. The growing importance of deep natural language 
understanding (Ferrucci et al., 2012) is likely to invigorate research in exploring the role of qualita-
tive representations in natural language semantics, since they provide a natural level of description for 
everyday properties and events (Kuehne and Forbus, 2004; Pustejovsky and Moszkowicz, 2011).
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Key Terms

Comparative analysis: A particular form of a “what-if” question, that is, how a physical system changes 
in response to the perturbation of one of its parameters.

Compositional modeling: A methodology for organizing domain theories so that models for specific 
systems and tasks can be automatically formulated and reasoned about.

Confluence: An equation involving sign values.
Diagrammatic reasoning: Spatial reasoning, with particular emphasis on how people use diagrams.
Domain theory: A collection of general knowledge about some area of human knowledge, including 

the kinds of entities involved and the types of relationships that can hold between them, and 
the mechanisms that cause changes (e.g., physical processes and component laws). Domain 
theories range from purely qualitative to purely quantitative to mixtures of both.

Envisionment: A description of all possible qualitative states and transitions between them for a sys-
tem. Attainable envisionments describe all states reachable from a particular initial state; total 
envisionments describe all possible states.

FMEA (Failure Modes and Effects Analysis): The analysis of the consequences of the failure of one or 
more components for the operation of an entire system.

Landmark: A comparison point indicating a specific value achieved during a behavior, for example, the 
successive heights reached by a partially elastic bouncing ball.

Limit point: A comparison point indicating a fundamental physical boundary, such as the boiling 
point of a fluid. Limit points need not be constant over time, example, boiling points depend 
on pressure.

Metric diagram: A quantitative representation of shape and space used for spatial reasoning, the com-
puter analog to, or model of, the combination of diagram/visual apparatus used in human 
spatial reasoning.

Model fragment: A piece of general domain knowledge that is combined with others to create models 
of specific systems for particular tasks.

Modeling assumption: A proposition expressing control knowledge about modeling, such as when a 
model fragment is relevant.

Physical process: A mechanism that can cause changes in the physical world, such as heat flow, motion, 
and boiling.

Place vocabulary: A qualitative description of space or shape that is grounded in a quantitative 
representation.

Qualitative proportionality: A qualitative relationship expressing partial information about a func-
tional dependency between two parameters.

Qualitative simulation: The generation of predicted behaviors for a system based on qualitative infor-
mation. Qualitative simulations typically include branching behaviors due to the low resolu-
tion of the information involved.

Quantity space: A set of ordinal relationships that describes the value of a continuous parameter.
Semiquantitative simulation: A qualitative simulation that uses quantitative information, such as 

numerical values or analytic bounds, to constrain its results.

Further Information

Several publically available qualitative reasoning systems that can be downloaded from the web provide 
an easy way to get started. Those currently being actively maintained and extended include University 
of Amsterdam’s Garp3, a qualitative dynamics simulator; University of Bremen’s SparQ; a qualitative 
spatial reasoning engine; and Northwestern University’s CogSketch, a sketch understanding system.

Papers on qualitative reasoning routinely appear in AI, Journal of Artificial Intelligence Research 
(JAIR), and IEEE Intelligent Systems. Many papers first appear in the proceedings of the American 
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Association for Artificial Intelligence (AAAI), the International Joint Conferences on Artificial 
Intelligence (IJCAI), and The European Conference on Artificial Intelligence (ECAI). Every year there 
is an International Qualitative Reasoning Workshop, which celebrated its 25th anniversary in 2011. Its 
proceedings, available on the web, document the latest developments in the area.
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36.1  Introduction

In essence, machine learning—more completely referred to as statistical machine learning—is con-
cerned with identifying and exploiting patterns in data. This has lead to another name for the same area: 
“pattern recognition.” Machine learning is an inherently interdisciplinary field, combining computer 
science with mathematics and statistics, and it has many application areas such as robotics, bioinfor-
matics, cognitive science, speech recognition, machine vision, and medicine.

At its heart, machine learning is concerned with adaptation: modifying the parameters of a model so 
that the outputs more closely represent the expected results for given sets of inputs. It is this adaptation 
that is termed “learning” in the name of the field. Typically, the parameters of the model are adjusted 
through some form of optimization in order to minimize some error function. The aim of learning a 
model, rather than using a look-up table of possible outputs or applying predefined rules to the inputs, is 
to enable “generalization,” so that the machine learning algorithm can give sensible predictions on data 
that were not seen during training.

This chapter provides an overview of the process by which machine learning problems are approached, 
together with some of the more common algorithms, and then highlights a few areas of current investi-
gation. There has been a lot of research into machine learning over recent years, so this chapter aims to 
focus on the common features and some differentiating factors between different algorithms before sug-
gesting places where more complete overviews of the field can be found. A set of references for further 
information on particular algorithms and approaches is also provided.

Examples of the types of problems that machine learning can be usefully applied to include the 
following:

Predict electricity usage: Based on a set of input factors such as historical electrical usage, weather pre-
diction, season, and what televised events are happening, predict the peak electricity usage for each day 
into the future. Obviously, electricity providers rely on accurate models forecasting electrical usage, so 
that they can provide the right amount into the grid without too much waste.
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This is an example of a regression problem (where a dependent variable, here the electricity usage 
at a particular time, is predicted based on a set of input variables). It is also an example of time-series 
prediction, since we have a series of data probably collected at regularly spaced intervals that we wish to 
propagate into the future.

Predict treatment outcomes: Suppose that for some disease there is a choice of whether or not to provide 
a particular treatment, for example, because it is not always effective and may have unpleasant side 
effects. Based on the results of various tests on the patient, and data on their physiological make-up, the 
algorithm should try to identify those people for whom the treatment is likely to be effective.

This is an example of a classification problem, where the output variable identifies which of a set of 
classes (here just two: treat or don’t treat) each input belongs to.

Classify people into different levels of risk for a loan: Using information such as age, credit card debt, and 
salary, place people into different classes of risk for a loan so that choices of loan limit, interest rate, and 
so on can be made.

This is written as a classification task, as the input variables are used to separate the individuals into 
a set of classes based on their loan risk. These different classes could then be used with a set of rules to 
decide on what loan limit should be applied. Alternatively, the problem could be treated as a regression 
problem, with the input data used to directly suggest an appropriate loan limit.

Robot control: Based on the positions, velocities, and accelerations of the joints of a robot arm, together 
with a desired trajectory, compute the electrical current that needs to be applied to the actuators. Again, 
this is a regression problem, since the torque required at each joint will be a continuous variable.

The four different problems have been described as either regression or classification problems, which 
describes the dichotomy of statistical machine learning: the desired output for the data is either a set of 
continuous values for regression or a class membership function. In either case, machine learning can 
be seen as a form of function approximation, taking a set of inputs and computing a mapping into some 
appropriate output space.

36.2  Overview of the “Learning from Data” Process

Machine learning algorithms learn from data. The mantra of “garbage in, garbage out” is thus nowhere 
more true, since algorithms given unsuitable or contradictory data will make useless predictions. 
However, even with appropriate data, there are still many ways in which errors can be introduced dur-
ing the data preparation and training process. To assist with avoiding these errors, there is a general 
approach to data analysis, which can be summarized as follows:

Collect data: While algorithms are often tested, compared, and analyzed on the strength of “toy” (simple) 
datasets and well-known benchmarks (such as those available at the UCI Machine Learning Repository [5]), 
for the purposes of real data analysis, original data will need to be chosen and collected. The choice of what 
data to collect, and how much of it, are important considerations that significantly affect the results of 
any learning, just as it does any other statistical analysis. As a very basic example, suppose that we wish to 
predict electricity usage and do not know the weather. This will make it hard to know how much heating 
people will be using, making the results less accurate. However, knowing the stock market values for the 
current day is unlikely to help in the prediction, since these variables are presumably largely uncorrelated.

The choice of how much data to collect is also important. We will discuss the need for a variety of 
different sets of data shortly, but here we are just considering the number of data points required in 
order to generate a model. Unfortunately, the answer is a rather unhelpful “it depends”: the complex-
ity of the underlying model, the features of the learning algorithm, and several other factors all play a 
role. Notwithstanding computational cost, it is better to have more data than less, and since data are 
rarely free (there is an inherent cost in collecting, processing, checking, and storing it), the limits on the 
amount of data are not generally computationally motivated.
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Choose features and preprocess: This is often the “art” of machine learning, although some parts of 
the process can be replaced by experimentation and the requirements of the particular algorithms. 
In general, it requires a reasonable understanding of the dataset, the application of methods such as 
dimensionality reduction (see Section 36.4.1), and some experimentation. Many of the algorithms make 
assumptions about how the data will be presented, often requiring that they have been normalized to 
have zero mean and unit variance.

Choose model(s): There are two parts to the choice of models: the selection of particular algorithms to 
use and the specification of any parameters required by the model (e.g., the number of neurons in a 
neural network and the network topology), which often govern the complexity of the model that the 
algorithm can learn and the amount of training data that needs to be provided.

Train the models on the data: Generally this is relatively simple, being prescribed by the algorithms chosen.

Evaluate on independent data: The model that is trained is based on a set of data known as “training 
data.” These data points are samples from the space of possible data that the model is expected to predict 
outputs for, but they are certainly not complete, since otherwise there would be no need for any gener-
alization, and so no need for machine learning. One possible problem with the training set is that it may 
not be representative of the typical data that are seen, leading to a skewed model, but there is a more 
serious problem that can occur during training, known as overfitting. In essence, the amount of train-
ing (meaning the number of times that the algorithm runs over the data and modifies its parameters) 
that is required for a machine learning algorithm is not usually clear. In almost all datasets, the data 
are not pure representations of the pattern that underlies the dataset—which is what we are trying to 
find—but also contain variations from an assortment of additional processes. We generally model these 
as a generic uncorrelated noise term and assume that the model follows a Gaussian distribution. Since 
the learning algorithm sees only the data points, separating the underlying model from the noise is very 
difficult. If the learning algorithm is trained for too long, then it will fit the data that have been presented 
noise and all, meaning that its prediction capabilities are compromized.

Of course, this need for more data puts extra pressure on the data collection, and one method that can 
be used to make the most of relatively small datasets is to replace data with computation time. The method 
of k-fold cross-validation does this by splitting the data into k folds or subsets, and then training the cho-
sen learning algorithm on k − 1 of these subsets, using the missing one for testing. k different learners are 
trained, each with a different subset missing, and then the most accurate of the learners is selected to be used.

Use the trained model: Having generated and validated the model, it is ready to use on other data.

The most basic way in which machine learning algorithms can be separated into groups is by what 
data are provided for training. This is a fundamental difference: on one side is supervised learning (the 
vast majority of algorithms; see Section 36.3 for more details), where the training data consist of pairs 
of input data and target (desired) outputs, while on the other is unsupervised learning, where there 
is no target output provided at all (Section 36.4). Considering the aim of machine learning as either 
regression or classification, it should be clear that without some form of target data (showing what the 
correct answer is for some examples) it is impossible to provide a meaningful continuous output, and 
so regression is not possible. However, there are methods by which similarities between inputs can be 
used to cluster inputs together, providing an approach to classification that does not require target data.

Sitting in-between supervised and unsupervised learning methods are algorithms where proto-
type solutions are scored by some form of oracle, and the algorithm aims to maximize its reward by 
performing search over many possible solutions. The two main classes that fall into this category are 
reinforcement learning (see, e.g., [38]) and evolutionary learning, such as genetic algorithms [14,28]. 
These are different to the other types of machine learning in that what is learnt is not exactly a model 
of the underlying data generating function, but either a way to act (reinforcement learning considers 
the actions of an agent interacting with some environment, with the actions of the agent modifying the 
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environment) or the potential solution to a problem. In essence, evolutionary algorithms are stochastic 
search algorithms that trade off local search around current good solutions with making large-scale 
changes to the current solutions.

36.3  Supervised Learning

36.3.1  Nearest Neighbors

It seems clear that machine learning needs to be a bit more complicated than just a look-up table of the 
training data. However, it is useful to start with that simple concept and extend it a little. If the input 
data cover the space of possible solutions well, then identifying similar inputs to the current input and 
giving the same output as them seems like a reasonable idea. This is the idea of nearest neighbor algo-
rithms, which require that a similarity metric is available so that neighboring inputs can be identified; 
generally this is the Euclidean metric in the d-dimensional input space created by treating each element 
of the input vector x of length d as a separate dimension, so that each x defines a point in the space.

Using just one neighbor can work for classification tasks but is very prone to errors from mislabelling 
and other effects of noise, so it is common to use k-nearest neighbors, where k needs to be chosen. For 
classification tasks, the output is then the majority vote of the k neighbors, while for regression tasks it 
can be their average value. Whichever is used, choosing an appropriate value for k is generally based on 
experimentation with the training data.

Figure 36.1 shows an example of a simple classification problem, where the aim is to separate the 
circles and crosses. The line in each figure is the decision boundary, which is the line when the classifica-
tion changes between the two classes.

Figures like these, which generally show 2D data (for obvious reasons), hide an important consid-
eration. As the number of dimensions in the input vector grows, so does the amount of data that is 
needed to cover the space. Unfortunately, a linear increase in the number of dimensions leads to an 
exponential increase in the number of data points required: the sampling density grows as N1/d, so 100 
samples of a 2D problem have the same coverage as 1010 samples of a 10D problem. This is known as the 
curse of dimensionality and it has serious consequences for machine learning, as it means that for high-
dimensional spaces the data are always relatively sparse in the input space.

The k-nearest neighbor algorithm produces outputs based on the local inputs, so for accurate predic-
tions in a particular region of input space it requires that the training data represent the data distribution 
well there. It is also essentially model-free, in that it does not make any assumptions about the underly-
ing statistical distribution of the data. It does, however, assume that within each local region the data are 
fitted by a constant function. We will see another method that makes this assumption in Section 36.3.3.

36.3.2  Mean-Square Error

Figure 36.1 also shows a feature that is of considerable importance in machine learning: the decision 
boundary. In the figure, it identifies the delineation between crosses and circles, and once this boundary has 

x 2 x 2

x1 x1

FIGURE 36.1  Decision boundaries for two different values of k (on the left, k = 2, and on the right, k = 20) for the 
k-nearest neighbor algorithm.
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been identified, the separation between the two classes is complete. For k-nearest neighbors, it is typically 
a very wiggly line, but it doesn’t have to be. If we are looking for a model-based solution to machine learn-
ing, then, by making assumptions about the number of degrees of freedom that the desired model of the 
data allows (and hence the complexity of the model), an alternative approach to classification can be found.

Suppose that we wish to fit a straight line between the two classes in the figure. Writing the line as 
ŷ = β1x + β0, the two parameters that need to be found are clear. For regression, the values of ŷ should be 
predictions of the continuous output, but for classification it is less clear what values to use. However, for 
binary classification, coding the first class (say the circles) as zeros and the second class as ones works fine. 
The separation between the two classes is then the line ŷ = 0.5. The generalization of this to higher dimen-
sions fits a hyperplane specified by d parameters, which is again a linear separator of the classes.

There are two observations to make about this linear fit. The first is that for our 2D example there are 
only two parameters for the line, so the problem is clearly overdetermined, since we have rather more 
data than that, while the second is that there is no guarantee of a perfect linear separation between the 
classes. For example, in Figure 36.1, there is no such line. The benefit of having lots of data is that we 
can fit the line that minimizes some error measure of the training data, such as the mean-square error 
(MSE). These error measures are known as loss functions L(y,f(x)); for MSE, it can be written as
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Suppose that the true function that generates the data is a function g, so that the target data y = g(x)+ε 
where ε is the noise. The expected value of the fitted MSE on an independent test set is (where E[·] is the 
statistical expectation)

	
E

N
i i

i

N
1 2

1

( )y y−










=

∑ ˆ

	
(36.2)

	
= − + −

=
∑1 2

1
N

E g gi i i i

i

N

[ ( ) ( ) ]y x x ŷ
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In this derivation, we have used the fact that the expectations in the last terms of (36.4) and (36.7) 
are zero because the noise in the test set is statistically independent of the trained model. Clearly, the 
variance in the noise is beyond our control. However, the same is not true of the other two terms, and 
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we should favor algorithms that minimize these terms. Unfortunately, a little thought shows that the 
two terms are in opposition: for a simple example, consider the k-nearest neighbor algorithm of the 
previous section again. When k is small, the neighbors will all be fairly close to the test point and so 
the variance in their predictions will be low (in fact, for k = 1, the variance will always by 0). However, 
the bias is high because the points are potentially very noisy. As k increases the variance also increases, 
since there are more data points to consider and they are further away from each other, but the overall 
error of the model (the bias) reduces at the same time. This is generally true for any model: the more 
complex the model, the lower the bias, but the higher the variance. It is known as the bias–variance 
trade-off and means that careful work is typically needed for appropriate model selection; for further 
details, see [13].

For classification, we can use categorical variables, and the loss function is based on an indicator 
function, being 0 if the data does not belong to that class, and 1 if it does. We can also compute the pos-
terior probability of each class P(Ci|x) and then pick the maximum a posteriori (MAP) estimate, which 
is the most probable class. While the computations here are relatively simple, using Bayes’ theorem, the 
dependence between the different variables makes them computationally expensive. An assumption 
that provides a huge simplification is to treat all the variables as independent, an algorithm that goes 
by the name of naïve Bayes. It often works very well, especially in cases where the data are very high 
dimensional, where it makes the computations tractable.

Figure 36.2 shows three different discriminant functions that separate the (admittedly very limited) 
data perfectly and therefore have the same MSE value of 0. Without further data to aid in choosing one, 
it might seem hard to identify a suitable method of doing so, although it should be clear that the middle 
one is somehow “better” than the others. The concept of the optimal separating hyperplane, which is 
the hyperplane that maximizes the distance to the closest point from either of the two classes that it 
separates (the margin), provides a solution. This is the basis of the support vector machine (SVM) [40], 
which is one of the most commonly-used machine learning algorithms in practice, and often produces 
very impressive results.

Up to this stage, we have considered only linear decision boundaries, although it is clear that in gen-
eral data are not linearly separable. There are two ways to deal with this issue. The first is to use a more 
complex model that is not limited to hyperplanes, while the second is to consider a transformation of the 
data into a space where they can be linearly separated. We will consider the first case in Section 36.3.4 
and briefly discuss the second case here.

The left of Figure 36.3 shows an example of a simple dataset that cannot be linearly separated using 
the one parameter (x) provided. However, the addition of a second variable derived from the first 
(x2) does allow the data to be linearly separated. Projecting the data into an appropriate set of higher 
dimensions can thus enable the data to be linearly separated. Methods that make use of these trans-
formations are known as kernel methods; there are several potential kernels available. For further 
details, see [40].

x2 x2 x2

x1x1x1

FIGURE 36.2  Three different discrimination functions that all provide linear separation between the two classes 
of data. The identification of optimal separating hyperplanes is a fairly recent development in machine learning. 
(From Marsland, S., Machine Learning: An Algorithmic Perspective, CRC Press, Lakewood, NJ, 2009.)
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36.3.3  Decision Trees

It was previously shown that the k-nearest neighbors algorithm effectively fitted a constant value around 
each data point. It was suggested then that there was another method that takes the same assumption 
further. This algorithm is the decision tree, which takes the input space and chooses one feature at a time 
to sequentially split the data, so that eventually the entire space is partitioned into hyper-rectangles, 
each of which is then represented by a constant value (such as a class membership or a constant regres-
sion output), effectively a local basis function. Figure 36.4 shows a dataset with the first two splits of it 
to demonstrate the process.

Decision trees are built in a greedy fashion, with the feature to be chosen at each level of the tree 
selected by some criteria (often based on information gain, which is the amount by which knowing that 
feature decreases the entropy of the remaining training set) [8].

36.3.4  Kernel Functions

If the aim of the machine learner is to construct a model of the data, then the output ŷ (the prediction 
that it makes) of the learning algorithm for input vector x can be written as
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where the number (N) of functions ϕk represents part of the complexity of the model and the choice of 
functions ϕ represents the remainder. The weights wk are the adjustable parameters of the model, that is, 

x2

x x

FIGURE 36.3  The data in both figures are based on only one feature variable. However, in the figure on the right, 
the two dimensions are the variable x and x2. The addition of this derived variable enables the two classes to be lin-
early separated. (From Marsland, S., Machine Learning: An Algorithmic Perspective, CRC Press, Lakewood, NJ, 2009.)

x2
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x1
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x1 vv

FIGURE 36.4  Potential initial steps for a decision tree learning a dataset. Each choice performs a linear separa-
tion based on one of the feature variables. (From Marsland, S., Machine Learning: An Algorithmic Perspective, CRC 
Press, Lakewood, NJ, 2009.)
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the things that have to be learned. Written in this way, the model is merely a weighted sum of separate 
predictors, and the learning process consists of identifying suitable weights for the chosen function 
model, based on minimizing the difference between the model outputs ŷ and the target outputs y. For 
example, suppose that each ϕk merely reproduces the kth element of the input vector. This is simply the 
linear regression model, which is well known in statistics.

36.3.4.1  Neural Networks

One common choice of function ϕ is the sigmoid (or logistic) function, commonly written as (for scalar 
input value z)
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where α is some predefined positive parameter. This function has three distinct phases of output: for 
negative values of z, it produces outputs very close to zero, while for positive values of z it produces 
outputs near one. Close to zero, however, it varies smoothly between the two saturation values. In the 
idealized version, where the sigmoid represents a step function, this can be taken as a simple model of a 
neuron, which accumulates charge on its surface until the potential difference between the surface and 
the cell body reaches a threshold, whereupon the neuron fires. Any model that is comprised of sets of 
these simple artificial neurons is known as a neural network. In the case where there are just a single set 
of these artificial neurons, each acting independently of the others, the model is still linear. A particular 
learning algorithm for this data is the Perceptron learning algorithm, where at each iteration the weights 
are updated by a learning rule that adapts the weights that are leading to incorrect data.

Suppose now that the functions ϕ can also contain weights within them, so φ( )x =
=∑ w xik i

k

L

1
, where 

the index i has been added to identify individual elements of input vector x. This leads to a nonlinear 
model with two sets of weight vectors that both need to be set by the learning algorithm. The added 
complexity of such a model enables nonlinear functions to be learned, although at the cost of more 
training. One way that such networks of neurons can be visualized is as successive layers of neurons, 
as shown in Figure 36.5, which is an example of the multilayer Perceptron (MLP). The MLP with two 
layers of neurons is a universal computer, capable of computing arbitrary decision boundaries [10]. The 
MLP is the most commonly used neural network for supervised learning. Training of the weights of the 
network are based on a learning rule that propagates the updates back through the network according 
to the error at the output [34].

FIGURE 36.5  A schematic showing a feed-forward neural network such as the MLP.
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36.3.4.2  Optimization

As with many machine learning algorithms, computation of the weights and other parameters of neural 
networks are performed by optimization, and many of the algorithms are variations on normal algo-
rithms for gradient descent, particularly Levenberg–Marquardt, since it is based on least squares. For 
further information on gradient descent algorithms and other work on numerical optimization, see a 
text such as [31].

One method of optimization that is unique to machine learning is the expectation–maximization 
(EM) algorithm [11], which is used in many areas of machine learning, wherever a maximum likelihood 
solution is needed based on hidden variables. In an EM algorithm, there are two steps. First, the current 
parameter values are used to compute the posterior distribution of the hidden variables, and then these 
values are used to find the expectation of the complete data log likelihood for more general parameter 
values. Then, in the second step, a new estimate of the parameter values is computed by maximizing the 
function computed in the first step. EM algorithms are guaranteed to converge to a local optimum, but 
not further.

36.3.4.3  Other Kernels

While the logistic function is the most common choice of function ϕ, there are alternatives. One that is 
commonly used in function approximation is a radial basis function (RBF), which, as the name implies, 
is any function whose value depends only on the distance of the input from the cluster center. A com-
mon radial basis is e r− 2

, which is effectively an unnormalized Gaussian function. RBF networks have the 
same computational power as feed-forward MLPs, although they are trained rather differently, position-
ing a set of RBFs in space and then optimizing their parameters independently.

If it is assumed that the weight vectors in Equation 36.9 come from a Gaussian distribution then 
we generate a simple example of a Gaussian process, where the prediction ŷ is a linear combination of 
Gaussian variables and therefore Gaussian itself. The covariance of the outputs is computed as a kernel 
function between pairs of input (training) data points xi. For the case of Equation 36.9 the kernel func-
tion is

	 k i jj
T

i( , ) ( ) ( )x x x x= φ φ 	 (36.11)

The kernel defines the covariance matrix of the Gaussian process, which is iteratively updated, since 
the probability distribution that is being estimated at each training step N is p CN N N( ) ,y y 0= ( )N , 
where yN is the vector of training targets up to step N and CN is the N × N covariance matrix whose ele-
ments are defined by

	 C ki j i j ji( , ) ( , )x x x x= + σ δ2

	 (36.12)

where σ is the standard deviation of the noise and δji = 1 if j = i and 0 otherwise. For more general 
problems, the kernel needs to be chosen, and there are several common selections, including the form 
e i j− −( )x x . For more information, see [33].

36.3.5  Statistical Interpretation of Machine Learning

No matter whether or not we are predicting multinomial outputs (classification) or continuous ones 
(regression), the aim of machine learning is usually to use information from a set of training data D to 
create a model p(x). The difference between supervised and unsupervised learning is that for unsuper-
vised learning each element of data in D consists only of the input vector x, while for supervised learning 
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each input vector is annotated with the target y, so that the aim is to learn the mapping between input 
vector and target, that is, p(x,y). Writing this as

	
p( , ) ( )x y y x x= ( )p p

	
(36.13)

it becomes clear that what we are primarily interested in is the conditional probability term on the right: 
given a set of input data points xi we wish to predict the most likely target value yi for each of them. In 
the unsupervised case, where there are no known targets, the entire distribution of interest is p(x) and 
it is the estimation of this distribution that is the aim of unsupervised learning. For both supervised 
and unsupervised learning, the value of p(x) is of interest, since low values of it tells us that particular 
data points are relatively rare. There is a type of learning known as novelty detection (or one-class clas-
sification) where the training data consists only of examples of what you wish to ignore (“normal” data) 
and the algorithm identifies inputs with low probability p(x) as “novel.” For a summary of this type of 
learning, see [25].

36.3.6  Graphical Models

As the last section suggests, machine learning can be seen as the meeting point of statistics and com-
puter science. Nowhere is this more clear than in the relatively recent development of graphical mod-
els, where graphs (in the computer science sense of a set of nodes and edges) are used to represent 
probabilistic models. By far the most common approach uses directed acyclic graphs, where the general 
formulation is known as a Bayesian network [20,23]. It represents the joint probability distribution of a 
set of variables using the nodes of the graph as the variables and the directed edges show some form of 
dependency between the nodes (more correctly, the absence of an edge between two nodes represents 
conditional independence of the second node given the first). Many other machine learning algorithms 
arise as special cases of the Bayesian network, not least the hidden Markov model (HMM), which was 
originally proposed for speech recognition but has since found many other uses [32], neural networks 
(including the Boltzmann machine and deep belief network [16]), and particle filters [4]. The second type 
of network dispenses with the directions on the edges to produce Markov networks, which are used in 
computer vision among other places, particularly the conditional random field [37].

The Bayesian network is specified by the nodes and edges, together with the conditional probability 
distribution of each node (conditioned on its parents in the graph). For discrete parameters, this is listed 
as a table, with entries for all the possible values of each of the parents, while for continuous parameters 
it is specified by the parameters of the chosen probability distribution. Clearly, however, it can be a rela-
tively large collection of numbers to hold and update.

The benefit of Bayesian networks is that the conditional independence relations allow the joint distri-
bution to be represented more compactly than would otherwise be possible. For example, in Figure 36.6, 
the joint probability of all the nodes in the graph is

	
P A B C D E P A P P C A B P D A P E A B C D( , , , , ) ( ) ( ) , , , ,= × × ( )× ( ) × ( )B

	
(36.14)

but by using the fact that E is independent of A given its parents (B, C, and D), this can be reduced to

	
P A B C D E P A P P C A P D A P E B C D( , , , , ) ( ) ( ) , ,= × × ( )× ( ) × ( )B

	
(36.15)

While this is not much of a saving in this case, it can often make a substantial difference to the com-
plexity of the calculations in practice.
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One issue with Bayesian networks is that inference (i.e., computing the posterior distribution of 
some subset of the nodes given values for the rest) is generally computationally intractable (in fact, it is 
NP-hard). While several algorithms for approximating the distribution have been developed, typically 
based on Markov chain Monte Carlo (MCMC) sampling or mean field approximation, these are still 
computationally expensive.

The training of Bayesian networks is also computationally intractable, since there are a super-expo-
nentially large number of ways to connect up the nodes into a directed acyclic graph. The problem 
of structure learning (identifying the edges between a set of nodes) is generally predefined based on 
domain knowledge, although there are algorithms based on greedy heuristics starting from an initial 
search point [23].

One way around these problems of computational intractability is to impose structure onto the 
graph, and there are examples where this leads to computationally tractable algorithms, most notably 
the HMM [32]. In the HMM, a schematic of which is shown in Figure 36.7, a set of unknown states are 
coupled using an estimate of the transition probabilities between the states, and for each state there are 
emission probabilities that compute how likely a set of different observations are. As the HMM forms 
a chain, there are efficient algorithms for both computing the probabilities based on training data and 
finding the most likely sequence of states for a set of observations [32].

There has been recent interest in combining Bayesian networks with first-order logic, thus obtaining 
a network that can encode both probabilistic and global constraints and other deterministic relation-
ships. See [18,27] for more information.

S1 S2 S3

O1 O2 O3

FIGURE 36.7  A schematic of an HMM. Hidden states of the model are inferred, together with the motion 
between them, based on the observations that are seen.
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FIGURE 36.6  A possible Bayesian network, consisting of nodes representing random variables in the form of a 
directed acyclic graph, with the edges implying information about dependence between the variables.
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36.3.7  Combining Learners

There have been several examples of committee algorithms, that is, algorithms that combine the outputs 
of several classifiers (also known as ensembles), proposed in machine learning over the last 40 years, but 
two relatively recent developments are by far the most successful: boosting and random forests. Both are 
meta-algorithms in that they combine the results of other learning algorithms to produce a more accu-
rate output. As the name suggests, a random forest combines the outputs of many decision trees, and, in 
fact, decision trees are the most popular learners to boost as well. Although both are easier to describe 
for classification, both boosting and random forests can be extended to regression problems.

Boosting takes the output of “weak” (i.e., only just better than chance) learners and combines them by 
using a majority voting method, except that the output of each learner is weighted according to how accu-
rately they work. There are many different boosting algorithms available (for a summary, see, e.g., [35]) 
but the original adaptive boosting algorithm is AdaBoost, and it is still one of the most commonly used.

Figure 36.8 shows the fundamental idea of boosting, which is that a subtly different dataset is used for 
each iteration. For the initial classifier, the data points are all weighted equally, and a classifier is trained 
as normal. However, once it is trained, the weights are modified so that points that were classified incor-
rectly receive higher weights (and those that were classified correctly lower weights), and a new classifier 
is trained. In this way, each classifier concentrates particularly on those points that the previous one got 
wrong. Once training is completed (after a set number of iterations), the outputs of the individual clas-
sifiers are combined using a function of the same weights.

Boosting often produces very impressive results. It is functionally different to other learning algorithms 
in that the loss function that is computed is exponential rather than based on MSE:

	 L f fi i( , ( )) exp( ( ))y x y x= − 	 (36.16)

This means that the algorithm is estimating the probability of getting class 1 as output as a sigmoidal 
function. For further details, see [35].

The other ensemble algorithm that is increasingly popular is the random forest [3,7]. It is conceptu-
ally even simpler than boosting: a collection of n bootstrap samples (i.e., samples with replacement) of 
the training data are made, and a decision tree is trained on each sample. In order to further reduce the 
potential power of each tree, at each node only some subset of the potential features is searched among, 
with the subset chosen at random, but with the optimal selection made from that subset. After train-
ing, the output of the classifier is the most common prediction among all of the trained trees. Random 
forests are often reported to be among the most accurate classification methods and work relatively 
efficiently on large datasets.

x2
x2x2

x1 x1 x1

FIGURE 36.8  Boosting works by combining the results of several classifiers, with the classifiers being trained 
successively. The data are weighted differently for the next classifier to be trained, with points that have previ-
ously been classified incorrectly receiving higher weight, shown as getting larger in this figure. (From Marsland, S., 
Machine Learning: An Algorithmic Perspective, CRC Press, Lakewood, NJ, 2009.)
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36.4  Unsupervised Learning

Since, by definition, unsupervised learning algorithms do not have the targets that enable problem-
specific function approximations to be found, they are rather more limited in what they can achieve. In 
this section, we will look at algorithms for dimensionality reduction and data clustering.

36.4.1  Dimensionality Reduction

As well as being a tool in its own right, dimensionality reduction is often used as a preprocessing step, 
before other machine learning algorithms (particularly supervised ones) are used. Underlying the idea 
of dimensionality reduction is the idea that the intrinsic dimensionality of a data manifold is typically 
substantially lower than that of the original data, which has confounding factors and noise included. For 
example, suppose that you have a dataset of photographs of one person’s face, all taken front on. The only 
difference is where the face appears within the image, how large it is, and the angle that the head is at. 
Considering each pixel as a separate element for the input vector will give massively high-dimensional 
data (even if the images are only 100×100 pixels, this is still a 10,000 element vector). However, the pos-
sible variation in the data can be encoded by the changes that are allowed, which is 4D (two for transla-
tion in x and y, 1 for rotation, and one for scaling). Thus, the intrinsic dimensionality of the data is 4D 
rather than 10,000D.

Dimensionality reduction algorithms aim to minimize the reconstruction error of the original data 
based on a lower-dimensional representation of it, which provides a direct function to optimize. One 
of the most commonly used dimensionality reduction algorithms, principal component analysis (PCA), 
selects a linear transformation of the original basis in such a way that the first direction chosen maxi-
mizes the variance, the next takes as much as possible of the remaining variance, and so on. In this way, 
the last few dimensions of the data will have very little variance and can thus be safely ignored [19]. 
The algorithm for PCA is based on computing eigenvalues and eigenvectors of the covariance matrix 
of the data.

A related method to PCA is factor analysis, which tries to find a smaller set of uncorrelated factors 
(also known as latent variables) that describe the data. The underlying hypothesis is that there is some 
unknown set of data sources from which the data are generated, and the method aims to find those. 
If the sources are assumed to be statistically independent instead of uncorrelated, then the method 
of independent component analysis (ICA) [17] is recovered. This is typically explained in terms of the 
“cocktail party problem,” where even humans can struggle to distinguish the many different speakers 
and isolate one against the background noise.

All of these methods produce linear basis functions. This typically makes them unsuccessful when 
applied to data that is nonlinear. However, the use of kernels (as in Section 36.3.4) enables variations of 
the standard algorithms to be used on such data [36].

36.4.2  Clustering

The second common task in unsupervised learning is to cluster similar data points together, where simi-
lar in this case generally means close together in input space according to some distance metric (usually 
Euclidean distance). Nearest neighbor methods provide a relatively simple way to do this, with each data 
point in the test data being represented by the point that it is closest to in the training data. However, this 
is relatively inefficient in that because the training set needs to be large to ensure that enough samples 
are seen to be confident that the potential test data are covered, and there will often be many samples in 
the training set that are close together.

Exemplar-based methods attempt to fix this problem by choosing cluster centers that best represent 
the training data. A simple example is the k-means algorithm, where a predetermined number of cluster 
centers are positioned at random in the data space and then iteratively moved by being positioned at the 
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mean of a set of data points until they represent the data. The two issues with this approach are that it is 
hard to pick k appropriately without a lot of knowledge of the dataset and the approach is very subject to 
local minima, getting stuck in many suboptimal solutions.

The most commonly used algorithm for unsupervised learning of clusters is the self-organizing map 
of Kohoren [22], which has been used for a vast number of different tasks [21]. In this algorithm, a regu-
lar lattice of neurons have their weight vectors refined to move successively closer to inputs that they, 
or their neighbors, represent well. This leads to a feature map with nodes that represent similar features 
being spaced close together in the map space through self-organization.

Further Reading

This chapter has provided a very brief skim over some of the important methods of machine learning. 
Many of the most important methods of machine learning have been omitted or treated very super-
ficially for reasons of lack of space. In particular, there has been no details of algorithms nor of any 
research on theoretical developments of machine learning. Examples of this theory include information 
geometry [2], probably approximately correct (PAC) learning [39], spline fitting [41], and the Vapnik–
Chervonenkis dimension [40]. In addition, there is the rich area of model selection, including consider-
ation of various information criteria and description lengths [9].

As well as the specialist books referred to in the text, there are several general textbooks on machine 
learning for a variety of audiences, from undergraduate students [1,12,26,29,42], to more advanced com-
puter scientists [6,24,30], to statisticians [15]. In addition, there are a wide range of conferences and 
journals covering both theory and applications.

Glossary

Bayesian network: A form of graphical model based on directed acyclic graphs and conditional prob-
ability tables to represent the probability distribution of the whole graph.

Bias–variance trade-off: The two parts of the mean-square error, which means that machine learning 
algorithms can produce more accurate results only at the cost of more possible variation in 
result, largely through overfitting.

Boosting: An ensemble algorithm that combines the outputs of weak learners to make more accurate 
predictions.

Classification: A type of problem in machine learning where the output variable identifies which of a 
set of classes the data point belongs to.

Decision boundary: The line between classes in a classification problem.
Decision tree: An algorithm that classifies data by asking questions about different elements of the input 

vector sequentially.
Dimensionality reduction: A form of machine learning, often unsupervised, that tries to find lower 

dimensional representations of the data manifold.
Evolutionary learning: A form of machine learning that mimics evolution to find better solutions via 

stochastic search.
Expectation–maximization: An optimization algorithm in machine learning to estimate hidden 

parameters.
Factor analysis: A form of unsupervised learning where a set of hidden variables are estimated to rep-

resent the data, which is assumed to be noisy.
Gaussian process: A supervised learning algorithm that assumes that all random variables are Gaussian 

distributed.
Graphical model: A representation of machine learning algorithms where random variables are repre-

sented as nodes and edges between nodes show some form of conditional dependence.
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Hidden Markov model: A graphical model that predicts sequences of hidden states from sets of obser-
vations based on two sets of probabilities: transition probabilities between the states and emis-
sion probabilities from the states to the observations.

Independent component analysis: A method of dimensionality reduction that creates a basis where all 
of the basis vectors are statistically independent.

Linearly separable data: Data that can be separated into different classes using a hyperplane (straight 
line in 2D).

Loss function: A function that computes the cost of getting values wrong.
k-fold cross-validation: A method of training several versions of the same learner on different subsets 

of the training data and using the one that is most successful.
k-means: An algorithm for unsupervised learning that represents each node by the nearest cluster 

center.
k-nearest neighbors: An algorithm that predicts outputs based on the k data points from the training 

set that are closest to the current input.
Kernel: The inner product is some space of a pair of data points.
Markov network: A form of graphical model where the edges are undirected.
Maximum a posteriori: The choice of class in a classification problem as the one with the highest pos-

terior probability from Bayes’ theorem.
Multilayer perceptron: A generalization of the perceptron neural network to have multiple layers of 

neurons, which can thus fit more complex decision boundaries.
Naïve Bayes classifier: A classifier that works by computing the maximum a posteriori estimate under 

the assumption that all of the features are statistically independent.
Neural network: Any of a set of machine learning algorithms based on a simple model of a neuron, with 

weighted connections between layers of such neurons.
Novelty detection: A form of machine learning where data are presented only for the normal classes, 

and anything not seen during training is highlighted as novel.
Optimal separating hyperplane: The hyperplane that separates data by maximizing the distance 

between the classes.
Overfitting: One cause of poor generalization in machine learning algorithms, where the model fits 

both the underlying model and the noise in the training data.
Perceptron: A linear neural network consisting of a layer of neurons that are connected to the inputs by 

a set of adaptive weights.
Principal component analysis: A method of dimensionality reduction where the coordinate axes are 

linearly transformed so that the first direction has maximal variation, the next direction next 
most maximal, and so on.

Radial basis function: A function whose output depends only on the radial distance to the point. It 
is possible to make a machine learning algorithm that linearly combines the outputs of such 
functions.

Random forest: A supervised learning algorithm that trains a large number of decision trees on differ-
ent subsets of the data and combines their outputs to get a more accurate answer than any of 
them individually.

Regression: A problem where a dependent variable is predicted based on a set of input variables.
Reinforcement learning: A form of machine learning where the algorithm is told how well it has per-

formed on the data but not how to improve.
Self-organizing map: An algorithm for unsupervised learning where the weights of neurons are updated 

to better represent inputs that are close to either than neuron or its neighbors.
Supervised learning: A form of machine learning where each item of training data has an associated 

target vector showing the correct answer and the aim is to generalize from these examples to 
all data.
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Support vector machine: A machine learning algorithm that maximizes the separation of classes in the 
data to fit the optimal separating hyperplane.

Unsupervised learning: A form of machine learning where no target data are provided and the algo-
rithm needs to exploit similarities between data points.
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37.1  Introduction

The statistical approach to machine learning has been immensely successful. It often forms the founda-
tion of other AI systems: for example, natural language processing, computer vision, image processing, data 
mining, intelligent search engines, recommender systems, and bioinformatics all owe much to statistical 
machine learning. Over the years, it has become apparent that this approach is improved with weaker prior 
models and greater reliance on data. This has led to the emergence of “big data” and the mantra “Let the data 
speak for themselves.” However, the amount of data required grows exponentially as the gap widens between 
weaker priors and more sophisticated concepts that require greater subtlety and complexity. Statistical 
machine learning seems to be reaching a plateau that is well short of human-level concept learning.

Modern explanation-based learning (EBL) addresses this issue by including an additional source of 
information: a general symbolic inferential domain theory. This domain theory often employs first-
order representations that allow much greater expressiveness than the propositional (zeroth-order) 
expressiveness of statistical methods such as the Bayes or Markov networks. The domain theory can be 
approximate; it need not be complete, correct, or consistent in the sense required by conventional logic. 
In EBL, the domain theory serves as analytic evidence to complement the empirical statistical evidence 
of observed examples. EBL’s domain theory requires a new semantic interpretation to allow derived 
expressions to be treated as evidence rather than as truths or constraints on possible worlds. Because 
of its reliance on a prior domain theory, EBL is not as generally applicable as conventional statistical 
learning. However, with even modest prior domain knowledge, EBL can learn complex concepts more 
accurately, more confidently, and with far fewer examples.

The domain theory encodes general understanding discovered by others about the workings of the 
world. Imagine a conventional “big data” approach to training medical doctors. Instead of medical texts 
and classroom lectures, each student would be given a long string of specific examples. Each student 
would follow some idiosyncratic path, perhaps recapitulating the development of medical understand-
ing but culminating finally in inventing his or her own version of the pathogenic theory of disease, 
physiology, pharmacological biochemistry, and so on. For both humans and computers, this would 
seem a tall order and unnecessarily complicated. When general prior knowledge of the world is already 
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available, machine learners, like human learners, should be able to exploit it. Humans seem to learn 
complex concepts best using a combination of general facts together with a few illustrative examples. 
Modern EBL adopts this same learning style.

Learning systems (including EBL) can be applied in many paradigms including regression, semi-
supervised, unsupervised, and reinforcement learning. Due to space limitations, this chapter focuses 
on the area of supervised classification learning. Here, a hypothesis space H is given to the learner along 
with a training set Z composed of examples and their training labels. The learner’s task is to choose some 
concept c ∈ H that best describes the pattern underlying Z. The concept sought is the one that most 
accurately classifies future similarly chosen examples.

Figure 37.1 illustrates a conventional statistical learner and an EBL learner. Both choose some hypoth-
esis from the space H to output as the learned concept c. In statistical learning, this choice is based on 
the empirical evidence embodied by the training set Z. In EBL, the analytic evidence of the domain 
theory, ∆, is also used.

Modern EBL works by adding new features. These are features that the system believes will be useful 
in describing the underlying pattern. With such features, the desired pattern will be simpler and easier 
to find. The new features must be (1) inferable from the domain theory and (2) relevant to the current 
learning problem. Interaction between the domain theory and the training examples is crucial: a subset 
of training examples is selected and used to generate explanations from the domain theory. A number 
of explanations are constructed for the selected subset. Each explanation conjectures why the examples 
in the subset might merit their teacher-assigned class labels. Each explanation draws intermediate con-
clusions that are, in effect, new features, latent in the examples but derivable from the domain theory. 
Given a new example, the value of each feature is computed by a (generally nonlinear) function of the 
example’s raw input features as dictated by the explanation.

A new augmented hypothesis space, Θ, is formed by adding these new derived features to the original 
raw features. A conventional statistical learner is then applied to the remaining training examples, those 
not in the subset used to generate explanations. These training examples are embellished with the new 
derived features, and the learner chooses the best hypothesis from the augmented hypothesis space, 
some θ ∈ Θ. By deriving more appropriate, higher-order features, EBL renders the pattern underlying 
the examples in the training set clearer and simpler, making this learning task much easier.

As a final step, the EBL system chooses a c ∈ H that is closest in behavior to the selected θ. In θ, the 
EBL system has constructed an accurate description of the desired pattern. However, the description 
is expressed using the vocabulary of its own derived features. This form is not acceptable as an output.

The chosen c ∈ H may be very complex even though the selected θ is simple. Note, however, that 
this step does not require labeled training examples. The complexity of c arises from the vocabulary 
mismatch between the raw input features and the more appropriate explanation-generated features. In 
a sense, the explanations act as a catalyst for the leaner, providing a low-complexity path to an accurate 
high-complexity concept in H.

It may be of interest to note that this final step was neglected in early EBL systems. The oversight gave 
rise to what was known as the utility problem, attracting a good deal of research attention [13,21,22,41]. 
Researchers noticed that newly learned EBL concepts, although accurate, could reduce rather than 
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FIGURE 37.1  Machine learners: statistical (a) choosing c ∈ H based on the empirical evidence of Z, EBL and 
(b) choosing c ∈ H based on both the empirical evidence of Z and the analytic evidence of ∆.
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enhance the performance of the overall system. It is now clear that the utility problem is a consequence 
of losing control of the hypothesis space. The hypothesis space H specifies the set of acceptable outputs, 
often via a set of well-formedness constraints. The hypothesis space is an essential input for any machine 
leaner (EBL or otherwise). But no such input was given to the old EBL systems; there was no guarantee 
that the resulting pattern was acceptable to the system utilizing the learned concept. Because hard satisfi-
ability problems could be embedded in these unconstrained concepts, their use could be extraordinarily 
expensive. This could consume processing resources that might have been expended more productively 
elsewhere if the concept had not been learned. Two approaches were found to the utility problem. The 
first empirically estimates the cost of utilizing concepts, eliminating overly expensive ones. The sec-
ond limits the expressiveness of the new concepts themselves to preclude in principle the possibility of 
expensive patterns. This third, theoretically sound, solution to the utility problem is simply to respect the 
hypothesis space, H. In practice, however, it can be convenient to employ one of the first two solutions.

The key in EBL is the part played by the domain theory. Modern EBL can be seen as quite similar to 
conventional statistical learning once the role of the domain theory is properly understood. To see this, 
consider an analogy between EBL and transfer learning [47] (also multitask learning [5] and domain adap-
tation [25,39], although with an equivocation on the term “domain”). A learner, after solving one learning 
problem, will be applied to a second related problem, perhaps followed by a third and fourth. Call the 
space of related problems a domain. Because the problems are related, it is possible to exploit their underly-
ing similarity, utilizing earlier learning experiences to streamline later learning and avoiding the need to 
relearn the shared structure. Transfer learning is an important area of ongoing research in its own right.

Modern EBL takes this view a step further by generalizing across learners, particularly previous human 
learners. Instead of one learner encountering a sequence of related learning problems, there are many learn-
ers solving many problems from the domain. In this way, far more shared information can be acquired. But 
now the information must be communicated explicitly. In transfer learning, a single learner builds on its 
own representations. But different learners cannot be relied on to understand the internal representations of 
others. Some communication mechanism is required. This is the role of the domain theory. With this newly 
posited communicative ability, a learner derives the benefit without the need to experience the plethora of 
previous learning problems or view for itself the myriad of training examples. Rather, it capitalizes on the 
accumulated knowledge accrued by many other learners. For EBL, the previous learners are humans. They 
not only solve problems but think about them, postulating and testing new general theories. Importantly, 
EBL does not attempt to invent such theories. Its goal is the much more modest task of exploiting the under-
standing developed by others. In so doing, it avoids the difficulty and expense of reinvention.

Thus, the EBL domain theory is seen as a communication medium used by a learner to benefit from 
the experiences of many other learners that have previously solved many related problems over possibly 
many generations. The domain theory itself is seen as a cleverly condensed, codified, general summary 
of the information inherent in an untold number of previous experiences and training examples.
Several important properties follow from this view of a domain theory:

•	 The representation must be sufficiently expressive to capture abstract conceptual domain com-
monalities. Its function is to highlight significant abstract nonlinearities within the domain. 
Simple patterns (e.g., linear ones) can be easily recovered via conventional statistical analysis, so 
their inclusion in a domain theory is of limited value. A good domain theory focuses on subtle, 
nonlinear, and higher-order covariate structures. This dictates the need for some kind of quanti-
fication such as first-order representations. Propositional representations are insufficient.

•	 The EBL domain theory captures utility rather than correctness or truth as in conventional logic. 
Like the massive collection of training examples that it summarizes, the EBL domain theory is 
inherently incomplete and approximate. This dictates the need for a new semantics quite different 
from the popular “constraints on interpretations of possible worlds” of conventional logic. There 
can be no notion of a correct or true domain theory. It follows that analytic inference over the 
domain theory must be rooted in optimization, rather than satisfiability as used in logic.
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•	 The purpose of the domain theory is to communicate or encode important conceptual distinc-
tions. The better the domain theory, the better this encoding. Better coding schemes are ones that 
make more important items more easily accessible. Thus, a better domain theory makes its more 
useful distinctions easier to derive.

•	 In EBL, a feature’s derivational complexity (i.e., the minimal inferential effort sufficient for its 
construction) provides information on its prior expected utility. This is taken as one definition of 
a domain theory for EBL:

An EBL domain theory is an inferential mechanism that supports the generation of latent features 
in which the inverse of derivational complexity encodes expected utility over the space of problems 
that defines the domain.

37.2  Underlying Principles

Due to space limitations, the principles in this section remain somewhat abstract. Illustrative examples will 
be given in the next section. It is convenient to consider ∆ as following the syntax of first-order logic. Readers 
unfamiliar with the terms first-order logic, quantification, symbolic inference, derivation, interpretation, and 
possible world semantics may wish to consult a suitable tutorial such as [18,52]. It is not necessary to assume 
first-order syntax; ∆ may be an ad hoc mechanism. Compared to conventional logic, there are two impor-
tant generalizations and one restriction. The generalizations are as follows: (1) The initial statements (analogs 
of the axiom set) need not be correct or consistent. By allowing approximations, the domain expert’s task of 
rendering his understanding of the world can be greatly simplified. (2) With little additional penalty, ∆ may 
employ higher-order statements. This is in contrast to conventional logic where including even second-order 
statements result in the undecidability of most of the interesting questions (such as theoremhood).

The new restriction is that the combining rule must be paraconsistent [49]. This avoids explosiveness 
(known as ECQ for ex contradictione quodlibet, from a contradiction everything follows). It is easy to 
see, for example, that if a refutational inference system is given initial statements that are only approxi-
mate, it will likely be able to prove anything. Many contradictions will arise from interactions among 
approximate statements. Refutational inference can succeed simply by finding one of these contradic-
tions, independent of the negated goal. The phenomenon is not restricted to refutational systems, and 
the general solution is paraconsistency.

A conventional statistical learner can be viewed as searching for c+, the most likely hypothesis in H 
given the training data Z:

	
c h Z H

h H

+

∈
≈ argmax ,Pr( )

	
(37.1)

Generally, finding the true argmax is intractable. The symbol “≈” is used in place of “=” to denote that it 
is sufficient for an implemented learner to find a c+ that with high confidence is a low-loss approximation 
to the argmax expression. Note that the probability of a particular h given Z is independent of the other 
hypotheses in H. That is, Z is conditionally independent of H given h. Along with Bayes theorem and the 
fact that the parameter h does not appear in Pr(Z), it follows that

	
c Z h h H

h H

+

∈
≈ ( ) ⋅ ( )argmax Pr Pr

	
(37.2)

where
H is the hypothesis space
Z is a set of examples {xi}, drawn independently from some example space X, together with the train-

ing label of each
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The training labels {yi} are assigned by some true world concept c* that may be stochastic and in general 
is not in H.

Expression 37.2 seeks to maximize the likelihood of the training data subject to the probability of 
h given H. This second factor, Pr(h|H), does not depend on any training examples so with respect to Z 
it is a prior. It assigns low probability to hypotheses in H that are unlikely. Computationally, it is often 
treated simply as a regularizer that penalizes overly complex or overly expressive hypotheses. Its role is 
essential; it prevents overfitting to the training set.

Care must be taken in interpreting the probabilities. In Expression 37.1, for example, Pr(h|Z,H) is 
not the probability given Z and H that h actually might be the target concept c*. In interesting learning 
problems, c* is never in H. The patterns embodied by the real world are infinitely subtle and complex. In 
machine learning, the hypothesis space is chosen to balance expressiveness on the one hand and tracta-
bility on the other. It must be sufficiently rich that some element is a good approximation of c*. Only in 
simple and artificially clean domains can c* ∈ H be legitimately assumed.

By contrast to Expression 37.1, an EBL learner searches for c+:

	
c h Z H

h H

+

∈
≈ argmax , ,Pr( )∆

which includes the domain theory, ∆, as an additional source of evidence. Since Z is conditionally inde-
pendent of both H and ∆ given h, it follows that

	
c Z h h H

h H

+

∈
≈ ⋅argmax Pr Pr( ) ( , )∆

This is Expression 37.2 adjusted to appreciate the domain theory in the choice of h ∈ H. Rather than 
influencing h directly, modern EBL employs the domain theory to transform the hypothesis space H 
into a more effective one, Θ. The domain theory encodes useful expert-supplied distinctions. These 
distinctions form new features derivable from ∆. Given a subset Φ of these new features (the ones that 
are likely to be useful for the problem at hand), an enhanced hypothesis space is formed by allowing 
Φ to participate on equal footing with the original raw features used in H. Let Θ(Φ) denote the new 
hypothesis space enriched with the feature set Φ. An EBL system approximates the underlying pattern 
by choosing some θ+ ∈ Θ(Φ):

	
θ θ θ

θ

+

∈
≈ ⋅argmax ( ) ( )

( )Θ Φ
Θ ΦPr PrZ ( )

	
(37.3)

This is just Expression 37.2 substituting Θ(Φ) for H; Pr(θ|Θ(Φ)) is the prior (or regularizer). Expression 
37.3 can be realized by a conventional statistical learner once Θ(Φ) is defined. While θ+ may describe 
the underlying pattern accurately, it is expressed in the vocabulary of the derived features. These are 
not included in H. Thus, once θ+ is found, the EBL system chooses some c+ ∈ H as an acceptable output:

	
c h

h H

+

∈

+≈ −argmin θ
	

(37.4)

All three concepts, θ+ from Θ (Expression 37.3) and both c+’s from H (Expressions 37.2 and 37.4), 
approximate the same underlying pattern.

But θ+ does so using Φ. With a good domain theory and the right selection of derived features, 
Θ employs a much richer and more focused vocabulary. The underlying pattern will be clearer and its 
representation simpler.

Generally, θ+ will be syntactically the simplest. Next simplest will be c+ from Expression 37.2 because 
the choice is regularized by Pr(h|H). The c+ from Expression 37.4 may be quite complex. It may be well 
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beyond the reach of a statistical learner based on the evidence in Z alone. In EBL, regularization has 
already stabilized the choice of θ+ in Expression 37.3; direct regularization in H is less of an issue. This 
underlies EBL’s ability to confidently learn complex concepts in an example-efficient manner.

In practice, step (37.4) may be omitted in favor of either classical “utility problem” solution outlined 
in the previous section. This can be more convenient than the earlier theoretically sound approach, par-
ticularly if H is a feature-neutral well-formedness rule. For example, H might employ a linear separator 
or a Gaussian kernel using all of the example’s features without caring what the features actually are. 
Then θ+ itself may be returned in place of c+. But in this case, each new example to be classified must first 
be explicitly embellished with the new derived features so that the classifier can be properly evaluated.

Let Φ+ denote the set of derived features sought by EBL. This is the set that yields the best concept 
from the new hypothesis space. The choice of the feature set is regularized by the derivational complex-
ity of the set, Pr(Φ|∆). The domain theory’s analytic evidence for the set balances the empirical fit of 
Expression 37.3:

	
Φ Φ ∆ Θ Φ

Φ Θ Φ∆

+

∈ ∈
≈ ⋅ ⋅





argmax ( ) max [ ( ) ( ( ))]
( )

2

Pr Pr Pr
θ

θ θZ

	
(37.5)

Note the approximation; it is not necessary to guarantee that an optimal feature set is found. However, 
even finding an approximation by directly applying Expression 37.5 would be intractable. Expression 
37.5 optimizes over the power set of ∆’s derivable expressions which itself may be unboundedly large.

The key is to employ explanations. An explanation for a set of training examples is any derivation 
from ∆ that satisfactorily labels the set of examples. In EBL, a small random subset ZE ⊂ Z is selected to 
guide explanation construction. Guiding explanation construction is similar to classical EBL: a candi-
date explanation that is unsatisfactory will mislabel some examples. The features of these examples in 
the light of ∆ show the relevant ways that the explanation may be amended; see [4,10,36].

An explanation has the form of a proof tree in a logical deduction. It exposes internal structure 
and intermediate conclusions, although, of course, now the result is conjectured rather than entailed. 
Procedurally also, there is a parallel between an EBL domain theory and a theorem prover of conven-
tional logic: (1) ∆ is a deterministic inferential system consisting of an inference engine and a number 
of expert-supplied expressions describing world behavior (the axioms of a conventional system). (2) The 
inference engine, as with conventional logic, derives new expressions following a prescribed matching 
and combining process. (3) Also as in conventional logic, ∆ can be viewed formally as a finite represen-
tation denoting a possibly infinite number of derivable structures.

In EBL, several explanations are generated that cover the subset ZE. The derived feature set, Φ+, is the 
union of derived features from the explanations. An enhanced hypothesis space, Θ(Φ+), is formed that 
includes these new features. The remaining training examples, ZC ≡ Z − ZE, are employed conventionally 
to choose a hypothesis from this augmented hypothesis space:

	
θ θ θ

θ

+

∈

+≈ ⋅ ( )( )
+

argmax
( )Θ Φ

Θ ΦPr Pr( ) ,ZC

	
(37.6)

How are derived features formed from an explanation? The process starts with the intermediate con-
clusions (subgoals) that arise in deriving the explanation from ∆. Each intermediate conclusion is a 
predicate, possibly with arguments. The explanation specifies how the predicate and its arguments are 
evaluated and the role they play in concluding the classification label. For each predicate and each argu-
ment, a new feature is defined. Each predicate and argument is itself derivable from the domain theory. 
Each is rooted in the example’s raw features, and each concludes a property deemed by the explanation 
to be important in assigning the class label. For each new feature, there is a feature function that fol-
lows the dictates of the explanation. When given an example, it computes the feature’s value from the 
example’s raw input features.
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Thus, explanations sidestep the intractable maximization of Expression 37.5. While features are 
derivable from ∆, they are not derived directly. Rather explanations are derived, guided by training 
examples, and the features are extracted from the explanations. Explanation construction must satisfy 
two requirements:

	 1.	 Efficiency demands that only a few explanations be constructed.
	 2.	 Accuracy requires that the expected quality of these explanations be high.

A new semantics for ∆ is the most important advance in modern EBL and allows these requirements 
to be met. Unlike conventional logic, the EBL inferential system denotes a sequence, rather than a set. 
The ordering of the derivations is by increasing derivational complexity (defined to be the minimal 
inferential effort sufficient for its derivation). Thus, ∆ is viewed formally as the generative denotation of 
a possibly infinite sequence of derivations:

	 ∆ ≡ ξ ξ ξ ξ ξ ξ ξ ξ ξ1 2 3 521 522 523 524 3 671 495 3 671 496, , ... , , , ... , .., , , , ..( ) 	
(37.7)

This apparently small change has far-reaching consequences. Each derivation is associated with 
some derivational complexity. Derivations with lower complexity appear earlier in the sequence, so the 
inverse of derivational complexity is a measure of how easily an element of ∆ can be derived. This mea-
sure induces a probability distribution over ∆ with

	
Pr Pr Prξ ξ ξ1 2 3∆ ∆ ∆( ) ≥ ( ) ≥ ( ) ≥ ...

Consider the full distribution, Pr(Ξ|∆), ∆’s analytic prior over derivations. What is the nature of this 
distribution? By definition, ∆ embodies a coding scheme that communicates the expert’s conceptual 
understanding of the domain. It follows that Pr(Ξ|∆) is the optimal distribution associated with the 
code words (derivations of Sequence 37.7). Therefore, from coding theory,

	 log Pr ( ) ( )ξ ξi i∆ = −D

where D(ξ) denotes the derivational complexity of ξ. Let δ be the average difference in derivational 
complexity between adjacent ξi’s over Expression 37.7. Note that δ is an intrinsic property of ∆ so that 
δ = δ(∆). Knowing nothing more about ∆, the best estimate of the derivational complexity of the i’th ξ is

	 D( ) (from earlier) is also ( )ξ δ ξi ii= ⋅ −which log Pr ∆

This yields a prior probability over the ξ’s given ∆ of the form

	
Pr ξ γi

id∆( ) = ⋅
	

(37.8)

where
d is a more convenient parameter than δ: (d ≡ e−δ)
γ is a normalizing constant

This is precisely a geometric distribution with traditional parameter (1 − d). It is a discrete distribu-
tion with exponentially decaying probabilities, each multiplied by an additional factor of (1 − d). The 
normalizing constant γ is d, and 0 < d < 1.

Figure 37.2 shows distributions for different ∆’s with d’s of 0.6, 0.8, and 0.9. As d approaches 1, ∆ behaves 
more like a conventional logic. In the limit as d → 1, there is no erosion of confidence in ∆’s inferences: 
Every derivation is firmly believed; the ordering of the sequence carries no information; and the EBL 
system becomes a conventional logic. It would then inherit all of logic’s brittleness: the statements are 
axiomatic constraints on possible worlds. To work, they must be carefully engineered to avoid unintended 
pernicious interactions.
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Conversely, as d decreases toward 0, the EBL system behaves more like a conventional statistical 
learner. In the limit as d → 0, each hypothesis stands on its own, and there is no benefit to shorter deriva-
tions. The domain theory provides no useful information and cannot serve as analytic evidence.

Now consider what happens as a particular EBL system begins to generate explanations for ZE, the 
chosen subset of training examples. Suppose ∆ has d of 0.8. Let the first successful explanation of 
ZE be ξk (the kth derivation in Expression 37.7). The previous k − 1 derivations originally merited the 
highest probability (highest in the prior for d = 0.8 as shown in Figure 37.2). But since these derivations 
cannot explain the training subset ZE, the explanation generator does not return them.

Finding the first explanation for ZE at ξk changes the distribution considerably. Let Pr(Ξ∆, ZE) denote 
the posterior distribution over the derivable expressions after the first explanation has been generated 
that covers ZE. It follows that the first k − 1 derivations cannot cover ZE, and their posterior falls to 0.

The prior and the posterior for this state of affairs are shown in Figure 37.3. At this point, only the first 
explanation (the kth derivation in Expression 37.7) is constructed. It is illustrated as the leftmost, tallest 

d = 0.6

d = 0.8

d = 0.9

Pr
 (ξ

i|Δ
)

Pr (    |Δd)

ξkξ1, ξ2, ξ3 . . .

FIGURE 37.2  Three prior distributions over derivations for values 0.6, 0.8, and 0.9 of the domain theory property d.

Pr (    |Δd) and Pr (    | Δd, ZE)

d = 0.8
d = 0.8

(after conditioning)

Explanations
for ZEPr

 (ξ
i|Δ

)

ξkξ1, ξ2, ξ3 . . .

FIGURE 37.3  The prior distribution over derivations for d = 0.8, and the posterior distribution given the first 
explanation is the kth derivation; the explanations that cover the subset of training examples ZE are shown as 
gray bars.
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vertical gray bar. The other explanations that would cover ZE if they were constructed are also illustrated 
as vertical gray bars. The height of each bar indicates its posterior probability.

The posterior distribution Pr(Ξ|∆, ZE) is simply a shifted version of the original Pr(Ξ|∆). The change 
from prior to posterior can be considerable. Clearly, the KL divergence [8] from the prior to the posterior 
in Figure 37.3 is large. Thus, the information contained in ZE can be quite large even though the size of 
ZE may be quite small (it may even contain just one example). But unlocking this information requires ∆ 
and, of course, sufficient processing resources to construct the first explanation. With these, EBL greatly 
magnifies the information content of the training examples.

The EBL procedure satisfies the two requirements mentioned earlier: the features with high expected 
utility are likely to be constructed from just a few of the least expensive explanations covering ZE. These 
few explanations, while similar in cost, may conjecture quite different justifications. Each contributes to 
the set of derived features. As will be illustrated with implementations in Section 37.3, the classifier may 
ultimately employ relatively few derived features.

Let Φ(∆, ZE) be the features added from the first few successful explanations of ZE. Then Θ(Φ(∆, ZE)) 
is the resulting enhanced hypothesis space. Expression 37.6 becomes

	
θ θ θ

θ

+

∈
≈ ( ) ⋅ ( )argmax ( ( , ))

( ( , ))Θ Φ ∆
Θ Φ ∆

Z
C E

E

Z ZPr Pr
	

(37.9)

Thus, the EBL procedure, following Expressions 37.4 and 37.9, is as follows:

	 1.	 Employ some of the training examples, ZE, to construct several explanations, {ξi}.
	 2.	 Extract features from the explanations, Φ(∆,ZE), and assemble them into an extended hypothesis 

space, Θ(Φ(∆, ZE)).
	 3.	 Use the rest of the training examples, ZC, to choose a concept from the enhanced space, 

θ+ ∈ Θ(Φ(∆,ZE)).
	 4.	 Choose a concept from the original space c+ ∈ H closest to the enhanced concept, θ+.

37.3  Practice

The roots of EBL can be traced back a long way. But its formalization is still emerging. The motivation 
of EBL is to exploit general prior knowledge. Two early AI works served as inspirations for the develop-
ment of this view. These were the MACROPS learning of the STRIPS system [15] and the notion of goal 
regression [58]. An important conceptual step was the explicit recognition of the role of explanation 
(i.e., building a structure justifying an unobserved feature of interest such as a class label) [9,43,53]. 
Seminal papers [11,42] sparked an explosion of interest in EBL.

In modern EBL, the construction of features from an explanation employs similar processing to that 
of classical EBL [28,44]. But in classical EBL, the acquired fully formed concept was the preserved por-
tion of the explanation, from the “operational” predicates up to the class label conclusion. In modern 
EBL, there is no operationality criterion; all internal conclusions are used. Furthermore, the important 
portions of the explanation are from the raw feature leaves up to the internal conclusions. Modern EBL 
explanations serve to generate features, not the fully formed concept of classical EBL. Several aspects of 
modern EBL are shared with earlier EBL systems. Multiple explanations were explored in [7,17]. The use 
of an embedded statistical learner can be seen as a generalization of the research combining EBL with 
neural networks [56,57].

More recently, EBL has been applied to AI and machine learning problems such as structured pre-
diction [34,36], planning [16,32,26], natural language processing [35], vision and image processing 
[33,34,38,46], and as a component in larger systems such as [60].

Two implementations illustrate the important EBL principles of the previous sections. The first [33] 
learns to distinguish ketch from schooner sailing ships in the Pascal VOC data set [14]. It shows how 



37-10 Intelligent Systems

explanation-generated features, although quite approximate, can yield an accurate classifier. The second [59] 
learns to distinguish similar handwritten Chinese characters. It illustrates feature generation from the inter-
action of domain theory distinctions and training examples. It also illustrates the ability to grow or shrink 
the structural complexity of the classifier in response to the difficulty of the particular learning problem.

Both systems employ the acquired EBL feature functions as “virtual sensors.” These satisfy the ana-
lytic approach to the utility problem as in [13]. In applying the learned concept, these virtual sensors 
embellish the new example to be classified with derived features.

Consider the right-facing sailing ships in Figure 37.4. The top row shows ketches (Figure 37.4a) and 
schooners (Figure 37.4b). It is not easy to tell a ketch from a schooner. The key is that the foremast of 
ketches is taller while in schooners the aft mast is taller. The behavior of an EBL system is compared with 
two conventional statistical learners.

Figure 37.5 shows learning curves for the three systems. These are error rates on a withheld test set after 
training on an increasing numbers of examples. The EBL system significantly outperforms the others. The 
conventional statistical learners are the two top lines. The better conventional learner achieves an error 
rate of 30% after training on 30 examples. The EBL system is shown as a dashed line with circle markers. It 
achieves a 21% error rate after 5 training examples and 17% after 30. On the same test images, after being 
told how to distinguish ketches from schooners, humans turned in an error rate of 11%. This is shown as 
the bottom horizontal dotted line. The human error rate reflects the relatively poor quality of the VOC 
data set itself. Several images are misclassified, some are framed so that the top of the masts are beyond 
the top of the image, and a number of images are neither ketches nor schooners but single-mast sloops.

FIGURE 37.4  (a) Three ketches and (b) three schooners. The EBL-augmented representations are below the raw 
image representations. Dots denote the highest point and center of geometry. The inferred hull and sail labels are 
shown light and dark pixels respectively; water and background labels are omitted.

Ketch/schooner learning curves

0
0

5

5

10

10

15

15

20

20

25

25

30

30

35 

35
40
45
50

Er
ro

r r
at

e (
%)

Training examples per class

FIGURE 37.5  Ketch vs. schooner learning curves: two conventional learners (diamond and square), the EBL 
learner (circle), and human performance (horizontal dotted line).
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There is no accurate concept within the scope of the conventional systems. It is easy to see why. 
The conventional state-of-the-art systems extract code words (clustered local patches of pixels) from 
the training images [37] without regard to class. Two distributions over the code words are con-
structed. One is the distribution imposed by ketch training images and the other by schooners. 
Given a new unlabeled image, code words are again extracted from it. The distribution of its code 
words fits one of the training distributions better than the other and the image is assigned the cor-
responding label.

Why is this task challenging? The ketch/schooner signal to noise ratio is very low: relatively few pixels 
encode the class information. Furthermore, those pixels occur in small functionally defined regions that 
do not correspond to any particular image location. Even worse, they exhibit only high-order systematic 
covariate structure. The conventional systems perform better than chance only because ketches tend 
to be used nearer the shore and this results in somewhat different distribution of background pixels. 
Statistics over code words expose this distinction quite easily. But, as can be seen, their learning rates 
flatten. Adding many more training examples would serve only to improve the confidence in the sea-to-
shore distribution. The ketch/schooner accuracy would not improve much.

Rather than the whole image, the EBL system tries to model distributions for expected conceptual 
constituents of the ships. These intermediate concepts are introduced by the domain theory: water, 
hull, sails, and background. It also specifies ways to compute properties of regions such as height, 
width, and centroid and their geometric relations: above, below, left, right. The chosen EBL classifier 
employs several derived features: the joint model of the hull and sails, the sail center of geometry, and 
the highest point of the sails. The learned classifier is as follows: the ketch (schooner) has a sail center 
of geometry left of (right of) the highest point of the sail. The relevant derived features are shown in 
Figure 37.4. These include the pixels corresponding to sails (darker gray), the pixels corresponding to 
the hull (lighter gray), and black dots to indicate the center of geometry and the highest point of the 
sails. Simpler, more straightforward competitors, such as comparing the positions of the highest sail 
points, do not perform well. It might at first seem that modeling the hull is an unnecessary complica-
tion. But the hull turns out to be more distinctive than the sails that, without the hull, are often con-
fused with sky and clouds.

Of particular note in Figure 37.4 is the relatively poor correspondence between the explained images 
(lower rows) and the original images (upper rows). This illustrates the power and robustness of combin-
ing the analytic and empirical information. One might hope for a more accurate internal representation, 
modeling, for example, the sails more faithfully. But accuracy has a price in terms of computational 
efficiency and (especially) in terms of robustness. Accurate sail identification would require a feature 
function that is much more subtle, derivationally much more complex, and computationally much more 
expensive. Conventional logic requires such an accurate representation. The brittleness inherent in con-
ventional logic is avoided in EBL precisely because of this “good enough” modeling. Features are con-
structed so as to be minimally sufficient for their downstream purpose.

A second system applies EBL to the problem of distinguishing offline handwritten Chinese charac-
ters. Offline means that the input is a pixel image of the drawn glyph. This is contrasted with online 
processing in which captured stylus information (such as position, velocity, and acceleration) is avail-
able via a touch-sensitive pad. Offline processing is significantly more difficult.

Chinese characters are more complex than digits or Latin characters; each is composed from a few 
to a few dozen strokes. Because there are 10–20,000 common characters, training data are much more 
limited. Available databases contain a few tens to a few hundred handwritten examples of each char-
acter, compared to the tens of thousands of training images available for handwritten digits and Latin 
characters. These conditions challenge even the best machine learning algorithms.

A space of binary classification problems can be defined by selecting two Chinese characters to distin-
guish. This generates problems of widely varying difficulty. Most characters are quite different from each 
other, resulting in relatively easy problems. But many characters have one or more very similar counter-
parts. These form extremely challenging classification problems, particularly given the paucity of training 
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examples and the diversity of writing styles. Figure 37.6 illustrates one such difficult classification prob-
lem. The top and bottom rows show two different characters; the left column is the printed glyph, the 
remaining columns show each character drawn by four different writers. It is clear that the noise induced 
by the different writing styles is large compared to the systematic class difference between the characters.

Research on handwritten Chinese characters has a long history [24,55]. For Chinese characters, as 
in most statistical classification problems, the first step in state-of-the-art processing is dimensionality 
reduction. One of the most effective specialized feature sets is known as WDH (for weighted directional 
histograms) originally from [30]. First, the image is normalized and then the thousands of pixel features 
are compressed into several hundred parameters encoding discretized local edge gradients.

The present experiment compares the behavior of an EBL system with a support vector machine 
(SVM). Chinese characters are input to the SVM as WDH features. The SVM employs a radial basis 
kernel that preliminary experiments indicate outperforms other standard kernels.

By contrast, the EBL system inputs characters as raw image pixels. Its underlying statistical learner is 
also an SVM employing a radial basis kernel, but its SVM is applied to a small chosen region rather than 
the entire character image. Explanation-derived features define this expected high-information region. 
The domain theory specifies that characters are composed of strokes and that the observable features 
(the raw input pixels) arise from these strokes. Strokes are modeled (quite imperfectly) as long thin rect-
angles. Input pixels are “explained” by these rectangular strokes. The domain theory also includes an 
“ideal” stroke representation for each character class (i.e., a single printed character of the class similar 
to that of a vector font but composed of the simple rectangular strokes) and the ability to compute WDH 
features of an image region.

The derived features are problem-specific configurations of strokes. These features are not mentioned 
explicitly in the domain theory but are constructed automatically during the learning process. Given a differ-
ent learning problem (i.e., a different pair of difficult characters), quite different features will be constructed.

The features form a sequence. Each feature is evaluated from the image pixels together with the values 
of sequentially earlier features. The value of a feature is the set of parameters that optimize the local fit 
of its stroke configuration in the image. The explanation conjectures that with high confidence, each 
feature function in the sequence can be fit to the image sufficiently accurately to support the next feature 
function, and that the final target region contains sufficient discriminative evidence to classify the image.

Figure 37.7 illustrates the feature sequence applied to two test instances from a particular difficult-
to-distinguish pair of Chinese characters. The first column shows handwritten instances of the two 
characters. The top row, left to right, shows the sequence of, in this case, five derived features. Each is an 
expected configuration of idealized (rectangular) strokes. Strokes from the structure common to both 
characters are black; class-discriminative strokes are reduced in intensity and appear gray.

The value of each feature is the result of an optimization. It is the vector of affine transformation param-
eters that locally optimizes the fit of the stroke configuration to the pixel image. Sequentially previous 
values (best fits of earlier features) are used to initialize the optimization search. The correctness of each 
feature evaluation is contingent on the correctness of earlier feature evaluations. Each must be initialized 
to within some basin of attraction around the optimal value (a small locally convex optimization region).

The rows of Figure 37.7 directly below the derived features show the application of each feature to each 
test image. Its value, the optimized affine parameters, is illustrated by superimposing the transformed 

FIGURE 37.6  A printed and four handwritten examples of two similar Chinese characters.
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feature strokes onto the original image. At each step, the feature is initialized at the location predicted 
by the previous feature values. Then, using the feature-to-pixel fit as a gradient, the locally optimal affine 
transformation parameters are found. The vector of optimized parameters is the value of the feature.

As can be seen, the first feature is the average full character rendered with rectangular strokes. In this 
and other features, the gray class-discriminative strokes have less effect on the optimizer because of their 
diminished intensity. There are no previous steps; the feature is initialized to the global expected location 
over the training set. The basin of attraction of the feature is large since the feature includes all of the strokes. 
However, it is clear that the best affine fit is poor for both images. This is due to the limited flexibility afforded 
by an affine transformation. The fit is far too poor to reliably test for the class-discriminative stroke, but it 
is sufficient to initialize the second feature, consisting of five strokes, to its basin of attraction, and so on.

Each feature fulfills a role. The roles are (1) to provide information about the target window (the fifth 
feature performs this role), (2) to provide improved initialization for a downstream features (this is the 
role of the first and third features), and (3) to expand the basin of attraction of downstream features by 
matching and thereby removing from later gradient computations, some pixels that empirically proved 
distracting to the optimizer (the second and fourth features fulfill this role).

The final target region is bounded by the four common strokes of feature five. The region is normal-
ized to a square. The result is treated conventionally: WDH features are computed on this square region 
and given to the RBF SVM for final classification. The normalized region for each image is shown in the 
rightmost column of Figure 37.7. The identification of the discriminative window is far from perfect, but 
it is sufficient for a large margin classifier to detect, in this case, the predominance of horizontal WDH 
features. Details of the system can be found in [59].

The EBL system significantly improves performance over the state-of-the-art WDH RBF SVM. The 
average error rate over the ten hardest-to-distinguish pairs is improved by 20%. This is particularly sig-
nificant since this EBL system is only equipped to consider a single difference. An obvious refinement 
would be to explain multiple differences. The conventional state-of-the-art classifier, by taking a dot 
product with support WDH images, integrates all differences over the entire character image. While on 
average the EBL system outperforms the conventional statistical classifier, one exception is illustrated in 
the left pair of Figure 37.8. Here the RBF SVM with WDH features achieves an error rate of 15.8%, while 

FIGURE 37.7  Application of the learned classifier to instances of a difficult pair showing the intermediate fea-
tures applied. Left: the handwritten characters; top: the constructed intermediate features; and right: the normal-
ized discriminative feature region given to the SVM.

FIGURE 37.8  The performance of EBL compared to the state of the art is (left) slightly worse, (center) signifi-
cantly better, and (right) better than human native Chinese readers.



37-14 Intelligent Systems

the EBL system makes 17.3% errors. This is likely due to the existence of multiple systematic differences 
between the characters; the left radical is both taller and contains an additional horizontal stroke. On 
the other hand, the center pair of Figure 37.8 shows a significant success of EBL. Here the state-of-the-
art learner achieves an error rate of 9.0%, while the EBL system’s error rate is 1.6%. The right pair is 
also interesting. For this pair, the EBL system outperforms human native Chinese readers tasked with 
distinguishing the two characters in a controlled setting. The state-of-the-art statistical system achieves 
an error rate of 7.8%, humans turn in an error rate of 6.4%, while the EBL system achieves 4.0% errors. 
This is one of the more complex characters. Native Chinese readers find the pair to be quite challenging 
to distinguish in isolation.

37.4 R esearch Issues

The EBL presented in this chapter represents a significant advance over previous formalisms (e.g., [50]). 
But it is only the most recent snapshot in a long evolutionary path. Much work remains to be done.

First and foremost is the question of codifying domain theories. Implications for the novel semantics 
of prior knowledge are far reaching and not yet fully understood. While the syntax of first-order logic 
is standard and familiar, it evolved to fill a very different need than EBL. Because it is widely known, 
first-order logic is convenient for defining and analyzing EBL but it seems not to be the representa-
tion of choice for practical implementations. Most successful modern EBL systems, including the two 
discussed in Section 37.3, employ ad hoc inference systems. A more appropriate general representation 
scheme may emerge from experience with more domains.

Another important need is in the development of a more sophisticated model of analytic uncertainty. 
In the current presentation, derivational complexity is the measure of confidence. The development of a 
more refined measure is needed. Some first steps are clear. Information on trustworthiness is encoded 
within an explanation’s internal structure. Consider again the deficiencies of conventional logic. The 
root cause of logic’s brittleness in AI applications is the interaction between its semantics (based on 
satisfiability) and the qualification problem [40]. The semantics dictates that adopting its axioms means 
believing just as strongly all of the implications of the axioms. Unintended conclusions arise from any 
imprecisions or approximations in the statement of the axioms. In conventional logic, if one believes 
“cars move” and also that “buried things do not move,” then one is equally committed to believing that 
“cars cannot be buried.” The qualification problem states that general (universally quantified) state-
ments intended to describe the real world can at best be approximations. One might hope to amend the 
axioms in order to eliminate such approximations. But the qualification problem assures us that this is 
impossible. For example, “birds fly” might be rendered as

	 ∀ ⇒x Bird x Flies x( ) ( ) 	 (37.10)

But there are obvious exceptions such as penguins and emus. Expression 37.10 can be easily amended 
with the known flightless birds. Unfortunately, there are always more exceptions such as cooked 
Thanksgiving turkeys and birds with their flight feathers clipped. Merely adding more antecedent condi-
tions (qualifications) fails for two reasons: (1) additional (increasingly bizarre but very clear) exceptions 
continue to arise (birds with their feet cast in cement) and (2) the inference system becomes paralyzed 
by the need to entertain and defeat a myriad of unlikely but logically necessary conditions.

Let {Γi} be the set of initial statements of EBL’s ∆. Perhaps Γ1 is Expression 37.10, Γ2 might be a repre-
sentation of “Penguins do not fly,” Γ3 “Penguins are birds,” etc. These are not acceptable in conventional 
logic as they admit no possible worlds (the set is self-inconsistent). But in an EBL framework, “believed” 
means something different. To investigate this difference, consider how representations of ∆ might be 
converted to their “closest” logical counterparts:

	 Each Γ Γi i imust be replaced with α ⇒
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where each αi denotes the weakest sufficient condition that guarantees the truth of the corresponding Γi. 
So α1 would represent “x is not a penguin nor is it an emu nor…nor is it cooked nor is its feet cast in any 
cement block nor…” It rules out every possible exception to Expression 37.10, including all the bizarre 
ones. The difference with conventional logic is that in EBL these α’s are implicit; they are not repre-
sented nor are they reasoned about. Their truth conditions are subtle, depending both on their context 
within the explanation and on the distribution of examples that will be seen. This dynamic semantics 
sets EBL apart from past approaches for combining logic and statistics. See [12,19,23,29]. Perhaps the 
closest in spirit is [29]. Since these αi’s are not reasoned about, their probabilities of holding may be 
modeled as independent of each other. So an explanation composed of the set of statements {Γi} holds 
with probability

	
Pr

i

i∏ ( )α

Like Expression 37.8, this yields an exponentially decaying probability over derivations. Estimates of the 
Pr(αi)’s (although not the αi’s themselves) may be updated as experience with ∆ accrues.

Experience may also be helpful to EBL in exploring more expressive domain theories, such as those 
with second-order statements. First-order logic represents an attractive trade-off between expressive-
ness and computability for logic. But the trade-off is quite different for EBL. The undecidability of 
higher-order logic asserts that no effective procedure can exist that reliably determines whether or not 
an expression is a theorem. But some, perhaps many, such determinations may be possible. These are 
precisely the ones with tractable derivations. An undecidable question may not halt. But failing to halt 
incurs infinite derivational complexity. These are implicitly ignored by an EBL system that constructs 
explanations in order of Expression 37.7. Furthermore, some higher-order statements can be quite use-
ful. For example, the statement of the qualification problem is itself a higher-order statement. Humans 
are not paralyzed by such statements so clearly some inferential systems tolerate them well. Additional 
research should investigate and characterize the utility of such statements.

Another useful direction to explore concerns explanation generation. Instead of a random subset ZE 
to guide explanation generation, the system might grow ZE one example at a time. Early explanations 
would likely be abandoned quite frequently. But as more examples are taken into account, the expla-
nations grow in complexity, and their expected adequacy improves; it is more likely that important 
distinctions are already incorporated. Standard online stopping criteria could signal when sufficient 
evidence has accrued. In this way, ZE might consume something close to the minimal number of train-
ing examples, preserving the largest possible calibration set ZC for the new concept.

There may be insight to be gained from the parallels with planning. Conventionally, in complex 
learning domains, some preprocessor performs dimensionality reduction. Only then does a pattern 
recognizer form the concept. In EBL, this division begins to be blurred. Feature evaluation proceeds 
sequentially with later features dependent on the choice and values of earlier ones. The enhanced rep-
resentation also emerges as classification proceeds. This is reminiscent of executing a conditional or 
disjunctive plan. The learner plays the role of a conditional planner. It more devises a goal-directed 
procedure than characterizes a probability distribution.

The primary motivation for EBL is to improve example efficiency of learning. This is a clear need. 
But there is another, less acknowledged but more pernicious problem that EBL may also address. This 
concerns the representation of input data. Computational learning systems almost universally assume 
the data are drawn from some example space (X), and each example is represented as a vector of values 
from some set of features. Sometimes this assumption is warranted. An image is completely defined 
by a large but finite set of pixels; a natural language sentence is precisely a particular sequence of 
words and punctuation. Tasks such as identifying pedestrians in an image or performing semantic role 
labeling on the sentence fit very well into this ubiquitous representational assumption. But these are 
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artificial tasks that, at best, might be subtasks for useful real-world behavior. Suppose, by contrast, we 
command our household robot “Get me my keys from the bedroom.” The robot enters and must deal 
with the bedroom. Can it be described with a finite set of features? Pick an average room and make a 
list of all of the “features” that in principle can be noticed. It is impossible. The room is not defined by 
a finite set of features. Rather, it is an object of great complexity; the closer it is examined, the more 
features it has. This holds for most real-world objects. Humans almost never completely represent 
an object. Rather, we possess a suite of sensors through which we perceive the world. We choose to 
look more closely at some parts of the world than others, building a sufficient representation as we 
go, enhancing it as necessary. Our representations must consist of only a tiny subset of the possible 
features. And those features must be adequate for the task at hand. Include too many features and spe-
cious patterns abound; include too few and no useful pattern can be constructed. Machine learning 
research has evolved to avoid tasks where this becomes problematic. Conventional feature selection 
methods are far from satisfactory. They generally begin by enumerating all of the possible features 
and only then choosing a smaller set or combination. SVM’s can effortlessly handle large or infinite 
inflated feature spaces, but like other machine learners, they are paralyzed by an unboundedly rich 
primal feature space. These generally result in narrow margins, a high fraction of examples becoming 
support vectors, and poor predictive generalization. It is clear that most of the attributes of most real-
world objects must be implicitly ignored. A promising EBL direction might be to include a description 
of sensors’ behaviors in the EBL domain theory, ∆. Then the bias of low derivational complexity, pre-
ferring the simplest adequate explanations, might naturally embrace a small but adequate set of object 
sensing commands.

Another interesting direction is to explore a human in the learning loop. In this regard, a human 
teacher might collaboratively help to build or to choose explanations. Human interaction has proven to 
be effective in theorem proving [27], which is similar to explanation building. Alternatively, the human 
might select or suggest elements for ZE. In this regard, the approach might be similar to curriculum 
learning [1] and benefit from similar approaches.

In addition to refinements and extensions, there are several active areas in machine learning that 
might be explored as complementary to EBL. Perhaps the domain theory, ∆, might itself be learned. 
The approaches that fall under the rubric of nonparametric Bayesian learning would be relevant. Topic 
models, for example, allow the learner itself to discover latent structure from examples [3]. It might be 
fruitful to explore how the structure discovered by these systems might be employed as an EBL domain 
theory. A complication is that the latent hierarchies produced by nonparametric Bayesian approaches 
are propositional in expressiveness rather than first order. One interesting alternative is once again to 
introduce a human in the loop but now using natural language interaction. A number of NLP systems 
have examined extracting first-order or relational rules from text, essentially parsing text into the sort 
of semantic knowledge representation needed by EBL. See, for example, [6,20,54].

Finally, the relevance of EBL to psychology demands further exploration. There is ample evidence that 
humans exploit general prior knowledge during concept learning [45]. A number of studies have shown 
EBL-like behavior in adults [31,48,51]. There is recent experimental evidence that infants as young as 
21 months also employ an EBL-like prior knowledge bias [2], going beyond statistical regularities and 
exploiting prior knowledge when learning.

37.5  Summary

Modern EBL enhances conventional statistical learning with analytic evidence from a general domain 
theory. A good domain theory introduces distinctions deemed by experts to be useful. Analytic infer-
ence supports the nonlinear interaction of these distinctions giving rise to a potentially huge number 
of derivable features. The explanation process insures that only a few of these, the ones relevant to the 
task at hand, are elevated to the status of new features. Some of these new features, perhaps many, will 
be specious. But others will be effective in describing aspects of the underlying pattern. A conventional 
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statistical learner chooses which derived features are valuable, which to disregard, and how best to com-
bine the good ones. The resulting pattern is then translated back into the target hypothesis space.

Both analytic inference and statistical inference possess strengths and weaknesses as models 
for the real world. Analytic inference (i.e., symbolic deduction) handles general quantified expres-
sions easily and naturally. It is adept at generating well-formed complex nonlinear combinations of 
new beliefs from old ones. But in any interesting real-world domain, it unavoidably generates spe-
cious incorrect conclusions. All its conclusions are equally believed. Real-world correctness has no 
place within the formalism. On the other hand, the conclusions of statistical inference are based 
on observed data and thus are directly connected to the real world. Statistical inference naturally 
embraces uncertainty and offers formal guarantees of confidence in its conclusions. But it is not eas-
ily nor naturally extended beyond propositional representations, and it requires exponentially larger 
data sets to confidently discover the higher-order covariate structure required by many every-day 
patterns in the world.

The EBL process exploits the strengths of both analytic inference and statistical inference and uses 
each to circumvent the inherent weaknesses of the other. The analytic component generates explana-
tions. But these explanations do not have to be “correct” in any sense. An explanation is used only to 
expose derived features. It is only required that some good features be included within the set of expla-
nations. Each good feature helps to simplify the description of the underlying pattern; each good feature 
relieves the statistical learner of the need to work out potentially difficult interactions among the raw 
input features. Bad features, those that are unhelpful in describing the pattern, are easily dismissed or 
discounted by a statistical learner. By leveraging both analytic and empirical evidence, EBL may help AI 
to scale beyond its current capabilities.

For further information on specific topics, the reader is referred to the works cited in the text.

Key Terms

Concept or classifier: A function mapping examples to labels; a hypothesis from the hypothesis space 
chosen by a learner as an acceptable approximation to a target concept.

Derivation: A sequence of statements such that each statement is either an initial statement from the 
domain theory or the result of applying the domain theory’s inference procedure to earlier 
statements in the sequence.

Derived feature: A property beyond an object’s raw features that are likely to be true of the object given 
its raw features and the domain theory.

Domain: A set or space of related (classification learning) problems.
Domain theory: A set of statements expressing general prior knowledge or beliefs about a domain that 

are used to drive an inference procedure generating new beliefs from old ones. In EBL it serves 
as analytic evidence supporting the choice of a concept from the hypothesis space.

Example: An object that can be assigned a label (classified), often represented or individuated by a set 
of features.

Example space: The set of all classifiable objects.
Explanation: A derivation from the domain theory that, for one or more labeled examples, infers the 

label from the example’s features.
Hypothesis space: The set of all well-formed concepts that in principle could be output by a learner.
Inference: Reasoning from believed statements to new statements that a rational system should also 

believe. Inference may be empirical (based on observations) or analytic (based on interpreted 
symbols) and may reflect uncertainty in the prior beliefs.

Overfitting: The selection by a learner of a concept from the hypothesis space that captures a pattern 
exhibited by the training examples but not exhibited by the underlying population; a learner’s 
concept selection based on an insignificant amount of evidence.

Raw or input features: A set of properties that defines or individuates an example.
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Target concept: The veridical function embodied by the world that generates labels for examples; gener-
ally it is not contained within the hypothesis space.

Training set: A collection of labeled examples given to a learner serving as empirical evidence support-
ing the choice of a concept from the hypothesis space.
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38.1  Introduction

Efforts using artificial intelligence (AI) to solve problems with computers—which humans routinely 
handle by employing innate cognitive abilities, pattern recognition, perception, and experience—
invariably must turn to considerations of search. This chapter explores search methods in AI, including 
both blind exhaustive methods and informed heuristic and optimal methods, along with some more 
recent findings. The search methods covered include (for nonoptimal, uninformed approaches) state-
space search, generate and test, means–ends analysis, problem reduction, AND/OR Trees, depth-first 
search (DFS), and breadth-first search. Under the umbrella of heuristic (informed) methods, we discuss 
hill climbing, best-first search, bidirectional search, and the A* algorithm. Tree searching algorithms for 
games have proved to be a rich source of study and provide empirical data about heuristic methods. 
Included here are the SSS* algorithm, the use of iterative deepening, and variations on the alpha–beta 
minimax algorithm, including the MTD(f) and NegaScout algorithms.

Coincident with the continuing price–performance improvement of small computers is the growing 
interest in reimplementing some of the heuristic techniques developed for problem-solving and plan-
ning programs, to see if they can be enhanced or replaced by other algorithmic methods. Since many of 
the heuristic methods are computationally intensive, the second half of the chapter focuses on parallel 
methods, which can exploit the benefits of parallel processing. The importance of parallel search is pre-
sented through an assortment of relatively recent algorithms including the parallel iterative deepening 
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algorithm (PIDA*), principal variation splitting (PVSplit), parallel window search (PWS), and the young 
brothers wait concept. In addition, dynamic tree-splitting methods have evolved for both shared-memory 
parallel machines and networks of distributed computers. Here the issues include load balancing, pro-
cessor utilization, and communication overhead. For single-agent search problems, we consider not 
only work-driven dynamic parallelism but also the more recent data-driven parallelism employed in 
transposition table-driven (work) scheduling (TDS). In adversarial games, tree pruning makes work load 
balancing particularly difficult, and hence we also consider some recent advances in dynamic parallel 
methods for game-tree search, including the very recent hybrid parallel window/iterative deepening 
search (HyPS), which combines the strengths of PWS and tree-splitting algorithms such as PVSplit.

Another class of search algorithms is motivated by the desire to model natural processes. We call 
this class of algorithms nature-based search. These methods include Monte Carlo simulation, simulated 
annealing (SA), genetic algorithms (GAs) and programming, Tabu search (TS), and ant colony optimization.

The application of raw computing power, while an anathema to some, often provides better answers 
than is possible by reasoning or analogy. Thus, brute force techniques form a good basis against which 
to compare more sophisticated methods designed to mirror the human deductive process.

38.2  Uninformed Search Methods

38.2.1  Search Strategies

All search methods in computer science share in common three characteristics: (1) a world model or 
database of facts based on a choice of representation providing the current state, as well as other possible 
states and a goal state; (2) a set of operators that defines possible transformations of states; and (3) a con-
trol strategy that determines how transformations among states are to take place by applying operators. 
Forward reasoning is one technique for identifying states that are closer to a goal state. Working back-
ward from a goal to the current state is called backward reasoning. As such, it is possible to make dis-
tinctions between bottom-up and top-down approaches to problem-solving. Bottom-up is often “goal 
oriented”—that is, reasoning backward from a goal state to solve intermediary subgoals. Top-down or 
data-driven reasoning is based on simply being able to reach a state that is defined as closer to a goal. 
Often the application of operators to a problem state may not lead directly to a goal state, so some back-
tracking may be necessary before a goal state can be found (Barr and Feigenbaum, 1981).

38.2.2  State-Space Search

Exhaustive search of a problem space (or search space) is often not feasible or practical because of the size 
of the problem space. In some instances, it is, however, necessary. More often, we are able to define a set 
of legal transformations of a state space (moves in a board game) from which those that are more likely 
to bring us closer to a goal state are selected, while others are never explored further. This technique in 
problem-solving is known as split and prune. In AI the technique that emulates this approach is called 
generate and test. Good generators are complete and will eventually produce all possible solutions while 
not proposing redundant ones. They are also informed; that is, they will employ additional information to 
constrain the solutions they propose. We note that the state space together with the allowable transitions 
forms a graph. In AI one typically searches the state space from a distinguished starting state and pro-
duces a search tree in which some nodes (states) may be repeated on different paths. In this context, AI lit-
erature discusses tree search (e.g., game trees) even when the underlying structure is not technically a tree 
since, for example, the same chess position may occur many times in the game tree and thus technically 
have multiple parents. In this case, each occurrence of the repeated state can be viewed as a separate node.

Means–ends analysis is another state-space technique whose purpose is to reduce the difference (dis-
tance) between a current state and a goal state. Determining “distance” between any state and a goal 
state can be facilitated by difference-procedure tables, which can effectively prescribe what the next state 
might be. Figure 38.1 illustrates how to use the means–ends analysis.
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The technique of problem reduction is another important approach in AI. That is, solve a complex 
or larger problem by identifying smaller manageable problems (or subgoals), which you know can be 
solved in fewer steps.

For example, Figure 38.2 shows the “donkey” sliding block puzzle, which has been known for over 
100 years. Subject to constraints on the movement of “pieces” in the sliding block puzzle, the task is to 
slide the blob around the vertical bar with the goal of moving it to the other side. The blob occupies four 
spaces and needs two adjacent vertical or horizontal spaces in order to be able to move, while the vertical 
bar needs two adjacent empty vertical spaces to move left or right or one empty space above or below it 
to move up or down. The horizontal bars’ movements are complementary to the vertical bar. Likewise, 
the circles can move to any empty space around them in a horizontal or vertical line. A relatively unin-
formed state-space search can result in over 800 moves for this problem to be solved, with plenty of 
backtracking necessary. By problem reduction, resulting in the subgoal of trying the get the blob on the 
two rows above or below the vertical bar, it is possible to solve this puzzle in just 82 moves!

Another example of a technique for problem reduction is called AND/OR Trees. Here, the goal is to 
find a solution path to a given tree by applying the following rules:
A node is solvable if

	 1.	 It is a terminal node (a primitive problem)
	 2.	 It is a nonterminal AND node whose successors are all solvable
	 3.	 It is a nonterminal OR node and least one of its successors is solvable

Similarly, a node is unsolvable if

	 1.	 It is a nonterminal node that has no successors (a nonprimitive problem to which no operator 
applies)

	 2.	 It is a nonterminal AND node and at least one of its successors is unsolvable
	 3.	 It is a nonterminal OR node and all of its successors are unsolvable

Repeat
Describe the current state, the goal state,

  and the difference between the two.
Use the difference between the current state and goal state,

  to select a promising transformation procedure.
Apply the promising procedure and update the current state.

Until the GOAL is reached or
  no more procedures are available

If the GOAL is reached, announce success;
Otherwise, announce failure.

FIGURE 38.1  Means–ends analysis.
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FIGURE 38.2  Problem reduction and the sliding block puzzle.
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In Figure 38.3, nodes B and C serve as exclusive parents to subproblems EF and GH, respectively. One 
way of viewing the tree is with nodes B, C, and D serving as individual, alternative subproblems. B and C 
represent AND nodes, and node D is a terminal node. Node B (respectively node C) requires that both E 
and F (respectively G and H) have solutions, as indicated by the curved arrowheads connecting them. On 
the other hand, node A is an OR node indicating that only one of its successors (B, C, or D) needs to have 
a solution. Solution paths would therefore be {A–B–E–F}, {A–C–G–H}, and {A–D}. In the special case 
where no AND nodes occur, we have the ordinary graph occurring in a state-space search. However, the 
presence of AND nodes distinguishes AND/OR Trees (or graphs) from ordinary state structures, which 
call for their own specialized search techniques. Typical problems tackled by AND/OR Trees include 
games or puzzles and other well-defined state-space goal-oriented problems, such as robot planning, 
movement through an obstacle course, or setting a robot the task of reorganizing blocks on a flat surface.

38.2.2.1  Breadth-First Search

One way to view search problems is to consider all possible combinations of subgoals, by treating the 
problem as a tree search. Breadth-first search always explores nodes closest to the root node first, thereby 
visiting all nodes at a given layer first before moving to any longer paths. It pushes uniformly into the 
search tree. Because of memory requirements, breadth-first search is only practical on shallow trees or 
those with an extremely low branching factor. It is therefore not much used in practice, except as a basis 
for such best-first search algorithms such as A* and SSS*.

38.2.2.2  Depth-First Search

DFS is one of the most basic and fundamental blind search algorithms. It is used for bushy trees (with 
high branching factor) where a potential solution does not lie too deep in the tree. That is, “DFS is a good 
idea when you are confident that all partial paths either reach dead ends or become complete paths after 
a reasonable number of steps.” In contrast, “DFS is a bad idea if there are long paths, particularly indefi-
nitely long paths, that neither reach dead ends nor become complete paths” (Winston, 1992).

DFS always explores the leftmost node to the left first, that is, the one that is farthest down from the 
root of the tree. When a dead end (terminal node) is reached, the algorithm backtracks one level and 
then tries to go forward again. To prevent consideration of unacceptably long paths, a depth bound is 
often employed to limit the depth of search. At each node, immediate successors are generated, and a 
transition is made to the leftmost node, where the process continues recursively until a dead end or 
depth limit is reached. In Figure 38.4, DFS explores the tree in the order: I-E-b-F-B-a-G-c-H-C-a-D-A. 
Here the notation using lowercase letters indicates possible storage of provisional information about the 
subtree. For example, this could be a lower bound on the value of the tree.

E

B C

A

D

F G H

FIGURE 38.3  AND/OR Tree.
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Figure 38.5 enhances DFS with a form of iterative deepening that can be used in a single-agent search 
like A*. DFS expands an immediate successor of some node N in a tree. The next successor to be expanded 
is (N.i), the one with lowest cost function. Thus, the expected value of node N.i is the estimated cost 
C(N,N.i) plus H(N), the known value of node N. The basic idea in iterative deepening is that a DFS is 
started with a depth bound of 1, and this bound increases by one at each new iteration. With each increase 

//	 The A* (DFS) algorithm expands the N.i successors of node N
//	 in best first order. It uses and sets solved, a global indicator.
//	 It also uses a heuristic estimate function H(N), and a
//	 transition cost C(N,N.i) of moving from N to N.i
//
IDA* (N) → cost
	 bound ← H(N)
	 while not solved
	 bound ← DFS (N, bound)
	 return bound	 // optimal cost

DFS (N, bound) → value
	 if H(N) ≡ 0	 // leaf node
	 solved ← true
	 return 0
	 new_bound ← ∞
	 for each successor N.i of N
	 merit ← C(N, N.i) + H(N.i)
	 if merit ≤ bound
	 merit ← C(N,N.i) + DFS (N.i, bound - C(N,N.i))
	 if solved
	 return merit
	 if merit < new_bound
	 new_bound ← merit
	 return new_bound

FIGURE 38.5  The A* DFS algorithm for use with IDA*.

H
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I

FIGURE 38.4  Tree example for depth-first and breadth-first search.
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in depth, the algorithm must reinitiate its DFS for the prescribed bound. The idea of iterative deepening, 
in conjunction with a memory function to retain the best available potential solution paths from iteration 
to iteration, is credited to Slate and Atkin (1977) who used it in their chess program. Korf (1985) showed 
how efficient this method is in single-agent search, with his iterative deepening A* (IDA*) algorithm.

38.2.2.3  Bidirectional Search

To this point, all search algorithms discussed (with the exception of means–ends analysis and back-
tracking) have been based on forward reasoning. Searching backward from goal nodes to predecessors 
is relatively easy. Pohl (1971) combined forward and backward reasoning into a technique called bidirec-
tional search. The idea is to replace a single search graph, which is likely to grow exponentially, with two 
smaller graphs—one starting from the initial state and one starting from the goal. The search terminates 
when the two graphs intersect. This algorithm is guaranteed to find the shortest solution path through 
a general state-space graph. Empirical data for randomly generated graphs show that Pohl’s algorithm 
expands only about 1/4 as many nodes as unidirectional search (Barr and Feigenbaum, 1981). Pohl 
also implemented heuristic versions of this algorithm. However, determining when and how the two 
searches will intersect is a complex process.

Russell and Norvig (2003) analyze the bidirectional search and come to the conclusion that it is 
O (bd/2) in terms of average case time and space complexity (where b is the branching factor and d is the 
depth). They point out that this is significantly better than O(bd), which would be the cost of searching 
exhaustively in one direction. The identification of subgoal states could do much to reduce the costs. The 
large space requirements of the algorithm are considered its weakness.

However, Kaindl and Kainz (1997) have demonstrated that the long held belief that the algorithm 
is afflicted by the frontiers passing each other is wrong. They developed a new generic approach that 
dynamically improves heuristic values but is only applicable to bidirectional heuristic search. Their 
empirical results have found that the bidirectional heuristic search can be performed very efficiently, 
with limited memory demands. Their research has resulted in a better understanding of an algorithm 
whose practical usefulness has been long neglected, with the conclusion that it is better suited to certain 
problems than corresponding unidirectional searches. For more details, the reader should review their 
paper (Kaindl and Kainz, 1997). The Section 38.3 focuses on heuristic search methods.

38.3  Heuristic Search Methods

George Polya, via his wonderful book How to Solve It (1945), may be regarded as the “father of heuristics.” 
Polya’s efforts focused on problem-solving, thinking, and learning. He developed a short “heuristic diction-
ary” of heuristic primitives. Polya’s approach was both practical and experimental. He sought to develop 
commonalties in the problem-solving process through the formalization of observation and experience.

The present-day notions of heuristics are somewhat different from Polya’s (Bolc and Cytowski, 1992). 
Current tendencies seek formal and rigid algorithmic solutions to specific problem domains, rather than 
the development of general approaches that could be appropriately selected and applied to specific problems.

The goal of a heuristic search is to greatly reduce the number of nodes searched in seeking a goal. In 
other words, problems whose complexity grows combinatorially large may be tackled. Through knowl-
edge, information, rules, insights, analogies, and simplification, in addition to a host of other tech-
niques, heuristic search aims to reduce the number of objects that must be examined. Heuristics do not 
guarantee the achievement of a solution, although good heuristics should facilitate this. Over the years, 
heuristic search has been defined in many different ways:

•	 It is a practical strategy increasing the effectiveness of complex problem-solving (Feigenbaum and 
Feldman, 1963).

•	 It leads to a solution along the most probable path, omitting the least promising ones.
•	 It should enable one to avoid the examination of dead ends and to use already gathered data.
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The points at which heuristic information can be applied in a search include

	 1.	 Deciding which node to expand next, instead of doing the expansions in either a strictly breadth-
first or depth-first order

	 2.	 Deciding which successor or successors to generate when generating a node—instead of blindly 
generating all possible successors at one time

	 3.	 Deciding that certain nodes should be discarded, or pruned, from the search tree

Most modern heuristic search methods are expected to bridge the gap between the completeness of 
algorithms and their optimal complexity (Romanycia and Pelletier, 1985). Strategies are being modified 
in order to arrive at a quasi-optimal, instead of optimal, solution with a significant cost reduction (Pearl, 
1984). Games, especially two-person, zero-sum games with perfect information, like chess and check-
ers, have proven to be a very promising domain for studying and testing heuristics.

38.3.1  Hill Climbing

Hill climbing is a DFS with a heuristic measure that orders choices as nodes are expanded. The heuristic 
measure is the estimated remaining distance to the goal. The effectiveness of hill climbing is completely 
dependent upon the accuracy of the heuristic measure.

Winston (1992) explains the potential problems affecting hill climbing. They are all related to issue 
of local “vision” versus global vision of the search space. The foothills problem is particularly subject to 
local maxima where global ones are sought, while the plateau problem occurs when the heuristic mea-
sure does not hint toward any significant gradient of proximity to a goal. The ridge problem illustrates 
just what it is called: you may get the impression that the search is taking you closer to a goal state, when 
in fact you are traveling along a ridge that prevents you from actually attaining your goal. SA attempts 
to combine hill climbing with a random walk in a way that yields both efficiency and completeness 
(Russell and Norvig, 2003, p. 115). The idea is to “temper” the downhill process of hill climbing in order 
to avoid some of the pitfalls discussed earlier by increasing the probability of “hitting” important loca-
tions to explore. It is akin to intelligent guessing. A more comprehensive discussion of SA can be found 
in Section 38.6.2.

38.3.2  Best-First Search

Best-first search (Figure 38.6) is a general algorithm for heuristically searching any state-space graph—a 
graph representation for a problem that includes initial states, intermediate states, and goal states. In 
this sense, a directed acyclic graph (DAG), for example, is a special case of a state-space graph. Best-first 
search is equally applicable to data- and goal-driven searchers and supports the use of heuristic evalu-
ation functions. It can be used with a variety of heuristics, ranging from a state’s “goodness” to sophis-
ticated measures based on the probability of a state leading to a goal that can be illustrated by examples 
of Bayesian statistical measures.

Similar to the depth-first and breadth-first search algorithms, best-first search uses lists to maintain 
states: OPEN to keep track of the current fringe of the search and CLOSED to record states already 
visited. In addition, the algorithm orders states on OPEN according to some heuristic estimate of their 
proximity to a goal. Thus, each iteration of the loop considers the most “promising” state on the OPEN 
list. According to Luger and Stubblefield (1993), best-first search improves at just the point where hill 
climbing fails with its short-sighted and local vision.

Here is a graph of a hypothetical search space. The problem is to find a shortest path from d1 to 
d5 in this directed and weighted graph (Figure 38.7), which could represent a sequence of local and 
express subway train stops. The “F” train starts at d1 and visits stops d2 (cost 16), d4 (cost 7), and d6 
(cost 11). The “D” train starts at d1 and d3 (cost 7), d4 (cost 13), and d5 (cost 12). Other choices involve 
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combinations of “Q,” “N,” “R,” and “A” trains with the F and/or D train. By applying the “best-first 
search” algorithm, we can find the shortest path from d1 to d5. Figure 38.8 shows a state tree represen-
tation of this graph.

The thick arrowed path is the shortest path [d1, d3, d4, d5]. The dashed edges are nodes put on the 
OPEN node queue, but not further explored. A trace of the execution of procedure best-first search 
appears in the following:

	 1.	 OPEN = [d1]; CLOSED = []
	 2.	 Evaluate d1; OPEN = [d3, d2]; CLOSED = [d1]
	 3.	 Evaluate d3; OPEN = [d4, d2]; CLOSED = [d3, d1]
	 4.	 Evaluate d4; OPEN = [d6, d5, d7, d2]; CLOSED = [d4, d3, d1]
	 5.	 Evaluate d6; OPEN = [d5, d7, d2]; CLOSED = [d6, d4, d3, d1]
	 6.	 Evaluate d5; a solution is found CLOSED = [d5, d6, d4, d3, d1]

Procedure Best_First_Search (Start) → pointer
	 OPEN ← {Start}	 // Initialize
	 CLOSED ← { }
	 While OPEN ≠ { } Do	 // States Remain
	 remove the leftmost state from OPEN, call it X;
	 if X ≡ goal then
	 return the path from Start to X
	 else
	 generate children of X
	 for each child of X do
	 CASE
	 the child is not on open or CLOSED:
	 assign the child a heuristic value
	 add the child to OPEN
	 the child is already on OPEN:
	 if the child was reached by a shorter path
	 then give the state on OPEN the shorter path
	 the child is already on CLOSED:
	 if the child was reached by a shorter path then
	 remove the state from CLOSED
	 add the child to OPEN
	 end_CASE
	 put X on closed;
	 re-order states on OPEN by heuristic merit (best leftmost)
	 return NULL	 // OPEN is empty

FIGURE 38.6  The best-first search algorithm. (From Luger, J. and Stubblefield, W., Artificial Intelligence: 
Structures and Strategies for Complex Problem Solving, 2nd edn., Benjamin/Cummings Publishing Company Inc., 
Redwood City, CA, p. 121, 1993.)

d1

(Q, 25)

(F, 16)

(B, 12)

(F, 11)

(D, 13)(O, N, 21)

(D, 7)

d7

d5d3 d4 (R, D, 12)d2

d6

(F, 7) (A, 13)

FIGURE 38.7  A state-space graph for a hypothetical subway system.
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Note that nodes d6 and d5 are at the same level so we don’t take d6 in our search for the shortest path. 
Hence, the shortest path for this graph is [d1, d3, d4, d5]. After we reach our goal state “d5,” we can also 
find the shortest path from “d5” to “d1” by retracing the tree from d5 to d1.

When the best-first search algorithm is used, the states are sent to the OPEN list in such a way that 
the most promising one is expanded next. Because the search heuristic being used for measurement of 
distance from the goal state may prove erroneous, the alternatives to the preferred state are kept on the 
OPEN list. If the algorithm follows an incorrect path, it will retrieve the “next best” state and shift its 
focus to another part of the space. In the example earlier, children of node d2 were found to have poorer 
heuristic evaluations than sibling d3, and so the search shifted there. However, the children of d3 were 
kept on OPEN and could be returned to later, if other solutions are sought.

38.3.3 A * Algorithm

The A* algorithm, first described by Hart, Nilsson, and Raphael (1968), attempts to find the minimal 
cost path joining the start node and the goal in a state-space graph. The algorithm employs an ordered 
state-space search and an estimated heuristic cost to a goal state, f* (known as an evaluation function), 
as does the best-first search (Section 38.2.2). It uniquely defines f*, so that it can guarantee an optimal 
solution path. The A* algorithm falls into the branch and bound class of algorithms, typically employed 
in operations research to find the shortest path to a solution node in a graph.

d7: 13 d6: 11/31 d5: 12/32 d7: 13/33

d4: 13/20

d3: 7/7d2: 25/25

d1:

d2: 16/16

d4: 7d3: 21

d5: 12d7: 13d6: 11d5: 12 d5: 12

d5: 12

d6: 11d5: 12d4: 13

FIGURE 38.8  A search tree for the graph in Figure 38.7.
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The evaluation function, f*(n), estimates the quality of a solution path through node n, based on values 
returned from two components, g*(n) and h*(n). Here g*(n) is the minimal cost of a path from a start node 
to n, and h*(n) is a lower bound on the minimal cost of a solution path from node n to a goal node. As in 
branch and bound algorithms for trees, g* will determine the single unique shortest path to node n. For 
graphs, on the other hand, g* can err only in the direction of overestimating the minimal cost; if a shorter 
path is found, its value is readjusted downward. The function h* is the carrier of heuristic information, and 
the ability to ensure that the value of h*(n) is less than h(n) (i.e., h*(n) is an underestimate of the actual 
cost, h(n), of an optimal path from n to a goal node) is essential to the optimality of the A* algorithm. This 
property, whereby h*(n) is always less than h(n), is known as the admissibility condition. If h* is zero, then 
A* reduces to the blind uniform-cost algorithm. If two otherwise similar algorithms A1 and A2 can be 
compared to each other with respect to their h* function, that is, h1* and h2*, then algorithm A1 is said 
to be more informed than A2 if h1*(n) > h2*(n), whenever a node n (other than a goal node) is evaluated. 
The cost of computing h* in terms of the overall computational effort involved, and algorithmic utility, 
determines the heuristic power of an algorithm. That is, an algorithm that employs an h* that is usually 
accurate, but sometimes inadmissible, may be preferred over an algorithm where h* is always minimal 
but hard to compute (Barr and Feigenbaum, 1981).

Thus, we can summarize that the A* algorithm is a branch and bound algorithm augmented by the 
dynamic programming principle: the best way through a particular, intermediate node is the best way to 
that intermediate node from the starting place, followed by the best way from that intermediate node to the 
goal node. There is no need to consider any other paths to or from the intermediate node (Winston, 1992).

Stewart and White (1991) presented the multiple objective A* algorithm (MOA*). Their research is 
motivated by the observation that most real-world problems have multiple, independent, and possibly 
conflicting objectives. MOA* explicitly addresses this problem by identifying the set of all nondomi-
nated paths from a specified start node to a given set of goal nodes in an OR graph. This work shows that 
MOA* is complete and is admissible, when used with a suitable set of heuristic functions.

38.4  Game-Tree Search

The standard representation used for a state-space in adversarial games is a tree. The tree is usually 
explored to a certain depth to determine the best move(s) by each side. Such trees can often grow expo-
nentially, and therefore, heuristics are vital for feasible computation.

38.4.1 A lpha–Beta Algorithms

To the human player of 2-person games, the notion behind the alpha–beta algorithm is understood 
intuitively as the following:

•	 If I have determined that a move or a sequence of moves is bad for me (because of a refutation 
move or variation by my opponent), then I don’t need to determine just how bad that move is. 
Instead I can spend my time exploring other alternatives earlier in the tree.

•	 Conversely, if I have determined that a variation or sequence of moves is bad for my opponent, 
then I don’t determine exactly how good it is for me.

Figure 38.9 illustrates some of these ideas. Here the thick solid line represents the current solution path. 
This in turn has replaced a candidate solution, here shown with dotted lines. Everything to the right of 
the optimal solution path represents alternatives that are simply proved inferior. The path of the current 
solution is called the principal variation (PV) and nodes on that path are marked as PV nodes. Similarly, 
the alternatives to PV nodes are CUT nodes, where only a few successors are examined before a proof of 
inferiority is found. In time the successor to a CUT node will be an ALL node where everything must be 
examined to prove the cutoff at the CUT node. The number or bound value by each node represents the 
return to the root of the cost of the solution path.
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In the forty years since its inception (Knuth and Moore, 1975), the alpha–beta minimax algorithm 
has undergone many revisions and refinements to improve the efficiency of its pruning, and, until the 
invention of the MTD(f) variant, it has served as the primary search engine for two-person games. 
There have been many landmarks on the way, including Knuth and Moore’s (1975) formulation in a 
negamax framework, Pearl’s (1980) introduction of Scout, and the special formulation for chess with 
the PV search (Marsland and Campbell, 1982) and NegaScout (Reinefeld, 1983). The essence of the 
method is that the search seeks a path whose value falls between two bounds called alpha and beta, 
which form a window. With this approach, one can also incorporate an artificial narrowing of the 
alpha–beta window, thus encompassing the notion of “aspiration search,” with a mandatory research 
on failure to find a value within the corrected bounds. This leads naturally to the incorporation of null 
window search (NWS) to improve upon Pearl’s test procedure. Here the NWS procedure covers the 
search at a CUT node (Figure 38.9), where the cutting bound (beta) is negated and increased by 1 in 
the recursive call. This refinement has some advantage in the parallel search case, but otherwise NWS 
(Figure 38.10) is entirely equivalent to the minimal window call in NegaScout. Additional improve-
ments include the use of iterative deepening with “transposition tables” and other move-ordering 
mechanisms to retain a memory of the search from iteration to iteration. A transposition table is a 
cache of previously generated states that are typically hashed into a table to avoid redundant work. 
These improvements help ensure that the better subtrees are searched sooner, leading to greater prun-
ing efficiency (more cutoffs) in the later subtrees. Figure 38.10 encapsulates the essence of the algorithm 
and shows how the first variation from a set of PV nodes, as well as any superior path that emerges later, 
is given special treatment. Alternates to PV nodes will always be CUT nodes, where a few successors 
will be examined. In a minimal game tree, only one successor to a CUT node will be examined, and it 
will be an ALL node where everything is examined. In the general case, the situation is more complex, 
as Figure 38.9 shows.

CUT

PV A principal variation node (all successors examined)

Most successors are cut off

ALL All successors examined

An all node that initially cuts off 

A cut node that converts to all and  then PV 
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CUTCUT

CUT
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FIGURE 38.9  The PV, CUT, and ALL nodes of a tree, showing its optimal path (bold) and value (5).
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38.4.2  SSS* Algorithm

The SSS* algorithm was introduced by Stockman (1979) as a game-searching algorithm that traverses sub-
trees of the game tree in a best-first fashion similar to the A* algorithm. SSS* was shown to be superior to 
the original alpha–beta algorithm in the sense that it never looks at more nodes while occasionally exam-
ining fewer (Pearl, 1984). Roizen and Pearl (1983), the source of the following description of SSS*, state that

… the aim of SSS* is the discovery of an optimal solution tree…In accordance with the best-first 
split-and-prune paradigm, SSS* considers “clusters” of solution trees and splits (or refines) that clus-
ter having the highest upper bound on the merit of its constituents. Every node in the game tree 
represents a cluster of solution trees defined by the set of all solution trees that share that node….the 
merit of a partially developed solution tree in a game is determined solely by the properties of the 
frontier nodes it contains, not by the cost of the paths leading to these nodes. The value of a frontier 
node is an upper bound on each solution tree in the cluster it represents,… SSS* establishes upper 
bounds on the values of partially developed solution trees by seeking the value of terminal nodes, 
left to right, taking the minimum value of those examined so far. These monotonically nonincreas-
ing bounds are used to order the solution trees so that the tree of highest merit is chosen for develop-
ment. The development process continues until one solution tree is fully developed, at which point 
that tree represents the optimal strategy and its value coincides with the minimax value of the root.

de, alpha, beta, height) → tree_value
	 if height ≡ 0
	 return Evaluate(node)	 // a terminal node
	 next ← FirstSuccessor (node)	 // a PV node
	 best ← − ABS (next, −beta, −alpha, height −1)
	 next ← SelectSibling (next)
	 while next ≠ NULL do
	 if best ≥ beta then
	 return best	 // a CUT node
	 alpha ← max (alpha, best)
	 merit ← − NWS (next, −alpha, height −1)
	 if merit > best then
	 if (merit ≤ alpha) or (merit ≥ beta) then
	 best ← merit
	 else best ← −ABS (next, −beta, −merit, height−1)
	 next ← SelectSibling (next)
	 end
	 return best	 // a PV node
end

NWS (node, beta, height) → bound_value
	 if height ≡ 0 then
	 return Evaluate(node)	 // a terminal node
	 next ← FirstSuccessor (node)
	 estimate ← − ∞
	 while next ≠ NULL do
	 merit ← − NWS (next, −beta+1, height−1)
	 if merit > estimate then
	 estimate ← merit
	 if merit ≥ beta then
	 return estimate	 // a CUT node
	 next ← SelectSibling (next)
	 end
	 return estimate	 // an ALL node
end

FIGURE 38.10  Scout/PVS version of ABS in the negamax framework.
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…The disadvantage of SSS* lies in the need to keep in storage a record of all contending candidate 
clusters, which may require large storage space, growing exponentially with search depth. (Pearl, 
1984, p. 245)

Heavy space and time overheads have kept SSS* from being much more than an example of a best-first 
search, but current research seems destined to now relegate SSS* to a historical footnote. Recently, Plaat 
et al. (1995) formulated the node-efficient SSS* algorithm into the alpha–beta framework using succes-
sive NWS search invocations (supported by perfect transposition tables) to achieve a memory-enhanced 
test procedure that provides a best-first search. With their introduction of the MTD(f) algorithm, Plaat 
et al. (1995) claim that SSS* can be viewed as a special case of the time-efficient alpha–beta algorithm, 
instead of the earlier view that alpha–beta is a k-partition variant of SSS*. MTD(f) is an important con-
tribution that has now been widely adopted as the standard two-person game-tree search algorithm. It 
is described in the succeeding text.

38.4.3  MTD(f) and NegaScout

MTD(f) is usually run in an iterative deepening fashion, and each iteration proceeds by a sequence of 
minimal or null window alpha–beta calls. The search works by zooming in on the minimax value, as 
Figure 38.11 shows.

The bounds stored in upper bound and lower bound form an interval around the true minimax value 
for a particular search depth d. The interval is initially set to [−∞, +∞]. Starting with the value f, returned 
from a previous call to MTD(f), each call to alpha–beta returns a new minimax value g, which is used to 
adjust the bounding interval and to serve as the pruning value for the next alpha–beta call. For example, 
if the initial minimax value is 50, alpha–beta will be called with the pruning values 49 and 50. If the new 
minimax value returned, g, is less than 50, upper bound is set to g. If the minimax value returned, g, is 
greater than or equal to 50, lower bound is set to g. The next call to alpha–beta will use g − 1 and g for 
the pruning values (or g and g + 1, if g is equal to the lower bound). This process continues until upper 
bound and lower bound converge to a single value, which is returned. MTD(f) will be called again with 
this newly returned minimax estimate and an increased depth bound until the tree has been searched 
to a sufficient depth.

As a result of the iterative nature of MTD(f), the use of transposition tables is essential to its efficient 
implementation. In tests with a number of tournament game-playing programs, MTD(f) outperformed 
alpha–beta search (ABS) (Scout/PVS, Figure 38.10). It generally produces trees that are 5%–15% smaller 
than ABS (Plaat et al., 1996). MTD(f) has been shown to examine fewer nodes than any other variants 

int MTDF ( node_type root, int f, int d)
{
	 g = f;
	 upperbound = +INFINITY;
	 lowerbound = −INFINITY;
	 repeat
	 if (g == lowerbound)
	 beta = g + 1
	 else
	 beta = g;
	 g = AlphaBetaWithMemory(root, beta − 1, beta, d);
	 if (g < beta)
	 then upperbound = g
	 else lowerbound = g;
	 until (lowerbound >= upperbound);
return g;
}

FIGURE 38.11  The MTD(f) algorithm pseudo-code.
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of the ABS; nevertheless, many chess program developers still prefer NegaScout (Reinefeld, 1983) to 
MTD(f), as it is free of dependence on transposition tables.

38.4.4 R ecent Developments

Sven Koenig has developed Minimax Learning Real-Time A* (Min-Max LRTA*), a real-time heuris-
tic search method that generalizes Korf ’s (1990) earlier LRTA* to nondeterministic domains. Hence, 
it can be applied to “robot navigation tasks in mazes, where robots know the maze but do not know 
their initial position and orientation (pose). These planning tasks can be modeled as planning tasks in 
non-deterministic domains whose states are sets of poses.” Such problems can be solved quickly and 
efficiently with Min-Max LRTA* requiring only a small amount of memory (Koenig, 2001).

Martin Mueller (2001) introduces the use of partial order bounding (POB) rather than scalar values 
for the construction of an evaluation function for computer game playing. The propagation of partially 
ordered values through a search tree has been known to lead to many problems in practice. Instead POB 
compares values in the leaves of a game tree and backs up Boolean values through the tree. The effective-
ness of this method was demonstrated in examples of capture races in the game of GO (Mueller, 2001).

Schaeffer et al. (2001) demonstrate that the distinctions for evaluating heuristic search should not 
be based on whether the application is for single-agent or two-agent search. Instead, they argue that 
the search enhancements applied to both single-agent and two-agent problems for creating high-per-
formance applications are the essentials. Focus should be on generality for creating opportunities for 
reuse. Examples of some of the generic enhancements (as opposed to problem-specific ones) include the 
alpha–beta algorithm, transposition tables, and IDA*. Efforts should be made to enable more generic 
application of algorithms.

Hong et al. (2001) present a GA approach that can find a good next move by reserving the board 
evaluation of new offspring in a partial game-tree search. Experiments have proven promising in terms 
of speed and accuracy when applied to the game of GO.

The fast-forward (FF) planning system of Hoffman and Nebel (2001) uses a heuristic that estimates 
goal distances by ignoring delete lists. Facts are not assumed to be independent. It uses a new search 
strategy that combines hill climbing with systematic search. Powerful heuristic information is extended 
and used to prune the search space.

38.5  Parallel Search

The proliferation of low-cost processors and, in particular, the advent of multicore computing have 
stimulated interest in the use of multiple processors for parallel traversals of decision trees. The few 
theoretical models of parallelism do not accommodate communication and synchronization delays that 
inevitably impact the performance of working systems. There are several other factors to consider too, 
including

	 1.	 How best to employ the additional memory and I/O resources that become available with the 
extra processors

	 2.	 How best to distribute the work across the available processors
	 3.	 How to avoid excessive duplication of computation

Some important combinatorial problems have no difficulty with the third point because every eventual-
ity must be considered, but these tend to be less interesting in an AI context.

One problem of particular interest is game-tree search, where it is necessary to compute the value of 
the tree while communicating an improved estimate to the other parallel searchers as it becomes avail-
able. This can lead to an “acceleration anomaly” when the tree value is found earlier than is possible 
with a sequential algorithm. Even so, uniprocessor algorithms can have special advantages in that they 
can be optimized for best pruning efficiency, while a competing parallel system may not have the right 
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information in time to achieve the same degree of pruning and so do more work (suffer from search 
overhead). Further, the very fact that pruning occurs makes it impossible to determine in advance how 
big any piece of work (subtree to be searched) will be, leading to a potentially serious work imbalance 
and heavy synchronization (waiting for more work) delays.

Although the standard basis for comparing the efficiency of parallel methods is simple,

	
Speedup = Time taken by a sequential single-processor algoritthm

Time taken by a P-processor system

This is the practical definition of speedup. Many researchers use a more theoretical definition, in 
which P-fold speedup is the best possible. However, in practice superlinear speedup can occur for a 
variety of reasons. This phenomenon happens when the parallel algorithm does less total work than the 
sequential version. For example, each processor may work on a smaller problem and thus get improved 
cache performance. In search problems, the parallel version may quickly report a solution on a path that 
would not be searched until much later by the sequential algorithm, causing other processors to end 
their search before exploring nodes that the sequential algorithm would have explored.

The exponential growth of the tree size (solution space) with depth of search makes parallel search 
algorithms especially susceptible to anomalous speedup behavior. Clearly, acceleration anomalies are 
among the welcome properties, but more commonly anomalously bad performance is seen, unless the 
algorithm has been designed with care.

In game-playing programs of interest to AI, parallelism is primarily intended not to find the answer 
more quickly but to get a more reliable result (e.g., based on a deeper search). Here, the emphasis lies on 
scalability instead of speedup. While speedup holds the problem size constant and increases the system 
size to get a result sooner, scalability measures the ability to expand the size of both the problem and the 
system at the same time:
Thus, scale-up close to unity reflects successful parallelism:

	
Scale up-

Time taken to solve a problem of size s by a sing= lle processor

Time taken to solve a (P s) problem by an P-p× rrocessor system

38.5.1  Parallel Single-Agent Search

Single-agent game-tree search is important because it is useful for several robot-planning activities, 
such as finding the shortest path through a maze of obstacles. It seems to be more amenable to paral-
lelization than the techniques used in adversary games, because a large proportion of the search space 
must be fully seen—especially when optimal solutions are sought. This traversal can safely be done in 
parallel, since there are no cutoffs to be missed. Although move ordering can reduce node expansions, 
it does not play the same crucial role as in dual-agent game-tree search, where significant parts of the 
search space are often pruned away. For this reason, parallel single-agent search techniques usually 
achieve better speedups than their counterparts in adversary games.

Most parallel single-agent searches are based on A* or IDA*. As in the sequential case, parallel A* 
outperforms IDA* on a node-count basis, although parallel IDA* needs only linear storage space and 
runs faster. In addition, cost-effective methods exist (e.g., PWS described subsequently) that determine 
nonoptimal solutions with even less computing time.

38.5.1.1  Parallel A*

Given P processors, the simplest way to parallelize A* is to let each machine work on one of the cur-
rently best states on a global OPEN list (a place holder for nodes that have not yet been examined). This 
approach minimizes the search overhead, as confirmed in practice by Kumar et al. (1988). Their relevant 
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experiments were run on a shared-memory BBN Butterfly machine with 100 processors, where a search 
overhead of less than 5% was observed for the traveling salesperson (TSP) problem.

But elapsed time is more important than the node expansion count, because the global OPEN list 
is accessed both before and after each node expansion, so that memory contention becomes a serious 
bottleneck. It turns out that a centralized strategy for managing the OPEN list is only useful in domains 
where the node expansion time is large compared to the OPEN list access time. In the TSP problem, 
near-linear time speedups were achieved with up to about 50 processors, when a sophisticated heap data 
structure was used to significantly reduce the OPEN list access time (Kumar et al., 1988).

Distributed strategies using local OPEN lists reduce the memory contention problem. But again 
some communication must be provided to allow processors to share the most promising state descrip-
tors, so that no computing resources are wasted in expanding inferior states. For this purpose, a global 
“Blackboard” table can be used to hold state descriptors of the currently best nodes. After selecting a 
state from its local OPEN list, each processor compares its f-value (lower bound on the solution cost) 
to that of the states contained in the Blackboard. If the local state is much better (or much worse) than 
those stored in the Blackboard, then node descriptors are sent (or received), so that all active processors 
are exploring states of almost equal heuristic value. With this scheme, a 69-fold speedup was achieved 
on an 85-processor BBN Butterfly (Kumar et al., 1988).

Although a Blackboard is not accessed as frequently as a global OPEN list, it still causes memory 
contention with increasing parallelism. To alleviate this problem, Huang and Davis (1989) proposed 
a distributed heuristic search algorithm called Parallel Iterative A* (PIA*), which works solely on local 
data structures. On a uniprocessor, PIA* expands the same nodes as A*, while in the multiprocessor 
case, it performs a parallel best-first node expansion. The search proceeds by repetitive synchronized 
iterations, in which processors working on inferior nodes are stopped and reassigned to better ones. 
To avoid unproductive waiting at the synchronization barriers, the processors are allowed to perform 
speculative processing. Although Huang and Davis (1989) claim that “this algorithm can achieve almost 
linear speedup on a large number of processors,” it has the same disadvantage as the other parallel A* 
variants, namely, excessive memory requirements.

38.5.1.2  Parallel IDA*

IDA* (Figure 38.5) has proved to be effective, when excessive memory requirements undermine best-
first schemes. Not surprisingly it has also been a popular algorithm to parallelize. Rao et al. (1987) pro-
posed PIDA*, an algorithm with almost linear speedup even when solving the 15-puzzle with its trivial 
node expansion cost. The 15-puzzle is a popular game made up of 15 tiles that slide within a 4 × 4 matrix. 
The object is to slide the tiles through the one empty spot until all tiles are aligned in some goal state. 
An optimal solution to a hard problem might take 66 moves. PIDA* splits the search space into disjoint 
parts, so that each processor performs a local cost-bounded DFS on its private portion of the state space. 
When a process has finished its job, it tries to get an unsearched part of the tree from other processors. 
When no further work can be obtained, all processors detect global termination and compute the mini-
mum of the cost bounds, which is used as a new bound in the next iteration. Note that more than a P-fold 
speedup is possible when a processor finds a goal node early in the final iteration. In fact, Rao et al. (1987) 
report an average speedup of 9.24 with 9 processors on the 15-puzzle! Perhaps more relevant is the all-
solution case where no superlinear speedup is possible. Here, an average speedup of 0.93P with up to 
thirty (P) processors on a bus-based multiprocessor architecture (Sequent Balance 21000) was achieved. 
This suggests that only low multiprocessing overheads (locking, work transfer, termination detection, 
and synchronization) were experienced.

PIDA* employs a task attraction scheme like that shown in Figure 38.12 for distributing the work 
among the processors. When a processor becomes idle, it asks a neighbor for a piece of the search space. 
The donor then splits its DFS stack and transfers to the requester some nodes (subtrees) for parallel 
expansion. An optimal splitting strategy would depend on the regularity (uniformity of width and 
height) of the search tree, though short subtrees should never be given away. When the tree is regular 
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(like in the 15-puzzle), a coarse-grained work transfer strategy can be used (e.g., transferring only nodes 
near the root); otherwise, a slice of nodes (e.g., nodes A, B, and C in Figure 38.12) should be transferred.

38.5.1.3  Comparison with Parallel Window Search

Another parallel IDA* approach borrows from Baudet’s (1978) parallel window method for searching 
adversary games (described later). Powley and Korf (1991) adapted this method to single-agent search, 
under the title PWS. Their basic idea is to simultaneously start as many iterations as there are processors. 
This works for a small number of processors, which either expand the tree up to their given thresholds until 
a solution is found (and the search is stopped) or completely expand their search space. A global adminis-
tration scheme then determines the next larger search bound and node expansion starts over again.

Note that the first solution found by PWS need not necessarily be optimal. Suboptimal solutions are 
often found in searches of poorly ordered trees. There, a processor working with a higher cutoff bound 
finds a goal node in a deeper tree level, while other processors are still expanding shallower tree parts 
(which may contain cheaper solutions). But according to Powley and Korf (1991), PWS is not primarily 
meant to compete with IDA*, but it “can be used to find a nearly optimal solution quickly, improve the 
solution until it is optimal, and then finally guarantee optimality, depending on the amount of time 
available.” Compared to PIDA*, the degree of parallelism is limited, and it remains unclear how to apply 
PWS in domains where the cost-bound increases are variable.

In summary, PWS and PIDA* complement each other. Hence, it seems natural to combine them to 
form a single search scheme that runs PIDA* on groups of processors administered by a global PWS 
algorithm. The amount of communication needed depends on the work distribution scheme. A fine-
grained distribution requires more communication, while a coarse-grained work distribution generates 
fewer messages (but may induce unbalanced work load). Note that the choice of the work distribution 
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FIGURE 38.12  A work distribution scheme.
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scheme also affects the frequency of good acceleration anomalies. Pertinent results have been reported 
by Reinefeld (1995). Using asynchronous parallel IDA* (AIDA*), near-linear speedup was obtained on a 
1024 transputer-based system solving 13 instances of the 19-puzzle. Reinefeld’s paper includes a discus-
sion of the communication overheads in both ring and toroid systems, as well as a description of the 
work distribution scheme.

In a similar vein, Diane Cook developed a hybrid parallel window/distributed tree search (HyPS) 
(Cook, 2011) and incorporated it into the EUREKA system of Cook and Varnell (1998) (see succeeding 
text). PWS is effective when many iterations are required and reduces the redundant work of IDA*, but it 
fails to exploit parallelism when exploring the tree to a depth bound. Tree splitting exploits parallelism 
in searching the tree to a given depth in IDA* but requires excessive load balancing and performs redun-
dant work when many iterations are required. HyPS works by dividing the available processors into 
clusters. Each cluster searches the same search space to a different threshold, as in PWS. Within each 
cluster, tree splitting is employed using operator ordering and load balancing. The algorithm adapts to 
different numbers of processors, and very favorable results have been reported on typical search prob-
lems that seem to indicate an improvement over existing parallel search algorithms.

Much work has also been done on parallelizing TS (discussed in Section 38.5.2) (see, e.g., Gendreau 
et al., 2001).

38.5.2 A dversary Games

In the area of two-person games, early simulation studies with a mandatory work first (MWF) scheme 
(Akl et al., 1982), and the PVSplit algorithm (Marsland and Campbell, 1982), showed that a high degree 
of parallelism was possible, despite the work imbalance introduced by pruning. Those papers saw that 
in key applications (e.g., chess), the game trees are well ordered, because of the wealth of move-ordering 
heuristics that have been developed (Slate and Atkin, 1977), and so the bulk of the computation occurs 
during the search of the first subtree. The MWF approach uses the shape of the critical tree that must 
be searched. Since that tree is well defined and has regular properties, it is easy to generate. In their 
simulation, Akl et al. (1982) consider the merits of searching the critical game tree in parallel, with 
the balance of the tree being generated algorithmically and searched quickly by simple tree splitting. 
Marsland and Campbell (1982), on the other hand, recognized that the first subtree of the critical game 
tree has the same properties as the whole tree, but its maximum height is one less. This so-called PV can 
be recursively split into parts of about equal size for parallel exploration. PVSplit, an algorithm based 
on this observation, was tested and analyzed by Marsland and Popowich (1985). Even so, the static 
processor allocation schemes like MWF and PVSplit cannot achieve high levels of parallelism, although 
PVSplit does very well with up to half a dozen processors. MWF in particular ignores the true shape of 
the average game tree, and so is at its best with shallow searches, where the pruning imbalance from the 
so-called deep cutoffs has less effect. Other working experience includes the first parallel chess program 
by Newborn, who later presented performance results (Newborn, 1988). For practical reasons Newborn 
only split the tree down to some prespecified common depth from the root (typically 2), where the great-
est benefits from parallelism can be achieved. This use of a common depth has been taken up by Hsu 
(1990) in his proposal for large-scale parallelism. Depth limits are also an important part of changing 
search modes and in managing transposition tables.

38.5.2.1  Parallel Aspiration-Window Search

In an early paper on parallel game-tree search, Baudet (1978) suggests partitioning the range of the 
alpha–beta window rather than the tree. In his algorithm, all processors search the whole tree, but 
each with a different, nonoverlapping, alpha–beta window. The total range of values is subdivided into 
P smaller intervals (where P is the number of processors), so that approximately one-third of the range 
is covered. The advantage of this method is that the processor having the true minimax value inside its 
narrow window will complete more quickly than a sequential algorithm running with a full window. 



38-19Search

Even the unsuccessful processors return a result: They determine whether the true minimax value lies 
below or above their assigned search window, providing important information for rescheduling idle 
processors until a solution is found.

Its low communication overhead and lack of synchronization needs are among the positive aspects of 
Baudet’s approach. On the negative side, however, Baudet estimates a maximum speedup of between 5 
and 6 even when using infinitely many processors. In practice, PWS can only be effectively employed on 
systems with two or three processors. This is because even in the best case (when the successful proces-
sor uses a minimal window), at least the critical game tree must be expanded. The critical tree has about 
the square root of the leaf nodes of a uniform tree of the same depth, and it represents the smallest tree 
that must be searched under any circumstances.

38.5.2.2 A dvanced Tree-Splitting Methods

Results from fully recursive versions of PVSplit using the Parabelle chess program (Marsland and 
Popowich, 1985) confirmed the earlier simulations and offered some insight into a major problem: In a 
P-processor system, P1 processors are often idle for an inordinate amount of time, thus inducing a high 
synchronization overhead for large systems. Moreover, the synchronization overhead increases as more 
processors are added, accounting for most of the total losses, because the search overhead (number of 
unnecessary node expansions) becomes almost constant for the larger systems. This led to the develop-
ment of variations that dynamically assign processors to the search of the PV. No table is the work of 
Schaeffer (1989), which uses a loosely coupled network of workstations, and Hyatt et al. (1989) inde-
pendent implementation for a shared-memory computer. These dynamic splitting works have attracted 
growing attention through a variety of approaches. For example, the results of Feldmann et al. (1990) 
show a speedup of 11.8 with 16 processors (far exceeding the performance of earlier systems), and Felten 
and Otto (1988) measured a 101 speedup on a 256 processor hypercube. This latter achievement is note-
worthy because it shows an effective way to exploit the 256 times bigger memory that was not available 
to the uniprocessor. The use of the extra transposition table memory to hold results of search by other 
processors provides a significant benefit to the hypercube system, thus identifying clearly one advantage 
of systems with an extensible address space.

These results show a wide variation not only of methods but also of apparent performance. Part of the 
improvement is accounted for by the change from a static assignment of processors to the tree search (e.g., 
from PVSplit) and to the dynamic processor reallocation schemes of Hyatt et al. (1989) and also Schaeffer 
(1989). These latter systems try to dynamically identify the ALL nodes of Figure 38.9 and search them in 
parallel, leaving the CUT nodes (where only a few successors might be examined) for serial expansion. 
In a similar vein, Ferguson and Korf (1988) proposed a “bound-and-branch” method that only assigned 
processors to the leftmost child of the tree-splitting nodes where no bound (subtree value) exists. Their 
method is equivalent to the static PVSplit algorithm and realizes a speedup of 12 with 32 processors for 
alpha–beta trees generated by Othello programs. This speedup result might be attributed to the smaller 
average branching factor of about 10 for Othello trees, compared to an average branching factor of about 
35 for chess. If that uniprocessor solution is inefficient—for example, by omitting an important node-
ordering mechanism like the use of transposition tables (Reinefeld and Marsland, 1994)—the speedup 
figure may look good. For that reason, comparisons with a standard test suite from a widely accepted game 
are often done and should be encouraged. Most of the working experience with parallel methods for two-
person games has centered on the alpha–beta algorithm. Parallel methods for more node-count-efficient 
sequential methods, like SSS*, have not been successful until recently, when the potential advantages of 
using heuristic methods like hash tables to replace the OPEN list were exploited (Plaat et al., 1995).

38.5.2.3  Dynamic Distribution of Work

The key to successful large-scale parallelism lies in the dynamic distribution of work. There are four pri-
mary issues in dynamic search: (1) Search overhead measures the size of the tree searched by the parallel 
method with respect to the best sequential algorithm. As mentioned earlier, in some cases, superlinear 
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speedup can occur when the parallel algorithm actually visits fewer nodes. (2) Synchronization overhead 
problems occur when processors are idle waiting for the results from other processors, thus reducing 
the effective use of the parallel computing power (processor utilization). (3) Load balancing reflects how 
evenly the work has been divided among available processors and similarly affects processor utilization. 
(4) Communication overhead in a distributed memory system occurs when results must be communi-
cated between processors via message passing.

Each of these issues must be considered in designing a dynamic parallel algorithm. The distribution 
of work to processors can either be accomplished in a work-driven fashion, whereby idle processors 
must acquire new work either from a Blackboard or by requesting work from another processor.

The young brothers wait concept (Feldmann, 1993) is a work-driven scheme in which the parallelism 
is best described through the help of a definition: The search for a successor N.j of a node N in a game 
tree must not be started until after the leftmost sibling N.1 of N.j is completely evaluated. Thus, N.j can 
be given to another processor if and only if it has not yet been started and the search of N.1 is complete. 
Since this is also the requirement for the PVSplit algorithm, how then do the two methods differ and 
what are the trade-offs? There are two significant differences. The first is at start-up and the second is in 
the potential for parallelism. PVSplit starts much more quickly since all the processors traverse the first 
variation (first path from the root to the search horizon of the tree) and then split the work at the nodes 
on the path as the processors back up the tree to the root. Thus, all the processors are busy from the 
beginning, but on the other hand, this method suffers from increasingly large synchronization delays as 
the processors work their way back to the root of the game tree (Marsland and Popowich, 1985). Thus, 
good performance is possible only with relatively few processors, because the splitting is purely static. In 
the work of Feldmann et al. (1990), the start-up time for this system is lengthy, because initially only one 
processor (or a small group of processors) is used to traverse the first path. When that is complete, the 
right siblings of the nodes on the path can be distributed for parallel search to the waiting processors. If, 
for example, in the case of one thousand such processors, possibly less than one percent would initially 
be busy. Gradually, the idle processors are brought in to help the busy ones, but this takes time. However, 
and here comes the big advantage, the system is now much more dynamic in the way it distributes work, 
so it is less prone to serious synchronization loss. Further, although many of the nodes in the tree will be 
CUT nodes (which are a poor choice for parallelism because they generate high search overhead), others 
will be ALL nodes, where every successor must be examined and they can simply be done in parallel. 
Usually CUT nodes generate a cutoff quite quickly, so by being cautious about how much work is ini-
tially given away once N.1 has been evaluated, one can keep excellent control over the search overhead 
while getting full benefit from the dynamic work distribution that Feldmann’s method provides.

On the other hand, transposition-driven work scheduling (TDS) for parallel single-agent and game-
tree searches, proposed by Romein et al. (1999), is a data-driven technique that in many cases offers 
considerable improvements over work-driven scheduling on distributed memory architectures. TDS 
reduces the communication and memory overhead associated with the remote lookups of transposi-
tion tables partitioned among distributed memory resources. This permits lookup communication and 
search computation to be integrated. The use of the transposition tables in TDS, as in IDA*, prevents the 
repeated searching of previously expanded states.

TDS employs a distributed transposition table that works by assigning to each state a “home processor,” 
where the transposition entry for that state is stored. A signature associated with the state indicates the 
number of its home processor. When a given processor expands a new state, it evaluates its signature and 
sends it to its home processor, without having to wait for a response, thus permitting the communication 
to be carried out asynchronously. In other words, the work is assigned to where the data on a particular 
state are stored, rather than having to lookup a remote processor’s table and wait for the results to be trans-
mitted back. Alternatively, when a processor receives a node, it performs a lookup of its local transposition 
table to determine whether the node has been searched before. If not, the node is stored in the transposi-
tion table and added to the local work queue. Furthermore, since each transposition table entry includes 
a search bound, this prevents redundant processing of the same subtree by more than one processor. 
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The resulting reduction in both communication and search overhead yields significant performance ben-
efits. Speedups that surpass IDA* by a factor of more than 100 on 128 processors (Romein et al., 1999) have 
been reported in selected games.

Cook and Varnell (1998) report that TDS may be led into doing unnecessary work at the goal depth, 
however, and therefore they favor a hybrid combination of techniques that they term adaptive paral-
lel iterative deepening search. They have implemented their ideas in the system called EUREKA. Their 
system employs machine learning to select the best technique for a given problem domain. They have 
recently added the HyPS algorithm (Cook, 2011) to their system, as discussed earlier.

38.5.2.4 R ecent Developments

Despite advances in parallel single-agent search, significant improvement in methods for game-tree 
search has remained elusive. Theoretical studies have often focused on showing that linear speedup is 
possible on worst-order game trees. While not wrong, they make only the trivial point where exhaustive 
search is necessary and where pruning is impossible, and then even simple work distribution methods 
may yield excellent results. The true challenge, however, is to consider the case of average game trees or, 
even better, the strongly ordered model (where extensive pruning can occur), resulting in asymmetric 
trees with a significant work distribution problem and significant search overhead. The search overhead 
occurs when a processor examines nodes that would be pruned by the sequential algorithm, but has not 
yet received the relevant results from another processor.

The intrinsic difficulty of searching game trees under pruning conditions has been widely recognized. 
Hence, considerable research has been focused on the goal of dynamically identifying when unneces-
sary search is being performed, thereby freeing processing resources for redeployment. For example, 
Feldmann et al. (1990) used the concept of making “young brothers wait” to reduce search overhead 
and developed the “helpful master” scheme to eliminate the idle time of masters waiting for their slaves’ 
results. On the other hand, young brothers wait can still lead to significant synchronization overhead.

Generalized DFSs are fundamental to many AI problems. In this vein, Kumar and Rao (1990) have 
fully examined a method that is well suited to doing the early iterations of single-agent IDA* search. The 
unexplored parts of the trees are marked and are dynamically assigned to any idle processor. In prin-
ciple, this work distribution method (illustrated in Figure 38.12) could also be used for deterministic 
adversary game trees. Shoham and Toledo (2001) developed a parallel, randomized best-first minimax 
search (RBFM). RBFM expands terminal nodes randomly chosen, with higher probabilities assigned to 
nodes with better values. This method seems amenable to parallelism but seems to suffer from specula-
tive search overhead.

The invention of MTD(f) seemed to provide new hope for parallel game-tree search. Romein (2000) 
developed a parallel version of MTD(f) that achieved speedup over other parallel game-tree algorithms. 
Kishimoto and Schaeffer (2002) have developed an algorithm called TDSAB that combines MTD(f) 
with the transposition table-driven scheduling of TDS to achieve significant performance gains in a 
number of selected games. MIT’s parallel chess program Cilkchess employs a parallel version of the 
algorithm [supertech.csail.mit.edu/cilk/]. However, Kishimoto and Schaeffer also report that attempts at 
parallelizing MTD(f) can suffer from excessive synchronization overhead.

On a massively parallel system, the opportunity arises to effectively employ several techniques simul-
taneously when searching a game tree. A combination of a PWS search with a distributed tree search 
(DTS), as embodied by the HyPS algorithm of Cook (2011), is a hopeful approach. Groups of processors 
are assigned different thresholds or windows, thereby reducing the overhead of the duplicate work in 
iterative deepening search. Within each group, the threshold search of the tree can be parallelized, as in 
DTS, using the dynamic workload-balancing techniques discussed earlier. IBM’s Blue Gene supercom-
puters have been used for chess.

Many researchers feel that hardware advances will ultimately increase parallel processing power to 
the point where we will simply overwhelm the problem of game-tree search with brute force. They feel 
that this will make the need for continued improvement of parallel game-tree algorithms less critical. 
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Perhaps in time we will know if massive parallelism solves all our game-tree search problems. However, 
the results of complexity theory should assure us that unless P = NP, improvements in search techniques 
and heuristics will remain both useful and desirable.

38.6  Nature-Based Search

This section discusses search techniques that are either inspired by natural processes or derived from 
computational methods that have been used to simulate natural processes.

38.6.1  Monte Carlo Simulation

Earlier in this work, the speedup of a parallel algorithm was defined as

	
Speedup = Time taken by a sequential single-processor algoritthm

Time taken by a P-processor algorithm

This represents an upper bound on the time savings that can be expected from parallel processing. 
It is evident that as larger computational tasks are confronted, parallelism alone will fail to provide the 
requisite computing speeds. All of the algorithms in this section rely upon probability to some extent 
(even TS described in 6.5 has a probabilistic version).

An early use of probability in search is with Monte Carlo simulation. This approach was widely used 
by John von Neumann, Stanislaw Ulam, and Nicholas Metropolis in their work on the Manhattan 
Project during the 1940s. These simulations use random numbers drawn from some prescribed prob-
ability distribution. This method has been used in application areas as diverse as portfolio preparation 
(Wu and Gertner, 2012) to Soduko (Mayorov and Whitlock, 2011). This methodology is explained thor-
oughly elsewhere in this book.

38.6.2  Simulated Annealing

Previously, we discussed hill climbing, a heuristic search that relies upon our insights into a problem 
to help make large search trees less daunting. The price we pay is that sometimes hill climbing settles at 
a local optimum. SA is a probabilistic search that allows counterintuitive moves with some prescribed 
probability. SA gets its name from the physical process of annealing wherein a metal is heated until it 
liquefies and then is slowly cooled until it resolidifies. Molecules in annealed metals are rearranged and 
metals that undergo this process are stronger and more pliable.

A successful search algorithm relies upon two strategies: exploitation and exploration. The intuition 
behind exploitation is that opportune points in the search space are likely to lie close to one another. 
Meanwhile, exploration encourages movement to a different portion of the search space, which may 
yield a superior return. Hill climbing searches rely heavily on exploitation as small incremental jumps 
are pursued as long as the objective function continues to improve. SA seeks to balance these two seem-
ingly opposed strategies. It does so by employing a temperature parameter T, which is set to a high initial 
value. As the simulation progresses, T is lowered according to a cooling schedule. An SA search will jump 
from two points in the search space, xold to xnew, whenever the objective function F() is improved at xnew, 
that is, whenever f(xnew) ≥ f(xold) (assuming that optimum in this context means maximum). An SA dif-
fers from hill climbing, however, in that backward jumps are permitted with a probability P, which is 
proportional to

	 e f x_old) f x_new T− −[ ( ( )/ ]
	 (38.1)
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In Figure 38.13, if a hill climbing search were to begin at x0, exploitation would lead it to the local 
optimum f(x*). An SA search would likely fare better as a counterintuitive jump from x3 to x4 is possible, 
thereby enabling convergence to the global optimum of f(xbest). Inspection of Equation 38.1 apprises 
us that backward jumps in an SA search are more likely when the temperature parameter T is higher. 
Hence, the early stages of SA favor exploration, whereas later in a search when T is lower, exploitation 
becomes more probable. We close our discussion by commenting that SA does not guarantee a global 
optimum. The likelihood of successful termination may be obtained in two ways:

	 1.	 Run the simulation longer.
	 2.	 Restart the search several times commencing the simulation each time at a different locations in 

the state space.

S. Kirkpatrick, C.D. Galatt, and M.P. Vecchi discovered SA in 1983 (Kirkpatrick et al., 1983).
This methodology was discovered independently in 1985 by V. Cerny (1985).
The SA search is based upon the Metropolis–Hastings algorithm (1953). SA has been effective in the 
solution of optimization problems.

38.6.3  Genetic Algorithms

GAs are an uninformed search as no prior knowledge is presumed about the problem domain. GA is 
similar to the algorithms described in Section 38.5 in that they use parallelism. In GA, a problem’s solu-
tion is encoded by a string. We consider a trivial problem to help explain the methodology. We wish to 
learn the two-input NOR function (see Table 38.1).

Observe that the NOR function is the complement of the two-input (inclusive) OR function. The NOR 
of X1 and X2, written X1 ↓ X2, equals 1 only when both X1 and X2 are equal to zero. We begin with a 

x1

x2

f(x)

x4

xbest

X* = x3

x0

X

FIGURE 38.13  A search in which SA is likely to outperform hill climbing.

TABLE 38.1  2-Input NOR Function

X1 X1 X1 ↓ X2

0 0 1
0 1 0
1 0 0
1 1 0



38-24 Intelligent Systems

population of strings—population size is arbitrarily set to four. The strings in this initial population (P0) 
are formed by using a random number generator (rng). GA is an iterative procedure. A fitness function 
is used to obtain better solutions. The fitness of a string (si) is a measure of how well a string solves the 
given problem. We have a choice of representation. We can write the entries in Table 38.1 in row major 
order, that is, the first row 001 followed by row 010, yielding a string of length 12. Alternately, we can 
encode solutions via binary strings of length four; the ith bit of a string represents the result of NORing 
the two inputs in row i. We choose the latter representation in this example.

For example, suppose our rng yields the string si = 1100. It is natural to assign a fitness, f(si) = 3, as 
si correctly represents the NOR of three of the entries in Table 38.1, that is, rows one, three, and four; 
however, the second bit of si = 1, whereas the NOR of 0 with 1 equals 0 and not 1. Assume that our rng 
yields the four strings s1 = 1100, s2 = 0101, s3 = 0000, and s4 = 0111. These four strings are depicted in 
Figure 38.14 along with their fitness measures.

We use three so-called genetic operators to obtain the next population (or generation) from the cur-
rent population. Initially we obtain P1 and so on. We continue this process until a solution is found in 
some population, or else the algorithm fails to converge to a solution in the allotted computation time. 
Three popular genetic operators are selection, crossover (also recombination), and mutation. With selection 
(more accurately, roulette wheel selection), a string is selected to help form the next population with a prob-
ability proportional to the percentage of the population’s total fitness that it possesses (see Figure 38.15).

Selection is performed in which two copies of s1 and one copy each of s2 and s3 are chosen. Not sur-
prisingly, string s4 has not been selected. Next, pairs of strings are randomly chosen to mate with one 
another (see Figure 38.16). To avoid confusion, strings have been relabeled.

String Mate Crossover Point After Crossover After Mutation

s1 = 1100 s2 k = 3 1101 1101

s2 = 0101 s1 k = 3 0100 0101

s3 = 1100 s4 k = 2 1000 1000

s4 = 0000 s3 k = 2 0100 0100

FIGURE 38.16  Selection of mates.

String Fitness

s1 = 1100 3

s2 = 0101 1

s3 = 0000 3

s4 = 0111 0

FIGURE 38.14  The initial population for our example. The fitness of each string is also given.

String Fitness Proportion of Fitness Possessed

s1 3 f1/∑fi = 3/5 = 0.6

s2 1 f2/∑fi = 1/5 = 0.2

s3 1 f3/∑fi = 1/5 = 0.2

s4 0 f4/∑fi = 0/5 = 0

Total fitness of the population = 5 
Maximum fitness = 3

FIGURE 38.15  The total and maximum fitness for population P0, together with the proportion of fitness pos-
sessed by each string.
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Crossover is next applied. We use a form of crossover in which two parent strings are used to form two 
offspring (see Figure 38.17). Other forms of crossover exist (Holland, 1975). A crossover point k is ran-
domly selected for a pair of parent strings. In Figure 38.16, k = 4. Two offspring are shown in Figure 38.16b. 
Offspring1 is identical to parent1 before the crossover point (bits 1–3) and identical to parent2 after the 
crossover point (bits 4–7). Similarly, offspring2 is identical to parent2 before the crossover point and iden-
tical to parent1 after. The results of crossover are shown in the third and fourth columns of Figure 38.16.

Finally, mutation is applied to form the new population of strings. A bit in a string is inverted with 
a small probability of perhaps p = 0.001. In our toy example, we let this probability p = 0.1. Observe 
that the rightmost bit of the second string has been inverted, that is, 0100 has become 0101. The new 
population (P1) is shown in Figure 38.18, with updated fitness measures. Once again, to avoid confusion, 
strings have been relabeled. Both the total and the maximum fitness of this population have increased. 
Furthermore, string s3 solves this problem.

Recapitulating, GAs are blind, parallel, iterative, and probabilistic. GAs have been successful in many 
search applications—ranging from portfolio planning and stock market prediction to scheduling sat-
ellite orbits and airport landings (Williams et al., 2001). They have also met success in game playing 
(Chellapilla and Fogel, 2002).

GA was discovered by John Holland in the late 1960s at the University of Michigan (Holland, 1975). 
He cites the work of Charles Darwin as providing his inspiration. Darwin’s theory of evolution attempts 
to explain how natural selection enables species of flora and fauna to better adapt to conditions on this 
planet (Darwin, 1859, 1994, 2001). Goldberg (1989) likens the process of GA search to the process of 
brainstorming at a business meeting. Additional examples of GA search may be found in Lucci and 
Kopec (2013). The mathematics that justifies the success of GA may be found in Goldberg (1989) and 
Holland (1992).

38.6.4  Genetic Programming

GAs are a parallel search wherein a population of strings guided by a fitness function and genetic opera-
tors iteratively modifies strings until a solution to a problem is hopefully discovered. With genetic pro-
gramming (GP), the goal is to design a program whose output is the solution to a given problem. GP is 
also a parallel algorithm; however, we cannot simply begin with a population of strings as each string 
must encode a properly constructed program. Traditionally, GP has worked well with LISP and other 
functional languages, which are based on lists; however, imperative languages such as C++ and Java are 
currently being used in what is known as linear GP (Brameier and Banzhaf, 2006).

a b

Parent1 = 1010000 Offspring1 = 1011111

Parent2 = 0011111 Offspring2 = 0010000

FIGURE 38.17  (a) Two parent strings are depicted. Crossover point k = 4 is randomly generated. (b) Offspring 
after crossover.

String Fitness

s1 = 1101 2

s2 = 0101 1

s3 = 1000 4

s4 = 0100 2

Total fitness = 9 Maximum fitness = 4

FIGURE 38.18  Population P1 shown with fitness measures.
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Programs in LISP may be represented as lists. For example, the function f(x,y) can be represented as 
(f x y); the function f is followed by its two arguments, x and y. Programs in LISP can consist of functions 
and terminals. Functions for a problem in Boolean logic might consist of {+,.,′}, that is, the OR function, 
AND function, and negation. The list (.x (′y)) computes x.y′ as depicted in Figure 38.19.

Three operators that are used in GP are crossover, inversion, and mutation. The first step in applica-
tion of these operators is to identify a fracture point in the list where changes can occur. The beginning 
of a sublist or at a terminal is permissible fracture points. To perform crossover,

	 1.	 Select two programs from the present population
	 2.	 Randomly choose two sublists, one from each parent
	 3.	 Exchange these sublists in their offspring (see Figure 38.20)

Inversion can be accomplished by

	 1.	 Randomly selecting an individual from the present population
	 2.	 Randomly choosing two fracture points from the selected individual
	 3.	 Exchanging the specified subtrees (see Figure 38.21)

The third operator cited is mutation:

	 1.	 Choose an individual program from the present population.
	 2.	 Randomly replace a function symbol with some often function symbol OR—replace any terminal 

symbol with another.

An example of mutation is shown in Figure 38.22.

(a)
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(b)

FIGURE 38.20  Crossover in a genetic program. (a) Fracture points (→) are selected in two parents. (b) Offspring 
shown after crossover.

x

y

΄

FIGURE 38.19  The list (. x (′y)) represents the tree shown and computes the function x. y′.
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With mutation, you need to perform type checking. For example, if Boolean operations are being 
performed, then 0 and 1 are the only operands permitted.

It is widely held that Koza discovered GP. He advises strategies for the creation of a random popu-
lation. The interested reader is referred to Koza et al. (2000, 2003) for more details. To provide some 
insight to this methodology, we revisit our example from the previous section. There, we were using 
GA to search for a string that mirrored the functionality of the two-input NOR function (see Table 
38.1). With a GP we seek to discover a program that when presented with two Boolean values, x1 and x2, 
produces x1 ↓ x2 as output. In this toy example, we shall assume that our initial population of programs 
consists of four trees as shown in Figure 38.23. In realistic applications, an initial population may consist 
of thousands of programs.

The fitness of each program is also shown in this figure. As a fitness measure, we have used the number 
of rows of the NOR table that each program correctly computes. For example, when x1 = 0 and x2 = 1, 
program 1 produces an output of 0, which correctly reflects the second row of Table 38.1; however, for the 
other three truth assignments for x1 and x2, program 1 produces an output that differs from the NOR table.

Suppose that crossover is performed between programs 2 and 4 as shown in Figure 38.23 at the 
selected fracture points. The left offspring in Figure 38.24b is seen to have a fitness of 4 and hence cor-
rectly computes the two-input NOR function. We admit that the initial population in Figure 38.22 was 

x x x xy

y

΄ ΄

y

y

+
+

(a) (b)

FIGURE 38.21  With inversion, a single parent produces one offspring. (a) Two fracture points (←; →) selected in 
a program. (b) After inversion, we have a new program.

x x xy yx z
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+

+

z

(a) (b)

FIGURE 38.22  An individual parent is modified in mutation to produce a single offspring. (a) An individual 
parent before mutation with its selected node shown. (b) After mutation, Boolean OR in the right subtree has been 
changed to ANDing.
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x1 x2 x2
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Program 1
Fitness = 1

Program 2
Fitness = 2

Program 3
Fitness = 1

Program 4
Fitness = 2

FIGURE 38.23  Four random programs with fitness shown.
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not chosen randomly, and the choice of which genetic operator in Figure 38.23 (as well as the selection 
of population members and fracture points) also was performed with some forethought. It should be 
apparent, however, that permitted a larger population and allowed ample iterations, a GP would success-
fully solve this problem. In fact, GPs have obtained remarkable results in a number of areas—ranging 
from antenna design (Koza et al., 2000) to robotics (Messom and Walker, 2002). A list of new inventions 
discovered by GP is listed in Koza (2005).

38.6.5 T abu Search

The previous four searches owe their discovery to some extent to natural processes. SA relies upon the 
metaphor provided by the annealing of metals. The evolutionary approaches of GA and GP borrow 
generously from Darwin’s theory of natural evolution. Finally, ant colony optimization reflects the intel-
ligence by colonies of ants. Tabu (also called Taboo) search (TS) stresses the importance of memory. To 
balance both exploitation and exploration, TS maintains two types of lists. A recency Tabu list (RTL) 
monitors the moves made that transfer one state of the search into another; these moves cannot be 
repeated until some period of time (the Tabu tenure that is set by the programmers) has elapsed. The 
RTL encourages exploration. TS also uses lists to control so-called aspiration criteria.

One such criterion—aspiration by default—will select the oldest move whenever there is a “deadlock” 
and all moves Tabu. Another aspiration criterion—aspiration by direction—favors moves that have led 
to superior past values of the objective function. Exploitation is fostered by this heuristic. Finally, there 
is an aspiration criterion that favors exploration—aspiration by influence—in which moves that lead to 
unexplored regions of the state space are favored.

TS was developed by Fred Glover in the 1970s (1997). TS has been successfully applied to problems 
in optimization. This methodology has also been applied to pattern classification, VLSI design, and 
numerous other problem domains (Emmert et. al., 2004, Glover, 1995, Tung and Chou, 2004).

38.6.6 A nt Colony Optimization

Ant colonies provide the metaphor for our next search paradigm. It is well known by entomologists 
that ant colonies possess remarkable intelligence. Their intellectual prowess is an example of emergent 
behavior, behavior at one level (often unexpected) that derives from a lower level. At the microscopic 

(a)

x1 x2 x2

+ ΄

x1 x2
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x2 x1
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x2 x2x1

+ +
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(b)

FIGURE 38.24  A fortuitous example of crossover. (a) Programs 2 and 4 with selected fracture points (→; ←) 
shown. (b) Two offspring after crossover.
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level, however, concepts of temperature and pressure are meaningless as gas molecules have only a loca-
tion and a kinetic energy level.

The emergent behavior of interest to us here is the intelligence possessed by ant colonies. In the pres-
ent search, ants are viewed as agents—entities that are capable of sensing the environment, communi-
cating with one another, and responding to the conundrums posed by their environment. M. Dorigo 
was the first to apply ant colony optimization to solve combinatorial problems (Dorigo, 1992).

Ant foraging will prove useful to us in what follows. If you were to introduce a source of food in 
proximity to an ant colony, ant foragers will undoubtedly form a trail that would enable their brethren 
to locate and retrieve this nourishment (see Figure 38.25).

In Figure 38.25a, forager ants have discovered the food source. These explorers will communicate 
their discovery to other ants by a process known as stigmergy—this is a form of indirect communication 
between ants. On the way back to their nest, explorer ants deposit pheromones on their trail (Figure 
38.24b); these are chemicals that ants produce. There are two advantages to this form of communication:

	 1.	 One ant need not know the location of the other ants that it is communicating with.
	 2.	 The communication signal will not perish even if the sender does.

The pheromone trail will encourage exploitation by other ants in the colony.
Consult Figure 38.25c and you observe that not every ant is following the recently discovered trail. 

The seemingly random behavior of these foragers encourages exploration, that is, they are searching for 
alternate food sources that are vital for the colony’s long-term survival.

We began this section by claiming that ant colony behavior was applicable to combinatorial opti-
mization. The process of trail formation and following is used by some ant species to identify a short-
est path between their colony and some food source. This facility for optimization was apparent from 
experiments conducted by Deneubourg and colleagues (1991).

Figure 38.26 contains a source of food that is separated from an ant colony by two paths of different 
lengths. In Figure 38.26a there is a barricade separating the ants from the two paths.

(b)

(a)

Food
source

Meat

(c)

FIGURE 38.25  Ants foraging, depositing, and dispersing from a discovered food source. (a) Ants are moving 
randomly. (b) Food source discovered. Ants return to nest carrying food and depositing pheromones. (c) Ants fol-
low the pheromone trail from the nest to food source, some still move randomly.
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In Figure 38.26b the barricade is removed and we observe that ants are as likely to choose either path. 
The situation after some time has elapsed is shown in Figure 38.26c; ants are favoring the shorter path.

The longer path is not entirely devoid of ant traffic as this is a form of exploration. We mentioned earlier 
that trails are formed by pheromone deposits from explorer ants. As time passes, this chemical will evapo-
rate. The return trip from the food sources to the ant colony will require more time along the longer path, 
and hence, more of the pheromone deposited there will have an opportunity to evaporate. Due to this 
pheromone evaporation, the shorter route will contain more pheromone than the longer one. Carrying 
food back to the colony will require numerous trips, visited by many ants in these additional journeys.

Choosing a shorter path enables ants to utilize less energy in food collection enabling them to finish 
faster. Ants thereby avoid competition from nearby colonies and are also less likely to encounter predators.

Dorigo et al. used artificial ants and artificial pheromone trails to solve instances of the TSP problem 
(Dorigo and Stutzle, 2004).

38.7  Most Recent Developments

The advent of the World Wide Web (WWW) in 1993 naturally led to interest in search techniques for 
the Internet, especially when intelligence can be applied. Search engines are computer programs that 
can automatically contact other network resources on the Internet, searching for specific information or 
key words, and report the results of their search. Intelligent agents are computer programs that help the 
users to conduct routine tasks, to search and retrieve information, to support decision-making, and to 
act as domain experts. They do more than just “search and match.” There are intelligent agents for con-
sumers that search and filter information. Intelligent agents have been developed for product and ven-
dor finding, for negotiation, and for learning. They can help determine what to buy to satisfy a specific 
need by looking for specific products’ information and then critically evaluating them. Some examples 
are Firefly, which uses a collaborative filtering process that can be described as “word of mouth” to build 

(a) (b) (c)

FIGURE 38.26  Ants separated from their colony. (a) Ants blocked by door. (b) Door raised and ants travel arbi-
trarily to food source, returning to nest to deposit pheromones. (c) More ants at nest follow the left (shorter) path 
to food source.
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the profile. It asks a consumer to rate a number of products and then matches his or her ratings with the 
ratings of other consumers with similar tastes, recommends products that have not yet been rated by 
the consumer, etc. Intelligent agents for finding products and vendors enabling discovery of bargains.

One example is Jango from NetBot/Excite. It originates requests from the user’s site (rather than 
Jango’s). Vendors have no way of determining whether the request is from a real customer or from 
the agent. Jango provides product reviews. Kasbah, from MIT Lab, is for users who want to sell or 
buy a product. It assigns the task to an agent who is then sent out to proactively seek buyers or sellers. 
Intelligent agents for consumers can act as negotiation agents, helping to determine the price and other 
terms of transactions. Kasbah has multiple agents. Users create agents for the purpose of selling and 
buying goods. It can exemplify three strategies: anxious, cool headed, and frugal. Tete-a-tete is an intel-
ligent agent for considering a number of different parameters: price, warranty, delivery time, service 
contracts, return policy, loan options, and other value-added services. Upon request, it can even be 
argumentative. Finally, there are learning agents capable of learning individuals’ preferences and mak-
ing suitable suggestions based upon these preferences. Memory Agent from IBM and Learn Sesame 
from Open Sesame use learning theory for monitoring customers’ interactions. It learns customers’ 
interests, preferences, and behavior and delivers customized service to them accordingly (Deitel et al., 
2001). Expect many interesting developments in this arena combining some of the theoretical findings 
we have presented with practical situations, to achieve exciting results.

Key Terms

A* algorithm: A best-first procedure that uses an admissible heuristic estimating function to guide the 
search process to an optimal solution.

Admissibility condition: The necessity that the heuristic measure never overestimates the cost of the 
remaining search path, thus ensuring that an optimal solution will be found.

Alpha–beta: The conventional name for the bounds on a depth-first minimax procedure that are used 
to prune away redundant subtrees in two-person games.

AND/OR Tree: A tree that enables the expression of the decomposition of a problem into subproblems; 
hence, alternate solutions to subproblems through the use of AND/OR node labeling schemes 
can be found.

Ant colony optimization: An algorithm based on the behavior of natural ant colonies.
Aspiration criteria: Conditions in a TS that encourage both exploitation and exploration. For example, 

aspiration by influence favors moves that lead to unexplored region of the search space. This 
condition fosters exploration.

Backtracking: A component process of many search techniques whereby recovery from unfruitful 
paths is sought by backing up to a juncture where new paths can be explored.

Best-first search: A heuristic search technique that finds the most promising node to explore next by 
maintaining and exploring an ordered OPEN node list.

Bidirectional search: A search algorithm that replaces a single search graph, which is likely to grow 
exponentially, with two smaller graphs—one starting from the initial state and one starting 
from the goal state.

Blind search: A characterization of all search techniques that are heuristically uninformed. Included 
among these would normally be state-space search, means–ends analysis, generate and test, 
DFS, and breadth-first search.

Branch and bound algorithm: A potentially optimal search technique that keeps track of all partial 
paths contending for further consideration, always extending the shortest path one level.

Breadth-first search: An uninformed search technique that proceeds level by level visiting all the nodes 
at each level (closest to the root node) before proceeding to the next level.

Cooling schedule: Simulating annealing uses a temperature parameter (T). Early in the search, T is high, 
thus encouraging exploration. As the search continues, T is lowered according to some schedule.
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Crossover: A genetic operator that is used in both GA and GP searches. Crossover is used to generate 
new populations in these searches.

Data-driven parallelism: A load-balancing scheme in which work is assigned to processors based on 
the characteristics of the data.

Depth-first search: A search technique that first visits each node as deeply and to the left as possible.
Exploitation: A strategy in search algorithms that encourages staying in regions with good objective 

functions.
Exploration: A search algorithm strategy that encourages movement to unexplored regions of a search 

space.
Fitness function: A measure of goodness that is assigned to a potential solution to a given problem.
Fracture point: A location in a tree that identifies where a genetic operator is to be applied (used in GP).
Generate and test: A search technique that proposes possible solutions and then tests them for their 

feasibility.
Genetic algorithm: A blind search that is based on Darwin’s theory of evolution. It is a blind search that 

is both parallel and probabilistic.
Genetic operators: Operators that are used in both GAs and GP to help form a new population.
Genetic programming: A parallel search in which a program is found that solves a given problem. 

Operators based upon Darwinian evolution drive this search.
Heuristic search: An informed method of searching a state space with the purpose of reducing its size 

and finding one or more suitable goal states.
HyPS: A hybrid search that combines PWS with DTS.
Inversion: One of the genetic operators used in GP. Inversion will randomly exchange two subtrees in 

a potential solution program.
Iterative deepening: A successive refinement technique that progressively searches a longer and longer 

tree until an acceptable solution path is found.
Mandatory work first: A static two-pass process that first traverses the minimal game tree and uses the 

provisional value found to improve the pruning during the second pass over the remaining 
tree.

Means–ends analysis: An AI technique that tries to reduce the “difference” between a current state and 
a goal state.

Monte Carlo simulation: An early search that employs random numbers to model uncertainty.
MTD(f) algorithm: A minimal window minimax search recognized as the most efficient alpha–beta 

variant.
Mutation: A genetic operator that is used in both GA and GP searches. Mutation fosters genetic diver-

sity in a population.
Parallel window aspiration search: A method where a multitude of processors search the same tree but 

each with different (nonoverlapping) alpha–beta bounds.
PVSplit: A static parallel search method that takes all the processors down the first variation to some 

limiting depth and then splits the subtrees among the processors as they back up to the root of 
the tree.

Recency Tabu list: A list maintained in a TS to foster exploration.
Selection: A strategy used in both GA and GP searches. Selection helps to choose those potential solu-

tions that will help to form the next population in a search.
Simulated annealing: A stochastic algorithm that returns optimal solutions when given an appropriate 

“cooling schedule.”
SSS*: A best-first search procedure for two-person games.
Stigmergy: A form of indirect communication used by ants in a colony and ant agents in an ant col-

ony-based search. Ants deposit pheromone on a trail, and this chemical can be detected by 
other ants.
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Tabu search: A search that encourages exploration by forbidding the same moves to be made again until 
some prescribed time has elapsed. Criteria are also present to encourage exploitation.

Transposition table-driven scheduling (TDS): A data-driven load-balancing scheme for parallel search 
that assigns a state to a processor based on the characteristics or signature of the given state.

Work-driven parallelism: A load-balancing scheme in which idle processors explicitly request work 
from other processors

Young brothers wait concept: A dynamic variation of PVSplit in which idle processors wait until the 
first path of leftmost subtree has been searched before giving work to an idle processor.
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Further Information

The most regularly and consistently cited source of information for this article is the Journal of Artificial 
Intelligence. There are numerous other journals including AAAI Magazine, CACM, IEEE Expert, ICGA 
Journal, and the International Journal of Computer Human Studies, which frequently publish articles 
related to this subject area. Also prominent has been the Machine Intelligence Series of Volumes edited 
by Donald Michie with various others. An excellent reference source is the 3-volume Handbook of 
Artificial Intelligence by Barr and Feigenbaum (1981).

In addition, there are numerous national and international and national conferences on AI with pub-
lished proceedings, headed by the International Joint Conference on AI (IJCAI). Classic books on AI meth-
odology include Feigenbaum and Feldman’s (1963) Computers and Thought and Nils Nilsson’s (1971) 
Problem-Solving Methods in Artificial Intelligence. There are a number of popular and thorough textbooks 
on AI. Two relevant books on the subject of search in are Heuristics (Pearl, 1984) and the more recent Search 
Methods for (Bolc and Cytowski). AI texts that have considerable focus on search techniques are George 
Luger’s Artificial Intelligence (6th edn., 2008), Russell and Norvig’s Artificial Intelligence: a modern approach 
(3rd edn., 2010), and most recently Lucci and Kopec’s Artificial Intelligence in the 21st century (2013).
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39.1  Introduction

Planning and scheduling are two closely related terms that are frequently interchanged in practical life. 
In the industrial environment, planning often means long-term scheduling, for example, allocating 
contract work to departments for the next several months, while scheduling means detailed schedul-
ing, for example, allocating jobs or operations to machines with a minute precision. Hence, it may seem 
surprising that planning and scheduling are actually two different research areas that originated in dif-
ferent fields and that exploit different problem-solving techniques.

The term planning refers to a process of creating an organized set of actions, a plan, that can be executed 
to achieve a desired goal from a given initial situation (state), while the term scheduling usually refers to a 
process of assigning a set of actions to resources over time, the output is called a schedule. In complex prob-
lems, we typically start with planning, that is, we decide what to do—which actions need to be executed to 
achieve the goal. After that, we continue with scheduling, that is, we decide how to do it—how to allocate 
the actions to scarce resources and time to obtain a schedule. Finally, we execute the schedule, which 
involves monitoring of actions and revoking the planning and scheduling stages when necessary. This 
chapter covers techniques for planning and scheduling and omits the details of plan/schedule execution.

Planning is an important aspect of rational behavior and it is a fundamental topic of artificial intel-
ligence since its beginning. Planning capabilities are necessary for autonomous controlling of vehicles 
of many types including space ships (Muscettola et al., 1998) and submarines (McGann et al., 2008), but 
we can also find planning problems in areas such as manufacturing, games, or even printing machines 
(Ruml et al., 2005). Planning techniques are frequently domain independent, which means that the 
planning system gets a formal description of a planning domain in addition to a particular problem 
instance as its inputs. The planning domains can be as diverse as forming towers from blocks (useful 
for planning in container terminals), finding paths for robots to transport goods (useful for automated 
warehouses), and solving puzzles (useful for modeling non-player characters in computer games).

Scheduling has been studied since the 1950s when researchers were faced with problems of efficient 
management of operations in workshops (Leung, 2004). It became one of the fundamental topics of 
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operations research. Nowadays, scheduling is important in every manufacturing facility to allocate 
operations to machines and workers as well as, for example, in computing environments to allocate tasks 
to processors and memory. The research in the area of scheduling focuses mainly on solving specific 
classes of scheduling problems and on establishing their computational complexity rather than on pro-
viding a general scheduling technique applicable to every scheduling problem. The result is that we have 
a large number of scheduling algorithms for a number of specific classes of problems (Brücker, 2001). 
This makes scheduling very different from the approach of planning where the focus is on solving gen-
eral planning problems rather than on developing ad hoc techniques for particular planning domains. 
In this chapter, we formulate planning and scheduling precisely, we describe the core approaches for 
solving planning and scheduling problems, and we show how these approaches can be integrated. We 
also highlight the practical importance of this technology and we overview existing challenges and pos-
sible future developments.

39.2  Underlying Principles

As we have already mentioned, despite the close relationship between planning and scheduling, these 
areas are studied in different fields and use different methodologies. Planning is a typical artificial 
intelligence topic where it is motivated by general problem solving. Scheduling traditionally belongs 
to operations research, combinatorial optimization, and computational complexity. It is motivated by 
everyday industrial requirements for efficient production. These origins are also reflected in approaches 
used for problem solving. The planning techniques are frequently built around a search algorithm and 
they cover a broad range of problems, while the scheduling techniques are usually ad hoc algorithms 
dedicated to a particular class of scheduling problems. Nevertheless, as the real-life problems natu-
rally involve planning and scheduling components, the novel planning techniques are adopting some 
typical scheduling approaches, such as time and resource allocation, while some scheduling techniques 
include planning decisions, such as selection of actions to be scheduled. In the following sections, we 
will describe planning and scheduling approaches separately and we will also show how each approach 
is related to the other.

39.2.1 A utomated Planning

A classical planning task is formulated as the problem of finding a sequence of actions, called a plan, 
that transfer the world from some initial state to a desired state. This task may seem like a path-finding 
problem in a graph, where nodes describe the world states and arcs are annotated by actions changing 
the state, which is indeed an abstract view of planning. However, the state space in planning is usually so 
huge that it is impossible even to store the whole state space (the graph) in a computer memory. Hence, 
a more compact representation of the state space and the transitions between the states is necessary.

To focus on the core aspects of the planning task, we make several assumptions about the world 
states and how the actions are changing them. Typically, we assume that the world state is fully observ-
able, that is, we know precisely the state of the world where we are. A complementary assumption is a 
partially observable world meaning that we only know a possible set of states where we can be (e.g., we 
do not know whether the doors that we approached are locked or not and hence we need to assume 
both states where the doors are locked and unlocked). Another typical assumption is that the world is 
deterministic, that is, the next state is fully determined by the current state and the action that has been 
applied to the state. In nondeterministic worlds, the state after performing an action is not fully known 
(e.g., after grasping some block, we may hold it or the block may still be on the table, if the grasp is not 
strong enough and the block fell down). The third major assumption is that the world is static meaning 
that only the planned actions are changing the world states. In dynamic worlds, the states may change 
due to other reasons, for example, nature or other agents may cause such changes. Finally, we assume 
the actions to be instantaneous so we only deal with action sequencing and we omit time reasoning 
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beyond causal relations (actions cause changes of the world state that allow application of other actions). 
There exist planning systems that can deal with more general assumptions such as durative and parallel 
actions with uncertain effects and partially known states that may be changed by other entities (Ghallab 
et al., 2004).

39.2.1.1  Planning Task

As we already mentioned, the state space in planning is usually huge. To overcome this problem when 
representing the world states, the planning community is frequently using the representation of world 
states as finite sets of predicates. Assume that a predicate describes some particular feature of the world 
state, for example, hold(blockA) says that we hold some object called blockA, and free(blockB) says 
that object blockB is free and can be picked up. So each predicate consists of its name describing some 
feature and some arguments describing the objects. We assume that no functional symbols are used in 
the predicates. The world state is represented using a set of predicates that are true in that state. In other 
words, if the predicate is not present in the set representing a given state, then this predicate is not true 
in that state (a closed world assumption). Assuming a finite number of predicate names and constants 
representing the objects, we may get only a finite though possibly a huge number of states. In practice, 
the objects can be grouped to describe a type of the object and the attributes in predicates can be typed 
to restrict which constants (objects) can be used as a meaningful attribute.

Actions represent a mechanism to describe the change of the world state. We need to describe the 
states where an action is applicable to and how the action changes the world state. Each action in clas-
sical planning is specified using a triple (Prec, PosEff, NegEff), where Prec is a set of predicates that 
must hold for the action to be applicable (preconditions), PosEff is a set of predicates that will hold 
after performing the action (positive effects), and NegEff is a set of predicates that will not hold after 
performing the action (negative effects). For example, action grasp(blockA, blockB), describing that 
we grasp blockA laying on blockB, can be specified as the triple ({free(blockA), on(blockA,blockB), 
empty_hand}; {hold(blockA), free(blockB)}; {free(blockA), on(blockA,blockB), empty_hand}). In gen-
eral, we say that action A is applicable to state S if Prec(A) ⊆ S. The result of applying action A to state 
S is a new state succ(S) = (S\NegEff(A)) ∪ PosEff(A). Notice that the action is influencing only a part of 
the world state. The description of the state after performing the action naturally includes the frame 
axiom—the predicates that are not modified by the action stay valid in the state. In practice, rather 
than specifying each possible action, we may group similar actions to a so-called operator. For example, 
instead of all possible grasping actions, we can use a single operator grasp(X, Y), where X and Y are 
variables, saying that any object X can be grasped from any object Y when some particular conditions 
are satisfied: ({free(X), on(X,Y), empty_hand}, {hold(X), free(Y)}, {free(X), on(X,Y), empty_hand}). An 
action is obtained from the operator by substituting particular constants for the variables (this is called 
grounding). Again, it is possible to use typing to restrict which constants can be used in which attributes 
of the operator.

The description of predicate names and operators defines a so-called planning domain. For example, 
we can describe an abstract world where we are moving blocks to build towers of blocks (the famous 
block world domain). A particular planning problem is specified by a list of objects (constants), which 
we are working with, a full specification of the initial state (typically, this specification defines also the 
objects), and a goal condition. The goal condition is typically a set of predicates that must hold in the 
goal state. If G is a goal condition, then any state S such that G ⊆ S is a goal state. The planning task is 
formulated as the problem of finding a sequence of actions that transfer the world (defined via the succ 
function) from the initial state to some goal state. Notice in particular that the size of the plan (the 
number of actions) is unknown in advance and that some actions may appear several times in the plan.

The most widely used modeling language to specify planning domains and planning problems is 
Planning Domain Definition Language (PDDL) that was proposed for the International Planning 
Competition (Koenig, 2012). This language is following the classical logical representation described 
earlier.
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There also exist alternative approaches to the earlier logical formalism. A straightforward extension 
is based on multivalued state variables rather than predicates (Bäckström and Nebel, 1995). In the logi-
cal representation, we use a predicate on(blockA, blockB) to specify that blockA is on blockB, but we 
can also use a function on(blockA) whose value is the name of the object on which the blockA rests or 
the constant nothing. Function on(blockA) is an example of a state variable whose value can change in 
time by the application of actions. Actions in the multivalued state variable representation are described 
by the conditions on the values of the state variables and by the assignment of the state variables as the 
effects. Again, we can use an abstraction to operators so the operator grasp(X,Y) has the precondition 
{on(X) = Y, free(X) = yes, hand = empty} and the effect {on(X) ← nothing, free(X) ← no, free(Y) ← 
yes, hand ← blockA}. Notice that we are no more distinguishing the positive and negative effects as 
the assignment defines explicitly the values of certain state variables and these values “overwrite” the 
original values.

When using the multivalued state variables, we can see the planning task as finding a synchronized 
evolution of values of these state variables that starts with given values and reaches some specified val-
ues of certain state variables. Briefly speaking, we can describe the possible evolutions of a given state 
variable to form a so-called timeline. Finite state automata can be used to compactly represent these 
evolutions by specifying which values can follow a given value and how actions are changing these 
values (Barták, 2011). Then we need to specify how the timelines are synchronized. We described the 
synchronization of state variables via actions in the previous paragraph, but we can omit the actions and 
describe the synchronization explicitly. For example, a particular change of value of certain state vari-
able requires a change of value of another state variable. This is a more engineering view for describing 
system dynamics, which is, for example, used in planning for space applications (Pralet and Verfaillie, 
2009). In contrast to PDDL for classical planning, there does not exist yet a standard language for speci-
fying planning problems using timelines.

So far, we discussed a “flat” approach to planning where actions (operators) were not structured and 
the planning task consisted of connecting the actions via causal relations to form a plan. A different 
approach to planning is called hierarchical task networks (Erol et al., 1994). There are still actions chang-
ing the world state (via the preconditions and effects), but the actions are grouped together to form par-
tial plans to perform some tasks. More specifically, in addition to operators, there are compound tasks 
describing how the operators are connected together to accomplish some job. For example, to go from 
city X to city Y, we can board the plane in city X, fly from X to Y, and deplane at city Y. Alternatively, we 
can take a train from city X to city Y. Each of these sequences of operators describes how to accomplish 
the task of going from city X to city Y. Note that these sequences may also contain tasks so we obtain a 
hierarchical structure (hence the name hierarchical task networks). A particular way to satisfy the com-
pound task is called a method. The planning problem is then given by a set of tasks (goal tasks) and the 
initial state and the problem is to find a method for each compound task until the primitive actions are 
obtained and these actions form a valid plan (the preconditions of actions are satisfied).

39.2.1.2  Planning Techniques

A straightforward way to find plans is by searching the state space either from the initial state to some 
goal state or from the goal states to the initial state. This is called state-space planning (Fikes and Nilsson, 
1971). Currently, the most widely used planning technique is based on forward state search when the 
algorithm starts with the initial state, selects some applicable action, and moves to the next state defined 
by the function succ. This process is repeated until some goal state is found. The A* algorithm is fre-
quently used to implement the search procedure, where the heuristic function estimates the number of 
actions to the goal. The systems FF (Hoffmann and Nebel, 2011) and Fast Downward (Helmert, 2006) 
are two examples of successful planners based on this idea.

Backward planning going from the goal to the initial state is also possible though slightly more com-
plicated because it starts from a set of goal states rather than from a single state. The idea of backward 
planning was first proposed for the pioneering STRIPS system (Fikes and Nilsson, 1971), but it is less 
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frequently used today. The backward search algorithm is exploring the search states defined as sets of 
world states, which is a major difference from forward search. The search state is defined using a set 
of predicates and it represents all the states that contain all these predicates. The initial search state is 
given by the goal condition so it corresponds to all the goal states. We say that an action A is relevant 
for a search state represented by the set of predicates G if PosEff(A) ∩ G ≠ ∅ and NegEff(A) ∩ G = ∅. 
It means that action A contributes to the goal G and does not “destroy” it. Such an action can be the 
last action in the plan before reaching the goal G. If A is relevant for G, then we can define the new 
goal prev(G,A) = (G\PosEff(A)) ∪ Prec(A). Briefly speaking, if we have a world state satisfying the goal 
condition prev(G,A), then A is applicable to this state (obviously the precondition of A is satisfied by 
this state), and after applying A to such a state, we obtain a state satisfying the goal condition G. Hence, 
the backward search starts with the goal condition, selects an action relevant for this goal, and moves 
to the next search state (the previous goal) defined by the function prev. The algorithm stops when the 
initial state satisfies the goal condition given by the search state. The backward search can be modi-
fied by a technique called lifting. Assume that we want to reach the state where hold(blockA) is true. 
This can be done by many grasp actions that pick up the blockA from some other block (these actions 
are relevant to the goal hold(blockA)), for example, grasp(blockA, blockB) and grasp(blockA, blockC). 
We may decide later from which block we will grasp the blockA so we can use a partially instantiated 
operator grasp(blockA,Y) instead of the actions in the planning procedure. This approach decreases 
the branching factor in the search procedure but introduces variables to the search states that must be 
handled properly. For example, when checking whether the initial state S satisfies the goal condition G, 
we need to use a substitution σ of variables: ∃ σ Gσ ⊆ S. This substitution instantiates the variables in 
the operators from the plan.

We defined the plan as a sequence of actions, but primarily we require that causal relations between 
the actions hold (Sacerdoti, 1990). The causal relation between actions A and B says that action A has 
some predicate P among its positive effects that is used as a precondition of action B; we write A →P B. 
Hence, the action A must be processed before the action B in the plan and there must not be any action 
between A and B that deletes the predicate P. To capture the causal relations in the plan, it is enough to 
specify a partial order of actions rather than the linear order. This is the basic idea behind plan-space 
planning where we are exploring partial plans until we obtain a complete plan (Penberthy and Weld, 
1992). The initial partial plan consists of two actions only: the initial state S is modeled using a special 
action A0 such that Prec(A0) = NegEff(A0) = ∅, PosEff(A0) = S, the goal G is modeled using a special 
action A1 such that Prec(A1) = G and PosEff(A1) = NegEff(A1) = ∅, and action A0 is before A1. Now, the 
planning process consists of modifying the partial plan by adding new actions, precedence, and causal 
constraints. The aim is to find a causal relation for each predicate in the preconditions of actions in the 
partial plan. In the initial plan, the preconditions of action A1 modeling a goal are not provided by any 
action. Such preconditions are called open goals. We can find a causal relation leading from an action 
that is already in the partial plan (causal relations also define a partial order between the actions) or 
we can add a new action to the plan that has a given predicate among its effects. The new actions must 
always be after A0 and before A1 in the partial order of actions. Notice that a causal relation A →P B can 
be threatened by another action C in the partial plan that deletes P and can be ordered between A and B 
in the partial order. This threat can appear when we add a new causal relation to the partial plan or when 
we add a new action to the plan. The threat of action C for the causal relation A →P B can be resolved 
either by ordering C before A or by ordering C after B. If lifting is used in the planning procedure, then 
we can resolve the threat also by instantiating certain variables so the negative effect of C is no more 
identical to P. In summary, plan-space planning is based on exploring the space of partial plans start-
ing with the initial plan containing only the actions A0 and A1 and refining the plan by adding causal 
relations for open goals, which may also add new actions to the plan, and removing threats until we 
obtain a plan with no open goals and no threats. It is possible to prove that a partial plan with no threats 
and no open goals is a solution plan; in particular, any linearly ordered sequence of actions that follows 
the partial order is a plan. Notice that the plan-space approach does not use explicitly the world states; 
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only the initial state is encoded in the action A0. The systems UCPOP (Penberthy and Weld, 1992) and 
CPT (Vidal and Geffner, 2004) are two famous partial order planners (partial order planning is another 
name for plan-space planning).

State-space planning and plan-space planning are two most widely used approaches to solve classical 
planning problems. In 1995 Blum and Furst proposed a radically new approach to planning based on the 
notion of a planning graph. The original algorithm was called Graphplan (Blum and Furst, 1997). This 
approach exploits two core principles. First, instead of looking for a sequence of actions, the Graphplan 
system looks for a parallel plan, which is a sequence of sets of independent actions (we shall define the 
independence later). The classical plan is then obtained by any ordering of actions in the sets. The second 
core principle is a reachability analysis realized by the planning graph constructed from the initial state 
and available actions where the negative (delete) effects are temporally ignored. The planning graph is 
a layered graph where the first layer consists of predicates in the initial state, the second layer consists 
of actions applicable to the initial state, the third layer consists of predicates from the positive effects of 
actions in the previous layer (and all predicates from the first layer), and so on until a layer containing 
all goal predicates is found. Hence, the layers with predicates interleave with the layers with actions. To 
simplify notation, no-op actions are used to transfer predicates between the layers (the no-op action for 
predicate P has the predicate P as its precondition and also as its sole positive effect). The planning graph 
defines the search space where we are looking for the parallel plan; the sets of actions are being selected 
from the action layers. To ensure that actions selected to a single set in the plan can be ordered in any 
way, the actions must be independent.

Actions A and B are independent if Prec(A) ∩ (PosEff(B) ∪ NegEff(B)) = ∅ and Prec(B) ∩ (PosEff(A) ∪ 
NegEff(A)) = ∅. Selection of the plan from the planning graph is then realized in the backward way 
by going from the last predicate layer and finding an action for each goal predicate (the no-op actions 
can also be used). The selected actions must be pairwise independent. After selecting the actions in one 
layer, the procedure continues with the preconditions of selected actions and finding actions for them in 
the previous layer and so on until the first layer is reached. If no plan is found, one layer is added to the 
planning graph and the procedure is repeated. The ideas of planning graphs are nowadays used mainly 
in heuristics for forward planning.

So far we presented the dedicated algorithms for solving planning problems. There also exists another 
planning approach based on translating the planning problem to a different formalism, for example, 
to Boolean satisfiability or constraint satisfaction problems (CSPs). This method was introduced by 
Kautz and Selman (1992) who showed how the planning problem could be converted to a sequence of 
Boolean satisfiability (SAT) problems. The idea is that the problem of finding a plan of a given length 
can be naturally encoded as a SAT formula. If this formula is not satisfiable, then the plan (of a given 
length) does not exist; otherwise the plan can be decoded back from the model of the formula (from 
the instantiation of the variables in the formula). However, we do not know the plan length in advance. 
Hence, the whole planning system works as follows. We encode the problem of finding a plan of length 
one as a SAT formula. If the plan does not exist, then we continue with the plan of length two and so 
on until the plan is found (or some fix point is reached and then no plan exists). There exist various 
encodings of planning problems to SAT; the original approach from Kautz and Selmann (1992) used 
the encoding of sequential plans, the more recent planners such as SATPLAN (Kautz and Selmann, 
1999) used encodings based on a planning graph, and the state-of-the-art SAT-based planners such as 
SASE (Huang et al., 2010) use multivalued state variables. Several encodings to CSPs were also proposed 
(Barták, 2011, Barták and Toropila, 2008).

39.2.2 A utomated Scheduling

Scheduling deals with the allocation of scarce resources to activities with the objective of optimiz-
ing some performance measures. Depending on the situation, resources could be machines, humans, 
runways, processors etc.; activities could be manufacturing operations, duties, landings and takeoffs, 
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computer programs, etc.; and objectives could be minimization of the schedule length, maximization of 
resource utilization, minimization of delays, and others.

39.2.2.1  Scheduling Task

As we already mentioned, there are many classes of scheduling tasks. Resources, activities, and the per-
formance measure are three major concepts in each scheduling task so we can define components of the 
scheduling task as follows. There is a set of n jobs that can run on m machines. Each job i requires some 
processing time pi,j on a particular machine j. This part of a job is usually called an operation; we also 
used the notions of activity or action in the text. The schedule of each job is an allocation of one or more 
time intervals (operations) to one or more machines. The scheduling task is to find a schedule for each 
job satisfying certain restrictions and optimizing a certain given set of objectives. The start time of job j 
can be restricted by a release date rj, which is the earliest time at which job j can start its processing. The 
release date models the time when the job arrives to the system. Similarly, a deadline dj can be specified 
for job j, which is the latest time by which the job j must be completed. The release date and the deadline 
specify the time window in which the job must be processed. To specify an expected time of job comple-
tion, a due date δj for job j is used. The major difference from the deadline is that the job can complete 
later or earlier than the due date, but it will incur a cost. Let Cj be the completion time of job j. Then 
the lateness of job j is defined as Lj = Cj − δj and the tardiness of job j is defined as Tj = max(0, Lj). The 
completion time, lateness, and tardiness are three typical participants in the objective functions express-
ing the quality of the schedule. The most widely used objective function is minimization of the maximal 
completion time—a so-called makespan. The idea is to squeeze production to as early times as possible. 
A more practically important objective is minimization of the maximal lateness or tardiness that cor-
responds to on-time delivery. Sometimes, the number of late jobs is used instead of the tardiness and the 
objective is to minimize the number of late jobs. Other objectives also exist, for example, minimization 
of the number of used resources.

The jobs (operations) require certain resource(s) for their processing. Operations can be preas-
signed to particular resources and then we are looking for time allocation only. Or there may be several 
alternative resources to which the operation can be allocated and then resource allocation is a part of 
the scheduling task. Such alternative resources can be either identical then we can union them into a 
so-called cumulative resource that can process several operations in parallel until some given capacity, 
or the alternative resources can be different (e.g., the processing time may depend on the resource). 
The resource, which can process at most one operation at any time, is called a unary or a disjunctive 
resource. If the processing of an operation on a machine can be interrupted by another operation, and 
then resumed possibly on a different machine, then the job is said to be preemptible or interruptible. 
Otherwise, the job is non-preemptible (non-interruptible).

It is also possible to specify precedence constraints between the jobs, which express the fact that cer-
tain jobs must be completed before other jobs can start processing. In the most general case, the prece-
dence constraints are represented by a directed acyclic graph, where each vertex represents a job, and if 
job i precedes job j, then there is a directed arc from i to j. If each job has at most one predecessor and at 
most one successor, then we are speaking about chains; they correspond to serial production. If each job 
has at most one successor, then the constraints are referred to as an in-tree. This structure is typical for 
assembly production. Similarly, if each job has at most one predecessor, then the constraint structure is 
called an out-tree. This structure is typical for food or chemical production where from the raw material 
we obtain several final products with different “flavors.”

There exists a specific class of scheduling problems with a particular type of precedence constraints, 
the so-called shop problems. If each job has its own predetermined route to follow, that is, the job con-
sists of a chain of operations where each operation is assigned to a particular machine (the job may 
visit some machines more than once or never), then we are talking about job-shop scheduling (JSS). 
If the machines are linearly ordered and all the jobs follow the same route (from the first machine to 
the last machine), then the problem is called a flow-shop problem. Finally, if we remove the precedence 
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constraints from the flow-shop problem, that is, the operations of each job can be processed at any order, 
then we obtain an open-shop problem.

To keep track of various classes of scheduling problems, Graham et al. (1979) suggested a classifica-
tion of scheduling problems using the notation consisting of three components α | β | γ.

The α field describes the machine environment, for example, whether there is a single machine (1), 
m parallel identical machines (Pm), job-shop (Jm), flow-shop (Fm), or open-shop (Om) environment 
with m machines. The β field characterizes the jobs and the scheduling constraints and it may contain 
no entry or multiple entries. The typical representatives are restriction of the release dates (rj) and dead-
lines (dj) for jobs, assuming the precedence constraints (prec) and allowing preemption of jobs (pmtn). 
Finally, the γ field specifies the objective function to optimize; usually, a single entry is present but more 
entries are allowed. The widely used objectives are minimization of the makespan (Cmax) or minimiza-
tion of the maximal lateness (Lmax).

39.2.2.2  Scheduling Techniques

There exists a vast amount of various scheduling techniques proposed for particular scheduling prob-
lems (Brucker, 2001, Pinedo, 2002). We will present here just two representatives showing some typical 
techniques from the scheduling algorithms. In particular, we will present an exact polynomial algo-
rithm for solving the problem 1 | rj, pmtn | Lmax to demonstrate a classical scheduling rule and then we 
will show an exact exponential algorithm for the problem 1 | rj | Lmax explaining the branch-and-bound 
method that uses solutions of the relaxed problems to obtain a good bound.

The scheduling problem 1 | rj | Lmax consists of a single machine where jobs have arbitrary 
release dates and the objective is to minimize the maximal lateness. This problem is important 
because it appears as a subproblem in heuristic procedures for f low-shop and job-shop problems; 
unfortunately, the problem is known to be strongly NP-hard (Pinedo, 2002, p. 43). However, if all 
release dates are identical, or all due dates are identical, or preemption is allowed, then the problem 
becomes tractable. These tractable problems can be solved in polynomial time by applying the ear-
liest due date (EDD) rule by Jackson (1955) that says “select the job with the smallest due date and 
allocate it to the resource.” We will present the preemptive version of the EDD rule for the problem 
1 | rj, pmtn | Lmax. In the preemptive case, we collect all not-yet finished jobs with the earliest release 
date and among them we select the job with the EDD for processing and allocate the job to the earli-
est possible time. Processing of this job continues until the job is finished or another job becomes 
available (i.e., the next release date is reached). At this point, the next job for processing is selected 
using the same principle. It could be the current job or a different job in which case the previous job 
is interrupted (unless it is already finished). Hence, we may interrupt a job when another job with 
an earlier due date becomes available. Notice that if the schedule constructed does not have any 
preemptions, then the schedule is optimal also for the problem 1 | rj | Lmax. Otherwise, the preemp-
tive schedule defines a lower bound of the objective function (Lmax) for the non-preemptive problem 
(obviously, if preemption is not allowed, we cannot obtain a better schedule). These two observa-
tions can be used for solving the problem 1 | rj | Lmax. Basically, the algorithm explores possible 
permutations of jobs that are constructed from left to right (from earlier time to later time). Assume 
that we already have an upper bound for the maximal lateness (it could be plus infinity at the begin-
ning) and a set of jobs to schedule. We first generate a schedule using the algorithm for the preemp-
tive case. If the maximal lateness of this schedule is greater than a given upper bound, we can stop 
and report that there does not exist any schedule with the maximum lateness lower than the given 
bound. Otherwise, we check if the schedule constructed has preemptions. If the schedule is not 
preemptive, then we are done and we can report that schedule as the optimal schedule. However, if 
none of the earlier condition holds, we take a job J such that no other job can be completely finished 
before the release date of job J, we allocate job J to its earliest possible start time, and then we allo-
cate the remaining jobs using the same process as described earlier. Such allocation gives a feasible 
schedule whose maximal lateness is used as a new upper bound when trying the other jobs J at the 
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first position in the schedule. Note also that if we find a schedule whose maximal lateness equals the 
lower bound obtained from the preemptive schedule, then the schedule is optimal.

solve(Jobs; T; Bound)
// Jobs is a set of jobs to be scheduled
// T is the first possible start time (initialized to 0 for nonnegative release dates)
// Bound is a value of the objective function for the best solution so far (initialized to ∞)
             (Sched; LB) ← solvePreempt(Jobs; T) // find a schedule using the preemptive EDD rule
             �if LB ≥ Bound then return (fail, Bound) // no schedule better than Bound 
	 if Sched is non-preemptive then return (Sched, LB) // optimum found 
	 First ← {j ∈ Jobs | ¬ ∃i∈Jobs: max(T, ri) + pi ≤ rj}
             Best ← fail
             foreach j ∈ First do
                          (Sched; L) ← solve(Jobs − {j}; max(T, ri) + pj; Bound)
                          if L = LB then return (Sched; L)      // lower-bound schedule is optimal
                          if L < Bound then (Best; Bound) ← (Sched; L)
             endfor
             return (Best, Bound)

Though we mentioned that scheduling algorithms are typically dedicated to particular classes of sched-
uling problems, there also exists a general scheduling approach based on constraint satisfaction—this 
is called constraint-based scheduling (Baptiste et al., 2001). The idea is that a scheduling problem is rep-
resented as a CSP (Dechter, 2003) and constraint satisfaction techniques are used to solve this problem. 
This is similar to solving planning problems by converting them to a CSP, but the major difference is 
that we know the number of actions in the scheduling task so we can encode the task as a single CSP. 
Recall that the scheduling problem is given by a set of operations that are connected via precedence 
(temporal) and resource constraints. The task is to allocate these operations to particular times and 
resources. Hence, the CSP variables can describe the start time of each operation and the resource to 
which the operation is allocated. So the release date and the deadline define the domain of the start 
time variable (the set of all possible start times) and the domain of the resource variable consists of 
identifiers of resources to which the operation can be allocated. Other models are also possible, for 
example, using a list of 0–1 variables describing if a given operation runs at a given time. This is useful 
for modeling interruptible (preemptible) operations. The scheduling constraints are directly translated 
to relations between the variables. For example, the precedence constraint between operations A and B 
is encoded as start(A) + pA ≤ start(B). Many special constraints have been developed to model resources 
in scheduling. For example, a unary resource is modeled by a constraint stating that operations are not 
overlapping in time. The semantic of such a constraint (for non-preemptible operations) can be described 
by a set of a disjunctions defined between all pairs of operations allocated to that resource: start(A) + pA ≤ 
start(B) ∨ start(B) + pB ≤ start(A). The unary resource constraint itself uses techniques such as edge find-
ing (Baptiste and Le Pape, 1996) and not first/not last (Tores and Lopez, 2000) to filter out values from 
the domains of variables that violate the constraint. There exist resource constraints for preemptible 
operations as well as for cumulative resources (Baptiste et al., 2006) and also constraints where the 
operations are not pre-allocated to resources (Vilím et al., 2005).

39.3  Impact on Practice

There is no doubt that scheduling techniques have a great impact on many areas of human endeavor 
starting from manufacturing scheduling, going through personal scheduling, and finishing with com-
puter task scheduling. These examples are obviously not exhaustive and there are many others where 
scheduling plays an important role, for example, scheduling sport tournaments. There are companies 
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such as SAP and i2 Technologies (now owned by JDA Software) that provide complete solutions to solve 
scheduling problems such as SAP Advanced Planner and Optimizer (APO) and other companies pro-
viding tools to solve scheduling problems such as ILOG CP Optimizer by IBM.

The planning techniques are visible mainly in the research areas. The biggest success is probably in 
space exploration. NASA’s Deep Space 1 (DS1) mission was one of the first significant applications of 
automated planning. The DS1 project successfully tested 12 novel advanced technologies including the 
autonomous remote agent (RA) (Muscettola et al., 1998). The goal of RA was to plan, execute, and moni-
tor operations of the space probe. Several conclusions were drawn from this experiment including the 
necessity to validate the formal models, to develop techniques that work in real time, and to provide 
simple but expressive language to specify goals. The experience from DS1 project was used for developing 
the EUROPA system (Jonsson et al., 2000) that was applied to do planning for famous Mars Rovers Spirit 
and Opportunity and later to do planning for underwater autonomous vehicles (McGann et al., 2008). 
MEXAR and RAXEM (Cesta et al., 2007) are other examples of successful applications of integrated 
planning and scheduling techniques to plan and schedule communication between the Mars Express 
orbiter and Earth.

39.4 R esearch Issues

We mentioned several times that planning and scheduling tasks are quite different problems and dif-
ferent approaches are being used to solve these problems. Nevertheless, complex real-life problems fre-
quently included both types of problems—what to do and how to do it. This demands for approaches 
that integrate planning and scheduling.

Though planning deals mainly with the causal relations between the actions and suppresses the role of 
time and resources, there already exist planning techniques that involve time and resource reasoning. Plan-
space planning can naturally be extended to work with time by using simple temporal constraints (Dechter 
et al., 1991). The IxTeT planner (Ghallab and Laruelle, 1994) is an example of a planner that uses the so-
called chronicles to model evolutions of state variables in time. The EUROPA system (Jonsson et al., 2000) 
is another modern planner that supports time and resources. Both these planners were strongly motivated 
by practical applications, which justifies that this research direction is highly important for practice.

Similarly, the research in the area of scheduling focuses on time and resource allocation and the ques-
tion of how to determine the set of scheduled activities is left unsolved. A straightforward approach 
based on the description of the environment, for example, using the description of the processes to 
manufacture a given part, is typically used to generate the set of activities for scheduling. If there are 
some options, for example, alternative processes such as outsourcing, the decision is done by a human 
operator outside the scheduling process. As the current production environments are becoming more 
flexible and complicated, the number of options to select the possible activities is increasing and hence 
the choice of the “right” activities to be scheduled is becoming important. This means that some ideas 
from planning might be applicable to scheduling as well, for example, in flexible manufacturing envi-
ronments. There exist attempts to include the so-called optional activities in the scheduling process so 
the scheduling algorithm selects which activities will be scheduled. This direction was pioneered by 
Beck and Fox (2000) and further extended by Kuster et al. (2007) and Barták and Čepek (2007). The 
FlowOpt system (Barták et al., 2011) supports optional activities and the recent versions of IBM/ILOG 
CP Optimizer (Laborie, 2009) provide a strong support for optional activities in the filtering algorithms 
for resource constraints.

Currently, the research on integrating planning and scheduling is driven mainly by the planning 
community. This is probably because there is a higher demand from the applications where autonomous 
agents such as robots are being used.

One of the critical issues when applying planning and scheduling technology is to identify a proper 
formulation of the problem to be solved. Researchers usually assume that a problem is already given, 
for example, most planers assume the problem formulation in PDDL is given as the input, and in 
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scheduling the notation of the form α | β | γ is assumed for the problem definition. Surprisingly little 
attention is devoted to the problem of representing real-life problems in a formal model that can be 
later processed by automated planners and schedulers. The research area that deals with this issue is 
called knowledge engineering for planning and scheduling. This area deals with the acquisition, design, 
validation and maintenance of domain models, and the selection and optimization of the appropriate 
machinery to work on them. These processes impact directly on the success of real automated P&S 
applications. There is also a clear need for modeling tools that bridge the gap between real-life prob-
lems and P&S technology. Currently the human modeler must be an expert in the application domain 
as well as in P&S techniques. This is a rare combination of skills that significantly restricts applicabil-
ity of the P&S technology. The modeling tools, such as GIPO (Simpson et al., 2001) and itSIMPLE 
(Vaquero et al., 2007), show a possible way for making the planning technology more accessible; the 
EUROPA system (Jonsson et al., 2000) also provides many routines for knowledge engineering tasks. 
The FlowOpt project (Barták et al., 2011) has similar ambitions in the area of scheduling. The main 
goal of such tools is supporting the modeling process starting with an informal description of the prob-
lem and finishing with a precise formal model that can be passed to a planner or a scheduler. The tool 
should hide the technical complexity of P&S algorithms while providing enough flexibility to describe 
various real-life problems. Users would greatly benefit from tools that guide the user to design models 
that are easier to solve.

A closely related topic to knowledge engineering is the gap that is extending between real-life prob-
lems and academic solutions. Researchers are going deeper and deeper to understand the problems 
and proposing techniques to solve them, but the problems to be solved are becoming too far (too 
artificial) from the real-life problems, which opens the question of practical applicability of cur-
rent research results. In the previous paragraphs, we pointed out several assumptions made about 
the problems to be solved and these assumptions are frequently violated in real-life problems. There 
already exists research that relaxes these assumptions and attempts to solve more realistic problems. 
For example, solving planning problems under uncertainty is an important topic to make the plan-
ning techniques closer to real-life problems. Markov decision processes (MDPs) are currently a typi-
cal model to deal with nondeterminism of actions and environment and with partial observability 
of the world. Instead of plans defined as a sequence of actions, MDPs work with policies that recom-
mend which action should be executed in a given state. Though these techniques are very promising 
to describe the real-world problems precisely, they do not scale up well to problems of realistic size. 
Similarly, stochastic scheduling has received attention in the scheduling community where research-
ers are also interested in online scheduling (not all information is available at the beginning, e.g., 
new jobs may arrive later). This avenue of research also relates to rescheduling methods where the 
existing schedule needs to be modified to reflect changes in the problem specification (such as broken 
machines, late arrival of jobs).

39.5  Summary

Many real-life problems involve planning and scheduling tasks so the knowledge of how to model and 
solve such problems is becoming increasingly more important. This chapter gave a short overview of 
classical approaches to formally describe and solve planning and scheduling problems. It is not meant 
to be exhaustive; for example, we omitted several promising approaches for solving problems such 
as metaheuristics that are often successful in practical applications (see Chapter 12). The aim was 
to present the area to a general audience, to introduce the key notions to understand the terminol-
ogy, and to give several representative examples of techniques involved in solving problems. We also 
identified three topics, namely, integration of planning and scheduling, knowledge engineering for 
planning and scheduling, and extensions of existing models toward uncertainty and dynamicity as 
research areas that are likely to receive more attention in near future due to their relevance for solving 
practical problems.
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Key Terms

A*: A heuristic search algorithm where each search state x is evaluated using the function g(x) + h(x), 
where g(x) is the length of the path from the initial state to x and h(x) is an estimate of the 
length of the path from x to some goal state.

Constraint satisfaction problem: A combinatorial optimization problem formulated as a set of vari-
ables, each variable has a set of possible values, and constraints, which are relations restrict-
ing possible combinations of values; the solution is an assignment of values to variables 
satisfying the constraints.

Planning: A process of creating an organized set of actions, a plan, that can be executed to achieve a 
desired goal from a given initial situation (state).

SAT: A Boolean satisfiability problem is the problem of determining if the variables of a given Boolean 
formula can be assigned in such a way as to make the formula evaluate to true.

Scheduling: A process of assigning a set of tasks to resources over time.
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40.1  Introduction

One of the unique characteristics of human intelligence is the ability to process and understand lan-
guage. It is a specific human capacity, although the word “language” has been applied more loosely to 
communication modes used by other animals, for example, dolphins. A key aspect of language is that 
it is used for communication. However, there is also evidence that it is used for conceptualization. In 
computing, the word “language” is mostly used within the context of programming, where programs 
are written in a “computer language” that the computer can process as a set of precise instructions to 
accept some input and generate some output. In this chapter, when we say “language” we mean human 
language or “natural language” to distinguish them from artificial languages such as those used in 
computer programming. Attempts at getting computers to understand natural language began almost 
as soon as computers were invented. The field of artificial intelligence has its roots in pioneering work 
in natural language processing (henceforth NLP)—what can be a more convincing demonstration of 
intelligence in a computer system than its ability to interact with a human being using language? In 
2011, when IBM’s Watson program convincingly won the Jeopardy tournament, it was seen as a major 
triumph for NLP. Going back in the past, many of the earliest attempts at building intelligent systems 
involved some form of language processing. For example, the Turing test required a computer to behave 
in a manner that is indistinguishable from a human being, and all interactions were to be done in 
natural language.

The broad interdisciplinary area of NLP has significant intersections with fields such as computa-
tional linguistics, speech recognition, phonetics, semantics, cognitive science, logic, and philosophy. 
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Each field focuses on certain facets of language processing. For example, in speech recognition and 
synthesis, the input/output is exclusively audio. This leads to an entire class of problems and issues, solu-
tions to which are discussed in Chapter 41. However, in the current chapter, we shall focus on language 
processing research where the input/output is textual in nature. Such written languages are different 
from spoken languages (as in speech processing) and visual languages such as sign languages and ges-
tures. A written language is characterized by a script. There are thousands of languages in the world, 
and almost as many scripts. Many languages tend to share scripts. For example, the romance languages 
(the major ones are French, Italian, Portuguese, and Spanish) use a script derived from Latin. Most 
research in NLP is done with English, the lingua franca, but the methods and technologies can often be 
applied to other languages. When focused on text, NLP tends to overlap somewhat with another field 
called text-mining or text-analytics. The main difference is that text-mining deals with text at a very 
superficial level, whereas NLP goes deeper into the structure of the text and its components.

The ubiquity of word-processors and document preparation systems ensures that most text data orig-
inates in digital form. This, and the fact that the Internet and World Wide Web allow easy access and 
dissemination of textual data, ensures that there is no shortage of data for NLP. As we shall see, these 
large volumes of digital text have led to the increasing dominance of statistical methods within NLP. 
However, this does not make the so-called classical approaches to NLP irrelevant or dated. They play an 
increasingly important role in providing direction for the statistical methods.

Comparing NLP to other fields that are covered in this section, it would seem that NLP could be 
useful in building a language-processing blackbox. For example, expert systems and robots might be 
easier to interface with if they were to understand commands and give their responses in natural lan-
guage. Indeed, one of the earliest applications of NLP was as a front-end to a database where queries are 
posed in natural language rather than SQL. Analysis of images in computer vision can be benefit from 
using NLP methods on the text in which the image is embedded. Since many problems in biomedical 
informatics share similarities to the ones in NLP, it is not surprising that there is significant cross-fertil-
ization of ideas between these two communities. Some other fields within artificial intelligence can be 
seen as sources for NLP techniques. For example, building a statistical machine translation (henceforth 
MT) system would require good machine learning algorithms from decision tree and neural network 
research communities. New research avenues have arisen in the process of solving some of the problems 
faced in NLP. For example, the programming language PROLOG (which stands for PROgramming 
LOGic) was developed primarily to serve the NLP community and was later found to be useful in many 
other scenarios as well. Programming languages are covered in detail later in this book and are not 
discussed in this chapter.

As mentioned earlier, the field of NLP is as old as computing itself. Research in MT (a subfield of NLP) 
has been going on since the 1950s. The first meeting of the Association of Computational Linguistics 
was held in the early 1960s. Hence, one can imagine that there are quite a number of surveys and text-
books and handbooks that describe NLP in great depth. This chapter does not intend to replace them, 
but rather it gives a quick introduction to the field and its literature, covers the key principles, the nota-
ble applications, and outlines future research challenges. The resources section at the end of this chapter 
will point readers to the most significant ones for further details.

The availability of web-based data and the emergence of mobile computing and cloud-based infra-
structure have resulted in a flood of innovative applications of existing NLP techniques and the rapid 
development of new ones. Tasks in NLP that were considered “too hard” just a decade ago are now done 
by apps on mobile devices. It is truly an exciting time to be in NLP.

The rest of this chapter is organized as follows: In the next section, we shall discuss the underlying 
principles upon which the field is based. As mentioned earlier, our focus shall be on the text. Then 
we shall do a quick survey of the most important applications and the commercial impact of NLP. 
Following this, we shall identify the major research challenges for the future. Finally, we shall sum-
marize by providing a glossary of terms that may be unfamiliar to the readers and an annotated list 
of resources (both online and offline) that the reader will find useful in learning more about this field.
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40.2  Underlying Principles

A popular view of NLP is that of a series of transducers that decompose the task into a series of stages 
of increasing abstraction. The eventual goal of NLP is to articulate the text’s intended meaning, and 
the stages break down the complexity of the task with each stage solving a bit of the problem or prepar-
ing data for the following stage. These stages are inspired by work in theoretical linguistics where one 
can analyze the syntax, semantics, and pragmatics of text. These stages are typically understood as a 
pipeline—the output of one stage fed as input into the next stage with minimal backtracking. At the 
lowest level, the text is just a sequence of characters, which must be tokenized and segmented into words 
and sentences. So the first stage, often referred to as text preprocessing, aims to transform the text into 
words and sentences. The output of this stage is then fed as input to the next stage—the syntax proces-
sor. In this stage, the words are subjected to lexical analysis and taken apart to understand them better. 
This understanding will be useful for later stages. The sentences are also subject to analysis in this stage. 
This involves putting a structure on top of the words in the sentence such that the relationships between 
the words are made explicit. This structure is called a parse and is often a tree or a directed graph. The 
parse is based on a grammar of the language, which can be understood as a finite set of rules that govern 
how words come together to form sentences. Syntactic parsing is a very well-studied topic, and it would 
be difficult to find a NLP system that did not involve the use of some parsing technique at some stage. 
At the end of the syntax stage, the text is now transformed into a sequence of structured sentences. The 
next stage, probably the most difficult one at the moment, attempts to ascribe meaning to the sentences. 
The notion of meaning in NLP is multifaceted. At a surface level, we are interested in knowing what the 
sentences say about the various objects/concepts that are the focus of the text. This is the literal mean-
ing of the text and is often described using logic-based formalisms. The techniques are part of semantic 
analysis. At a more deeper level, we are interested in knowing the intended meaning of the text, which 
is often more broader than the surface level meaning of the sentence. The context of the sentence, other 
sentences, is considered, and this sub-field of NLP is called Pragmatics. For example, if we consider a 
text that consists of a conversation between two people, a semantic analysis would tell us the meaning 
of the individual sentences, but pragmatics (in this example, discourse analysis) would be what tells us 
whether the text is an argument between the two and whether it ended in an agreement and what was 
the nature of the agreement or whether it was question and answer session in which one person was 
asking questions that the other person was answering and whether the session was “satisfactory” from 
the questioner’s perspective.

While such a pipeline of stages is helpful to manage the complexity of NLP, in practice, there is 
some feedback between stages. For example, a parsing failure may require that sentence segmentation 
be redone. The availability of faster/distributed computational resources also allow for multiple possi-
bilities to be explored, and the best (most probable) solution be selected. We now explore each of these 
stages in more detail and describe the underlying principles and issues in each.

40.2.1 T ext Preprocessing: Words and Sentences

Digital texts are essentially a stream of bits that must be converted into linguistically meaningful 
entities—first characters, then words, and sentences. Typically, there are two sub-stages: Document 
triage, the process of converting a binary file into a well-defined text document, and text segmenta-
tion. For the stream of bits to be interpreted as a stream of characters, it is necessary that the character 
encoding be identified. Optionally, the encoding may need to be changed depending on the kind of 
algorithms to be used later. There are a number of popular encoding schemes available; and depending 
on how the digital text was generated, different documents may need to be processed differently. The 
most common encoding scheme is 7-bit ASCII, which has 128 characters and is usually sufficient for 
English. Historically, this encoding was so popular that many languages forced their characters to be 
encoded using ASCII. For example, texts for European languages with accented characters opted to 
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use two ASCII characters to encode the single accented character. Languages such as Arabic required 
far more elaborate asciification or romanization of their characters so as to be encoded using 7-bit 
ASCII. Later on, 8-bit character sets arose for virtually most languages. However, since this gives only 
256 possibilities, the different character sets for the languages overlap, and prior knowledge of the 
encoding used is necessary to interpret a given document. The situation is even more complex for lan-
guages such as Chinese and Japanese that have several thousand characters. Historically, 2-byte (16 bit) 
character sets were used to represent them. Further complications happen when multiple encodings 
are used within the same document. For example, a Chinese document might have an English acronym 
or a number that is encoded using 1-byte characters. The Unicode standard attempts to eliminate all 
this complexity by specifying a universal character set that has over 110,000 characters covering over 
100 scripts. It also provides a way to consistently deal with issues such as character properties (e.g., 
lower and upper case), display order (Arabic and Hebrew are right-to-left, unlike English, which is left-
to-right), etc. The most common implementation of this standard is in the UTF-8 encoding, which is a 
variable length character encoding scheme. With no overlap of character sets, it solves the problem of 
properly interpreting a multilingual document without any outside information. However, despite the 
rapid adoption of Unicode, the use of different encoding schemes means that an encoding identifica-
tion algorithm must model the different encoding schemes to figure out which one of them best fits 
the given file.

A related problem is that of language identification. In some cases, the character set will uniquely 
identify the language, and if it is a monolingual document, the problem is solved. However, many lan-
guages share common characters, and unless one has outside information about the language used, 
one must look at the distribution of characters in the document and compare it to that of the possible 
languages to determine which one is most likely. For multilingual documents, this is even more critical 
since different (language-dependent) word/sentence segmentation algorithms would be applied for dif-
ferent segments of the text.

Texts obtained off the Internet cause additional problems since they are ill-formed and do not follow 
the traditional language rules. Twitter logs, for instance, use novel spellings and abbreviations. Internet 
documents also contain a lot of markup and display-specific text that should be filtered out. A non-
trivial problem is how to clean the document of the extraneous text.

All these issues become especially important when a corpus of documents is being created for statisti-
cal analysis or for model-creation in applications.

Once the text is interpreted as a sequence of characters in a particular language, the next task is to 
identify the words and sentences. The process of clumping the characters into words is called tokeni-
zation. The algorithms for doing this are very much language-dependent. Space-delimited languages, 
such as English, a fixed set of whitespace characters typically delimit words, but there are many spe-
cial cases and different kinds of texts need custom-built tokenizers. In unsegmented languages such 
as Chinese and Thai, additional information is needed about what character sequences are legitimate 
words. The concept of word need not be restricted to a sequence of characters delimited by whitespace. 
Many tokenization algorithms also extract multi-word expressions such as New York or de facto, which 
should to be treated as one token/word.

Once words are extracted, they can be subjected to lexical analysis. This aims to understand the 
structure of each word. For example, it can help tag the word worked as essentially the word work with a 
suffix of -ed that signifies the past tense. This is called inflectional analysis and can be quite non-trivial. 
For example, the word ran is really run inflected with a past tense.

A critical unit for NLP is the sentence. Once words are extracted, it is typical to chunk them into 
sentences. This process is called sentence segmentation and is very much language-dependent. Thai, for 
example, has few punctuation marks and segmentation can be challenging. In a well-formed English 
document, almost all sentences can be segmented out by applying a set of simple rules. However, for 
informal English documents, the segmentation can be quite hard as there can be considerable variation 
in the use of the standard end-of-sentence markers such as periods and exclamation marks. Near perfect 
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results can be obtained by using machine learning techniques on a corpus of documents to build classi-
fiers that decide when a character such as a period is ending a sentence.

Once sentences are obtained, additional interesting word-based processing is possible. One example 
is part-of-speech (henceforth POS) tagging where every word is labeled with its correct lexical category 
in the sentence. Unlike lexical analysis, POS tagging deals solely with POS labels. It has been extensively 
studied and is considered a solved problem for many languages.

With or without lexical analysis, and without further NLP stages, words can be used in many inter-
esting ways. One major focus has been probabilistic word-based models called N-gram models. These try 
to predict a word from the previous N-1 words. These N-grams have been the basis of so-called language 
models that predict the probability of sequences of words, for example, a sentence. These models rely 
on counts of words, or sequences of words, in a representative corpus of documents. Models based on 
N-grams have seen very broad usage in a variety of tasks ranging from spelling correction to MT.

40.2.2  Syntax: Parsing and Structure

A central aspect of NLP is syntactic analysis: determining the structure of a word sequence (typically 
a sentence) based on a formal grammar. The concept of a grammar for a given language comes from 
linguistics. It refers to a set of finite rules that define well-formed (valid) strings in the language. The 
correspondence is typically seen in a generative manner—the grammar rules generate strings in the 
language and nothing more. The so-called Chomsky Hierarchy organizes many of the most well-known 
grammars into a hierarchy of increasingly powerful (in a generative sense) formalisms. Context-free 
grammars (henceforth CFG) are particularly interesting and widely studied as useful approximations of 
natural languages. These are if-then generative rules involving words and constituents (word categories 
such as noun, verb, etc.) that specify how a constituent might be composed of other constituents and 
words. In a CFG, the rules do not have a context of application. For example, a rule that says a noun 
phrase consists of a determiner followed by a noun can be applied regardless of where the noun phrase 
appears in the string. Given a grammar and a string (sentence), the process of parsing aims to determine 
how the string was generated by the grammar. Effectively, this reverses the generative process. The result 
of parsing is a structure that shows exactly how the word string was generated by the grammar. There 
are many types of parsers available and most are based on the idea of searching through a space of pos-
sible structures compatible with the grammar to find one that fits the word string. Two broad classes 
of such parsers for CFGs are top-down and bottom-up parsers. Efficient parsers such as table-driven 
parsers combine ideas from both classes using dynamic programming techniques. Another aspect of 
parsers is how they handle ambiguity such as multiple possible parses of the same string. This leads to 
probabilistic solutions and specialized methods for processing weighted grammar rules. Increasingly, 
the field has been moving toward the use of statistical parsing techniques in which samples of text are 
used to determine various aspects of the underlying grammar.

Grammar theories have led to a wide variety of different grammars for different languages and con-
sequently different parsing algorithms for each. Of particular interest are dependency grammars (and 
the associated dependency parsing techniques), which have been particularly useful for languages other 
than English. Unlike phrase-structure grammars, dependency grammars result in flatter structures and 
considerably ease the eventual goal of most NLP systems—extracting the intended meaning of the text.

40.2.3  Semantics and Meaning

Obtaining the syntactic structure of a word sequence is only a means to the end goal of determining what 
the word sequence really means. This is the objective of semantic analysis. There are several dimensions 
to consider. First and foremost, a decision needs to be made as to how should meaning be represented. 
A number of formalisms, mostly based on first-order logic, have been used for this purpose. They rely 
on a model-theoretic framework that provides a bridge between linguistic content and knowledge of 
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the real world. The use of first-order logic provides for a computationally tractable mechanism to sup-
port inferences and to describe events as state changes. Other representational challenges are how to 
represent beliefs and common-sense knowledge. One of the most well-studied approaches to semantic 
analysis is an approach called compositional semantics, which is based on the idea that the meaning of 
a sentence can be obtained (composed) from the meaning of its parts. In this approach, ‘parts’ refers to 
both the syntactic components as well as the relationships between them that are the output of they syn-
tactic analysis. With these as inputs, the semantic analyzer will output a meaning representation of the 
sentence. The way this is done is by augmenting the grammar rules with semantic attachments, which 
specify how to compute the meaning representation of the construct solely on the basis of the meaning 
of the constituents. Much of the work in this line of research has focused on correctly representing and 
reasoning with ambiguity.

Beyond sentences, there has been a rich body of research in the area of discourse representation 
theory that aims to capture the semantics of coherent sequences of sentences and entire texts. These 
theories rely on first-order-based structures of discourse and mapping linguistic constructs to opera-
tions on these structures so that as the sentences are processed, the structure changes in the way the 
reader’s mental representation of the text referents might change.

Slightly orthogonal to these attempts to understand the meaning of entire sentences and texts is the 
large body of research called lexical semantics, the study of word meanings. Of particular interest is the 
study of word senses and how to disambiguate among them. A well-known example is the word bass, 
which has at least eight different interpretations such as a fish or a part of a musical range. Relationships 
between word senses can be established. Some common relationships are synonymy, antonymy, hyper-
nymy, and hyponymy. Entire databases have been created of such graphs of relationships between 
words. One of the most well-known examples is WordNet, which is based on the idea that the mean-
ing of a word sense can be understood with reference to synonymous word senses. WordNet exists for 
multiple languages and is widely used in practical applications. A generalization of the binary concept 
of synonymy is word similarity. Popular approaches to learning word similarity rely on the notion that 
similar words have a similar distribution of words around them. WordNet is an instance of an ontology. 
Early ontologies were painstakingly handcrafted, but more recently, using documents on the Internet, 
automatic (and semi-automatic) approaches have been used to construct very large general-purpose 
ontologies as well as domain-specific ones. These ontologies have been important building blocks in the 
so-called semantic web, a term used to describe a network of data elements that can be processed directly 
by machines. Word sense disambiguation has been a vigorous topic of research in lexical semantics 
with word-sense classifiers learned from labeled or, lately, unlabeled data. Another important focus of 
research in lexical semantics has been in modeling events by specifying restrictions and constraints on 
event predicates. For instance, the agent of an eating event must typically be an animate actor. Such 
selection restrictions on roles are increasingly being learned from large volumes of text obtained on 
the Internet.

All the semantic approaches mentioned so far have major problems with processing and modeling 
pervasive constructs such as idioms and metaphors. For example, to understand the meaning of (or 
even to accept as valid) the sentence, “Flickr is bleeding to death.” the underlying metaphor must be 
recognized.

The task of recognizing textual entailment refers to determining if one text fragment’s truth 
implies that of another text fragment. This task is at the heart of understanding the meaning of text 
and making inferences. It has many applications in question answering (henceforth QA), MT, text 
summarization, etc.

40.2.4  Pragmatics and Discourse Analysis

In the previous section on semantics, we mentioned discourse representation theory as well the problem 
of recognizing text entailment. These two go beyond words and sentences and focus on understanding 
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an entire block of text. For the purposes of analysis, such a block is referred to as a discourse, and the 
field is referred to as pragmatics or discourse analysis. Work in this area has been somewhat sparse 
except for specific applications such as text summarization. Even there, much of the work is applicable 
only for English-like languages. Part of the reason is that the emergence of statistical techniques in NLP 
caused a re-examination of many of the problems in syntax and semantics and so discourse analysis 
was placed on a backburner. However, the problems have not disappeared and remain important to the 
eventual goal of understanding the intended meaning of the text. Typically, a document does not consist 
of unrelated sentences but has a coherency to it. In fact, one characteristic of a well-written document 
is high coherency. A dialogue or conversation between two or more parties is also a form of discourse 
and can be analyzed in terms of the communication goals of the participants. In such a discourse, there 
are natural segments as different parties contribute to the text. In a monologue too, even one with high 
coherency, there is a natural segmentation of the text into subtopics. The movement from topic to topic 
is governed by coherence relations. These relations might be obtained from a body of research called 
rhetorical structure theory, which identifies a small set of coherence relations normally used in text. 
Besides looking at coherence, which is a semantic concept dealing with meaning of textual units, one 
can also examine cohesiveness of text to identify the different segments in it. The intuition is that text 
within the same segment is more cohesive than across neighboring segments. So if one measures cohe-
siveness between adjacent sentences, there will be a dip in cohesiveness at topic boundaries.

Besides discourse segmentation, another important task in discourse analysis is co-reference resolu-
tion. The idea here is to find the entities that are being talked about irrespective of how they are referred 
to in individual sentences. For example, a text about Hillary Clinton may refer to her by “Hillary Clinton” 
in some sentences, by the pronouns “she” or “her” in some others, by just “Clinton” in some others and 
by “the US Secretary of State” in some others. All these references should be resolved to one and the 
same person. The simpler task of pronoun resolution, in which one finds the referent to a single pronoun, 
has been widely studied, and several algorithms exist that do an impressive job. These algorithms rely 
on parse information of the sentences involved and also various lexical features of potential referents. 
As mentioned earlier, text summarization has been an important application area for discourse analysis 
research. In its simplest form, the goal is to decide which sentences are the key ones in the text, and this 
can be somewhat achieved by examining surface features such as position of sentences and the existence 
of cue phrases.

40.3  Best Practices: Applications and Outcomes

In this section, we shall do a quick survey of the most prominent practical results and the commercial 
impact of NLP within computing. Five classes of applications have been identified as the most promi-
nent: MT, information retrieval (IR) and QA, information extraction (henceforth IE), natural language 
generation (henceforth NLG), and sentiment analysis. For lack of space, many other positive outcomes 
and applications cannot be covered, and the reader is referred to additional resources at the end of 
the chapter.

40.3.1  Machine Translation

The most visible and prominent application of NLP is in translation. What would be a better demonstra-
tion of a deep understanding of a couple of languages than to accurately translate texts from one into the 
other? Furthermore, given the multi-billion-dollar size of the translation and interpretation market, it is 
not surprising that almost every major development in NLP, be it word-level N-grams or sentence-level 
parsing or semantic analysis, has found its way into MT systems. Early MT systems were rule-based 
and relied heavily on “deep” knowledge encoded by human experts. The most primitive of these did a 
word-level translation using dictionaries, while the most sophisticated ones obtained a deep conceptual 
structure (called interlingua) of the text in the source language and then translated the interlingua into 
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the target language. These systems did not do very well on real-world texts outside the narrow domains 
for which they were designed. The 1990s saw breakthrough techniques in statistical MT and since then 
both rule-based and statistical approaches have been combined in robust and useful MT systems that 
are deployed in the real-world. For high-volume translation jobs, such as translations of manuals or 
regulations, MT systems can be used to assist human translators by quickly providing a draft translation 
that can then be rapidly fixed manually.

Modern MT systems are heavily statistical in nature and rely on the availability of parallel texts, which 
are texts available in two languages. Such texts are routinely produced in countries that require govern-
ment documents be available in all official languages. For example, the proceedings of the Canadian 
Parliament are kept in both French and English. As another example, Hong Kong legislative records are 
in both English and Chinese. By aligning such parallel texts, an MT system can obtain enough statistical 
evidence for now to translate a new piece of text. Early MT systems relied on word-level information, but 
modern state-of-the-art MT systems extract phrase-level mappings from the parallel texts and use these to 
translate the new text. Commercial MT systems, such as Google Translate, Systran, etc. have been widely 
deployed and provide acceptable quality in many scenarios. The availability of open-source MT toolkits, 
such as Moses, has spurred development of MT systems for new language pairs. Generation of parallel texts 
too has become easier using low-cost crowd-sourcing techniques. The central issue with parallel texts is 
how to align them. The so-called alignment problem can be addressed at various levels of granularity: para-
graphs, sentences, words, and even characters. While many of the alignment algorithms are fairly general 
and apply for any two language pairs, high performance is obtained by customization to linguistic features. 
Parsing, especially dependency parsing, can be very useful in aligning texts by matching (i.e., aligning) 
parse trees/graphs. Parts of the text that cannot be aligned reliably are discarded from the analysis.

A major problem in MT system development has been the issue of evaluation. Ideally, the evaluation 
must be done by human beings, but this can be very costly and time consuming. Various measures of 
fidelity, informativeness and intelligibility have been proposed in the past. Modern automatic measures 
such as bilingual evaluation understudy and TER are useful when comparing similar systems or incre-
mental changes to a system.

Commercial MT systems are not just for end-users. As we shall see in the next section, they can also 
be effective in multilingual IR as well as many other NLP applications that require collating text in more 
than one language.

40.3.2  IR and QA

Perhaps the most visible and successful application of NLP is IR and its related cousin QA. Both IR 
and QA focus on finding information buried within unstructured texts and providing to the end-users 
in response to a query, which may be posed as a series of keywords (in IR) or a natural language ques-
tion (in QA). Typically, the texts are pre-processed and auxiliary structures and indices are created in 
advance to facilitate the task of providing answers in real time. The indices can be extremely large, espe-
cially in the case of web-scale search, and pose significant engineering challenges for NLP algorithms. 
Users of IR systems, such as search engines, tend to write short and ambiguous keywords to describe 
their needs. There are additional issues of misspellings and the context (search is an iterative process 
and recent previous queries by the same user can provide valuable additional clues as to what the user 
is not looking for). Synonyms and multiple word senses pose additional challenges in trying to provide 
the user with the “correct” set of documents and web pages. Finally, ranking the output by relevance is 
another challenge that requires the use of NLP methods to assess similarity of queries to texts. At the 
back-end of IR systems, creating auxiliary structures and indices around the searchable texts requires 
the use of NLP. A morphological analysis of the text is quite routine so that texts that contain variations 
of the same word are all indexed in the same manner. The texts need not abide by the same spelling rules 
and can contain errors as well. Concept ontologies are used to ensure that texts that contain similar 
concepts are readily fetched in response to user queries. In web-scale IR, an additional consideration is 
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that of multiple languages. The user may pose a query using keywords in English but the most relevant 
page might well be in French. In such a case, either the page can be automatically translated or else it may 
be provided to the user without further processing if the user profile suggests that the user is fluent in 
French. Multilingual IR can be done either by translating the query into multiple languages in real-time 
or by preprocessing multilingual texts to create a unified index in the language of the user queries.

The use of keywords as a way to query IR systems is ultimately a compromise based on limitations 
of existing technologies. Ideally, people would like to pose a question and have the system understand 
the question, do a search of the relevant documents, extract the relevant information, and construct the 
best possible answer, possibly by consulting multiple documents. A well-known example of this is the 
Watson system that won the Jeopardy contest. This had the additional complexity of having to reason 
about its confidence in its answers and also developing strategies to win the overall game. The process 
of QA is often broken down into three stages: (1) question analysis, (2) text selection, and (3) answer 
extraction and construction. In the first stage, the most critical part is question classification, which 
determines the type of answer that should be provided. This can done by something as simple as a 
set of rules that map question patterns to question (and hence) answer types. In English, this may be 
flagged by the presence of question words/phrases such as where, what, how many, etc. The question text 
also serves as a basis for constructing a set of query words that are sent to a search engine to retrieve a 
set of relevant documents. The documents can then be analyzed to obtain candidate answers. Textual 
entailment techniques have been explored for ranking the different answers and summarization meth-
ods have been used to build an answer from information in multiple documents. Recent trends in QA 
have also explored approaches such as similar question finding, which exploit the existence of question 
answer pairs on the web, many of the answers having been provided by human beings and hence prob-
ably of high quality.

40.3.3  Information Extraction

We saw in the previous section, how QA systems rely on extracting information from documents in 
order to construct an answer. The more general task of IE sees applications in a broad spectrum of 
tasks where structured information is required. A prototypical IE application is database creation by 
template filling. From unstructured texts of house-for-sale notices, a predefined template’s slots might 
be filled up: location, number of rooms, number of bathrooms, total area, age, price, gas or electric 
kitchen, parking, etc.

The most common scenario for IE is named entity recognition (NER), which is often seen as the 
first stage of more advanced relationship extraction. State-of-the-art NER systems are quite good; 
and many commercial products are deployed in domains such as military intelligence, news analy-
sis, and biomedicine. Generic NER systems extract entities such as people, places, and organizations 
from newswire articles. More specialized ones for biomedical applications may extract specific genomic 
entity types from highly technical papers that might refer to these entities using complex and confus-
ing terminology. Most NER systems are designed as a set of classifiers that label the text sequence word 
by word. In this view, the task is quite similar to POS tagging that we discussed earlier. Practical NER 
systems use a combination of human-specified patterns, rules, and automatically constructed sequen-
tial classifier models.

Once entities are extracted, the next goal of IE is to find the relationships between them. Usually, a 
predefined list of relationships is considered based on the domain. For example, in intelligence appli-
cations, one may be interested in the relationship BELONGS-TO between a PERSON entity and an 
ORGANIZATION entity. Seed patterns are used to bootstrap the process of extracting additional 
patterns that specify when the relationship holds between entities. The template-filling application 
mentioned at the start of this section can be seen as the process of extracting complex n-array rela-
tionships. For narrow domains, template filling algorithms work very well and are based on sequential 
labeling approaches.
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More recent applications of IE have been in temporal analysis. These involve recognizing temporal 
expressions (an important goal in QA where a question may start with the word “when”) such as absolute 
dates, relative expressions, and durations. Besides pattern-based rules, chunking approaches that use a 
set of sequential classifiers have been effective for this task. Another important problem is event detec-
tion. Verbs typically flag events, and there is usually a temporal expression to specify when the event 
happened. Event recognition is domain-specific and begins with a set of seed patterns that feeds into a 
bootstrapping process that extracts new patterns based on the usage of entities from earlier patterns.

Most of what has been mentioned earlier applies to single-document IE. Emerging multi-document 
IE systems also take advantage of aspects such as redundancy of information to acquire broadly appli-
cable knowledge. Such open-domain IE systems also provide new challenges for standard NLP tasks. 
For example, the task of co-reference resolution becomes much harder in the cross-document scenario: 
when are two documents about the same entities?

Biomedical language processing, also known as BioNLP, is a key IE application. Building NER sys-
tems for this domain has been particularly challenging because of the unique and highly technical 
nature of the texts. Common entities are gene and protein names, and the challenge in the field is that 
these entities are sometimes referred to by names, other times by symbols, and, to make matters even 
more confusing, sometimes by the corresponding gene/protein. The names themselves are not unique 
either and vary based on the organism, function, etc. A unique problem for NER systems in this field is 
to perform gene normalization—relate different mentions of a gene to some specific gene in a database. 
The problem is cast as a word sense disambiguation task.

40.3.4  Natural Language Generation

NLG is the process of expressing thoughts using language. Synthesis of language is the flip-side of analy-
sis and shares many of the same concerns and solutions. Just as a simplistic analysis of language can 
be achieved using patterns, a simple synthesis of text can be achieved by instantiating a parametrized 
template. In an MT system that translates text from German to English, NLG occurs when English text 
is generated based on the information/thoughts extracted from an analysis of the German text. In many 
other scenarios where text is generated, the process is merely one of selecting some fragments (as in 
text summarization) or instantiating a template (as in QA). It is tempting to view NLG as the analytical 
process in reverse. In fact, the field of NLG is quite distinct with its own concerns and issues that revolve 
around speaker intentions, listener models and text planning.

A domain-specific application of NLG is report generation where the process is somewhat the oppo-
site of template filling in IE: take as input some structured data and produce a natural language text that 
describes/interprets the data in a manner consistent with how a human being would. For example, in a 
weather report, the input data may contain information about wind speed in km/h; however, a report 
generator would present this more qualitatively. Furthermore, depending on the strength of the wind 
speed, it may be necessary to feature it quite prominently at the start of the report, or mention it in pass-
ing at the end.

Some of the most exciting developments emerging in NLG are in education and health care. In intel-
ligent tutoring systems, it has been shown that providing more succinct and abstract feedback to stu-
dents facilitates more learning. Thus, the NLG front-end should take this into account in planning the 
feedback to be delivered to the student. In health care, the goal of engaging the patient in a dialogue is to 
persuade them to alter behavior. For example, to adopt a better diet or to quit smoking. Hence, the NLG 
module must generate text that is based on an argumentation theory that supports this. Patients can be 
represented as a finite state model of states, and their progress through this model can be tracked as the 
dialogue proceeds, and the system generating appropriate text based on this analysis.

NLG has also been used to give textual summaries of complex graphs of clinical data. These sum-
maries have been found to improve decision-making and patient care. The reasons should be intuitively 
clear. A patient’s medical history contains so many numeric data from laboratory tests over irregular 
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intervals of time that it becomes difficult to visualize it all. By integrating textual summaries into the 
visualization process, it is possible to make sense of the data more rapidly and deliver better quality care 
more effectively.

In generating text, an important consideration is that it be coherent. This is usually ensured by using a 
top-down planning approach to the construction of the text. At a sentence level, it is important that the 
text makes use of referring expressions such as pronouns, especially when the reference is unambigu-
ous. Algorithms are available that err on the side of wordiness. It is better to eschew the use of pronouns 
unless the reference can be identified clearly and unambiguously.

It is extremely hard to evaluate NLG systems. One measure of evaluation is the naturalness of the 
text. This can be done by human experts. Necessarily subjective, the process would typically be done by 
multiple experts and inter-annotator agreement recorded. Obviously, such a process is expensive and 
slow. More recently, there have been attempts at evaluating aspects of NLG instead of treating the entire 
process as a blackbox. Evaluation of referring expression generation has been explored systematically by 
setting up a validation set to compare different algorithms. In general though, evaluation and compari-
son in NLG is very hard to objectify.

40.3.5  Sentiment Analysis

Sentiment analysis or opinion mining is the study of opinions, sentiments, and emotions in text. It has 
seen extremely rapid growth in recent years and is one of the highest impact applications of NLP.

In general, text can be classified as factual or opinionated. For a long time, people were concerned 
more with facts and objective information in text. Most search engines, for example, are more con-
cerned with facts than with opinions. We saw earlier how QA systems are primarily concerned with 
extracting facts from documents and using these fragments of objectivity to construct “correct” answers 
to questions. With the growth of the web and the rise of social media, however, there has been an 
increased interest in opinions and feelings. The web has certainly made it easier for people to express 
their opinions. In addition, social media has made it easy for us to find out what our friends and others 
we care about and trust have written. When contemplating an expensive purchase, even if we do not 
care for the opinion of someone we have never met, we just might be interested in what a close friend 
might have to say about their personal experience using the product. For a company, it is no longer 
necessary to conduct an expensive survey or organize a focus group to find out how its products are 
being perceived by consumers. They can simply mine the many blogs, forums, and discussion groups 
to find out what people are saying. Extracting sentiments is not an easy task. In most cases, opinions 
are embedded in broader discussions and may even be indirectly expressed. There are no obvious data-
sources to access—user-generated content is everywhere and anywhere. As people have realized that 
their opinions are being harvested, many have started to manipulate the system by inserting opinions 
as spam into popular Internet sources.

Broadly speaking, sentiment analysis is about classification—what are the good things being said, 
what are the bad things—but before that can be done, a more fundamental question must be answered: 
which text fragments are objective and which are subjective. This field of research, called subjectivity 
analysis, seeks to separate the facts from the opinions. Typically, it works at the sentence-level, but due 
to referring expressions and contextual issues, extra information must be included. Once subjective text 
is identified, there are several aspects of the opinion that must be extracted: who is the opinion holder, 
what object is the opinion about, is there any particular aspect or feature of the object that the opinion 
focuses on, is the opinion positive or negative or something in-between, is it a direct opinion about the 
object, or is it a comparative opinion with reference to another object. In the early days of sentiment 
analysis, to find the opinion polarity, word-based approaches were popular. Lists of positive and nega-
tive words were constructed, and one could simply count the number of words in the text that came 
from these two lists and use some function of their difference to assign an overall sentiment polarity to 
the text. More recently though, better results are obtained by using modules from various parts of the 
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NLP pipeline. For instance, NER systems assist in finding the object of the sentiment and its aspects. 
Co-reference resolution comes in handy to disambiguate pronouns and collate multiple opinions of the 
same object. Parsing techniques and POS-tagging help identify the most important indicator words that 
flag opinions. Classifiers are constructed for combining the multiple sources of opinion within the text 
fragment to obtain an overall score.

Similar to regular web search, opinion search is another application area of great use. In principle, it 
should be a straightforward task to restrict regular search to subjective documents only; however, the 
task of ranking (and maybe aggregating) the different opinionated pages is more complex than ranking 
factual pages.

Most sentiment analysis research applies to English. However, methods exist to transfer the knowl-
edge gleaned from English texts to perform sentiment analysis in other languages as well.

40.4 R esearch Issues

We have described the key areas of NLP and commercially significant applications. In this section, we proj-
ect into the future and identify major challenges that the field will face. Our discussion of research issues is 
not intended to be comprehensive. For any area of NLP, there will always be an exploration of alternatives 
and new approaches. The research literature can be accessed at any time to examine current trends. We 
have used our judgment in selecting themes where NLP will have the maximum impact and hence see the 
most vigorous research. For some of these themes, techniques will become standardized and mature with 
routine applications; for others, progress will be made but they will continue to be on research agendas.

40.4.1  Large-Scale NLP

A recent trend in NLP has been the dominance of statistical approaches. The reason for this domi-
nance has been the relatively easy access to text corpora. Instead of relying on humans to encode deep 
knowledge about language into programs that process text, statistical approaches use corpora to figure 
out the deep knowledge directly. With corpora sizes growing at an exponential rate, current statistical 
NLP approaches, primarily based on classical statistics with a small-data view of the world, are increas-
ingly reaching the limits of their usefulness. The routine deployment of distributed systems to handle 
large-scale data and the emergence of novel computing paradigms are presaging the need for new ways 
to examine many of the older problems. Beyond the simple application of newer big data analytical 
tools, this calls for a fundamental new way of looking at problems. For example, approaches to extract 
ontologies from text need to be self-directed and require minimal human intervention if they are to 
scale up to the sizes of future text collections. However, these approaches also result in ontologies that 
are so large and complex that current application scenarios of these ontologies become impractical and 
these too must be supplanted by new scenarios that are better able to use the ontologies. Algorithms that 
run on single computers and require all the data to be in one place become irrelevant when the data are 
necessarily distributed (e.g., due to privacy issues), and the tasks they solve must be rethought at a very 
fundamental level. In the past, the scaling up of NLP was led by large companies such as Google with the 
resources and computational horsepower to store and process big data. Many of the published results 
could not even be replicated or compared by other researchers. Now, with the emergence of cloud-
computing, as its use becomes more widespread and costs go down, the same resources will be available 
to anyone, and we can expect to see an explosion of new ideas and research as big data analytics becomes 
more widespread in the NLP community.

40.4.2  Multilingual and Cross-Lingual Approaches

The English language is the dominant lingua franca of the world and so, not surprisingly, most NLP 
research has focused on English. If one examines the amount of available digital text in various 
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languages, English is by far the most common. Part of the reason for this is the so-called digital-divide. 
Many people from non-English backgrounds simply could not afford computers, and most of the tools 
and programs that were used to generate digital texts were focused on English. Most population esti-
mates already have Chinese and Spanish as the languages with more native speakers than English. 
Furthermore, growth projections into the future have estimated that Arabic and Hindi may become 
more dominant. None of this is to imply that English is going to become insignificant in our lifetimes, 
but it does imply that as computer usage becomes more widespread, digital text collections in other 
languages are going to grow rapidly and match in size the collections in English. This is going to result 
in strong growth of NLP research in other languages. Signs of this are already present. For example, 
while sentiment analysis used to focus almost exclusively on English text, its application on text in other 
languages has seen rapid growth. Even in MT, there is evidence of a shift in research from translations 
to/from English to languages that do not involve English at all. One of the key reasons for the explo-
sion of research in dependency parsing is that dependency grammars are more suited for a wide variety 
of languages.

A huge focus in multilingual NLP has been in language-independent techniques. The allure of this is 
that the same technique can then be applied to many different languages. In the future, this may see very 
rapid growth as English-specific approaches will be found to be less than adequate for other languages. 
A related approach is language adaptation, where techniques for one language are adapted and modified 
to work with another language.

The goal of cross-lingual NLP approaches is to be able to work with text in multiple languages simul-
taneously. For example, in a cross-lingual IE system, the information extracted may come from texts 
in any of a set of languages. With the rise of user-generated content on the Internet, it is becoming 
increasingly common to find pages with text in multiple languages without any special tags specifying 
the switch in languages.

A final issue is the emergence of specialized languages (or sublanguages) in particular domains and 
scenarios. For example, mobile devices have resulted in the rise of a whole new way of writing text with 
phonetic abbreviations and special codes. As another example, consider how for-sale postings use a 
combination of tables, phrases, and visual formatting to convey textual information in an eye-catching 
manner rather than following the traditional rules of the language. As user-generated content becomes 
even more widespread, all the familiar steps in a NLP pipeline must be developed for such specialized 
languages, or existing approaches must be modified to properly process such text.

40.4.3  Semantics

As we saw earlier, semantics is the holy grail of NLP. All the processing that is done to a piece of text 
has one goal—to understand its meaning. As we saw earlier, most of the current approaches have been 
limited in scope and scale. Part of the reason has been that there were many issues to solve with regard 
to syntax. As approaches for that have matured, research has increasingly turned to semantics, and we 
expect the trend to accelerate in the future. Programs such as IBM’s Watson have provided evidence that 
current approaches can be effective even when competing against human beings. A revival of ambitious 
projects to map all of human common-sense reasoning knowledge has also added to this trend of vigor-
ous research in semantic processing. As research in general-purpose semantic processing matures, we 
are likely to see more fielded applications in narrow domains. Fields such as biomedical text processing 
are indeed ripe for a more semantic analysis. Sentiment analysis too is likely to move from a superficial 
word-based approach to a deeper understanding using semantics. This trend is already in progress as 
research is moving from a simplistic positive/negative binary sentiment view to a more fine-grained 
analysis that examines multiple dimensions such as attitudes and intentions and how they interact with 
cultural issues and relationships between speakers.

Lexical semantics is another area that is likely to see huge growth. Ontologies such as WordNet 
are already mature enough to be used in applications as blackboxes. The automated construction and 
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maintenance of such graphs and networks of words is going to become an increasingly important topic 
of research as demands for larger and more sophisticated versions come from applications.

40.4.4  Discourse Analysis

Discourse analysis has long been the least understood aspect of NLP. Considered the final stage of NLP, 
research in this area has patiently awaited maturity in earlier stages. Part of the problem has been a 
lack of tools and proper corpora for testing and evaluation. The more serious problem has been that 
researchers were still trying to sort out sentence-level semantics before tackling the meaning of an entire 
discourse. However, lately with some stability in the way semantics is understood, the time is ripe for 
increased research in this area. The rise of social media has also increased the amount of data available 
on discourse arising from groups of people. As these data become more prevalent, we can expect more 
research to be conducted on understanding the many facets of discourse. We mentioned earlier that in 
education and health care, there is a strong need for automated systems that interact with humans in 
a situation-appropriate manner. For this, a good understanding of the underlying dialogue structure 
is critical. Dialogue understanding is also important for building conversational agents embedded in 
robots and other interfaces that bring humans and computers together. In such settings, the role of sev-
eral other areas such as NLG and text summarization also could drive research in discourse analysis. 
With the enormous amounts of text data being generated and recorded, summarizing it in a manner 
consistent with the needs and abilities of the reader is going to require a much deeper understanding 
of what makes a piece of text cohesive, coherent, and persuasive. One of the hard problems in NLG 
and text summarization is evaluation, and we expect that in future there is going to be more vigor-
ous attempts to develop reliable metrics for assessing and comparing quality of the output. Discourse 
also has social and cultural aspects that we can expect to be explored in more depth in the future. For 
example, nationality, age, gender, etc. have a strong connection with the overall nature of the discourse. 
While many of these aspects have been explored by sociolinguists in controlled and somewhat artificial 
laboratory settings involving mostly students (i.e., people of a narrow age group) in small numbers, 
we can expect social media and other online forums to provide a wealth of data for a wider and more 
in-depth analysis. We also expect to see more widespread applications of discourse analysis. Already, 
there is anecdotal and sporadic evidence of its use in author identification, lie detection, personality 
analysis, etc. The role of punctuation in a discourse is also poorly understood. For example, if a person 
writes “SORRY!!” instead of “sorry,” it clearly has a different meaning. These issues have been somewhat 
explored by psycholinguists using heuristic approaches that rely on counts and cues; however, a more 
thorough statistical analysis is likely in the future with the availability of decent-sized corpus.

40.5  Summary

In this chapter, we have given a birds-eye view of the field of NLP and its role in the discipline of 
computing. We abstractly defined the key principles upon which the field is based and cast them 
within a pipeline of stages that takes a piece of text as the input and produces the meaning of the 
text as the output. These stages process the text from a character-based stream to form words and 
sentences, which are further structured before being subject to semantic analysis to extract mean-
ing. We then surveyed the most prominent practical results to illustrate the commercial impact 
of the field. The applications range from MT to sentiment analysis. There have been many nota-
ble successes, the most recent one being of IBM’s Watson program in the television quiz show 
Jeopardy! where it competed against and defeated two record-holding human champions. Finally, 
we identified the major challenges and research issues that are likely to shape the field in the future. 
These challenges deal with scaling up NLP to handle real-world problems with minimal human 
intervention.
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Key Terms

In this section, we give a selection of NLP-specific terms listed in alphabetic order. This selection is by no 
means complete, and the bibliography will provide additional information on other terms.

Anaphora: An expression whose reference depends on another (usually previous) expression. For exam-
ple, in the text “John didn’t go to work today. He was not feeling well.” the word “He” is an 
anaphor that refers to John. While an anaphora is usually a pronominal expression, it can also 
be phrase. For example, the reference to “the queen” depends on the context in which it occurs.

BLEU: A widely-used metric for evaluation of MT systems. It stands for bilingual evaluation under-
study. The metric assesses the quality of the machine-translated text in terms of closeness to 
text generated by professional human translators.

Chomsky hierarchy: An organization of formal grammars in terms of their generative powers. 
Languages higher up in the hierarchy are more expressive than the lower ones. Grammars for 
natural languages are based on this formal structure.

Coherence: A concept, used in discourse analysis, which refers to how the meaning of different text 
units can be combined into a meaning of the combined text.

Cohesion: A concept, quite distinct from coherence, which refers to how different text units are linked 
together using linguistic constructs. Unlike coherence, it does not consider the meaning of the 
texts or the linking constructs.

Dependency grammar: A kind of grammar based on modern syntactic theories that give primacy to 
the dependency relationship between words in a sentence. They result in structures that are 
considered closer to the meaning of the sentence and are quite distinct from phrase structure 
grammars from the Chomsky hierarchy.

Document triage: Refers to the process of interpreting a set of digital files as text documents. Involves decid-
ing how to decode the bits into characters, how to attribute a language to the character stream, how 
to segment out the actual textual content from the other elements, such as images and markup, etc.

Interlingua: Deep conceptual structure that captures the meaning of a text independent of the lan-
guage. Used in MT systems to enable translation between two languages—the text from one 
language is converted into interlingua from where it is converted into the other language. The 
conversions to/from interlingua are simpler, and the use of interlingua provides a more scal-
able approach to translating between multiple languages.

Morphological analysis: Refers to understanding words in terms of their composition from smaller 
units. It typically involves identifying the morpheme and its relationship to the surface word 
based on inflection, derivation, compounding, and cliticization.

N-grams: Contiguous blocks of N words. When N = 1, they are called unigrams. Analysis of a text 
based on its N-grams has been a popular approach to building language models that have been 
widely used in applications ranging from spelling correction to machine translation.

Parsing: Process of imposing a structure on a sentence. The structure is usually a tree or a graph that 
encodes how the sentence could be understood in terms of a grammar for the language in which 
it is generated.

POS tagging: Refers to tagging each word in a sentence with a part-of-speech tag from a finite set of pos-
sibilities. Is usually solved as a classification problem. The tags provide valuable information 
for other NLP tasks such as parsing, named-entity recognition, etc.

Unicode: An industry standard for consistently encoding and handling text from different languages.

Annotated Bibliography and Additional Resources

In this section, we list sources that can provide readers more detailed information on the issues and 
topics discussed in this chapter. The list includes websites as well as books. We sought to provide 
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authoritative resources. There is obviously some overlap in the information provided by these resources, 
but we believe that they cater to slightly different needs and so, between them, most readers will be cov-
ered. Since NLP is a fast evolving field, books and articles become outdated rather quickly. Websites too 
tend to disappear, URL’s change or become outdated as their maintainers move on to other organiza-
tions. We have tried to list resources that will remain relevant for the lifetime of this handbook. Still, for 
the latest results, the reader may need to consult other resources. We have tried to minimize this issue 
by listing the most recent publications at the time of writing. We preferred books and surveys since they 
provide an overview as well as pointers to the most significant and relevant papers in conferences and 
journals.

	 1.	 http://www.aclweb.org (accessed on October 10, 2013).
The Association of Computational Linguistics portal is an excellent place to get access to publica-
tions in NLP and is a top resource for all professionals and graduate students in NLP. It should be 
the first stop for anyone serious about working in NLP. Most of the conferences and workshops in 
the field put their papers in the ACL anthology, which can be browsed as well as searched. Many 
important journals are accessible here as well. Anything substantive and relevant to NLP usually 
lands up in the ACL anthology.

	 2.	 Indurkhya, N. and Damerau, D. 2010. Handbook of Natural Language Processing, 2nd edn. 
Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton, FL.
This edited collection written by over 40 of the leading experts in NLP provides detailed informa-
tion of the tools and techniques for implementing NLP systems. Besides surveying classical tech-
niques, it also covers statistical approaches in great detail and discusses emerging applications. 
The handbook is a good place to delve into subareas of NLP that may interest the readers. The 
individual chapters are mostly self-contained and each has a very extensive bibliography of the 
most important papers in the area covered.

	 3.	 Jurafsky, D. and Martin, J. 2008. Speech and Language Processing: An Introduction to Natural Language 
Processing, Speech Recognition and Computational Linguistics, 2nd edn. Prentice-Hall, Upper Saddle 
River, NJ.
A very comprehensive textbook for NLP that covers the full range of technologies used and relates 
them to one another. It is the basis of many graduate courses in NLP and is an ideal introduction 
and reference for NLP.

	 4.	 Bird, S., Klein, E., and Loper, E. 2009. Natural Language Processing with Python. O’Reilly Media, 
Sebastapol, CA.
This is the well-known NLTK book and is a very hands-on introduction to NLP using the open-
source freely-available natural language toolkit. Prior knowledge of Python is not required to 
read this book as it introduces the language features at appropriate places in the book. A nice 
feature of this book is that it has a very extensive set of exercises, the code is all open-source and 
there is a lot of online support making it very suitable for self-study. It can be read in conjunc-
tion with either the handbook of NLP or the Jurafsky and Martin textbook mentioned earlier. To 
get NLTK, see the website http://www.nltk.org which is also a useful resource for learning more 
about NLP.

	 5.	 Manning, C. and Schutze, H. 1999. Foundations of Statistical Natural Language Processing. MIT 
Press, Cambridge, MA.
An excellent in-depth tour of the early work in the field of statistical NLP. It is a bit dated now, but 
remains an invaluable reference and source for foundational work in this area.

	 6.	 https://www.coursera.org/course/nlp (accessed on October 10, 2013).
This free, online course, taught by Dan Jurafsky and Chris Manning, is a good place to begin 
learning about NLP.

	 7.	 Blackburn, P. and Bos, J. 2005. Representation and Inference for Natural Language, A First Course in 
Computational Semantics. CSLI, Stanford, CA.
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One of most accessible discussions of computational semantics. Not only does it clarify, with 
great elegance, many of the theoretical results in semantics but also provides a very practical 
perspective with source code for a series of increasingly sophisticated PROLOG programs that 
implement the ideas discussed in the text.

	 8.	 Bunt, H., Merlo, P., and Nivre, J. 2011. Trends in Parsing Technology. Springer, New York.
This is an edited collection written by top researchers in parsing methods. It provides a nice over-
view of the state-of-the-art in three very important subareas of parsing: dependency parsing, 
domain adaptation and deep parsing. A must-read for anyone wishing to start active research in 
this area.

	 9.	 Ferucci, D. et al. 2010. Building Watson: An overview of the DeepQA Project. AI Magazine 31(3), 
59–79. Fall, 2010.
One of the few in-depth technical descriptions of IBM’s high-profile Watson program that won the 
Jeopardy! Tournament. More publications should appear in the future. Look in the ACL anthology.

	 10.	 http://www.ldc.upenn.edu/ (accessed on October 10, 2013).
Did you say you need data for NLP research? This portal of the Linguistic Data Consortium is the 
place to visit first. It has a very extensive collection of data and tools. The quality of the data is very 
high, and it would be difficult to get comparable data elsewhere or to create it yourself.

	 11.	 http://wordnet.princeton.edu/ (accessed on October 10, 2013).
The place to get the latest WordNet, a very popular, and highly regarded lexical database.

	 12.	 http://www.eacl.org/ (accessed on October 10, 2013).
Much of the information on the European chapter of the ACL is available from aclweb. However, 
for readers interested in European languages, this portal may provide an easier access to the rel-
evant resources.
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41.1  Introduction

Spoken language understanding (SLU) is an emerging research area between artificial intelli-
gence, speech, and language processing. The term “SLU” has largely been coined for understanding 
human  speech directed at computers, although understanding human/human conversations is also 
a vibrant area of SLU. Having a semantic representation for SLU that is both broad in coverage and 
simple enough to be applicable to several different tasks and domains is challenging, hence most SLU 
tasks and approaches depend on the application and environment (such as mobile vs. TV) they have 
been designed for.

Given that speech is the most natural medium people use to communicate with each other, it is hardly 
used when interacting with computers. Recently, with the advancements in automatic speech recognition 
(ASR) and natural language processing (NLP) technologies, there is a strong interest—both commercial 
and academic—in understanding human speech.

SLU applications range from interpreting a small set of commands to complex requests involving a 
number of steps and reasoning. Most commercial systems employ knowledge-based approaches, such 
as mainly building hand-crafted grammars or using finite sets of commands, and they have already 
been deployed in various environments such as smartphones, cars, call centers, and robots. In the near 
future, we can expect more complex applications, like robots better understanding what we say instead 
of reacting to a finite number of predefined commands, or we will be able to ask our mobile devices a 
nontrivial set of requests from a broader range of domains.

Unlike speech recognition, which aims to automatically transcribe the sequence of spoken words, 
SLU is not a clearly defined task. At the highest level, its goal is to extract “meaning” from natural 
language. In practice, this may mean any practical application allowing its users to perform some 
task with speech. As one of the pioneers of statistical spoken language processing, Fred Jelinek,  
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once put it: “The human analogy is misguided because machines do things differently than biological 
beings. Airplanes don’t flap their wings”.

The conceptual components of human/machine conversational interaction system are shown in 
Figure 41.1, following [53]. At each turn, the user’s speech, Si, is recognized and semantically parsed into 
a task-specific semantic representation of the user’s intention, Ui.

For example, if the user asks “When is the next showing of Hunger Games around here?” the system 
should be able to interpret the intent and the associated arguments (slots), such as

Find_Showtimes(movie = Hunger Games, location = (latitude,longitude))

If a statistical model is used, Ui is estimated as

	
ˆ arg max ( )U P U Si

U
i i

i

= |

Then the dialog manager (DM) updates the belief state using semantic context, Ci, such as the pre-
vious belief state of the system (which may include a user goal and actions, as well as dialog history); 
user-specific meta-information, such as geo-location and personal preferences; and other contextual 
and lexical information. More formally,

	
ˆ arg max ( , ˆ , )B P B C U Si

B
i i i i

i

= |

The system decides on the most appropriate system action, Ai. In the statistical approaches, this deci-
sion is made based on the expected reward over belief states, which are estimated using the previous 
machine action and belief state, as well as the observations the machine receives from the user. Then, a 
response is generated in spoken or multimodal fashion. For instance, if the DM decides to present the 
information of showtimes with theaters, the generation needs to decide on whether to show a map or list 
and/or speak this information to the user using text-to-speech synthesis (TTS).

41.2  Impact on Practice

SLU systems can be grouped into three categories based on their high-level approaches. The first cat-
egory is chatbot systems, like ELIZA, where the system does not really understand what is said but just 
mimics understanding. ELIZA was built at MIT in the 1960s [49] and has been the most popular artifi-
cial intelligence program, even though there was no intelligence but instead the system relied on simple 
pattern matching. A typical interaction may have such excerpts as shown in Figure 41.2.

There are more complex versions of ELIZA, such as ALICE,* which are moving toward embedding 
more sophisticated language processing technologies within the same framework.

The understanding systems in the second category are rooted in artificial intelligence. They are using 
deeper semantics and are demonstrated to be successful for very limited domains. These systems are typi-
cally heavily knowledge-based and rely on formal semantic interpretation defined as mapping sentences 
into their logical forms. In its simplest form, a logical form is a context-independent representation of 

*	 http://alicebot.blogspot.com/

User
Si Ui Ai

Automatic
speech

recognition

Spoken
language

understanding
Dialog manager Response

generation

FIGURE 41.1  A conceptual architecture of a human/machine interactive system.
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a sentence covering its predicates and arguments. For example, if the sentence is “John loves Mary,” the 
logical form would be “love(john,mary).”

During the 1970s, the first systems for understanding continuous speech were developed with inter-
esting approaches for mapping language features into semantic representations. For this purpose, case 
grammars were proposed for representing sets of semantic concepts with thematic roles such as agent 
or instrument. The ICSI FrameNet project, for instance, focused on defining semantic frames for each 
of the concepts [23]. For example, in the “commerce” concept, there is a “buyer” and a “seller” and other 
arguments such as the “cost” and “good.” Therefore, two sentences “A sold X to B” and “B bought X 
from A” are semantically parsed as the same, with both sentences corresponding to the “commerce” 
frame. Following these ideas, some researchers worked toward building universal semantic grammars 
(or interlingua), which assume that all languages have a shared set of semantic features [5]. Such interlingua-
based approaches have also heavily influenced machine translation field until the late 1990s before statis-
tical approaches began to dominate the field. [1] may be consulted for more information on the artificial 
intelligence-based techniques for language understanding.

The last category of understanding systems is the main focus of this chapter, where understanding is 
reduced to a (mostly statistical) language processing problem. This corresponds to attacking “targeted” 
speech understanding tasks instead of trying to solve the global machine understanding problem. 
A good example of targeted understanding is detecting the arguments of an intent given a domain as in 
the Air Travel Information System (ATIS) project [36]. ATIS was a popular DARPA-sponsored project, 
focusing on building an understanding system for the airline domain. In this task, users utter queries 
related to flights such as I want to fly to Boston from New York next week. In this case, understanding was 
reduced to the problem of extracting task-specific arguments in a given frame-based semantic represen-
tation involving, for example, destination and departure date.

In the United States, the study of the frame-based SLU started in the 1970s in the DARPA Speech 
Understanding Research (SUR) and then the Resource Management (RM) tasks. At this early stage, 
natural language understanding (NLU) techniques like finite state machine (FSM) and augmented 
transition networks (ATNs) were applied for SLU [50]. The study of targeted frame-based SLU surged 
in the 1990, with the DARPA ATIS evaluations [8,21]. Multiple research labs from both academia and 
industry, including AT&T, BBN Technologies (originally Bolt, Beranek, and Newman), Carnegie Mellon 
University, MIT, and SRI, developed systems that attempted to understand users’ spontaneous spoken 
queries for air travel information (including flight information, ground transportation information, and 
airport service information) and then obtain the answers from a standard database. ATIS is an impor-
tant milestone for the frame-based SLU, largely thanks to its rigorous component-wise and end-to-end 
evaluation, participated by multiple institutions, with a common test set.

While ATIS focused more or less on the understanding of a single-turn utterance, the more recent 
DARPA Communicator Program [45] focused on the rapid and cost-effective development of mul-
timodal speech-enabled dialog systems, in which general infrastructures for dialog systems were 
developed, where different component systems for ASR, SLU, DM, and TTS can be plugged in and 
evaluated. Naturally, many SLU technologies developed in ATIS were used in the SLU component of 
the Communicator program. Eight systems from AT&T, BBN Technologies, University of Colorado, 
Carnegie Mellon University, IBM, Lucent Bell Labs, MIT, and SRI participated in the 2001 evaluation 
[46]. In the meantime, the AI community had separate efforts in building a conversational planning 
agent, such as the TRAINS system [2].

User: I need some help
System: Why do you say you need some help?
User: I am depressed
System: Are you depressed often?

FIGURE 41.2  An example chitchat interaction with ELIZA.
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Parallel efforts were made on the other side of the Atlantic. The French EVALDA/MEDIA project 
aimed at designing and testing the evaluation methodology to compare and diagnose the context-
dependent and context-independent SLU capability in spoken language dialogs [4]. Participants 
included both academic organizations (IRIT, LIA, LIMSI, LORIA, VALORIA, CLIPS) and industrial 
institutions (FRANCE TELECOM R&D, TELIP). Like ATIS, the domain of this study was restricted to 
database queries for tourist and hotel information.

The more recent LUNA project sponsored by the European Union focused on the problem of real-
time understanding of spontaneous speech in the context of advanced telecom services [17]. Its major 
objective is the development of a robust SLU toolkit for dialog systems, which enhances users experience 
by allowing natural human/machine interactions via spontaneous and unconstrained speech. One spe-
cial characteristic of the project, which is absent in similar projects in the United States, is its emphasis 
on multilingual portability of the SLU components.

While the concept of using semantic frames (templates) is motivated by the case frames of the artificial 
intelligence area, the slots are very specific to the target domain and finding values of properties from 
automatically recognized spoken utterances may suffer from ASR errors and poor modeling of natu-
ral language variability in expressing the same concept. For these reasons, SLU researchers employed 
known classification methods for filling frame slots of the application domain using the provided train-
ing data set and performed comparative experiments. These approaches used generative models such as 
hidden Markov models [34], discriminative classification methods [27], knowledge-based methods, and 
probabilistic context-free grammars [38,47].

Almost simultaneously with the semantic template filling-based SLU approaches, a related SLU task, 
mainly used for machine-directed dialog in call center interactive voice response (IVR) systems, has emerged. 
In IVR systems the interaction is completely controlled by the machines. Machine-initiative systems, ask 
users-specific questions and expect the users-input to be one of predetermined keywords or phrases. For 
example, a mail delivery system may prompt the user to say schedule a pick-up, track a package, get rate, or 
order supply or a pizza delivery system may ask for the possible toppings (see Figure 41.2). Such IVR systems 
are typically extended to form a machine-initiative directed dialog in call centers and are now widely imple-
mented using established and standardized platforms such as VoiceXML (VXML) (Figure 41.3).

The success of these IVR systems has triggered more sophisticated versions of this very same idea of clas-
sifying users’ utterances into predefined categories (called as call types or intents). [14] has published the AT&T 
How May I Help You? system description paper in 1997. HMIHY is essentially a call routing system. The 
users of the system are greeted by the open-ended prompt How May I Help You, encouraging them to talk 
naturally. This system has also been deployed for AT&T’s call center (known as 0300) and used nationwide 
with great success [13]. The system was capable of categorizing an incoming call into one of the six specific 
call types (such as billing or rates and plans) plus an other for the remaining intents along with generic intents 
such as talking to a human agent or greetings. The calls are then routed to corresponding specialized depart-
ments. If the initial utterance of the user is not specific (such as I have a question), not informative (such as 

<vxml version=“2.0”>
<form id= “get_pizza_topping”>
<field name= “pizza_topping”>
<prompt> What kind of topping would you like to have? </prompt>
<grammar> olive | pepperoni | mushroom </grammar>
<noinput> Please say the topping you wish to have. </noinput>
<nomatch> I didn’t understand that. </nomatch>
<filled> Thank you, I added <value expr= “pizza_topping” />
<submit next=“next_document.vxml” /> </filled>
</field>
</form>
</vxml>

FIGURE 41.3  A VXML example for getting pizza topping information. (From the VXML lecture by 
François Mairesse.)
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Good afternoon), or asks for a human agent, the system reprompts the user accordingly to get some specific 
intent for their call (Figure 41.4).

Figure 41.2 shows a typical HMIHY dialog for AT&T call centers. The utterance level intents are 
shown in parentheses next to each user utterance, for a better understanding.

Following the HMIHY system, a number of similar systems have been built, such as the Lucent call 
routing system [6], the BBN call director [33], AT&T Helpdesk [10], AT&T VoiceTone [15], and the 
France Telecom 3000 [9] systems.

The biggest difference between the call classification systems and semantic frame filling systems is 
that the former does not care much about the arguments provided by the user. The main goal is routing 
the call to the appropriate call center department. The arguments provided by the user are important 
only in the sense that they help make the right classification. For example, if the user specifies the name 
of a drug in a system used for medical insurance call center, this can improve the confidence for routing 
to prescription renewal or refill departments. While this is a totally different perspective for the task of 
SLU, it is actually complementary to frame filling. For example, there are utterances in the ATIS corpus 
asking about ground transportation or the capacity of planes on a specific flight; hence, the users may 
have other intents than basically finding flight information.

41.3  Underlying Principles

In this section, we mainly cover the key tasks of SLU as used in human/machine conversational systems. 
These include utterance classification tasks for domain detection or intent determination and semantic 
template filling. We will also briefly cover the aspects of a DM interacting with them.

Then, we briefly cover other SLU tasks used in other human/machine applications, like question 
answering (like IBM Watson) and in human/human speech processing systems like dialog act tagging 
or summarization.

41.3.1  Domain Detection and Intent Determination

The semantic utterance classification tasks of domain detection and intent determination aim at clas-
sifying a given speech utterance Xr into one of M semantic classes, C ∈ˆ = { , , }1 …C C Cr M  (where r is the 
utterance index). Upon the observation of Xr, Ĉr is chosen so that the class-posterior probability given 
Xr, P(Cr|Xr), is maximized. Formally,

	
ˆ arg max ( )C P C Xr

c
r r

r

= | 	 (41.1)

Semantic classifiers require operation with significant freedom in utterance variations. A user may 
say “I want to fly from Boston to New York next week” and another user may express the same informa-
tion by saying “I am looking to fly from JFK to Boston in the coming week.” In spite of this freedom of 
expression, utterances in such applications have a clear structure that binds the specific pieces of infor-
mation together. Not only is there no a priori constraint on what the user can say, but the system should 

HMIHY: How may I help you?
User: Hi, I have a question about my bill (Billing)

HMIHY: OK, what is your question?
User: May I talk to a human please? (CSRepresentative)

HMIHY: �In order to route your call to the most appropriate department can you tell me the specific reason 
you are calling about?

User: There is an international call I could not recognize (Unrecognized_Number)
HMIHY: OK, I am forwarding you to the human agent. Please stay on the line.

FIGURE 41.4  A conceptual example dialog between the user and the AT&T HMIHY system.
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be able to generalize well from a tractably small amount of training data. For example, the phrase “Show 
all flights” and “Give me flights” should be interpreted as variants of a single semantic class “Flight.” On 
the other hand, the command “Show me fares” should be interpreted as an instance of another semantic 
class, “Fare.” Typically, binary or weighted n-gram features with n = 1,2,3 to capture the likelihood of 
the n-grams are generated to express the user intent for the semantic class C. Traditional text categoriza-
tion techniques devise learning methods to maximize the probability of Cr given the text Wr, that is the 
class-posterior probability P(Cr|Wr). Other semantically motivated features like domain gazetteers (lists 
of entities), named entities (like organization names or time/date expressions), and contextual features 
(such as the previous dialog turn) can be used to enrich the feature set.

HMIHY SLU intent classifier heavily depends on portions of input utterances, namely, salient phrases, 
which are salient to some call types. For example, in an input utterance such as “I would like to change 
oh about long distance service two one charge nine cents a minute,” the salient phrase “cents a minute” is 
strongly related to the call-type calling plans.

The salient phrases are automatically acquired from a corpus of transcribed and labeled training data. 
The salience of a word n-gram, f, is computed using the formula, that is

	
S f P c f I f ck k

ck

( ) ( ) ( , )=∑ |

where ck is a call type and I(x, y) is the mutual information between x and y:

	
I x y log

P x y

P x
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( , )

( )
=

Note that salience fragments are call-type independent. The phrases such as I would like still get high 
salience scores as these are used to improve the language model used for speech recognition.

The selected salient phrases are then clustered into salient grammar fragments (SGFs) [14,51]. The 
rationale for this clustering is better generalization. Assume two salient phrases a wrong number and 
the wrong number; they may be grouped together if they indicate the same call type. Once the SGFs are 
trained, it is then straightforward to classify an utterance. The SGFs are first compiled in the format of 
FSMs. Figure 41.5 shows an example simplified SGF. The ASR output (lattice or word confusion net-
work) or input text, s, is then searched for the occurrences of the SGFs, using FSM operations. This is a 
left-to-right search that searches for the longest matching phrases. This results in a transduction from 
s to salient phrases, fi ∈ F. The classification algorithm then chooses the call type with maximum peak 
value of the a posteriori probability distribution, that is,
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FIGURE 41.5  An example SGF.
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where

	
i s P c f

i c
k i

k

( ) arg max max ( | )= ( )
If this overall peak is less than some threshold, P(ck|fi(s)) < θ, then the utterance is rejected and classified 
as other.

One of the earliest yet very successful approaches for call classification, adopted by the Bell Labs, is 
motivated by the information retrieval (IR)-based vector state model [6]. In this approach, first stop-
words are removed; stemming is performed on the remaining words, following the usual practice in 
IR. Then a F × K(s) term–document matrix is created, where a term can be a word or a word phrase and 
documents are actually the classes or routes the call is routed to. Each term is weighted according to the 
well-known tf.idf (term frequency–inverse document frequency) paradigm. New user requests are then 
converted and formed as a vector in a similar fashion. The baseline algorithm simply chooses the class 
where the cosine distance between the user utterance and the route is the minimum as in traditional IR. 
The original system paper suggests two improvements on top of this baseline system. First, the similar-
ity scores are mapped to between 0 and 1 by fitting a nondecreasing sigmoid function using the least-
squares method so as to get confidence scores. The second improvement was employing singular value 
decomposition (SVD) to improve efficiency especially when the training corpus is not small. In SVD, 
the routing matrix, W, is decomposed so as to W = USVT, where U and V are orthonormal matrices and 
S is a diagonal matrix of eigenvalues.

Later [7] have proposed extending this approach via latent semantic analysis (LSA). LSA is also 
based on using SVD to find a compact subspace for the routing matrix. In LSA, after SVD, top R 
eigenvalues are retained and others are discarded. Then, all the processing is done in the reduced 
subspace.

With the advances in machine learning, especially in discriminative classification techniques, in the 
last decade, researchers have worked on framing intent determination as a classification task. While 
the traditional solution to intent determination is the bag-of-words approach used in IR, typically word 
n-grams are used as features after preprocessing with generic entities, such as dates, locations, or phone 
numbers. Because of the very large dimensions of the input space, large margin classifiers such as SVMs 
[44] or Adaboost [37] were found to be very good candidates.

Early work has been done by [37] on the AT&T HMIHY system using the Boostexter tool, an imple-
mentation of the AdaBoost.MH multiclass multilabel classification algorithm. Boosting is an iterative 
algorithm; on each iteration, t, a weak classifier, ht, is trained on a weighted training set, and at the end, 
the weak classifiers are combined into a single, combined classifier [12]. For example, for text catego-
rization, one can use word n-grams as features, and each weak classifier (e.g., decision stump, which is 
a single node decision tree) can check the absence or presence of an n-gram. The performance of the 
classifier closely matched with the salience-based classification approach and beat it especially on high 
false alarm rates.

Another pioneering work was from the Bell Labs. [28] have proposed the use of discriminative 
training on the routing matrix, which significantly improved their vector-based call routing system 
described earlier [6], especially for low rejection rates. Their approach is based on using the minimum 
classification error (MCE) criterion. To solve the nonlinear optimization problem of achieving MCE, 
they used the generalized probabilistic descent (GPD) algorithm. The goal is adjusting the routing 
matrix elements so as to achieve maximum separation of the correct class from competing classes with 
an iterative approach. Later, they extended this approach so as to cover boosting and automatic rel-
evance feedback (ARF) [56]. They have tested these approaches along with MCE, and proposed a novel 
combination method of boosting and MCE. While MCE happens to provide the best result among these 
three discriminative classification approaches, they obtain further gain from the combination of MCE 
with boosting.
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The next category of discriminative call classification systems employed large margin classifiers, such 
as support vector machines, which were initially demonstrated on binary classification problems. With 
such classifiers, the definition of the margin is typically unambiguous, and the reasons why this margin 
leads to good generalization are reasonably well understood. Usually, the performance of SVMs can be 
reduced to a single number: the binary classification accuracy. Unfortunately, to generalize these binary 
SVM classifiers to multiclass call classification problems is not straightforward. [16] have proposed a 
global optimization process based on an optimal channel communication model that allows a combina-
tion of heterogeneous binary classifiers. As in Markov modeling, computational feasibility is achieved 
through simplifications and independence assumptions that are easy to interpret. Using this approach, 
they have managed to decrease the call-type classification error rate for AT&T’s HMIHY natural dialog 
system significantly, especially on the false rejection rates.

41.3.2  Slot Filling

The semantic structure of an application domain is defined in terms of the semantic frames. Figure 41.6 
shows a simplified example of three semantic frames in the ATIS domain. The semantic frame contains 
several typed components called “slots.”

The task of slot filling is then to instantiate the semantic frames. Check Figure 41.7 for a semantic parse 
for the sentence “Show me flights from Seattle to Boston on Christmas Eve.” In this case, the semantic 
frame is represented as a flat list of attribute–value pairs, similar to [35], or flat concept representation.

Some SLU systems have adopted a hierarchical representation, as that is more expressive and allows 
the sharing of substructures. This is mainly motivated by syntactic constituency trees. An example tree 
for the same sentence is shown in Figure 41.8.

Show

Me Flights

DCity ACity DDate

Boston Seattle Christmas Eve

FIGURE 41.8  An example hierarchical semantic parse tree.

<frame name=“Flight”>
    <slot name=“DCity” surface=“Departure City”>
    <slot name=“ACity” surface=“Arrival City”>
    <slot name=“DDate” surface=“Departure Date”>
    <slot name=“Airline” surface=“Airline”>
    <slot name=“NumStops” surface=“Number of Stops”>
    …
</frame>

FIGURE 41.6  A simplified semantic class schema in the ATIS domain.

“Show me flights from <DCity> Seattle <DCity> to <ACity> Boston <ACity> on <DDate> 
Christmas eve <DDate>”

FIGURE 41.7  An example flat semantic parse.
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The semantic representation in the early French MEDIA project adopts an attribute–value list to rep-
resent the hierarchical semantic information [4]. This representation, used in the official annotation and 
evaluation, is ostensibly quite different from the frame-based representation.

The attempt of using this flat attribute–value representation for hierarchical semantics makes the 
meaning representation quite complicated. In the European LUNA project, a different representation 
was adopted, in which the MEDIA portion of data was re-annotated according to the new annotation 
protocol [3]. The semantic annotation protocol adopts a multilevel semantic representation, as illus-
trated by Figure 41.9. Here the concept level represents the concepts that bear important meanings in 
the input. The semantic composition level represents the utterance level meaning with semantic frames. 
A FrameNet-based semantic representation is adopted as an attempt for better generalization beyond a 
single application domain. The co-reference level annotation depicts the discourse information between 
the two related frames, while the fourth level models the dialog act (e.g., statement, Y/N question, 
Wh-question, confirmation).

In the statistical frame-based SLU, the task is often formalized as a pattern recognition problem. 
Given the word sequence W, the goal of SLU is to find the semantic representation of the meaning M that 
has the maximum a posteriori probability P(M | W). In the generative model framework, the following 
decision rule is used:

	
ˆ arg max ( ) arg max ( ) ( )M P M W P W M P M

M M

= =| | 	 (41.2)

And the objective function of a generative model is to maximize the joint probability P(W, M) = 
P(W | M)P(M) given a training sample of W and its semantic annotation M.

The first generative model, used by both CHRONUS [35] and the Hidden Understanding Model [32], 
assumes a deterministic one-to-one correspondence between model states and the segments, that is, 
there is only one segment per state, and the order of the segments follows that of the states.

As another extension, in the hidden vector state model, the states in the Markov chain represent 
encode all the structure information about the tree using stacks, so the semantic tree structure (exclud-
ing words) can be reconstructed from the hidden vector state sequence. The model imposes a hard limit 
on the maximum depth of the stack, so the number of the states becomes finite, and the prior model 
becomes the Markov chain in an HMM [19].

Concepts a hotel in Toulouse swimming pool this hotel close to the Capitole

Semantic
composition

Coreference

ID = 1, frame: reservation
frame-elements:
{
         logging = hotel
         location = Toulouse
         facility = swimming pool
}

<inf_status = “ new” related = “ no”/> <inf_status = “given” antecedent = “ ID1”
ambiguity = “unambiguous”/>

ID = 2, frame: reservation
frame-elements:
{
        logging = hotel
        location = <close-to,
                          Capitole>
}

Dialog act da-tag-1= “statement”

FIGURE 41.9  The multilevel semantic representation for the utterance “a hotel in Toulouse with a swimming 
pool um this hotel must be close to the Capitole” in the European LUNA project. (Reproduced from Bechet, F., 
Processing spontaneous speech in SLU systems: A survey, In Proceedings of the IEEE Spoken Language Technologies 
(SLT) Workshop, Goa, India, 2008.)
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The state of the art in modeling slot filling relies on conditional models instead of such generative 
models. Conditional models are non-generative. A conditional model uses a state sequence ŷ to repre-
sent the meaning M of an observation sequence x. ŷ is obtained according to the following equation:

	
ˆ arg max ( )y y x

y

= P | 	 (41.3)

Here, y is directly conditioned on the observation x. For SLU, conditional random fields (CRFs) or 
hidden state CRFs (HCRFs) are commonly used conditional models. With CRFs or HCRFs, the condi-
tional probability of the entire state (label) sequence y given the observation sequence follows an expo-
nential (log-linear) model, with respect to a set of features. A feature fk(y, x) in the set is a function of the 
observation sequence x and the associated label sequence y:
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Here Λ = {λk} is a set of parameters. The value of λk determines the impact of the feature fk(y, x) on 
the conditional probability. Z fk k( : ) exp ( )x y, xΛ = ∑ ∑{ }y k λ  is a partition function that normalizes the 
distribution.

The CRF in Equation 41.4 is unconstrained in the sense that the feature functions are defined on the 
entire label sequence y. Because the number of all possible label sequences is combinatorial, the model 
training and inference of an unconstrained CRF is very inefficient. Because of that, it is common to 
restrict attention to the linear-chain CRFs [29]. The linear-chain CRFs impose a Markov constraint on 
the model topology and, as a consequence, restrict the feature functions to depend only on the labels 
assigned to the current and the immediately previous states, in the form f(yt−1, yt, x, t). The restrictions 
enable the application of efficient dynamic programming algorithms in model training and inference 
yet still support potentially interdependent features defined on the entire observation sequence x.

Figure 41.10 shows the difference between the HMMs and the linear-chain CRFs in graphic model 
representations. First, since HMMs are generative models, the graph is directed, which points to the 
direction of the generative process. The state at time t, represented by the random variable yt, depends 
on the state at time t − 1, yt−1. xt, and the observation at time t is generated with the dependency on yt. 
CRFs, on the other hand, are represented by undirected graphs since they are direct, non-generative 
models. Second, observations in HMMs are generated one at a time in a uniformed way, while in CRFs 
the observation sequence is given, so at each slice of time it can employ features that depend on the 
entire observation sequence.

The parameters Λ in CRFs can be optimized according to the objective function with numeric algo-
rithms like stochastic gradient decent or L-BFGS. In a straightforward application of CRFs for the 
frame-based SLU, x consists of a transcribed utterance, and y is the semantic label sequence assigned 
to x. Non-slot filler words are assigned a null state, as illustrated by Figure 41.11.

x1

y1

x2

y2 y1 y2

xn x

yn yn

(a) (b)

FIGURE 41.10  The graphic model representations for (a) HMMs (generative model) and (b) CRFs (conditional 
model). A generative model is a directed graph that points to the direction of the generative process, and observa-
tions are generated frame by frame in a uniformed way. Conditional models are represented by undirected models, 
where the entire observation sequence o is observable for every state in the model.
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Typical features used by the CRFs for SLU include the transition features, the n-gram features, and 
the class membership (aka word list) features. The transition features model the dependency among 
adjacent states, which capture the influence of context on the tag assigned to a given word. The n-gram 
features often include the lexical features to capture the relation between the current state and the iden-
tity of the current (and previous) words. The class member features check if the current word is part of 
an entry in the lexicon of a syntactic or semantic class.

As an attempt to joint modeling slot filling and intent determination, triangular CRF models have 
been proposed [24]. These models jointly represent the sequence and meta-sequence labels in a single 
graphical structure that both explicitly encodes their dependencies and preserves uncertainty between 
them. While such models jointly optimize both tasks, it requires the training data to be the same, which 
may be a limiting factor in some applications.

The recent work on semantic parsing heavily relies on mining big data found on the web, web queries, 
and implicit user feedback, instead of clean transcribed and annotated data for each domain. For exam-
ple, [18] employed queries mined from search engine query logs to improve domain detection in SLU. 
Extending the label propagation algorithm, a graph-based semi supervised learning approach is pro-
posed to incorporate noisy domain information estimated from search engine that links the users click 
following their queries. Furthermore, the semantic web community is building and populating big-
scale knowledge bases, with structured and unstructured meta information. By aligning the slots with 
the nodes and the intents with the edges in the knowledge graph, it is possible to directly leverage the 
structure of the semantic graphs to automatically specify a semantic representation for a given domain 
[20,42]. The corresponding natural language surface forms are mined from search queries or web pages 
and used to automatically train SLU systems in an unsupervised manner that cover the knowledge rep-
resented in the semantic graph.

41.3.3  Semantic Parsing for Dialog Management

As shown in Figure 41.1, the output of SLU is fed into the DM. Counterintuitively, the brain of a human/
machine conversational system is not the semantic parsing but instead the DM. However, the DM heavily 
relies on the SLU output given the context (like the previous utterance, dialog context, meta-information 
about the user and the location, and any other knowledge integrated into the system).

Interestingly, the field of dialog management has emerged somewhat independently from the SLU 
area. In most cases, the assumption has been a machine-directed dialog and the models are usually 
trained with simulated data [43].

The key task in a DM is deciding on the next action (Ai) given the SLU output (Ui). The first step for doing 
this is updating the so-called belief state. A belief state, s ∈ S, is an instance of a semantic representation in 
that context. Usually, the same semantic representation is used as SLU. In most advanced dialog systems, 
instead of relying on a single belief state, a probability distribution over all possible states is maintained.

The earliest statistical approach relies on a Markov decision process (MDP) [31], focusing on opti-
mizing the dialog strategies. Later this approach is extended to support uncertainty resulting in par-
tially observable MDPs (POMDPs) [54]. Recent efforts focus on using state clustering or lighter-weight 
discriminative approaches to overcome the problem of POMDPs.

Aside from research labs, statistical dialog management techniques have not been adopted due to 
their heavy processing cost and complexity. Most commercial systems (as used in call centers, robots, or 
mobile devices) rely on rule-based DMs for both belief state update and policy determination.

list twa flights from washington to philadelphia

null AirlineCode null null ACity null DCity

FIGURE 41.11  Frame-based SLU as a sequential labeling problem: words are assigned labels representing their 
meaning.
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41.3.4  Spoken Language Understanding in Human/Human Conversations

While the term “SLU” is coined for human/machine conversations, it is not hard to think of other inter-
active understanding tasks, such as spoken question answering, voice search, or other similar human/
human conversation understanding tasks such as named entity extraction or topic classification. Each 
of these tasks are studied extensively, and the progress is fascinating. An example would be the IBM 
Watson system for question answering [11].

With respect to human/human communication processing, telephone conversations or multiparty 
meetings are studied heavily. Some open questions include the following: What information from these 
interactions would be useful for later use? Does this information depend on user/purpose? How could 
the transcripts of these conversations be used? The reviewed research activities are grouped in the fol-
lowing areas:

•	 Dialog act tagging: Aims to annotate speech acts such as suggestions and questions jointly 
with conversational linguistic acts such as acknowledgment and agreement. This task is 
heavily inf luenced by annotated corpora from human/human and multiparty meetings such 
as Switchboard and ICSI/AMI data sets. It is mainly treated as an enabling technology for 
further conversation processing, such as extracting action items or discussions. Dialog act 
tagging is generally framed as an utterance classification problem [40,41, among others], fol-
lowing the dialog act segmentation. While mostly lexical and contextual features are used, 
in some cases, such as agreement and disagreement, prosodic features have been shown to 
help [52].

•	 Dialog act segmentation: Aims to chop spoken utterances into dialog act units as defined by the 
dialog act tagging schema. While this task is very close to sentence segmentation, there are cer-
tain nuances due to the nature of spontaneous conversational speech. Dialog act segmentation is 
treated as a binary boundary classification problem using lexical, prosodic, and acoustic features 
[26,39, among others]. There are also few studies performing joint dialog act segmentation and 
tagging [48,55].

•	 Discourse and topic segmentation: Aims to chop a conversation into topically coherent units. 
While topic segmentation of text or prewritten speech is a well-established area, there are rela-
tively fewer studies on processing human/human conversations and multiparty meetings.

•	 Summarization: Aims to generate a compact, summary version of meeting discussions. The sum-
maries can be formed by extracting original speaker utterances (extractive summarization) or by 
formulating new sentences for the summary (abstractive summarization).

•	 Action item and decision detection: Aims to detect task assignments to people and associated 
deadlines and decision-making subdialogs during a meeting. These can be used to enter such 
information into the person’s calendar or to track the status and progress of these action 
items or decisions in the following meetings. The decisions made in meetings can be used 
for indexing meetings, and one can go back and access the content of the meeting where 
a specific decision was made. They can also be used to track the progress and efficiency of 
meetings.

•	 Speaker role detection: Aims to classify each of the speakers with respect to their institutional 
roles. While this is an area deeply rooted in the social sciences, most systems have taken a simplis-
tic view and instead focused on professional roles, such as professor vs. student, boss vs. employee, 
or project manager vs. software engineer.

•	 Addressee detection: An important enabling task in processing conversations is determining who 
is talking or who the speaker is referring to. This is useful in downstream understanding of con-
versations in that it provides essential semantic grounding for the analyzed dialog. This task also 
covers resolving references (especially pronominal references) in utterances.
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41.4 R esearch Issues

The field of SLU is closely related to NLU, a field that has been studied for more than half a century. 
NLU focus mainly on the understanding of general domain written texts. Because there is not a specific 
application domain for the general-purpose NLU, the semantics in NLU have to be defined in a broader 
sense, such as thematic roles (agents, patients, etc.) In contrast, the SLU has, in the current state of 
technology, focused only on specific application domains. The semantics are defined very specifically 
according to the application domain, as illustrated by the earlier examples of semantic frames. Many 
domain-specific constraints can be included in the understanding model. Ostensibly, this may make the 
problem easier to solve. Unfortunately, there are many new challenges for SLU, including the following:

•	 Extra-grammaticality: Spoken languages are not as well formed as written languages. People are 
in general less careful with speech than with writings. They often do not comply with rigid syn-
tactic constraints.

•	 Disfluencies: False starts, repairs, and hesitations are pervasive, especially in conversational 
speech.

•	 Speech recognition errors: Speech recognition technology is far from perfect. Environment noises, 
speaker’s accent, domain-specific terminologies, all make speech recognition errors inevitable. 
It is common to see that a generic speech recognizer has over 30% word error rates on domain-
specific data.

•	 Out-of-domain utterances: A dialog system can never restrict a user from saying anything out of a 
specific domain, even in a system-initiated dialog, where users are prompted for answers to specific 
questions. Because the frame-based SLU focuses on a specific application domain, out-of-domain 
utterances are not well modeled and can often be confused as an in-domain utterance. Detecting 
the out-of-domain utterances is not an easy task—it is complicated by the extra-grammaticality, dis-
fluencies, and ASR errors of the in-domain utterances. Furthermore, when there are other humans 
in the environment, it is nontrivial to separate human-addressed speech from machine-addressed.

In summary, robustness is one of the most important issues in SLU. A system should be able to 
gracefully handle the unexpected inputs. If an input string is not accepted by a grammar/model, it is 
still desirable to identify the well-formed concepts in the input that carry important information for a 
given domain. On the other hand, a robust solution tends to over generalize and introduce ambiguities, 
leading to the reduction in understanding accuracy. A major challenge to the SLU is thus to strike an 
optimal balance between the robustness and the constraints that prevent the over generalizations and 
reduce the ambiguities.

41.5  Summary

We have presented a survey of the state of the art in SLU, focusing on human/computer conversational 
systems. We mainly described two technical areas of SLU, namely, intent determination and slot fill-
ing in detail. The state-of-the-art approaches relying on data-driven methods are being heavily used in 
academic and industrial research labs, though it started to quickly propagate to commercial applica-
tions like personal assistants (e.g., Nuance Nina). This is in contrast to knowledge-based methods that 
dominate the commercial applications.

Regarding human/machine interactive systems, the candidate applications and environments are 
growing with tremendous speed. We would like to emphasize on two aspects:

•	 Multimodal interaction: Although there were earlier multimodal interactive systems, such as 
AT&T MATCH, Microsoft MiPad, or ESPRIT MASK [22,25,30, among others], the boom of 
smart phones resulted in a completely new array of multimodal applications. All the traditional 
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SLU and dialog management concepts need to be tailored to multimodal interaction from parsing 
to grounding to belief state optimization to response generation. Moreover, with the multimodal 
output, several different actions can be performed simultaneously. This seems to be an exciting 
area for the near future.

•	 Personalization: Interactive systems are now becoming highly personalized. For example, the 
mobile device can record vast amounts of private information about the user, ranging from 
contact lists, calendars, to history of geo-locations coupled with time and previous written or 
spoken communications. This user-specific metadata is waiting to be exploited for “customized” 
user interaction, instead of a “one size fits all” speech systems, such as voice search or call rout-
ing. Personalized mobile systems also enable longitudinal user studies, since users typically 
continue to use their mobile multimodal applications over a long period of time. One potential 
application would be using implicit supervision for user adaptation of models, exploiting user 
behavior patterns.

Key Term

360° Review: Performance review that includes feedback from superiors, peers, subordinates, and 
clients.
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42.1  Introduction

Within the broad scope of the study of artificial intelligence (AI), research in neural networks is 
characterized by a particular focus on pattern recognition and pattern generation. Many neural net-
work methods can be viewed as generalizations of classical pattern-oriented techniques in statistics and 
the engineering areas of signal processing, system identification, and control theory. As in these parent 
disciplines, the notion of “pattern” in neural network research is essentially probabilistic and numerical. 
Neural network methods have had their greatest impact in problems where statistical issues dominate 
and where data are easily obtained.

A neural network is first and foremost a graph, with patterns represented in terms of numerical values 
attached to the nodes of the graph and transformations between patterns achieved via simple message-
passing algorithms. Many neural network architectures, however, are also statistical processors, char-
acterized by making particular probabilistic assumptions about data. As we will see, this conjunction of 
graphical algorithms and probability theory is not unique to neural networks but characterizes a wider 
family of probabilistic systems in the form of chains, trees, and networks that are currently being stud-
ied throughout AI (Spiegelhalter et al. 1993).

Neural networks have found a wide range of applications, the majority of which are associated 
with problems in pattern recognition and control theory. In this context, neural networks can best be 
viewed as a class of algorithms for statistical modeling and prediction. Based on a source of training 
data, the aim is to produce a statistical model of the process from which the data are generated, so as 
to allow the best predictions to be made for new data. We shall find it convenient to distinguish three 
broad types of statistical modeling problems, which we shall call density estimation, classification, 
and regression.
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For density estimation problems (also referred to as unsupervised learning problems), the goal is to 
model the unconditional distribution of data described by some vector x. A practical example of the 
application of density estimation involves the interpretation of x-ray images (mammograms) used for 
breast cancer screening (Tarassenko 1995). In this case, the training vectors x form a sample taken from 
normal (noncancerous) images, and a network model is used to build a representation of the density p(x). 
When a new input vector x′ is presented to the system, a high value for p(x′) indicates a normal image, 
whereas a low value indicates a novel input, which might be characteristic of an abnormality. This is 
used to label regions of images that are unusual, for further examination by an experienced clinician.

For classification and regression problems (often referred to as supervised learning problems), we 
need to distinguish between input variables, which we again denote by x, and target variables, which 
we denote by the vector t. Classification problems require that each input vector x be assigned to one 
of C classes C1,…, CC, in which case the target variables represent class labels. As an example, consider 
the problem of recognizing handwritten digits (LeCun et al. 1989). In this case, the input vector would 
be some (preprocessed) image of the digit, and the network would have 10 outputs, one for each digit, 
which can be used to assign input vectors to the appropriate class (as discussed in Section 42.2).

Regression problems involve estimating the values of continuous variables. For example, neural net-
works have been used as part of the control system for adaptive optics telescopes (Sandler et al. 1991). 
The network input x consists of one in-focus and one defocused image of a star, and the output t con-
sists of a set of coefficients that describe the phase distortion due to atmospheric turbulence. These 
output values are then used to make real-time adjustments of the multiple mirror segments to cancel 
the atmospheric distortion. Classification and regression problems also can be viewed as special cases 
of density estimation. The most general and complete description of the data is given by the probability 
distribution function p(x, t) in the joint input–target space. However, the usual goal is to be able to make 
good predictions for the target variables when presented with new values of the inputs. In this case, it is 
convenient to decompose the joint distribution in the following form:

	 p p p( , ) ( ) ( )x t t x x= | 	 (42.1)

and to consider only the conditional distribution p(t|x), in other words the distribution of t given the 
value of x. Thus, classification and regression involve the estimation of conditional densities, a problem 
that has its own idiosyncracies.

The organization of the chapter is as follows. In Section 42.2, we present examples of network 
representations of unconditional and conditional densities. In Section 42.3, we discuss the problem of 
adjusting the parameters of these networks to fit them to data. This problem has a number of practical 
aspects, including the choice of optimization procedure and the method used to control network com-
plexity. We then discuss a broader perspective on probabilistic network models in Section 42.4. The final 
section presents further information and pointers to the literature.

42.2 R epresentation

In this section, we describe a selection of neural network architectures that have been proposed as rep-
resentations for unconditional and conditional densities. After a brief discussion of density estimation, 
we discuss classification and regression, beginning with simple models that illustrate the fundamental 
ideas and then progressing to more complex architectures. We focus here on representational issues, 
postponing the problem of learning from data until the following section.

42.2.1  Density Estimation

We begin with a brief discussion of density estimation, utilizing the Gaussian mixture model as an illus-
trative model. We return to more complex density estimation techniques later in the chapter.
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Although density estimation can be the main goal of a learning system, as in the diagnosis example 
mentioned in the Introduction, density estimation models arise more often as components of the solu-
tion to a more general classification or regression problem. To return to Equation 42.1, note that the joint 
density is composed of p(t|x), to be handled by classification or regression models, and p(x), the (uncon-
ditional) real-life datasets that often have missing components in the input vector. Having a model of 
the density allows the missing components to be filled in an intelligent way. This can be useful both for 
training and for prediction (cf. Bishop 1995). Second, as we see in Equation 42.1, a model of p(x) makes 
possible an estimate of the joint probability p(x, t). This in turn provides us with the necessary informa-
tion to estimate the inverse conditional density p(x|t). The calculation of such inverses is important for 
applications in control and optimization.

A general and flexible approach to density estimation is to treat the density as being composed of a set 
of M simpler densities. This approach involves modeling the observed data as a sample from a mixture 
density,

	
p p ii i

i

M

( | ) ( | , )x w x w=
=
∑π

1

	 (42.2)

where
πi is constants known as mixing proportions
p(x|i, wi) is the component densities, generally taken to be from a simple parametric family

A common choice of component density is the multivariate Gaussian, in which case the parameters wi 
are the means and covariance matrices of each of the components. By varying the means and covari-
ances to place and orient the Gaussians appropriately, a wide variety of high-dimensional, multimodal 
data can be modeled. This approach to density estimation is essentially a probabilistic form of clustering.

Gaussian mixtures have a representation as a network diagram, as shown in Figure 42.1. The utility 
of such network representations will become clearer as we proceed; for now, it suffices to note that not 
only mixture models, but also a wide variety of other classical statistical models for density estima-
tion, are representable as simple networks with one or more layers of adaptive weights. These meth-
ods include principal component analysis, canonical correlation analysis, kernel density estimation, and 
factor analysis (Anderson 1984).

42.2.2  Linear Regression and Linear Discriminants

Regression models and classification models both focus on the conditional density p(t|x). They differ in 
that in regression the target vector t is a real-valued vector, whereas in classification t takes its values 
from a discrete set representing the class labels.

The simplest probabilistic model for regression is one in which t is viewed as the sum of an underlying 
deterministic function f (x) and a Gaussian random variable ε,

	 t f= +( )x ε 	 (42.3)

where
ε is the zero mean, as is commonly assumed
f(x) is the conditional mean E (t|x)

It is this function that is the focus of most regression modeling. Of course, the conditional mean 
describes only the first moment of the conditional distribution, and as we discuss in a later section, a 
good regression model will also generally report information about the second moment.
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In a linear regression model, the conditional mean is a linear function of x: E(t|x) = Wx, for a fixed 
matrix W. Linear regression has a straightforward representation as a network diagram in which the 
jth input unit represents the jth component of the input vector xj, each output unit i takes the weighted 
sum of the input values, and the weight wij is placed on the link between the jth input unit and the ith 
output unit.

The conditional mean is also an important function in classification problems, but most of the focus 
in classification is on a different function known as a discriminant function. To see how this function 
arises and to relate it to the conditional mean, we consider a simple two-class problem in which the 
target is a simple binary scalar that we now denote by t. The conditional mean E(t|x) is equal to the prob-
ability that t equals one, and this latter probability can be expanded via Bayes rule:

	
p t

p t p t
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1 1
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The density p(t|x) in this equation is referred to as the posterior probability of the class given the input, 
and the density p(x|t) is referred to as the class-conditional density. Continuing the derivation, we 
expand the denominator and (with some foresight) introduce an exponential:
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P(x)

P(x|M)P(x|1)
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FIGURE 42.1  A network representation of a Gaussian mixture distribution. The input pattern x is represented 
by numerical values associated with the input nodes in the lower level. Each link has a weight μij, which is the jth 
component of the mean vector for the ith Gaussian. The ith intermediate node contains the covariance matrix Σi 
and calculates the Gaussian conditional probability p (x|i, μi, Σi). These probabilities are weighted by the mixing 
proportions πi, and the output node calculates the weighted sum p ii i i

i
( ) | , .x x= ∑∑ π ( µ , )p
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We see that the posterior probability can be written in the form of the logistic function:

	
y

e z
=

+ −
1

1
	 (42.6)

where z is a function of the likelihood ratio p(x|t = 1)/p(x|t = 0) and the prior ratio p(t = 1)/p(t =0). This 
is a useful representation of the posterior probability if z turns out to be simple.

It is easily verified that if the class-conditional densities are multivariate Gaussians with identical 
covariance matrices, then z is a linear function of x: z = wTx + w0. Moreover, this representation is appro-
priate for any distribution in a broad class of densities known as the exponential family (which includes 
the Gaussian, the Poisson, the gamma, the binomial, and many other densities). All of the densities in 
this family can be put in the following form:
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where
θ is the location parameter
ϕ is the scale parameter

Substituting this general form in Equation 42.5, where θ is allowed to vary between the classes and ϕ is 
assumed to be constant between classes, we see that z is in all cases a linear function. Thus, the choice of 
a linear–logistic model is rather robust.

The geometry of the two-class problem is shown in Figure 42.2, which shows Gaussian class-
conditional densities and suggests the logistic form of the posterior probability.

The function z in our analysis is an example of a discriminant function. In general, a discriminant 
function is any function that can be used to decide on class membership (Duda and Hart 1973); our 
analysis has produced a particular form of discriminant function that is an intermediate step in the 

1.0

0.5

0.0
0 1 2 3 4

FIGURE 42.2  This shows the Gaussian class-conditional densities p(x|C1) (dashed curves) for a two-class problem 
in one dimension, together with the corresponding posterior probability p(C1|x) (solid curve), which takes the form 
of a logistic sigmoid. The vertical line shows the decision boundary for y = 0.5, which coincides with the point at 
which the two density curves cross.
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calculation of a posterior probability. Note that if we set z = 0, from the form of the logistic function, we 
obtain a probability of 0.5, which shows that z = 0 is a decision boundary between the two classes.

The discriminant function that we found for exponential family densities is linear under the 
given conditions on ϕ. In more general situations, in which the class-conditional densities are more 
complex than a single exponential family density, the posterior probability will not be well charac-
terized by the linear–logistic form. Nonetheless, it still is useful to retain the logistic function and 
focus on nonlinear representations for the function z. This is the approach taken within the neural 
network field.

To summarize, we have identified two functions that are important for regression and classification, 
respectively: the conditional mean and the discriminant function. These are the two functions that are 
of concern for simple linear models and, as we now discuss, for more complex nonlinear models as well.

42.2.3  Nonlinear Regression and Nonlinear Classification

The linear regression and linear discriminant functions introduced in the previous section have the 
merit of simplicity but are severely restricted in their representational capabilities. A convenient 
way to see this is to consider the geometrical interpretation of these models. When viewed in the 
d-dimensional x-space, the linear regression function wTx + w0 is constant on hyperplanes, which are 
orthogonal to the vector w. For many practical applications, we need to consider much more general 
classes of function. We therefore seek representations for nonlinear mappings, which can approximate 
any given mapping to arbitrary accuracy. One way to achieve this is to transform the original x using 
a set of M nonlinear functions ϕj(x) where j = 1,…, M and then to form a linear combination of these 
functions, so that

	
y wk kj j

j

( ) ( )x x=∑ φ 	 (42.8)

For a sufficiently large value of M, and for a suitable choice of the ϕj(x), such a model has the desired uni-
versal approximation properties. A familiar example, for the case of 1D input spaces, is the simple poly-
nomial, for which the ϕj(x) are simply successive powers of x and the w are the polynomial coefficients. 
Models of the form in Equation 42.8 have the property that they can be expressed as network diagrams 
in which there is a single layer of adaptive weights.

There are a variety of families of functions in one dimension that can approximate any continuous 
function to arbitrary accuracy. There is, however, an important issue that must be addressed, called 
the curse of dimensionality. If, for example, we consider an Mth-order polynomial, then the number of 
independent coefficients grows as dM (Bishop 1995). For a typical medium-scale application with, say, 
30 inputs, a fourth-order polynomial (which is still quite restricted in its representational capability) 
would have over 46,000 adjustable parameters. As we shall see in the section on complexity control, in 
order to achieve good generalization, it is important to have more data points than adaptive parameters 
in the model, and this is a serious problem for methods that have a power law or exponential growth in 
the number of parameters.

A solution to the problem lies in the fact that, for most real-world datasets, there are strong (often 
nonlinear) correlations between the input variables such that the data do not uniformly fill the input 
space but are effectively confined to a subspace whose dimensionality is called the intrinsic dimension-
ality of the data. We can take advantage of this phenomenon by considering again a model of the form 
in Equation 42.8 but in which the basis functions ϕj(x) are adaptive so that they themselves contain 
weight parameters whose values can be adjusted in the light of the observed dataset. Different models 
result from different choices for the basis functions, and here we consider the two most common exam-
ples. The first of these is called the multilayer perceptron (MLP) and is obtained by choosing the basis 
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functions to be given by linear–logistic functions (Equation 42.6). This leads to a multivariate nonlinear 
function that can be expressed in the form

	
y w g w x w wk kj ji i j

i

d

k

j

M

( )x = +








 +

==
∑∑ 0

1

0

1

	 (42.9)

Here, wj0 and wk0 are bias parameters, and the basis functions are called hidden units. The function g(·) is 
the logistic sigmoid function of Equation 42.6. This also can be represented as a network diagram as in 
Figure 42.3. Such a model is able to take account of the intrinsic dimensionality of the data because the 
first-layer weights wji can adapt and hence orient the surfaces along which the basis function response 
is constant. It has been demonstrated that models of this form can approximate to arbitrary accuracy 
any continuous function, defined on a compact domain, provided the number M of hidden units is suf-
ficiently large. The MLP model can be extended by considering several successive layers of weights. Note 
that the use of nonlinear activation functions is crucial, because if g(·) in Equation 42.9 was replaced by 
the identity, the network would reduce to several successive linear transformations, which would itself 
be linear.

The second common network model is obtained by choosing the basis functions ϕj(x) in Equation 42.8 
to be functions of the radial variable x − μj where μj is the center of the jth basis function, which gives 
rise to the radial basis function (RBF) network model. The most common example uses Gaussians of the 
following form:
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Here, both the mean vector μj and the covariance matrix Σj are considered to be adaptive parameters. 
The curse of dimensionality is alleviated because the basis functions can be positioned and oriented in 
input space such as to overlay the regions of high data density and hence to capture the nonlinear cor-
relations between input variables. Indeed, a common approach to training an RBF network is to use 
a two-stage procedure (Bishop 1995). In the first stage, the basis function parameters are determined 
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FIGURE 42.3  An example of a feedforward network having two layers of adaptive weights. The bias parameters 
in the first layer are shown as weights from an extra input having a fixed value of x0 = 1. Similarly, the bias param-
eters in the second layer are shown as weights from an extra hidden unit, with activation again fixed at z0 = 1.
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using the input data alone, which corresponds to a density estimation problem using a mixture model 
in which the component densities are given by the basis functions ϕj(x). In the second stage, the basis 
function parameters are frozen, and the second-layer weights wkj are found by standard least-squares 
optimization procedures.

42.2.4  Decision Trees

MLP and RBF networks are often contrasted in terms of the support of the basis functions that com-
pose them. MLP networks are often referred to as “global,” given that linear–logistic basis functions are 
bounded away from zero over a significant fraction of the input space. Accordingly, in an MLP, each 
input vector generally gives rise to a distributed pattern over the hidden units. RBF networks, on the 
other hand, are referred to as “local,” due to the fact that their Gaussian basis functions typically have 
support over a local region of the input space. It is important to note, however, that local support does 
not necessarily mean nonoverlapping support; indeed, there is nothing in the RBF model that prefers 
basis functions that have nonoverlapping support. A third class of model that does focus on basis func-
tions with nonoverlapping support is the decision tree model (Breiman et al. 1984). A decision tree is 
a regression or classification model that can be viewed as asking a sequence of questions about the 
input vector. Each question is implemented as a linear discriminant, and a sequence of questions can 
be viewed as a recursive partitioning of the input space. All inputs that arrive at a particular leaf of the 
tree define a polyhedral region in the input space. The collection of such regions can be viewed as a set 
of basis functions. Associated with each basis function is an output value, which (ideally) is close to 
the average value of the conditional mean (for regression) or discriminant function (for classification, 
a majority vote is also used). Thus, the decision tree output can be written as a weighted sum of basis 
functions in the same manner as a layered network.

As this discussion suggests, decision trees and MLP/RBF neural networks are best viewed as being 
different points along the continuum of models having overlapping or nonoverlapping basis functions. 
Indeed, as we show in the following section, decision trees can be treated probabilistically as mixture 
models, and in the mixture approach, the sharp discriminant function boundaries of classical decision 
trees become smoothed, yielding partially overlapping basis functions.

There are trade-offs associated with the continuum of degree-of-overlap; in particular, nonoverlap-
ping basis functions are generally viewed as being easier to interpret and better able to reject noisy input 
variables that carry little information about the output. Overlapping basis functions often are viewed as 
yielding lower variance predictions and as being more robust.

42.2.5  General Mixture Models

The use of mixture models is not restricted to density estimation; rather, the mixture approach can be 
used quite generally to build complex models out of simple parts. To illustrate, let us consider using 
mixture models to model a conditional density in the context of a regression or classification problem. 
A mixture model in this setting is referred to as a “mixtures of experts” model (Jacobs et al. 1991).

Suppose that we have at our disposal an elemental conditional model p(t|x, w). Consider a situation 
in which the conditional mean or discriminant exhibits variation on a local scale that is a good match 
to our elemental model, but the variation differs in different regions of the input space. We could use a 
more complex network to try to capture this global variation; alternatively, we might wish to combine 
local variants of our elemental models in some manner. This can be achieved by defining the following 
probabilistic mixture:
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Comparing this mixture to the unconditional mixture defined earlier in Equation 42.2, we see that both 
the mixing proportions and the component densities are now conditional densities dependent on the 
input vector x. The former dependence is particularly important: we now view the mixing proportion 
p(i|x, v) as providing a probabilistic device for choosing different elemental models (“experts”) in differ-
ent regions of the input space. A learning algorithm that chooses values for the parameters v as well as 
the values for the parameters wi can be viewed as attempting to find both a good partition of the input 
space and a good fit to the local models within that partition.

This approach can be extended recursively by considering mixtures of models where each model may 
itself be a mixture model (Jordan and Jacobs 1994). Such a recursion can be viewed as providing a proba-
bilistic interpretation for the decision trees discussed in the previous section. We view the decisions in 
the decision tree as forming a recursive set of probabilistic selections among a set of models. The total 
probability of target t given input x is the sum across all paths down the tree:
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where
i and j are the decisions made at the first level and second level of the tree, respectively
p(t|x, i, j,…, wij …) is the elemental model at the leaf of the tree defined by the sequence of decisions

This probabilistic model is a conditional hierarchical mixture. Finding parameter values u, vi, etc., to 
fit this model to data can be viewed as finding a nested set of partitions of the input space and fitting a 
set of local models within the partition.

The mixture model approach can be viewed as a special case of a general methodology known as 
learning by committee. Bishop (1995) provides a discussion of committees; we will also meet them in the 
section on Bayesian methods later in the chapter.

42.3  Learning from Data

The previous section has provided a selection of models to choose from; we now face the problem of 
matching these models to data. In principle, the problem is straightforward: given a family of models 
of interest, we attempt to find out how probable each of these models is in the light of the data. We 
can then select the most probable model (a selection rule known as maximum a posteriori [MAP] 
estimation), or we can select some highly probable subset of models, weighted by their probability 
(an approach that we discuss in the section on Bayesian methods). In practice, there are a number of 
problems to solve, beginning with the specification of the family of models of interest. In the simplest 
case, in which the family can be described as a fixed structure with varying parameters (e.g., the class 
of feedforward MLPs with a fixed number of hidden units), the learning problem is essentially one 
of parameter estimation. If, on the other hand, the family is not easily viewed as a fixed parametric 
family (e.g., feedforward MLPs with a variable number of hidden units), then we must solve the model 
selection problem.

In this section, we discuss the parameter estimation problem. The goal will be to find MAP estimates 
of the parameters by maximizing the probability of the parameters given the data D. We compute this 
probability using Bayes rule:
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where we see that to calculate MAP estimates we must maximize the expression in the numerator 
(the denominator does not depend on w). Equivalently we can minimize the negative logarithm of the 
numerator. We thus define the following cost function J(w):

	 J p p( ) ln ( | ) ln ( )w w w= − −D 	 (42.14)

which we wish to minimize with respect to the parameters w. The first term in this cost function is a 
(negative) log likelihood. If we assume that the elements in the training set D are conditionally indepen-
dent of each other given the parameters, then the likelihood factorizes into a product form. For density 
estimation, we have
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and for classification and regression, we have
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In both cases this yields a log likelihood, which is the sum of the log probabilities for each individual 
data point. For the remainder of this section, we will assume this additive form; moreover, we will 
assume that the log prior probability of the parameters is uniform across the parameters and drop 
the second term. Thus, we focus on maximum likelihood (ML) estimation, where we choose parameter 
values wML that maximize ln p(D|w).

42.3.1  Likelihood-Based Cost Functions

Regression, classification, and density estimation make different probabilistic assumptions about the 
form of the data and therefore require different cost functions.

Equation 42.3 defines a probabilistic model for regression. The model is a conditional density for the 
targets t in which the targets are distributed as Gaussian random variables (assuming Gaussian errors ε) 
with mean values f(x). We now write the conditional mean as f(x, w) to make explicit the dependence on 
the parameters w. Given the training set D ={ } =

x tn n n

N
, ,

1
 and given our assumption that the targets tn are 

sampled independently (given the inputs xn and the parameters w), we obtain
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2 	 (42.17)

where we have assumed an identity covariance matrix and dropped those terms that do not depend on 
the parameters. This cost function is the standard least-squares cost function, which is traditionally 
used in neural network training for real-valued targets. Minimization of this cost function is typically 
achieved via some form of gradient optimization, as we discuss in the following section.

Classification problems differ from regression problems in the use of discrete-valued targets, and the 
likelihood accordingly takes a different form. For binary classification the Bernoulli probability model

p(t|x, w) = yt(1 − y)1−t is natural, where we use y to denote the probability p(t = 1|x, w). This model 
yields the following log likelihood:
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which is known as the cross-entropy function. It can be minimized using the same generic optimization 
procedures as are used for least squares.

For multiway classification problems in which there are C categories, where C > 2, the multinomial 
distribution is natural. Define tn such that its elements tn,i are one or zero according to whether the nth 
data point belongs to the ith category, and define yn,i to be the network’s estimate of the posterior prob-
ability of category i for data point n; that is, yn,i ≡ p(tn,i = 1|xn, w). Given these definitions, we obtain the 
following cost function:

	
J t yn i n i

in

( ) ln, ,w = − ∑∑ 	 (42.19)

which again has the form of a cross-entropy.
We now turn to density estimation as exemplified by Gaussian mixture modeling. The probabilistic 

model in this case is that given in Equation 42.2. Assuming Gaussian component densities with arbi-
trary covariance matrices, we obtain the following cost function:
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where the parameters w are the collection of mean vectors μi, the covariance matrices Σi, and the mixing 
proportions πi. A similar cost function arises for the generalized mixture models (cf. Equation 42.12).

42.3.2  Gradients of the Cost Function

Once we have defined a probabilistic model, obtained a cost function, and found an efficient procedure 
for calculating the gradient of the cost function, the problem can be handed off to an optimization 
routine. Before discussing optimization procedures, however, it is useful to examine the form that the 
gradient takes for the examples that we have discussed in the previous two sections.

The ith output unit in a layered network is endowed with a rule for combining the activations of 
units in earlier layers, yielding a quantity that we denote by zi and a function that converts zi into 
the output yi. For  regression problems, we assume linear output units such that yi = zi. For binary 
classification problems, our earlier discussion showed that a natural output function is the logistic: 
y ei

zi= + −1 1/( ). For multiway classification, it is possible to generalize the derivation of the logistic 
function to obtain an analogous representation for the multiway posterior probabilities known as the 
softmax function (cf. Bishop 1995):
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where yi represents the posterior probability of category i.
If we now consider the gradient of J(w) with respect to zi, it turns out that we obtain a single canonical 

expression of the following form:
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As discussed by Rumelhart et al. (1995), this form for the gradient is predicted from the theory of gen-
eralized linear models (McCullagh and Nelder 1983), where it is shown that the linear, logistic, and 
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softmax functions are (inverse) canonical links for the Gaussian, Bernoulli, and multinomial distribu-
tions, respectively. Canonical links can be found for all of the distributions in the exponential family, 
thus providing a solid statistical foundation for handling a wide variety of data formats at the output 
layer of a network, including counts, time intervals, and rates.

The gradient of the cost function for mixture models has an interesting interpretation. Taking the 
partial derivative of J(w) in Equation 42.20 with respect to μi, we find
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where hn,i is defined as follows:
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When summed over i, the quantity hn,i sums to one and is often viewed as the “responsibility” or “credit” 
assigned to the ith component for the nth data point. Indeed, interpreting Equation 42.24 using Bayes 
rule shows that hn,i is the posterior probability that the nth data point is generated by the ith component 
Gaussian. A learning algorithm based on this gradient will move the ith mean μi toward the data point 
xn, with the effective step size proportional to hn,i.

The gradient for a mixture model will always take the form of a weighted sum of the gradients asso-
ciated with the component models, where the weights are the posterior probabilities associated with 
each of the components. The key computational issue is whether these posterior weights can be com-
puted efficiently. For Gaussian mixture models, the calculation (Equation 42.24) is clearly efficient. For 
decision trees there is a set of posterior weights associated with each of the nodes in the tree, and a 
recursion is available that computes the posterior probabilities in an upward sweep (Jordan and Jacobs 
1994). Mixture models in the form of a chain are known as hidden Markov models (HMMs), and the 
calculation of the relevant posterior probabilities is performed via an efficient algorithm known as the 
Baum–Welch algorithm.

For general layered network structures, a generic algorithm known as backpropagation is available 
to calculate gradient vectors (Rumelhart et al. 1986). Backpropagation is essentially the chain rule of 
calculus realized as a graphical algorithm. As applied to layered networks, it provides a simple and 
efficient method that calculates a gradient in O(W) time per training pattern, where W is the number 
of weights.

42.3.3  Optimization Algorithms

By introducing the principle of ML in Section 42.1, we have expressed the problem of learning in neural 
networks in terms of the minimization of a cost function, J(w), which depends on a vector, w, of adaptive 
parameters. An important aspect of this problem is that the gradient vector ∇wJ can be evaluated effi-
ciently (e.g., by backpropagation). Gradient-based minimization is a standard problem in unconstrained 
nonlinear optimization for which many powerful techniques have been developed over the years. Such 
algorithms generally start by making an initial guess for the parameter vector w and then iteratively 
updating the vector in a sequence of steps:

	 w w w( ) ( ) ( )τ+1 τ τ= + ∆ 	 (42.25)

where τ denotes the step number. The initial parameter vector w(0) is often chosen at random, and 
the final vector represents a minimum of the cost function at which the gradient vanishes. Because 
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of the nonlinear nature of neural network models, the cost function is generally a highly complicated 
function of the parameters and may possess many such minima. Different algorithms differ in how 
the update ∆w(τ) is computed.

The simplest such algorithm is called gradient descent and involves a parameter update which is pro-
portional to the negative of the cost function gradient ∆ = −η∇E where η is a fixed constant called 
the learning rate. It should be stressed that gradient descent is a particularly inefficient optimization 
algorithm. Various modifications have been proposed, such as the inclusion of a momentum term, to try 
to improve its performance. In fact, much more powerful algorithms are readily available, as described 
in standard textbooks such as Fletcher (1987). Two of the best known are called conjugate gradients and 
quasi-Newton (or variable metric) methods. For the particular case of a sum-of-squares cost function, 
the Levenberg–Marquardt algorithm can also be very effective. Software implementations of these algo-
rithms are widely available.

The algorithms discussed so far are called batch since they involve using the whole dataset for each 
evaluation of the cost function or its gradient. There is also a stochastic or online version of gradient 
descent in which, for each parameter update, the cost function gradient is evaluated using just one 
of the training vectors at a time (which are then cycled either in order or in a random sequence). 
Although this approach fails to make use of the power of sophisticated methods such as conjugate 
gradients, it can prove effective for very large datasets, particularly if there is significant redundancy 
in the data.

42.3.4  Hessian Matrices, Error Bars, and Pruning

After a set of weights have been found for a neural network using an optimization procedure, it is often 
useful to examine second-order properties of the fitted network as captured in the Hessian matrix H = 
∂2J/∂w∂wT. Efficient algorithms have been developed to compute the Hessian matrix in time O(W  2) 
(Bishop 1995). As in the case of the calculation of the gradient by backpropagation, these algorithms are 
based on recursive message passing in the network.

One important use of the Hessian matrix lies in the calculation of error bars on the outputs of a 
network. If we approximate the cost function locally as a quadratic function of the weights (an 
approximation that is equivalent to making a Gaussian approximation for the log likelihood), then the 
estimated variance of the ith output yi can be shown to be
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where the gradient vector ∂yi /∂w can be calculated via backpropagation.
The Hessian matrix also is useful in pruning algorithms. A pruning algorithm deletes weights from 

a fitted network to yield a simpler network that may outperform a more complex, overfitted network 
(discussed subsequently) and may be easier to interpret. In this setting, the Hessian is used to approximate 
the increase in the cost function due to the deletion of a weight. A variety of such pruning algorithms is 
available (cf. Bishop 1995).

42.3.5  Complexity Control

In previous sections, we have introduced a variety of models for representing probability distributions, 
we have shown how the parameters of the models can be optimized by maximizing the likelihood func-
tion, and we have outlined a number of powerful algorithms for performing this minimization. Before 
we can apply this framework in practice, there is one more issue we need to address, which is that of 
model complexity. Consider the case of a mixture model given by Equation 42.2. The number of input 
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variables will be determined by the particular problem at hand. However, the number M of component 
densities has yet to be specified. Clearly, if M is too small, the model will be insufficiently flexible and 
we will obtain a poor representation of the true density. What is not so obvious is that if M is too large, 
we can also obtain poor results. This effect is known as overfitting and arises because we have a dataset 
of finite size. It is illustrated using the simple example of mixture density estimation in Figure 42.4. 
Here a set of 100 data points in one dimension has been generated from a distribution consisting of a 
mixture of two Gaussians (shown by the dashed curves). This dataset has then been fitted by a mixture 
of M Gaussians by use of the expectation-maximization (EM) algorithm. We see that a model with 
1 component (M = 1) gives a poor representation of the true distribution from which the data were 
generated and in particular is unable to capture the bimodal aspect. For M = 2 the model gives a good 
fit, as we expect since the data were themselves generated from a two-component Gaussian mixture. 
However, increasing the number of components to M = 10 gives a poorer fit, even though this model 
contains the simpler models as special cases.

The problem is a very fundamental one and is associated with the fact that we are trying to infer 
an entire distribution function from a finite number of data points, which is necessarily an ill-posed 
problem. In regression, for example, there are infinitely many functions that will give a perfect fit to 
the finite number of data points. If the data are noisy, however, the best generalization will be obtained 
for a function that does not fit the data perfectly but that captures the underlying function from which 
the data were generated. By increasing the flexibility of the model, we are able to obtain ever better fits 
to the training data, and this is reflected in a steadily increasing value for the likelihood function at its 
maximum. Our goal is to model the true underlying density function from which the data were gener-
ated since this allows us to make the best predictions for new data. We see that the best approximation 
to this density occurs for an intermediate value of M.

The same issue arises in connection with nonlinear regression and classification problems. For 
example, the number M of hidden units in an MLP network controls the model complexity and 
must be optimized to give the best generalization. In a practical application, we can train a variety 
of different models having different complexities, compare their generalization performance using 
an independent validation set, and then select the model with the best generalization. In fact, the pro-
cess of optimizing the complexity using a validation set can lead to some partial overfitting to the 
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FIGURE 42.4  Effects of model complexity illustrated by modeling a mixture of two Gaussians (shown by 
the dashed curves) using a mixture of M Gaussians (shown by the solid curves). The results are obtained for 
20 cycles of EM.
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validation data itself, and so the final performance of the selected model should be confirmed using 
a third independent dataset called a test set.

Some theoretical insight into the problem of overfitting can be obtained by decomposing the error into 
the sum of bias and variance terms (Geman et al. 1992). A model that is too inflexible is unable to repre-
sent the true structure in the underlying density function, and this gives rise to a high bias. Conversely, a 
model that is too flexible becomes tuned to the specific details of the particular dataset and gives a high 
variance. The best generalization is obtained from the optimum trade-off of bias against variance.

As we have already remarked, the problem of inferring an entire distribution function from a finite 
dataset is fundamentally ill posed since there are infinitely many solutions. The problem becomes well 
posed only when some additional constraint is imposed. This constraint might be that we model the 
data using a network having a limited number of hidden units. Within the range of functions that this 
model can represent, there is then a unique function that best fits the data. Implicitly, we are assuming 
that the underlying density function from which the data were drawn is relatively smooth. Instead of 
limiting the number of parameters in the model, we can encourage smoothness more directly using the 
technique of regularization. This involves adding penalty term Ω to the original cost function J to give 
the total cost function J~ of the following form:

	
�J J v= + Ω 	 (42.27)

where v is called a regularization coefficient. The network parameters are determined by minimizing 
J~, and the value of v controls the degree of influence of the penalty term Ω. In practice, Ω is typically 
chosen to encourage smooth functions. The simplest example is called weight decay and consists of the 
sum of the squares of all of the adaptive parameters in the model:

	
Ω =∑wi

i

2 	 (42.28)

Consider the effect of such a term on the MLP function (Equation 42.9). If the weights take very small val-
ues, then the network outputs become approximately linear functions of the inputs (since the sigmoidal 
function is approximately linear for small values of its argument). The value of v in Equation 42.27 controls 
the effective complexity of the model, so that for large v the model is oversmoothed (corresponding to 
high bias), whereas for small v the model can overfit (corresponding to high variance). We can therefore 
consider a network with a relatively large number of hidden units and control the effective complexity 
by changing v. In practice, a suitable value for v can be found by seeking the value that gives the best 
performance on a validation set.

The weight decay regularizer (Equation 42.28) is simple to implement but suffers from a number of 
limitations. Regularizers used in practice may be more sophisticated and may contain multiple regular-
ization coefficients (Neal 1994).

Regularization methods can be justified within a general theoretical framework known as structural 
risk minimization (Vapnik 1995). Structural risk minimization provides a quantitative measure of com-
plexity known as the VC dimension. The theory shows that the VC dimension predicts the difference 
between performance on a training set and performance on a test set; thus, the sum of log likelihood and 
(some function of) VC dimension provides a measure of generalization performance. This motivates regu-
larization methods (Equation 42.27) and provides some insight into possible forms for the regularizer Ω.

42.3.6  Bayesian Viewpoint

In earlier sections we discussed network training in terms of the minimization of a cost function derived 
from the principle of MAP or ML estimation. This approach can be seen as a particular approxima-
tion to a more fundamental, and more powerful, framework based on Bayesian statistics. In the ML 
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approach, the weights w are set to a specific value, wML, determined by minimization of a cost function. 
However, we know that there will typically be other minima of the cost function, which might give 
equally good results. Also, weight values close to wML should give results that are not too different from 
those of the ML weights themselves.

These effects are handled in a natural way in the Bayesian viewpoint, which describes the weights 
not in terms of a specific set of values but in terms of a probability distribution over all possible values. 
As discussed earlier (cf. Equation 42.13), once we observe the training dataset D, we can compute the 
corresponding posterior distribution using Bayes’ theorem, based on a prior distribution function p(w) 
(which will typically be very broad) and a likelihood function p(D|w):
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The likelihood function will typically be very small except for values of w for which the network func-
tion is reasonably consistent with the data. Thus, the posterior distribution p(w|D) will be much more 
sharply peaked than the prior distribution p(w) (and will typically have multiple maxima). The quantity 
we are interested in is the predicted distribution of target values t for a new input vector x once we have 
observed the dataset D. This can be expressed as an integration over the posterior distribution of weights 
of the following form:

	
p p p( | , ) ( | , ) ( | )t x t x w w wD D= ∫ d 	 (42.30)

where p(t|x, w) is the conditional probability model discussed in the Introduction.
If we suppose that the posterior distribution p(w|D) is sharply peaked around a single most probable 

value wMP, then we can write Equation 42.30 in the following form:

	
p p p( | , ) ( | , ) ( | )t x t x w w wD D� MP d∫ 	 (42.31)

	 = p( | , )t x wMP 	 (42.32)

and so predictions can be made by fixing the weights to their most probable values. We can find the most 
probable weights by maximizing the posterior distribution or equivalently by minimizing its negative 
logarithm. Using Equation 42.29, we see that wMP is determined by minimizing a regularized cost function 
of the form in Equation 42.27 in which the negative log of the prior–ln p(w) represents the regularizer vΩ.

For example, if the prior consists of a zero mean Gaussian with variance v−1, then we obtain the weight 
decay regularizer of Equation 42.28.

The posterior distribution will become sharply peaked when the size of the dataset is large compared 
to the number of parameters in the network. For datasets of limited size, however, the posterior distribu-
tion has a finite width and this adds to the uncertainty in the predictions for t, which can be expressed 
in terms of error bars. Bayesian error bars can be evaluated using a local Gaussian approximation to the 
posterior distribution (MacKay 1992). The presence of multiple maxima in the posterior distribution 
also contributes to the uncertainties in predictions. The capability to assess these uncertainties can play 
a crucial role in practical applications.

The Bayesian approach can also deal with more general problems in complexity control. This can be 
done by considering the probabilities of a set of alternative models, given the dataset
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Here, different models can also be interpreted as different values of regularization parameters as these 
too control model complexity. If the models are given the same prior probabilities p i( ),H  then they 
can be ranked by considering the evidence p(D|Hi), which itself can be evaluated by integration over 
the model parameters w. We can simply select the model with the greatest probability. However, a full 
Bayesian treatment requires that we form a linear combination of the predictions of the models in which 
the weighting coefficients are given by the model probabilities.

In general, the required integrations, such as that in Equation 42.30, are analytically intractable. 
One approach is to approximate the posterior distribution by a Gaussian centered on wMP and then 
to linearize p(t|x, w) about wMP so that the integration can be performed analytically (MacKay 1992). 
Alternatively, sophisticated Monte Carlo methods can be employed to evaluate the integrals numeri-
cally (Neal 1994). An important aspect of the Bayesian approach is that there is no need to keep data 
aside in a validation set as is required when using ML. In practical applications for which the quantity of 
available data is limited, it is found that a Bayesian treatment generally outperforms other approaches.

42.3.7  Preprocessing, Invariances, and Prior Knowledge

We have already seen that neural networks can approximate essentially arbitrary nonlinear functional 
mappings between sets of variables. In principle, we could therefore use a single network to transform 
the raw input variables into the required final outputs. However, in practice, for all but the simplest 
problems, the results of such an approach can be improved upon considerably by incorporating various 
forms of preprocessing, for reasons we shall outline in the following.

One of the simplest and most common forms of preprocessing consists of a simple normalization of 
the input, and possibly also target, variables. This may take the form of a linear rescaling of each input 
variable independently to give it zero mean and unit variance over the training set. For some applica-
tions, the original input variables may span widely different ranges. Although a linear rescaling of the 
inputs is equivalent to a different choice of first-layer weights, in practice the optimization algorithm 
may have considerable difficulty in finding a satisfactory solution when typical input values are sub-
stantially different. Similar rescaling can be applied to the output values, in which case the inverse of 
the transformation needs to be applied to the network outputs when the network is presented with new 
inputs. Preprocessing is also used to encode data in a suitable form. For example, if we have categorical 
variables such as red, green, and blue, these may be encoded using a 1-of-3 binary representation.

Another widely used form of preprocessing involves reducing the dimensionality of the input space. 
Such transformations may result in loss of information in the data, but the overall effect can be a sig-
nificant improvement in performance as a consequence of the curse of dimensionality discussed in the 
complexity control section. The finite dataset is better able to specify the required mapping in the lower 
dimensional space. Dimensionality reduction may be accomplished by simply selecting a subset of the 
original variables but more typically involves the construction of new variables consisting of linear or 
nonlinear combinations of the original variables called features. A standard technique for dimensionality 
reduction is principal component analysis (Anderson 1984). Such methods, however, make use only of 
the input data and ignore the target values and can sometimes be significantly suboptimal.

Yet another form of preprocessing involves correcting deficiencies in the original data. A common 
occurrence is that some of the input variables are missing for some of the data points. Correction of this 
problem in a principled way requires that the probability distribution p(x) of input data be modeled.

One of the most important factors determining the performance of real-world applications of neu-
ral networks is the use of prior knowledge, which is information additional to that present in the data. 
As an example, consider the problem of classifying handwritten digits discussed in Section 42.1. The 
most direct approach would be to collect a large training set of digits and to train a feedforward net-
work to map from the input image to a set of 10 output values representing posterior probabilities for 
the 10 classes. However, we know that the classification of a digit should be independent of its posi-
tion within the input image. One way of achieving such translation invariance is to make use of the 
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technique of shared weights. This involves a network architecture having many hidden layers in which 
each unit takes inputs only from a small patch, called a receptive field, of units in the previous layer. By 
a process of constraining neighboring units to have common weights, it can be arranged that the output 
of the network is insensitive to translations of the input image. A further benefit of weight sharing is that 
the number of independent parameters is much smaller than the number of weights, which assists with 
the problem of model complexity. This approach is the basis for the highly successful US postal code 
recognition system of LeCun et al. (1989). An alternative to shared weights is to enlarge the training set 
artificially by generating virtual examples based on applying translations and other transformations to 
the original training set (Poggio and Vetter 1992).

42.4  Graphical Models

Neural networks express relationships between variables by utilizing the representational language 
of graph theory. Variables are associated with nodes in a graph, and transformations of variables are 
based on algorithms that propagate numerical messages along the links of the graph. Moreover, the 
graphs are often accompanied by probabilistic interpretations of the variables and their interrelation-
ships. As we have seen, such probabilistic interpretations allow a neural network to be understood as a 
form of a probabilistic model and reduce the problem of learning the weights of a network to a problem 
in statistics.

Related graphical models have been studied throughout statistics, engineering, and AI in recent 
years. HMMs, Kalman filters, and path analysis models are all examples of graphical probabilistic mod-
els that can be fitted to data and used to make inferences. The relationship between these models and 
neural networks is rather strong; indeed, it is often possible to reduce one kind of model to the other. In 
this section, we examine these relationships in some detail and provide a broader characterization of 
neural networks as members of a general family of graphical probabilistic models.

Many interesting relationships have been discovered between graphs and probability distributions 
(Pearl 1988, Spiegelhalter et al. 1993). These relationships derive from the use of graphs to represent 
conditional independencies among random variables. In an undirected graph, there is a direct cor-
respondence between conditional independence and graph separation: random variables Xi and Xk 
are conditionally independent given Xj if nodes Xi and Xk are separated by node Xj (we use the symbol 
Xi to represent both a random variable and a node in a graph). This statement remains true for sets of 
nodes (see Figure 42.5a). Directed graphs have a somewhat different semantics due to the ability of 
directed graphs to represent induced dependencies. An induced dependency is a situation in which 
two nodes that are marginally independent become conditionally dependent given the value of a third 
node. (see Figure 42.5b). Suppose, for example, that Xi and Xk represent independent coin tosses, and 
Xj represents the sum of Xi and Xk. Then Xi and Xk are marginally independent but are conditionally 

Xi

Xi

Xj

XjXl

Xk

Xk

(a) (b)

FIGURE 42.5  (a) An undirected graph in which Xi is independent of Xj given Xk and Xl, and Xk is independent 
of Xl given Xi and Xj. (b) A directed graph in which Xi and Xk are marginally independent but are conditionally 
dependent given Xj.
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dependent given Xj. The semantics of independence in directed graphs is captured by a graphical crite-
rion known as d-separation (Pearl 1988), which differs from undirected separation only in those cases 
in which paths have two arrows arriving at the same node (as in Figure 42.5b).

Although the neural network architectures that we have discussed until now all have been based on 
directed graphs, undirected graphs also play an important role in neural network research. Constraint 
satisfaction architectures, including the Hopfield network (Hopfield 1982) and the Boltzmann machine 
(Hinton and Sejnowski 1986), are the most prominent examples. A Boltzmann machine is an undi-
rected probabilistic graph that respects the conditional independency semantics previously described 
(cf. Figure 42.5a). Each node in a Boltzmann machine is a binary-valued random variable Xi (or, more 
generally, a discrete-valued random variable). A probability distribution on the 2N possible configura-
tions of such variables is defined via an energy function E. Let Jij be the weight on the link between Xi 
and Xj, let Jij = Jji, let α index the configurations, and define the energy of configuration α as follows:
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The probability of configuration α is then defined via the Boltzmann distribution:
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where the temperature T provides a scale for the energy.
An example of a directed probabilistic graph is the HMM. An HMM is defined by a set of state vari-

ables Hi, where i is generally a time or a space index, a set of output variables Oi, a probability transition 
matrix A = p(Hi|Hi−1), and an emission matrix B = p(Oi|Hi). The directed graph for an HMM is shown in 
Figure 42.6a. As can be seen from considering the separatory properties of the graph, the conditional 
independencies of the HMM are defined by the following Markov conditions:

	 H H O H O O H i Ni i i i i⊥ ≤ ≤− − − −{ , , , , , } | ,1 1 2 2 1 1 2… 	 (42.36)

and

	 O H O H O H i Ni i i i⊥ ≤ ≤− −{ , , , , } | ,1 1 1 1 2… 	 (42.37)

where the symbol ⊥ is used to denote independence.

H1 H2 H3 H4

O1 O2 O3 O4

H1 H2 H3 H4

O1 O2 O3 O4
(a) (b)

FIGURE 42.6  (a) A directed graph representation of an HMM. Each horizontal link is associated with the tran-
sition matrix A, and each vertical link is associated with the emission matrix B. (b) An HMM as a Boltzmann 
machine. The parameters on the horizontal links are logarithms of the entries of the A matrix, and the parameters 
on the vertical links are logarithms of the entries of the B matrix. The two representations yield the same joint prob-
ability distribution.
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Figure 42.6b shows that it is possible to treat an HMM as a special case of a Boltzmann machine 
(Luttrell 1989, Saul and Jordan 1995). The probabilistic structure of the HMM can be captured by 
defining the weights on the links as the logarithms of the corresponding transition and emission proba-
bilities. The Boltzmann distribution (Equation 42.35) then converts the additive energy into the product 
form of the standard HMM probability distribution. As we will see, this reduction of a directed graph 
to an undirected graph is a recurring theme in the graphical model formalism.

General mixture models are readily viewed as graphical models (Buntine 1994). For example, the 
unconditional mixture model of Equation 42.2 can be represented as a graphical model with two 
nodes—a multinomial hidden node, which represents the selected component, a visible node repre-
senting x, with a directed link from the hidden node to the visible node (hidden/visible distinction dis-
cussed subsequently). Conditional mixture models (Jacobs et al. 1991) simply require another visible 
node with directed links to the hidden node and the visible nodes. Hierarchical conditional mixture 
models (Jordan and Jacobs 1994) require a chain of hidden nodes, one hidden node for each level of 
the tree.

Within the general framework of probabilistic graphical models, it is possible to tackle general 
problems of inference and learning. The key problem that arises in this setting is the problem of 
computing the probabilities of certain nodes, which we will refer to as hidden nodes, given the 
observed values of other nodes, which we will refer to as visible nodes. For example, in an HMM, the 
variables Oi are generally treated as visible, and it is desired to calculate a probability distribution 
on the hidden states Hi. A similar inferential calculation is required in the mixture models and the 
Boltzmann machine.

Generic algorithms have been developed to solve the inferential problem of the calculation of pos-
terior probabilities in graphs. Although a variety of inference algorithms have been developed, they 
can all be viewed as essentially the same underlying algorithm (Shachter et al. 1994). Let us consider 
undirected graphs. A special case of an undirected graph is a triangulated graph (Spiegelhalter et al. 1993), 
in which any cycle having four or more nodes has a chord. For example, the graph in Figure 42.5a is 
not triangulated but becomes triangulated when a link is added between nodes Xi and Xj. In a trian-
gulated graph, the cliques of the graph can be arranged in the form of a junction tree, which is a tree 
having the property that any node that appears in two different cliques in the tree also appears in 
every clique on the path that links the two cliques (the “running intersection property”). This cannot 
be achieved in nontriangulated graphs. For example, the cliques in Figure 42.5a are {Xi, Xk}, {Xk, Xj}, 
{Xj, Xl}, and it is not possible to arrange these cliques into a tree that obeys the running intersection 
property. If a chord is added, the resulting cliques are {Xi, Xj, Xk} and {Xi, Xj, Xl}, and these cliques 
can be arranged as a simple chain that trivially obeys the running intersection property. In general, 
it turns out that the probability distributions corresponding to triangulated graphs can be charac-
terized as decomposable, which implies that they can be factorized into a product of local functions 
(potentials) associated with the cliques in the triangulated graph.* The calculation of posterior prob-
abilities in decomposable distributions is straightforward and can be achieved via a local message-
passing algorithm on the junction tree (Spiegelhalter et al. 1993). Graphs that are not triangulated 
can be turned into triangulated graphs by the addition of links. If the potentials on the new graph are 
defined suitably as products of potentials on the original graph, then the independencies in the original 
graph are preserved. This implies that the algorithms for triangulated graphs can be used for all undi-
rected graphs; an untriangulated graph is first triangulated (see Figure 42.7). Moreover, it is possible 
to convert directed graphs to undirected graphs in a manner that preserves the probabilistic structure 
of the original graph (Spiegelhalter et al. 1993). This implies that the junction tree algorithm is indeed 
generic; it can be applied to any graphical model.

*	 An interesting example is a Boltzmann machine on a triangulated graph. The potentials are products of exp(Jij) factors, 
where the product is taken over all (i, j) pairs in a particular clique. Given that the product across potentials must be the 
joint probability, this implies that the partition function (the denominator of Equation 42.35) must be unity in this case.
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The problem of calculating posterior probabilities on graphs is NP-hard; thus, a major issue in the 
use of the inference algorithms is the identification of cases in which they are efficient. Chain struc-
tures such as HMMs yield efficient algorithms, and indeed the classical forward–backward algorithm 
for HMMs is a special, efficient case of the junction tree algorithm (Smyth et al. 1996). Decision 
tree structures such as the hierarchical mixture of experts yield efficient algorithms, and the recur-
sive posterior probability calculation of Jordan and Jacobs (1994) described earlier is also a special 
case of the junction tree algorithm. All of the simpler mixture model calculations described earlier 
are therefore also special cases. Another interesting special case is the state estimation algorithm 
of the Kalman filter (Shachter and Kenley 1989). Finally, there are a variety of special cases of the 
Boltzmann machine, which are amenable to the exact calculations of the junction tree algorithm 
(Saul and Jordan 1995).

For graphs that are outside of the tractable categories of trees and chains, the junction tree algorithm 
often performs surprisingly well, but for highly connected graphs, the algorithm can be too slow. In 
such cases, approximate algorithms such as Gibbs sampling are utilized. A virtue of the graphical 
framework is that Gibbs sampling has a generic form, which is based on the notion of a Markov boundary 
(Pearl 1988). A special case of this generic form is the stochastic update rule for general Boltzmann 
machines.

Our discussion has emphasized the unifying framework of graphical models both for expressing 
probabilistic dependencies in graphs and for describing algorithms that perform the inferential step of 
calculating posterior probabilities on these graphs. The unification goes further, however, when we con-
sider learning. A generic methodology known as the EM algorithm is available for MAP and Bayesian 
estimation in graphical models (Dempster et al. 1977). EM is an iterative method, based on two alter-
nating steps: an E step, in which the values of hidden variables are estimated, based on the current 
values of the parameters and the values of visible variables, and an M step, in which the parameters 
are updated, based on the estimated values obtained from the E step. Within the framework of the EM 
algorithm, the junction tree algorithm can readily be viewed as providing a generic E step. Moreover, 
once the estimated values of the hidden nodes are obtained from the E step, the graph can be viewed as 
fully observed, and the M step is a standard MAP or ML problem. The standard algorithms for all of 
the tractable architectures described (mixtures, trees, and chains) are, in fact, instances of this general 
graphical EM algorithm, and the learning algorithm for general Boltzmann machines is a special case 
of a generalization of EM known as GEM (Dempster et al. 1977).

What about the case of feedforward neural networks such as the MLP? It is, in fact, possible to 
associate binary hidden values with the hidden units of such a network (cf. our earlier discussion of 
the logistic function; see also Amari 1995) and apply the EM algorithm directly. For N hidden units, 
however, there are patterns whose probabilities must be calculated in the E step. For large N, this is an 
intractable computation, and recent research has therefore begun to focus on fast methods for approxi-
mating these distributions (Hinton et al. 1995, Saul et al. 1996).
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XiXjXk
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FIGURE 42.7  The basic structure of the junction tree algorithm for undirected graphs. The graph in (a) is first 
triangulated (b), then the cliques are identified (c), and arranged into a tree (d). Products of potential functions on 
the nodes in (d) yield probability distributions on the nodes in (a).
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Key Terms

Boltzmann machine: An undirected network of discrete-valued random variables, where an energy 
function is associated with each of the links, and for which a probability distribution is defined 
by the Boltzmann distribution.

Classification: A learning problem in which the goal is to assign input vectors to one of a number of 
(usually mutually exclusive) classes.

Cost function: A function of the adaptive parameters of a model whose minimum is used to define suit-
able values for those parameters. It may consist of a likelihood function and additional terms.

Decision tree: A network that performs a sequence of classificatory decisions on an input vector and 
produces an output vector that is conditional on the outcome of the decision sequence.

Density estimation: The problem of modeling a probability distribution from a finite set of examples 
drawn from that distribution.

Discriminant function: A function of the input vector that can be used to assign inputs to classes in a 
classification problem.

Hidden Markov model: A graphical probabilistic model characterized by a state vector, an output vec-
tor, a state transition matrix, an emission matrix, and an initial state distribution.

Likelihood function: The probability of observing a particular dataset under the assumption of a given 
parametrized model, expressed as a function of the adaptive parameters of the model.

Mixture model: A probability model that consists of a linear combination of simpler component prob-
ability models.

Multilayer perceptron: The most common form of neural network model, consisting of successive lin-
ear transformations followed by processing with nonlinear activation functions.

Overfitting: The problem in which a model that is too complex captures too much of the noise in the 
data, leading to poor generalization.

Radial basis function network: A common network model consisting of a linear combination of basis func-
tions, each of which is a function of the difference between the input vector and a center vector.

Regression: A learning problem in which the goal is to map each input vector to a real-valued output vector.
Regularization: A technique for controlling model complexity and improving generalization by the 

addition of a penalty term to the cost function.
VC dimension: A measure of the complexity of a model. Knowledge of the VC dimension permits an 

estimate to be made of the difference between performance on the training set and performance 
on a test set.

Further Information

In this chapter, we have emphasized the links between neural networks and statistical pattern recogni-
tion. A more extensive treatment from the same perspective can be found in Bishop (1995). For a view of 
recent research in the field, the Proceedings of the Annual Neural Information Processing Systems (NIPS), 
MIT Press, and conferences are highly recommended.

Neural computing is now a very broad field, and there are many topics that have not been discussed 
for lack of space. Here, we aim to provide a brief overview of some of the more significant omissions and 
to give pointers to the literature.

The resurgence of interest in neural networks during the 1980s was due in large part to work on the sta-
tistical mechanics of fully connected networks having symmetric connections (i.e., if unit i sends a connec-
tion to unit j, then there is also a connection from unit j back to unit i with the same weight value). We have 
briefly discussed such systems; a more extensive introduction to this area can be found in Hertz et al. (1991).

The implementation of neural networks in specialist very large-scale integrated (VLSI) hardware has 
been the focus of much research, although by far the majority of work in neural computing is under-
taken using software implementations running on standard platforms.
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An implicit assumption throughout most of this chapter is that the processes that give rise to the data 
are stationary in time. The techniques discussed here can readily be applied to problems such as time 
series forecasting, provided this stationarity assumption is valid. If, however, the generator of the data 
is itself evolving with time, then more sophisticated techniques must be used, and these are the focus of 
much current research (see Bengio 1996).

One of the original motivations for neural networks was as models of information processing in bio-
logical systems such as the human brain. This remains the subject of considerable research activity, and 
there is a continuing flow of ideas between the fields of neurobiology and of artificial neural networks. 
Another historical springboard for neural network concepts was that of adaptive control, and again this 
remains a subject of great interest.
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43.1  Introduction

An important goal of cognitive science is to understand human cognition. Good models of cognition can 
be predictive—describing how people are likely to react in different scenarios—as well as prescriptive—
describing limitations in cognition and potential ways in which the limitations might be overcome. In a 
sense, the benefits of having cognitive models are similar to the benefits individuals accrue in building 
their own internal model. To quote Craik (1943):

If the organism carries a “small-scale model” of external reality and of its own possible actions 
within its head, it is able to try out various alternatives, conclude which is the best of them, react to 
future situations before they arise, utilize the knowledge of past events in dealing with the present 
and future, and in every way to react in a much fuller, safer, and more competent manner to the 
emergencies which face it. (p. 61)

Among the important questions facing cognitive scientists are how such models are created and how 
they are represented internally. The Craik quote emphasizes the importance of the predictive power of 
models, and the ultimate measure of a model’s value is the model’s predictive accuracy. One important 
value of computers in cognitive science is that computer simulations provide a means to instantiate 
theories and to concretely test their predictive power. Furthermore, implementation of a theory in 
a computer model forces theoreticians to face practical issues that they may never have otherwise 
considered.

The role of computer science in cognitive modeling is not strictly limited to implementation and 
testing, however. A core belief of most cognitive scientists is that cognition is a form of computation 
(otherwise, computer modeling is a doomed enterprise), and the study of computation has long been 
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a source of ideas (and material for debates) for building cognitive models. Computers themselves once 
served as the dominant metaphor for cognition. In more recent years, the influence of computers 
has been more in the area of computational paradigms, such as rule-based systems, neural network 
models, etc.

43.2  Underlying Principles

One of the dangers faced by computer scientists in building cognitive models is falling under the 
spell of trying to apply computational models directly to cognition. A good example of this is the 
“mind as computer” metaphor that was once popular but has fallen into disfavor. Computer science 
offers a range of computational tools designed to solve problems, and it is tempting to apply these tools 
to psychological data and call the result a cognitive model. As McCloskey (1991) has pointed out, this 
falls far short of the criteria that could reasonably be used to define a theory of cognition. One replace-
ment for the “mind as computer” metaphor makes this point well. Neurally inspired models of cognition 
fell out of favor following Minsky and Papert (1969) showed that the dominant neural models at the 
time were unable to model nonlinear functions (notably exclusive-or). The extension of these models 
by the parallel distributed processing (PDP) group in 1986 (Rumelhart and McClelland, 1986) is largely 
responsible for the connectionist revolution for the past 25 years. The excitement generated by these 
models was twofold: (1) they were computationally powerful and simple to use, and (2) as neural-level 
models, they appeared to be physiologically plausible.

A major difficulty for connectionist theory for the past 25 years has been that, despite the fact that 
the early PDP-style models (particularly models built upon feed-forward back-propagation networks) 
were proven to be implausible for both physiological and theoretical reasons (e.g., see Lachter and Bever, 
1988; Newell, 1990), many cognitive models are still built using such discredited computational engines. 
The reason for this appears to be simple convenience. Back-propagation networks, for example, can 
approximate virtually any function and are simple to train. Because any set of psychological data can be 
viewed as a function that maps an input to a behavior, and because feed-forward back-propagation net-
works can approximate virtually any function, it is hardly surprising that such networks can “model” an 
extraordinary range of psychological phenomena. Indeed, because of the versatility of these networks, 
a running joke in the machine learning community is that “neural networks are the second best way 
to do anything.” To put this in another way, many cognitive models are written in computer languages 
like C. Although such models may accurately characterize a huge range of data on human cognition, 
no one would argue that the C programming language is a realistic model of human cognition. Feed-
forward neural networks seem to be a better candidate for a cognitive model because of some of their 
features: they intrinsically learn, they process information in a manner reminiscent of neurons, etc. In 
any regard, this suggests that the criteria for judging the merits of a cognitive model must include many 
more constraints than whether or not the model is capable of accounting for a given data set. While 
issues such as how information is processed are useful for judging models, they are also crucial for 
constructing models.

There are a number of sources and types of constraints used in cognitive modeling. These break 
down relatively well by the disciplines that comprise the field. In practice, most cognitive models draw 
constraints from some, but not all, of these disciplines. In broad terms, the data for cognitive mod-
els come from psychology. “Hardware” constraints come from neuroscience. “Software” constraints 
come from computer science, which also provides methodologies for validation and testing. Two 
related fields that are relatively new, and therefore tend to provide softer constraints, are evolutionary 
psychology and environmental psychology. The root idea of each of these fields is that the evolution 
process, and especially the environmental conditions that took place during evolution, are crucially 
important to the kind of brain that we now have. We will examine the impact of each field on cognitive 
modeling in turn.
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43.2.1  Psychology

The ultimate test of any cognitive theory is whether or not it can correctly predict human behavior. 
Psychology as a field is responsible for the vast majority of data on human behavior. Over the last cen-
tury, the source of this data has evolved from mere introspection on the part of theorists to rigorous 
laboratory experimentation. Normally, the goal of psychological experiments is to isolate a particular 
cognitive factor; for example, the number of items a person can hold in short-term memory. In general, 
this isolation is used as a means of reducing complexity. In principle, this means that cognitive theories 
can be constructed piecewise instead of out of whole cloth. It would be fair to say that the majority of 
work in cognitive science proceeds on this principle. A fairly typical paper in a cognitive science confer-
ence proceeding, for example, will present a set of psychological experiments on some specific area of 
cognition, a model to account for the data, and computer simulations of the model.

43.2.2  Neuroscience

The impact of neuroscience on cognitive science has grown dramatically in conjunction with the influ-
ence of neural models in the past 25 years. Unfortunately, terms such as “neurally plausible” have been 
applied fairly haphazardly in order to lend an air of credibility to models. In response, some critics have 
argued that neurons are not well understood enough to be productively used as part of cognitive theory. 
Nevertheless, though the low level details are still being studied, neuroscience can provide a rich source 
of constraints and information for cognitive modelers. Within the field, there are several different types 
of architectural constraint available. These include the following:

	 1.	 Information flow. We have learned from neuroscientists, for example, that the visual system is 
divided into two distinct parts, a “what” system for object identification and a “where” system for 
determining spatial locations. This suggests computational models of vision should have similar 
properties. Furthermore, these constraints can be used to drive cognitive theory as with the PLAN 
model of human cognitive mapping (Chown et al., 1995). In PLAN, it was posited that humans 
navigate in two distinct ways, each corresponding to one of the visual pathways. Virtually all 
theories of cognitive mapping had previously included a “what” component based upon topologi-
cal collections of landmarks, but none had a good theory of how more metric representations are 
constructed. The split in the visual system led the developers of PLAN to theorize that metric 
representations would have simple “where” objects as their basic units. This led directly to a rep-
resentation built out of “scenes,” which are roughly akin to snapshots. Models based on scenes or 
views have since become commonplace in the human navigation literature.

	 2.	 Modularity. A great deal of work in neuroscience goes toward understanding the kinds of pro-
cessing done by particular areas of the brain, such as the hippocampus. These studies can range 
from working with patients with brain damage to intentionally lesioning animal brains. In recent 
years, noninvasive imaging techniques such as functional magnetic resonance imaging (fMRI) 
have revolutionized the role of neuroscience in cognitive modeling because they can be used 
directly on humans. While fMRI cannot provide neuroscientists with information on individual 
neurons, it can track neural activity across relatively small regions of the brain. This work has pro-
vided a picture of the brain far more complex than the simple “right brain-left brain” distinction 
of popular psychology.

The usefulness of fMRI, especially in conjunction with computer science, is exemplified by the 
work of Just et al. (2010) that examines the question of how and where concepts are represented 
in the brain. Subjects were presented words, generally concrete nouns for three seconds at a time 
with rest periods in between. During this time, the subjects were monitored by fMRI and were 
told to generate a set of properties for each item that the participants were free to choose for 
themselves. Once the data was collected, a variety of techniques were used to analyze it, notably 
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including a number of standard machine learning approaches. The results were remarkable and 
showed, for example, a commonality of patterns across the individuals tested. The authors con-
cluded that not only do people store concepts in particular places in the brain but that these 
concepts are represented similarly enough across the population that one person’s concept repre-
sentation can be predicted by using other people’s activation patterns.

	 3.	 Mechanisms. Numerous data are simpler to make sense of in the context of neural processing 
mechanisms. A good example of this would be the Necker cube. From a pure information process-
ing point of view, there is no reason that people would only be able to hold one view of the cube in 
their mind at a time. From a neural point of view, on the other hand, the perception of the cube 
can be seen as a competitive process with two mutually inhibitory outcomes. Perceptual theory is 
an area that has particularly benefited from a neural viewpoint.

	 4.	 Timing. Perhaps the most famous constraint on cognitive processing offered by neuroscience is 
the “100 step rule.” This rule is based upon looking at timing data of perception and the firing rate 
of neurons. From these, it has been determined that no perceptual algorithm could be more than 
100 steps long (though the algorithm could be massively parallel as the brain itself is).

43.2.3  Computer Science

Aside from providing the means to implement and simulate models of cognition, computer science has 
also provided constraints on models through limits drawn from the theory of computation and has been 
a source of algorithms for modelers.

One of the biggest debates in the cognitive modeling community is whether or not computers are 
even capable of modeling human intelligence. Critics, normally philosophers, point to the limitations on 
what is computable and have gone as far as suggesting that the mind may not be computational. While 
some find these debates interesting, they do not actually have a significant impact on the enterprise of 
modeling. On the other hand, there have been theoretical results from computational theory that have 
had a huge impact on the development of cognitive models. Probably, the best example of this is the 
previously mentioned work done by Minsky and Papert on Perceptrons (1969). They showed that per-
ceptrons, which are a simple kind of neural network, are not capable of modeling nonlinear functions 
(including exclusive-or). This result effectively ended the majority of neural network research for more 
than a decade until the PDP group developed far more powerful neural network models (Rumelhart 
and McClelland, 1986).

43.2.4  Evolutionary and Environmental Psychology

In recent years, two branches of psychology have come to prominence as providing alternate sources 
of constraints based upon evolution, and in particular, the kinds of environments in which humans 
evolved. Evolutionary psychology is most often associated with the work of Tooby and Cosmides 
(e.g. Tooby and Cosmides, 1992) while environmental psychology is often associated with the work of 
Steve and Rachel Kaplan (e.g. Kaplan and Kaplan, 1989). What both of these fields have in common 
is a belief that the brain should not be studied in a vacuum, that some types of context are extremely 
meaningful.

In the case of evolutionary psychology, the context is provided by evolution. As has been noted in 
many places, systems that are evolved rather than designed tend to end up looking like the work of a 
“tinkerer.” The eye is a well-known example of a system that is poorly “designed” but is nonetheless 
functional and can be understood as a series of successive improvements, each adding functional-
ity to the previous iteration (Dawkins, 1986). This example captures the core tenets of evolutionary 
psychology—that evolution tends to work in piecemeal fashion with each change adding functional-
ity to what existed previously. This does not tend to be a hard constraint on cognitive models, as it 
can be argued that the evolutionary story behind any particular theory simply has yet to be found. 
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Nevertheless, the evolutionary view provides a powerful way to think about how pieces of the cogni-
tive system came about and for what purpose.

As the name would suggest, work in environmental psychology focuses on the environment as a 
source of constraints. Most environmental psychologists focus their research on how people interact 
with different kinds of environments and how to use this knowledge to design better spaces. Another 
branch of the field, however, has noted that the environment adds additional meaningful context to 
evolutionary history. The evolutionary history of the brain is a story of information processing mecha-
nisms that evolved to address the specific needs of our ancestors. The human ability to represent and 
reason about large-scale space, for example, allowed our ancestors to forage and hunt over large areas of 
savanna. In turn, once these spatial abilities were in place, they were available for the greater cognitive 
system and impact cognition of virtually every type (Chown, 1999). The importance in understanding 
the evolutionary environments that the brain developed in is highlighted by the work of the Kaplans 
and their colleagues. The Kaplans have shown, for example, that people will recover more quickly in 
hospitals with views of nature, perform better in workplaces with views of trees, etc. (for reviews see 
Kaplan, 1993; Kaplan and Peterson, 1993). This is a clear indicator that people do not treat information 
neutrally. More recently, this work has been extended to look at the impact of different kinds of informa-
tion on attention and self-regulation (Kaplan and Berman, 2010). The authors make the case that certain 
kinds of attention are resource limited and that the depletion of these resources has negative cognitive 
consequences. Meanwhile, certain kinds of activity, for example, walking in nature, can actually sup-
port the replenishment of the lost resources. Work of this sort undercuts theories of cognition based on 
rationality and can help to explain many of the supposed shortcomings in human reasoning.

43.3 R esearch Issues

Since so much about cognition is still not well understood, this section will focus on two of the key 
debates driving research in the field. These include: (1) is the brain a symbol processor, or does it need to 
be modeled in neural terms? (2) Should the field be working on grand theories of cognition or is it better 
to proceed on a reductionist path?

43.3.1 A re We Symbol Processors?

The connectionist revolution brought a new way of thinking to cognitive science. The critical idea is 
rather simple—that since the “hardware” of the brain is neural, then models of the brain should be 
described in neural terms. Lending credence to this position were a series of neural models that had a 
number of attractive properties that seemed notably lacking in symbolic models of the time (e.g., content 
addressable memory, graceful degradation, etc. [Rumelhart and McClelland, 1986]). On the face of it, the 
argument for neural models seems unassailable given that the brain is a neural system. Symbolists, nota-
bly Newell (1990) and Fodor and Plyshen (1988) have attacked these models on a number of grounds. 
Their arguments are based upon the idea that the brain, like any complex system, is hierarchical. Neural 
models, so the argument goes, provide appropriate computational descriptions for only the lowest levels 
of the cognitive hierarchy. From the point of view of the symbolists, these levels of cognition are also 
less well understood and not as interesting from a behavioral point of view as the so-called cognitive 
band (Newell, 1990). From this point of view, the operation of the cognitive band is nothing like a 
neural network, but is much more like a traditional symbol system. The argument is akin to finding the 
appropriate level at which to study computers. It is possible, and occasionally necessary, to look at the 
performance of a computer from the point of view of gates. When trying to understand the performance 
of a complicated piece of software, however, it is much more appropriate to study the performance at the 
level of a high level programming language.

The argument for symbolic models comes from computational theory. It is based upon the idea 
of computational equivalence. Since symbolic models are Turing-complete, they are equivalent 
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computationally to any other Turing-complete model. Along these lines, a number of efforts have been 
made to implement symbolic models in neural hardware. The case can then be made that this is exactly 
what the brain does. Symbolists see this equivalence as freeing them from the need to worry about 
mechanisms. Even so, the impact of connectionism and the capability of neural models for pattern rec-
ognition have led even strongly symbolic models like Soar (Laird et al., 1987) to use neural networks as 
pattern recognizers to obtain the symbols.

The freeing up from the constraints of mechanisms has been something of a double-edged sword 
for symbolic models. On the one hand, symbolic models are easily implemented on computers and 
relatively easy to expand, debug, etc. Furthermore, in terms of high-level behavior, symbolic models 
have been shown to be capable of a much wider range of behaviors than their current connectionist 
counterparts. For example, Soar agents are capable of modeling the flying behaviors of combat pilots 
(Jones et al., 1999). On the other hand, critics have complained that systems like Soar are little more 
than symbolic programming languages. As noted earlier, while a computer running C may be Turing-
complete, it would be ridiculous to call it a model of human cognition. Clark (2001) refers to this as 
“surface mimicry” and points out that the Soar model is far more homogeneous than the “Swiss Army 
Knife” model suggested by Tooby and Cosmides (1992). The critics argue that symbolic models like Soar 
and ACT-R are under constrained, and therefore they cannot truly be called cognitive models. The lack 
of constraints goes even further than just mechanisms; symbolic models have also been attacked on 
evolutionary grounds. It is difficult to see how symbolic constructs like distal memory access could have 
evolved in any sort of piecemeal fashion.

There are several arguments that symbolists use against neural models. First is the “levels of model-
ing” argument. This argument posits that we simply do not understand the behavior of neurons well 
enough to construct credible models from them. To be fair, the majority of neural models do not model 
the behavior of individual neurons. Other attacks on connectionist models are based upon what current 
models cannot do. Popular connectionist models, such as feed-forward back-propagation networks, for 
example, exhibit a number of problems as memory models including “catastrophic forgetting” of old 
material when presented with new material (McCloskey and Cohen, 1989). While it is certainly appro-
priate to attack the individual models on these grounds, it is less so to attack the entire connectionist 
position based on the failure of even its most notable examples. Similarly, other criticisms of connec-
tionism have attacked the models as being nothing more than new versions of the discredited behavior-
ist position (Lachter and Bever, 1988). Again, this is certainly the case with many connectionist models, 
and should rightfully lead to a search for better models, but it cannot undermine the general position.

A more interesting criticism focuses upon the way that connectionists have pursued cognitive model-
ing. The argument is the same as the one against some of the symbolic programs. As McCloskey (1991) 
put it, connectionists often pursue a path of “simulation in search of theory” (p. 388). McCloskey argues 
that many of these simulations are little better than “black boxes.” Modelers do not provide insight into 
what aspects of the network are crucial to its performance with regard to the task. For example, if back-
propagation was used to train the network, is that a crucial step, or could another training regime have 
been used? If back-propagation were crucial, then it would undermine the model if back-propagation 
were found implausible on other grounds. In other words, connectionist systems are engaged in the 
same sort of “surface mimicry” as symbolic systems under the guise of “neural plausibility.” McCloskey 
goes on to complain that connectionist models generally fall short in describing how their networks 
elucidate the cognitive processes they purport to model. To put it simply, connectionist networks are 
not well understood enough to tell us exactly how they manage to accomplish what they are trained for.

So far in discussing connectionist systems, we have avoided discussing connectionist “symbols.” 
While it may be the case that connectionist units represent collections of neurons, they do not normally 
represent what most computer scientists would think of as symbols. There are, however, connectionist 
models that recognize the power of symbols as a basic unit of thought. Many of these models trace their 
lineage to the work of D.O. Hebb’s book The Organization of Behavior (1949). Hebb proposed that the 
“symbols” of thought were cell assemblies, tightly connected groups of neurons capable of functioning 
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as a unit because of their strong interconnections. The problem with cell assemblies, as originally for-
mulated by Hebb, was that all of the connections between neurons were positive and only became stron-
ger through learning. Hebb omitted inhibition because there was still no hard evidence of it at the time 
of publication. A later simulation of the cell assembly construct (Rochester et al., 1956) showed that 
without inhibition, activity in the simulated brain quickly grew out of control. Unfortunately, these 
results were sufficient to essentially stop research on cell assemblies for more than a decade, even though 
the same paper showed that with the addition of inhibition the cell assembly construct was viable. In 
recent years, however, the cell assembly idea has undergone a revival as researchers from a number of 
domains have proposed models based upon Hebb’s original idea but modified with modern under-
standings of neuroscience (Amit, 1995; deVries, 2004; Kaplan et al., 1991). Recent work of the sort done 
by Just et al. (2010) using fMRI to examine how concepts are represented in the brain has also supported 
Hebb’s position.

Neural models based upon cell assemblies purport to contain the best of both symbolic and connec-
tionist models. It is difficult to study sequence learning, for example, without something approximating 
a symbol to serve as a unit in the sequence. Furthermore, many connectionist systems do not address 
temporal issues at all. Conversely, symbolic models do not ground the symbols in any physical mecha-
nism nor are symbolic systems able to take advantage of the properties of neural hardware. Chown 
(2002), for example, has shown that some learning results that have defied conventional modeling for 
nearly 40 years can be fairly easily explained when basic neural properties are accounted for in a cell 
assembly-based model.

43.3.2  Grand Theories?

In his book Unified Theories of Cognition, Allen Newell (1990) called for a return to all-encompassing 
theories of mind called UTCs after the title of the book. Newell’s reasoning echoes McCloskey’s (1991) 
complaints about connectionism, which by operating at too small a scale, cognitive modelers have 
worked on under-constrained models. While it may be true, for example, that connectionist system X 
can model psychological data set Y, such models rarely address questions of how they would or could 
fit into a larger system. Modeling efforts such as these are sometimes attacked on the grounds that they 
are “doomed to succeed” in much the same way that models with too many parameters can fit all types 
of curves. Put another way, if a model is Turing complete, the question of whether or not it can be used 
to fit some data is not particularly interesting. The interesting question is whether or not there is actu-
ally evidence for it. McCloskey and others argue that for these reasons, theory should drive simulation 
rather than the other way around.

Ironically, the two most notable examples of UTCs, Soar and ACT-R, have been attacked on virtually 
the same grounds—that they are under-constrained. Both systems are built on the same assumption, 
which at higher levels of cognition the brain is a rule-based system. At the heart of each system is a pro-
duction system implementing the rule-base that serves as long-term memory. Since production systems 
are Turing-complete, they are capable of modeling anything. To be fair, however, Soar does make some 
key theoretical commitments that can be used to judge its merits. First and foremost, Soar is a symbol 
manipulation system with all that that implies. Second, in Soar deliberative, thought is equated to a 
search through a problem space. For example, Soar is equipped with all the basic weak search meth-
ods including breadth-first, depth-first, etc. At one time, another key constraint associated with Soar 
was that all learning came as the result of a single mechanism called “chunking” (Laird et al., 1984). 
It is not clear, however, from recent work in Soar that this is still held as a central tenet of the system. 
Furthermore, the Soar group seems to be retreating from positioning Soar as a model of human cogni-
tion and is instead focusing on Soar as a system capable of exhibiting “human-level” intelligence.

Soar and ACT-R have both been attacked for their commitment to production systems. This criticism 
actually pre-dates either system and is most famously associated with the philosopher Hubert Dreyfus 
(1972). The Dreyfus position is that systems based upon rules are too brittle to account for the richness of 
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human behavior. For example, Dreyfus discusses how knowledge about the health of a jockey’s mother 
might influence how a bettor would make a wager. It seems unlikely that the bettor would have explicit 
rules dealing with such a situation, and yet humans are capable of dealing with such situations with 
ease. The response to this criticism has been to test it explicitly, either with Doug Lenat’s CYC (Lenat 
and Feigenbaum, 1992), which aims to capture enough knowledge to perform common sense reasoning, 
or with the Soar program, which builds more and more complex agents capable of difficult tasks such 
as flying jet airplanes in combat situations. In part, Dreyfus’s criticisms can also be addressed by noting 
that rules need not all be specified at the same level of generality. For example, while a system for betting 
on horses might contain many specific rules concerning the records of horses and jockeys, a general 
cognitive system might reasonably be expected to include rules such as “when something traumatic 
happens to a person they will not perform at normal levels.” Of course, this raises further questions of 
how such rules are learned, how patterns such as “something traumatic” are recognized, etc. Dreyfus 
would argue that this leads to an endless cycle for any reasonably complex task.

There are also connectionist programs that work at the level of large theories of cognition. Steven 
Grossberg, for example, has produced a huge body of work that have never been explicitly put forth 
as a UTC but which when viewed as a whole have many of the same principles. Probably, the best 
example of this work is the adaptive resonance theory (ART) model developed in conjunction with 
Gail Carpenter (see Carpenter and Grossberg, 1987). The SESAME group, operating mainly out of the 
University of Michigan is also working on a cognitive architecture (Kaplan et al., 1991). The SESAME 
architecture is based on the cell assembly and is also the only cognitive architecture to include a com-
plete theory of spatial processing (Chown et al., 1995).

43.4  Best Practices

As the previous sections suggest, there are a number of pitfalls involved in putting together a cognitive 
model. History has shown that there are two problems that crop up again and again. The first is the 
danger of constructing a simulation without theoretically motivating the details. This is akin to the old 
saying that “if you have a big enough hammer everything looks like a nail.” There is a related danger 
that once a simulation works (or at least models the data), it is often difficult to say why. Together, these 
dangers suggest that there should be a close relationship between theory and the simulation process. 
The goal of a simulation should not be simply to model a dataset, but should also be to elucidate the 
theory. For example, some connectionist models propose a number of mechanisms as being central to 
understanding a particular process. These models can be systematically “damaged” by disabling the 
individual mechanisms. In many cases, the damage to the model can be equated to damage to individu-
als. This provides a second dataset to model, and provides solid evidence of what the mechanism does in 
the simulation. Alternatively, models can be built piecewise mechanism by mechanism. Each new piece 
of the simulation would correspond to a new theoretical mechanism aiming to address some shortcom-
ing of the previous iteration. This motivates each mechanism and helps to clearly delineate its role in 
the overall simulation. In the SESAME group, this style of simulation has been termed “the systematic 
exploitation of failure” by one of its members, Abraham Kaplan.

One of the earliest examples of this approach was done by Booker (1982) in an influential work that 
has helped shape the adaptive systems paradigm. In an adaptive systems paradigm, a simple creature is 
placed in a microworld where the goal is survival. Creatures are successively altered (and sometimes the 
environments are as well) by adding and subtracting mechanisms. In each case, the success of the new 
mechanism can be judged by improvements in the survival rate of the organism. In addition to provid-
ing a way to motivate theoretical mechanisms, this paradigm is also essentially the same one used for 
the development of genetic algorithms.

The Soar architecture is probably the preeminent symbolic cognitive architecture. Soar is based upon 
a number of crucial premises that constrain all models written in Soar (which can be considered a kind 
of programming environment). First, Soar, like its major competition ACT-R, is a rule-based system 
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implemented as a production system. In the Soar paradigm, the production rules represent long-term 
memory and knowledge. One effect of a production firing in Soar can be to put new elements into 
working memory, Soar’s version of short-term memory. For example, a Soar system might contain a 
number of perceptual productions that aim to identify different types of aircraft. When a production 
fires, it might create a structure in working memory to represent the aircraft it identifies. This structure 
in turn might cause further productions to fire. Soar enforces a kind of hierarchy through the use of a 
subgoaling system. Productions can be written to apply generally or might only match when a certain 
goal is active. The combination of goals and productions forms a problem space that provides the basic 
framework for any task. Finally, the Soar architecture contains a single mechanism for learning called 
“chunking.” Essentially, Soar systems learn when they reach an impasse generally created by not being 
able to match any productions. When impasses occur, Soar can apply weak search methods to the prob-
lem space in order to discover what to do. Once a solution is found, a new production or “chunk” is 
created to apply to the situation.

Here is an example of a Soar production taken from the Soar tutorial (Laird, 2003). In this example, 
the agent is driving a tank in a battle exercise.

sp {wander*propose*move
      (state <s> ∧ name wander
              ∧io.input-linked-blocked.forward no)
––>
      (<s>    ∧operator <o> + =)
      (<o>    ∧name move
              ∧actions.move.direction forward)
}

In the example, “sp” stands for “Soar production” and starts every production. The production is 
named “wander*propose*move.” The elements that come before the arrow represent the “if” part of the 
production. In this case, the production fires only if the current subgoal is to wander and the forward 
direction is not blocked (input comes from a specialized structure tagged ^io). The elements that come 
after the arrow represent the “then” parts of the production. In this case, a new working memory ele-
ment is created to represent the operator for moving forward. In a typical production cycle, productions 
are matched in parallel and can propose operators such as the move operator in this case. Then other 
productions can be used to select among the proposed operators. This selection can be based upon vir-
tually any criteria; for example, cognitive productions may be selected over more reactive productions. 
Production matching can be done in parallel to simulate the parallelism of the brain.

Both the Soar and ACT-R communities are engaged in programs of simulating more and more 
human behavior. These simulations can be done at the level of models of simple psychological experi-
ments, or, as is increasingly the case, they can simulate human performance on complex tasks such as 
flying airplanes. The implicit argument is that if they can simulate anything that humans can do then 
they must be modeling human cognition. On one level, this argument has merit, if either architecture 
can accurately simulate human performance, then it can be used in a predictive fashion. Tac-air Soar 
(Jones et al., 1999), for example, simulates the performance of combat pilots and is used to train new 
pilots in a more cost-effective way than if experienced pilots had to be used. On the other hand, equiva-
lent functionality is not the same thing as equivalence. As noted previously, critics point out that both 
Soar and ACT-R are essentially Turing-complete programming environments and therefore are capable 
of simulating any computable function given clever enough programmers. The fact that both systems 
still rely heavily on clever programming is still a major limitation with regard to being considered a fully 
realized model of human cognition. Although Soar’s initial success was due in large part to its learning 
mechanism, for example, little progress has been made within the Soar community in building agents 
that exhibit any sort of developmental patterns. It is much simpler to build a Soar system that can fly 
planes than one that can learn to fly planes.
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Gail Carpenter, Stephen Grossberg and their associates have also attacked a wide range of problems, 
but have done so with much more of an eye toward cognitive theory than applications. While Carpenter 
and Grossberg have not explicitly developed a unified theory of cognition, they have modeled a remark-
able range of cognitive processes and have done so using an approach more sympathetic to a systems 
view of cognition than is typical in connectionist modelers. A good example of this approach can be 
found in their ART (Carpenter and Grossberg, 1987; Grossberg, 1987). Superficially, ART looks similar 
to many connectionist learning systems in that it is essentially a classification system, but it was devel-
oped to specifically address many of the shortcomings of such models. A feature vector is the input to 
Art, which uses it to provide a classification of the input. For example, a typical task would be to rec-
ognize hand-written numbers. The features would consist of the presence or absence of a pen stroke at 
different spatial locations.

One of the problems that ART was designed to address was what Grossberg (1987) referred to as the 
“stability-plasticity” dilemma. This is essentially a problem of how much new knowledge should impact 
what has been learned before. For example, a system that has been trained to recognize horses might 
have a problem when confronted with a zebra. The system could either change its representation of 
horses to include zebras or it could create a separate representation for zebras. This is a significant issue 
for neural network models because they achieve a great deal of their power by having multiple represen-
tations share structure. Such sharing is useful for building compact representations and for automatic 
abstraction, but it also means that new knowledge tends to constantly overwrite what has come before. 
Among the problems this raises is “catastrophic forgetting” as mentioned previously.

The stability-plasticity dilemma was addressed, in part, in ART through the introduction of a vigi-
lance parameter that adaptively changed according to how well the system was performing. In some 
cases, for example, the system would be extremely vigilant and would require an unusually high degree 
of match before it would recognize an input as being familiar. In cases where inputs were not recognized 
as familiar, novel structure was created to form a new category or prototype. Such a new category would 
not share internal structure directly with previously learned categories. Essentially when vigilance is 
high, the system creates “exemplars” or very specialized categories, whereas when vigilance is low, ART 
will create “prototypes” that generalize across many instances. This makes ART systems attractive since 
they do not commit fully either to exemplar or prototype models, but can exhibit properties of both, as 
seems to be the case with human categorization.

In ART systems, an input vector activates a set of feature cells within an attentional system, essen-
tially storing the vector in short-term memory. These in turn activate corresponding pathways in a 
bottom-up process. The weights in these pathways represent long-term memory traces and act to pass 
activity to individual categories. The degree of activation of a category represents an estimate that the 
input is an example of the category. In the meantime, the categories send top-down information back 
to the features as a kind of hypothesis test. The vigilance parameter defines the criteria for whether the 
match is good enough. When a match is established, the bottom-up and top-down signals are locked 
into a “resonant” state, and this in turn triggers learning, is incorporated into consciousness, etc.

It is important to note that ART, unlike many connectionist learning systems, is unsupervised—it 
learns the categories without any teaching signals.

A number of extensions have followed the original ART, including ART1, ART2, ART3, and 
ARTMAP. Grossberg has also tied it to his FACADE model in a system called ARTEX (Grossberg and 
Williamson, 1999). These models vary in features and complexity but share intrinsic theoretical prop-
erties. All of the ART models are self-organizing (i.e., unsupervised, though ARTMAP systems can 
include supervised learning) and consist of an attentional and an orienting subsystem. A fundamental 
property of any ART system (and many other connectionist systems) is that perception is a competitive 
process. Different learned patterns generate expectations that essentially compete against each other. 
Meanwhile, the orienting system controls whether or not such expectations sufficiently match the input-
in other words it acts as a novelty detector.
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The ART family of models demonstrate many of the reasons why working with connectionist models 
can be so attractive. Among them:

•	 The neural computational medium is natural for many processes including perception. Funda
mental ideas such as representations competing against each other (including inhibiting each 
other) are often difficult to capture in a symbolic model. In a system like ART, on the other hand, 
a systemic property like the level of activation of a unit can naturally fill many roles from the 
straightforward transmission of information to providing different measures of the goodness of 
fit of various representations to input data.

•	 The architecture of the brain is a source of both constraints and ideas. Parameters, such as ART’s 
vigilance parameter, can be linked directly to real brain mechanisms such as the arousal system. 
In this way, what is known about the arousal system provides clues as to the necessary effects of 
the mechanism in the model and provides insight into how the brain handles fundamental issues 
such as the plasticity-stability dilemma.

43.5  Summary

Unlike many disciplines in computer science, there are no provably correct algorithms for building cog-
nitive models. Progress in the field is made through a process of successive approximation. Models are 
continually proposed and rejected; and with each iteration of this process, the hope is that the models 
come closer to a true approximation of the underlying cognitive structure of the brain. It should be clear 
from the preceding sections that there is no “right” way to do this.

Improvements in cognitive models come from several sources. In many cases, improvements result 
from an increased understanding of some aspect of cognition. For example, neuroscientists are con-
stantly getting new data on how neurons work, how they are connected, what parts of the brain process 
what types of information, etc. In the meantime, models are implemented on computers and on robots. 
These implementations provide direct feedback about model quality and shortcomings. This feedback 
often will lead to revisions in the models and sometimes may even drive further experimental work. 
Because of the complexity of cognition and the number of interactions amongst parts of the brain, it is 
rarely the case that definitive answers can be found; which is not to say that cognitive scientists do not 
reach consensus on any issues. Over time, for example, evidence has accumulated that there are multiple 
memory systems operating at different time-scales. While many models have been proposed to account 
for this, there is general agreement on the kinds of behavior that those models need to be able to display. 
This represents real progress in the field because it eliminates whole classes of models that could not 
account for the different time-scales. The constraints provided by data and by testing models work to 
continually narrow the field of prospective models.

Key Terms

Back-propagation: A method for training neural networks based upon gradient descent. An error sig-
nal is propagated backward from output layers toward the input layer through the network.

Cognitive band: In Newell’s hierarchy of cognition, the cognitive band is the level at which deliberate 
thought takes place.

Cognitive map: A mental model. Often, but not exclusively, used for models of large-scale space.
Connectionist: A term used to describe neural network models. The choice of the term is meant to 

indicate that the power of the models comes from the massive number of connections between 
units within the model.

Content addressable memory: Memory that can be retrieved by descriptors. For example, people can 
remember a person when given a general description of the person.
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Feed forward: Neural networks are often constructed in a series of layers. In many models, information 
flows from an input layer toward an output layer in one direction. Models in which the infor-
mation flows in both directions are called recurrent.

Graceful degradation: The principle that small changes in the input to a model, or that result from 
damage to a model, should result in only small changes to the model’s performance. For exam-
ple, adding noise to a model’s input should not break the model.

Necker cube: A three-dimensional drawing of a cube drawn in such a way that either of the two main 
squares that comprise the drawing can be viewed as the face closest to the viewer.

UTC: Unified Theory of Cognition.
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Further Information

There are numerous journals and conferences on cognitive modeling. Probably, the best place to 
start is with the annual conference of the Cognitive Science Society. This conference takes place 
in a different city each summer. The Society also has an associated journal, Cognitive Science. 
Information on the journal and the conference can be found at the society’s homepage at http://
www.cognitivesciencesociety.org.

Because of the lag-time in publishing journals, conferences are often the best place to get the latest 
research. Among other conferences, Neural Information Processing Systems (NIPS) is one of the best 
for work specializing in neural modeling. The Simulation of Adaptive Behavior conference is excellent 
for adaptive systems. It has an associated journal as well, Adaptive Behavior.

A good place for anyone interested in cognitive modeling to start is Allen Newell’s book, Unified 
Theories of Cognition. While a great deal of the book is devoted to Soar, the first several chapters lay 
out the challenges and issues facing any cognitive modeler. Another excellent starting point is Dana 
Ballard’s 1999 book, An Introduction to Natural Computation. Ballard emphasizes neural models, and 
his book provides good coverage on most of the major models in use. Andy Clark’s 2001 book, Mindware: 
An Introduction to the Philosophy of Cognitive Science, covers much of the same ground as this article, 
but in greater detail, especially with regard to the debate between connectionists and symbolists.
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44.1  Introduction

This chapter surveys the development of graphical models known as Bayesian networks, summarizes 
their semantical basis, and assesses their properties and applications to reasoning and planning.

Bayesian networks are directed acyclic graphs (DAGs) in which the nodes represent variables of inter-
est (e.g., the temperature of a device, the gender of a patient, a feature of an object, the occurrence of 
an event), and the links represent causal influences among the variables. The strength of an influence is 
represented by conditional probabilities that are attached to each cluster of parent–child nodes in the 
network.

Figure 44.1 illustrates a simple yet typical Bayesian network. It describes the causal relationships 
among the season of the year (X1), whether rain falls (X2) during the season, whether the sprinkler is 
on (X3) during that season, whether the pavement would get wet (X4), and whether the pavement would 
be slippery (X5). All variables in this figure are binary, taking a value of either true or false, except the 
root variable X1 that can take one of four values: spring, summer, fall, or winter. Here, the absence of a 
direct link between X1 and X5, for example, captures our understanding that the influence of seasonal 
variations on the slipperiness of the pavement is mediated by other conditions (e.g., the wetness of 
the pavement).
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As this example illustrates, a Bayesian network constitutes a model of the environment rather than, 
as in many other knowledge representation schemes (e.g., logic, rule-based systems, and neural net-
works), a model of the reasoning process. It simulates, in fact, the causal mechanisms that operate in 
the environment and thus allows the investigator to answer a variety of queries, including associational 
queries, such as “Having observed A, what can we expect of B?”; abductive queries, such as “What is 
the most plausible explanation for a given set of observations?”; and control queries, such as “What will 
happen if we intervene and act on the environment?” Answers to the first type of query depend only on 
probabilistic knowledge of the domain, while answers to the second and third types rely on the causal 
knowledge embedded in the network. Both types of knowledge, associative and causal, can effectively 
be represented and processed in Bayesian networks.

The associative facility of Bayesian networks may be used to model cognitive tasks such as object 
recognition, reading comprehension, and temporal projections. For such tasks, the probabilistic basis 
of Bayesian networks offers a coherent semantics for coordinating top–down and bottom–up infer-
ences, thus bridging information from high-level concepts and low-level percepts. This capability is 
important for achieving selective attention, that is, selecting the most informative next observation 
before actually making the observation. In certain structures, the coordination of these two modes of 
inference can be accomplished by parallel and distributed processes that communicate through the 
links in the network.

However, the most distinctive feature of Bayesian networks, stemming largely from their causal orga-
nization, is their ability to represent and respond to changing configurations. Any local reconfiguration 
of the mechanisms in the environment can be translated, with only minor modification, into an isomor-
phic reconfiguration of the network topology. For example, to represent a disabled sprinkler, we simply 
delete from the network all links incident to the node “sprinkler.” To represent a pavement covered by a 
tent, we simply delete the link between “rain” and “wet.” This flexibility is often cited as the ingredient 
that marks the division between deliberative and reactive agents, and that enables the former to manage 
novel situations instantaneously, without requiring retraining or adaptation.

44.2  Historical Background

Networks employing DAGs have a long and rich tradition, starting with the geneticist Sewall Wright 
(1921). Wright (1921) developed a method called path analysis (Wright, 1934), which later became 
an established representation of causal models in economics (Wold, 1964), sociology (Blalock, 1971; 
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FIGURE 44.1  A Bayesian network representing causal influences among five variables.
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Kenny, 1979), and psychology (Duncan, 1975). Good (1961) used DAGs to represent causal hierarchies 
of binary variables with disjunctive causes. Influence diagrams represent another application of DAG 
representation (Howard and Matheson, 1981). Developed for decision analysis, they contain both event 
nodes and decision nodes. Recursive models is the name given to such networks by statisticians seek-
ing meaningful and effective decompositions of contingency tables (Lauritzen, 1982; Wermuth and 
Lauritzen, 1983; Kiiveri et al., 1984).

The role of the network in the applications previously mentioned was primarily to provide an efficient 
description for probability functions; once the network was configured, all subsequent computations 
were pursued by symbolic manipulation of probability expressions. The potential for the network to 
work as a computational architecture, and hence as a model of cognitive activities, was noted in Pearl 
(1982), where a distributed scheme was demonstrated for probabilistic updating on tree-structured net-
works. The motivation behind this particular development was the modeling of distributed process-
ing in reading comprehension (Rumelhart, 1976), where both top–down and bottom–up inferences are 
combined to form a coherent interpretation. This dual mode of reasoning is at the heart of Bayesian 
updating and in fact motivated Reverend Bayes’ original 1763 calculations of posterior probabilities 
(representing explanations), given prior probabilities (representing causes), and likelihood functions 
(representing evidence).

Bayesian networks have not attracted much attention in the logic and cognitive modeling circles, 
but they did in expert systems. The ability to coordinate bidirectional inferences filled a void in 
expert systems technology in the late 1970s, and it is in this area that Bayesian networks truly 
f lourished. Over the past 10 years, Bayesian networks have become a tool of great versatility and 
power, and they are now the most common representation scheme for probabilistic knowledge 
(Neapolitan, 1990; Spiegelhalter et al., 1993; Darwiche, 2009; Koller and Friedman, 2009). They 
have been used to aid in the diagnosis of medical patients (Andersen et al., 1989; Geiger et al., 1990; 
Heckerman, 1991; Jiang and Cooper, 2010) and malfunctioning systems (Fenton and Neil, 2012); to 
understand stories (Charniak and Goldman, 1991); to retrieve documents (de Campos et al., 2004); 
to interpret pictures (Levitt et al., 1990); to perform filtering, smoothing, and prediction (Weiss 
and Pearl, 2010); to analyze gene expressions (Friedman et al., 2000), genetic counseling (Uebersax, 
2004), semantic search (Koumenides and Shadbolt, 2012), error-correcting codes (McEliece et al., 
1998), and speech recognition (Zweig, 1998); to facilitate planning in uncertain environments 
(Guestrin, 2003; Beaudry et al., 2010); and to study causation, nonmonotonicity, action, change, 
and attention. Some of these applications are described in Pearl (1988) Russell and Norvig (2003), 
and Buede (2009).

44.3  Bayesian Networks as Carriers of Probabilistic Information

44.3.1  Formal Semantics

Given a DAG G and a joint distribution P over a set X = {X1,…, Xn} of discrete variables, we say that G 
represents P if there is a one-to-one correspondence between the variables in X and the nodes of G, such 
that P admits the recursive product decomposition

	
P x x P xn i i

i

( , , )1 … = ( )∏ pa 	 (44.1)

where pai are the direct predecessors (called parents) of Xi in G. For example, the DAG in Figure 44.1 
induces the decomposition

	
P x x x x x P x P x x P x x P x x x P x x( , , , , ) ( ) ,1 2 3 4 5 1 2 1 3 1 4 2 3 5 4= ( ) ( ) ( ) ( ) 	 (44.2)
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The recursive decomposition in Equation 44.1 implies that, given its parent set pai, each variable Xi is 
conditionally independent of all its other predecessors {X1, X2, …, Xi − 1}\pai. Using Dawid’s notation 
(Dawid, 1979), we can state this set of independencies as

	 X X X X i ni i i i� … …{ , , , } , ,1 2 1 2− =\pa pa 	 (44.3)

Such a set of independencies is called Markovian, since it reflects the Markovian condition for state 
transitions: each state is rendered independent of the past, given its immediately preceding state. For 
example, the DAG of Figure 44.1 implies the following Markovian independencies:

	
X X X X X X X X X X X X X X2 1 3 2 1 4 1 2 3 5 1 2 3 40� � � �   { } , , , , , ,{ } { } 	 (44.4)

In addition to these, the decomposition of Equation 44.1 implies many more independencies, the 
sum total of which can be identified from the DAG using the graphical criterion of d-separation 
(Pearl, 1988):

Definition 44.1  (d-separation)

Let a path in a DAG be a sequence of consecutive edges, of any directionality. A path p is said to be 
d-separated (or blocked) by a set of nodes Z iff

	 1.	 p contains a chain i → j → k or a fork i ← j → k such that the middle node j is in Z, or
	 2.	 p contains an inverted fork i → j ← k such that neither the middle node j nor any of its descen-

dants (in G) are in Z

If X, Y, and Z are three disjoint subsets of nodes in a DAG G, then Z is said to d-separate X from Y, 
denoted ( ) ,X Y Z G�  iff Z d-separates every path from a node in X to a node in Y.

In Figure 44.1, for example, X = {X2} and Y = {X3} are d-separated by Z = {X1}; the path X2 ← X1 → X3 
is blocked by X1 ∈ Z, while the path X2 → X4 ← X3 is blocked because X4 and all its descendants 
are outside Z. Thus, ( )X X X G2 3 1�  holds in Figure 44.1. However, X and Y are not d-separated by 
Z′ = {X1, X5}, because the path X2 → X4 ← X3 is rendered active by virtue of X5, a descendant of X4, 
being in Z′. Consequently, ( ){ , }X X X X G2 3 1 5�   does not hold; in words, learning the value of the con-
sequence X5 renders its causes X2 and X3 dependent, as if a pathway were opened along the arrows 
converging at X4.

The d-separation criterion has been shown to be both necessary and sufficient relative to the set 
of distributions that are represented by a DAG G (Geiger et al., 1990; Verma and Pearl, 1990). In 
other words, there is a one-to-one correspondence between the set of independencies implied by the 
recursive decomposition of Equation 44.1 and the set of triples (X, Z, Y) that satisfy the d-separation 
criterion in G. Furthermore, the d-separation criterion can be tested in time linear in the num-
ber of edges in G. Thus, a DAG can be viewed as an efficient scheme for representing Markovian 
independence assumptions and for deducing and displaying all the logical consequences of such 
assumptions.

An important property that follows from the d-separation characterization is a criterion for deter-
mining when two dags are observationally equivalent, that is, every probability distribution that is rep-
resented by one of the dags is also represented by the other:
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Theorem 44.1

(Verma and Pearl, 1990) Two dags are observationally equivalent if and only if they have the same sets of 
edges and the same sets of v-structures, that is, head-to-head arrows with nonadjacent tails.

The soundness of the d-separation criterion holds not only for probabilistic independencies but for 
any abstract notion of conditional independence that obeys the semi-graphoid axioms (Pearl et al., 1990; 
Verma and Geiger, 1990). Additional properties of DAGs and their applications to evidential reasoning 
in expert systems are discussed in Pearl (1988, 1993a), Pearl et al. (1990), Geiger (1990), Lauritzen and 
Spiegelhalter (1988), Spiegelhalter et al. (1993), Darwiche (2009), and Lauritzen (1996).

44.3.2  Inference Algorithms

The first algorithms proposed for probability updating in Bayesian networks used message-passing 
architecture and were limited to trees (Pearl, 1982) and singly connected networks (Kim and Pearl, 1983). 
The idea was to assign each variable a simple processor, forced to communicate only with its neighbors, 
and to permit asynchronous back-and-forth message-passing until equilibrium was achieved. Coherent 
equilibrium can indeed be achieved this way, but only in singly connected networks, where an equilib-
rium state occurs in time proportional to the diameter of the network.

Many techniques have been developed and refined to extend the tree-propagation method to general, 
multiply connected networks. Among the most popular are Schachter’s (1988) method of node elimi-
nation, Lauritzen and Spiegelhalter’s (1988) method of clique-tree propagation, loop-cut conditioning 
(Pearl, 1988, Section 44.4.3), and iterative conditioning (Dechter, 1999; Darwiche, 2009).

Clique-tree propagation works as follows. Starting with a directed network representation, the network 
is transformed into an undirected graph that retains all of its original dependencies. This graph, some-
times called a Markov network (Pearl, 1988, Section 44.3.1), is then triangulated to form local clusters of 
nodes (cliques) that are tree-structured. Evidence propagates from clique to clique by ensuring that the 
probability of their intersection set is the same, regardless of which of the two cliques is considered in the 
computation. Finally, when the propagation process subsides, the posterior probability of an individual 
variable is computed by projecting (marginalizing) the distribution of the hosting clique onto this variable.

Whereas the task of updating probabilities in general networks is NP-hard (Rosenthal, 1975; Cooper, 
1990), the complexity for each of the three methods cited earlier is exponential in the size of the largest 
clique found in some triangulation of the network. It is fortunate that these complexities can be estimated 
prior to actual processing; when the estimates exceed reasonable bounds, an approximation method such 
as stochastic simulation (Pearl, 1987; Henrion, 1988) and belief propagation (Weiss and Pearl, 2010) can 
be used instead. Learning techniques have also been developed for systematic updating of the conditional 
probabilities P(xi|pai) so as to match empirical data (Spiegelhalter and Lauritzen, 1990; Darwiche, 2009).

44.3.3  System’s Properties

By providing graphical means for representing and manipulating probabilistic knowledge, Bayesian 
networks overcome many of the conceptual and computational difficulties of earlier knowledge-based 
systems (Pearl, 1988). Their basic properties and capabilities can be summarized as follows:

	 1.	 Graphical methods make it easy to maintain consistency and completeness in probabilistic 
knowledge bases. They also define modular procedures of knowledge acquisition that reduce sig-
nificantly the number of assessments required (Pearl, 1988; Heckerman, 1991).

	 2.	 Independencies can be dealt with explicitly. They can be articulated by an expert, encoded graph-
ically, read off the network, and reasoned about, yet they forever remain robust to numerical 
imprecision (Geiger, 1990; Geiger et al., 1990; Pearl et al., 1990).
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	 3.	 Graphical representations uncover opportunities for efficient computation. Distributed updat-
ing is feasible in knowledge structures that are rich enough to exhibit intercausal interactions 
(e.g., “explaining away”) (Pearl, 1982; Kim and Pearl, 1983). And, when extended by clustering or 
conditioning, tree-propagation algorithms are capable of updating networks of arbitrary topology 
(Shachter, 1986; Lauritzen and Spiegelhalter 1988; Pearl, 1988).

	 4.	 The combination of predictive and abductive inferences resolves many problems encountered by 
first-generation expert systems and renders belief networks a viable model for cognitive functions 
requiring both top–down and bottom–up inferences (Pearl, 1988; Shafer and Pearl, 1990).

	 5.	 The causal information encoded in Bayesian networks facilitates the analysis of action sequences, 
their consequences, their interaction with observations, their expected utilities, and, hence, the 
synthesis of plans and strategies under uncertainty (Dean and Wellman, 1991; Pearl, 1993b, 1994b).

	 6.	 The isomorphism between the topology of Bayesian networks and the stable mechanisms that 
operate in the environment facilitates modular reconfiguration of the network in response to 
changing conditions and permits deliberative reasoning about novel situations.

44.3.4  Later Developments

44.3.4.1  Causal Discovery

One of the most exciting prospects in recent years has been the possibility of using the theory of Bayesian 
networks to discover causal structures in raw statistical data. Several systems have been developed for 
this purpose (Rebane and Pearl, 1987; Pearl and Verma, 1991; Spirtes et al., 1993, 2000), which system-
atically search and identify causal structures with hidden variables from empirical data. Technically, 
because these algorithms rely merely on conditional independence relationships, the structures found 
are valid only if one is willing to accept weaker forms of guarantees than those obtained through 
controlled randomized experiments: minimality and stability (Pearl and Verma, 1991; Pearl, 2000, 
Chapter 2). Minimality guarantees that any other structure compatible with the data is necessarily less 
specific, and hence less falsifiable and less trustworthy, than the one(s) inferred. Stability ensures that 
any alternative structure compatible with the data must be less stable than the one(s) inferred; namely, 
slight fluctuations in experimental conditions will render that structure no longer compatible with the 
data. With these forms of guarantees, the theory provides criteria and algorithms for identifying genu-
ine and spurious causes, with or without temporal information.

Alternative methods of identifying structure in data assign prior probabilities to the parameters 
of the network and use Bayesian updating to score the degree to which a given network fits the data 
(Cooper and Herskovits, 1991; Heckerman et al., 1994). These methods have the advantage of operating 
well under small sample conditions, but encounter difficulties coping with hidden variables.

Tian and Pearl (2001a,b) developed yet another method of causal discovery based on the detection of 
“shocks,” or spontaneous local changes in the environment, which act like “nature’s interventions,” and 
unveil causal directionality toward the consequences of those shocks.

44.3.4.2  Plain Beliefs

In mundane decision making, beliefs are revised not by adjusting numerical probabilities but by tenta-
tively accepting some sentences as “true for all practical purposes.” Such sentences, often named plain 
beliefs, exhibit both logical and probabilistic character. As in classical logic, they are propositional and 
deductively closed; as in probability, they are subject to retraction and to varying degrees of entrench-
ment (Spohn, 1988; Goldszmidt and Pearl, 1992).

Bayesian networks can be adopted to model the dynamics of plain beliefs by replacing ordinary prob-
abilities with nonstandard probabilities, that is, probabilities that are infinitesimally close to either 
zero or one. This amounts to taking an “order of magnitude” approximation of empirical frequencies 
and adopting new combination rules tailored to reflect this approximation. The result is an integer-
addition calculus, very similar to probability calculus, with summation replacing multiplication and 
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minimization replacing addition. A plain belief is then identified as a proposition whose negation 
obtains an infinitesimal probability (i.e., an integer greater than zero). The connection between infini-
tesimal probabilities, nonmonotonic logic, and iterative belief revision is described in Pearl (1994a), 
Goldszmidt and Pearl (1996), Darwiche and Pearl (1997), and Spohn (2012).

This combination of infinitesimal probabilities with the causal information encoded by the structure 
of Bayesian networks facilitates linguistic communication of belief commitments, explanations, actions, 
goals, and preferences and serves as the basis for qualitative planning under uncertainty (Goldszmidt 
and Pearl, 1992; Pearl, 1993b; Darwiche and Goldszmidt, 1994; Darwiche and Pearl, 1994). Some of 
these aspects will be presented in the next section.

44.4  Bayesian Networks as Carriers of Causal Information

The interpretation of DAGs as carriers of independence assumptions does not necessarily imply causa-
tion and will in fact be valid for any set of Markovian independencies along any ordering (not neces-
sarily causal or chronological) of the variables. However, the patterns of independencies portrayed in 
a DAG are typical of causal organizations, and some of these patterns can only be given meaningful 
interpretation in terms of causation. Consider, for example, two independent events, E1 and E2, that 
have a common effect E3. This triple represents an intransitive pattern of dependencies: E1 and E3 are 
dependent, E3 and E2 are dependent, yet E1 and E2 are independent. Such a pattern cannot be represented 
in undirected graphs because connectivity in undirected graphs is transitive. Likewise, it is not easily 
represented in neural networks, because E1 and E2 should turn dependent once E3 is known. The DAG 
representation provides a convenient language for intransitive dependencies via the converging pattern 
E1 → E3 ← E2, which implies the independence of E1 and E2 as well as the dependence of E1 and E3 and 
of E2 and E3. The distinction between transitive and intransitive dependencies is the basis for the causal 
discovery systems of Pearl and Verma (1991) and Spirtes et al. (1993) (see Section 44.3.4.1).

However, the Markovian account still leaves open the question of how such intricate patterns of inde-
pendencies relate to the more basic notions associated with causation, such as influence, manipulation, 
and control, which reside outside the province of probability theory. The connection is made in the 
mechanism-based account of causation.

The basic idea behind this account goes back to structural equation models (Wright, 1921; Haavelmo, 
1943; Simon, 1953), and it was adapted in Pearl and Verma (1991) for defining probabilistic causal theo-
ries, as follows. Each child–parent family in a DAG G represents a deterministic function

	 X fi i i i= ( , )pa ε 	 (44.5)

where pai are the parents of variable Xi in G, and ϵi, 0 < i < n, are mutually independent, arbitrarily dis-
tributed random disturbances. Characterizing each child–parent relationship as a deterministic func-
tion, instead of the usual conditional probability P(xi|pai), imposes equivalent independence constraints 
on the resulting distributions and leads to the same recursive decomposition that characterizes DAG 
models (see Equation 44.1). However, the functional characterization Xi = fi(pai, ϵi) also specifies how 
the resulting distributions would change in response to external interventions, since each function is 
presumed to represent a stable mechanism in the domain and therefore remains constant unless specifi-
cally altered. Thus, once we know the identity of the mechanisms altered by the intervention and the 
nature of the alteration, the overall effect of an intervention can be predicted by modifying the appropri-
ate equations in the model of Equation 44.5 and using the modified model to compute a new probability 
function of the observables.

The simplest type of external intervention is one in which a single variable, say Xi, is forced to take on 
some fixed value ′xi . Such atomic intervention amounts to replacing the old functional mechanism Xi = 
fi(pai, ϵi) with a new mechanism X xi i= ′ governed by some external force that sets the value ′xi . If we imag-
ine that each variable Xi could potentially be subject to the influence of such an external force, then we 
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can view each Bayesian network as an efficient code for predicting the effects of atomic interventions 
and of various combinations of such interventions, without representing these interventions explicitly.

44.4.1  Causal Theories, Actions, Causal Effect, and Identifiability

Definition 44.2

A causal theory is a 4-tuple

	 T V U P fi= < >, , ( ), { }u

where
V = {X1,…, Xn} is a set of observed variables
U = {U1,…, Um} is a set of unobserved variables that represent disturbances, abnormalities, or assumptions
P(u) is a distribution function over U1, …, Un

{ fi} is a set of n deterministic functions, each of the form

	 X f PA u i ni i i= =( , ) ,.. .,1 	 (44.6)

where PAi is a subset of V not containing Xi.

The variables PAi (connoting parents) are considered the direct causes of Xi, and they define a directed 
graph G that may, in general, be cyclic. Unlike the probabilistic definition of “parents” in Bayesian 
networks (Equation 44.1), PAi is selected from V by considering functional mechanisms in the domain, 
not by conditional independence considerations. We will assume that the set of equations in (44.6) has 
a unique solution for Xi,…, Xn, given any value of the disturbances U1,…, Un. Therefore, the distribution 
P(u) induces a unique distribution on the observables, which we denote by PT(v).

We will consider concurrent actions of the form do(X = x), where X ⊆ V is a set of variables and x is 
a set of values from the domain of X. In other words, do(X = x) represents a combination of actions that 
forces the variables in X to attain the values x.

Definition 44.3  (effect of actions)

The effect of the action do(X = x) on a causal theory T is given by a subtheory Tx of T, where Tx obtains 
by deleting from T all equations corresponding to variables in X and substituting the equations X = x 
instead.

The framework provided by Definitions 44.2 and 44.3 permits the coherent formalization of many 
subtle concepts in causal discourse, such as causal influence, causal effect, causal relevance, average 
causal effect, identifiability, counterfactuals, and exogeneity. Examples are the following:

•	 X influences Y in context u if there are two values of X, x and x′, such that the solution for Y under 
U = u and do(X = x) is different from the solution under U = u and do(X = x′).

•	 X can potentially influence Y if there exist both a subtheory Tz of T and a context U = u in which 
X influences Y.

•	 Event X = x is the (singular) cause of event Y = y if (1) X = x and Y = y are true, and (2) in every context 
u compatible with X = x and Y = y, and for all x′ ≠ x, the solution of Y under do(X = x′) is not equal to y.
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The definitions earlier are deterministic. Probabilistic causality emerges when we define a probability 
distribution P(u) for the U variables, which, under the assumption that the equations have a unique 
solution, induces a unique distribution on the endogenous variables for each combination of atomic 
interventions.

Definition 44.4  (causal effect)

Given two disjoint subsets of variables, X ⊆ V and Y ⊆ V, the causal effect of X on Y, denoted PT(y|x̂), is 
a function from the domain of X to the space of probability distributions on Y, such that

	 P y x P yT Tx( ) ( )= 	 (44.7)

for each realization x of X. In other words, for each x ∈ dom(X), the causal effect PT(y|x̂) gives the distri-
bution of Y induced by the action do(X = x).

Note that causal effects are defined relative to a given causal theory T, though the subscript T is often 
suppressed for brevity.

Definition 44.5  (identifiability)

Let Q(T) be any computable quantity of a theory T; Q is identifiable in a class M of theories if for any pair 
of theories T1 and T2 from M, Q(T1) = Q(T2) whenever P v P vT T1 2( ) ( ).=

Identifiability is essential for estimating quantities Q from P alone, without specifying the details of T, 
so that the general characteristics of the class M suffice. The question of interest in planning applications 
is the identifiability of the causal effect Q = PT(y|x̂) in the class MG of theories that share the same causal 
graph G. Relative to such classes we now define

Definition 44.6  (causal-effect identifiability)

The causal effect of X on Y is said to be identifiable in MG if the quantity P(y|x̂) can be computed uniquely 
from the probabilities of the observed variables, that is, if for every pair of theories T1 and T2 in MG such 
that P v P vT T1 2( ) ( ),=  we have P x P xT T1 2( ) ( ).y y| |ˆ ˆ=

The identifiability of P(y|x̂) ensures that it is possible to infer the effect of action do(X = x) on Y from 
two sources of information:

	 1.	 Passive observations, as summarized by the probability function P(v)
	 2.	 The causal graph, G, which specifies, qualitatively, which variables make up the stable mecha-

nisms in the domain or, alternatively, which variables participate in the determination of each 
variable in the domain

Simple examples of identifiable causal effects will be discussed in the next section.
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44.4.2 A cting vs. Observing

Consider the example depicted in Figure 44.1. The corresponding theory consists of five functions, each 
representing an autonomous mechanism:

	

X U

X f X U

X f X U

X f X X U

X f X U

1 1

2 2 1 2

3 3 1 3

4 4 3 2 4

5 5 4 5

=

=

=

=

=

( , )

( , )

( , , )

( , ) 	 (44.8)

To represent the action “turning the sprinkler ON,” do(X3 = ON), we delete the equation X3 = f3(x1, u3) 
from the theory of Equation 44.8 and replace it with X3 = ON. The resulting subtheory, TX3= ON, contains 
all the information needed for computing the effect of the actions on other variables. It is easy to see 
from this subtheory that the only variables affected by the action are X4 and X5, that is, the descendant 
of the manipulated variable X3.

The probabilistic analysis of causal theories becomes particularly simple when two conditions are 
satisfied:

	 1.	 The theory is recursive, that is, there exists an ordering of the variables V = {X1, …, Xn} such that 
each Xi is a function of a subset PAi of its predecessors

	 X f P A U P A X Xi i i i i i= ⊆ −( , ), { ,..., }1 1 	 (44.9)

	 2.	 The disturbances U1, …, Un are mutually independent, that is,

	
P u P ui

i

( ) ( )=∏ 	 (44.10)

These two conditions, also called Markovian, are the bases of the independencies embodied in 
Bayesian networks (Equation 44.1), and they enable us to compute causal effects directly from the 
conditional probabilities P(xi|pai), without specifying the functional form of the functions fi, or the 
distributions P(ui) of the disturbances. This is seen immediately from the following observations: the 
distribution induced by any Markovian theory T is given by the product in Equation 44.1

	
P x x P xT n i i

i

1,...,( ) = ( )∏ pa 	 (44.11)

where pai are (values of) the parents of Xi in the diagram representing T. At the same time, the sub-
theory Tx j′ , representing the action do X xj j= ′( ), is also Markovian, hence it also induces a product-like 
distribution

	

P x x
P x

P x x

P x
x x
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i j

i i
n

i j
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

	 (44.12)
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where the partial product reflects the surgical removal of the

	 X f Uj j j j= ( , )pa

from the theory of equation (44.9) (see Pearl, 1993a).
In the example of Figure 44.1, the pre-action distribution is given by the product

	
P x x x x x P x P x x P x x P x x x P x xT ( , , , , ) ,1 2 3 4 5 1 2 1 3 1 4 2 3 5 4= ( ) ( ) ( ) ( ) ( ) 	 (44.13)

while the surgery corresponding to the action do(X3 = ON) amounts to deleting the link X1 → X3 from 
the graph and fixing the value of X3 to ON, yielding the post-action distribution

	
P x x x x do X P x P x x P x x x P x xT 1 2 4 5 3 1 2 1 4 2 3 5 4, , , ( ) ( ) ,=( ) = ( ) =( ) ( )ON ON 	 (44.14)

Note the difference between the action do(X3 = ON) and the observation X3 = ON. The latter is encoded 
by ordinary Bayesian conditioning, while the former by conditioning a mutilated graph, with the link 
X1 → X3 removed. This mirrors indeed the difference between seeing and doing: after observing that the 
sprinkler is ON, we wish to infer that the season is dry, that it probably did not rain, and so on; no such 
inferences should be drawn in evaluating the effects of the deliberate action “turning the sprinkler ON.” 
The amputation of X3 = f3(X1, U3) from (44.8) ensures the suppression of any abductive inferences from 
X3, the action’s recipient.

Note also that Equations 44.11 through 44.14 are independent of T; in other words, the pre-action 
and post-action distributions depend only on observed conditional probabilities but are independent 
of the particular functional form of { fi} or the distribution P(u) that generates those probabilities. This 
is the essence of identifiability as given in Definition 44.6, which stems from the Markovian assump-
tions (44.9) and (44.10). Section 44.4.3 will demonstrate that certain causal effects, though not all, are 
identifiable even when the Markovian property is destroyed by introducing dependencies among the 
disturbance terms.

Generalization to multiple actions and conditional actions is reported in Pearl and Robins (1995). 
Multiple actions do(X = x), where X is a compound variable, result in a distribution similar to (44.12), 
except that all factors corresponding to the variables in X are removed from the product in (44.11). 
Stochastic conditional strategies (Pearl, 1994b) of the form

	
do X x P xj j j j( ) * *= 





 with probability pa 	 (44.15)

where pa j
*  is the support of the decision strategy, also result in a product decomposition similar to 

(44.11), except that each factor P(xj|paj) is replaced with P x j j* * .pa





The surgical procedure described earlier is not limited to probabilistic analysis. The causal knowledge 
represented in Figure 44.1 can be captured by logical theories as well, for example,
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where xi stands for Xi = true, and abi and abi′ stand, respectively, for trigerring and inhibiting abnormali-
ties. The double arrows represent the assumption that the events on the r.h.s. of each equation are the 
only direct causes for the l.h.s, thus identifying the surgery implied by any action.

It should be emphasized though that the models of a causal theory are not made up merely of 
truth value assignments that satisfy the equations in the theory. Since each equation represents an 
autonomous process, the content of each individual equation must be specified in any model of the 
theory, and this can be encoded using either the graph (as in Figure 44.1) or the generic description 
of the theory, as in (44.8). Alternatively, we can view a model of a causal theory to consist of a mutu-
ally consistent set of submodels, with each submodel being a standard model of a single equation 
in the theory.

44.4.3 A ction Calculus

The identifiability of causal effects demonstrated in Section 44.4.1 relies critically on the Markovian 
assumptions (44.9) and (44.10). If a variable that has two descendants in the graph is unobserved, the 
disturbances in the two equations are no longer independent; the Markovian property (44.9) is violated 
and identifiability may be destroyed. This can be seen easily from Equation 44.12; if any parent of the 
manipulated variable Xj is unobserved, one cannot estimate the conditional probability P(xj|paj), and 
the effect of the action do(Xj = xj) may not be predictable from the observed distribution P(x1,…, xn). 
Fortunately, certain causal effects are identifiable even in situations where members of paj are unob-
servable (Pearl, 1993a), and, moreover, polynomial tests are now available for deciding when P(xi|x̂j) is 
identifiable and for deriving closed-form expressions for P(xi|x̂j) in terms of observed quantities (Galles 
and Pearl, 1995).

These tests and derivations are based on a symbolic calculus (Pearl, 1994a, 1995) to be described in 
the sequel, in which interventions, side by side with observations, are given explicit notation and are 
permitted to transform probability expressions. The transformation rules of this calculus reflect the 
understanding that interventions perform “local surgeries” as described in Definition 44.3, that is, they 
overrule equations that tie the manipulated variables to their pre-intervention causes.

Let X, Y, and Z be arbitrary disjoint sets of nodes in a DAG G. We denote by GX
– the graph obtained 

by deleting from G all arrows pointing to nodes in X. Likewise, we denote by GX–
 the graph obtained by 

deleting from G all arrows emerging from nodes in X. To represent the deletion of both incoming and 
outgoing arrows, we use the notation GX

–
Z–
. Finally, the expression P y x z P y z x P z xˆ, , ˆ ˆ( ) ( ) ( )�  stands 

for the probability of Y = y given that Z = z is observed and X is held constant at x.

Theorem 44.2

Let G be the directed acyclic graph associated with a Markovian causal theory, and let P(·) stand for the 
probability distribution induced by that theory. For any disjoint subsets of variables X, Y, Z, and W, we have

Rule 1 (Insertion/deletion of observations)

	
P y x z w P y x w if Y Z X W

GX

ˆ, , , ˆ, ,( )= ( ) 





� 	 (44.17)

Rule 2 (Action/observation exchange)

	
P y x z w P y x z w if Y Z X W

GX Z

ˆ, ˆ , , ˆ, , ,( )= ( ) 





� 	 (44.18)
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Rule 3 (Insertion/deletion of actions)

	
P y x z w P y x w if Y Z X W

GX Z W

ˆ, ˆ , , ˆ, ,
, ( )

( )= ( ) 





� 	 (44.19)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in GX
–.

Each of the inference rules presented earlier follows from the basic interpretation of the “x̂” operator 
as a replacement of the causal mechanism that connects X to its pre-action parents by a new mechanism 
X = x introduced by the intervening force. The result is a submodel characterized by the subgraph GX

– 
(named “manipulated graph” in Spirtes et al. (1993)) that supports all three rules.

Corollary 44.1

A causal effect q: P y y x xk m1 1, , , ,… …ˆ ˆ( ) is identifiable in a model characterized by a graph G if 
there exists a finite sequence of transformations, each conforming to one of the inference rules 
in Theorem  44.2, which reduces q into a standard (i.e., hat-free) probability expression involving 
observed quantities.

Although Theorem 44.2 and Corollary 44.1 require the Markovian property, they can also be applied 
to non-Markovian, recursive theories because such theories become Markovian if we consider the 
unobserved variables as part of the analysis and represent them as nodes in the graph. To illustrate, 
assume that variable X1 in Figure 44.1 is unobserved, rendering the disturbances U3 and U2 dependent 
since these terms now include the common influence of X1. Theorem 44.2 tells us that the causal effect 
P(x4|x̂3) is identifiable, because

	
P x x P x x x P x x

x

4 3 4 3 2 2 3

2

ˆ ˆ , ˆ( ) = ( ) ( )∑

Rule 3 permits the deletion

	
P x x P x X X

GX

2 3 2 2 3

3

ˆ ( ), because( ) = 





�

while Rule 2 permits the exchange

	
P x x x P x x x X X X

GX

4 3 2 4 3 2 4 3 2

3

ˆ , , , because( ) = ( ) 





�

This gives

	
P x x P x x x P x

x

4 3 4 3 2 2

2

ˆ , ( )( ) = ( )∑

which is a “hat-free” expression, involving only observed quantities.
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In general, it can be shown (Pearl, 1995) that

	 1.	 The effect of interventions can often be identified (from nonexperimental data) without resorting 
to parametric models

	 2.	 The conditions under which such nonparametric identification is possible can be determined by 
simple graphical tests*

	 3.	 When the effect of interventions is not identifiable, the causal graph may suggest nontrivial exper-
iments that, if performed, would render the effect identifiable

The ability to assess the effect of interventions from nonexperimental data has immediate applications 
in the medical and social sciences, since subjects who undergo certain treatments often are not repre-
sentative of the population as a whole. Such assessments are also important in AI applications where an 
agent needs to predict the effect of the next action on the basis of past performance records and where 
that action has never been enacted under controlled experimental conditions, but in response to envi-
ronmental needs or to other agent’s requests.

44.4.4 R ecent Developments

44.4.4.1  Complete Identification Results

A key identification condition, which operationalizes Theorem 44.2, has been derived by Jin Tian. 
It reads:

Theorem 44.3

(Tian and Pearl, 2002) A sufficient condition for identifying the causal effect P(y|do(x)) is that there 
exists no bidirected path (i.e., a path composed entirely of bidirected arcs) between X and any of its 
children.†

Remarkably, the theorem asserts that, as long as every child of X (on the pathways to Y) is not reach-
able from X via a bidirected path, then, regardless of how complicated the graph, the causal effect 
P(y|do(x)) is identifiable. In Figure 44.1, for example, adding unobserved confounders for the pairs 
(X1, X3), (X2, X4), (X3, X5), and (X2, X5) will still permit the identification of P(X5|x̂3), but adding (X2, X4) 
to this list will prohibit identification.

Tian and Pearl (2002) further showed that the condition is both sufficient and necessary for the iden-
tification of P(v|do(x)), where V includes all variables except X. A necessary and sufficient condition for 
identifying P(w|do(z)), with W and Z two arbitrary sets, was established by Shpitser and Pearl (2006b). 
Subsequently, a complete graphical criterion was established for determining the identifiability of con-
ditional interventional distributions, namely, expressions of the type P(y|do(x),z) where X,Y, and Z are 
arbitrary sets of variables (Shpitser and Pearl, 2006a).

These results constitute a complete characterization of causal effects in graphical models. They pro-
vide us with polynomial time algorithms for determining whether an arbitrary quantity invoking the 

*	 These graphical tests offer, in fact, a complete formal solution to the “covariate-selection” problem in statistics: finding 
an appropriate set of variables that need be adjusted for in any study that aims to determine the effect of one factor upon 
another. This problem has been lingering in the statistical literature since Karl Pearson, the founder of modern statistics, 
discovered (1899) what in modern terms is called the “Simpson’s paradox”; any statistical association between two vari-
ables may be reversed or negated by including additional factors in the analysis (Aldrich, 1995).

†	 Before applying this criterion, one may delete from the causal graphs all nodes that are not ancestors of Y.
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do(x) operator is identified in a given semi-Markovian model, and if so, what the estimand of that quan-
tity is. Remarkably, one corollary of these results also states that the do-calculus is complete, namely, 
a quantity Q = P(y|do(x), z) is identified if and only if it can be reduced to a do-free expression using 
the three rules of Theorem 44.2.* This turns Corollary 44.1 into an “if-and-only-if” assertion. Tian and 
Shpitser (2010) provide a comprehensive summary of these results.

44.4.5 T ransportability and Transfer Learning

In applications involving identification, the role of the do-calculus is to remove the do-operator from the 
query expression. We now discuss a totally different application, to decide if experimental findings can 
be transported to a new, potentially different environment, where only passive observations can be per-
formed. This problem, labeled “transportability” in Pearl and Bareinboim (2011), is at the heart of every 
scientific investigation. For example, experiments performed in the laboratory are invariably intended 
to be used elsewhere, where conditions differ substantially from the laboratory. A robot trained by a 
simulator should be able to use the knowledge acquired through training to a new environment, in 
which experiments are costly or infeasible.

To formalize problems of this sort, Pearl and Bareinboim devised a graphical representation called 
“selection diagrams” that encodes knowledge about differences and commonalities between popula-
tions. A selection diagram is a causal diagram annotated with new variables, called S-nodes, which 
point to the mechanisms where discrepancies between the two populations are suspected to take place. 
The task of deciding if transportability is feasible now reduces to a syntactic problem (using the do-
calculus) aiming to separate the do-operator from the S-variables.

Theorem 44.4

(Pearl and Bareinboim, 2011) Let D be the selection diagram characterizing two populations, π and π*, 
and S a set of selection variables in D. The relation R P y do x z= ( )* ( ),  is transportable from π and π* if 
and only if the expression P(y|do(x), z, s) is reducible, using the rules of do-calculus, to an expression in 
which S appears only as a conditioning variable in do-free terms.

Theorem 44.4 does not specify the sequence of rules leading to the needed reduction when such a 
sequence exists. Bareinboim and Pearl (2012) established a complete and effective graphical proce-
dure of confirming transportability that also synthesizes the transport formula whenever possible. 
Each transport formula determines for the investigator what information need to be taken from the 
experimental and observational studies and how they ought to be combined to yield an unbiased 
estimate of R.

A generalization of transportability theory to multi-environment has led to a principled solution 
to “meta-analysis.” “Meta-analysis” is a data fusion problem aimed at combining results from many 
experimental and observational studies, each conducted on a different population and under a different 
set of conditions, so as to synthesize an aggregate measure of effect size that is “better,” in some sense, 
than any one study in isolation. This fusion problem has received enormous attention in the health and 
social sciences, where data are scarce and experiments are costly (Pearl, 2012a,c).

Using multiple “selection diagrams” to encode commonalities among studies, Bareinboim and Pearl 
(2013) were able to “synthesize” an estimator that is guaranteed to provide unbiased estimate of the 
desired quantity based on information that each study shares with the target environment.

*	 This was independently established by Huang and Valtorta (2006).
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44.4.6  Inference with Missing Data

It is commonly assumed that causal knowledge is necessary only when interventions are contemplated 
and that in purely predictive tasks, probabilistic knowledge suffices. Not so. One predictive task in 
which causal information is essential and which have thus far been treated in purely statistical terms 
is the problem of drawing valid inferences from statistical data in which some items are “missing” or 
failed to be recorded.

The “missing data” problem is pervasive in machine learning and every experimental science; users 
fail to answer certain items on a questionnaire, sensors may miss certain signal due to bad weather, and 
so on. The problem is causal in nature, because the mechanism that determines the reasons for missing-
ness makes a difference in whether/how we can recover from the data, and that mechanism requires 
causal language to be properly described, statistics is insufficient.

Mohan and Pearl (2013) have shown that current practices of handling missing data, by relying exclu-
sively on statistical considerations (Rubin, 1976; Little and Rubin, 2002), are deficient in several key 
areas and could be remedied using causal diagrams. In particular they showed that

	 1.	 It is possible to define precisely what relations can be recovered from missing data and what causal 
and statistical knowledge need to be assumed to ensure bias-free recovery

	 2.	 Different causal assumptions lead to different routines for recovering a relation from the data
	 3.	 Adding auxiliary variables to the data, a popular technique in current practice (Schafer and 

Graham, 2002) may or may not help the recovery process, depending on conditions that can be 
read from the causal diagram

	 4.	 It is possible to determine when the conditions necessary for bias-free recovery have testable 
implications

44.4.7  Historical Remarks

An explicit translation of interventions to “wiping out” equations from linear econometric models was 
first proposed by Strotz and Wold (1960) and later used in Fisher (1970) and Sobel (1990). Extensions 
to action representation in nonmonotonic systems were reported in Goldszmidt and Pearl (1992) and 
Pearl (1993a). Graphical ramifications of this translation were explicated first in Spirtes et al. (1993) and 
later in Pearl (1993b). A related formulation of causal effects, based on event trees and counterfactual 
analysis, was developed by Robins (1986, pp. 1422–1425). Calculi for actions and counterfactuals based 
on this interpretation are developed in Pearl (1994b) and Balke and Pearl (1994), respectively.

44.5  Counterfactuals

A counterfactual sentence has the form

If A were true, then C would have been true?

where A, the counterfactual antecedent, specifies an event that is contrary to one’s real-world observa-
tions, and C, the counterfactual consequent, specifies a result that is expected to hold in the alternative 
world where the antecedent is true. A typical example is “If Oswald were not to have shot Kennedy, then 
Kennedy would still be alive” that presumes the factual knowledge of Oswald’s shooting Kennedy, con-
trary to the antecedent of the sentence.

The majority of the philosophers who have examined the semantics of counterfactual sentences have 
resorted to some version of Lewis’ “closest world” approach; “C if it were A” is true, if C is true in 
worlds that are “closest” to the real world yet consistent with the counterfactual antecedent A (Lewis, 
1973). Ginsberg (1986) followed a similar strategy. While the “closest world” approach leaves the precise 
specification of the closeness measure almost unconstrained, causal knowledge imposes very specific 



44-17Graphical Models for Probabilistic and Causal Reasoning

preferences as to which worlds should be considered closest to any given world. For example, consider-
ing an array of domino tiles standing close to each other. The manifestly closest world consistent with 
the antecedent “tile i is tipped to the right” would be a world in which just tile i is tipped, while all the 
others remain erect. Yet, we all accept the counterfactual sentence “Had tile i been tipped over to the 
right, tile i + 1 would be tipped as well” as plausible and valid. Thus, distances among worlds are not 
determined merely by surface similarities but require a distinction between disturbed mechanisms and 
naturally occurring transitions. The local surgery paradigm expounded in Section 44.4.1 offers a con-
crete explication of the closest world approach that respects causal considerations. A world w1 is “closer” 
to w than a world w2 is, if the set of atomic surgeries needed for transforming w into w1 is a subset of 
those needed for transforming w into w2. In the domino example, finding tile i tipped and i + 1 erect 
requires the breakdown of two mechanism (e.g., by two external actions) compared with one mecha-
nism for the world in which all j-tiles, j > i are tipped. This paradigm conforms to our perception of 
causal influences and lends itself to economical machine representation.

44.5.1  Formal Underpinning

The structural equation framework offers an ideal setting for counterfactual analysis.

Definition 44.7  (context-based potential response)

Given a causal theory T and two disjoint sets of variables, X and Y, the potential response of Y to X in 
a context u, denoted Y(x, u) or Yx(u), is the solution for Y under U = u in the subtheory Tx. Y(x, u) can 
be taken as the formal definition of the counterfactual English phrase: “the value that Y would take in 
context u, had X been x,”*

Note that this definition allows for the context U = u and the proposition X = x to be incompatible 
in T. For example, if T describes a logic circuit with input U, it may well be reasonable to assert the coun-
terfactual: “given U = u, Y would be high if X were low,” even though the input U = u may preclude X 
from being low. It is for this reason that one must invoke some notion of intervention (alternatively, a 
theory change or a “miracle” [Lewis, 1973]) in the definition of counterfactuals.

If U is treated as a random variable, then the value of the counterfactual Y(x, u) becomes a random 
variable as well, denoted as Y(x) of Yx. Moreover, the distribution of this random variable is easily seen 
to coincide with the causal effect P(y|x̂), as defined in Equation 44.7, that is,

	
P Y x y P y x( ( ) )=( = ( )ˆ

The probability of a counterfactual conditional x → y|o may then be evaluated by the following 
procedure:

•	 Use the observations o to update P(u) thus forming a causal theory T V U f P u oo
i=< { } ( ) >, , , .

•	 Form the mutilated theory Tx
o (by deleting the equation corresponding to variables in X), and 

compute the probability P y x
T o ˆ( ) that Tx

o induces on Y.

*	 The term unit instead of context is often used in the statistical literature Rubin (1974), where it normally stands for 
the identity of a specific individual in a population, namely, the set of attributes u that characterize that individual. In 
general, u may include the time of day and the experimental conditions under study. Practitioners of the counterfactual 
notation do not explicitly mention the notions of “solution” or “intervention” in the definition of Y(x, u). Instead, the 
phrase “the value that Y would take in unit u, had X been x,” viewed as basic, is posited as the definition of Y(x, u).
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Unlike causal effect queries, counterfactual queries are not identifiable even in Markovian theories, 
but require that the functional form of { fi} be specified. In Balke and Pearl (1994), a method is devised 
for computing sharp bounds on counterfactual probabilities that, under certain circumstances, may 
collapse to point estimates. This method has been applied to the evaluation of causal effects in studies 
involving noncompliance and to the determination of legal liability.

44.5.2 A pplications to Policy Analysis

Counterfactual reasoning is at the heart of every planning activity, especially real-time planning. 
When a planner discovers that the current state of affairs deviates from the one expected, a “plan 
repair” activity need be invoked to determine what went wrong and how it could be rectified. This 
activity amounts to an exercise of counterfactual thinking, as it calls for rolling back the natural 
course of events and determining, based on the factual observations at hand, whether the culprit 
lies in previous decisions or in some unexpected, external eventualities. Moreover, in reasoning for-
ward to determine if things would have been different, a new model of the world must be consulted, 
one that embodies hypothetical changes in decisions or eventualities, hence, a breakdown of the old 
model or theory.

The logic-based planning tools used in AI, such as STRIPS and its variants or those based on the 
situation calculus, do not readily lend themselves to counterfactual analysis; as they are not geared 
for coherent integration of abduction with prediction, and they do not readily handle theory changes. 
Remarkably, the formal system developed in economics and social sciences under the rubric “structural 
equation models” does offer such capabilities, but, as will be discussed in the succeeding text, these 
capabilities are not well recognized by current practitioners of structural models. The analysis presented 
in this chapter could serve both to illustrate to AI researchers the basic formal features needed for coun-
terfactual and policy analysis and to call the attention of economists and social scientists to capabilities 
that are dormant within structural equation models.

Counterfactual thinking dominates reasoning in political science and economics. We say, for example, 
“If Germany were not punished so severely at the end of World War I, Hitler would not have come to 
power,” or “If Reagan did not lower taxes, our deficit would be lower today.” Such thought experiments 
emphasize an understanding of generic laws in the domain and are aimed toward shaping future policy 
making, for example, “defeated countries should not be humiliated,” or “lowering taxes (contrary to 
Reaganomics) tends to increase national debt.”

Strangely, there is very little formal work on counterfactual reasoning or policy analysis in the behav-
ioral science literature. An examination of a number of econometric journals and textbooks, for exam-
ple, reveals a glaring imbalance: while an enormous mathematical machinery is brought to bear on 
problems of estimation and prediction, policy analysis (which is the ultimate goal of economic theories) 
receives almost no formal treatment. Currently, the most popular methods driving economic policy 
making are based on so-called reduced-form analysis: to find the impact of a policy involving decision 
variables X on outcome variables Y, one examines past data and estimates the conditional expectation 
E(Y|X = x), where x is the particular instantiation of X under the policy studied.

The assumption underlying this method is that the data were generated under circumstances in 
which the decision variables X act as exogenous variables, that is, variables whose values are deter-
mined outside the system under analysis. However, while new decisions should indeed be considered 
exogenous for the purpose of evaluation, past decisions are rarely enacted in an exogenous manner. 
Almost every realistic policy (e.g., taxation) imposes control over some endogenous variables, that is, 
variables whose values are determined by other variables in the analysis. Let us take taxation policies 
as an example. Economic data are generated in a world in which the government is reacting to various 
indicators and various pressures; hence, taxation is endogenous in the data analysis phase of the study. 
Taxation becomes exogenous when we wish to predict the impact of a specific decision to raise or lower 
taxes. The reduced-form method is valid only when past decisions are nonresponsive to other variables 
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in the system, and this, unfortunately, eliminates most of the interesting control variables (e.g., tax rates, 
interest rates, quotas) from the analysis.

This difficulty is not unique to economic or social policy making; it appears whenever one wishes 
to evaluate the merit of a plan on the basis of the past performance of other agents. Even when the sig-
nals triggering the past actions of those agents are known with certainty, a systematic method must be 
devised for selectively ignoring the influence of those signals from the evaluation process. In fact, the 
very essence of evaluation is having the freedom to imagine and compare trajectories in various coun-
terfactual worlds, where each world or trajectory is created by a hypothetical implementation of a policy 
that is free of the very pressures that compelled the implementation of such policies in the past.

Balke and Pearl (1995) demonstrate how linear, nonrecursive structural models with Gaussian noise 
can be used to compute counterfactual queries of the type: “Given an observation set O, find the prob-
ability that Y would have attained a value greater than y, had X been set to x.” The task of inferring 
“causes of effects,” that is, of finding the probability that X = x is the cause for effect E, amounts to 
answering the counterfactual query: “Given effect E and observations O, find the probability that E 
would not have been realized, had X not been x.” The technique developed in Balke and Pearl (1995) 
is based on probability propagation in dual networks; one representing the actual world, the other the 
counterfactual world. The method is not limited to linear functions but applies whenever we are willing 
to assume the functional form of the structural equations. The noisy OR-gate model (Pearl, 1988) is a 
canonical example where such functional form is normally specified. Likewise, causal theories based on 
Boolean functions (with exceptions), such as the one described in Equation 44.16, lend themselves to 
counterfactual analysis in the framework of Definition 44.7.

44.5.3 T he Algorithmization of Counterfactuals

Prospective counterfactual expressions of the type P(Yx = y) are concerned with predicting the average 
effect of hypothetical actions and policies and can, in principle, be assessed from experimental studies 
in which X is randomized. Retrospective counterfactuals, on the other hand, consist of variables at dif-
ferent hypothetical worlds (different subscripts), and these may or may not be testable experimentally. 
In epidemiology, for example, the expression P Y y x yx ′ = ′( ),  may stand for the fraction of patients who 
recovered (y) under treatment (x) that would not have recovered (y′) had they not been treated (x′). This 
fraction cannot be assessed in experimental study, for the simple reason that we cannot retest patients 
twice, with and without treatment. A different question is therefore posed: which counterfactuals can 
be tested, be it in experimental or observational studies? This question has been given a mathematical 
solution in Shpitser and Pearl (2007). It has been shown, for example, that in linear systems, E(Yx|e) is 
estimable from experimental studies whenever the prospective effect E(Yx) is estimable in such studies. 
Likewise, the counterfactual probability P(Yx′|x), also known as the effect of treatment on the treated 
(ETT), is estimable from observational studies whenever an admissible S exists for P(Yx = y) (Shpitser 
and Pearl, 2009).

Retrospective counterfactuals have also been indispensable in conceptualizing direct and indirect 
effects (Robins and Greenland, 1992; Pearl, 2001), which require nested counterfactuals in their defini-
tions. For example, to evaluate the direct effect of treatment X = x′ on individual u, unmediated by a 
set Z of intermediate variables, we need to construct the nested counterfactual Yx Z ux′, ( ) where Y is the 
effect of interest, and Zx(u) stands for whatever values the intermediate variables Z would take had 
treatment not been given.* Likewise, the average indirect effect, of a transition from x to x′, is defined as 
the expected change in Y affected by holding X constant, at X = x, and changing Z, hypothetically, to 
whatever value it would have attained had X been set to X = x′.

*	 Note that conditioning on the intermediate variables in Z would generally yield the wrong answer, due to unobserved 
“confounders” affecting both Z and Y. Moreover, in nonlinear systems, the value at which we hold Z constant will affect 
the result (Pearl, 2000, pp. 126–132).
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This counterfactual formulation has enabled researchers to derive conditions under which direct and 
indirect effects are estimable from empirical data (Pearl, 2001; Petersen et al., 2006) and to answer such 
questions as “Can data prove an employer guilty of hiring discrimination? ” or, phrased counterfactu-
ally, “what fraction of employees owes its hiring to sex discrimination?”

These tasks are performed using a general estimator, called the mediation formula (Pearl, 2001, 
2009, 2012b), which is applicable to nonlinear models with discrete or continuous variables and 
permits the evaluation of path-specific effects with minimal assumptions regarding the data-
generating process.
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In this chapter, we examine the communications software needed to interconnect computers, work-
stations, servers, and other devices across networks. Then, we look at some of the networks in con-
temporary use. This chapter focuses exclusively on wired networks. Wireless networks are examined 
elsewhere, such as in the chapter “Mobile Operating Systems,” which has an extensive discussion on 
wireless networks.

45.1 �T ransmission Control Protocol/
Internet Protocol Architecture

When communication is desired among computers from different vendors, the software development 
effort can be a nightmare. Different vendors use different data formats and data exchange protocols. 
Even within one vendor’s product line, different model computers may communicate in unique ways.

As the use of computer communications and computer networking proliferates, a one-at-a-time 
special-purpose approach to communications software development is too costly to be acceptable. The 
only alternative is for computer vendors to adopt and implement a common set of conventions. For this 
to happen, standards are needed. Such standards would have two benefits:

•	 Vendors feel encouraged to implement the standards because of an expectation that, because of 
wide usage of the standards, their products will be more marketable with them.

•	 Customers are in a position to require that the standards be implemented by any vendor wishing 
to propose equipment to them.
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It should become clear from the ensuing discussion that no single standard will suffice. Any distributed 
application, such as electronic mail or client/server interaction, requires a complex set of communica-
tions functions for proper operation. Many of these functions, such as reliability mechanisms, are com-
mon across many or even all applications. Thus, the communications task is best viewed as consisting of 
a modular architecture, in which the various elements of the architecture perform the various required 
functions. Hence, before one can develop standards, there should be a structure, or protocol architecture, 
that defines the communications tasks.

Transmission control protocol (TCP)/Internet protocol (IP) is a result of protocol research and devel-
opment conducted on the experimental packet-switched network, ARPANET, funded by the Defense 
Advanced Research Projects Agency, and is generally referred to as the TCP/IP protocol suite. This 
protocol suite consists of a large collection of protocols that have been issued as Internet standards by 
the Internet Activities Board.

45.1.1 T CP/IP Layers

In general terms, communications can be said to involve three agents: applications, computers, and 
networks. Examples of applications include file transfer and electronic mail. The applications that we are 
concerned with in this study are distributed applications that involve the exchange of data between two 
computer systems. These applications, and others, execute on computers that can often support multiple 
simultaneous applications. Computers are connected to networks, and the data to be exchanged are 
transferred by the network from one computer to another. Thus, the transfer of data from one applica-
tion to another involves first getting the data to the computer in which the application resides and then 
getting it to the intended application within the computer.

There is no official TCP/IP protocol model. However, based on the protocol standards that have been 
developed, we can organize the communication task for TCP/IP into five relatively independent layers, 
from bottom to top (Stallings, 2013):

•	 Physical layer
•	 Network access layer
•	 Internet layer
•	 Host-to-host, or transport layer
•	 Application layer

The physical layer covers the physical interface between a data transmission device (e.g., worksta-
tion and computer) and a transmission medium or network. This layer is concerned with specifying 
the characteristics of the transmission medium, the nature of the signals, the data rate, and related 
matters.

The network access layer is concerned with the exchange of data between an end system (ES) (server, 
workstation, etc.) and the network to which it is attached. The sending computer must provide the 
network with the address of the destination computer, so that the network may route the data to the 
appropriate destination. The sending computer may wish to invoke certain services, such as priority, 
that might be provided by the network. The specific software used at this layer depends on the type of 
network to be used; different standards have been developed for circuit switching, packet switching 
(e.g., frame relay), local-area networks (LANs) (e.g., Ethernet), and others. Thus, it makes sense to sepa-
rate those functions having to do with network access into a separate layer. By doing this, the remainder 
of the communications software, above the network access layer, need not be concerned about the spe-
cifics of the network to be used. The same higher-layer software should function properly regardless of 
the particular network to which the computer is attached.

The network access layer is concerned with access to and routing data across a network for two ESs 
attached to the same network. In those cases where two devices are attached to different networks, pro-
cedures are needed to allow data to traverse multiple interconnected networks. This is the function of 
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the Internet layer. The IP is used at this layer to provide the routing function across multiple networks. 
This protocol is implemented not only in the ESs but also in routers. A router is a processor that connects 
two networks and whose primary function is to relay data from one network to the other on its route 
from the source to the destination ES.

Regardless of the nature of the applications that are exchanging data, there is usually a require-
ment that data be exchanged reliably. That is, we would like to be assured that all of the data arrive 
at the destination application and that the data arrive in the same order in which they were sent. As 
we shall see, the mechanisms for providing reliability are essentially independent of the nature of 
the applications. Thus, it makes sense to collect those mechanisms in a common layer shared by all 
applications; this is referred to as the host-to-host layer or the transport layer. The TCP provides this 
functionality.

Finally, the application layer contains the logic needed to support the various user applications. For 
each different type of application, such as file transfer, a separate module is needed that is peculiar to 
that application.

45.1.2  Operation of TCP and IP

Figure 45.1 indicates how these protocols are configured for communications. To make clear that the 
total communications facility may consist of multiple networks, the constituent networks are usually 
referred to as subnetworks. Some sort of network access protocol, such as the Ethernet logic, is used to 
connect a computer to a subnetwork. This protocol enables the host to send data across the subnetwork 
to another host or, in the case of a host on another subnetwork, to a router. IP is implemented in all of the 
ESs and the routers. It acts as a relay to move a block of data from one host, through one or more routers, 
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to another host. TCP is implemented only in the ESs; it keeps track of the blocks of data to assure that 
all are delivered reliably to the appropriate application.

For successful communication, every entity in the overall system must have a unique address. 
Actually, two levels of addressing are needed. Each host on a subnetwork must have a unique global 
Internet address; this allows the data to be delivered to the proper host. Each process with a host must 
have an address that is unique within the host; this allows the host-to-host protocol (TCP) to deliver 
data to the proper process. These latter addresses are known as ports.

Let us trace a simple operation. Suppose that a process, associated with port 1 at host A, wishes to 
send a message to another process, associated with port 2 at host B. The process at A hands the message 
down to TCP with instructions to send it to host B, port 2. TCP hands the message down to IP with 
instructions to send it to host B. Note that IP need not be told the identity of the destination port. All 
this it needs to know is that the data are intended for host B. Next, IP hands the message down to the 
network access layer (e.g., Ethernet logic) with instructions to send it to router X (the first hop on the 
way to B).

To control this operation, control information as well as user data must be transmitted, as suggested 
in Figure 45.2. Let us say that the sending process generates a block of data and passes this to TCP. 
TCP may break this block into smaller pieces to make the transmission more manageable. To each of 
these pieces, TCP appends control information known as the TCP header, forming a TCP segment. The 
control information is to be used by the peer TCP protocol entity at host B. Examples of items that are 
included in this header include the following:

•	 Destination port: When the TCP entity at B receives the segment, it must know to whom the data 
are to be delivered.

•	 Sequence number: TCP numbers the segments that it sends to a particular destination port 
sequentially, so that if they arrive out of order, the TCP entity at B can reorder them.

•	 Checksum: The sending TCP includes a code that is a function of the contents of the remainder of 
the segment. The receiving TCP performs the same calculation and compares the result with the 
incoming code. A discrepancy results if there has been some error in transmission.
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FIGURE 45.2  Protocol data units in the TCP/IP architecture.
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Next, TCP hands each segment over to IP, with instructions to transmit it to B. These segments must 
be transmitted across one or more subnetworks and relayed through one or more intermediate routers. 
This operation, too, requires the use of control information. Thus, IP appends a header of control infor-
mation to each segment to form an IP datagram. An example of an item stored in the IP header is the 
destination host address (in this example, B).

Finally, each IP datagram is presented to the network access layer for transmission across the first 
subnetwork in its journey to the destination. The network access layer appends its own header, creating 
a packet, or frame. The packet is transmitted across the subnetwork to router X. The packet header con-
tains the information that the subnetwork needs to transfer the data across the subnetwork. Examples 
of items that may be contained in this header include the following:

•	 Destination subnetwork address: The subnetwork must know to which attached device the packet 
is to be delivered.

•	 Facilities requests: The network access protocol might request the use of certain subnetwork facili-
ties, such as priority.

At router X, the packet header is stripped off and the IP header examined. On the basis of the destina-
tion address information in the IP header, the IP module in the router directs the datagram out across 
subnetwork 2 to B. To do this, the datagram is again augmented with a network access header.

When the data are received at B, the reverse process occurs. At each layer, the corresponding header 
is removed, and the remainder is passed on to the next higher layer, until the original user data are 
delivered to the destination process.

45.1.3 T CP/IP Applications

A number of applications have been standardized to operate on top of TCP. We mention three of the 
most common in this study.

The simple mail transfer protocol (SMTP) provides a basic electronic mail facility. It provides a mechanism 
for transferring messages among separate hosts. Features of SMTP include mailing lists, return receipts, 
and forwarding. The SMTP protocol does not specify the way in which messages are to be created; some 
local editing or native electronic mail facility is required. Once a message is created, SMTP accepts the mes-
sage and makes use of TCP to send it to an SMTP module on another host. The target SMTP module will 
make use of a local electronic mail package to store the incoming message in a user’s mailbox.

The file transfer protocol (FTP) is used to send files from one system to another under user command. 
Both text and binary files are accommodated, and the protocol provides features for controlling user 
access. When a user wishes to engage in file transfer, FTP sets up a TCP connection to the target system 
for the exchange of control messages. These allow user ID and password to be transmitted and allow the 
user to specify the file and file actions desired. Once a file transfer is approved, a second TCP connection 
is set up for the data transfer. The file is transferred over the data connection, without the overhead of 
any headers or control information at the application level. When the transfer is complete, the control 
connection is used to signal the completion and to accept new file transfer commands.

Secure Shell (SSH) provides a secure remote logon capability, which enables a user at a terminal or 
personal computer to logon to a remote computer and function as if directly connected to that com-
puter. SSH also supports file transfer between the local host and a remote server. SSH enables the user 
and the remote server to authenticate each other; it also encrypts all traffic in both directions. SSH traffic 
is carried on a TCP connection.

45.2  Internetworking

In most cases, a LAN or wide-area network (WAN) is not an isolated entity. An organization may have 
more than one type of LAN at a given site to satisfy a spectrum of needs. An organization may have mul-
tiple LANs of the same type at a given site to accommodate performance or security requirements. 
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Furthermore, an organization may have LANs at various sites and need them to be interconnected via 
WANs for central control of distributed information exchange.

An interconnected set of networks, from a user’s point of view, may appear simply as a larger net-
work. However, if each of the constituent networks retains its identity, and special mechanisms are 
needed for communicating across multiple networks, then the entire configuration is often referred 
to as an Internet, and each of the constituent networks as a subnetwork. The most important example 
of an Internet is referred to simply as the Internet. As the Internet has evolved from its modest begin-
nings as a research-oriented packet-switching network, it has served as the basis for the develop-
ment of internetworking technology and as the model for private Internets within organizations. 
These latter are also referred to as intranets. If an organization extends access to its intranet, over the 
Internet, to selected customers and suppliers, then the resulting configuration is often referred to as 
an extranet.

Each constituent subnetwork in an Internet supports communication among the devices attached 
to that subnetwork; these devices are referred to as hosts or ESs. Within an Internet, subnetworks are 
connected by devices referred to as routers. The differences between them have to do with the types of 
protocols used for the internetworking logic. The role and functions of routers were introduced in the 
context of IP earlier in this chapter. However, because of the importance of routers in the overall net-
working scheme, it is worth providing additional comment in this section.

45.2.1 R outers

Internetworking is achieved by using intermediate systems, or routers, to interconnect a number of 
independent networks. Essential functions that the router must perform include the following:

	 1.	 Provide a link between networks.
	 2.	 Provide for the routing and delivery of data between ESs attached to different networks.
	 3.	 Provide these functions in such a way as to not require modifications of the networking architec-

ture of any of the attached networks.

Point 3 means that the router must accommodate a number of differences among networks, such as the 
following:

•	 Addressing schemes: The networks may use different schemes for assigning addresses to 
devices. For example, an IEEE 802 LAN uses 48 bit binary addresses for each attached device; 
an ATM network typically uses 15 digit decimal addresses (encoded as 4 bits per digit for a 
60 bit address). Some form of global network addressing must be provided, as well as a direc-
tory service.

•	 Maximum packet sizes: Packets from one network may have to be broken into smaller pieces to 
be transmitted on another network, a process known as fragmentation. For example, Ethernet 
imposes a maximum packet size of 1500 bytes; a maximum packet size of 1600 bytes is com-
mon on frame relay networks. A packet that is transmitted on a frame relay network and 
picked up by a router for forwarding on an Ethernet LAN may have to be fragmented into two 
smaller ones.

•	 Interfaces: The hardware and software interfaces to various networks differ. The concept of a 
router must be independent of these differences.

•	 Reliability: Various network services may provide anything from a reliable end-to-end virtual 
circuit to an unreliable service. The operation of the routers should not depend on an assumption 
of network reliability.

The preceding requirements are best satisfied by an internetworking protocol, such as IP, that is imple-
mented in all ESs and routers.
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45.2.2  Internetworking Example

Figure 45.3 depicts a configuration that we will use to illustrate the interactions among protocols for 
internetworking. In this case, we focus on a server attached to a frame relay WAN and a workstation 
attached to an IEEE 802 LAN, such as Ethernet, with a router connecting the two networks. The router 
provides a link between the server and the workstation that enables these ESs to ignore the details of 
the intervening networks. For the frame relay network, what we have referred to as the network access 
layer consists of a single frame relay protocol. In the case of the IEEE 802 LAN, the network access layer 
consists of two sublayers: the logical link control layer and the media access control layer. For purposes 
of this discussion, we need not describe these layers in any detail.

Consider the typical steps in the transfer of a block of data, such as a file or a Web page, from the 
server, through an Internet, and ultimately to an application in the workstation. In this example, the 
message passes through just one router. Before data can be transmitted, the application and transport 
layers in the server establish, with the corresponding layers in the workstation, the applicable ground 
rules for a communication session. These include character code to be used, error-checking method, 
and the like. The protocol at each layer is used for this purpose and then is used in the transmission of 
the message.

For the actual transmission, the application in the server passes data down to TCP. TCP divides the 
data into a sequence of data blocks. Each block is assembled as a TCP segment by adding the TCP header, 
containing protocol control information. Each segment is then passed down to IP, which appends an 
IP header. A frame relay header and trailer are added to each IP packet. Each frame is then transmitted 
over the medium as a sequence of bits. The router strips off the frame relay header and trailer and exam-
ines the IP header to determine routing information. The router then appends the IEEE 802 headers 
and trailers and transmits the resulting frame to the destination workstation. At the workstation, all the 
headers and trailers are stripped off in turn, and the data are delivered to the application.
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FIGURE 45.3  Configuration for TCP/IP example.
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45.3  WAN Organization

Traditionally, data networks have been classified as either WAN or LAN. Although there has been some 
blurring of this distinction, it is still a useful one. We look first at WANs.

45.3.1 T raditional WANs

Traditional WANs are switched communications networks, consisting of an interconnected collection 
of nodes, in which information is transmitted from source station to destination station by being routed 
through the network of nodes. Figure 45.4 is a simplified illustration of the concept. The nodes are con-
nected by transmission paths. Signals entering the network from a station are routed to the destination 
by being switched from node to node. Two quite different technologies are used in wide-area switched 
networks: circuit switching and packet switching. These two technologies differ in the way the nodes 
switch information from one link to another on the way from source to destination.

45.3.1.1  Circuit Switching

Circuit switching is the dominant technology for both voice and data communications today and will 
remain so for the foreseeable future. Communication via circuit switching implies that there is a dedi-
cated communication path between two stations. That path is a connected sequence of links between 
network nodes. On each physical link, a channel is dedicated to the connection. The most common 
example of circuit switching is the telephone network.
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Communication via circuit switching involves three phases, which can be explained with reference 
to Figure 45.4.

	 1.	 Circuit establishment: Before any signals can be transmitted, an end-to-end (station-to-station) 
circuit must be established. For example, station A sends a request to node 4 requesting a connec-
tion to station E. Typically, the link from A to 4 is a dedicated line, so that part of the connection 
already exists. Node 4 must find the next leg in a route leading to node 6. Based on routing infor-
mation and measures of availability and perhaps cost, node 4 selects the link to node 5, allocates a 
free channel (using frequency-division multiplexing, FDM, or time-division multiplexing, TDM) 
on that link and sends a message requesting connection to E. So far, a dedicated path has been 
established from A through 4 to 5. Since a number of stations may attach to 4, it must be able to 
establish internal paths from multiple stations to multiple nodes. The remainder of the process 
proceeds similarly. Node 5 dedicates a channel to node 6 and internally ties that channel to the 
channel from node 4. Node 6 completes the connection to E. In completing the connection, a test 
is made to determine if E is busy or is prepared to accept the connection.

	 2.	 Information transfer: Information can now be transmitted from A through the network to E. The 
transmission may be analog voice, digitized voice, or binary data, depending on the nature of the 
network. As the carriers evolve to fully integrated digital networks, the use of digital (binary) 
transmission for both voice and data is becoming the dominant method. The path is: A-4 link, 
internal switching through 4, 4–5 channel, internal switching through 5, 5–6 channel, internal 
switching through 6 and 6-E link. Generally, the connection is full duplex, and signals may be 
transmitted in both directions simultaneously.

	 3.	 Circuit disconnect: After some period of information transfer, the connection is terminated, usu-
ally by the action of one of the two stations. Signals must be propagated to nodes 4, 5, and 6 to 
deallocate the dedicated resources.

Note that the connection path is established before data transmission begins. Thus channel capacity 
must be reserved between each pair of nodes in the path and each node must have available internal 
switching capacity to handle the requested connection. The switches must have the intelligence to make 
these allocations and to devise a route through the network.

Circuit switching can be rather inefficient. Channel capacity is dedicated for the duration of a con-
nection, even if no data are being transferred. For a voice connection, utilization may be rather high, but 
it still does not approach 100%. For a terminal-to-computer connection, the capacity may be idle during 
most of the time of the connection. In terms of performance, there is a delay prior to signal transfer for 
call establishment. However, once the circuit is established, the network is effectively transparent to the 
users. Information is transmitted at a fixed data rate with no delay other than the propagation delay 
through the transmission links. The delay at each node is negligible.

Circuit-switching technology has been driven by those applications that handle voice traffic. One 
of the key requirements for voice traffic is that there must be virtually no transmission delay and cer-
tainly no variation in delay. A constant signal transmission rate must be maintained, since transmission 
and reception occur at the same signal rate. These requirements are necessary to allow normal human 
conversation. Furthermore, the quality of the received signal must be sufficiently high to provide, at a 
minimum, intelligibility.

45.3.1.2  Packet Switching

A packet-switching network is a switched communications network that transmits data in short blocks 
called packets. The network consists of a set of interconnected packet-switching nodes. A device attaches 
to the network at one of these nodes and presents data for transmission in the form of a stream of packets. 
Each packet is routed through the network. As each node along the route is encountered, the packet is 
received, stored briefly, and then transmitted along a link to the next node in the route. Two approaches 
are used to manage the transfer and routing of these streams of packets: datagram and virtual circuit.
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In the datagram approach, each packet is treated independently, with no reference to packets that 
have gone before. This approach is illustrated in Figure 45.5a. Each node chooses the next node on a 
packet’s path, taking into account information received from neighboring nodes on traffic, line failures, 
and so on. So the packets, each with the same destination address, do not all follow the same route, and 
they may arrive out of sequence at the exit point. In some networks, the exit node restores the packets 
to their original order before delivering them to the destination. In other datagram networks, it is up to 
the destination rather than the exit node to do the reordering. Furthermore, it is possible for a packet 
to be destroyed in the network. For example, if a packet-switching node crashes momentarily, all of its 
queued packets may be lost. Again, it is up to either the exit node or the destination to detect the loss of 
a packet and decide how to recover it. In this technique, each packet, treated independently, is referred 
to as a datagram.

In the virtual circuit approach, a preplanned route is established before any packets are sent. 
Once the route is established, all of the packets between a pair of communicating parties follow 
this same route through the network. This is illustrated in Figure 45.5b. Because the route is fixed 
for the duration of the logical connection, it is somewhat similar to a circuit in a circuit-switching 
network and is referred to as a virtual circuit. Each packet now contains a virtual circuit identifier as 
well as data. Each node on the preestablished route knows where to direct such packets; no routing 
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FIGURE 45.5  (a) Internal Datagram and (b) virtual circuit operation.
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decisions are required. At any time, each station can have more than one virtual circuit to any other 
station and can have virtual circuits to more than one station.

If two stations wish to exchange data over an extended period of time, there are certain advantages to 
virtual circuits. First, the network may provide services related to the virtual circuit, including sequenc-
ing and error control. Sequencing refers to the fact that, since all packets follow the same route, they 
arrive in the original order. Error control is a service that assures not only that packets arrive in proper 
sequence but also that all packets arrive correctly. For example, if a packet in a sequence from node 4 
to node 6 fails to arrive at node 6, or arrives with an error, node 6 can request a retransmission of that 
packet from node 4. Another advantage is that packets should transit the network more rapidly with a 
virtual circuit; it is not necessary to make a routing decision for each packet at each node.

One advantage of the datagram approach is that the call setup phase is avoided. Thus, if a station 
wishes to send only one or a few packets, datagram delivery will be quicker. Another advantage of the 
datagram service is that, because it is more primitive, it is more flexible. For example, if congestion 
develops in one part of the network, incoming datagrams can be routed away from the congestion. With 
the use of virtual circuits, packets follow a predefined route, and thus it is more difficult for the network 
to adapt to congestion. A third advantage is that datagram delivery is inherently more reliable. With the 
use of virtual circuits, if a node fails, all virtual circuits that pass through that node are lost. With data-
gram delivery, if a node fails, subsequent packets may find an alternate route that bypasses that node.

45.3.2  High-Speed WANs

As the speed and number of LANs continue their relentless growth, increasing demand is placed on 
wide-area packet-switching networks to support the tremendous throughput generated by these LANs. 
In the early days of wide-area networking, X.25 was designed to support direct connection of terminals 
and computers over long distances. At speeds up to 64 kbps or so, X.25 copes well with these demands. 
As LANs have come to play an increasing role in the local environment, X.25, with its substantial over-
head, is being recognized as an inadequate tool for wide-area networking. Fortunately, several new 
generations of high-speed switched services for wide-area networking have moved rapidly from the 
research laboratory and the draft standard stage to the commercially available, standardized-product 
stage. We look briefly at the most important alternatives in this section.

45.3.2.1  Frame Relay

Both frame relay and X.25 use a virtual-circuit, packet-switching approach to data transmission. Frame 
relay provides a streamlined technique for wide-area packet switching, compared to X.25. It provides 
superior performance by eliminating as much as possible of the overhead of X.25. The key differences of 
frame relaying from a conventional X.25 packet-switching service are the following:

•	 Call control signaling (e.g., requesting that a connection be set up) is carried on a logical con-
nection that is separate from the connections used to carry user data. Thus, intermediate nodes 
need not maintain state tables or process messages relating to call control on an individual per-
connection basis.

•	 There are only physical and link layers of processing for frame relay, compared to physical, link, 
and packet layers for X.25. Thus, one entire layer of processing is eliminated with frame relay.

•	 There is no hop-by-hop flow control and error control. End-to-end flow control and error control 
is the responsibility of a higher layer, if it is employed at all.

Frame relay takes advantage of the reliability and fidelity of modern digital facilities to provide faster 
packet switching than X.25. Whereas X.25 typically operates only up to speeds of about 64 kbps, frame 
relay is designed to work at access speeds up to 2 Mbps.

Frame relay at one time enjoyed widespread market share. However, today legacy frame relay systems 
are gradually being phased out in favor of more efficient techniques.
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45.3.2.2 A synchronous Transfer Mode

Frame relay was designed to support access speeds up to 2 Mbps. Although it has evolved to provide services 
up to 42 Mbps, frame relay is not able to meet the needs of businesses that require wide area access speeds in 
the hundreds or thousands of megabits per second. One of the first technologies developed to accommodate 
such gargantuan requirements was asynchronous transfer mode (ATM), also known as cell relay.

ATM is similar in concept to frame relay. Both frame relay and ATM take advantage of the reliability 
and dependability of modern digital facilities to provide faster packet switching than X.25. ATM is 
even more streamlined than frame relay in its functionality and can support data rates several orders of 
magnitude greater than frame relay.

The most noteworthy difference between ATM and frame relay is that ATM uses fixed-size packets, 
called cells, which are of length 53 octets. There are several advantages to the use of small, fixed-size 
cells. First, the use of small cells may reduce queuing delay for a high-priority cell, because it waits less if 
it arrives slightly behind a lower-priority cell that has gained access to a resource (e.g., the transmitter). 
Second, fixed-size cells can be switched more efficiently, which is important for the very high data rates 
of ATM. With fixed-size cells, it is easier to implement the switching mechanism in hardware.

An ATM network is designed to be able to transfer many different types of traffic simultaneously, 
including real-time flows such as voice, video, and bursty TCP flows. Although each such traffic flow is 
handled as a stream of 53 octet cells traveling through a virtual channel (ATM terminology for virtual 
circuit), the way in which each data flow is handled within the network depends on the characteristics 
of the traffic flow and the QoS requirements of the application. For example, real-time video traffic must 
be delivered within minimum variation in delay.

Although the switching mechanism for ATM transmission is very efficient, and very high data rates 
can be achieved, ATM as a whole is very complex and expensive to implement. As with frame relay, 
ATM is gradually losing ground to newer approaches to wide-area networking.

45.3.3  Multiprotocol Label Switching

Multiprotocol Label Switching (MPLS) refers to IP-based networking services that are available from a 
number of carriers. MPLS services are designed to speed up the IP packet-forwarding process while retain-
ing the types of traffic management and connection-oriented QoS mechanisms found in ATM networks.

MPLS is often described as being “protocol agnostic” because it can carry many different kinds of 
traffic, including ATM cells, IP packets, and Ethernet or SONET frames. Carriers have been able to cost 
effectively implement MPLS infrastructure because it is possible for MPLS-enabled routers to coexist 
with ordinary IP routers. MPLS has also been designed to work with ATM and frame relay networks via 
MPLS-enabled ATM switches and MPLS-enabled frame relay switches.

Because of its ability to provide higher performance network capabilities, MPLS has the potential 
to completely replace frame relay and ATM. MPLS recognizes that small ATM cells are not needed in 
the core of modern optical networks with speeds of 40 Gbps or more. In these environments, neither 
53-byte cells nor full-length 1500-byte packets experience real-time queuing delays. In addition, MPLS 
preserves many of the same traffic engineering and out-of-band network control mechanisms that have 
made frame relay and ATM attractive WAN services for business subscribers.

45.3.3.1  MPLS Operation

An MPLS network or Internet consists of a set of nodes, called Label Switched Routers (LSRs) that are 
capable of switching and routing packets on the basis of a label that has been appended to each packet. 
Labels define a flow of packets between two endpoints. For each distinct flow, a specific path through 
the network of LSRs is defined. This path is called a Forwarding Equivalence Class (FEC) and each FEC 
has an associated traffic characterization that defines the QoS requirements for that flow. LSRs forward 
each packet based on its label value; they do not need to examine or process the packet’s IP header. This 
means that an LSR’s forwarding process is simpler and faster than that for an IP router.
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Figure 45.6 illustrates depicts the operation of MPLS within a domain of MPLS-enabled routers. The 
first step in the process involves establishing a Label Switched Path (LSP) for the packets that are to be 
routed and delivered and the QoS parameters that must be established for the LSP. QoS parameters 
include the queuing and discarding policy for each LSR along the path and the resources that need to 
be committed to the path. The process of establishing the LSP and its QoS parameters results in the cre-
ation of the FEC; this is illustrated in (1) in Figure 45.6. Once the FEC is created, labels can be assigned 
to the packets for the FEC.

Packets enter a MPLS switching domain through ingress LSR at the edge of the MPLS network. The 
ingress LSR processes the packet, determines the QoS services that it requires, and assigns the packet to 
a FEC and LSP. It then appends the appropriate label and forwards the packet to the next LSR along the 
LSP. This is illustrated in (2) in Figure 45.6. With the MPLS network, each LSR along the LSP receives 
the labeled packet and forwards it to the next LSR along the LSP, see (3) in Figure 45.6. When the packet 
arrives at the egress LSR at the edge of the network closest to the packet’s destination, the edge LSR strips 
the label from the packet, reads its IP packet header, and forwards to packet to its final destination. In 
the example illustrated in (4) in Figure 45.6, the final destination is a server.

As may be observed in Figure 45.7, an MPLS label is a 32 bit field that includes the following elements:

•	 Label value: A 20 bit label that has local significance
•	 Traffic class: A three bit label that signifies QoS priority and explicit network congestion
•	 Bottom of stack bit: If this is set to 1, it indicates that the current label is the last in the stack
•	 Time to live: 8 bits are used to encode a hop count or time to live value. This is included to avoid 

looping or having the packet remain too long in the network because of faulty routing
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In short, with MPLS, the first time the packet enters the network, it is assigned to a specific FEC that 
is indicated in the label that is assigned. Because each router in the network has a table indicating how 
to handle packets of a specific FEC type, the MPLS network can consistently handle packets with par-
ticular characteristics (such as coming from particular ports or carrying traffic of particular application 
types). Assigning packets to FECs means that packets carrying real-time traffic, such as voice or video, 
can be mapped to low-latency routes across the network. A key point is that the labels provide a way to 
attach additional information to each packet that facilitates traffic engineering in ways that are difficult 
to achieve in IP-networks and other WAN services.

45.3.4  Wide-Area Ethernet

Wide-area Ethernet (WAE) is the delivery of WAN services using Ethernet connectivity. It is a high-
speed alternative to traditional WAN services such as frame relay, leased lined, ATM, or T-1 services. 
WAE maintains the simplicity, high bandwidth, and flat network design of layer 2 Ethernet. To WAE 
subscribers, connected sites look like one single logical network. WAE is essentially a VPN service for 
linking remote locations.
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FIGURE 45.7  MPLS label format.
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Most WAE implementations use virtual private LAN services (VPLS) to interconnect net-
work endpoints. VPLS allows carriers to define QoS levels for wide area connections and commit 
resources, such as sufficient bandwidth, for applications such as video or audio. VPLS also enables 
carries to create logical Ethernet networks from a variety of WAN services including IP or MPLS 
networks.

WAE services are sometimes called Ethernet WAN or carrier Ethernet. Carrier Ethernet includes both 
WAE and metro Ethernet. Carrier Ethernet services are deployed in several ways, including conven-
tional Ethernet, Ethernet over synchronous digital hierarchy and Ethernet over MPLS. Carrier Ethernet 
services can accommodate a mixture of residential and business subscribers.

The use of carrier Ethernet technologies to create metropolitan-area networks (MANs) is most com-
monly called metro Ethernet. Metro Ethernet is often used to provide business LANs and residential 
subscribers with access to the Internet or other WAN services. Government agencies, educational insti-
tutions, and corporations are increasingly using metro Ethernet services to create intranets intercon-
necting branch offices or campuses.

Carrier Ethernet often capitalizes on the existence of optical fiber and dense wavelength division 
multiplexing infrastructure to provide WAN and MAN services to subscribers. A high-level example of 
WAE is provided in Figure 45.8.

45.4  LAN Organization

As with WANs, a LAN is a communications network that interconnects a variety of devices and pro-
vides a means for information exchange among those devices. There are several key distinctions between 
LANs and WANs:

	 1.	 The scope of the LAN is small, typically a single building or a cluster of buildings. This difference 
in geographic scope leads to different technical solutions, as we shall see.

	 2.	 It is usually the case that the LAN is owned by the same organization that owns the attached 
devices. For WANs, this is less often the case, or at least a significant fraction of the network 
assets is not owned. This has two implications. First, care must be taken in the choice of LAN, 
because there may be a substantial capital investment (compared to dial-up or leased charges for 
WANs) for both purchase and maintenance. Second, the network management responsibility for 
a LAN falls solely on the user.

	 3.	 The internal data rates of LANs are typically much greater than those of WANs.

LANs come in a number of different configurations. The most common are switched LANs and wire-
less LANs. The most common switched LAN is a switched Ethernet LAN, which may consist of a single 
switch with a number of attached devices, or a number of interconnected switches. Ethernet has come 
to dominate the wired LAN market, and so this section is devoted to Ethernet systems.

45.4.1 T raditional Ethernet

The Ethernet LAN standard, developed by the IEEE 802.3 standards committee, was originally designed 
to work over a bus LAN topology. With the bus topology, all stations attach, through appropriate inter-
facing hardware, directly to a linear transmission medium or bus. A transmission from any station 
propagates the length of the medium in both directions and can be received by all other stations. 
A variation on the bus topology is a star topology, with stations attached to a node in such a way that a 
transmission from any station attached to the node travels to the node and then to all of the other sta-
tions attached to the node.

Transmission is in the form of frames containing addresses and user data. Each station monitors the 
medium and copies frames addressed to itself. Because all stations share a common transmission link, 
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only one station can successfully transmit at a time, and some form of medium access control technique 
is needed to regulate access. The technique used for traditional Ethernet is carrier sense multiple access 
with collision detection (CSMA/CD). CSMA/CD, and the types of Ethernet configurations it supports, 
is now obsolete and is not discussed further in this chapter.

45.4.2  100 Mbps Ethernet

As data rates for Ethernet increased, the nodes were replaced by switches that enabled full-duplex trans-
mission and in which the access control function is regulated by the switch. This is the general arrange-
ment of all contemporary Ethernet LANs.

The first major step in the evolution of Ethernet was the introduction of 100 Mbps Ethernet. This 
standard specifies the same frame format as the 10 Mbps version and many of the same protocol 
details. This version of Ethernet quickly crowded out competing schemes, such as ring-based LANs and 
ATM-based LANs. The reasons for this are instructive. From the vendor’s point of view, the Ethernet 
formatting and protocol are well understood and vendors have experience building the hardware, 
firmware, and software for such systems. Scaling the system up to 100 Mbps, or more, is easier than 
implementing an alternative protocol and topology. From the customer’s point of view, it is relatively 
easy to integrate older Ethernet systems running at 10 Mbps with newer systems running at higher 
speeds if all the systems use the same frame format and similar access protocols. In other words, the 
continued use of Ethernet-style LANs is attractive because Ethernet is already there. This same situ-
ation is encountered in other areas of data communications. Vendors and customers do not always, 
or even in the majority of cases, choose the technically superior solution. Cost, ease of management, 
and other factors relating to the already-existing base of equipment are often more important factors 
in the selection of new LAN equipment than technically superior alternatives. This is the reason that 
Ethernet-style systems continue to dominate the LAN market and show every sign of continuing to do 
so in the foreseeable future.

45.4.3  Gigabit Ethernet

The strategy for Gigabit Ethernet is the same as that for 100 Mbps Ethernet. While defining a new 
medium and transmission specification, Gigabit Ethernet retains the CSMA/CD protocol and frame 
format of its 10 and 100 Mbps predecessors. It is compatible with both 100BASE-T and 10BASE-T, 
preserving a smooth migration path. Most business organizations have moved to 100BASE-T and 
many have jumped to Gigabit Ethernet for at least some of their LANs. These LANs are putting 
huge traffic loads on backbone networks, which further increase demand for Gigabit Ethernet and 
10 Gigabit Ethernet.

Figure 45.9 shows a typical application of Gigabit Ethernet. A 1/10 Gbps LAN switch provides back-
bone connectivity for central servers and high-speed workgroup switches. Each workgroup LAN switch 
supports both 1 Gbps links, to connect to the backbone LAN switch and to support high-performance 
workgroup servers, and 100 Mbps links, to support high-performance workstations, servers, and 
100/1000 Mbps LAN switches.

The current 1 Gbps specification for IEEE 802.3 includes the following physical layer alternatives:

•	 1000BASE-LX: This long-wavelength option supports duplex links of up to 550 m of 62.5 μm or 
50 μm multimode fiber or up to 5 km of 10 μm single-mode fiber. Wavelengths are in the range 
of 1270–1355 nm.

•	 1000BASE-SX: This short-wavelength option supports duplex links of up to 275 m using 62.5 μm 
multimode or up to 550 m using 50 μm multimode fiber. Wavelengths are in the range of 770–860 nm.
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•	 1000BASE-CX: This option supports 1 Gbps links among devices located within a single room or 
equipment rack, using copper jumpers (specialized shielded twisted pair cable that spans no more 
than 25 m). Each link is composed of a separate shielded twisted pair running in each direction.

•	 1000BASE-T: This option makes use of four pairs of Category 5 unshielded twisted pair to support 
devices over a range of up to 100 m.

45.4.4  10 Gbps Ethernet

In recent years, 10 Gbps Ethernet switches have made considerable inroads in the LAN market. The 
principal driving requirement for 10 Gigabit Ethernet is the increase in Internet and intranet traffic. 
A number of factors contribute to the explosive growth in both Internet and intranet traffic:

•	 An increase in the number of network connections
•	 An increase in the connection speed of each end-station (e.g., 10 Mbps users moving to 100 Mbps, 

analog 56 kbps users moving to DSL and cable modems)
•	 An increase in the deployment of bandwidth-intensive applications such as high-quality video
•	 An increase in Web hosting and application hosting traffic

Initially, network managers are using 10 Gbps Ethernet to provide high-speed, local backbone 
interconnection between large-capacity switches. As the demand for bandwidth increases, 10 Gbps 
Ethernet will be deployed throughout the entire network and will include server farm, backbone, and 
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campuswide connectivity. This technology enables Internet service providers (ISPs) and network ser-
vice providers to create very high-speed links at a low cost, between co-located, carrier-class switches 
and routers.

The technology also allows the construction of MANs and WANs that connect geographically dis-
persed LANs between campuses or points of presence. Thus, Ethernet begins to compete with ATM 
and other wide area transmission/networking technologies. Carrier Ethernet, metro Ethernet, and 
WAE services are increasingly common components of enterprise networks. In most cases where the 
primary form of business communications traffic is data and TCP/IP is the preferred mode of trans-
port, 10 Gbps Ethernet provides substantial value over ATM transport for both network end users and 
service providers:

•	 No expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells is 
required; the network is Ethernet, end to end.

•	 The combination of IP and Ethernet offers quality of service and traffic policing capabilities that 
approach those provided by ATM, so that advanced traffic engineering technologies are available 
to users and providers.

•	 A wide variety of standard optical interfaces (wavelengths and link distances) have been 
specified for 10 Gbps Ethernet, optimizing its operation and cost for LAN, MAN, or WAN 
applications.

Maximum link distances for 10 Gbps Ethernet ranges from 300 m to 40 km. The links operate in full-
duplex mode only, using a variety of optical fiber physical media. Four physical layer options are defined 
for 10 Gbps Ethernet:

•	 10GBASE-S (short): Designed for 850 nm transmission on multimode fiber. This medium can 
achieve distances up to 300 m.

•	 10GBASE-L (long): Designed for 1310 nm transmission on single-mode fiber. This medium can 
achieve distances up to 10 km.

•	 10GBASE-E (extended): Designed for 1550 nm transmission on single-mode fiber. This medium 
can achieve distances up to 40 km.

•	 10GBASE-LX4: Designed for 1310 nm transmission on single-mode or multimode fiber. This 
medium can achieve distances up to 10 km. This medium uses wavelength-division multiplexing 
to multiplex the bit stream across four light waves.

45.4.5  100 Gbps Ethernet

Ethernet is widely deployed and is the preferred technology for wired local-area networking. Ethernet 
dominates enterprise LANs, broadband access, data center networking, and has also become popular 
for communication across metropolitan and even WANs. Furthermore, it is now the preferred carrier 
wire line vehicle for bridging wireless technologies, such as Wi-Fi and WiMAX, into local Ethernet 
networks.

This popularity of Ethernet technology is due to the availability of cost-effective, reliable, and interop-
erable networking products from a variety of vendors. Over the years, a number of industry consortiums 
have participated in the development of ever-faster versions of Ethernet, including the Fast Ethernet 
Alliance (100 Mbps), the Gigabit Ethernet Alliance, the 10 Gigabit Ethernet alliance, the Ethernet 
Alliance, and the Road to 100G alliance. As a testament to the continuing evolution of Ethernet, the first 
three of the alliances just mentioned no longer exist. The Ethernet Alliance is devoted to promoting the 
development of Ethernet, whatever the speed. The Road to 100G Alliance is focused on the development 
of standards and technologies for 100 Gbps ethernet.

As this alliance evolution ref lects, the development of converged and unified communications, 
the evolution of massive server farms, and the continuing expansion of VoIP, TVoIP, and Web 2.0 
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applications have driven the need for ever faster Ethernet switches. The following are market driv-
ers for 100 Gbps Ethernet:

•	 Data center/Internet media providers: To support the growth of Internet multimedia content and 
Web applications, content providers have been expanding data centers, pushing 10 Gbps Ethernet 
to its limits. These providers are likely to be high-volume early adopters of 100 Gbps Ethernet.

•	 Metro-video/service providers: Video on demand has been driving a new generation of 10 Gbps 
Ethernet metropolitan/core network buildouts. These providers are likely to be high-volume 
adopters in the medium term.

•	 Enterprise LANs: Continuing growth in convergence of voice/video/data and in unified commu-
nications is driving up network switch demands. However, most enterprises still rely on 1 Gbps or 
a mix of 1 and 10 Gbps Ethernet, and adoption of 100 Gbps Ethernet is likely to be slow.

•	 Internet exchanges/ISP (ISP) core routing: With the massive amount of traffic flowing through 
these nodes, these installations are likely to be early adopters of 100 Gbps Ethernet.

In 2007, the IEEE 802.3 working group authorized the IEEE P802.3ba 40 Gb/s and 100 Gb/s Ethernet 
Task Force. Table 13.4 indicates the physical layer objectives for this task force. As can be seen, these 
high-speed switches will be standardized to operate at distances from 1 m to 40 km over a variety of 
physical media.

An example of the application of 100 Gbps Ethernet is shown in Figure 45.10. The trend at large data 
centers, with substantial banks of blade servers, is the deployment of 10 Gbps ports on individual serv-
ers to handle the massive multimedia traffic provided by these servers. Such arrangements are stressing 
the on-site switches needed to interconnect large numbers of servers. A 100 GbE rate was proposed to 
provide the bandwidth required to handle the increased traffic load. It is expected that 100 GbE will be 
deployed in switch uplinks inside the data center as well as providing interbuilding, intercampus, MAN, 
and WAN connections for enterprise networks.

The success of fast Ethernet, Gigabit Ethernet, and 10 Gbps Ethernet highlights the importance of net-
work management concerns in choosing a network technology. Both ATM and fiber channel, explored 
subsequently, may be technically superior choices for a high-speed backbone, because of their flexibility 

100 GbE

N×100 GbE

10 GbE
and

40 GbE
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and scalability. However, the Ethernet alternatives offer compatibility with existing installed LANs, 
network management software, and applications. This compatibility has accounted for the survival of 
30-year-old technology in today’s fast-evolving network environment.

Key Terms

Asynchronous transfer mode (ATM): A form of packet transmission using fixed-size packets, called 
cells. Unlike X.25, ATM does not provide error control and flow control mechanisms.

Circuit switching: A method of communicating in which a dedicated communications path is estab-
lished between two devices through one or more intermediate switching nodes. Unlike packet 
switching, digital data are sent as a continuous stream of bits. Bandwidth is guaranteed, and 
delay is essentially limited to propagation time. The telephone system uses circuit switching.

Frame relay: A form of packet switching based on the use of variable-length link-layer frames. There 
is no network layer and many of the basic functions have been streamlined or eliminated to 
provide for greater throughput.

Local-area network (LAN): A communication network that provides interconnection of a variety of 
data communicating devices within a small area.

Packet switching: A method of transmitting messages through a communication network, in which 
long messages are subdivided into short packets. The packets are then transmitted as in mes-
sage switching.

Wide-area network (WAN): A communication network that provides interconnection of a variety of 
communicating devices over a large area, such as a metropolitan area or larger.
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46.1  Introduction

The purpose of this chapter is not as a reference on the details of particular implementations but to 
understand the variety of routing algorithms and the trade-offs between them.

Computer networking can be a very confusing field. Terms such as network, subnetwork, domain, 
local area network (LAN), internetwork, bridge, router, and switch are often ill-defined. In the original 
ISO model of network layering, layer 2, the data-link layer, was intended to deliver a packet of informa-
tion to a neighboring machine, and layer 3, the network layer, was intended to relay a packet through 
a series of switches in order to move data from source to destination, and it was intended to be the job 
of layer 4, the transport layer (a protocol between the source and destination), to recover from lost, 
duplicated, and out-of-order packets. Although this conceptual model of network layers is a great way 
to learn about networks, in reality, things have gotten extremely complicated. Ethernet, intended to be a 
layer 2 technology, includes routing. Various other technologies consider it the task of layer 3 to assure 
no packet loss or misordering. To make it even more difficult to understand this area, various concepts 
are reinvented in different standards, usually with different terminology, and little available informa-
tion about how different technologies relate to each other than marketing hype. In this chapter, we 
discuss various conceptual techniques for moving data throughout a network, and rather than focusing 
on the details of a particular standard or deployed technology, we focus on the concepts. We also avoid 
philosophical questions such as which layer something is.
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A network consists of several nodes interconnected with various types of links. One type is a point-
to-point link, which connects exactly two machines. It can either be a dedicated link (e.g., a wire con-
necting the two machines) or a dial-on-demand link, which can be connected when needed (e.g., when 
there is traffic to send over the link). Another category of link is a multiaccess link. Examples are wireless 
links, wired LANs, or entire networks that machines can talk to each other across. When one proto-
col uses a network as a link, it is referred to as a tunnel. In such a case, the underlying network can be 
used to create a point-to-point link between two machines, or a multiaccess link between more than 
two machines. The underlying network could be something generally assumed to be layer 2 (such as 
Ethernet) or it could be something generally assumed to be layer 3 (such as IP). A tunneled link presents 
special challenges to the routing protocol because it has two headers with addressing information. One 
header (which for simplicity we call the layer 3 header) gives the addresses of the ultimate source and 
destination. The other header (which for simplicity we call the layer 2 header) gives the addresses of the 
transmitter and receiver on that particular link (see Figure 46.1, which shows a path incorporating a 
multiaccess link and a packet with two headers). The terminology cannot be taken too seriously. It is 
not uncommon to tunnel IP over IP; for example, for an employee to connect to the corporate firewall 
across the Internet, using an encrypted connection (usually referred to as a “virtual Private Network”). 
Although the “data link” in that case is an entire network, from the point of view of the protocols using 
it as a link, it can be considered just a data link.

We define a switch to be a device that receives a data packet from the network, uses information in 
the data packet (e.g., the destination address in the header), plus instructions that are in the switch’s 
forwarding table, and then follows those instructions, for example, forwarding the packet onto the indi-
cated output port. We use the term switch to include devices that are known as bridges, routers, gate-
ways, and perhaps other names in this chapter. In this chapter, we describe various possibilities, and 
their implications, for

•	 Information in the packet, for example, size of address
•	 How to find instructions for a particular packet in the forwarding table
•	 How the forwarding table is computed

46.2  Forwarding Table

When a switch receives a packet, it finds relevant information in the packet, and consults its forwarding 
table, to determine the proper output port onto which to forward the packet. The forwarding table might 
indicate a single output port, or a set of output ports, any of which are reasonable for the switch to use 
for forwarding this packet.

46.2.1  Keeping Packets in Order

If the forwarding table gives several output ports rather than a single answer, any of those ports will 
deliver the packet to the destination; however, many applications that run over a network have come 
to depend on the network trying really hard to deliver packets for a particular flow in the same order 
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FIGURE 46.1  A multiaccess link and a packet with two headers.
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in which they were transmitted. As network protocols are generally taught, it is assumed that layer 3 is 
allowed to send packets in any order, and it is up to layer 4, the transport layer (e.g., the TCP protocol) to 
put packets back into order. However, applications (including many implementations of TCP) perform 
badly if the network is allowed to reorder packets within a flow. Therefore, switches tend to be careful to 
keep packets in order. There are several ways of doing this:

	 1.	 If the forwarding table gives just a single output port for a particular destination, then all packets 
for a flow will travel on the same path, so they will not get out of order. If it is desired that packets 
to the same destination exploit parallel paths (“load splitting” or “path splitting”), then the des-
tination is given multiple addresses, and occupies two entries in the forwarding table. This is the 
approach generally used in InfiniBand.

	 2.	 If the forwarding table gives a set of output ports, then the switch parses the packet to look at addi-
tional information beyond the information in the switch’s layer and hashes that information in 
order to always choose the same output port for a given flow. For instance, if the switch is an IP 
router, the switch looks beyond the IP header to other information, such as the TCP ports, and 
hashes fields such as (IP source address, TCP source port, and TCP destination port), and if the 
forwarding table has indicated, say, five different equally good output ports to get to the destination, 
the switch might compute the hash mod 5 of those fields. In theory, the switch could choose which-
ever port was most convenient when it first sees a packet for a given flow and remember that choice, 
but the hashing procedure allows the switch to accomplish the same thing without keeping state.

	 3.	 The packet might contain an “entropy” field, which is specifically for the purpose of choosing a 
port from a set of ports. There are two reasons for the entropy field instead of doing the hash of 
fields such as (source IP and TCP ports):

	 a.	 It saves work for the switch, since it can use the single entropy field, right in the header that 
the switch is supposed to look at, rather than having to parse through other layers to find 
enough information to allow path diversity between flows.

	 b.	 It allows a single source to exploit path diversity to the same destination, in the case where 
the application does not require packets to stay in order, or if certain subflows of information 
between the source–destination pair might need to be in order, but independently of the other 
subflows. If the source sets the entropy field differently for different subflows, it is likely that 
at least some switches along the path will make different forwarding choices for the different 
subflows.

46.2.2  Distributed vs. Centralized Forwarding Table Computation

The forwarding table might be computed with a distributed routing protocol (which we will describe 
later in this chapter) or by a central node that computes tables for each of the switches and programs the 
switches. It might be computed only after a topology change (e.g., a link or switch failing or recovering) 
or each time a new flow of information is initiated between a source S and destination D. We will discuss 
the tradeoffs between these approaches.

The advantages of a distributed algorithm are as follows:

•	 A distributed algorithm will react more quickly to topology changes; with a distributed algorithm 
(as we will discuss later in this chapter), information about the link change travels as quickly as 
physically possible, from the event, and each switch then adjusts its own forwarding table. With a 
centralized algorithm, news of the topology change must be conveyed to the central node (some-
how—the topology change could affect a switch’s configured path to the central node), the central 
node has to compute new forwarding tables for the switches, and then configure each switch with 
the new forwarding table.

•	 There is no central point of failure or bottleneck (as there would be with a centralized algorithm 
if the central node fails, or is a performance bottleneck).
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The reasons some give for a centralized algorithm are as follows:

•	 It might make the switches simpler because they do not need to implement a routing algorithm. 
However, a routing algorithm does not make a switch expensive; rather, it is the specialized hard-
ware necessary to move packets quickly through the ports, which needs to be done; however, the 
forwarding table was computed.

•	 A centralized algorithm might enable more careful engineering of flows, given other knowledge 
like which flows will exist and what their bandwidth requirements are. Such things could also be 
done with a distributed algorithm by changing link costs or creating some paths with reserved 
bandwidth, but it might be easier with a centralized algorithm.

Most networks today (e.g., the IP-based Internet and Ethernet) use distributed algorithms for comput-
ing the forwarding table. Telephony networks of old and InfiniBand (www.infinibandta.org) tend to use 
a centralized algorithm.

46.2.3  On-Demand vs. Proactive Computation of Paths

The other issue is whether paths should be created “on demand,” that is, when a flow starts or 
whether the switches should always be prepared for any type of packet. Computing the forwarding 
tables when a new flow starts causes a delay before packets can flow, which, in most cases, will be 
unacceptable.

In the case of telephony networks of old (e.g., ATM and X.25), the assumptions that made on-demand 
computation of a path a reasonable choice were as follows:

•	 The total number of destinations was far greater than the number of actively communicating 
pairs at any time, so a value in the header indicating the flow, assigned at the time the flow started, 
could be a smaller field than a field that indicated a destination address.

•	 It was acceptable to have a delay when a flow started up for the call to be dialed.
•	 It was acceptable to indicate, for instance, using a “fast busy signal,” that there are temporarily no 

resources to set up the call.

These assumptions are not valid in a data center or the Internet.

46.3  Information in Data Packet

When a switch receives a data packet, what information in that packet does it use to make its forwarding 
decision? There are various possibilities, and we will discuss the tradeoffs:

•	 Flat destination address: A destination address that is “flat,” meaning that the location of a node 
has no relation to its address; there must be a separate entry for each destination address in the 
forwarding table.

•	 Hierarchical destination address: A destination address that is hierarchical, meaning that portions 
of the network can be summarized with a block of addresses, and appear as a single entry in the 
forwarding table.

•	 Path Label: A path identifier (ID) of significance only on a link; (e.g., as used in X.25, ATM, and 
MPLS). At each hop, a switch looks up (input port and label 1) and is told by the forwarding table 
(output port and label 2). The switch not only forwards onto the indicated output port but also 
replaces label 1 (in the received packet) with label 2.

•	 Flow: The forwarding table gives instructions more specific than simply a destination address 
(e.g., source address, destination address, source TCP port, destination TCP port, and pro-
tocol type).
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46.3.1  Flat Destination Address

The forwarding table consists of a set of entries {destination, port(s)}. Each destination occupies a table 
entry. If a node moves, its address does not change, but the forwarding entry for that node in any par-
ticular switch will likely change to be a different port.

Flat addresses are convenient, especially in a data center with virtual machines that might move from 
one server to another; a virtual machine can move without changing its address. However, the problem 
with flat addresses is that the forwarding table needs an entry for each destination, so there is a limit to 
the size of a network that can be created with flat addresses.

For this reason, large networks are based on hierarchical addresses.

46.3.2  Hierarchical Destination Address

Hierarchical addresses are assigned in such a way that a set of addresses can be summarized with a 
prefix, as in “all addresses that start with 372 are in this circle.”

Figure 46.2 shows hierarchical addresses, with multiple levels of hierarchy. The forwarding table of a 
switch outside the large circle needs only a single forwarding entry for all the nodes inside the circle; the 
prefix “372.” A switch inside the large circle but outside the circle labeled 37279* needs a single forward-
ing entry for the nodes in the circle 37279*, and likewise, if it is outside the 3725* circle, it only needs a 
single entry for those nodes.

Hierarchical addresses compress the forwarding table but sometimes lead to suboptimal paths, 
because forwarding tables will not distinguish the best point to enter a circle.

An address prefix summarizes a set of addresses. The shorter the prefix, the more addresses are in the 
summary. In other words, the prefix 2* contains more addresses than the prefix 245*.

When a forwarding table contains prefixes, there might be several prefixes that match the destination 
address, for instance, for a destination 123456789, the prefixes 12345*, 123*, and * all match. Usually, a 
forwarding table will contain the zero length prefix, which matches anything. The switch needs to find 
the most specific match, that is, the longest prefix that matches the destination. There are at least two 
algorithms for doing this, which are described in detail in Perlman (1999). Although these algorithms 
are certainly implementable, they are more work, and slower, for a switch, than doing a hash of the 
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FIGURE 46.2  Hierarchical addressing.
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destination address to find the entry (as would be done with, say, a 6 byte Ethernet address) or doing a 
direct lookup (if the destination is few enough bits so that the switch can have a table directly indexed 
by the destination address).

46.3.3  Path Label

A path label is a field in a packet that is only significant within the scope of a link. A switch’s forward-
ing table maps (input port and label) to (output port and label). An entry ((p1,x); (p2,y)) means that if a 
packet is received on port p1 with label x, the switch should forward it onto port p2 and replace the label 
with y.

A path label represents a source–destination pair. Therefore, if all nodes can talk to all other nodes, 
the forwarding tables using path labels would have n2 entries, whereas with destination-based forward-
ing, the table would only need to have O(n) entries.

The path label approach was invented for telephony networks such as X.25 and ATM. The concept was 
based on the following three assumptions:

•	 The total number of addressable nodes attached to the network is much greater than the number 
of active connections between nodes.

•	 It is acceptable to incur a delay while a path is set up, before two nodes can communicate.
•	 It is acceptable if there is currently no available labels on a link, or other state required at a switch 

to support a particular flow, to allow the connection to fail, with some signal to “try again later.” In 
the U.S. telephone network, this was signaled to the person making a call with a fast busy signal.

A commonly used protocol in the Internet, in backbone ISPs, is MPLS. It uses path labels. A path 
across the ISP is used for many conversations, and the actual end points are identifiable because the 
MPLS label encapsulates an IP header. MPLS grew out of a concept known as “tag switching,” in 
which a switch S1 requested that its neighbor S2 put a “label” on a packet for a particular destination, 
to save S1 from having to do a longest prefix match for that destination. Today, MPLS is primarily 
used for “traffic engineering,” which means configuring a path. The concept of encapsulating an IP 
(or other) packet with a header that is easier to parse (i.e., not needing to do longest prefix match) is a 
good one, but MPLS would have been more scalable if it had been based on destinations rather than 
path labels.

46.3.4  Flow

This approach envisions a forwarding table entry for every conversation; not just a source–destination 
pair, but using TCP port numbers to distinguish different conversations from the same communicating 
node pair. The thinking behind this approach is to choose different paths for different flows in order to 
spread the traffic among a lot of links.

However, this approach obviously makes the forwarding table much larger; even worse, in fact, than 
the path label approach, since the path label approach can have many connections share the same path, 
but the flow approach requires a separate forwarding table for each flow.

And if the desire is to spread traffic among many links, it is far better to use a destination-based 
approach where the forwarding table gives the switch a set of ports to choose between. A switch is in a 
better position to know which ports are congested at this moment in time.

In some rare cases, flows might be high enough bandwidth, and sufficiently long-lived, that it might 
be worth creating paths with reservations for those flows, but most flows will be bursty, and the amount 
of congestion at a port will be constantly varying, so that the best place to make the decision is at 
the switch.

If a switch must keep packets in order, it can still re-hash which packets should travel on which ports, 
if some ports are getting too much use.
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46.4  Distributed Routing Protocols

There are two basic types of distributed routing protocol:

•	 Distance vector
•	 Link state

In both cases, switches communicate with other switches to exchange information, and based on this 
information, each switch computes its own forwarding table.

An example of a distance vector protocol is RIP (Hedrick, 1988). The spanning tree algorithm used in 
Ethernet, which will be described later in this chapter, can arguably be called a variant of distance vector 
as can the Border Gateway protocol (BGP) (Rekhter et al., 2006), which is sometimes called a “path vec-
tor” protocol, and which will also be described later in this chapter. EIGRP (http://www.cisco.com/en/
US/tech/tk365/technologies_tech_note09186a0080093f07.shtml) is a Cisco proprietary distance vector 
protocol.

The two best-known link state protocols are IS-IS (Oran, 1990) and OSPF (Moy, 1998).

46.4.1  Distance Vector

The idea behind this class of algorithm is that each router is responsible for keeping a table (known as 
a distance vector) of distances from itself to each destination. It computes this table based on receipt 
of distance vectors from its neighbors. For each destination D, router R computes its distance to D as 
follows:

•	 0, if R = D.
•	 The configured cost, if D is directly connected to R.
•	 The minimum cost through each of the reported paths through the neighbors.

For example, suppose R has four ports, a, b, c, and d. Suppose also that the cost of each of the links is, 
respectively, 2, 4, 3, and 5. On port a, R has received the report that D is reachable at a cost of 7. The other 
(port and cost) pairs R has heard are (b, 6), (c, 10), and (d, 2). Then, the cost to D through port a will be 
2 (cost to traverse that link) +7, that is, 9. The cost through b will be 4 + 6, that is, 10. The cost through 
c will be 3 + 10, that is, 13. The cost through d will be 5 + 2, that is, 7. So the best path to D is through 
port d, and R will report that it can reach D at a cost of 7 (see Figure 46.3).

The spanning tree algorithm is similar to a distance vector protocol in which each bridge is only 
computing its cost and path to a single destination, the root. But the spanning tree algorithm does 
not suffer from the count-to-infinity behavior that distance vector protocols are prone to (see next 
section).

Cost to D is 7

Cost to
D is 6

Cost to
D is 2

4

2

a

b
c

5 d

3

R

Cost to D is 10

FIGURE 46.3  Example: distance vector protocol.
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46.4.1.1  Count to Infinity

One of the problems with distance vector protocols is known as the count-to-infinity problem. Imagine 
a network with three nodes, A, B, and C (see Figure 46.4).

Let us discuss everyone’s distance to C. Node C will be 0 from itself, B will be 1 from C, and A will be 
2 from C. When C crashes, B unfortunately does not conclude that C is unreachable, but instead goes to 
its next best path, which is via neighbor A, who claims to be able to reach C at a cost of 2. So now B con-
cludes it is 3 from C and that it should forward packets for C through A. When B tells A its new distance 
vector, A does not get too upset. It merely concludes its path (still through B) has gotten a little worse, 
and now A is 4 from C. Node A will report this to B, which will update its cost to C as 5, and A and B 
will continue this until they count to infinity. Infinity, in this case, is mercifully not the mathematical 
definition of infinity, but is instead a parameter (with a definite finite value such as 16). Routers conclude 
if the cost to a node is greater than this parameter, that node must be unreachable.

A common enhancement that makes the behavior a little better is known as split horizon. The split 
horizon rule is usually implemented as follows: if router R uses neighbor N as its best path to destination 
D, R should not tell N that R can reach D. This eliminates loops of two routers. For instance, in Figure 
46.4, node A would not have told B that A could reach C. Thus, when C crashed, B would conclude B 
could not reach C at all; and when B reported infinity to A, node A would conclude that A could not 
reach C either, and everything would work as we would hope it would.

Unfortunately, split horizon does not fix loops of three or more routers. Referring to Figure 46.5, and 
looking at distances to D, when D crashes, C will conclude C cannot reach D (because of the split hori-
zon rule, A and B are not reporting to C that they can reach D).

Node C will inform A and B that C can no longer reach D. Unfortunately, each of them thinks they 
have a next-best path through the other. Say A acts first, decides its best path is through B, and that A 
is now 3 from D. Node A will report infinity to B (because of split horizon), and report 3 to C. B will 
now (for a moment) think it cannot reach D. It will report infinity to A, but it is too late; A has already 
reported a finite cost to C. Node C will now report 4 to B, which will now conclude it is 5 from D.

Although split horizon does not solve the problem, it is a simple enhancement, never does any harm, 
does not add overhead, and helps in many cases.

The simplest distance vector protocols (e.g., RIP) are very slow to converge after a topology change. 
The idea is that routing information is periodically transmitted quite frequently (on the order of 30 s). 
Information is discarded if it has not been heard recently (on the order of 2 min). Most implementa-
tions only store the best path; and when that path fails, they need to wait for their neighbors’ periodic 
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FIGURE 46.4  Example: the count-to-infinity problem.
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FIGURE 46.5  Example: loops with three or more routers.
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transmissions in order to hear about the second best path. Some implementations query their neighbors 
(“do you know how to reach D?”) when the path to D is discarded. In some implementations when R 
discards its route to D (for instance, it times out), R lets its neighbors know that R has discarded the 
route, by telling the neighbors R’s cost to D is now infinity. In other implementations, after R times out 
the route, R will merely stop advertising the route, so R’s neighbors will need to time out the route (start-
ing from when R timed out the route).

Distance vector protocols need not be periodic. The distance vector protocol used for DECnet Phases 3 
and 4 transmits routing information reliably and only sends information that has changed. Information 
on a LAN is sent periodically (rather than collecting acknowledgments (ack’s) from all router neigh-
bors), but the purpose of sending it periodically is solely as an alternative to sending ack’s. Distance 
vector information is not timed out in DECnet, as it is in a RIP-like protocol. Instead, there is a separate 
protocol in which “Hello” messages are broadcast on the LAN to detect a dead router. If a “Hello” is not 
received in time, the neighbor router is assumed dead and its distance vector is discarded.

Another variation from the RIP-family of distance vectors is to store the entire received distance vector 
from each neighbor, rather than only keeping the best report for each destination. Then, when informa-
tion must be discarded (e.g., due to having that neighbor report infinity for some destination or due to that 
neighbor being declared dead) information for finding an alternative path is available immediately.

There are variations proposed to solve the count-to-infinity behavior. One variation has been imple-
mented in BGP. Instead of just reporting a cost to destination D, a router reports the entire path from 
itself to D. This eliminates loops but has high overhead. Another variation proposed by Garcia-Luna-
Aceves (1989) and implemented in the proprietary protocol EIGRP involves sending a message in the 
opposite direction of D, when the path to D gets worse, and not switching over to a next-best path until 
ack’s are received indicating that the information has been received by the downstream subtree. These 
variations may improve convergence to be comparable to link state protocols, but they also erode the 
chief advantage of distance vector protocols, which is their simplicity.

46.4.2  Link State Protocols

The idea behind a link state protocol is that each router R is responsible for the following:

•	 Identifying its neighbors
•	 Constructing a special packet known as a link state packet (LSP) that identifies R and lists R’s 

neighbors (and the cost to each neighbor)
•	 Cooperating with all of the routers to reliably broadcast LSPs to all the routers
•	 Keeping a database of the most recently generated LSP from each other router
•	 Using the LSP database to calculate routes

Identifying neighbors and constructing an LSP is straightforward. Calculating routes using the LSP 
database is also straightforward. Most implementations use a variation of the shortest path algorithm 
attributed to Dijkstra. The tricky part is reliably broadcasting the LSP. The original link state algorithm 
was implemented in the ARPANET. Its LSP distribution mechanism had the unfortunate property that 
if LSPs from the same source, but with three different sequence numbers, were injected into the net-
work, these LSPs would turn into a virus. Every time a router processed one of them, it would generate 
more copies, and so the harder the routers worked, the more copies of the LSP would exist in the system. 
The problem was analyzed and a stable distribution scheme was proposed in Perlman (1983). The proto-
col was further refined for the IS-IS routing protocol and copied in OSPF (see next section).

One advantage of link state protocols is that they converge quickly. As soon as a router notices one of 
its links has changed (going up or down), it broadcasts an updated LSP, which propagates in a straight 
line outwards (in contrast to a distance vector protocol where information might sometimes be ping-
ponged back and forth before proceeding further or where propagation of the information is delayed 
waiting for news from downstream nodes that the current path’s demise has been received by all nodes).
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Link state protocols have other advantages as well. The LSP database gives complete information, 
which is useful for managing the network, mapping the network, or constructing custom routes for 
complex policy reasons (Clark, 1989) or for sabotage-proof routing (Perlman, 1988).

46.4.2.1 R eliable Distribution of LSPs

Each LSP contains

•	 Identity of the node that generated the LSP
•	 A sequence number large enough to never wrap around except if errors occur (e.g., 64 bits)
•	 An age field, estimating time since source generated the LSP
•	 Other information

Each router keeps a database of the LSP with the largest sequence number seen thus far from each 
source. The purpose of the age field is to eventually eliminate a LSP from a source that does not exist 
anymore or that has been down for a very long time. It also serves to get rid of an LSP that is corrupted 
or for which the sequence number has reached the largest value.

For each LSP, a router R has a table, for each of R’s neighbors, as to whether R and the neighbor N are 
in sync with respect to that LSP. The possibilities are as follows:

•	 R and N are in sync. R does not need to send anything to N about this LSP.
•	 R thinks N has not yet seen this LSP. R needs to periodically retransmit this LSP to N until N 

acknowledges it.
•	 R thinks N does not know R has the LSP. R needs to send N an ack for this LSP.

Router R goes through the list of LSPs round-robin, for each link, and transmits LSPs or acks as indi-
cated. If R sends an ack to N, R changes the state of that LSP for N to be in sync.

The state of an LSP gets set as follows:

•	 If R receives a new LSP from neighbor N, R overwrites the one in memory (if any) with smaller 
sequence number, sets send ack for N, and sets send LSP for each of R’s other neighbors.

•	 If R receives an ack for an LSP from neighbor N, R sets the flag for that LSP to be in sync.
•	 If R receives a duplicate LSP or older LSP from neighbor N, R sets the flag for the LSP in memory 

(the one with higher sequence number) to send LSP.
•	 After R transmits an ack for an LSP to N, R changes the state of that LSP to in sync.

If an LSP’s age expires, it is important that all of the routers purge the LSP at about the same time. The 
age is a field that is set to some value by the source and is counted down. In this way, the source can 
control how long it will last. If R decides that an LSP’s age has expired, R refloods it to R’s neighbors (by 
setting the state to send LSP). If R receives an LSP with the same sequence number as one stored, but the 
received one has zero age, R sets the LSP’s age to 0 and floods it to its neighbors. If R does not have an 
LSP in memory and receives one with zero age, R acks it but does not store it or reflood it.

46.4.2.2  Calculating Routes Based on Link State Information

Given an LSP database, the most popular method of computing routes is to use some variant of an algo-
rithm attributed to Dijkstra. The algorithm involves having each router compute a tree of shortest paths 
from itself to each destination. Each node on the tree has a value associated with it which is the cost from 
the root to that node. The algorithm is as follows:

•	 Step 0: put yourself, with cost 0, on the tree as root.
•	 Step 1: examine the LSP of the node X just put on the tree. For each neighbor N listed in X’s LSP, 

add X’s cost in the LSP to the cost to X to get some number c. If c is smaller than any path to N 
found so far, place N tentatively in the tree, with cost c.

•	 Step 2: find the node tentatively in the tree with smallest associated cost c. Place that node perma-
nently in the tree. Go to step 1.
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46.5 � Evolution of Ethernet from Carrier Sense Multiple 
Access with Collision Detect to TRansparent 
Interconnection of Lots of Links

Originally routing was supposed to be done at layer 3; but today, “Ethernet” is a network with multiple 
links and switches that forward packets along a path. The only way to understand why this is, is to 
understand the history.

Indeed, originally routing was done at layer 3, and layer 2 was for getting a piece of information from 
a node to an immediate neighbor. Ethernet was intended to be a single shared link, using a contention 
protocol known as carrier sense multiple access with collision detect (CSMA/CD). Layer 3 should have 
been used to interconnect different links.

Unfortunately, many people started implementing protocols directly on Ethernet, omitting layer 3. 
That meant their protocol could not work beyond the scalability of the original CSMA/CD Ethernet.

This was short-sighted. Indeed, it was desired for those protocols to work beyond a single link. But 
rather than changing all of the Ethernet endnodes, Digital Equipment Corporation designed (and IEEE 
eventually adopted) the concept of the “transparent bridge.” The goal was to be able to interconnect 
links without needing to change the endnodes. And there was a fixed maximum size of an Ethernet 
packet, so nothing could be modified in an Ethernet packet. The transparent bridge concept can work 
on any sort of link, even though usually today the links are Ethernet.

The basic idea of a transparent bridge is that on each port, the bridge listens promiscuously to all pack-
ets, stores them, and forwards each packet onto each other port when given permission by the LAN pro-
tocol on that port (e.g., if it were a token ring, when the port received the token, or if it were an Ethernet, 
when the link was idle). An enhancement is to have the bridge learn, based on addresses in the LAN 
header of packets received by the bridge, where the stations reside, so that the bridge does not unneces-
sarily forward packets (see Figure 46.6, where a bridge has learned some of the station addresses). The 
bridge learns from the source field in the LAN header and forwards based on the destination address. For 
example, in Figure 46.6, when S transmits a packet with destination address D, the bridge learns which 
interface S resides on, and then looks to see if it has already learned where D resides. If the bridge does not 
know where D is, then the bridge forwards the packet onto all interfaces (except the one from which the 
packet was received). If the bridge does know where D is, then the bridge forwards it only onto the inter-
face where D resides, or if the packet arrived from that interface, the bridge discards the packet).

This created the need for the spanning tree algorithm (Perlman, 1985).

46.5.1 T ransparent Bridging

The goal of transparent bridging was to invent a box that would interconnect LANs even though the sta-
tions were designed with protocols that only worked on a LAN; that is, they lacked a network layer able 
to cooperate with routers, devices that were designed for forwarding packets.

B

Y, Z A, D

S, X, J

Z
A

D
N

Y

J S X Q

FIGURE 46.6  A bridge learning station addresses.
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The basic idea of a transparent bridge is something that is attached to two or more LANs. On each 
LAN, the bridge listens promiscuously to all packets, stores them, and forwards each packet onto each 
other LAN when given permission by the LAN protocol on that LAN. An enhancement is to have the 
bridge learn, based on addresses in the LAN header, of packets received by the bridge, where the sta-
tions reside, so that the bridge does not unnecessarily forward packets (see Figure 46.6, where a bridge 
has learned some of the station addresses). The bridge learns from the source field in the LAN header 
and forwards based on the destination address. For example, in Figure 46.6, when S transmits a packet 
with destination address D, the bridge learns which interface S resides on, and then looks to see if it has 
already learned where D resides. If the bridge does not know where D is, then the bridge forwards the 
packet onto all interfaces (except the one from which the packet was received). If the bridge does know 
where D is, then the bridge forwards it only onto the interface where D resides, or if the packet arrived 
from that interface, the bridge discards the packet.

46.5.1.1  Spanning Tree Algorithm

The spanning tree algorithm is a very simple variant on distance vector, where all bridges calculate their 
path to a single destination; the root bridge. The tree of shortest paths from that root bridge to each LAN 
and each bridge is the calculated spanning tree.

46.5.1.1.1  Finding the Tree
How do the bridges decide on the root? Each bridge comes, at manufacture time, with a globally unique 
48-bit IEEE 802 address, usually one per interface. A bridge chooses one of the 48-bit addresses that it 
owns as its ID. Because each bridge has a unique number, it is a simple matter to choose the one with the 
smallest number. However, because some network managers like to easily influence which bridge will be 
chosen, there is a configurable priority value that acts as a more significant field tacked onto the ID. The 
concatenated number consisting of priority and ID is used in the election, and the bridge with the small-
est value is chosen as the root. The way in which the election proceeds is that each bridge assumes itself 
to be the root unless it hears, through spanning tree configuration messages, of a bridge with a smaller 
value for priority/ID. News of other bridges is learned through receipt of spanning tree configuration 
messages, which we describe shortly.

The next step is for a bridge to determine its best path to the root bridge and its own cost to the root. 
This information is also discovered through receipt of spanning tree configuration messages.

A spanning tree configuration message contains the following, among other information:

•	 Priority/ID of best known root
•	 Cost from transmitting bridge to root
•	 Priority/ID of transmitting bridge

A bridge keeps the best configuration message received on each of its interfaces. The fields in the mes-
sage are concatenated together, from most significant to least significant, as root’s priority/ID to cost 
to root to priority/ID of transmitting bridge. This concatenated quantity is used to compare messages. 
The one with the smaller quantity is considered better. In other words, only information about the best-
known root is relevant. Then, information from the bridge closest to that root is considered, and then 
the priority/ID of the transmitting bridge is used to break ties.

Given a best received message on each interface, B chooses the root as follows:

•	 Itself, if its own priority/ID beats any of the received value, else
•	 The smallest received priority/ID value B chooses its path to the root as follows:
•	 Itself, if it considers itself to be the root, else
•	 The minimum cost through each of its interfaces to the best-known root

Each interface has a cost associated with it, either as a default or configured. The bridge adds the inter-
face cost to the cost in the received configuration message to determine its cost through that interface.
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B chooses its own cost to the root as follows:

•	 0, if it considers itself to be the root, else
•	 The cost of the minimum cost path chosen in the previous step

Node B now knows what it would transmit as a configuration message, because it knows the root’s 
priority/ID, its own cost to that root, and its own priority/ID. If B’s configuration message is better than 
any of the received configuration messages on an interface, then B considers itself the designated bridge 
on that interface and transmits configuration messages on that interface. If B is not the designated 
bridge on an interface, then B will not transmit configuration messages on that interface.

Each bridge determines which of its interfaces are in the spanning tree. The interfaces in the spanning 
tree are as follows:

•	 The bridge’s path to the root: if more than one interface gives the same minimal cost, then exactly 
one is chosen. Furthermore, if this bridge is the root, then there is no such interface.

•	 Any interfaces for which the bridge is designated bridge are in the spanning tree.

If an interface is not in the spanning tree, the bridge continues running the spanning tree algorithm 
but does not transmit any data messages (messages other than spanning tree protocol messages) to that 
interface and ignores any data messages received on that interface.

If the topology is considered a graph with two types of nodes, bridges, and LANs, the following is the 
reasoning behind why this yields a tree:

•	 The root bridge is the root of the tree.
•	 The unique parent of a LAN is the designated bridge.
•	 The unique parent of a bridge is the interface that is the best path from that bridge to the root.

46.5.1.1.2  Dealing with Failures
The root bridge periodically transmits configuration messages (with a configurable timer on the order 
of 1 s). Each bridge transmits a configuration message on each interface for which it is designated, after 
receiving one on the interface which is that bridge’s path to the root. If some time elapses (a configurable 
value with default on the order of 15 s) in which a bridge does not receive a configuration message on an 
interface, the configuration message learned on that interface is discarded.

In this way, roughly 15 s after the root or the path to the root has failed, a bridge will discard all infor-
mation about that root, assume itself to be the root, and the spanning algorithm will compute a new tree.

46.5.1.1.3  Avoiding Temporary Loops
In a routing algorithm, the nodes learn information at different times. During the time after a topology 
change and before all nodes have adapted to the new topology, there are temporary loops or temporary 
partitions (no way to get from some place to some other place). Because temporary loops are so disastrous 
with bridges (because of the packet proliferation problem), bridges are conservative about bringing an 
interface into the spanning tree. There is a timer (on the order of 30 s, but configurable). If an interface was 
not in the spanning tree, but new events convince the bridge that the interface should be in the spanning 
tree, the bridge waits for this timer to expire before forwarding data messages to and from the interface.

IEEE has replaced the timer mechanism of avoiding temporary loops with a complex interlock mech-
anism of coordinating with neighbors before turning on ports, which allows faster failover. This variant 
of spanning tree is known as rapid spanning tree protocol.

46.5.2 TR ansparent Interconnection of Lots of Links

Once everyone fixed the mistake of omitting layer 3 from network stacks, and having most protocols 
run directly on top of layer 3, and given that everyone has agreed on a single layer 3 protocol (IPv4, 
atleast for now), why have not transparent bridges been replaced by IP routers?
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A true layer 3 protocol has advantages over spanning tree:

•	 Spanning tree does not yield shortest paths between any two nodes. For instance, if the topology 
is a big circle, spanning tree must refrain from using some links. Nodes on either side of that link 
have to take a long path between each other.

•	 Not all links can be utilized, so traffic is concentrated on links in the tree and other links 
are idle.

•	 For subtle reasons, if spanning tree switches do not have the computational capacity to process 
every incoming packet, loops can form, which are disastrous because of the lack of a hop count to 
detect infinitely circulating packets.

However, IP as a layer 3 protocol has disadvantages. In IP, each link has its own block of addresses. If 
you have a block of IP addresses and want to use them for a network, you have to carve up the address 
space to make a unique prefix for each link, you have to configure all the routers to know which 
address blocks are on which of their ports; and if a node moves to a different link, it must change its 
IP address.

Layer 3 does not need to work that way. In particular, ISO’s version of IP, known as ConnectionLess 
Network Protocol (CLNP), had a 20 byte address. The top 14 bytes were the prefix for an entire cloud of 
links. The bottom six bytes indicated the node within that cloud.

Routing between clouds was similar to IP, in that the top 14 bytes could be used hierarchically, with 
routing to the longest prefix match. Within a cloud, endnodes announced their presence to their local 
router, which announced its endnodes to the other routers in the cloud. If a packet’s 14 byte prefix indi-
cated “this cloud,” then routers in the cloud routed to the specific endnode.

So with CLNP, there was a large cloud with a flat address space. Routers within a cloud need not be 
configured; someone in the cloud needed to know the cloud’s 14 byte prefix and inform the rest of the 
routers. Nodes could move within the cloud without changing their address.

But unfortunately, the world does not have CLNP, and instead has IP. Even if the world does migrate 
to IPv6, with a 16-byte address, IPv6 behaves the same as IPv4, in that each link is intended to have its 
own prefix.

Therefore, people would like to create large flat Ethernet clouds, with self-configuring switches inside 
the cloud, and the ability for nodes to migrate within the cloud without changing their address.

TRansparent Interconnection of Lots of Links (TRILL) (RFC 6325; Perlman et al., 2011) accomplishes 
this, and it does it in an evolutionary way. Within an existing spanning tree-based Ethernet, any subset 
of the switches can be replaced by TRILL switches; and the more you replace, the better the bandwidth 
utilization and the more stable the Ethernet appears. Existing endnodes see no change other than that 
the Ethernet is performing better.

Two TRILL switches are neighbors if they are directly connected (on the same link) or through span-
ning tree switches. TRILL switches find their neighbors (by sending multicast messages that are not 
forwarded by TRILL switches) and form a network using a variant of the IS-IS routing protocol, to create 
forwarding table entries for reaching all the other TRILL switches (but not the endnodes).

Edge TRILL switches (those that are attached to endnodes), create an additional table of (MAC and 
egress TRILL switch), which is either configured or learned when receiving data packets. Core TRILL 
switches do not need to have such a table; a core TRILL switch forwards to the last TRILL switch.

The first TRILL switch (the “ingress switch”) adds an extra header to an Ethernet packet. This header 
contains the fields

•	 Ingress switch
•	 Egress switch
•	 Hop count (to detect and discard looping packets)

TRILL switches dynamically acquire 2 byte nicknames. This is done by having TRILL switch T1 choose 
a nickname N and claim it in T1’s LSP. Switch T1 examines all other TRILL switches’ LSPs, and if some 
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other TRILL switch T2 has chosen nickname N, then based on priority, one of them gets to keep N and 
the other chooses a different nickname (one not already claimed in another switch’s LSP).

Edge switches learn (or are configured) with an endnode table consisting of Ethernet address of 
endnode and attached TRILL switch nickname. When an ingress switch S receives an Ethernet packet, 
S looks up the destination Ethernet address in S’s table, finds the proper egress TRILL nickname E, 
and S adds a TRILL header with TRILL ingress switch nickname = S and TRILL egress switch nick-
name = E.

The core switches need only look at the TRILL header.
The advantages of the extra TRILL header are as follows:

•	 Core switches can forward based on an easy lookup in the forwarding table, since a 16-bit switch 
nickname can be a direct index into the forwarding table.

•	 Core switches only need a forwarding table, which is as big as the number of TRILL switches; not 
the number of endnodes.

•	 There is a hop count in the TRILL header, so it is routable just like layer 3, with all the techniques 
that are usually associated with layer 3, such as shortest paths, multipathing, etc.

Key Terms

Bridge: A box that forwards information from one link to another but only looks at information in layer 2.
Cloud: An informal representation of a multiaccess link. The purpose of representing it as a cloud is that 

what goes on inside is irrelevant to what is being discussed. When a system is connected to the 
cloud, it can communicate with any other system attached to the cloud.

Data-link layer: The layer that gets information from one machine to a neighbor machine (a machine 
on the same link).

IEEE 802 address: The 48-bit address defined by the IEEE 802 committee as the standard address on 
802 LANs.

Hops: The number of times a packet is forwarded by a router.
Local area network (LAN): A multiaccess link with multicast capability.
MAC address: Synonym for IEEE 802 address.
Medium access control (MAC): The layer defined by the IEEE 802 committee that deals with the specif-

ics of each type of LAN (for instance, token passing protocols on token passing LANs).
Multiaccess link: A link on which more than two nodes can reside.
Multicast: The ability to transmit a single packet that is received by multiple recipients.
Network layer: The layer that traditionally forms a path by concatenation of several links.
Router: A box that forwards packets at layer 3.
Switch: Any device that forwards packets (including bridges or routers).
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47.1  Introduction

An important requirement of any information management system is to protect information against 
improper disclosure or modification (known as confidentiality and integrity, respectively). Access control 
is a fundamental technology to achieve this goal (e.g., [22,26]). It controls every access request to a sys-
tem and determines whether the access request should be granted or denied. In access control systems, a 
distinction is generally made among policies, models, and mechanisms. Policies are high level guidelines 
that determine how accesses are controlled and access decisions determined. A policy is then formalized 
through a security model and is enforced by access control mechanisms. The access control mechanism 
works as a reference monitor that mediates every attempted access by a user (or program executing on 
behalf of that user) to objects in the system. The reference monitor consults an authorization database 
to determine if the user attempting to do an operation is actually authorized to perform that operation. 
Authorizations in this database are usually defined with respect to the identity of the users. This implies 
that access control requires authentication as a prerequisite, meaning that the identity of the requesting 
user has to be correctly verified (e.g., [8,19,25,31]). The reader is surely familiar with the process of sign-
ing on to a computer system by providing an identifier and a password. This authentication establishes 
the identity of a human user to a computer. More generally, authentication can be computer-to-computer 
or process-to-process and mutual in both directions. Access control is then concerned with limiting 
the activity of legitimate users who have been successfully authenticated. The set of authorizations are 
administered and maintained by a security administrator. The administrator sets the authorizations 
on the basis of the security policy of the organization. Users may also be able to modify some portion 
of the authorization database, for example, to set permissions for their personal files. The effectiveness 
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of the access control rests on a proper user identification and on the correctness of the authorizations 
governing the reference monitor.

The variety and complexity of the protection requirements that may need to be imposed in today’s 
systems make the definition of access control policies a far from trivial process. For instance, many 
services do not need to know the real identity of a user but they may need to know some characteristics/
properties of the requesting users (e.g., a user can access a service only if she works in an European 
country), or different systems may need to collaborate while preserving their autonomy in controlling 
access to their resources [23,24,26]. The goal of this chapter is therefore to provide an overview of the 
access control evolution. This overview begins with a discussion on the classical discretionary, manda-
tory, and role-based access control policies and models (Sections 47.2 through 47.4), and then continues 
with an illustration of the administration policies (Section 47.5) that determine who can modify the 
accesses allowed by such policies. We then discuss the most recent advances in access control, focusing 
on attribute and credential-based access control (Section 47.6). Finally, we present our conclusions in 
Section 47.7.

47.2  Discretionary Access Control (DAC)

Discretionary access control policies govern the access of users to the information/resources on the 
basis of the users’ identities and authorizations (or rules) that specify, for each user (or group of users) 
and each object in the system, the access modes the user is allowed on the object. Each request of a user 
to access an object is checked against the specified authorizations. If there exists an authorization stat-
ing that the user can access the object in the specific mode, the access is granted; it is denied, otherwise. 
In the following, we first describe the access matrix model, which is useful to understand the basic prin-
ciples behind discretionary access control models and policies, and discuss implementation alternatives. 
We then illustrate how discretionary policies have been further expanded.

47.2.1 T he Access Matrix Model and Its Implementation

A first step in the definition of an access control model is the identification of the set of objects to be 
protected, the set of subjects who request access to objects, and the set of access modes that can be exe-
cuted on objects. While subjects typically correspond to users (or groups thereof), objects and access 
modes may differ depending on the specific system or application. For instance, objects may be files 
and access modes may be Read, Write, Execute, and Own. The meaning of the first three of these access 
modes is self evident. Ownership is concerned with controlling who can change the access permissions 
for the file. An object such as a bank account may have access modes Inquiry, Credit, and Debit cor-
responding to the basic operations that can be performed on an account. These operations would be 
implemented by application programs, whereas for a file the operations would typically be provided by 
the operating system.

A subtle point that is often overlooked is that subjects can themselves be objects. A subject can 
create additional subjects to accomplish its task. The children subjects may be executing on various 
computers in a network. The parent subject will usually be able to suspend or terminate its children as 
appropriate. The fact that subjects can be objects corresponds to the observation that the initiator of 
one operation can be the target of another. (In network parlance, subjects are often called initiators, 
and objects called targets.)

The access matrix is a conceptual model which specifies the rights that each subject possesses for each 
object. There is a row in the matrix for each subject, and a column for each object. Each cell of the matrix 
specifies the access authorized for the subject in the row to the object in the column. The task of access 
control is to ensure that only those operations authorized by the access matrix actually get executed. 
This is achieved by means of a reference monitor, which is responsible for mediating all attempted opera-
tions by subjects on objects.
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Table 47.1 shows an example of access matrix where the access modes R and W denote read and write, 
respectively, and the other access modes are as discussed previously. The subjects shown here are John, 
Alice, and Bob. There are four files and two accounts. This matrix specifies that, for example, John is 
the owner of File1 and can read and write that file, but John has no access to File2 and File4. The precise 
meaning of ownership varies from one system to another. Usually the owner of a file is authorized to 
grant other users access to the file, as well as revoke access. Since John owns File1, he can give Alice the 
R right and Bob the R and W rights as shown in Table 47.1. John can later revoke one or more of these 
rights at his discretion.

The access modes for the accounts illustrate how access can be controlled in terms of abstract opera-
tions implemented by application programs. The Inquiry operation is similar to read since it retrieves 
information but does not change it. Both the Credit and Debit operations will involve reading the pre-
vious account balance, adjusting it as appropriate and writing it back. The programs which implement 
these operations require read and write access to the account data. Users, however, are not allowed to 
read and write the account object directly. They can manipulate account objects only indirectly via 
application programs which implement the Debit and Credit operations. Also, note that there is no own 
right for accounts. Objects such as bank accounts do not really have an owner who can determine the 
access of other subjects to the account. Clearly, the user who establishes the account at the bank should 
not be the one to decide who can access the account. Within the bank different officials can access the 
account depending on their job functions in the organization.

In a large system the access matrix will be enormous in size, and most of its cells are likely to be 
empty. Accordingly, the access matrix is very rarely implemented as a matrix. We now discuss some 
common approaches for implementing the access matrix in practical systems.
Access control lists: Each object is associated with an access control list (ACL), indicating for each sub-
ject in the system the accesses the subject is authorized to execute on the object. This approach cor-
responds to storing the matrix by columns. ACLs corresponding to the access matrix of Table 47.1 are 
shown in Figure 47.1. Essentially the access matrix column for File1 is stored in association with File1, 
and so on.

By looking at an object’s ACL, it is easy to determine which access modes subjects are currently 
authorized for that object. In other words, ACLs provide for convenient access review with respect to an 
object. It is also easy to revoke all accesses to an object by replacing the existing ACL with an empty one. 
On the other hand, determining all the accesses that a subject has is difficult in an ACL-based system. 
It is necessary to examine the ACL of every object in the system to do access review with respect to a 
subject. Similarly, if all accesses of a subject need to be revoked, all ACLs must be visited one by one. 
(In practice revocation of all accesses of a subject is often done by deleting the user account correspond-
ing to that subject. This is acceptable if a user is leaving an organization. However, if a user is reassigned 
within the organization it would be more convenient to retain the account and change its privileges to 
reflect the changed assignment of the user.)

TABLE 47.1  An Example of Access Matrix

File1 File2 File3 File4 Account1 Account2

John Own Own Inquiry 
CreditR R

W W
Alice R Own W R Inquiry 

Debit
Inquiry 

CreditR
W

Bob R R Own Inquiry 
DebitW R

W
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Many systems allow group names to occur in ACLs (see Section 47.2.2). For instance, an entry such as 
(ISSE, R) can authorize all members of the ISSE group to read a file. Several popular operating systems 
(e.g., Unix) implement an abbreviated form of ACLs in which a small number, often only one or two, 
group names can occur in the ACL. Individual subject names are not allowed. With this approach the 
ACL has a small fixed size so it can be stored using a few bits associated with the file.

File2

File3

File4

Account1

Account2

File1 John

Alice

Alice

Alice

Alice

Alice Bob

Bob

Bob

Bob

Alice

Own
R
W

John

John

Inquiry
Credit

Inquiry
Credit

Inquiry
Debit

Inquiry
Debit

R

R
R
W

R

W
Own

R
W

Own
R
W

Own
R
W

FIGURE 47.1  Access control lists corresponding to the access matrix in Table 47.1.
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Capabilities: Capabilities are a dual approach to ACLs. Each subject is associated with a list, called capa-
bility list, indicating for each object in the system, the accesses the subject is authorized to execute 
on the object. This approach corresponds to storing the access matrix by rows. Figure 47.2 shows the 
capability lists corresponding to the access matrix in Table 47.1. In a capability list approach it is easy to 
review all accesses that a subject is authorized to perform by simply examining the subject’s capability 
list. However, determination of all subjects who can access a particular object requires examination of 
each and every subject’s capability list. A number of capability-based computer systems were developed 
in the 1970s, but did not prove to be commercially successful. Modern operating systems typically take 
the ACL-based approach.

It is possible to combine ACLs and capabilities. Possession of a capability is sufficient for a subject to 
obtain access authorized by that capability. In a distributed system this approach has the advantage that 
repeated authentication of the subject is not required. This allows a subject to be authenticated once, 
obtain its capabilities and then present these capabilities to obtain services from various servers in the 
system. Each server may further use ACLs to provide finer-grained access control.
Authorization relations: We have seen that ACL- and capability-based approaches have dual advantages 
and disadvantages with respect to access review. There are representations of the access matrix which do 
not favor one aspect of access review over the other. For instance, the access matrix can be represented 
by an authorization relation (or table) as shown in Table 47.2. Each row, or tuple, of this table specifies 
one access right of a subject to an object. Thus, John’s accesses to File1 require three rows. If this table 
is sorted by subject, we get the effect of capability lists. If it is sorted by object, we get the effect of ACLs. 
Relational database management systems typically use such a representation.

47.2.2  Expanding Authorizations

Although the access matrix still remains a framework for reasoning about accesses permitted by 
a discretionary policy, discretionary policies have been developed considerably since the access 
matrix was proposed. In particular, early approaches to authorization specifications allowed con-
ditions to be associated with authorizations to restrict their validity [33]. Conditions may involve 
some system predicates, and may specify restrictions based on the content of objects or on accesses 
previously executed. Another important feature supported by current discretionary policies is the 
definition of abstractions on users and objects. Both users and objects can therefore be hierarchi-
cally organized, thus introducing user groups and classes of objects. Figure 47.3a and b illustrate an 
example of user group hierarchy and object hierarchy, respectively. The definition of groups of users 
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FIGURE 47.2  Capability lists corresponding to the access matrix in Table 47.1.
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(and classes of objects) requires a technique to easily handle exceptions. For instance, suppose that 
all users belonging to a group can access a specific object but user u. In this case, it is necessary to 
explicitly associate an authorization with each user in the group but u, which is clearly a solution 
that does not take advantage from the definition of user groups. This observation has been the driv-
ing factor supporting the development of access control models that combine positive and negative 
authorizations (e.g., [10]). In this way, the previous exception can be easily modeled by the definition 
of two authorizations: a positive authorization for the group and a negative authorization for user u. 
Hierarchies can also simplify the definition of authorizations because authorizations specified on an 
abstraction can be propagated to all its members. The propagation of authorizations over a hierarchy 
may follow different propagation policies (e.g., [35,52]). For instance, authorizations associated with 

Personnel

Marketing Purchase Admin

Alice Bob John Emma

Objects

Files Accounts

File1 File2 File3 File4 Account1 Account2
(a) (b)

FIGURE 47.3  An example of (a) user group and (b) object hierarchy.

TABLE 47.2  Authorization Relation 
Corresponding to the Access Matrix in Table 47.1

Subject Access Mode Object

John Own File1
John R File1
John W File1
John Own File3
John R File3
John W File3
John Inquiry Account1
John Debit Account1
Alice R File1
Alice Own File2
Alice R File2
Alice W File2
Alice W File3
Alice R File4
Alice Inquiry Account1
Alice Debit Account1
Alice Inquiry Account2
Alice Credit Account2
Bob R File1
Bob W File1
Bob R File2
Bob Own File4
Bob R File4
Bob W File4
Bob Inquiry Account2
Bob Debit Account2
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an element in the hierarchy may not be propagated, may be propagated to all its descendants, or may 
be propagated to its descendants if not overridden.

The use of both positive and negative authorizations introduces two problems: (1) inconsistency, 
which happens when for an access there are both a negative and a positive authorization; and (2) incom-
pleteness, which happens when some accesses are neither authorized nor denied (i.e., no authorization 
exists for them). The inconsistency problem is solved by applying a conflict resolution policy. There are 
several conflict resolution policies [35,45] such as: no conflict, the presence of a conflict is considered an 
error; denials take precedence, negative authorizations take precedence; permissions take precedence, 
positive authorizations take precedence; nothing takes precedence, neither positive nor negative authori-
zations take precedence and conflicts remain unsolved; most specific takes precedence, the authorization 
that is more specific with respect to a hierarchy wins (e.g., consider the user group hierarchy in Figure 
47.3a, the effect on John of a positive authorization for the Admin group to read File1, and a negative 
authorization for reading the same file for Personnel is that he is allowed to read File1 since Admin 
is more specific than Personnel); and most specific along a path takes precedence, the authorization 
that is more specific with respect to a hierarchy wins only on the paths passing through it (e.g., con-
sider the user group hierarchy in Figure 47.3a, the effect on John of a positive authorization for the 
Admin group to read File1, and a negative authorization for reading the same file for Personnel is 
that there is a conflict for managing John’s access to File1 since the negative authorization wins along 
path ⟨Personnel, Purchase, John⟩ and the positive authorization wins along path ⟨Personnel, 
Admin, John⟩). The incompleteness problem can be solved by adopting a decision policy, that is, an 
open policy or a closed policy. Open policies are based on explicitly specified authorizations and the 
default decision of the reference monitor is denial. Open policies are based on the specification of deni-
als instead of permissions. In this case, for each user and each object in the system, the access modes 
the user is forbidden on the object are specified. Each access request by a user is checked against the 
specified (negative) authorizations and granted only if no authorization denying the access exists. The 
combination of a propagation policy, a conflict resolution policy, and a decision policy guarantees a 
complete and consistent policy for the system.

47.3  Mandatory Access Control (MAC)

The flexibility of discretionary policies makes them suitable for a variety of systems and applications, 
especially in the commercial and industrial environments. However, discretionary access control poli-
cies have the drawback that they do not provide real assurance on the flow of information in a system. 
It is easy to bypass the access restrictions stated through the authorizations. For instance, a user who 
is authorized to read data can pass them to other users not authorized to read them without the cogni-
zance of the owner. The reason is that discretionary policies do not impose any restriction on the usage 
of information by a user once the user has got it (i.e., dissemination of information is not controlled). 
By contrast, dissemination of information is controlled in mandatory systems by preventing flow of 
information from high-level objects to low-level objects. Mandatory policies govern access on the basis 
of a classification of subjects and objects in the system. Note that the concept of subject in discretionary 
policies is different from the concept of subject in mandatory policies. In fact, authorization subjects 
correspond to users (or groups thereof) while in mandatory policies users are human beings who can 
access the system, and subjects are processes operating on behalf of users.

Each subject and each object in a mandatory system is assigned an access class. The set of access 
classes is a partially ordered set and in most cases an access class is composed by a security level and 
a set of categories. The security level is an element of a hierarchical ordered set. In the military and 
civilian government arenas, the hierarchical set generally consists of top secret (TS), secret (S), confi-
dential (C), and unclassified (U), where TS > S > C > U. Each security level is said to dominate itself 
and all others below it in this hierarchy. The set of categories is a subset of an unordered set, whose ele-
ments reflect functional, or competence, areas (e.g., financial, demographic, medical). Given two access 
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classes c1 and c2, we say that c1 dominates c2, denoted c1 ≽ c2, iff the security level of c1 is greater than or 
equal to that of c2 and the categories of c1 include those of c2.

The semantics and use of the access classes assigned to objects and subjects within the application of a 
multilevel mandatory policy depends on whether the access class is intended for a secrecy or an integrity 
policy. In the following, we illustrate secrecy-based and integrity-based mandatory policies.

47.3.1  Secrecy-Based Model

The main goal of a secrecy-based mandatory policy is to protect the confidentiality of information. In 
this case, the security level associated with an object reflects the sensitivity of the information contained 
in the object, that is, the potential damage which could result from unauthorized disclosure of the infor-
mation. The security level associated with a user, also called clearance, reflects the user’s trustworthiness 
not to disclose sensitive information to users not cleared to see it. The set of categories associated with a 
user reflects the specific areas in which the user operates. The set of categories associated with an object 
reflects the area to which information contained in the object is referred. Categories enforce restrictions 
on the basis of the need-to-know principle (i.e., a subject should be only given those accesses which are 
required to carry out the subject’s responsibilities). Users can connect to the system at any access class 
dominated by their clearance. A user connecting to the system at a given access class originates a subject 
at that access class.

Access to an object by a subject is granted only if some relationship (depending on the type of access) 
is satisfied between the access classes associated with the two. In particular, the following two principles 
are required to hold.

Read-down A subject’s access class must dominate the access class of the object being read.
Write-up A subject’s access class must be dominated by the access class of the object being written.

Satisfaction of these principles prevents information in high level objects (i.e., more sensitive) to flow to 
objects at lower levels. Figure 47.4 illustrates the effect of these rules. Here, for simplicity, accesses classes 
are only composed of a security level. In such a system, information can only flow upwards or within 
the same security class.

To better understand the rationale behind the read-down and write-up rules, it is important to 
analyze the relationship between users and subjects in this context. Suppose that the human user Jane 
is cleared to S (again, for simplicity, access classes are only composed of a security level), and assume 
she always signs on to the system as an S subject (i.e., a subject with clearance S). Jane’s subjects are 
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FIGURE 47.4  Controlling information flow for secrecy.
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prevented from reading TS objects by the read-down rule. The write-up rule, however, has two aspects 
that seem at first sight contrary to expectation.

•	 First, Jane’s S subjects can write a TS object (even though they cannot read it). In particular, they 
can overwrite existing TS data and therefore destroy them. Due to this integrity concern, many 
systems for mandatory access control do not allow write-up but limit writing to the same level as 
the subject. At the same time write-up does allow Jane’s S subjects to send electronic mail to TS 
subjects, and can have its benefits.

•	 Second, Jane’s S subjects cannot write C or U data. This means, for example, that Jane can never 
send electronic mail to C or U users. This is contrary to what happens in the paper world, where 
S users can write memos to C and U users. This seeming contradiction is easily eliminated by 
allowing Jane to sign to the system as a C, or U, subject as appropriate. During these sessions she 
can send electronic mail to C or, U and C, subjects, respectively.

The write-up rule prevents malicious software from leaking secrets downward from S to U. Users 
are trusted not to leak such information, but the programs they execute do not merit the same degree 
of trust. For instance, when Jane signs onto the system at U level her subjects cannot read S objects, and 
thereby cannot leak data from S to U. The write-up rule also prevents users from inadvertently leaking 
information from high to low.

47.3.2  Integrity-Based Model

Mandatory access control can also be applied for the protection of information integrity. The integrity 
level associated with an object reflects the degree of trust that can be placed in the information stored in 
the object, and the potential damage that could result from unauthorized modification of the informa-
tion. The integrity level associated with a user reflects the user’s trustworthiness for inserting, modify-
ing or deleting data and programs at that level. Again, categories define the area of competence of users 
and data. Principles similar to those stated for secrecy are required to hold, as follows.

Read-up A subject’s integrity class must be dominated by the integrity class of the object being 
read.

Write-down A subject’s integrity class must dominate the integrity class of the object being 
written.

Satisfaction of these principles safeguard integrity by preventing information stored in low objects 
(and therefore less reliable) to flow to high objects. This is illustrated in Figure 47.5, where, for sim-
plicity, integrity classes are only composed of integrity levels, which can be crucial (C), important (I), 
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and unknown (U) with C > I > U. Controlling information flow in this manner is only one aspect of 
achieving integrity. Integrity in general requires additional mechanisms, as discussed in [16,53].

Note that the only difference between Figures 47.4 and 47.5 is the direction of information flow, 
being bottom to top in the former case and top to bottom in the latter. In other words, both cases are 
concerned with one-directional information flow. The essence of classical mandatory controls is one-
directional information flow in a lattice of security classes. For further discussion on this topic see [52].

47.4 R ole-Based Access Control (RBAC)

Role-based policies regulate the access of users to the information on the basis of the activities the users 
execute in the system. Role-based policies require the identification of roles in the system. A role can 
be defined as a set of actions and responsibilities associated with a particular working activity. Then, 
instead of specifying all the accesses each user is allowed to execute, access authorizations on objects are 
specified for roles. Users are given authorizations to play roles. This greatly simplifies the authorization 
management task. For instance, suppose a user’s responsibilities change, say, due to a promotion. The 
user’s current roles can be taken away and new roles assigned as appropriate for the new responsibili-
ties. Another advantage of RBAC is that roles allow a user to sign on with the least privilege required 
for the particular task at hand. Users authorized to powerful roles do not need to exercise them until 
those privileges are actually needed. This minimizes the danger of damage due to inadvertent errors or 
by intruders masquerading as legitimate users. Note that, in general, a user can take on different roles 
on different occasions. Also, the same role can be played by several users, perhaps simultaneously. Some 
proposals for role-based access control allow a user to exercise multiple roles at the same time. Other 
proposals limit the user to only one role at a time, or recognize that some roles can be jointly exercised 
while others must be adopted in exclusion to one another. In the remainder of this section, we briefly 
describe the standard RBAC model and then illustrate an extension of RBAC.

47.4.1  Basic RBAC Model

In 2004, the National Institute of Standards and Technology (NIST) proposed a US national standard for 
role-based access control through the International Committee for Information Technology Standards 
(ANSI/INCITS) [3,28]. The standard RBAC model is organized in four components, which are briefly 
described in the following.

Core RBAC: Core RBAC includes five basic elements, that is, users, roles, objects, operations, and per-
missions. Users are assigned to roles, and permissions (i.e., the association between an object and an 
operation executable on the object) are assigned to roles. The permission-to-role and user-to-role assign-
ments are both many-to-many, thus providing greater flexibility. In addition, Core RBAC includes the 
concept of session, where each session is a mapping between a user and a set of activated roles, which 
are a subset of the roles assigned to the user. The permissions available to a user during a session are 
therefore all the permissions associated with the roles activated by the user in the session.

Hierarchical RBAC: This model introduces the concept of role hierarchy. In many applications there is 
a natural hierarchy of roles, based on the familiar principles of generalization and specialization. For 
instance, the Medical Staff role may be specialized into Doctor and Nurse (see Figure 47.6). 

Medical staff

Doctor Nurse

Supervising medical staff

FIGURE 47.6  An example of role hierarchy.
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The role hierarchy has implication on role activation and access privileges: a specialized role inherits 
the authorizations of its generalizations; also, users authorized to activate a role inherit the authoriza-
tion to activate the generalizations of the role. For instance, with reference to Figure 47.6, role Nurse 
inherits all authorizations of role Medical Staff. Also, users authorized to activate role Nurse 
will also be allowed to activate role Medical Staff. A role hierarchy can be an arbitrary partial 
order or it may be possible to impose some restrictions on the type of hierarchy. For instance, it is 
possible to require that a role hierarchy has to be a tree, meaning that each role may have only one 
single direct parent.

Static separation of duty: The RBAC model can be enriched by adding separation of duty constraints. 
Intuitively, static separation of duty imposes restrictions on the assignments of users to roles. For 
instance, a user assigned to the Nurse role may not be assigned to the Doctor role. A separation of 
duty constraint is defined as a pair where the first element is a set rs of roles and the second element is 
an integer n greater than or equal to two denoting the number of roles that would constitute a violation. 
For instance, ⟨{Doctor, Nurse},2⟩ states that a user may be assigned to one out of the two roles men-
tioned in the constraint. Since static separation of duty constraints can be also defined in the presence 
of a role hierarchy, it is important to ensure that role inheritance does not violate the static separation 
of duty constraints.

Dynamic separation of duty: In the dynamic separation of duty, constraints are enforced at run-time: 
users can activate any role to which they are assigned but the activation of some roles during a ses-
sion will rule out their ability to activate another role which is in a separation of duty constraint with 
the activated roles. An example of dynamic separation of duty is the two-person rule. The first user 
who executes a two-person operation can be any authorized user, whereas the second user can be any 
authorized user different from the first. The dynamic separation of duty constraints are still defined as 
pairs composed by a set rs of roles and an integer n greater than or equal to two and their enforcement 
requires that no user is assigned to n or more roles from rs in a single session.

In addition to the four components described above, the NIST RBAC standard defines administra-
tive functions related to the creation and management of the basic elements and relations of RBAC, and 
permission review functions.

47.4.2  Expanding RBAC

The RBAC model has been adopted in a variety of commercial systems (e.g., DB2, Oracle), and has 
been the subject of many research proposals aimed at extending and enriching the model to support 
particular domain specific security policies (e.g., web services, social networks), administration models, 
and delegation. Some proposals are also aimed at integrating RBAC with other technologies such as 
cryptography, trust mechanisms, and XML-based access control languages (e.g., [1,30]). Given the huge 
amount of work on RBAC, it is clearly not feasible to provide a comprehensive summary of the exten-
sions proposed in the literature. A notable example is the usage control model (UCONABC) [51], a frame-
work that encompasses access control, trust management, and digital right management. This proposal 
is interesting since it supports DAC, MAC, and RBAC and is based on attributes characterizing subjects 
and objects that are used for specifying authorizations (see Section 47.6 for more details about attribute-
based access control). In particular, the UCONABC model integrates authorizations, obligations, and 
conditions within a unique framework, and includes the following eight components.

Subjects, objects, and rights: Subjects, objects, and rights have the same meaning of the corresponding 
concepts also used within the DAC, MAC, and RBAC access control models. A subject is therefore an 
individual who holds some rights on objects.

Subject and object attributes: Each subject and object in the system is characterized by a set of attri-
butes that can be used for verifying whether an access request can be granted. Examples of subject 
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attributes include identities, group names, and roles while examples of object attributes include owner-
ships, security labels, and so on. A peculiarity of the UCONABC model is that subject and object attri-
butes can be mutable, meaning that their values may change due to an access.

Authorizations: Authorizations are evaluated for usage decision and return whether a subject can per-
form the required right on an object. Authorizations are based on subject and object attributes, and 
are distinguished between pre-authorizations and ongoing-authorizations. A pre-authorization is per-
formed before the execution of the requested right while an ongoing-authorization is performed during 
the access.

Obligations: An obligation is a requirement that a user has to perform before (pre) or during (ongoing) 
access. For instance, a pre-obligation may require a user to provide her date of birth before accessing a 
service. The execution of obligations may change the value of mutable attributes and therefore they may 
affect current or future usage decisions.

Conditions: Conditions evaluate current environmental or system status. Examples are time of the day 
and system workload. The evaluation of these conditions cannot change the value of any subject or 
object attributes.
A family of UCONABC core models is defined according to three criteria: the decision factor, which may 
be authorizations, obligations, and conditions; the continuity of decision, which may be either pre or 
ongoing; and the mutability, which can allow changes on subject or object attributes at different times. 
According to these criteria, the authors in [51] define 16 basic UCONABC models and show how these 
models can support traditional DAC, MAC, and RBAC.

47.5 A dministration of Authorizations

Administrative policies determine who is authorized to modify the allowed accesses. This is one of the 
most important, and least understood, aspects of access control.

In mandatory access control the allowed accesses are determined entirely on the basis of the access 
class of subjects and objects. Access classes are assigned to users by the security administrator. Access 
classes of objects are determined by the system on the basis of the access classes of the subjects creating 
them. The security administrator is typically the only one who can change access classes of subjects or 
objects. The administrative policy is therefore very simple.

Discretionary access control permits a wide range of administrative policies. Some of these are 
described as follows:

•	 Centralized: A single authorizer (or group) is allowed to grant and revoke authorizations to 
the users.

•	 Hierarchical: A central authorizer is responsible for assigning administrative responsibilities to 
other administrators. The administrators can then grant and revoke access authorizations to the 
users of the system. Hierarchical administration can be applied, for example, according to the 
organization chart.

•	 Cooperative: Special authorizations on given resources cannot be granted by a single authorizer 
but need cooperation of several authorizers.

•	 Ownership: A user is considered the owner of the objects he/she creates. The owner can grant and 
revoke access rights for other users to that object.

•	 Decentralized: In decentralized administration the owner of an object can also grant other users 
the privilege of administering authorizations on the object.

Within each of these there are many possible variations [52].
Role-based access control has a similar wide range of possible administrative policies. In this case 

roles can also be used to manage and control the administrative mechanisms.
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Delegation of administrative authority is an important aspect in the administration of authoriza-
tions. In large distributed systems, centralized administration of access rights is infeasible. Some exist-
ing systems allow administrative authority for a specified subset of the objects to be delegated by the 
central security administrator to other security administrators. For instance, authority to administer 
objects in a particular region can be granted to the regional security administrator. This allows del-
egation of administrative authority in a selective piecemeal manner. However, there is a dimension of 
selectivity that is largely ignored in existing systems. For instance, it may be desirable that the regional 
security administrator be limited to granting access to these objects only to employees who work in that 
region. Control over the regional administrators can be centrally administered, but they can have con-
siderable autonomy within their regions. This process of delegation can be repeated within each region 
to set up sub-regions and so on.

47.6 A ttribute and Credential-Based Access Control

Emerging distributed scenarios (e.g., cloud computing and data outsourcing) are typically character-
ized by several independent servers offering services to anyone who needs them (e.g., [21]). In such a 
context, traditional assumptions for enforcing access control do not hold anymore. As a matter of fact, 
an access request may come from unknown users and therefore access control policies based on the 
identity of the requester cannot be applied. Alternative solutions that have been largely investigated in 
the last 20 years consist in adopting attribute-based access control that uses the attributes associated 
with the resources/services and requesters to determine whether the access should be granted (e.g., [5]). 
The basic idea is that not all access control decisions are identity-based. For instance, information about 
a user’s current role (e.g., doctor) or a user’s date of birth may be more important than the user’s identity 
for deciding whether an access request should be granted.

In the remainder of this section, we first review the basic concepts about attribute and credential-
based access control and then describe some solutions based on such a model.

47.6.1  Basic Elements of the Model

Attribute-based access control differs from traditional discretionary access control since both the sub-
ject and the object appearing in an authorization are replaced by a set of attributes associated with them. 
Such attributes may correspond to an identity or a non-identifying characteristic of a user (e.g., date of 
birth, nationality) and to metadata associated with an object that provide additional context informa-
tion (e.g., data of creation). In particular, the attributes associated with a user may be specified by the 
user herself (declarations), or may be substantiated by digital certificates or credentials (e.g., [12,57]). 
Metadata associated with resources/services can be in different form (e.g., textual or semistructured 
data). By analyzing previous works in the area, we identify the following main concepts captured by 
attribute/credential-based access control models.

Authority: An authority is an entity responsible for producing and signing certificates. A party may 
accept certificates issued by an authority that it trusts or that has been (directly or indirectly) delegated 
by an authority that it trusts.

Certificate: A certificate is a statement certified by an authority trusted for making such a statement. 
Each certificate is characterized by the identity of the issuer, the identity of the user for which the 
certificate has been issued, a validity period, a signature of the issuing authority, and a set of certified 
attributes. Certificates can be classified according to different dimensions. Since we focus on the use 
of certificates in access control, we distinguish between atomic and non-atomic certificates [7]. Atomic 
certificates (e.g., X.509) can only be released as a whole, meaning that all attributes in a certificate 
are disclosed. These certificates are the most common type of certificates used today in distributed 
systems. Although these certificates can only be released as a whole, there is usually the possibility 
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to refer to specific attributes within a certificate for querying purpose. Given a certificate c includ-
ing a set {a1,…,am} of attributes, we can use the dot notation to refer to a given attribute in c. For 
instance, given credential Passport certifying attributes name, dob, and country, Passport.
name denotes attribute name certified by the Passport credential. Non-atomic certificates (e.g., 
Idemix [15]) allow the selective release of the attributes certified by them. Non-atomic certificates are 
based on technologies that also permit to certify the possession of a given certificate without disclos-
ing the attributes within it. Abstractions can be defined within the domain of certificates. Figure 47.7 
illustrates an example of certificate abstractions. The use of abstractions in the policy specification 
provides a compact and easy way to refer to complex concepts. For instance, the specification of 
abstraction Passport in a policy states that any kind of passport (diplomatic or regular) can be 
accepted. Abstractions can be formally modeled through a hierarchy H = (C , ≺), with C  a set of cer-
tificate abstractions and ≺ a partial order relationship over C. Given two certificate abstractions ci and 
cj, ci ≺ cj if cj is an abstraction of ci.

An important concept captured by several credential-based access control models is delegation. The 
delegation is the ability of an authority to produce credentials on behalf of the delegator. Delegation 
increases flexibility and permits the inexpensive creation of credentials, particularly in an open envi-
ronment. A delegation certificate issued by an authority states that it trusts another authority for issuing 
certificates that include specific attributes. An authority can delegate other authorities only on given 
attributes (e.g., a hospital can issue a certificate delegating physicians to certify specific properties of 
patients) or can give unrestricted delegation to other authorities.

Low-level issues related to the certificate creation, retrieval, validation, and revocation are all usually 
assumed to be managed by an underlying implementation of the certificate management system (e.g., 
[38,41,44]) and are therefore outside the scope of this chapter.
Policy: A policy defines the rules (authorizations) regulating access to resources. Such authorizations 
model access restrictions based on generic properties associated with subjects and objects. In general, 
these restrictions can refer to attributes within specific credentials or can refer to certificate abstrac-
tions. In this latter case, a restriction involving a certificate abstraction applies also to its specialized 
abstractions/credentials. For instance, with respect to the certificate abstractions in Figure 47.7, ID.dob 
represents attribute dob certified by a credential of type ID. From an analysis of the current attribute 
and credential-based access control policies, it is easy to see that at an abstract level the main elements 
of an authorization that are common to many proposals are the following:

•	 Subject expression: A subject expression identifies a set of subjects having specific attributes. 
A subject expression can be seen as a boolean formula of basic conditions defined on attributes. 
Attributes appearing in basic conditions must be certified or can be declared by a user. For 
instance, expression ID.dob>01-05-1971 denotes all users with a certificate of type ID certifying 
that the date of birth of the users is after January 05, 1971.

•	 Object expression: An object expression identifies the resources/services to be protected. Like for 
subject expressions, also an object expression can be seen as a boolean formula of basic conditions 
defined on the metadata associated with resources/services. For instance, assume that producer 
is a metadata attribute associated with objects. Then, expression producer=“EU” denotes all 
objects made in an European country.

•	 Action: An action denotes the operation (or group thereof) to which the authorization refers.

ID

Passport Driver license

Diplomatic Regular Civilian Military

FIGURE 47.7  An example of certificate abstractions.
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Different languages have been developed for the specification of policies, and each of them supports 
different features. In the remainder of this section, we first describe the policy communication problem 
(Section 47.6.2), which is a specific problem of the attribute-based access control systems, and then we 
present some policy languages (Section 47.6.3). In particular, we present logic-based languages, which 
are expressive but turn out to be not applicable in practice, and then XACML-based languages, which 
are easy to use and consistent with consolidated technology.

47.6.2  Policy Communication

A peculiarity of access control systems based on attributes is that the server offering resources/services 
evaluates the policies without a complete knowledge of users and their properties. The server has then 
to communicate to users the policies that they should satisfy to have their requests possibly permitted. 
For instance, consider a service accessible to all people older than 18 and working in an European coun-
try. In this case, the server has to communicate to the user that she has to provide her date of birth and 
the place where she works before accessing the service. This policy communication problem has been 
under the attention of the research and development communities for more than a decade and several 
solutions have been proposed, each addressing different issues (e.g., [29,38]). A simple policy communi-
cation strategy consists in giving the user a list with all the possible sets of certificate that would allow 
the access. This solution is not always applicable due to the large number of possible alternatives (e.g., 
with compound credential requests such as “a passport and one membership certificate from a feder-
ated association,” there may be a combinatorial explosion of alternatives). Automated trust negotiation 
strategies have been therefore proposed (e.g., [38,55,56,59,60,61,62]), which are based on the assump-
tion that parties may be unknown a-priori and a multi-step trust negotiation process is necessary for 
communicating policies and for releasing certificates, which are both considered sensitive. The goal of 
a trust negotiation process is to gradually establish trust among parties by disclosing credentials and 
requests for credentials. In successful trust negotiations, credentials eventually are exchanged so that 
the policy regulating access to the required resource/service is satisfied. In [55] two different strategies 
are described: eager and parsimonious credential release strategies. Parties applying the first strategy 
communicate all their credentials if the release policy for them is satisfied, without waiting for the 
credentials to be requested. Parsimonious parties only release credentials upon explicit request by the 
server (avoiding unnecessary releases). In [60] the PRUdent NEgotiation Strategy (PRUNES) strategy 
ensures that a user communicates her credentials to the server only if the access will be granted and 
the set of certificates communicated to the server is the minimal necessary for granting it. Each party 
defines a set of credential policies that regulates how and under what conditions the party releases its 
credentials. The negotiation consists of a series of requests for credentials and counter-requests on the 
basis of the parties’ credential policies. In [61] the authors present a family of trust negotiation strategies, 
called disclosure tree strategy (DTS) family, and show that if two parties use different strategies from the 
DTS family, they are able to establish a negotiation process. In [59] the authors present a unified schema 
for resource protection (UniPro) for protecting resources and policies in trust negotiation. UniPro gives 
(opaque) names to policies and allows any named policy P1 to have its own policy P2 regulating to 
what parties policy P1 can be disclosed. TrustBuilder [62] is a prototype developed to incorporate trust 
negotiation into standard network technologies. Traust [38] is a third-party authorization service that 
is based on the TrustBuilder framework for trust negotiation. The Traust service provides a negotiation-
based mechanism that allows qualified users to obtain the credentials necessary to access resources 
provided by the involved server. In [56] the authors introduce a formal framework for automated trust 
negotiation, and formally define the concept of correct enforcement of policies during a trust nego-
tiation process. In [6] the authors present an expressive and flexible approach for enabling servers to 
specify, when defining their access control policies, if and how the policy should be communicated to 
the client. Intuitively, an access control policy is represented through its expression tree and each node 
of the tree is associated with a disclosure policy (modeled with three colors, namely green, yellow, or 
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red), ensuring a fine-grained support and providing expressiveness and flexibility in establishing dis-
closure regulations. The disclosure policies state whether an element in the policy can be released as it 
is or whether it has to be obfuscated. The authors also illustrate how to determine the user’s view on 
the policy (i.e., the policy to be communicated to the user requesting access) according to the specified 
disclosure policies.

47.6.3  Languages for Access Control

Languages for access control aim to support the expression and the enforcement of policies [52]. Several 
access control languages have been developed, and most of them rely on concepts and techniques from 
logic and logic programming (e.g., [13,27,35,36,39,40,42]). Logic languages are particularly attractive 
due to their clean and unambiguous semantics, suitable for implementation validation, as well as formal 
policy verification. Logic languages can be expressive enough to formulate all the policies introduced 
in the literature, and their declarative nature yields a good compromise between expressiveness and 
simplicity. Nevertheless, many logic-based proposals, while appealing for their expressiveness, are not 
applicable in practice, where simplicity, efficiency, and consistency with consolidated technology are 
crucial. Effectively tackling these issues is probably the main motivation for the success of the eXten-
sible Access Control Markup Language (XACML) [50]. XACML is an OASIS standard that proposes an 
XML-based language for specifying and exchanging access control policies over the Web. The language 
can support the most common security policy representation mechanisms and has already found sig-
nificant support by many players. Moreover, it includes standard extension points for the definition of 
new functions, data types, and policy combination methods, which provide a great potential for the 
management of access control requirements in emerging and future scenarios.

In the following, we survey some logic-based access control languages, and then describe the XACML 
language along with some extensions aiming at including the possibility of using credentials in the 
XACML policy specification.

47.6.3.1  Logic-Based Languages

The first work investigating logic languages for the specification of authorizations is the work by Woo 
and Lam [58]. They shown how flexibility and extensibility in access specifications can be achieved by 
abstracting from the low level authorization triples and adopting a high level authorization language. 
Their language is a many-sorted first-order language with a rule construct, useful to express authoriza-
tion derivations and therefore model authorization implications and default decisions (e.g., closed or 
open policy). Their work has been subsequently refined by several authors (e.g., [35]).

Several logic-based languages have been developed for formulating, for example, dynamic policies, 
inheritance and overriding, policy composition, and credential-based authorizations (e.g., [9,11,12,35]). 
In particular, specific solutions have addressed the problem of constraining the validity of authoriza-
tions through periodic expressions and appropriate temporal operators. For instance, the proposal in [9] 
shows a temporal authorization model that supports periodic access authorizations and periodic rules, 
and allows the derivation of new authorizations based on the presence or absence of other authoriza-
tions in specific periods of time. Other logic-based access control languages support inheritance mecha-
nisms and conflict resolution policies. Jajodia et al. [35] present a proposal for a logic-based language 
that allows the representation of different policies and protection requirements, while at the same time 
providing understandable specifications, clear semantics (guaranteeing therefore the behavior of the 
specifications), and bearable data complexity. Authorizations are specified in terms of a locally stratified 
rule base logic. Such a solution allows the representation of different propagation policies (i.e., policies 
that specify how to obtain derived authorizations from the explicit authorizations), conflict resolution 
policies, and decision policies that a security system officer might want to use.

The fact that in open environments there is the need for combining access control restrictions inde-
pendently stated by different parties motivates the development of solutions specifically targeted to the 
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composition of policies (e.g., [11,54]). These solutions typically do not make any assumption on the lan-
guage adopted for specifying the given policies and define a set of policy operators used for combining 
different policies. In particular, in [12] a policy is defined as a set of triples of the form (s, o, a), where s 
is a constant in (or a variable over) the set of subjects S, o is a constant in (or a variable over) the set of 
objects O, and a is a constant in (or a variable over) the set of actions A. Here, complex policies can then 
be obtained by combining policies via specific algebra operators.

Logic-based approaches have been also used for specifying, reasoning about, and communicating 
protection requirements. In particular, several proposals have addressed the problem of defining and 
enforcing credential-based authorization policies and trust management (e.g., [12,34,43,48,62]). In 
particular, in [12] the authors present a framework that includes an access control model, a language 
for expressing access and release policies, and a policy-filtering mechanism to identify the relevant 
policies for a negotiation. Access regulations are specified by logical rules, where some predicates are 
explicitly identified. The system is composed of two entities: the client that requests access, and the 
server that exposes a set of services. Abstractions can be defined on services, grouping them in sets, 
called classes. Servers and clients interact via a negotiation process, defined as the set of messages 
exchanges between them. Clients and servers have a portfolio, which is a collection of credentials 
(certified statements) and declarations (unsigned statements). Credentials are modeled as creden-
tial expressions of the form credential_name(attribute_list), where credential_name is the credential 
name and attribute_list is a possibly empty list of elements of the form attribute_name=value_term, 
where value_term is either a ground value or a variable. The proposed framework allows a client to 
communicate the minimal set of certificates to a server, and the server to release the minimal set of 
conditions required for granting access. For this purpose, the server defines a set of service acces-
sibility rules, representing the necessary and sufficient conditions for granting access to a resource. 
More precisely, this proposal distinguishes two kinds of service accessibility rules: prerequisites and 
requisites. Prerequisites are conditions that must be satisfied for a service request to be taken into 
consideration (they do not guarantee that it will be granted); requisites are conditions that allow the 
service request to be successfully granted. The basic motivation for this separation is to avoid unnec-
essary disclosure of information from both parties. Therefore, the server will not disclose a requisite 
rule until after the client satisfies a corresponding prerequisite rule. Also, both clients and servers 
can specify a set of portfolio disclosure rules, used to define the conditions that govern the release of 
credentials and declarations.

The rules both in the service accessibility and portfolio disclosure sets are defined through a logic lan-
guage that includes a set of predicates whose meaning is expressed on the basis of the current state. The 
state indicates the parties’ characteristics and the status of the current negotiation process, that is, the 
certificates already exchanged, the requests made by the two parties, and so on. Predicates evaluate both 
information stored at the site (persistent state) and acquired during the negotiation (negotiation state). 
Information related to a specific negotiation is deleted when the negotiation terminates. In contrast, 
persistent state includes information that spans different negotiations, such as user profiles maintained 
at web sites.

Since there may exist different policy combinations that may bring the access request to satisfaction, 
the communication of credentials and/or declarations could be an expensive task. To overcome this 
issue, the abbreviation predicates are used to abbreviate requests. Besides the necessity of abbrevia-
tions, it is also necessary for the server, before releasing rules to the client, to evaluate state predicates 
that  involve private information. For instance, the client is not expected to be asked many times the 
same information during the same session and if the server has to evaluate if the client is considered not 
trusted, it cannot communicate this request to the client itself.

Communication of requisites to be satisfied by the requester is then based on a filtering and renaming 
process applied on the server’s policy, which exploits partial evaluation techniques in logic programs 
[12,47]. Access is granted whenever a user satisfies the requirements specified by the filtering rules cal-
culated by means of the original policy and the already released information.
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47.6.3.2  XML-Based Languages

With the increasing number of applications that either use XML as their data model, or export rela-
tional data as XML data, it becomes critical to investigate the problem of access control for XML. To 
this purpose, many XML-based access control languages have been proposed (e.g., [14,20,37,50]). As 
already mentioned, the eXtensible Access Control Markup Language (XACML) is the most relevant 
XML-based access control language. XACML version 1.0 [49] has been an OASIS standard since 2003. 
Improvements have been made to the language and incorporated in version 3.0 [50].

XACML supports the definition of policies based on attributes associated with subjects and resources 
other than their identities. The attributes are assumed to be known during the evaluation time and stored 
in the XACML evaluation context, or presented by the requester together with the request. While XACML 
acknowledges that properties can be presented by means of certificates, and in fact, it has been designed to 
be integrated with the Security Assertion Markup Language (SAML) [2] for exchanging various types of 
security assertions and for providing protocol mechanisms, it does not provide a real support for express-
ing and reasoning about digital certificates in the specification of the authorization policies. Intuitively, 
XACML supports attribute-based access control but does not really support credential-based access control 
(see Section 47.6.3.3). XACML also supports policies independently specified by multiple authorities on the 
same resources. When an access request on that resource is submitted, the system has to take into consid-
eration all these policies and their outcomes are combined according to a combining algorithm. Policies 
defined by different parties may be enforced at different enforcement points. XACML provides a method for 
specifying some actions, called obligations, that must be fulfill in conjunction with the policy enforcement.
Figure 47.8 illustrates the XACML data-flow that consists of the following steps:

•	 The requestor sends an access request to the Policy Evaluation Point (PEP) module, which has to 
enforce the access decision taken by the decision point.

•	 The PEP module sends the access request to the Context Handler that translates the origi-
nal request in a canonical format, called XACML request context, and sends it to the Policy 
Decision Point (PDP).

•	 The PDP module requests any additional subject, resource, action, and environment attributes 
from the Context Handler.

•	 The Context Handler requests the attributes required by the PDP module to the Policy 
Information Point (PIP) module. To this purpose, PIP interacts with the Subjects, Resource, and 
Environment modules. The Environment module provides a set of attributes that are relevant to 
take an authorization decision and are independent of a particular subject, resource, and action.

•	 The Contet Handler sends the required attributes (and possibly the resource) to the PDP module.
•	 The PDP then evaluates the policies made available by the Policy Administration Point (PAP) and 

returns the XACML response context to the Context Handler. The context handler translates the 
XACML response context to the native format of the PEP and returns it to the PEP together with 
an optional set of obligations.

•	 The PEP fulfills the obligations and, if the access is permitted, it performs the access. Otherwise, 
the PEP denies access.

The main concepts of interest in the XACML policy language are rule, policy, and policy set. Each 
XACML policy has a root element that can be either a Policy or a PolicySet. A PolicySet is a 
collection of Policy or PolicySet. A XACML policy consists of a target, a set of rules, an optional 
set of obligations, an optional set of advices, and a rule combining algorithm. We now describe these 
components more in details.

•	 Target: It consists of a simplified set of conditions for the subject, resource, and action that must be sat-
isfied for a policy to be applicable to a given request. Note that the definition of the subjects, resources, 
and actions in a target are based on attributes. For instance, a physician at an hospital may have the 
attribute of being a researcher, a specialist in some field, or many other job roles. According to these 
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attributes, the physician can be able to perform different functions within the hospital. If all the 
conditions of a Target are satisfied, its associated Policy (or Policyset) applies to the request. 
If a policy applies to all entities of a given type, that is, all subjects, actions, or resources, an empty 
element, named AnySubject, AnyAction, AnyResource, respectively, is used.

•	 Rule: The components of a rule are a target, an effect, a condition, obligation expressions, and advice 
expressions. The target defines the set of resources, subjects, and actions to which the rule applies. 
The effect of the rule can be permit or deny. The condition represents a boolean expression that 
may further refine the applicability of the rule. Note that the target element is an optional ele-
ment: a rule with no target applies to all possible requests. Obligation and advice expressions are 
evaluated and they can be returned to the PEP in the response context. Note that while obligations 
cannot be ignored, advices can be safely ignored by the PEP.

•	 Obligation: An obligation is an operation that has to be performed in conjunction with the 
enforcement of an authorization decision. For instance, an obligation can state that all accesses 
on medical data have to be logged. Obligations are returned by the PDP to the PEP along with the 
response. Note that, only policies that are evaluated and have returned a response of permit or 
deny can return obligations. This means that if a policy evaluates to indeterminate or not 
applicable, the associated obligations are not returned to the PEP.
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FIGURE 47.8  XACML overview. (From OASIS, extensible Access Control Markup Language (XACML) Version 3.0, 
2010. http://www.oasis-open.org/committees/xacml.)
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•	 Advice: An advice is a supplementary piece of information that is returned to the PEP with the 
decision of the PDP.

•	 Rule combining algorithm: Each policy is associated with a rule combining algorithm used for 
reconciling the decisions each rule make. The final decision value, called authorization deci-
sion, inserted in the XACML context by the PDP is the value of the policy as defined by the 
rule combining algorithm. XACML defines eight different combining algorithms: deny overrides, 
ordered-deny-overrides, permit overrides, ordered-permit-overrides, deny-unless-permit, permit-
unless-deny, first applicable, and only-one-applicable (see [50] for more details about the mean-
ing of these combining algorithms). If no rule applies, the result is not applicable. If only 
one policy applies, the result coincides with the result of evaluating that rule. According to the 
selected combining algorithm, the authorization decision returned to the PEP can be permit, 
deny, not applicable (when no applicable policies or rules could be found), or indeter-
minate (when some errors occurred during the access control process). In particular, XACML 
3.0 defines an extended set of indeterminate values, which includes: indeterminate{D} 
when a policy (rule) could have evaluated to deny but not permit; indeterminate{P} when 
a policy (rule) could have evaluated to permit but not deny; indeterminate{DP} when a 
policy (rule) could have evaluated to deny or permit.

XACML also defines a standard format for expressing requests and responses. The original request 
submitted by the PEP is translated through the Context Handler in a canonical form, and then for-
warded to the PDP to be evaluated. For instance, an application can provide a SAML [2] message that 
includes a set of attributes characterizing the subject making the access request. This message has to be 
converted to the XACML canonical form and, analogously, the XACML decision has then to be con-
verted to the SAML format. A request contains attributes for the subject, resource, action, and, option-
ally, for the environment. Each request includes exactly one set of attributes for the resource and action 
and at most one set of environment attributes. There may be multiple sets of subject attributes each of 
which is identified by a category URI. A response element contains one or more results correspond-
ing to an evaluation. Each result contains six elements: Decision specifies the authorization deci-
sion (i.e., permit, deny, indeterminate, not applicable); Status indicates if some 
error occurred during the evaluation process; Obligations states the obligations that the PEP must 
fulfill; AssociatedAdvice is optional and reports a list of advices that provide additional informa-
tion to the PEP; Attributes is optional and contains a list of attributes that were part of the request; 
PolicyIdentifierList is optional and corresponds to a list of policy or policy set identifiers that 
have been applied to a request.

47.6.3.3  Expanding XACML with Credentials

Although designed to be integrated with the Security Assertion Markup Language (SAML) [2] for 
exchanging security assertions and providing protocol mechanisms, XACML lacks a real support for 
considering, reasoning, and expressing conditions on certified properties. Recent proposals have tried 
to overcome this and other limitations that make XACML not yet suitable for open Web-based systems. 
In particular, the novel features that should be supported by a practical access control language can be 
summarized as follows [4]:

•	 Certified information: The attributes used in the XACML policies are assumed to be known dur-
ing the evaluation time and stored within the XACML context or presented by the user together 
with the access request. To represent and manage credentials in XACML it is then necessary 
to express the fact that some attributes should be presented through given certificates, possibly 
imposing conditions on the value of these attributes and on the certificates themselves.

•	 Abstractions: Intuitively, abstractions represent a shorthand by which a single concept is intro-
duced to represent a more complex one (e.g., a set, a disjunction, or a conjunction of concepts). 
For instance, ID (abstraction head) can be defined as an abstraction for any element in set 
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{Passport, DriverLicense} of credentials (abstraction tail). A policy specifying that an 
access requester must provide an ID can then be satisfied by presenting any of the two credentials 
above.

•	 Recursive conditions: The support for recursive reasoning allows the specification of policies based 
on chains of credentials and of conditions on data with a recursive structure.

•	 Dialog: The introduction of dialog between the involved parties has the advantages that the server 
can communicate which information is needed to evaluate an access control policy, and a user 
can release only the necessary credentials instead of releasing the whole set. A further advantage 
is that it permits to tackle the issue of the privacy trade-off between providing the whole set of cre-
dentials (on the access requester side) and disclosing the whole access control policy (on the server 
side). The proposal in [4] obtains this result by attaching a disclosure attribute to each condition in 
an access control policy. This attribute indicates what type of disclosure policy is associated with 
the condition, and it is enforced by hiding from the access requester the information that cannot 
be released according to such a disclosure policy. The more (less) of an access control policy is 
disclosed, the smaller (bigger) is the quantity of information in terms of released credentials that 
will have to be provided by the user.

The proposal in [4] illustrates how certified information, abstractions, recursive reasoning, and dia-
log management can be deployed in XACML. In particular, it shows that the integration of XACML 
with XQuery can be adopted for supporting abstractions and recursive conditions. Credentials and 
dialog management require a minimal change in the XACML language that consists in the addition of 
appropriate elements and attributes. Other proposals (e.g., [17,18,32,46]) provide XACML extensions to 
support trust negotiation.

47.7  Conclusions

In this chapter we introduced the most important concepts related to access control. We first described 
the discretionary, mandatory, and role-based access control policies, and then we illustrated recent pro-
posals in the area of access control models and languages. In particular, we described novel approaches 
based on digital certificates, which are more suitable for open scenarios where servers offering services 
and users requesting such services do not know each other. We also provided an overview of logic-based 
and XML-based access control languages.

Key Terms

Access control: A process that controls every request to a system and determining, based on specified 
authorizations, whether the request should be granted or denied.

Access matrix: A matrix representing the set of authorizations defined at a given time in the system.
ACL: Access Control List.
Administrative policy: A policy regulating who can modify the allowed accesses.
Authorization: The right granted to a user to exercise an action (e.g., read, write, create, delete, and 

execute) on certain objects.
Certificate: A statement certified by an authority trusted for making such a statement.
DAC: Discretionary Access Control.
MAC: Mandatory Access Control.
Obligation: An action that must be performed sometime to allow the execution of a given action.
PDP: Policy Decision Point.
PEP: Policy Evaluation Point.
PIP: Policy Information Point.
RBAC: Role Based Access Control.
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Role: A job function within an organization that describes the authority and responsibility related to 
the execution of an activity.

Security mechanism: Low-level software and/or hardware functions that implement security policies.
Security policy: High-level guidelines establishing rules that regulate access to resources.
XACML: eXtensible Access Control Markup Language.
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48.1  Introduction

Data compression involves generating a compact description of information from a representation that 
may contain redundancies either of exposition or of interpretation. The process of generating a compact 
description involves understanding how information is organized in data. One way this can be done 
is by understanding the statistical characteristics of the data. If the data sequence is independent, we 
could treat the data as a sequence of independent, identically distributed (iid) random variables with a 
particular probability distribution. If the data are correlated, we can develop models for how redundan-
cies could have been introduced into a nonredundant information stream. The study of data compres-
sion involves ways to characterize the structure present in the data and then use the characterization 
to develop algorithms for their compact representation. We will look at a number of different ways in 
which commonly used sources of data, such as text, speech, images, audio, and video, can be modeled 
and the compression algorithms that result from these models.

If the reconstruction of the data exactly matches the original data, the compression algorithm is called 
a lossless compression algorithm. If the reconstruction is inexact, the compression algorithm is called a 
lossy compression algorithm. In our study of compression algorithms, we will make use of this natural 
division to organize the subject.

Before we examine the various approaches to compression, we briefly look at ways of quantifying 
information. We then look at some of the basic theories behind lossless and lossy compression. We 
begin our study of compression techniques by describing lossless and lossy compression techniques 
that assume the source to be from an iid distribution. We then examine different ways of modeling 
structures within the data and the algorithms that are a consequence of the different models. Finally, we 
conclude with some suggestions for further reading.
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48.2  Entropy and Kolmogorov Complexity

In order to realize compression, the code generated by an encoding process must be shorter than the 
original sequence, something possible only when the original data can be described more concisely than 
in its original form. Fortunately, many sequences of interest can be described more concisely than with 
their original representations. What permits this concise description is the organization on different 
levels within the data. Data compression is generally applied to anthropic or scientific (that could also 
be considered anthropic) data that are the output of complex systems. Text data are records of natural 
languages, driven by grammar rules, and containing repetitive structures as a result. Still images usu-
ally capture structured objects as observed in the visible band of the electromagnetic spectrum. Motion 
pictures have a similar configuration as well as containing structured objects moving with bounded 
velocities. Computer graphics, in general, are generated by rules defined by specific programs. Audio 
streams are gathered from the instances of acoustic processes. Scientific data sampled from observed 
physical processes are governed by the laws of physics. When attempting to compress data, it is assumed 
that the input is not obtained from randomly unorganized media. Clearly, the more structured the data 
are, the higher the compression the coding system can achieve when given prior knowledge of data 
organization.

Let’s consider the coding problem with two example sequences. Assume two binary sequences SB and 
Sπ are given as

	 SB = 10101010100001101111100110000011001011101001110101 	 (48.1)

	 Sπ= 00100100001111110110101010001000100001011010001100 	 (48.2)

The first sequence SB is the first 50 outcomes of a Bernoulli trial or the results of a sequence of coin 
flips where the coin is fair. The second sequence is the first 50 fractional digits of the number π. To 
describe the first sequence, we do not have many options other than transmitting the entire sequence. 
However, there is more room for maneuvering when coding the second sequence. We can actually gen-
erate the first digits of π with a simple program implementing a series expansion. If l(SB) is the number 
of bits needed to describe SB and l(Sπ) is the number of bits needed to describe Sπ, the description length 
of these sequences would be

	 l S O nB( ) ( )= 	 (48.3)

	 l S l np( ) logπ = +  2 	 (48.4)

The sequence SB is a random sequence and requires around n bits to describe. The sequence Sπ can be 
described using a series expansion program, which can be represented using lp bits, followed by log2 n  
bits to encode the integer n. Clearly, the coding length can differ significantly based on the complexity 
of a sequence.

Out of all possible descriptions, the one with the shortest length is called the Kolmogorov complexity 
KU(x) [1] of a sequence:

	
K x l pU

p U p x
( ) min ( )

: ( )
=

=
	 (48.5)

Here, U represents a universal Turing machine; and the output is x when the halting program p is 
executed.
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By definition, a sequence x cannot be compressed to less than KU(x) bits; therefore, the Kolmogorov 
complexity determines the theoretical lower bound of data compression. However, there is no guaran-
tee that the Kolmogorov complexity is computable; and even estimating KU(x) may take infinite time. 
The estimation of KU(x) requires a perfect understanding of the system generating a sequence, which 
is usually not available. Therefore, instead of a physical-model-driven (top-down) description, we use a 
probabilistic description (bottom-up) to obtain the lower bound for the description length. According 
to the probabilistic approach, a sequence is a realization of a stationary random process. Therefore, we 
can model it in terms of the probability distribution of the elements of the sequence. In a landmark 
paper in 1948 [2], Claude Shannon connected the ideas of information and randomness. Given an event 
A and its probability of occurrence p(A), he defined the information associated with the occurrence of 
the event A as self-information that is given by

	
i A

p A
b( ) log

( )
= 1

where the units of the information depend on the base b of the logarithm. If b = 10, the unit is Hartley, 
after the famous American electrical engineer who laid some of the foundations for what was to 
become information theory. If b = e, the base of the natural logarithm, the unit of information is nat. 
The most common base used in this context is 2; when the base 2 logarithm is used, the unit of infor-
mation is bit.

If we treat each element of a sequence X1, X2,… as the independent outcome of an experiment 
where the possible outcomes come from a set A, then we can define the average information as 
the expected value of the self-information. Shannon called this average information entropy and 
denoted it by H. Thus, if S is a source that emits the sequence X1, X2,…, the entropy of the source is 
given by

	
H S p X
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We can show [3] that
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Thus, if we accept the conceit that a given sequence is a realization of a random process, we can see 
that the lower bound on the number of bits used to represent the sequence is given by the entropy.

We can see from the equation earlier that the expected value of the self-information for an iid source 
is the entropy. For a more general source that emits a sequence of n symbols Xi with a joint probability 
density function p(X1, X2,…, Xn), we can define an entropy per n-tuple as

	
H p X X X p X X Xn n n

n

= −∑ ( , , , ) log ( , , , )1 2 1 2… …

The entropy of this general source is defined as the limiting value of the entropy per n-tuple:
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n
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48.2.1  Lossless Compression

Lossless compression refers to a compression process in which the recovered data are identical copies of 
the input. Erroneous decoding of certain types of data is not tolerable. Transmitting incorrect text to the 
receiver might result in serious semantic mistakes. Similarly, conveying scientific data with errors might 
impact the conclusion inferred from the data, such as inferring mutations for DNA or protein sequences 
that do not actually exist. Because of the need for absolute fidelity in a wide variety of applications, loss-
less compression algorithms form a significant part of the data compression field.

Data compression involves data processing performed on computers and data transmission via digi-
tal communication systems. Therefore, both the data to be encoded and the compressed streams are 
discrete signals with quantized values. Within this framework, it is possible to view the data to be com-
pressed as a sequence of symbols from a finite set. The set of possible symbols A is called the alphabet of 
the source S, and elements of this set are referred to as letters. Alphabets vary according to data types. 
For text documents with ASCII characters, the alphabet consists of 128 letters (the printable ASCII 
characters). Grayscale images encoded using 8 bits/pixel have an alphabet size of 256, the values 0–255. 
A sequence {X1, X2,…}, Xi ∈ A is generated by the source S. During the encoding process, a sequence is 
mapped to a binary string called the code. Binary strings corresponding to the mapping of each letter in 
the alphabet are referred to as codewords.

Lossless compression is achieved by an invertible coding process bijectively mapping the input 
sequence to a more compact code stream. Bijective coding imposes the requirement that the encoder 
generate a unique code for each sequence. In order to attain compression, the code has to have a length 
shorter than the input sequence. This performance of the compression algorithm is usually measured by 
the compression ratio and the rate. The compression ratio is the ratio of the number of bits used to repre-
sent the original sequence to the the number of bits used for the compressed representation. For exam-
ple, if a grayscale image of 800 × 600 pixels, which is encoded using an alphabet of size 256, is stored as 
a 240,000 byte file, we say that the corresponding compression ratio is 2:1. The rate of the compression 
algorithm is usually defined as the number of bits per symbol. For the image example described earlier, 
the average number of bits required to represent a pixel is 4 bits. In other words, the rate is 4 bits/symbol.

48.2.2  Lossy Compression

Lossless compression involves an invertible mapping of data to a shorter compressed string. While this 
is an essential requirement when information loss cannot be tolerated, a majority of data compression 
applications do not require perfect reconstruction. The compression techniques where the reconstruc-
tion is an approximation of the original data are called lossy compression algorithms.

Preference of lossy compression over lossless compression generally depends on the application. One, 
and perhaps the most significant, motivation for lossy compression is the limited and inferential nature 
of human perception. Compressing natural images or audio sequences does not require perfect repre-
sentation of these sequences because they are to be perceived by the limited capabilities of human visual 
or auditory systems. The human visual system is known to be able to perceive an electromagnetic fre-
quency band between red and violet frequencies. It has higher sensitivity to the intensity of light than to 
its color components. Moreover, spatial details are usually filtered out; and more attention is paid to the 
smoother variations. Image and video coding systems are designed to take advantage of all these aspects 
of human perception, allowing us to discard “unnecessary” data components, focusing resources on 
those aspects that are important for perception. Similarly, our auditory system can hear the frequency 
band of 20 Hz–20 kHz. The response in this band is nonlinear, with a greater sensitivity to higher fre-
quencies. Other effects, such as masking frequencies, also play a role in hearing. Using the same ratio-
nale as for still or motion picture coding, various “unnecessary” audio components can be discarded.

Beyond that natural reduction that is generally imperceptible, perceptible loss may also need to be 
tolerated due to economic or physical constraints. Data compression is needed for either storage or 
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transmission over communication systems. Bandwidth and disk spaces are limited that can result in 
the need for more compression if the demand for these resources is greater than the supply. An example 
of this is telephone communication in which lower quality, resulting from the low coding rates, may be 
satisfactory as long as the message is delivered.

A lossy coding scheme in which each codeword can represent more than one element from the origi-
nal data enables coding at rates lower than the source entropy. The price is the difference between the 
original data and the reconstructed sequence generally referred to as distortion. Obviously, a trade-off 
between the quality and the rate occurs. However, quality is subjective; and it is difficult to define a dis-
tortion measure that quantifies the approximations of data based on their quality. On the other hand, 
simple mathematical definitions of distortion can be useful for studying the limits and opportunities 
provided by the quality-rate trade-off. Rate distortion theory describes the theoretical limits of achiev-
able rates for a given amount of distortion.

48.3  Modeling Data as an iid Sequence

We begin with the simplest of models where the data are assumed to be iid and are described by a 
probability model. There has been considerable effort spent on developing compression schemes based 
on such models. The reason for this is twofold. There are, at times, data that really are iid and are well 
compressed by these algorithms. When the data sequence is not iid and can only be modeled by a com-
plex model, it is convenient to use the model to obtain a transformation resulting in a transformed or 
residual sequence that is iid and then compress the iid sequence. In fact most compression systems can 
be seen as consisting of two stages: (1) a stage of redundancy removal or transformation resulting in the 
generation of an iid sequence followed by (2) a coding of the iid sequence thus generated. We look at 
how to most efficiently represent iid sequences both in the case of lossless compression and in the case 
of lossy compression.

48.3.1  Lossless Compression of iid Sequences

We would like to design lossless compression algorithms that promise rates close to the entropy. 
However, the rate is not the only criterion that needs to be considered. First, a code generated by an 
encoder must be uniquely decodable, so that the decoder will not reconstruct an erroneous sequence. It 
seems this requirement could be satisfied if every letter in an alphabet was mapped to a unique code-
word. However, this is not the case. For example, consider a code in which the letters {a, b, c, d} are coded 
with the codewords {0, 100, 01, 00}, respectively. Each letter has a unique codeword associated with it; 
however, a code 0100 could be interpreted as either ab or cd as the sequence of codewords is not uniquely 
decodable. Mitigation of this problem requires that the code should have only one parsing. One way in 
which we can guarantee that we have a unique parsing is to make sure that no codeword is a prefix of 
another codeword. We can check to see if a codeword is a prefix of another codeword by representing 
the code in the form of a tree. For a code in which no codeword is a prefix of another codeword, called a 
prefix code, the codewords are always assigned to the leaves of the code tree. In Figure 48.1, we show two 
four-letter codes: {0, 100, 01, 00} and {00, 01, 100, 101}, where the filled-in circles denote codewords. For 
the first code, we can see that the codeword 0 is a prefix to the codewords 01 and 00. In the case of the 
second code, all codewords are assigned to the leaves of the tree; and hence, no codeword is a prefix to 
another codeword. In decoding a sequence encoded using the prefix code, we decode a letter whenever 
we reach a leaf of the code tree. Clearly, a prefix code will give us a uniquely decodable code. However, 
while the fact that a code is a prefix code guarantees that the code is uniquely decodable, it is not a 
necessary condition. Consider the code {0, 01, 11}. This is not a prefix code; however, we can show that 
this code is uniquely decodable [4]. We are faced with what seems to be a conundrum. If we restrict our 
search for codes to prefix codes, we can guarantee that the code will be uniquely decodable. However, 
could we find lower-rate codes if we did not restrict ourselves to prefix code? Happily, the answer is no. 
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To show this, we will use the Kraft–McMillan inequality [4]. Consider a code over an alphabet of m let-
ters, with codeword lengths l1, l2,…, lm. If the code is uniquely decodable, the following inequality holds:

	
2 1−∑ ≤l

i

i 	 (48.7)

Furthermore, we can show that given a set of integers l1, l2,…, lm that satisfy this inequality, we can 
always build a prefix code with codeword lengths l1, l2,…, lm. Hence, if a code is uniquely decodable, 
the lengths of the codewords satisfy the Kraft–McMillan inequality; and if the lengths satisfy the 
Kraft–McMillan inequality, we can generate a prefix code with those lengths. Thus, for every uniquely 
decodable code, we can always generate a prefix code with the same average length. This being the case, 
restricting ourselves to prefix codes does not cost us anything in terms of the average length of the code.

The Kraft–McMillan inequality is also useful for determining bounds on the length of uniquely 
decodable codes. If the probability of observing the letter i is pi, then the average codeword length is

	
L p li i

i

=∑ 	 (48.8)

We want to pick {li} that minimize L while satisfying the Kraft–McMillan inequality. We can do that by 
finding l1, l2,…, lm that minimize the Lagrangian

	
J p li i

l

ii

i= + −∑∑ λ 2 	 (48.9)

Taking the derivative of J with respect to li and setting it equal to 0, we obtain

	 pi
li= −λ2 2ln 	 (48.10)

Substituting this expression in the Kraft–McMillan inequality, we can solve for li and get

	
l

p
i

i

= log2
1 	 (48.11)

This length is not restricted to be an integer. If we want integer codeword lengths, we can simply use the 
ceiling function
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FIGURE 48.1  Code trees for two different codes. The tree on the right corresponds to a prefix code.
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(Note that we use the ceiling rather than the floor function in order not to violate the Kraft–McMillan 
inequality.) Using these codeword lengths, we can find the upper and lower bounds on the average length L:
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Thus, the average length is always greater than or equal to the entropy. We can also obtain an upper 
bound on the average length:
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	 = +H 1 	 (48.18)

Therefore, the expected rate of an optimal prefix code is in the 1-bit neighborhood of the source 
entropy, while it cannot get better than the entropy.

48.3.1.1  Huffman Coding

We have seen that prefix codes can achieve rates close to entropy, in cases where the codeword selection 
is arranged optimally (i.e., with length close to − log2 pi ). A constructive way of building optimal pre-
fix codes is the Huffman coding algorithm [5,6]. This algorithm is based on two observations. First, an 
optimal code should have longer codewords for less probable symbols. This is a direct result of our previ-
ous discussion. Second, the codewords for the two least frequent symbols should have the same length. 
We can see why this is required by showing the contradictory case. Consider that in an optimal prefix 
code, the least probable symbol had a longer codeword than the second least probable one. If we deleted 
the least significant bit of the longer codeword, this shortened codeword would not conflict with another 
codeword (because no codeword is the prefix of another). Therefore, we obtain another uniquely decod-
able code with a shorter average codeword length. This is in contradiction with the initial assumption 
that this prefix code was optimal. Thus, the least probable two codewords must have the same length.

Huffman added a third requirement that, while not necessary, made it easier to obtain the code. The 
requirement was that the codewords of the two least probable symbols should only differ in the last bit. 
We can easily show that this requirement does not in any way reduce the optimality of the code.

The Huffman algorithm is a hierarchical codeword construction scheme, starting from the least sig-
nificant bits of the least probable two codewords, building up adding more probable codewords and 
significant bits. We can summarize the procedure as follows:

	 1.	 Sort the symbol probabilities.
	 2.	 Halt if only one symbol exists.
	 3.	 Push bits 1 and 0 to the least probable two codewords.
	 4.	 Combine the least probable two symbols into one. GOTO 1.
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Following this procedure, we allocate bits giving higher priority to the least significant symbols. This 
is in the spirit of the first property of optimal codes. Since we combine the least probable symbols, they 
will be treated together in a bit assignment step in any future iteration. As a result, they will have the 
same length satisfying the second property. Note that combining the symbols that differ in the last bits 
will not let any codeword be the prefix of another, complying with the definition of prefix codes. Let’s 
perform Huffman coding on an example.

We design a Huffman code for a five-letter alphabet A = {a1, a2, a3, a4, a5} with probabilities {.3, .1, 
.2, .25, .15}. The two letters with the lowest probabilities are a5 and a2. We assign a zero as the 
least significant bit for a5 and a one as the least significant bit for a2. We then combine these two 
letters giving us a letter with a combined probability of .25. We can re-sort this reduced set in 
one of two ways, a a a a a1 4 5 2 3, , [ ],{ } or a a a a a1 5 2 4 3, [ ], , .{ }  Depending on which sorting we use, 
we will get a different code; however, both sortings will result in a code with minimum length, 
in other words, a Huffman code. In this example, we will use the latter sorting. At this point, 
the two lowest probability elements in our set are a3 with a probability of 0.2 and a4 with the 
probability of 0.25. We push a zero into the least significant bit for a4 and a one into the least 
significant bit for a3 and continue. The complete process can be represented as in Figure 48.2. 
Working from the root to the leaves, we obtain the following code:

a1 10
a2 111
a3 01
a4 00
a5 110

We have seen that Huffman coding is optimal given the alphabet and the source distribution. 
However, the Huffman code is not unique. The Huffman coding algorithm finds one of multiple opti-
mal assignments. It is easy to see that Huffman coding is not unique, since other optimal codes can be 
obtained by inverting bits or swapping the codes of the least probable symbols.

The Huffman coding algorithm requires that the alphabet distribution be known. In practice, the 
distribution for a source may not be available a priori unless the operations are performed offline. For 
such applications, the algorithm can be made adaptive by using a binary tree update procedure [7]. The 
leaves represent the codewords and are weighted according to the observing frequency of a symbol, so 
that the algorithm can keep track of the distribution statistics. The decoder follows the same procedure 
as the encoder, so that at any instance both the transmitter and the receiver have the same codewords.
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(0.1)
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(0.3)
a1

a4

a3

a5
(0.25)

(0.45)
0

(0.55)
1

0
1

a2

FIGURE 48.2  Construction of a Huffman code tree.
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A rate bound tighter than the bound derived for optimal codes can be derived for Huffman codes. It 
can be shown that the upper rate bound for a Huffman code is H(X) + arg maxiP(Xi) + 0.086 [7]. This 
guarantees rates closer to the source entropy for an alphabet distribution in which all letters have small 
probabilities. However, the code might be inefficient when the probability distribution is highly skewed 
and the maximum probability is large. This is the case for binary sources such as bilevel documents. 
Extending the alphabet to blocks of symbols is one way of mitigating this dominant symbol problem. 
Instead of encoding the source output one symbol at a time, we group the output into blocks and treat the 
blocks as letters from a larger alphabet. If we block n symbols together, the upper bound on the number 
of bits needed to encode a block of n symbols is given by H(X1, X2,…, Xn) + max P(X1, X2,…, Xn) + 0.86. 
However, for an iid sequence,

	 H X X X nH Xn( , , , ) ( )1 2 … = 	 (48.19)

and

	
max ( , , , ) max ( )P X X X P Xn

i
i

n
1 2 … = 	 (48.20)

Therefore, the upper bound on the average number of bits needed to encode a single symbol becomes 
H X P X n ni i

n( ) max ( ) . .+ + 0 086  The cost is an increase in the number of codewords required. If the 
alphabet of the source is of size M, the alphabet of the block of n symbols is Mn. This exponential increase 
in the number of codewords required makes the approach infeasible in terms of Huffman coding for all 
but the smallest alphabet sizes. However, if we do not need to generate all the codewords and only need 
to generate the codeword of the sequence being encoded, this cost is no longer a cost. This is precisely 
the case for the next coding technique we discuss, namely, arithmetic coding.

48.3.1.2 A rithmetic Coding

The result that a better code (with a rate closer to the source entropy) might be available by extending the 
alphabet to the blocks of symbols is very promising. This result is especially significant when the source 
alphabet is small (e.g., bilevel images with binary alphabet). The upper bound of the rate asymptotically 
converges to the source entropy as the block size increases. Obviously, the best case would be where the 
block size is equal to the sequence length. However, in practice, this will cause the problem of an expo-
nentially growing alphabet size. Note that the Huffman coding procedure assigns optimal codewords to 
each letter in the alphabet, whereas in the case of the block length being equal to the sequence length, 
only one of them, the codeword corresponding to the sequence itself, is observed.

Arithmetic coding offers a solution to the problem of exponentially increasing alphabet size by gen-
erating a code only for the observed sequence. In order for this code to be optimal, two fundamental 
aspects of optimal codes must be preserved. First, the length of the code must be inversely proportional 
to the observed probability of the symbol (or sequence in this case). This length should be an integer 
close to −log2p(Si) where p(Si) is the probability of observing the sequence. Second, the code must be 
uniquely decodable. In cases where the entire sequence is mapped into a single codeword, this means 
different sequences should not be mapped onto the same codeword.

The fundamental idea of arithmetic coding is that every sequence can be mapped to an arbitrary 
interval on the real number line. The binary code for the sequence is the binary representation of a num-
ber in the interval to which the sequence is mapped. In practice, we take this interval to be [0,1). Without 
loss of generality, we can consider the case of finite sequences of the same length. The number of possible 
sequences of length n generated from a source with the alphabet A is m = |A|n. All of these sequences 
can be represented by m nonoverlapping intervals drawn from [0,1). Each interval can be tagged with 
the binary fractional part of a rational number drawn from it. Therefore, each sequence is tagged by 
a distinct code; and this satisfies the property of unique decodability. In order to satisfy the optimal 
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coding requirement, a careful allocation of these intervals into the unit interval is needed. Assigning 
larger intervals to more probable sequences allows them to be represented with shorter codes, because 
it would take a fewer number of significant bits to locate a rational number in a larger interval. k bits are 
required to represent an interval of size (1/2)k. Assume we pick the size of the interval to be the probabil-
ity of the sequence Si assigned to it. This interval can be tagged with k bits, where k is the smallest integer 
satisfying p(Si) > (1/2)k. Therefore, the number of bits required to tag a sequence with probability p(Si) is

	 k p Si= − log ( )2 	 (48.21)

which satisfies the optimal code requirement.
Two observations on allocating the intervals representing sequences are important for the arithmetic 

coding algorithm. First, the nonoverlapping intervals adjacently tile the unit interval. Therefore, since 
p Si

i
( ) ,=∑ 1  the boundaries of these intervals can be determined by the cumulative distribution func-

tion (cdf ). Second, since the symbols are iid, the probability of a sequence is equal to the product of 
the probabilities of the individual elements of the sequence. As the sequence grows, the probability of 
the sequence decreases because each time a new element is added to the sequence, the probability of the 
sequence is multiplied by a number less than one. It can be shown that if the sequences are assigned to 
intervals by lexicographical ordering, each symbol read in shrinks the representative interval to the sub-
set of the corresponding prefix. As a result, the binary codeword corresponding to the sequence can be 
found by recursively zooming in to the subintervals determined by the cdf of symbols. This separability 
is very useful in practice because it allows the use of an iterative algorithm to generate the code as the 
symbols are read in, regardless of the length of a sequence.

In practice, we keep track of the upper and lower limits of the interval corresponding to the sequence 
being encoded. If the upper and lower limits corresponding to the sequence when it consists of k ele-
ments are given by u(k) and l(k), then we can show that the recursion equations that generate the upper 
and lower limits are given by

	
l l u l F Xk k k k

i
k( ) ( ) ( ) ( ) ( )= + −( ) −( )− − −1 1 1 1 	 (48.22)

	
u l u l F Xk k k k

i
k( ) ( ) ( ) ( ) ( )= + −( ) ( )− − −1 1 1 	 (48.23)

where
F Xi

k( )( ) is the cdf evaluated for the letter that is the kth element of the sequence Si

F Xi
k( )−( )1  is the cdf evaluated for the letter lexicographically preceding the letter that is the kth ele-

ment of the sequence Si

Note that after processing the first symbol, the length of the interval is p Xi
( ) .1( )  With the introduction 

of the second symbol, the length shrinks to u l u l p X p X p Xi i i
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1 2 1 2− = −( ) ( ) = ( ) ( )  and for the kth 

symbol to u l p Xk k
i

j

j

k
( ) ( ) ( ) .− = ( )
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 Therefore, the number of bits required to represent a number in the 

final interval for a sequence of length N is given by
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	 (48.24)

Although determining the tag using l(N) and u(N) is sufficient for generating the code, some practical 
issues need to be considered for implementing the algorithm. First, we want to send the bits as we read 
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through the sequence without waiting for the termination of the sequence. More importantly, as we 
keep multiplying by numbers less than one, the size of the interval becomes smaller and smaller until it 
falls below the machine precision level. Two strategies are used to provide incremental coding and pre-
vent the upper and lower levels from converging. The first strategy is used when the interval correspond-
ing to the sequence is wholly contained in either the upper or the lower half of the unit interval. In this 
case, the most significant bit (MSB) of the upper and lower limits is the same, as are the most significant 
bits of any number in the interval. We can, therefore, release this bit to the communication channel. We 
can also shift this bit out from the registers holding upper and lower limits and shift in a 1 for the upper 
and a 0 into the registers holding the upper and lower limits, respectively. By doing this, we effectively 
double the size of the interval.

When the interval is contained in the middle half of the unit interval, [0.25, 0.75), with the lower 
limit in [0.25, 0.5) and the upper limit in [0.5, 0.75), we cannot use this strategy. However, we know that 
in the future, if the interval is contained in either the upper or the lower half of the unit interval there, 
the size of the interval will be less than 0.25. If this interval is entirely contained in the lower half of 
the unit interval, the most significant bit of the upper and lower limits, and, hence, all numbers in the 
interval, will be 0 and the second most significant bit will be 1. Similarly, if the interval is entirely con-
tained in the upper half of the unit interval, the most significant bit of all numbers in the interval will 
be 1 and the second most significant bit will be 0. This knowledge of the future is used by the algorithm 
by doubling the interval at the current time without releasing any bits into the communication chan-
nel. Instead, a counter, scale3, keeps track of the number of times the interval is scaled; and when in the 
future the upper and lower limits end up with the same most significant bit, the encoder releases that bit 
followed by scale3 bits, which are the complement of the most significant bit. The scaling of the interval 
is performed by shifting out the most significant bit, complementing the next most significant bit, and 
shifting in a 1 or a 0 for the upper and lower limits, respectively.

The algorithm for encoding can be summarized as follows:

	 1.	 Read the first symbol and initialize l and u and scale3 = 0.
	 2.	 IF l and u have the same MSB, send MSB and the complement of MSB scale3 times; shift-left l, u, 

reset scale3 = 0.
	 3.	 IF l and u are in the middle half shift-left&complement MSB of l, u; increment scale3.
	 4.	 IF u and l are in the lower, middle, or upper half of the unit interval, GOTO 2.
	 5.	 Update l and u using the next symbol.
	 6.	 IF end of sequence send l; terminate, ELSE GOTO 2.

The encoding algorithm can be implemented using integer buffers containing l and u as described. 
Floating numbers with corresponding scaling operations can also be employed. The decoder mimics 
the scaling operations of the encoder. However, instead of sending the MSB, it pushes the new LSB from 
the code to a tag buffer t. Searching for the cdf interval, including the current tag, and representing the 
corresponding symbol are also performed in the update phase. The updates of l, u, and t are done using 
the detected interval. Therefore, the sequence can be decoded online as the code is retrieved. The first 
symbol is decoded after the first m bits are fed into the buffers, where m is determined by the smallest 
cdf interval.

Let’s go through the encoding procedure with an example. Assume a sequence drawn from a three-
letter alphabet A = {a1, a2, a3} with probabilities {0.7, 0.2, 0.1}. We encode the sequence a1a3a2a2. The cor-
responding cdf is F(1) = 0.7, F(2) = 0.9, F(3) = 1. Reading the first symbol a1, we initialize l(1) = 0 and u(1) = 0.7. 
With the second symbol a3, the updates are performed by Equation 48.22, giving l(2) = 0.63 and u(2) = 0.7. 
The MSB of l(2) and u(2) are both 1. Scaling using Step 2 of the algorithm l(2) = 0.26 and u(2) = 0.4, and 1 is 
sent to the receiver. The MSB for both are now 0. We can send 0 and scale again using Step 2 once more. 
Now l(2) = 0.52 and u(2) = 0.8. One more scaling with Step 2 sends 1 and scales l(2) = 0.04 and u(2) = 0.6. Now 
l(2) and u(2) cover more than half of the unit interval. So we proceed to Step 5 and read the third symbol, 
a2, and update l(3) = 0.432 and u(3) = 0.5832. The condition of Step 3 holds, so we increment scale3 and scale 
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l(3) = 0.364 and u(3) = 0.6664. Once more l(3) and u(3) lie in the middle half, so repeating Step 3, scale3 = 2, 
l(3) = 0.228 and u(3) = 0.8328. The interval is greater than half the unit interval, so we read the forth symbol 
a2 and update the interval using Step 5, l(4) = 0.6514 and u(4) = 0.8147. The MSB are both 1, so we send 1 
followed by 2 (scale3) 0s, and scale l(4) = 0.3027 and u(4) = 0.6293. The interval is in the middle half, so we 
follow Step 3, resulting in l(4) = 0.1054 and u(4) = 0.7586. This is the terminating symbol. So we transmit 
l(4) using the scaling of Step 2 (it lies in the lower half); a 0 followed by a 1 is transmitted. Finally, the code 
generated is 10110001. The encoding process can be seen in Figure 48.3.

For unknown distributions, the arithmetic coding algorithm can easily be made adaptive. In this case, 
initially, equal intervals represent each symbol in the alphabet. As a new symbol is encoded (decoded), 
the frequency count of the symbol coded is incremented. As the symbols are coded(decoded), the cdf is 
updated accordingly. The compression performance is similar to arithmetic coding with known distri-
butions for large sequences. Since this operation can be performed simultaneously at the encoder and 
the decoder, no side information needs to be sent.

The performances of Huffman coding and arithmetic coding can be seen on an example of image cod-
ing. A 512 × 512 grayscale Lena image is shown in Figure 48.4. Each pixel is coded to 256 levels (8 bits), 
and the estimated entropy of the image is 7.4455 bits/symbol. Coding the image using a 256-letter alpha-
bet results in a rate of 7.4682 bits/symbol for Huffman coding. The same image can be coded with a rate 
of 7.4456 bits/symbol by arithmetic coding. While both algorithms behave close to the source entropy, 
arithmetic coding is even closer since it uses block coding rather than symbol-by-symbol encoding.

48.3.2  Lossy Compression of iid Sequences

Lossy compression allows for distortion in the reconstruction hence, the input alphabet and the recon-
struction alphabet can have different cardinalities. Lossy compression can be viewed as a mapping 
from an input space ℵ with a large, possibly infinite, alphabet onto a finite output space ℵ�. In the most 
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FIGURE 48.3  Example of the arithmetic encoding procedure.
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general setting, this map is called quantization. Given a distortion measure, which is a function defined 
on the source and reconstruction alphabet pairs d : ,ℵ×ℵ →ℜ+�  a quantization method attempts to 
assign a reconstruction value to the input that results in the smallest possible distortion between the 
original and reconstruction values. Conversely, given a certain acceptable distortion value, the quanti-
zation process picks the particular mapping from the set of acceptable mappings that will result in the 
minimum rate.

Given a distortion function d, the expected distortion due to quantization is defined as

	
D p x x d x x

x x

=∑ ( , ) ( , )
,

	 (48.25)

	
=∑p x p x x d x x

x x

( ) ( ) ( , )
,

	 (48.26)

Unlike entropy, the distortion depends not only on the source distribution but also on the conditional 
distribution of the output.

The rate distortion theorem [8,9] states that for an iid source, the distortion D for which the minimum 
rate is achieved is bounded by the average mutual information between the source and the output:

	 R I X Xmin min ( ; )= ˆ 	 (48.27)

such that

	
= ≤∑p x p x x d x x D

x x
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,

ˆ ˆ
ˆ
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where I(X; X̂) = H(X)+H(X̂) − H(X; X̂) is a measure of the shared information between the source and 
the output distributions. This theorem provides the theoretical limit on the performance of lossy com-
pression. In this sense, it serves a role similar to the one played by entropy in lossless compression.

FIGURE 48.4  Lena image. Original size: 262,144 bytes. Entropy: 7.4455 bits/pixel. Huffman coding rate: 7.4682 
bits/symbol. Arithmetic coding rate: 7.4456 bits/symbol.
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48.3.2.1  Scalar Quantization

Scalar quantization maps each symbol of a sequence to a codeword from a finite alphabet. This is a 
many-to-one mapping and, therefore, not invertible. The goal in quantizer design is to come up with a 
mapping and a representation set that results in a reconstruction with the minimum average distortion. 
The input alphabet is partitioned into sets that are each represented by a codeword from the quan-
tizer output alphabet. The design of the partition and the representative codewords turns out to be a 
Voronoi partition problem. Given a set of reconstruction values, we want to partition the input alphabet 
such that each partition is represented by the reconstruction value that results in minimum distortion. 
Furthermore, given a partition of the input alphabet, we want to find the set of reconstruction values, 
one for each partition, which can be used to represent the input alphabet with the least distortion. For 
an R bit quantizer, the problem will turn out to be

	
min ( ) ( , )

x
i

xi

p x d x x
i

R

ˆ
ˆ
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such that

	 νi i jx d x x d x x j i= < ∀ ≠{ }: ( , ) ( , ),ˆ ˆ

where x̂  represents the reconstruction points. The inner summation changes to an integration for con-
tinuous alphabets, and the distribution p(x) turns out to be the pdf of the source. This problem is hard 
even for tractable distortion measures such as the mean squared distance measure. An approximate 
solution for general distributions is as follows. Starting from a set of arbitrary reconstruction points, 
the partitions vi are found by assigning each letter from the input alphabet to the closest letter from the 
reconstruction; then the new reconstruction points are estimated as the mean of each partition vi. This 
procedure is iteratively repeated. The distortion in each iteration can be shown to be nonincreasing, 
and the total distortion is expected to converge to a local minimum. This algorithm is known as Lloyd’s 
algorithm [10].

The input–output maps for different configurations of a scalar quantizer are shown in Figure 48.5. 
If the quantization intervals ∆i are the same for all except the outermost intervals, the quantizer is called 

Input
∆–3

∆1 ∆2 ∆3

∆1 ∆2 ∆3∆–2 ∆–1 ∆–3 ∆–2 ∆–1 ∆0Input

Output Output

FIGURE 48.5  Two scalar quantizer input–output maps. The one on the left is called a midrise quantizer, while the 
one on the right is called a midtread quantizer.
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a uniform quantizer. If not, it is called a nonuniform quantizer. One popular implementation of the uni-
form quantizer is where the quantizer output label l is generated by a division

	
l

x= +



∆

0 5.

The reconstruction is given by

	 x lˆ = ∆

This results in a quantizer whose innermost interval (corresponding to an output value of zero) is twice 
the size of the other quantization intervals.

A popular method, widely used in the telecommunication industry, for implementing nonuniform 
quantizers is the use of companding. Here, the input is passed through a logarithmic compressor func-
tion prior to uniform quantization. The reconstruction is obtained by taking the uniform quantizer 
reconstruction level and mapping it through an expanding function. The companding characteristic 
used in the United States and Japan is called the μ-law and is given by
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where μ = 255. The companding characteristic used in most of the rest of the world is called the A-law 
and is given by

	

c x

A x

A
x

x
x A

x

A x
x

A
x

A
x

x

( )

ln
sgn( )

ln

ln
sgn( )

max

max
max

=
+

≤ ≤

+

+ ≤

1
0

1

1

1
1

mmax
≤














1

	 (48.32)

	

c x

x

A
A

x
x A

x
A

x
x A

− =
+ ≤ ≤ +

+ −










1

1 0
1

1

1 1

( )

( ln )
ln

exp ( ln )

max

max

max

11
1

1+ ≤ ≤









 ln maxA

x
x

	 (48.33)

where A = 87.6.

48.3.2.2  Vector Quantization

Recall that employing lossless compression by coding blocks of symbols can result in better perfor-
mance than symbol-by-symbol encoding even in the case of iid sequences. An analogous situation 
applies for lossy coding. Quantizing blocks of symbols results in better rates for a given distortion 
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for sources with a nonuniform distribution. Using the rate distortion theorem, it is possible to show 
that for an iid source, the achievable rate to quantize blocks of length n with a 2nR level quantizer 
satisfies

	 nR D nR( ) ≤ 	 (48.34)

where nR is the number of bits allocated for R bit scalar quantizers achieving the same distortion D. 
Quantizing blocks of input sequences is called vector quantization (VQ).

The geometry of multidimensional distributions plays a role in the design of vector quantizers. 
One class of quantizers indexes the reconstruction points that are distributed regularly, taking the 
geometry of the distribution into consideration. This class of vector quantizers is called the lattice 
quantizers [11–13].

The vector quantizers can be extended to general distributions by generalizing Lloyd’s algorithm for 
the multidimensional case. If the same procedure is applied for vectors of symbols instead of single sym-
bols, an approximate solution to the VQ problem is provided. This procedure is known as the Linde–
Buzo–Gray (LBG) algorithm [14].

48.4  Modeling Data Organization

The rates achieved by entropy coding techniques, such as Huffman coding or arithmetic coding, are 
close to the first-order entropy of the source. This is only optimal under the assumption that the source 
is iid. However, in general, the data organization cannot be captured only by the alphabet distribution. 
This organization can stem from various aspects specific to different data sources. For example, in a 
natural language text, certain words and phrases could be used more frequently than others. Consider 
the words dour and ordu. Using entropy coding, the total length of the code allocated for each word 
would be the same, the sum of the length of the codewords of the letters composing the word. However, 
dour is a much more probable word in English than ordu (the reverse is true in Turkish). Therefore, if we 
knew that the text we were compressing was English, information theory says that we should use fewer 
bits to encode dour than we would use to encode ordu. However, such a coding would only be possible if 
we discarded the assumption that the text sequence was made up of iid symbols. The argument against 
using an iid assumption is also true for other types of data. In digital images, the same blocks of pixels 
can be repeated several times. In motion pictures, adjacent frames have significant parts that remain 
unchanged, etc. These structures are formed by higher-order organizations that cannot be captured by 
entropy coding. This structure, if captured, can be used to achieve rates lower than entropy coding of 
the raw sequence alone can provide.

Similar arguments apply for lossy compression. The quantization schemes assume iid distribution of 
the source. However, correlations in data result in nonzero mutual information between symbols, that 
is, not utilized by iid quantizers. Therefore, it makes sense to first use knowledge of the source model to 
generate a decorrelated sequence that can then be quantized.

Instead of monolithic coding schemes, a modular approach of modeling and coding is generally 
adopted for data compression. Since entropy coding is the final phase of compression, the output of 
the modeling phase should be a sequence with a low first-order entropy. Therefore, we can view the 
modeling as a data processing step that transforms the data from its original domain to a sequence 
with uncorrelated elements. Although models can have different objectives, describing data with uncor-
related features is the aim of all models. We can roughly categorize the modeling techniques into three 
main groups based on their approach to exploring the organization of data.

The first group of algorithms assumes the data are composed of building blocks that are repeatedly 
used in a sequence. They attempt to parse the data to isolate these building blocks and encode them as 
units. This can be done by organizing the repeated building blocks into a lookup table or dictionary. 
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The second group attempts to explore the correlations in a sequence by generating a model and encoding 
the model parameters and the uncorrelated residual. The last group uses the natural structure associated 
with the physical dynamics of the process generating the data to process the data sequence.

48.4.1  Modeling Building Blocks: Dictionary Methods

In general, a compression algorithm should assign shorter codewords to frequently recurring elements 
while assigning long codewords to rarely expected elements. Consider a converse approach. Instead 
of designing variable-length codewords for fixed-size items, we encode frequently occurring variable-
length blocks with fixed-size codes. Given an alphabet A, we define a group of letters forming a sequence 
to be a word. A lookup table of words with indices is called a dictionary, and compression methods using 
dictionaries for coding are called dictionary techniques.

If the dictionary consists of frequently occurring words within a sequence, which are the building 
blocks of the corresponding data, the dictionary technique can provide significant compression. It is 
not difficult to find examples of sequences with recurring items. Texts of natural languages consist of 
frequent words and phrases. Similarly, computer-generated images have repetitive blocks of the same 
pixel values. There are many types of data that have similar repetitive structures, which is why diction-
ary coding techniques are frequently used in general purpose archiving programs.

48.4.1.1  Lempel–Ziv Methods

The most well-known class of dictionary techniques are based on two algorithms proposed by Lempel 
and Ziv in 1977 [15] and 1978 [16], referred to as the LZ77 and LZ78 algorithms. The LZ77 and LZ78 
algorithms and their variations work on the premise that sequences are constructed of repeatedly 
used building blocks. Therefore, these algorithms attempt to identify and index these blocks. Encoded 
sequences are streams of indices pointing to entries corresponding to these blocks in a dictionary that 
is constructed adaptively.

The LZ77 algorithm attempts to represent a variable-sized block of input by an exact match in the 
history. Starting from the current symbol to be encoded, a variable-sized block is grown one symbol 
at a time, until the point where the addition of a symbol will result in a pattern that has not been 
previously encountered. The pointers coding the position and the length of that block in the pre-
viously coded sequence and the code for the symbol that terminated the search form the code for 
the current block. Assume that we are encoding “that_is_the_block_that_is_repeated”, 
and we are at the point where we have encoded “that_is_the_block_”. In the remaining string 
“that_is_repeated”, we can grow the block up to the substring “that_is_” that can be found 
in the previously coded sequence. The code for this block is the triplet (18, 7, code[r]). Where 18 is the 
offset from the beginning of the block “that_is_” and its previous occurrence in the sequence, 7 is 
the length of the block to be copied and code[r] is the code for the symbol r. The decoder will inter-
pret this as “go back 18 symbols, copy 7 symbols, and insert the 7 symbols at the end of the decoded 
sequence followed by the symbol r.” There are numerous variations of this basic algorithm. Most use 
a variable-length code to encode the various indices. Most also replace the triplet ⟨offset, length, code⟩ 
with a single-bit flag followed by either the code for a symbol or the double ⟨offset, length⟩. This latter 
variation was developed by Storer and Syzmanski [17] and hence is referred to as LZSS. Generally, the 
distance in the history in which to search for a match is limited for computational efficiency or due to 
memory requirements.

The LZ78 algorithm differs from the LZ77 algorithm in the way it indexes the repeated sequences. 
Previously encountered unique blocks are recorded in a lookup table. Similar to LZ77, the block to be 
encoded grows until there is no match in the lookup table. A double consisting of the index of the entry 
in the dictionary that matches all but the last element in the block and the last symbol in the block 
(which made the block unique) are encoded, and the new unique block is recorded in the lookup table. 



48-18 Networking and Communication

This can be viewed as parsing the sequence into a minimal number of building blocks constructively. 
The rate behavior of LZ78 is similar to that of LZ77.

As was the case for LZ77, several variations of LZ78 have been proposed. The most widely used is 
the LZW algorithm [18]. It eliminates the need for encoding the second element of the double—the 
last symbol in the block–by priming the dictionary with the source alphabet. The encoder only sends 
the index of the matching block; however, the dictionary is extended by adding the concatenation of 
this block and the last symbol. It is easiest to see the process with an example. Consider encoding the 
sequence ababbbaa…. The initial dictionary consists of only two entries:

1 a
2 b

When we parse the sequence, we encode the index for a and begin a new entry in the dictionary:

1 a
2 b
3 a…

The next element in the sequence is b. If we extended this, we would get the sequence ba that is not in 
the dictionary; so we encode the index for b and add this to the incomplete third element in the diction-
ary. This results in the third item becoming ab that is unique in the dictionary. Thus, the third item is 
complete; and we bring a fourth item with the symbol b:

1 a
2 b
3 ab
4 b…

The next symbol to be encoded is a. As this exists in the dictionary, we extend this block to include the 
following symbol; and we get the block ab. This also exists in the dictionary so we continue and get 
the block abb. This does not exist in the dictionary so we simply encode the index for ab. We now update 
the dictionary with the symbols that have been encoded. The fourth item in the dictionary is extended to 
ba that is unique so we complete that item and begin the fifth item with a followed by b. As ab exists in 
the dictionary, this item is incomplete:

1 a
2 b
3 ab
4 ba
5 ab…

As we continue, we will encode the indices 1,2,3,2,4,1 and the dictionary will become as follows:

1 a
2 b
3 ab
4 ba
5 abb
6 bb
7 baa
8 a…

All LZ-based algorithms are causal, so that the dictionaries are built both at the encoder and the 
decoder. That is why no information about the dictionaries other than the indices needs to be sent. 
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Algorithms based on the LZ algorithms are used in a large number of compression applications. The 
LZW variant of LZ78 is used in the Unix compress command as well as in the graphics interchange for-
mat (GIF). The compression algorithms in both portable network graphics (png) [19] as well as gzip [20] 
are based on LZ77.

48.4.2  Modeling Correlated Structures: Predictive Methods

Dictionary methods are well suited to repetitive data. However, the structure might not result in 
exact repetitions in various situations. Without exact repetition, the use of lookup tables is not use-
ful. However, it is still possible to exploit this imperfect recurrent structure with models capturing 
the correlations. There are a great variety of approaches for modeling correlated structures. These 
include prediction filters using the context of a sample, Markov models, and decorrelating data 
transformations.

Let’s consider a simple case where the adjacent symbols are not statistically independent. The entropy 
of the extended symbols of doubles would be

	 H x x H x H x I x x H x I x xi i i i i i i i( ) ( ) ( ) ( ; ) ( ) ( ; )+ + + += + − = −1 1 1 12 	 (48.35)

where I(xi; xi+1) is defined as the average mutual information between adjacent symbols. Since we know 
that the adjacent symbols are statistically dependent, the mutual information value is greater than zero. 
Therefore, the achievable rate of this sequence is smaller than 2H(x) if we use an extended alphabet 
of doubles. This example can be generalized by induction. If correlations exist within a sequence, the 
entropy, and, consequently, the achievable rate of that sequence, is smaller than first-order approxima-
tions may suggest. A similar argument can be proposed for the rate distortion function of correlated 
sequences.

A general strategy to exploit structural redundancy in data compression is the use of a decorrelation 
phase prior to entropy coding. A model capturing the correlations in the data is used to remove the cor-
relation leaving behind an uncorrelated residual sequence with a first-order entropy considerably less 
than the original sequence.

This is a predictive strategy, and compression algorithms that use this strategy make up an important 
body of data compression algorithms. The reason behind their importance is that many sources of data 
of interest for data compression exhibit various types of correlated structures. One form of this structure 
originates from the dominance of low-frequency components in nature. For example, in daily records 
of temperature, a measurement is generally correlated with the previous day’s measurement. Therefore, 
given the recent history of temperatures, the current temperature is not very uncertain. Similar time 
series behavior can be observed in many forms of data from audio streams to medical signals. Data 
recorded in image format contain spatial correlations. It is very likely that neighboring pixels corre-
spond to the same morphological object resulting in similar intensity and color values. Correlations in 
each data type might appear in different ways, but they can all be considered as the effect of the low-
frequency nature of signals of interest to humans. Another form of correlation is the result of global 
structure. These are patterns that are repeated in the data though not necessarily in adjacent tempo-
ral or spatial locations. Furthermore, unlike the repeated patterns that are captured using dictionary 
methods, these repeats may be imperfect or approximate. Obviously, models with a more global view 
of memory are needed to decorrelate data in this context. We can classify predictive models into two 
categories: models predicting global structure and models predicting local structure.

The predictive model employed at the encoder has to be repeatable at the decoder in order for the 
input sequence to be recovered. This requirement imposes the use of a causal context in models predict-
ing local structure. For models predicting global structure, we have the option of either encoding model 
parameters as side information or using causal adaptive models that can mimic the same prediction 
operation at the receiver.
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48.4.2.1  Predicting Local Structure

Predictive coding techniques exploit the local structure using the context of a symbol to predict the current 
symbol. Since the prediction is deterministic, the uncertainty to be encoded is contained in the residual 
sequence. If an accurate model is used to predict the current symbol well, the residual should be a white 
sequence with a low variance. The low variance indicates a sequence with low complexity that can be coded 
at low rate. In the following, we look at different prediction approaches that use different prediction models.

48.4.2.2  Prediction with Partial Match

Prediction with partial match (ppm) attempts to model the conditional probability of the current symbol 
given a context of previous symbols. The implicit model is a collection of Markov processes of different 
orders. The ppm algorithm estimates the distribution of symbols in different contexts in the form of fre-
quency tables based on statistics gathered from previously encoded parts of the sequence. The frequency 
tables associated with a particular context only include symbols that have occurred in that context. As the 
encoding progresses, the algorithm updates the frequency tables. This aspect is similar to dictionary meth-
ods. However, ppm differs from dictionary methods in that unlike dictionary coding ppm uses the previ-
ously occurring words as contexts for a frequency table that is then used to entropy code the symbol under 
consideration. Instead of continually growing the size of the context as in LZ78-based approaches, words 
in ppm are limited to a maximal length in order to mitigate memory problems and avoid model overfitting.

A maximum context length ℓ is specified as a parameter of the algorithm. To encode a symbol, the 
algorithm first looks to see if this symbol has been observed before in the context of the ℓ previous 
symbols. In case such an event exists in the history, the symbol is encoded based on its conditional 
distribution given those ℓ previous symbols. If this is the first time this symbol has occurred in this 
context, the algorithm encodes an escape symbol and repeats the process using the context of (ℓ − 1) 
previous symbols. This process is repeated until a context in which the symbol has previously occurred 
is encountered. If the symbol has never been previously encountered in any context, it is encoded using 
the first-order distribution of the symbols. The decoder begins by assuming that a context of size ℓ was 
used. Whenever an escape symbol is decoded, the decoder downsizes the context to look for a suitable 
match. Because the escape symbol can occur at any context, its frequency of occurrence is included in 
each frequency table by default.

Assume that we are currently encoding the last letter of the word prediction with the maximum con-
text length of 6. We first check for a context dictio followed by n. If there is none, the contexts of ictio, 
ctio, tio, io, and o are checked until one of these contexts followed by an n is found. At each step, either 
the symbol n or an escape symbol is encoded using arithmetic coding with the frequency table of the 
context. Once a symbol has been encoded, the corresponding frequency tables are updated. This makes 
ppm an adaptive arithmetic coding algorithm with variable context length. Since the frequency tables 
of each context size can be derived causally from previously coded data, the same operations can be 
conducted both by the encoder and decoder without any further need of side information.

There are several popular variations on the basic ppm theme. The modifications deal mostly with 
the derivation of the frequency tables, especially the escape symbol frequencies. The algorithm ppm* [21] 
provides a very creative approach to determining the maximum context length. The algorithm first 
looks at the longest matching context that has only one symbol (other than the escape symbol) in its fre-
quency table, the idea being that that single symbol is the same as the symbol being encoded with high 
probability. If this is not the case, the algorithm encodes an escape symbol and defaults to a maximum 
context length. The algorithm ppmz, which can be found at http://www.cbloom.com/src/ppmz.htm, 
is the best-known variant of the ppm* approach. Another modification is the disabling of impossible 
symbols that can be determined by the nonmatches of longer contexts. Assume in encoding prediction, 
we downsized the context to o. If the frequency table of context io has the symbol w, we can discard the 
symbol w in the frequency table of the context o, because if the symbol was w, an escape would not be 
encoded.
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48.4.2.3  Burrows–Wheeler Transform

The Burrows–Wheeler Transform (BWT) is a powerful technique which is particularly useful when 
strong correlations between the symbols and their contexts exist. The advantage of this method is that 
all possible contexts without a size limitation are considered. However, this advantage comes with a cost 
as it requires an offline phase of BWT.

Given a sequence, the maximal context of each symbol is considered and ordered lexicographically. 
The sequence of symbols in this order is the BWT. Here, unlike causal methods, the context starts from 
the next (right-hand) symbol. Since the contexts of the repeated patterns are the same, they are placed 
adjacent to each other in the transform. For example, the words containing “predict-” will be ordered 
together by the contexts starting with “redict-.” Therefore, the corresponding part of the transform is 
expected to have a run of p’s. In a correlated sequence, the resulting BWT sequence consists of long runs 
of the same letter. This provides the opportunity to use coding schemes like run-length coding with 
low rates.

In order to obtain all possible contexts, the transform takes the original sequence and generates all 
possible cyclic shifts of the sequence. All cyclic shifts are then ordered lexicographically. The sequence 
consisting of the last elements of each of the lexicographically ordered cyclic shifts forms the transform 
of the original sequence. This transform, along with an index pointing to the location of the original 
sequence in the lexicographically ordered set, can be used to recover the original sequence. The algo-
rithm is described using an example.

Example

As an example, consider the word GALATASARAY, which is the name of a Turkish soccer team. 
The circular permutations of the word are

G A L A T A S A R A Y
A L A T A S A R A Y G
L A T A S A R A Y G A
A T A S A R A Y G A L
T A S A R A Y G A L A
A S A R A Y G A L A T
S A R A Y G A L A T A
A R A Y G A L A T A S
R A Y G A L A T A S A
A Y G A L A T A S A R
Y G A L A T A S A R A

Lexicographically ordering this we get

A L A T A S A R A Y G
A R A Y G A L A T A S
A S A R A Y G A L A T
A T A S A R A Y G A L
A Y G A L A T A S A R
G A L A T A S A R A Y
L A T A S A R A Y G A
R A Y G A L A T A S A
S A R A Y G A L A T A
T A S A R A Y G A L A
Y G A L A T A S A R A
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The transformed sequence consists of the last letters of the ordered matrix: GSTLRYAAAAA. 
Notice how all the A’s occur together. This means we can easily get a compact representa-
tion for this sequence. We encode the transformed sequence and the location of the origi-
nal sequence in the ordered matrix. In this case, the original sequence is the sixth row of 
the ordered matrix. At the decoder, we lexicographically order the transformed sequence to 
obtain AAAAAGLRSTY. The sixth letter is G; therefore, we know that the first letter of the 
decoded sequence is G. We look for G in the transformed sequence and find that it occurs in 
the first position, so the second letter of the decoded sequence is the letter in the first position 
of the lexicographically ordered sequence, namely, A. Now we look for the first A in the trans-
formed sequence. It is in position 7; therefore, the next decoded letter is the letter in position 
7 of the lexicographically ordered sequence, namely, L. Continuing in this fashion, we can 
decode the entire sequence.

48.4.2.4  Differential Encoding

The predictive coding techniques we have discussed attempt to remove the redundancy in correlated 
sequences using context-based distributions. An adaptive coding scheme based on skewing the symbol 
probabilities by conditioning over the neighboring context is suitable for data types such as text docu-
ments or archiving applications. However, different paradigms of prediction can be more useful based 
on the data type considered. For example, data sampled from natural waveforms, such as image or audio 
data, can be viewed as a sequence of correlated numbers. Thus, numerical prediction that uses the cor-
relation works well for this data type.

Lossless image coding is an application of this type of predictive coding. The basic idea behind lossless 
image coding is that a pixel to be coded can be predicted using the surrounding texture. The difference 
between the pixel value and the predicted value, or the residual, generally has much lower first-order 
entropy than the pixels themselves and can, therefore, be encoded efficiently using arithmetic coding. A 
three-phase procedure is generally followed: (1) initial prediction of the pixel to be encoded, (2) refine-
ment of the initial prediction using the previous events of the same kind, and (3) entropy coding of the 
residual sequence.

In order to avoid transmitting a large amount of model parameters as side information, the algo-
rithms are causal, or backwards, conducting the same operations on both the transmitter and receiver 
ends. Therefore, by the surrounding texture, we refer only to the previously encoded neighborhood of 
the pixel. The initial prediction is obtained using the neighboring pixel values as well as the horizontal 
and vertical gradients in this neighborhood. The lossless Joint Photographic Expert Group (JPEG) stan-
dard uses one of the immediate neighbors (N, W, NW) or the weighted average of these neighbors as the 
prediction of the current pixel. In JPEG-LS, the prediction is replaced by the median adaptive prediction 
of the LOCO-I algorithm [22]. Median adaptive prediction selects one of (N, W, W+N-NW) based on 
the ranking of the three neighboring pixels. If N or W is the median of the neighbors, it is assigned as 
the prediction. Otherwise, a third assignment is performed.

As the second phase, LOCO-I refines the predicted value considering the previous errors made with 
different classes of gradient. Consider the pixel labels in Figure 48.6, two local horizontal (NE-N, N-NW) 
gradients and a vertical (NW-W) local gradient are quantized based on their magnitude into 365 con-
texts. A correction factor, which is determined by the errors occurring for the corresponding context, 
is added to the initial prediction. The correction factor is adaptive and is updated at each pixel predic-
tion. This refinement step introduces global capture of the correlations within an image. Therefore, its 

NW N NE

W X

FIGURE 48.6  Current pixel to be encoded X and surrounding texture of causal neighborhood.
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effect is to decorrelate the error sequences utilizing the mutual information within the errors. Further 
whitening of the residual generally results in a Laplacian-like distribution in the encoded  symbols. 
While adaptive Huffman or arithmetic coding can be applied in the final coding phase for lossless JPEG, 
the JPEG-LS standard prefers Golomb codes that perform well on geometric sources.

An idea similar to that of the ppm algorithm can also be used for generating predictions for lossless 
image compression. Instead of using similar contexts in the history to obtain the frequency counts, an 
average value of all pixels that have occurred in that particular context can be used as a prediction for 
the pixel being encoded [23]. This approach has been used to good effect in the lossless compression of 
hyperspectral images [24].

In the case of lossless compression, the prediction is performed based on the past history of the 
sequence. In lossy coding, one has to be a bit more cautious. Unlike the case for lossless compres-
sion, the reconstruction at the decoder in lossy compression does not exactly match the original 
sequence. Therefore, if the prediction at the encoder is obtained using the original sequence, the 
predictions performed by the encoder and decoder will diverge from each other. This is an error 
accumulation effect caused by the quantization error. At each prediction step, the receiver predic-
tor adds up the previous quantization error with the current one since the prediction is performed 
using erroneous inputs. To mitigate this effect, the encoder and the decoder are forced to generate 
the same predictions by generating the reconstructed sequence at the encoder and using this replica 
of the reconstructed sequence to generate the prediction. A block diagram of this differential encod-
ing scheme is shown in Figure 48.7. The section of the encoder that mimics the decoder is shown in 
the dotted box.

Data sampled from continuous waveforms, such as speech signals, contain local correlations that 
are not limited to the immediate neighbors of the symbols. Therefore, the predictive filters should 
be of a higher order to remove a greater amount of redundancy. Employing autoregressive filters is a 
well-known solution that has been used successfully in differential pulse code modulation (DPCM) 
systems. An autoregressive filter uses the linear regression of the previous N samples with mini-
mum variance:
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where
xn is the nth symbol in the sequence
ai is the autoregression coefficient
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FIGURE 48.7  A block diagram of the encoder for a lossy predictive coding scheme.
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The optimal filter coefficients then satisfy the Wiener–Hopf equation, so
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In this equation system, Rxx denotes the autocorrelation function of the input sequence that can be esti-
mated using the sequence samples.

The sequence to be coded can be of a nonstationary nature; thus, the autocorrelation behavior might 
change temporally or spatially. To capture local correlation structure, DPCM systems are generally 
adaptive, updating the filter coefficients as the sequence is coded. Adaptation can be offline, estimating 
the coefficients over a window and transmitting them as side information. For each window, the receiver 
uses the predetermined coefficients. Blocks of 8 × 8 pixels in images or 16 ms time frames in speech 
signals have been widely used for offline adaptation. The use of side information and time-delay prob-
lems in real-time communication systems illustrates the need for adaptive systems operating online. 
Updating the filter coefficients using the feedback error provides a solution that can be employed with-
out any need of side information or an offline-pass over the input sequence. The filter coefficients are 
updated using the gradient descent, least mean squared (LMS), algorithm. The LMS algorithm updates 
the filter coefficients at each time step using the rule
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where
rn is the prediction for the nth symbol
α is the stepsize of the gradient descent

The LMS algorithm can keep track of local correlation structures, which permits the coding system to 
adapt to nonstationary sources. Quantization, followed by prediction, can also be made adaptive by 
adjusting the variations in residual range.

48.4.2.5  Predicting Global Structure

Redundancy in data caused by correlated structures may not always be caused by the low variation of 
symbols within a neighborhood. Similar structures of large context may reoccur due to global organi-
zation. An obvious example of this occurs in video sequences. An object captured in a video sequence 
can exist in different locations in different frames. Although large blocks of pixels corresponding to this 
object may repeat with some slight variation in the video stream, this redundancy might not be revealed 
by prediction techniques intended to capture local correlations. So the prediction methods removing 
global redundancy can be substantially different than the methods of local prediction. We will discuss 
prediction in video coding in a later section.

The idea of identifying similar blocks to remove redundancy is a primary motivation for the use of 
VQ for compression. VQ provides better rate distortion performance, even in the case of iid sources. 
Where global correlations within the blocks of data exist, VQ further captures the mutual information 
between similar blocks by quantizing them to the same codeword. Therefore, correlated contexts can be 
mapped into the same codeword, decorrelating the sequence to be compressed.

VQ as a joint model of redundancy removal and lossy coding is generally employed as follows. The 
rate selected determines the number of codewords. That is to say, if a rate of R bits is selected and blocks 
of M symbols are going to make up the vectors, 2MR binary codewords, which index 2MR reconstruc-
tion points, are used. A VQ design algorithm, such as LBG, can train reconstruction points and assign 
each symbol block to the nearest reconstruction point. The block is coded using MR bits indexing the 
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reconstruction point. During decoding, a lookup table can reconstruct the blocks using the coded indi-
ces. Since the lookup table must be available to the decoder, the model has to be sent as side information. 
This method has two main drawbacks. First, as the bitrate increases, the codebook grows exponen-
tially. This results in a proportional increase in computational complexity to train the codebook and 
encode the blocks. Also, memory requirements and side information to be transmitted suffer from the 
same exponential growth. Therefore, VQ has mostly been used in low-rate applications such as low-rate 
speech coding or image coding. In low-rate speech coding, the vectors being quantized are generally 
vectors of model parameters, while in image coding applications, the inputs are generally square blocks 
of image pixels. Variations on VQ have been used to mitigate the exponential complexity and memory 
increase to enable it to be used in high-rate applications. Structures, such as tree-based and trellis-
based quantizers or divide-and-conquer approaches, like multistage quantization, have been used to 
bring the codeword increase from exponential to linear or logarithmic growth [4,25]. Some adaptive 
VQ techniques have been used for video coding [26] where the quantization is of such high resolution 
that the quantized vectors can be used to build and update the vector quantizer codebook without need 
for side information.

48.5  Modeling Natural Structures

Much of the information in sources such as audio and video is in the form of correlated structures. 
Consider the way images destined for human perception are structured. Most of the image consists 
of regions of similar intensity demarcated by sharp transitions. If we think of an image in terms 
of its spectral characteristics, the regions of similar intensity will contribute lower frequencies, 
while the demarcations will contribute higher frequencies. As the number of pixels involved in 
the demarcations, or the edges, is much fewer than the number of pixels in the regions of simi-
lar intensities, the amount of low-frequency content is much higher than the amount of high-fre-
quency content. In fact, in many parts of the image, the amount of high-frequency information 
may be completely negligible. We can take advantage of this fact by decomposing the image into 
different frequency components, each of which can be treated differently. There are two principal 
approaches currently being used to do this: transform coding and the use of wavelets or subbands 
for decomposition. Transform coding has been most widely used in the compression of images and 
video, for example, the widely used JPEG image coding standard and the Moving Picture Experts 
Group (MPEG) video coding standard. Subband coding has been used mostly for audio compres-
sion, the most well-known application being mp3 coding. Wavelets have been used in the JPEG 
2000 image compression standard [27,28].

Natural structure can also be introduced by the method used to generate the information-bearing 
signal. Speech is an example of such a signal. We all generate speech using machinery that is very 
similar. Simply put, air is forced through a vibrating membrane known as the vocal cords; the pres-
sure waves thus generated are modulated by the throat and mouth to generate speech. The physical 
requirements on the various components in this process impose constraints on the signal generated. 
Compression algorithms that take advantage of these constraints fall under the general heading of 
linear predictive (LP) coding. The ubiquitous cell phones would not be possible without this method 
of compression.

48.5.1 T ransform Coding

In transform coding, the image is divided into blocks, usually 8 × 8 pixels in size, and each block is rep-
resented in terms of a set of basis images. For example, the basis images corresponding to the popular 
discrete cosine transform (DCT) used in JPEG image compression and MPEG video compression are 
shown in Figure 48.8. The block in the upper left corresponds to the average intensity of the pixels in 
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a block. The basis images increase in spatial frequency with their distance to the basis image in the upper 
left corner. The (i, j)th element of the DCT matrix C is given by
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If we represent an 8 × 8 block of pixels by the matrix X where Xi,j is the value of the (i, j)th pixel in the 
block, coefficients corresponding to the various basis images, in other words the transform, are given by

	 Θ = CXCT 	 (48.40)

where Θ is the matrix of transform coefficients. The pixels can be recovered from the coefficients through 
the inverse transform

	 X C C= TΘ 	 (48.41)

The transform coding procedure involves three steps: the transform, quantization of the transform 
coefficients, and the binary encoding of the quantization labels. We briefly describe these steps for the 
popular JPEG image coding standard.

The first step in the JPEG encoding is a level shift. Essentially, this means subtracting 2b−1 from 
each pixel where b is the number of bits per pixel. In a grayscale image, the value of b is 8. The coef-
ficients have different perceptual importance with the human visual system being much more sensi-
tive to errors in low-frequency coefficients. The error introduced during transform coding is a result 
of the quantization process. As there is more sensitivity to errors at lower frequencies, we use coarser 
quantizers for higher-frequency coefficients than we do for lower-frequency coefficients. The stepsizes 
for different coefficients that are standard in JPEG compression are shown in Table 48.1. The step-
size for the lowest-frequency coefficient is 16, while the stepsizes for higher-frequency coefficient are 

FIGURE 48.8  Basis images for the 8 × 8 DCT.
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almost an order of magnitude bigger. The quantization process itself consists of dividing the coeffi-
cient by the stepsize and then rounding to the nearest integer. The reconstructed value of the coefficient 
can be obtained by multiplying the quantization label with the appropriate stepsize. For most of the 
8 × 8 blocks in the image, the quantization label corresponding to the higher-frequency coefficients is 0. 
This is due to two factors. First, as mentioned earlier, the higher-frequency coefficients are generally 
small. And second, as can be seen from Table 48.1, the quantization stepsizes for the higher-frequency 
coefficients are much larger than those for the lower-frequency coefficients resulting in a large num-
ber of 0 labels. To efficiently code these long runs of 0s, the JPEG algorithm scans the coefficients in 
a zigzag fashion as shown in Figure 48.9. Notice that the coefficient at the upper left-hand corner is 
not included in the zigzag scan. As mentioned earlier, this particular coefficient corresponds to the 
average pixel value in a block. As an 8 × 8 block is a very small portion of the image, it is reasonable 
to assume that the average values of neighboring blocks of pixels are going to be similar. The JPEG 
algorithm takes advantage of this fact and transmits only the difference between these average values. 
The rest of the coefficients are encoded using a modified Huffman code. Each codeword in this code 
is indexed by two values: the number of 0 coefficients preceding the coefficient being encoded in the 
zigzag scan and the value of the coefficient. The last nonzero coefficient in the zigzag scan is followed 
by an end-of-block code.

Let’s work through the JPEG coding process with an example. Consider the 8 × 8 block shown 
in Table 48.2. If we subtract 128 from each value in this block and then take the DCT of this 
level-shifted block, we obtain the coefficients shown in Table 48.3. Quantizing this block of coef-
ficients using the quantization table shown in Table 48.1, we obtain the quantization labels shown 
in Table 48.4. We have marked the upper left-hand coefficient with an X because that particular 

TABLE 48.1  Sample Quantization Table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

FIGURE 48.9  The zigzag scan used by the JPEG algorithm to scan the quantization labels.
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coefficient, as  mentioned earlier, is quantized using a different strategy. If we arrange the other 
coefficients using the zigzag scan, we get the sequence

	 [ ]− − − −2 43 1 100 0�

The encoder only has to encode 5 coefficients (out of 63 coefficients) before sending the code for end-of-
block. This results in a significant amount of compression.

The coarse quantization of high-frequency coefficients makes sense both in terms of the perceptual 
quality of the reconstruction and the relatively small amount of high-frequency content in images des-
tined for human viewing. However, at very low rates, the argument breaks down. This is because of an 
implicit assumption in the DCT-based decomposition that the signal being transformed is periodic. 
This means that if there is a significant difference between the values between opposite edges of a block, 
it is reflected in higher values for the high-frequency coefficients. Coarse quantization of these coeffi-
cients results in reconstructions that attempt to equalize the pixel values at opposite edges. This means 
that pixels with large values representing brighter portions of the image will be reconstructed as pixels 

TABLE 48.4  Quantization Labels for the 
Coefficients Shown in Table 48.3 Using 
the Standard Quantization Stepsizes

X −2 −1 0 0 0 0 0
−4 −1 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

TABLE 48.3  The DCT of the Level-Shifted 8 × 8 Block of Pixels Shown in Table 48.2

317.3750 −18.1082 −7.1088 −3.2756 −1.3750 −0.1463 1.4563 −1.5100
−49.1029 −9.0994 2.5826 −1.2318 0.5473 −0.3857 −0.7265 1.6950

39.7441 −5.3676 3.2312 −0.4727 0.0676 −0.9051 0.1490 −0.5918
−0.1320 15.7378 1.7881 −2.2865 −0.5565 0.4095 1.2199 −2.0727
−1.8750 −3.3699 2.7600 −0.1171 0.8750 −0.2135 −0.1961 1.7384
−4.9524 0.0853 −5.7080 4.0486 −0.6103 0.1149 1.1940 −0.9065
−1.7149 −0.7225 2.1490 −3.1358 −0.1633 0.4385 −0.4812 −0.3506

−4.8788 5.8341 −0.5948 −2.4700 −0.4537 −0.7444 −0.6175 1.2710

TABLE 48.2  An 8 × 8 Block of Pixels

160 162 164 164 164 166 167 170
158 160 162 164 166 168 170 172
150 154 158 160 162 162 164 164
152 152 156 160 164 166 164 162
162 164 166 164 162 160 161 162
170 172 173 174 168 171 168 169
174 176 178 180 179 181 174 172
176 178 180 182 184 186 188 190
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with smaller values that will be perceived as dark. This effect will be most apparent at the block bound-
aries leading to a blocking artifact. One way around this problem is to use a modified version of the DCT, 
known, appropriately enough, as the modified discrete cosine transform (MDCT). In this variation, the 
transform is taken over overlapping blocks, thus mitigating the blocking effect. Another is the use of 
subband and wavelet decompositions that we describe in the next section.

48.5.2  Wavelet and Subband-Based Coding

Using transforms is one way of separating the source information into spectral components. Another 
widely used approach relies on filterbanks rather than transforms for decomposing the signal into its 
spectral component. A typical subband coding system is shown in Figure 48.10. The discrete-time input 
signal is passed through a low-pass filter and a high-pass filter with bandwidth equal to half the band-
width of the original signal. Thus, the output of the low-pass filter contains the lower half of the frequen-
cies in the input signal, while the output of the high-pass filter contains the upper half of the frequencies 
contained in the input signal. The Nyquist criterion dictates that the signal be sampled at a rate that is at 
least twice the highest-frequency component of the signal. Assuming that the original signal was sam-
pled at the Nyquist rate or higher and assuming ideal filters, the output of the filters will be oversampled 
by at least a factor of two. Therefore, the output of the filters can be downsampled by a factor of two. This 
downsampling is indicated by the circle with the down-pointing arrow. After downsampling, the total 
number of samples in the upper and lower branches is equal to the number of samples in the original 
signal. The low-pass and high-pass signals can be quantized and coded depending on their characteris-
tics and transmitted or stored. In order to reconstruct the signal, the decoder outputs are upsampled by 
a factor of two, filtered, and summed. Where the filters are not ideal, the downsampling can introduce 
aliasing distortion. The design of filters that prevent the introduction of aliasing distortion has been a 
major subject of research in subband coding. The various designs begin with a prototype low-pass filter 
and derive the other filters from the prototype filter to satisfy perfect reconstruction conditions.

In the example earlier, we show the signal being split into two bands. In various applications, the 
signal can be split into multiple bands. This can be done in a number of ways. One is to design M-band 
filters that split the input into M spectral bands followed by a downsampling by a factor of M. Another 
is to use a sequence of two band splits, where generally the low-pass output is split repeatedly. The 
reason for the latter approach is that most of the information in many natural signals is contained in 
the lower frequencies; and therefore, there is a benefit to a higher-resolution decomposition of the low-
frequency band.

One of the most popular applications of subband coding is the algorithm for the compression of 
audio signals, which is part of the MPEG standard. There are three audio compression strategies, Layer I, 
Layer II, and Layer III. The Layer III standard is better known as mp3. Each layer is backwards compat-
ible with the previous layer, which means they have substantial commonalities. The input in each case 
is decomposed into 32 subbands, followed by a 32:1 downsampling. In mp3, the output of each subband 
is further decomposed into 6 or 18 coefficients using an MDCT with 50% overlap. The reason for this 
level of spectral decomposition is the nature of the hearing process. The human auditory system has a 
frequency-selective auditory threshold. Signals at frequencies below 300 Hz or above 6 kHz have to be 
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FIGURE 48.10  A basic subband coding system.
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substantially louder to be heard than signals in the range of 1–5 kHz. Thus, small amplitude signals in 
the output of some of the subbands can be discarded without any perceptible impact on the audio qual-
ity. Furthermore, the auditory system uses several masking strategies that can be exploited to improve 
the level of compression. If two tones occur within a narrow range of frequencies, known as the critical 
band, one of the tones will mask the other. This kind of masking is called spectral masking. The auditory 
system also uses temporal masking; if two tones occur very close to each other, in time, the louder tone 
will mask out the more quiet one. By not encoding components of the signal that are going to be masked 
by the human auditory system anyway, we can get significant compression without the loss of perceived 
fidelity. A conceptual block diagram of this process is shown in Figure 48.11. The option in mp3 to 
switch between an 18 and 6 coefficient MDCT is used to accommodate a wider range of sounds. For 
a more precise encoding of those portions of the audio signal that include time-limited sharp sounds, 
such as castanets, the six-coefficient MDCT is used. This permits a more accurate rendition of the sound 
by allocating more coding resources to the short period in which those sounds occur.

The filters used in subband coding are derived from a Fourier analysis point of view that can be 
thought of as a way of representing time functions using a basis set made up of complex exponentials 
that are defined for all time. Because these basis functions have support over the entire time axis, any 
representation using these basis functions provides no time localization. By looking at the spectral pic-
ture, one might be able to say that the signal contained a component of a particular frequency; but it is 
not possible to determine when that signal occurred. Wavelet analysis is based on translated and dilated 
versions of a time-limited waveform. This permits localization of components in both time and fre-
quency. From the implementation point of view, however, subband decomposition and wavelet decom-
position look very similar. In both cases, the decomposition is implemented using a setup very much 
like that shown in Figure 48.10.

While the method of decomposition is very similar, compression schemes using wavelets have employed 
very different coding strategies. The most well-known application of wavelet decomposition is the image 
compression standard known as JPEG2000 [28]. Unlike speech and audio signals, images are 2D objects; 
and, thus, the decomposition has to occur in two dimensions. For practical reasons, this decomposition is 
usually performed as a concatenation of two 1D decompositions. Each row of an N × M image is treated 
as a 1D signal and decomposed into a high and low band. After downsampling, we end up with two sets of 
coefficients of size N × M/2. Each row of these coefficients is decomposed and subsampled to produce four 
N/2 × M/2 subimages whose pixels are the coefficients. The subimage resulting from taking the low-pass 
filtered rows and then low-pass filtered columns of the resulting N × M/2 image is called the low–low or LL 
image. Similarly, the other subimages are called the low–high (LH), high–low (HL), and high–high (HH) 
images. Figure 48.12 illustrates this process.

Most natural images have most of their energy concentrated in the LL subimage. This LL subimage 
can be further decomposed into 4 N/4 × M/4 subimages resulting in a total of 7 subimages. The LL image 
generated at each step can be further decomposed in a similar fashion. If a coefficient has a magnitude 
greater than a particular value, it is said to be significant at that value. As with other wavelet-based image 
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FIGURE 48.11  A conceptual picture of the mp3 algorithm.
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coding schemes [29,30], the JPEG2000 standard uses the concept of significance to improve compres-
sion efficiency. As the decomposition is being performed each time for coefficients corresponding to 
pixels at a particular spatial location, we can group coefficients depending on the pixels they correspond 
to. In these groups, if the low-frequency coefficient has a magnitude lower than a particular threshold, 
that is, it is insignificant at that threshold level, then it is highly likely that the other coefficients will also 
have values lower than that threshold. We can make use of this fact by comparing the low-frequency 
coefficient against a series of progressively lower threshold and then encoding entire groups of coeffi-
cients based on whether the low-frequency coefficient is significant or insignificant at that threshold. If 
we pick the thresholds to be powers of two, then the encoding of significant coefficients at progressively 
lower thresholds becomes the encoding of the bitplanes of an image.

The JPEG2000 algorithm divides the image into tiles that can be further subdivided into precincts. By 
encoding these subdivisions independently, the algorithm allows for random access to different parts 
of the image. Within each subdivision, the wavelet coefficients are encoded bitplane by bitplane using 
a sequence of three passes: a significance propagation pass, a magnitude refinement pass, and a cleanup 
pass. In the significance propagation pass, all bits in the neighborhood of coefficient locations previously 
declared significant are examined. Their significance status is encoded. If the coefficient becomes sig-
nificant, the sign of the coefficient is encoded. In the magnitude refinement pass, the bits corresponding 
to coefficients declared significant in previous passes are encoded; and in the cleanup pass, all remaining 
bits are encoded. The bitstream thus generated is an embedded stream, that is, the earlier bits are more 
important to the reconstruction of the image. As more bits are made available, the decoder can progres-
sively improve the quality of the reconstruction; we do not need to wait for the end of the bitstream to 
obtain a reconstruction of the image.

Once the bits have been generated and prior to framing, the JPEG2000 algorithm has the option of 
going through a post-compression rate distortion optimization step where the algorithm organizes the bits 
into quality layers. This provides the ability to generate the best reconstruction for a given number of bits.

48.5.3  Linear Predictive Coding

While images can be generated in a variety of ways, the mechanism used for generating human speech 
is relatively standard. Air is forced through a stretched membrane, the vocal cords; and the sound 
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generated is modulated by the vocal tract consisting of the laryngeal, oral, nasal, and pharyngeal pas-
sages to produce speech. We can model this process using an excitation source followed by a vocal tract 
filter. This was done in the eighteenth century by Wolfgang von Kempelen (aka Kempelen Farkas Lovag) [31] 
using bellows and a sequence of flexible tubes. The more modern version, which is widely used in cell 
phones, uses digital signals for the excitation sequence and digital filters to model the vocal tract. The 
basic algorithm consists of the application of two modeling steps to short segments of speech. The two 
steps are that of modeling the excitation sequences and that of modeling the vocal tract. These models 
are transmitted, along with framing information, to the receiver that then reconstructs the speech.

The simplest classification of the excitation sequence is between voiced sounds, such as the vowel 
sounds, and the unvoiced sounds, including the sibilant s and the fricative f sound. The voiced sounds 
have a pseudo-periodic structure where the period is called the pitch period. The unvoiced sounds are 
more noiselike. The excitation sequence can also be obtained as the outcome of a search process in which 
various elements of one or more excitation codebooks are used in conjunction with the vocal tract filter 
and a fidelity metric that selects the excitation sequence best matched to the input speech.

The vocal tract filter is a linear filter. An example of this is the filter used in the Federal Standard 
FS 1016:

	
∑= +β + ∈− −

=
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where
ϵn is the excitation signal
P is the pitch period
yn is the synthesized speech

The term βyn−P can be thought of as a correction term. The coefficients {bi} are known as the LP coef-
ficients. These coefficients model the spectral envelope of the voice signal, and it can be shown [4] that 
the coefficients can be obtained by solving the set of equations:
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These equations can be efficiently solved using the Levinson–Durbin algorithm [32,33].
To accommodate the rapidly changing sounds that make up the speech signal, this process is repeated 

every 20–30 ms depending on the particular standard being used.

48.5.4  Video Coding

Video coding has generally been seen as a combination of predictive coding and transform coding. 
Frames of a video sequence are generally quite similar to each other with the same objects appearing 
in a succession of frames. Therefore, the approach is to use predictive coding along the temporal axis 
followed by transform coding of the residual. In order to preserve some random access capability, a 
frame is periodically encoded without prediction. If we did not do so, we would have to reconstruct all 
previous frames to reconstruct an individual frame. By periodically encoding a frame without using 
interframe information, called an I-frame in MPEG parlance, we only need to begin decoding from the 
nearest I-frame.

The prediction technique used in almost all video coding algorithms is called motion-compensated 
prediction. The frame being encoded is divided into square blocks. For each of the blocks, the algorithm 



48-33Data Compression

searches in the previous frame for the closest match in the spatial neighborhood of the frame being 
encoded. The idea is that as we move from frame to frame, objects will appear in slightly different loca-
tions in the frame. The horizontal and vertical offsets of the closest matching block are called the motion 
vector and can sometimes account for more than 90% of the video bitstream. The difference between 
the block being encoded and its motion compensated past is generally encoded using a transform coder. 
A block diagram of one of the earlier video coding schemes, H.261, is shown in Figure 48.13. While there 
are many differences in details between the H.261 standard and the more modern MPEG-1, MPEG-2, 
and H.264 (also known as MPEG-4 Part 10) standards, the basic approach has stayed the same. The 
standards H.261, MPEG-1, and MPEG-2 use an 8 × 8 DCT, while the H.264 standard uses a 4 × 4 integer 
DCT-like transform. While in H.261, the only prediction is based on past frames, the later standards 
allow for bidirectional prediction, that is, the prediction is formed using an average of the past and 
future frames. If bidirectional prediction is to be used, the transmission order cannot be causal as the 
frames used for generating the prediction need to be available to the decoder before the predicted frame 
can be reconstructed.

48.6  Conclusions and Further Reading

We have barely scratched the surface of the area of data compression in this review. We hope we have 
convinced the reviewer that in order to design good compression algorithms, one needs to understand 
the data that are being compressed. If the data can be effectively modeled, it can be compressed very 
efficiently. There is also a flip side to data compression algorithms. Because the data compression algo-
rithms depend so heavily on discovering structure in the data, they can be used for the purpose of struc-
ture discovery rather than data compression. A review of some of the ways data compression algorithms 
can be used to understand biological sequences can be found in [35].
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There are a large number of books dealing with data compression. There is also continued research 
that appears in various IEEE and ACM journals. The annual Data Compression Conference held in 
Snowbird, Utah, usually at the end of March or the beginning of April, is the venue for much of the 
research in this area. Some of the books in this area are as follows:

•	 Text Compression by T.C. Bell, J.G. Cleary, and I.H. Witten [36]. This is somewhat dated but is still 
one of the most lucid books on various lossless compression techniques used in text compression.

•	 The Data Compression Book by M. Nelson and J.L. Gailley [37]. One of the earliest and still one of 
the best introductions to many aspects of data compression.

•	 Introduction to Data Compression by K. Sayood [4]. A comprehensive introduction (and perhaps 
a bit more) to both lossy and lossless compression.

•	 Digital Compression for Multimedia: Principles and Standards by J.D. Gibson, T. Berger, 
T. Lookabaugh, D. Lindbergh, and R. Baker [38]. A book written more from a standards perspective.

•	 JPEG2000: Image Compression Fundamentals, Standards and Practice by D. Taubman and 
M. Marcellin [27]. The definitive reference book for JPEG2000, this book also introduces various 
compression techniques.
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49.1  Introduction

UnderWater Acoustic Sensor Networks (UW-ASNs) [1] consist of a number of sensors and vehicles 
that interact to collect data and perform tasks in a collaborative manner underwater. They have been 
deployed to carry out collaborative monitoring tasks including oceanographic data collection, climate 
monitoring, disaster prevention, and navigation. Autonomous underwater vehicles (AUVs) are widely 
believed to be revolutionizing oceanography and are enabling research in environments that have typi-
cally been impossible or difficult to reach [21]. For example, AUVs have been used for continuous mea-
surement of fresh water exiting the Arctic through the Canadian Arctic Archipelago and Davis Strait in 
order to study the impact of climate change to the circulation of the world’s oceans. The ability to do so 
under ice is important so that, for example, scientists can measure how much fresh water flows through 
the strait—and at what times of year—so they have a baseline for comparison in coming years.

For these missions, position information is of vital importance in mobile underwater sensor net-
works, as the data collected have to be associated with appropriate location in order to be spatially 
reconstructed onshore. Even though AUVs can surface periodically (e.g., every few hours) to locate 
themselves using global positioning system (GPS)—which does not work underwater—over time, inac-
curacies in models for deriving position estimates, self-localization errors, and drifting due to ocean 
currents will significantly increase the uncertainty in position of underwater vehicle. Moreover, in 
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extreme environments such as under ice, surfacing to get a GPS update is hardly possible and, there-
fore, position information is highly uncertain. In such environments, relying on standard navigation 
techniques such as long baseline (LBL) navigation is difficult as the use of static LBL beacons typically 
limits the operation range to about 10 km [18] and requires great deployment efforts before operation, 
especially in deep water (more than 100 m deep).

As AUVs are becoming more and more capable and also affordable, deployment of multiple AUVs 
to finish one mission becomes a widely adopted option. This not only enables new types of missions 
through cooperation but also allows individual AUVs of the team to benefit from information obtained 
from other AUVs. Existing localization schemes underwater generally rely on the deployment of tran-
sponders or nodes with underwater communication capabilities as reference points, which requires 
either much deployment effort or much communication overhead. Moreover, these schemes are not able 
to estimate the uncertainty associated with the calculated position, which is high in under-ice environ-
ments, and thus are not able to minimize position uncertainty.

To address this problem, we propose a solution that uses only a subset of AUVs without relying on 
localization infrastructure. Specifically, a position uncertainty model in [8] is introduced to character-
ize an AUV’s position. This model is extended to estimate the uncertainty associated with the standard 
distance-based localization technique, resulting in the distance-based localization with uncertainty 
estimate (DISLU). We further propose a Doppler-based technique with uncertainty estimation capa-
bility, which is called Doppler-based localization with uncertainty estimate (DOPLU). The DISLU 
technique relies on packets (i.e., communication overhead) to measure the inter-vehicle distances (i.e., 
ranging), which, in conjunction with positions of reference nodes, are utilized to estimate the position. 
On the other hand, DOPLU, which measures Doppler shifts from ongoing communications and then 
uses these measurements to calculate velocities for localization, removes the need for ranging packets. 
As DOPLU only relies on relative measurements, it may not be able to fix displacement errors introduced 
by the rotation of the AUV group. In this case, DISLU is executed to bound such localization errors. 
Considering these tradeoffs, using the uncertainty model, the localization error and communication 
overhead of DISLU and DOPLU can be jointly considered and algorithms are devised to minimize the 
localization uncertainty and communication overhead while satisfying localization error requirement.

Our solution offers a way to estimate the degree of uncertainty associated with a localization tech-
nique and based on this estimation it further minimizes both position uncertainty and communication 
overhead. The contributions of this work include (1) a probability model to estimate the position uncer-
tainty associated with localization techniques; (2) an algorithm to minimize localization uncertainty by 
selecting an appropriate subset of reference nodes (in general, other AUVs); (3) an algorithm to optimize 
the localization interval in order to further minimize the localization overhead; and (4) a Doppler-based 
localization technique that can exploit ongoing communications for localization.

The remainder of this chapter is organized as follows. In Section 49.2, we introduce the basic knowl-
edge on UW-ASNs. In Section 49.3, we review the related work for localization algorithms in UW-ASNs. 
We present the motivation and background in Section 49.4 and propose our localization solution in 
Section 49.5; in Section 49.6, performance evaluation and analysis are carried out, while conclusions are 
discussed in Section 49.7.

49.2  Basics of Underwater Acoustic Sensor Networks

UW-ASNs are applied in a broad range of applications, including environmental monitoring, undersea 
exploration, disaster prevention, assisted navigation, and tactical surveillance. Underwater network-
ing is a rather unexplored area although underwater communications have been experimented since 
World War II, when, in 1945, an underwater telephone was developed in the United States to com-
municate with submarines [24]. Acoustic communications are the typical physical layer technology 
in underwater networks. In fact, radio waves propagate at long distances through conductive sea water 
only at extra low frequencies (30–300:Hz), which require large antennae and high transmission power. 
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For example, the Berkeley Mica 2 Motes, the most popular experimental platform in the sensor net-
working community, have been reported to have a transmission range of 120 cm underwater at 433:MHz 
by experiments performed at the Robotic Embedded Systems Laboratory (RESL) at the University of 
Southern California. Optical waves do not suffer from such high attenuation but are affected by scat-
tering. Moreover, transmission of optical signals requires high precision in pointing the narrow laser 
beams. Thus, acoustic waves are generally used for underwater communications [26].

The traditional approach for ocean-bottom or ocean-column monitoring is to deploy underwater 
sensors that record data during the monitoring mission and then recover the instruments [22]. This 
approach has the following disadvantages:

	 1.	 No real-time monitoring: The recorded data cannot be accessed until the instruments are recov-
ered, which may happen several months after the beginning of the monitoring mission. This is 
critical especially in surveillance or in environmental monitoring applications such as seismic 
monitoring.

	 2.	 No online system reconfiguration: Interaction between onshore control systems and the monitor-
ing instruments is not possible. This impedes any adaptive tuning of the instruments, nor is it 
possible to reconfigure the system after particular events occur.

	 3.	 No failure detection: If failures or misconfigurations occur, it may not be possible to detect them 
before the instruments are recovered. This can easily lead to the complete failure of a monitoring 
mission.

	 4.	 Limited storage capacity: The amount of data that can be recorded during the monitoring mis-
sion by every sensor is limited by the capacity of the onboard storage devices (memories and 
hard disks).

Therefore, there is a need to deploy underwater networks that will enable real-time monitoring of 
selected ocean areas, remote configuration, and interaction with onshore human operators. This can 
be obtained by connecting underwater instruments by means of wireless links based on acoustic 
communication.

Many researchers are currently engaged in developing networking solutions for terrestrial wireless ad 
hoc and sensor networks. Although there exist many recently developed network protocols for wireless 
sensor networks, the unique characteristics of the underwater acoustic communication channel, such 
as limited bandwidth capacity and variable delays [23], require very efficient and reliable new data com-
munication protocols.

Major challenges in the design of underwater acoustic networks are

•	 The available bandwidth is severely limited
•	 The underwater channel is severely impaired, especially due to multi-path and fading problems
•	 Propagation delay in underwater is five orders of magnitude higher than in radio frequency (RF) 

terrestrial channels and extremely variable
•	 High bit error rates and temporary losses of connectivity (shadow zones) can be experienced due 

to the extreme characteristics of the underwater channel
•	 Battery power is limited and usually batteries cannot be recharged, also because solar energy 

cannot be exploited
•	 Underwater sensors are prone to failures because of fouling and corrosion

Underwater acoustic communications are mainly influenced by path loss, noise, multipath, Doppler 
spread, and high and variable propagation delay. All these factors determine the temporal and spatial 
variability of the acoustic channel and make the available bandwidth of the underwater acoustic channel 
limited and dramatically dependent on both range and frequency. Long-range systems that operate over 
several tens of kilometers may have a bandwidth of only a few kHz, while a short-range system operat-
ing over several tens of meters may have more than a hundred kHz of bandwidth. In both cases, these 
factors lead to low bit rate [5], in the order of tens of kbps for existing devices.
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Hereafter we analyze the factors that influence acoustic communications in order to state the chal-
lenges posed by the underwater channels for underwater sensor networking. These include the following.

Path loss: Attenuation is mainly provoked by absorption due to conversion of acoustic energy into 
heat. The attenuation increases with distance and frequency. Figure 49.1 shows the acoustic attenua-
tion with varying frequency and distance for a short-range shallow water acoustic channel, according 
to the propagation model in [27]. The attenuation is also caused by scattering and reverberation (on 
rough ocean surface and bottom), refraction, and dispersion (due to the displacement of the reflec-
tion point caused by wind on the surface). Water depth plays a key role in determining the attenua-
tion. Geometric spreading refers to the spreading of sound energy as a result of the expansion of the 
wavefronts. It increases with the propagation distance and is independent of frequency. There are two 
common kinds of geometric spreading: spherical (omni-directional point source), which characterizes 
deep water communications, and cylindrical (horizontal radiation only), which characterizes shallow 
water communications.

Noise: Man-made noise is mainly caused by machinery noise (pumps, reduction gears, and power plants) 
and shipping activity (hull fouling, animal life on hull, and cavitation), especially in areas encumbered 
with heavy vessel traffic. Ambient noise is related to hydrodynamics (movement of water including tides, 
current, storms, wind, and rain) and to seismic and biological phenomena. In [15], boat noise and snap-
ping shrimps have been found to be the primary sources of noise in shallow water by means of measure-
ment experiments on the ocean bottom.

Multipath: Multipath propagation may be responsible for severe degradation of the acoustic commu-
nication signal since it generates inter-symbol interference (ISI). The multipath geometry depends on 
the link configuration. Vertical channels are characterized by little time dispersion, whereas horizontal 
channels may have extremely long multipath spreads. The extent of the spreading is a strong function of 
depth and the distance between transmitter and receiver.

High delay and delay variance: The propagation speed in the acoustic channel is five orders of magnitude 
lower than in the radio channel. This large propagation delay (0.67 s/km) can reduce the throughput of 
the system considerably. The very high delay variance is even more harmful for efficient protocol design 
as it prevents from accurately estimating the round trip time (RTT), which is the key parameter for 
many common communication protocols.
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Doppler spread: The Doppler frequency spread can be significant in acoustic channels [26], causing a 
degradation in the performance of digital communications: transmissions at a high data rate cause 
many adjacent symbols to interfere at the receiver, requiring sophisticated signal processing to deal with 
the generated ISI. The Doppler spreading generates a simple frequency translation, which is relatively 
easy for a receiver to compensate for; and a continuous spreading of frequencies, which constitutes a 
nonshifted signal, that is more difficult to compensate for. If a channel has a Doppler spread with band-
width B and a signal has symbol duration T, then there are approximately BT uncorrelated samples of 
its complex envelope. When BT is much less than unity, the channel is said to be underspread and the 
effects of the Doppler fading can be ignored, while, if greater than unity, it is said to be overspread [16].

Most of the described factors are caused by the chemical–physical properties of the water medium 
such as temperature, salinity, and density, and by their spatio-temporal variations. These variations, 
together with the wave guide nature of the channel, cause the acoustic channel to be highly temporally 
and spatially variable. In particular, the horizontal channel is by far more rapidly varying than the verti-
cal channel, in both deep and shallow water.

49.3 R elated Work

A number of underwater localization schemes, many of which are summarized in [6], have been proposed 
to date, which take into account a number of factors like the network topology, device capabilities, signal 
propagation models, and energy requirements. Most of these localization schemes require the positions 
of some nodes be known. In order to estimate the positions of other nodes, measurements such as dis-
tances and angles are made. Range-based schemes, use round-trip time (RTT), time of arrival (ToA), time 
difference of arrival (TDoA), received-signal-strength (RSS), or angle of arrival (AoA) to estimate their 
distances to other nodes. Schemes that rely on ToA or TDoA require tight time synchronization between 
the transmitter and the receiver, whereas RTT does not. However, RTT comes with a higher network cost 
and associated error. RSS has been implemented in [10], but it comes with an additional network cost.

An hierarchical localization scheme involving surface buoys, anchor nodes, and ordinary nodes is 
proposed in [30]. Surface buoys are GPS based and used as references for positioning by other nodes. 
Anchor nodes communicate with surface buoys while ordinary nodes only communicate with the 
anchor nodes. This distributed localization scheme applied 3D Euclidean distance and recursive loca-
tion estimation method for the position calculation of ordinary nodes. Mobility of the sensor nodes was 
not considered in the position estimate.

A recent proposal uses surface-based signal reflection for underwater localization [10]. This approach 
attempts to overcome limitations imposed by line of sight (LOS) range measurement techniques such as 
RSS, TOA, and AoA. These limitations are caused by multipath, line of sight attenuation and required 
reference nodes. The receiver in this approach accepts only signals that have been reflected off the sur-
face. It accomplishes this by applying homomorphic deconvolution to the signal to obtain an impulse 
response, which contains RSS information. The algorithm then checks the RSS and compares it to 
calculated reflection coefficients. Mobility is allowed and high localization accuracy can be achieved.

These localization solutions are generally designed for UW-ASNs, which may not include mobile 
nodes such as AUVs. In the rest of this section, we review the work that is most related, that is, localiza-
tion in UW-ASNs using AUVs. Localization is essential for underwater vehicle navigation, where many 
localization solutions, as summarized in [18], have been proposed. Short baseline (SBL) and long base-
line (LBL) systems [18] are standard ways to localize vehicles underwater, where external transponder 
arrays are employed to aid localization. In SBL systems, position estimate is determined by measuring 
the vehicle’s distance from three or more transponders that are, for example, lowered over the side of the 
surface vessel. The LBL systems are similar to SBL, with the difference that an array of transponders is 
tethered on the ocean bed with fixed locations.

In [12], a localization scheme called AUV aided localization (AAL) is proposed, where position estima-
tion is done using a single AUV. In AAL, an AUV navigates a predefined trajectory, broadcasts its position 
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upon a node’s request, and fixes its own position at the surface. Each node estimates the distances to the 
AUV while the AUV is at different locations, using the RTT between itself and the AUV. Algorithms such 
as triangulation or bounding box can then be used for position estimate. Another localization solution 
called dive-and-rise localization (DNRL) is proposed for both static and mobile networks in [11]. The 
DNRL solution is similar to AAL, with the difference that ocean currents are considered and time syn-
chronization is required between nodes.

In [14], an online algorithm for cooperative localization of submerged AUVs is designed, imple-
mented, and evaluated through experiments. This algorithm relies on a single surface vehicle called 
communication and navigation aid (CNA) for autonomous navigation. Using the CNA’s GPS positions 
and basic onboard measurements including velocity, heading, and depth, this algorithm can use filter-
ing techniques such as extended Kalman filter (EKF) to bound the error and uncertainty of the on-
board position estimates of a low-cost AUV.

Simultaneous localization and mapping (SLAM), also known as concurrent mapping and localiza-
tion (CML), attempts to merge two traditionally separated concepts, map building and localization. 
SLAM has been investigated using an imaging sonar and Doppler velocity log (DVL) in combination 
with dead reckoning [25]. However, despite recent research efforts this technology is still in its infancy 
and many obstacles still need to be overcome. As of November 2010, there have been several simulations 
carried out [29], but currently there is no operating solution to the AUV SLAM problem.

Among existing underwater localization techniques (which are generally not suitable for under-
ice environments), relatively few under-ice localization techniques have been proposed. Despite 
these efforts, the technology remains expensive and out of reach for researchers. Current techniques 
employed in the under-ice environment include combinations of either dead-reckoning using inertial 
measurements [28], sea-floor acoustic transponder networks such as SBL or LBL [2], and/or a DVL that 
can be either seafloor or ice relative [17]. These current approaches require external hardware, are cost 
prohibitive, and suffer from error propagation. For accurate dead reckoning, highly accurate sensors 
are required because magnetic navigation systems are subject to local magnetic field variations and 
gyros are subject to drift over time. Quality inertial navigation sensors often cost more than $10,000 
[18]. In contrast, our solution is much more economical as it does not require these expensive sensors.

Two solutions for underwater collaborative localization using a probability framework are proposed 
in [19] and [20], where a sum-product algorithm and a Markov process that are based on the so-called 
factor graph are used to model the joint distribution of multiple nodes. Both solutions require the global 
information of the nodes that are involved in localization, which leads to high computation complexity 
and communication overhead. Our solution offers another probability framework that leverages the 
self-estimated uncertainty distribution for estimation of other nodes. Therefore, global information is 
not required, resulting in reduced computation complexity and communication overhead.

49.4  Motivation and Background

In UW-ASNs, inaccuracies in models for position estimation, self-localization errors, and drifting due to 
ocean currents will significantly increase the uncertainty in position of an underwater vehicle. Hence, using 
a deterministic point is not enough to characterize the position of an AUV. Furthermore, such a deterministic 
approach underwater may lead to problems such as routing errors in inter-vehicle communications, vehicle 
collisions, lose of synchronization, and mission failures. In order to address the problems due to position 
uncertainty, we introduce a probability model to characterize a node’s position. In many applications such as 
geographic routing, AUVs need to estimate the positions of themselves and other AUVs. Therefore, depend-
ing on the view of the different nodes, two forms of position uncertainty are defined, that is, internal uncer-
tainty, the position uncertainty associated with a particular entity/node (such as an AUV) as seen by itself, 
and external uncertainty, the position uncertainty associated with a particular entity/node as seen by others.

These two notions introduce a shift in AUV localization: from a deterministic to a probabilistic view. This 
shift can then be leveraged to improve the performance of solutions for problems in a variety of fields. 
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For example, in UW-ASNs, using the external-uncertainty region, routing errors can be decreased and a 
node can estimate better the transmission power to guarantee the signal-to-noise ratio for correct data 
reception by taking into account not only channel impairments but also position uncertainty [8]. The 
notion of external uncertainty can also be used in underwater robotics to minimize the risk of vehicle col-
lisions; and in underwater localization to decrease the position uncertainty by selecting a proper subset of 
nodes to be used as “references,” as shown later.

Many approaches such as those using Kalman filter (KF) [3] have been proposed to estimate the inter-
nal uncertainty assuming that the variables to be estimated have linear relationships between each other 
and that noise is additive and Gaussian. While simple and quite robust, KF is not optimal when the 
linearity assumption between variables does not hold. On the other hand, approaches using nonlinear 
filters such as the extended or unscented KF attempt to minimize the mean squared errors in estimates 
by jointly considering the navigation location and the sensed states or features such as underwater ter-
rain features, which are nontrivial, especially in an unstructured underwater environment.

Let us denote the internal uncertainty, a 3D region associated with any node j ∈ N , where N  is the set 
of network nodes, as U jj, and the external uncertainties, 3D regions associated with j as seen by i, k ∈ N , 
as U ij and U kj, respectively (i ≠ j ≠ k). In general, U jj, U ij, and U kj are different from each other; also, due to 
information asymmetry, U ij is in general different from U ji. External uncertainties may be derived from the 
broadcast/propagated internal-uncertainty estimates (e.g., using one-hop or multihop neighbor discovery 
mechanisms) and, hence, will be affected by end-to-end (e2e) network latency and information loss.

49.5  Proposed Localization Solution

With the notion of external uncertainty, we can model the uncertainty associated with localization tech-
niques. Based on this uncertainty, optimization problems are formulated to minimize localization uncer-
tainty and communication overhead. In this section, we first show how external uncertainty can be used 
to estimate the uncertainty with the standard distance-based localization technique (i.e., DISLU). Then we 
propose a novel Doppler-based localization technique DOPLU that jointly estimates localization uncer-
tainty. The DISLU technique requires ranging packets to measure the distances for position calculation, 
which introduces communication overhead. This weakness in DISLU can be offset by DOPLU, which 
exploits ongoing inter-vehicle communications to avoid the need for ranging packets. Such an “opportunistic” 
approach (i.e., DOPLU) does not guarantee correct absolute locations (as Doppler shifts only characterize 
relative position change) so the team of AUVs needs to go back to DISLU to correct the locations when the 
error is too large. Based on this idea, we propose algorithms to solve two optimization problems, one for 
minimization of localization uncertainty and the other for minimization of communication overhead.

The communication protocol for our solution is presented in Figure 49.2. Each AUV first runs DISLU 
using the distances measured from the round-trip time. Then, DOPLU is run using Doppler-shift 
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FIGURE 49.2  Overview of the proposed approach.
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information extracted from inter-vehicle packets. By overhearing the ongoing packets from the refer-
ence nodes, AUV i estimates the Doppler shifts and then extracts the relative velocity, from which the 
AUVs calculate their absolute velocities. The DISLU technique is run to fix the localization error intro-
duced by DOPLU after Tp, which is the time after the last DISLU is started.

Both DISLU and DOPLU use the external uncertainty and corresponding probability distribution func-
tion (pdf) to estimate the uncertainty resulted from the localization technique, that is, the internal uncer-
tainty and pdf of the AUV running the localization algorithm. Then this internal uncertainty information 
is broadcast for other AUVs to estimate external uncertainties. Our previous work in [8] provided a sta-
tistical solution to estimate the internal and external uncertainty, which is used for initial estimation here.

49.5.1  Distance-Based Localization with Uncertainty Estimate (DISLU)

We present here the DISLU technique, which is based on the following idea, to estimate its own position, 
vehicle i needs (1) to estimate the distances between itself and its reference vehicles, and (2) to estimate its 
own position based on these distances.

The DISLU technique relies on the round-trip time TRTT to measure the inter-vehicle distance. By 
extracting the one-way propagation time, i is able to calculate the inter-vehicle distance. That is, the 
distance between transmitter i and receiver j is d c T T T Tij RTT i

TX
j

TX
j

hold= ⋅ − − −( )( ) ( ) ( ) 2, where Ti
TX( ) and 

Tj
TX( ) are the duration to transmit the packet at i and the duration to transmit acknowledgment at j (i.e., 

transmission delays), Tj
hold( ) is the holdoff time of j to avoid collisions. To reduce the transmission time, 

we can use the short ping packets. Once j receives the ping packet, it starts a hold-off timer, Tj
hold( ), which 

is a uniformly distributed random variable in 0 2, Thold
mean  where Thold
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where
dij is the distance from AUV i to j
τ is the estimated transmission time for the current packet
c = 1500 m/s is the propagation speed of acoustic waves
R is the transmission radius of the underwater modem
ϕij = max{0, R − dij}

The first term in (49.1) gives less time to the neighbor that is closer to i, and the second term is the extra 
delay that a node should wait so that all the nodes receive the packet. This gives fairness by providing 
synchronization in starting the hold-off timers of all the nodes receiving the data packet. The hold-off 
time Tj

hold( ) is then embedded in the acknowledge packet for i’s information.
After the calculation of dij’s, i estimates its own position as the point with the least mean squared error 

to the reference nodes. Then, i estimates its internal uncertainty region using conditional probability and 
the distribution of the reference nodes within their external-uncertainty regions.

Given the set of i’s neighbors Ni , the external uncertainty regions U ij, the distances dij, and the pdf of 
j within region U ij, ∀j ∈ Ni , i can estimate the pdf of being at generic point p as
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where
g(Pi = p) is the pdf of the position of i at point p
g(|) denotes conditional probability function
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In our solution, p is calculated as the point that has the minimum squared error, that is, p ∈ Si, where 

S q d p p di j ij
j i

≡ = −{ }∈∑arg min ( , )
2

N
 (i.e., U ii = Si). Here, d(p, pj) is the distance between point p and pj. 

We assume point p to be uniformly distributed in Si. In other words, we have
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where |Si| is the number of elements in Si if Si is a discrete set, or the area (or volume) of Si if Si is a non-
empty nondiscrete set.

The joint pdf, g P pj j
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as the distributions of these AUVs are independent. Therefore, (49.2) can be expanded as
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Hence, i’s internal uncertainty U ii with g() being the pdf is estimated, which is then broadcast to other 
AUVs. The AUVs receiving this information then use U ii to estimate i’s external uncertainty.

49.5.2  Doppler-Based Localization with Uncertainty Estimate (DOPLU)

The DOPLU technique runs between two consecutive runs of DISLU. Obviously, whenever the Doppler 
shifts from more than three nodes are extracted, DOPLU can be run. The time between two consecu-
tive runs of the DISLU is divided into subslots with appropriate duration Ts (Figure 49.2) so that the 
DOPLU will be run at an appropriate frequency. Within each subslot, the vehicle that runs DOPLU 
extracts Doppler shifts from the packet it overhears (even if the packet is not intended to be received by it) 
from the reference vehicles. With the additional information it obtains from the packet header (such as 
velocity of the reference node), it computes its own absolute velocity, which is then used to estimate its 
own position and internal uncertainty. This reduces the communication overhead for sending packets 
to estimate inter-vehicle distance.

An algorithm is designed so that the duration Ts can be adjusted dynamically according to the fre-
quency of ongoing communication activities. Within Ts, a AUV is expected to collect enough Doppler 
shifts from its reference neighbors so that the DOPLU algorithm runs efficiently. Note that if Ts is too 
small, it is very likely that the velocity calculated by DOPLU is close to that obtained from the last cal-
culation, which means waste of computation resources. On the other hand, Ts should not be too large as 
it would lead to too much localization error. After all, the less frequent a AUV calculates its position, the 
more position error accumulates.

In the rest of this section, we focus on the main problem, that is, how to estimate the position and 
internal uncertainty when Doppler shifts are available, and leave the optimization of Ts in Section 49.5.3. 
Using the Doppler shifts regarding to the reference nodes, i can estimate its own absolute velocity using 
the projected positions (i.e., by adding history position with history velocity times the time passed) and 
velocities. Using this relationship for all reference nodes, i obtains an equation group to solve, where 
absolute velocity vi⃗ can be estimated.
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To see how to calculate the absolute velocity, assume that at the end of one subslot, AUV i has 
collected the Doppler shift ∆fij from reference node j. From the definition of Doppler shift, we have 
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carrier frequency, c = 1500 m/s is the speed of sound, and ⚬ is the inner product operation. From this 
equation, we have
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From (49.6), assume that i has collected the Doppler shifts of Ni
ref( ) reference nodes, we 

then have an equation group with Ni
ref( ) equations. We then can derive i’s velocity vi⃗. Assume 
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In this equation, vx
i( ) and v y

i( ) in the left-hand side are variables to be solved, whereas vz
i( ) in the right-hand 

side can be derived from pressure sensor reading, α α αx
ij

y
ij

z
ij( ) ( ) ( ), ,( ) is the normalized vector of PPi j

� ���
, and 

v v vx
j

y
j

z
j( ) ( ) ( ), ,( ) is obtained from the velocity information embedded in the overheard packet header of j.

Considering all the Ni
ref( ) reference nodes, we can obtain a linear equation group, which can be 

expressed in a matrix form as Ax = b, where
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sum of squared errors is minimized. That is,

	 x b Ax* arg min .= − 2

	 (49.9)

From matrix theory, x* can be solved as x A A A b* ( )= −T T1 . Once the velocity is calculated, the position 
of i is updated as p pi i= ′ + v
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Assume that the uncertainty regions U ij and the distribution pdf of j within region U ij are known 
(by embedding these parameters in the header of the packet), ∀j ∈ N i, i can estimate the pdf of being 
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DISLU, i can calculate the distribution of its own location and, hence, its internal uncertainty region.
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Minimization of location uncertainty: Obviously, localization using different references leads to different 
estimation of internal uncertainty and corresponding pdf. Our objective is to minimize the estimated 
internal uncertainty. Using our notions of internal and external uncertainty, this can be achieved by 
solving an optimization problem. To measure the degree of uncertainty, we use information entropy as 
the metric, that is,
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The bigger H(U ij, gij) is, the more uncertain U ij is. The reason to use information entropy instead of 
simply the size of uncertainty region is that it can better characterize uncertainty.

Example: Assume that an AUV is distributed in [0,10] along x-axis with pdf being 9.9 in [0,0.1] and 
0.1/99 in [0.1, 10] (Case 1). Then its entropy is −3.17 bits, which is less than the entropy 3.32 bits when 
the AUV is uniformly distributed in [0,10] (Case 2) or the entropy 3 bits when the AUV is uniformly 
distributed in [0,8] (Case 3). Obviously Case 1 is the most certain in these three cases even though Case 2 
has the same size and Case 3 has the smallest size of the region. Note that the information flow between 
AUVs can occur in loops; this may not amplify errors of the positioning algorithm, as our problem can 
make sure the neighbors that can minimize the uncertainty can always be selected.

With this metric, the problem to minimize localization uncertainty can be formulated as
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	 A A Ni i i≥ ⊂3; . 	 (49.13)

Here A i represents a subset of i’s reference nodes, (49.11) and (49.12) estimate the internal uncertainty 
and corresponding pdf when nodes in A i are used as references; and (49.13) are the constraints for A i so 
that enough reference nodes are selected for localization.

To reduce the complexity, we can convert an uncertainty region (internal or external) into discrete 
counterparts. That is, we divide an uncertainty region into a finite number of equal-size small regions. 
When the number of small regions is sufficiently large, the pdf of the AUV’s position on a point—such 
as the centroid—in this small region can therefore be approximated by the probability on a small region. 
Hence, the estimated external-uncertainty region can be approximated as the region contained in the 
hull of these estimated points. The pdf functions are also be approximated by the probability mass func-
tions on discrete points, which simplifies the pdf estimation. The aforementioned optimization can then 
be solved using exhaustive search algorithm after the discretization. Depending on the computation 
capability of the onboard processor, appropriate number of small regions can be used. Further improve-
ment of the solution can be done after converting it into appropriate optimization that can be solved 
efficiently and we leave this as future work.
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49.5.3  Minimization of Communication Overhead

In this section, we discuss how to optimize Ts and Tp so that localization overhead can be minimized while 
keeping the localization uncertainty low. We first propose an algorithm to dynamically adjust Ts in order 
to maintain the performance of DOPLU. Then, Tp is optimized to minimize the localization overhead.

As for Ts, it should be large enough so that packets from enough reference nodes are overheard. 
Suppose Kmin is the minimum number of reference nodes (or |A i| if the optimization algorithm in 
Section 49.5.2 is used) so that x* can be calculated using DOPLU. In the beginning, Ts is initialized 
as T R c T Ks TX= + ⋅( / ) ,min  that is, the minimum time to overhear packets from Kmin reference nodes. 
Suppose that during the last ′Ts  period, Doppler shifts from N′ reference nodes with smaller degree 
of uncertainty (seen by i) than i’s are received. On average, it takes ′ ′T Ns  to receive a useful Doppler 
shift. Then, the expected time to receive Kmin useful Doppler shifts is ′⋅ ′T K Ns min . We update Ts using a 
weighted average. That is, T T T K Ns s s= ⋅ ′ + − ⋅ ′⋅ ′β β( ) min1 , where β ∈ (0,1) is a weight factor.

Using internal and external uncertainty, we can also optimize the interval Tp running DISLU. By opti-
mizing Tp, we minimize the overhead to use DISLU and hence the overall overhead. The DISLU algorithm 
is run when the localization error is large. The localization error can be estimated by calculating the dis-
tance from the position estimated by DISLU to that estimated by DOPLU. When the localization error is 
greater than a threshold dth, DISLU is run to correct the error. Since the position is not deterministic, this 
requirement is expressed in a probabilistic way. That is, DISLU should be run when the probability of the 
localization error being over dth is above a threshold probability γ. Therefore, to minimize the overhead of 
running DISLU, Tp should be maximal under the constraint that the probability of the localization error 
being over dth is below γ. This can be formulated into the following optimization problem:
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where pi(Tp) and p~i(Tp) are the prediction positions using the DOPLU and DISLU after Tp from the last 
DISLU run time, respectively. This prediction of future internal uncertainty is based on the current esti-
mated internal uncertainty and AUV’s trajectory. A solution has been proposed in [8] for underwater 
gliders (one type of buoyancy-driven AUVs), which we adopt in this work. As the previous optimization 
problem, we can also convert it into discrete variable optimization problem and solve it in a similar way.

49.6  Performance Evaluation

The communication solution is implemented and tested on our underwater communication emulator 
[7]. This emulator is composed of four WHOI micro-modems and a real-time audio processing card to 
emulate underwater channel propagation. The multiinput multioutput audio interface can process real-
time signals to adjust the acoustic signal gains, to introduce propagation delay, to mix the interfering 
signals, and to add ambient/man-made noise and interference. Our solution is compared against AAL, 
DNRL, and CNA, as introduced in Section 49.3, under an environment that is described by the Bellhop 
model [4]. We use the typical Arctic sound speed profile as in [27] and the corresponding Bellhop profile 
is plotted in Figure 49.3. Note that we use 25 KHz, the sound frequency in use for our WHOI modem. 
We modify AAL, DNRL, and CNA, as they were originally designed for settings that are quite different 
from the under-ice environment. Specifically, AAL, DNRL, and CNA all use the AUV that surfaces last 
as reference node because intuitively the shorter an AUV stays underwater (the less time it stays in an 
uncertain environment after a GPS fix), the less uncertain its position is. Triangulation is employed for 
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position calculation in AAL and DNRL, while EKF filtering is used in CNA. We are also interested in 
seeing the performance improvement that we get using the external uncertainty notion. Therefore, we 
implement another version of our proposed solution without using external uncertainty, that is, forc-
ing the position uncertainty to be zero. We denote this modified version and the original version by 
“Proposed solution w/o EU” and “Proposed solution w/EU,” respectively.

In order to evaluate the localization performance, two metrics, the localization error and the deviation of 
error, are used. Localization error is defined as the distance between the actual and the estimated AUV posi-
tion. The deviation of error is the amount the localization error deviating from the total averaged error. The 
average localization error E

_
 and deviation of error σ are plotted. The formulae of E

_
 and σ are expressed as
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where
N is the number of AUVs in the UW-ASN
Ei represents the localization error for each AUV operating in the UW-ASN at that particular time
Lt is the number of times the localization is performed, such that L T Tt end= /∆

49.6.1  Simulation Scenarios

The parameters for our simulations are listed in Table 49.1. We further assume that ongoing communi-
cation packets are generated according to the Poisson traffic model with arrival rate being three packets 
per minute. As shown in Figure 49.4, we utilize the following two specific scenarios.

Scenario 1: This scenario involves a team of AUVs who collaboratively explore an underwater region 
located under ice. These AUVs remain under-ice for the duration of the mission and do not return to the 
surface until the mission is completed.
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FIGURE 49.3  Bellhop profile for a typical Arctic environment.
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Scenario 2: This scenario is similar to the first except that individual AUVs will periodically surface to 
update their positioning via GPS. These AUVs take turns to go back to the surface at a predefined inter-
val, which is 4000 s in our simulations. In order to avoid ice cover, these AUVs return to the edge of the 
ice sheet where they were deployed. Once an AUV surfaces, it acquires a GPS fix and updates its current 
coordinate position (position uncertainty is also reset).

Both scenarios are tested with typical and extreme currents, whose speed ranges are listed in 
Table 49.1. A random 3D direction is chosen for the current throughout one round of simulation. The 
Doppler data are based on the 6-h Doppler speed measurement that we took using WHOI modems on 
November 20, 2011 in the Bayfront Park bay, Lavallette, NJ, as shown in Figure 49.5. Our measurement 
shows that most of the Doppler speeds are low, similar to the part we plot here. Note that the right-hand 
side in (49.6) is replaced with the measured Doppler speed here as there is no need to calculate the 
Doppler shifts.

49.6.2  Evaluation Results

Real-time (one simulation run) localization errors and deviations of error are plotted in the first two 
subfigures of Figures 49.6 through 49.9. Moreover, to obtain results of statistical significance, 250 rounds 
were conducted for varying numbers of AUVs. The average errors for the AUV’s predicted location are 
plotted in Figures 49.6 through 49.9c with 95% confidence intervals.

TABLE 49.1  Simulation Parameters

Total time 10,600 s (∼2.94 h)
Time interval, ∆T 60 s
Deployment 3D region 2,000(L) × 2,000(W) × 1,000(H) m3

Confidence parameter, α 0.05
AUV velocity 0.25–0.40 m/s
AUV depth range [0,1,000] m
Typical currents 0.01–0.03 m/s [13]
Extreme currents 0.04–0.06 m/s [13]
Water temperature range [−2,2] °C
Salinity range [32.5,35] ppt

Ice

GPS

Scenario 1

Scenario 2

AUV3

AUV3

AUV4

AUV4

AUV5

AUV5

AUV1

AUV1

AUV2

AUV2

FIGURE 49.4  Two scenarios for simulations: different dotted circles represent different scenarios.
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FIGURE 49.5  Doppler speed measurement. Only part of the measurements are plotted for clear visualization. 
Time coordinates vary due to different reception times. (a) Location: Bayfront Park bay, Lavallette, NJ. (b) Doppler 
speeds measured at node 1. (c) Doppler speeds measured at node 2.
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Scenario 1: As shown in Figures 49.6 and 49.7, our original solution “Proposed solution w/ EU” performs 
the best. In the typical current setting, “Proposed solution w/ EU” obtains about 74.6% less error than 
“Proposed solution w/o EU” while it obtains 80.4% less error in the extreme current setting. This is 
mainly due to the use of the external uncertainty model to predict the position and distribution of the 
AUVs and the ability to minimize the localization uncertainty. “Proposed solution w/o EU” ranks the 
second in terms of error performance because an AUV can leverage the ongoing communications and 
cooperation of other AUVs for localization. Even though CNA uses EKF to predict the positions, its 
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FIGURE 49.6  Scenario 1 with typical currents: under the ice mission with no resurfacing. (a) Localization error 
Comparison (6 AUVs). (b) Deviation Comparison (6 AUVs).
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FIGURE 49.6 (continued)  Scenario 1 with typical currents: under the ice mission with no resurfacing. 
(c) Localization error for number of AUVs.
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performance is worse than “Proposed solution w/o EU” since the AUV can only use its own states for 
position estimation. On the other hand, CNA is still better than DNRL and AAL due to the use of EKF 
filter, and DNRL performs better than AAL since it takes the current influence into account.

By comparing Figures 49.6 and 49.7, we can see that under extreme conditions, the localization error 
keeps increasing since more dislocation is incurred by the extreme currents. Interestingly enough, we 
can see that the performance of our solution without using external uncertainty is not much better than 
that using CNA. In this case, using Doppler information does not help improve the localization much 
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FIGURE 49.8  Scenario 2 with typical currents: under the ice mission with resurfacing. (a) Localization error 
Comparison (6 AUVs). (b) Deviation Comparison (6 AUVs).
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FIGURE 49.8 (continued)  Scenario 2 with typical currents: under the ice mission with resurfacing. 
(c) Localization error for number of AUVs.
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since the position uncertainties associated with other AUVs are also large and thus the performance 
is not too much better than that of using EKF. However, our solution using external uncertainty still 
performs the best due to the ability to estimate the position uncertainty and then use such information 
to minimize uncertainty.

Scenario 2: As shown in Figures 49.8 and 49.9, the performance ranking for these solutions closely 
resembles that in Scenario 1. However, the localization performance in Scenario 2 is much better 
than that in Scenario 1 since AUVs can obtain position correction periodically, as seen by compar-
ing Figures 49.6 with 49.8 (or Figures 49.7 with 49.9). From these figures, we can see that localiza-
tion error and deviation decrease when AUVs surface, that is, at 4000 s and 8000 s in the results. 
Moreover, we can see that for typical current settings in Scenario 2, the localization error and its 
deviation can stay within certain threshold for “Proposed Solution w/ EU,” while the error of other 
solutions tends to increase. This shows the effectiveness of our proposed solution in minimizing the 
localization uncertainty.

Communication overhead: Last, we compare the communication overhead of our solutions against other 
solutions. As shown in Figure 49.10, “Proposed solution w/o EU” achieves less overhead than CNA, 
DNRL, and AAL due to the ability to exploit the Doppler shifts of ongoing communications for localiza-
tion, reducing the use of ranging packets. “Proposed solution w/ EU” has the biggest communication 
overhead in the beginning because of the need to broadcast external uncertainty information (such as 
pdf information). However, due to the ability to optimize the update intervals Ts and Tp as in Section 
49.5.3, its communication overhead drops quickly to a level that is lower than CNA, DNRL, and AAL. 
CNA has higher overhead than DNRL and AAL as CNA needs to broadcast additional information 
such as velocities and sensor readings for EKF while DNRL and AAL only need to broadcast the posi-
tion and time information that is embedded in the ranging packet. Note that in “Proposed solution w/ 
EU,” to save the overhead, when the AUVs broadcast the pdf information, they only broadcast the key 
parameters if the pdf is one of the well-known distributions (e.g., the average and standard deviation 
for a normal distribution). Otherwise, the point mass function of a finite number of points is broadcast.
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FIGURE 49.10  Comparison of communication overhead.
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49.7  Conclusion and Future Work

We proposed a localization solution that minimizes the position uncertainty and communication 
overhead of AUVs in the challenging under-ice environments. With the notion of external uncer-
tainty, position uncertainties of the AUV can be modeled in a probabilistic way. This model is 
further used to estimate the uncertainty resulted from localization techniques, as shown for our 
proposed Doppler-based localization and the standard distance-based localization. Algorithms are 
then proposed to minimize the position uncertainty and communication overhead. Our solution is 
implemented and compared with several existing localization techniques using an acoustic com-
munication emulator. It is shown that our approach achieves excellent localization results with low 
localization overhead.

Further work will be to implement our proposed localization solution on AUV platforms and evalu-
ate its performance in ocean experiments. We are building our own AUV platform for performance 
evaluation of our solutions. Our proposed localization can be used as part of the adaptive sampling 
solution using AUVs to reconstruct the ocean temperature field. Specifically, given a field to sense, the 
AUVs should coordinate to take measurements with minimal cost such as time or energy in order to 
reconstruct the field with admissible error. To achieve this, we will propose a framework that jointly 
considers the online field measurements and multi-AUV trajectory planning. Novel distributed algo-
rithms that can minimize the sampling cost for one-round sampling are proposed, and underwa-
ter communication protocols are designed to coordinate the vehicles. In this way, low sampling cost 
can be achieved while the computation complexity per vehicle can be reduced by using distributed 
algorithms.

Glossary

In this part, we give a brief introduction to the terms that are used.

Acoustic Transponders: Also called sonar transponders, which operate under water and are used to 
measure distance and form the basis of underwater location marking, position tracking and 
navigation.

Autonomous Underwater Vehicles: Programmable robots that, depending on their design, can drift, 
drive, or glide through the water without the real-time control by human operators. Generally, 
AUVs are equipped with onboard computers and sensors, which allow them to sense the under-
water environment and collect the underwater data as they move through the water, and make 
decisions on their own. These AUVs, which are divided into two main classes—propeller-less/
buoyancy-driven (e.g., gliders) and propeller-driven vehicles (PDVs)—rely on local intelligence 
with minimal onshore operator dependence.

Communication Overhead: Extra bits of data that does not contribute to the content of the mes-
sage and that must be sent to convey information about, for example, where the informa-
tion originated and where it is being sent to, how it is to be routed, time-stamps, or any 
other information that is not actually the “payload” representing the actual content to be 
communicated.

Dead Reckoning: The process of calculating the current position by using a previously determined 
position, and advancing that position based upon known or estimated speeds over elapsed 
time, and course. Dead reckoning is subject to cumulative errors as each position estimate 
is relative to the previous one. It is also affected by the accuracy of the velocity and direction 
estimation.

Deviation of Error: The amount the localization error deviating from the total averaged error. It mea-
sures the variation or dispersion of the position error is from the average.
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Doppler Velocity Log (DVL): An acoustic device used to measure the speed of a vehicle over the seabed. It 
can serve as a fundamental component of dead-reckoning (DR) underwater navigation systems 
and aided-inertial navigation systems (INS). The measurement data comprise speed in three per-
pendicular directions, calculated from the Doppler shift of the acoustic signal returned from the 
seabed as the vehicle passes over. Altitude above the seabed is also calculated. Typically the DVL 
data are used to aid an integrated position calculation incorporating USBL, LBL, or inertial systems.

End-to-end Network Latency (or Delay): The time difference between a packet is sent from the source 
and the time it is received at the destination.

Extended Kalman Filter (EKF): The nonlinear version of the Kalman filter that is obtained using a lin-
ear approximation of the non-linear system based on the Taylor series expansion. In the case 
of well-defined transition models, the EKF has been proven to be a useful method of obtaining 
good estimates of the system state.

External Uncertainty: The position uncertainty associated with a particular entity/node as seen by 
others. External uncertainties may be derived from the broadcast/propagated internal-uncer-
tainty estimates (e.g., using one-hop or multihop neighbor discovery mechanisms) and, hence, 
will be affected by e2e network latency and information loss. Information loss can be substan-
tial and is attributed to packet losses caused by channel unreliability due to multipath, fading, 
and ambient noise.

Inertial Navigation System (INS): A self-contained navigation technique in which measurements 
provided by accelerometers and gyroscopes are used to track the position and orientation 
of an object relative to a known starting point, orientation and velocity. Inertial measure-
ment units (IMUs) typically contain three orthogonal rate-gyroscopes and three orthogo-
nal accelerometers, measuring angular velocity and linear acceleration respectively. By 
processing signals from these devices it is possible to track the position and orientation of a 
device. It is used in a wide range of applications such as the navigation of aircraft, missiles, 
spacecraft, submarines, and ships.

Information Entropy: A measure of the uncertainty associated with a random variable. It usually refers 
to the Shannon entropy (or continuous entropy), which quantifies the expected value of the 
information contained in a discrete random variable (or continues random variable).

Internal Uncertainty: The position uncertainty associated with a particular entity/node (such as an 
AUV) as seen by itself. Many approaches such as those using Kalman filter (KF) have been 
used to estimate this uncertainty assuming that the variables to be estimated have linear 
relationships between each other and that noise is additive and Gaussian. When the linearity 
assumption does not hold, there is no guarantee of optimality and nonlinear filters such as the 
extended or unscented KF are used.

Kalman Filter (KF): An algorithm in control theory introduced by Kalman (1960). It operates recur-
sively on streams of noisy input data to produce a statistically optimal estimate of the underly-
ing linear (or nearly linear) system state.

Localization Error: The distance between the actual and the estimated AUV position. It measures the 
accuracy of the localization algorithm.

Localization Overhead: The communication overhead used for localization. This may include the posi-
tions of other nodes, the time-stamps to measure the round-trip time, or information about 
the time of arrival (ToA), time difference of arrival (TDoA), received-signal-strength (RSS), or 
angle of arrival (AoA) for distance measurement.

Long Baseline (LBL): One type of underwater acoustic positioning systems. It requires transponders 
deployed at fixed positions on the sea floor. Localization of a node is done by estimating the 
distances of this node to the transponders on the sea floor (i.e., acoustically measuring the round-
trip time from this node to the transponders). The LBL technique can obtain very high position-
ing accuracy and position stability that is independent of water depth (generally better than 1-m 
or a few centimeters accuracy). It generally offer better accuracy than the short baseline systems.
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MultiPath Propagation: The propagation phenomenon that results in signals (radio or acoustic) reach-
ing the receiver by two or more paths. Causes of multipath include reflection and refraction, 
and reflection from boundaries.

Propeller-Driven Vehicles (PDVs): One class of AUVs that are driven by propeller(s). As the propul-
sion system consumes a lot of energy, the lifespan and operation coverage are limited due to 
the limited battery capacity. In general, PDVs have a life span ranging from several hours to a 
few days and can traverse distances of several hundred kilometers. The main benefit of using 
PDVs is that they can cover long distance in a short time (due to the high speed brought by 
the propulsion system). In addition, they generally have high maneuverability as the onboard 
computer can change the course or turn in time.

Simultaneous Localization and Mapping (SLAM): A technique used by robots and autonomous vehi-
cles to update a map within a known environment (with a priori knowledge from a given 
map) while at the same time estimating their current location, or to build up a map within an 
unknown environment (without a priori knowledge).

Short Baseline (SBL): One of the major types of underwater acoustic positioning systems. In SBL sys-
tems, position estimate is determined by measuring the vehicle’s distance from three or more 
transponders that are, for example, lowered over the side of the surface vessel. The positioning 
accuracy of SBL improves with transducer spacing. When deployed on larger vessels or a dock, 
the SBL system can achieve a precision and position robustness that is similar to that of the 
LBL systems, making the system suitable for high-accuracy survey work.

Underwater Acoustic Sensor Networks: Networks of underwater sensors and vehicles that that inter-
act to collect data and perform tasks in a collaborative manner underwater. They are applied 
in a broad range of applications, including environmental monitoring, undersea exploration, 
disaster prevention, assisted navigation and tactical surveillance.

Underwater Gliders: Another class of AUVs that are not driven by propeller. For propulsion, they 
change their buoyancy in a small amount using a pump and rely on wings to convert vertical 
velocity into horizontal motion as they rise and fall through the ocean, forming a sawtooth 
trajectory. As a result, in contrast to PDVs, gliders spend very small amount of energy in pro-
pulsion and hence they can operate over long periods of time (weeks or months), even though 
they are not as fast as PDVs. They travel at a fairly constant horizontal speed, typically 0.25 m/s 
[1]. The impressive operation time and energy efficiency of these gliders make them a popular 
choice for oceanographic researchers.

Underwater Localization: The process to determine the 3D position of a sensor, network node, or vehi-
cle underwater. Many localization schemes have been proposed, which can be categorized into 
range-based schemes and range-free schemes. Range-based schemes use different methods 
to estimate the distance between nodes and then determine the positions of the nodes. On 
the other hand, range-free schemes do not use range information to estimate positions of the 
nodes. Dead reckoning, for example, is such a scheme that relies on velocity measurement to 
estimate the position.
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50.1  Introduction

The Semantic Web, as an interdisciplinary research field, arose out of the desire to enhance the World 
Wide Web in such a way that interoperability and integration of multiauthored, multithematic, and 
multiperspective information and services could be realized seamlessly and on-the-fly [8,14]. Thus, the 
Semantic Web is concerned with developing methods for information creation, annotation, retrieval, 
reuse, and integration. It draws from many disciplines, including knowledge representation and reason-
ing in artificial intelligence, databases, machine learning, natural language processing, software engi-
neering, information visualization, and knowledge management [39,40].

Semantic (Web) technologies are under substantial investigation in many disciplines where informa-
tion reuse and integration on the web promises significant added value, for example, in the life sciences, 
in geographic information science, digital humanities research, for data infrastructures and web ser-
vices, as well as in web publishing. At the same time, semantic technologies are also being picked up to 
enhance solutions in application areas that are not primarily targeting the World Wide Web but have 
to access similar challenges, such as enterprise information integration, intelligence data analysis, and 
expert systems.

The Semantic Web spans from foundational disciplines to application areas. In terms of size and 
impact of its scientific community, amount of available project funding, and industrial impact, it has 
emerged as a major field within computer science during the last decade.

50.2  Underlying Principles

As the Semantic Web is driven by an application perspective, namely, to improve information retrieval 
beyond simple keyword search and foster semantic interoperability on the web, there is a wide variety 
of proposed and employed methods and principles which differ substantially and are under continuous 
discussion concerning their suitability for achieving the Semantic Web vision.
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Nevertheless, some approaches have become well established and widely accepted. Probably the most 
commonly accepted principle is the idea of endowing information on the web with metadata that shall 
convey the meaning (or semantics) of the information by further describing (or annotating) it, and thus 
enable information retrieval, reuse, and integration. Shared schemas that formally specify the conceptu-
alizations underlying a certain application area or information community are called ontologies. In the 
light of this approach, the development of suitable languages for representing ontologies has been, and 
still is, a key issue for Semantic Web research.

50.2.1  Languages for Representing Knowledge on the Web

Formal languages that support the representing of information semantics are commonly called 
ontology languages, and among the many proposals for such languages that can be found in the 
literature, those that have become recommended standards by the World Wide Web Consortium* 
(W3C) are of primary importance; namely, the Resource Description Framework RDF [31], the web 
Ontology Language OWL [22,32], and the Rule Interchange Format RIF [10,11]. Syntactically, they 
are based on XML [12], although their underlying data models are significantly different. During 
the last years other serializations have gained popularity, for example Notation3 [7] and Turtle [35] 
for representing RDF graphs. Historically, all ontology languages can be traced back to traditions in 
the field of knowledge representation and reasoning [23]. We briefly describe each of these languages 
in turn.

The Resource Description Framework (RDF) is essentially a language for representing triples of the 
form subject predicate object, where each of the entries is a uniform resource identifier (URI) 
for web resources. Predicates are usually also called properties. An object of one triple may be the 
subject of another triple and so forth. An example for such triples would be

	

ex:HoratioNelson ex:diedIn ex:BattleOfTrafalgar

ex:BattleO

and

ffTrafalgar ex:during ex:NapoleonicWars

where ex: is a namespace identifier so that ex:HoratioNelson expands to a proper URI like 
http://www.example.org/HoratioNelson. The RDF specification furthermore includes 
pre-defined vocabulary, the meaning of which is defined by means of a formal semantics, described 
further later. The most important examples for this are rdf:type, rdfs:subClassOf, and 
rdfs:subPropertyOf, where rdf, respectively rdfs, are used as namespace identifiers for the 
pre-defined namespaces of RDF and RDF Schema, respectively. In fact, RDF Schema is part of the RDF 
specification, but has been given a separate name to indicate that it has additional expressive features, 
that is, a richer predefined vocabulary. The informal meaning of this vocabulary examples is as follows. 
A triple such as

	 ex:BattleOfTrafalgar rdf:type ex:NavalBattle

indicates that the individual event ex:BattleOfTrafalgar is an instance of the class 
ex:NavalBattle and is interpreted as set membership. A triple such as

	 ex:NavalBattle rdfs:subClassOf ex:Battle

*	 http://www.w3.org/
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indicates that every instance of the class ex:NavalBattle is also an instance of the class ex:Battle. 
A triple such as

	 ex:diedIn rdfs:subPropertyOf ex:participatedIN

indicates that, whenever some a is in a ex:diedIn-relationship to some b (e.g., because a triple a 
ex:diedIn b has been specified), then a and b are also in ex:participatedIn-relationship.

An RDF document now represents, essentially, a finite set of such triples. It is common practice to 
think of such a set as representing a finite labeled graph, where each triple gives rise to two vertices 
(subject and object) and an edge (the predicate). The labels of such subject–predicate–object triples are 
URIs. Note, however, that it is possible that a URI occurring as a predicate (i.e., an edge) also occurs as 
a subject or object (i.e., as a vertex) in a different triple. This means that edges can at the same time be 
vertices, thus breaking what would commonly be considered a graph structure. The W3C recommended 
standard SPARQL* [37] serves as a language for querying RDF triples that are often stored in a so-called 
triplestore. It is currently undergoing a revision [18], which is expected to make SPARQL also useful for 
the other ontology languages introduced later.

The Web Ontology Language (OWL) has been developed for representing knowledge, that is 
more complex than what can be represented in RDF. In particular, OWL provides predefined vocab-
ulary to describe complex relationships between classes. For example, in OWL, we can specify that 
some class is the union (logically speaking, the disjunction) or the intersection (logically speaking, 
the conjunction) of two (or more) other classes. Class union and intersection are two examples of 
class constructors that OWL provides. Others also involve properties or even URIs that stand for 
individuals (which should be thought of as instances of classes), such that complex relationships like 
Cape Trafalgar is a headland that witnessed at least one battle, or Every naval battle has (among other 
things) two or more involved parties, at least one location, a time span during which it took place, and 
a reason for engaging in it can be expressed. Conceptually speaking, OWL is essentially a fragment 
of first-order predicate logic with equality and can be identified as a so-called description logic [6].

The OWL standard defines a number of variants that differ in sophistication and anticipated use 
cases. OWL EL, OWL QL, and OWL RL correspond to relatively small description logics for which 
reasoning algorithms (see Section 50.2.2) are relatively easy to implement. The larger OWL DL encom-
passes the former three and corresponds to a very expressive description logic called SROIQ(D), 
while OWL Full is the most general variant and encompasses both OWL DL and RDF—but it is not a 
description logic, and usually attempts are made to remain within smaller fragments when modeling 
ontologies.

The Rule Interchange Format (RIF) follows a different paradigm than OWL by addressing knowl-
edge modeling by means of rules as those used in logic programming, Datalog, and other rule-based 
paradigms. Its main purpose is to facilitate the interchange of rules between applications, but it also 
constitutes a family of knowledge representation languages in its own right. In particular, RIF-Core 
corresponds to Datalog, while RIF-BLD (from Basic Logic Dialect) corresponds to Horn logic (essentially, 
definite logic programs). Rule paradigms essentially cater for the expression of if-then type relationships 
such as If two parties agree on a cease-fire, then a combat operation started by one of these parties consti-
tutes a violation of the agreement. Rules in the sense of RIF-Core or RIF-BLD also correspond to certain 
fragments of first-order predicate logic [24].

*	 “SPARQL” is a recursive acronym that stands for “SPARQL Protocol and RDF Query Language.”
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50.2.2  Formal Semantics

Ontology languages can be understood as vocabulary specification languages in the sense that they 
can be used to define relationships of vocabulary terms related to a domain of interest. For example, 
they could be used to define a set of vocabulary terms describing spatial classes and relationships, 
such as Headland, Coastal Landform, Erosion, or contributesTo. Furthermore, terms can be asso-
ciated via relations to each other, for example, in a taxonomy format: Headland is a subclass of 
Coastal Landform, which in turn is a subclass of Landform. More complicated relationships are 
also expressible, such as “every land form has at least one event that contributed to its creation,” 
which, for instance, relates the terms Erosion and contributesTo to Headland, without saying that 
there is only one erosion per headland or that erosions are the only kind of events that are in a con-
tributesTo relation to headlands. Note how we exploit the fact that erosions are subclasses of events 
and headlands are landforms. The exact kinds of relationships that are expressible depend on the 
ontology language chosen for the representation. Such vocabulary definitions are often referred 
to as terminological or schema knowledge. In the context of OWL, a set of such definitions is often 
referred to as a TBox.

Ontology languages furthermore allow for the expression of assertional knowledge or facts (often 
called ABox statements in the context of OWL). This refers to statements involving instances of classes, 
such as “Cape Trafalgar is a headland” or “Nelson is a Person.”

Each of the W3C ontology languages presented in Section 50.2.1 comes endowed with a so-called 
formal semantics, which is described in model-theoretic terms borrowed from first-order predicate logic 
[19,34]. This formal semantics describes in mathematical terms how to draw valid logical conclusions 
from an ontology. For example, if Headland is specified as a subclass of Coastal Landform, and the ontol-
ogy furthermore specifies that “every landform was shaped by at least one event,” then one such logical 
consequence would be that “every headland was shaped by at least one event.” While this example may 
seem obvious, in more complex cases it is often difficult to decide intuitively whether a statement is a 
logical consequence of an ontology. In these cases, the formal semantics serves as a formal specification 
for the valid logical consequences, and it is in this sense in which formal semantics provides a “meaning” 
to ontologies.

Logical consequences can be understood as knowledge that is implicit in an ontology. The for-
mal semantics states that this implicit knowledge constitutes things that are necessarily true, given 
the ontology. As such, formal semantics enables interoperability, since it describes consequences 
which can be drawn from combining previously separated pieces of knowledge. Formal semantics 
can also be used in various ways when creating ontologies. For example, if an ontology engineer 
observes that her ontology has some logical consequences which seem to be undesirable from an 
application perspective, then this is an indication that parts of the ontology may have to be cor-
rected or revised.

50.2.3  Key Issues in Realizing the Semantic Web Vision

A standard template to using ontology languages would thus be as follows. Entities are represented 
on the web using URIs, for example, Battle of Trafalgar could be represented by a URI such as 
http://example.org/BattleOfTrafalgar and the Napoleonic Wars by http://example.
org/NapoleonicWars. Likewise, vocabulary elements are represented by URIs, such as http://
example.org/during or http://example.org/participatedIn. In a background ontol-
ogy, terminological information could then express, for example, that “during” is a transitive relation. 
Now consider, for example, the situation where metadata in a historical knowledge base is provided 
along with the human-readable content, which states that the Battle of Trafalgar took place during the 
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Napoleonic Wars, while another, more generic web portal lists facts about historic periods, including 
the fact that the Napoleonic Wars took place during the age of the Industrial Revolution. By collecting 
all this information, for example, using a Semantic Web crawler, this information could be combined, 
and due to the transitivity of “during” we would be able to also obtain the implicit knowledge, through 
logical deduction, that the Battle of Trafalgar took place during the Industrial Revolution. Even more, by 
adding semantics to the participatesIn relation discussed before, we could infer that Nelson lived during 
the Industrial Revolution.

The example just given indicates how Semantic Web technologies can in principle be used for 
information sharing, integration, and reuse across knowledge bases. However, in order to cast this 
idea into practical approaches, several obstacles need to be overcome. We list some of the most 
important ones:

•	 Different websites and knowledge bases may use different URIs for identifying entities on 
the Semantic Web. For information integration, we need to be able to identify these so-called 
co-references.

•	 Different websites may use different background ontologies. For information integration, these 
different ontologies need to be understood in relation to each other and formally related using 
suitable formats, preferably by using ontology languages or derivatives thereof. This issue is 
known as ontology alignment.

•	 Information on the web may be semantically heterogeneous. For example, on the instance level, 
different sources may specify other start and end dates for historical periods and, thus, may not 
agree whether the Napoleonic Wars also fall into the period known as Age of Enlightenment. On 
the schema level, the meaning assigned to terms such as Headland, Erosion, or NavalBattle may 
differ to a degree where they may become incompatible. Such issues are addressed by semantic 
mediation and translation research.

•	 Who is going to endow information on the web with metadata? Can we automate or partly auto-
mate this process using data mining or machine learning techniques? What are good interfaces 
and tools for developers and domain experts to support the creation of metadata?

•	 Algorithms for deducing logical consequences from ontologies are usually very dependent on 
input which constitutes ontologies of very high modeling quality. The creation of ontologies of 
such high quality can currently not be automated, and their creation usually requires experts in 
both ontology modeling and in the application domain under consideration. Consequently, their 
creation and maintenance can be very expensive. The creation of methods, workflows, and tools 
to support ontology modeling (and any other part of the ontology lifecycle) is, thus, of utmost 
importance for the development of the field and its applications.

•	 How can we deal with evolving information, for example, when data changes or is revised, or if 
vocabulary terms change their meaning over time? How can we deal with uncertainties or noise 
in metadata, which seem to be unavoidable in many realistic settings?

50.2.4  Linked Data

Linking Data* [9] is a community effort that started in 2007 and is supported by the W3C. Its declared 
goal is to bootstrap a global graph of interlinked data called the Web of Data by converting existing 
datasets into the format of ontology languages, and interlinking them with meaningful relationships. 
Linked Data has been a key driver for research and development in the Semantic Web since its inception, 

*	 http://linkeddata.org/
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and has in particular created substantial interest in the industry and governments around the world. 
This Web of Data is currently growing rapidly. As of 2011, it had an estimated size of about 32 billion 
RDF triples, with contributions coming increasingly from industry and from public sector bodies such 
as governments and libraries.

In its current form, Linked Data contains mainly assertional knowledge expressed in RDF, and there 
are only very few light-weight guiding principles for its creation. Methods and tools for making use of 
Linked Data, and the question how to advance from Linked Data toward the more general Semantic 
Web vision, are among the most prominent current research questions. Similarly, ontologies that have 
been developed to annotate and interlink these datasets are often light-weight to a degree where they fail 
to restrict the interpretation of terms toward their intended meaning [25].

50.3  Impact on Practice

In order to assess the impact of the Semantic Web field in practice, it is important to realize that 
Semantic Web technologies can also be applied in contexts other than the World Wide Web. They like-
wise apply to (closed) intranets, but also to many other settings where information creation, retrieval, 
reuse, and integration are of importance. Typical examples include enterprise information integration 
and knowledge management systems. In many other cases, for example, search engines, ontologies, 
and Semantic Web technologies are used in the backend, and, while of major importance, are not vis-
ible to the end users.

Indeed, early adoption of Semantic Web technologies in nonweb areas can be traced back to at least 
the first years of the twenty-first century, when the first spin-off companies left the research realm 
and applied their methods to enable industrial applications. In the next few years, industry interest 
kept growing, but slowly, and at the same time other research disciplines that rely on information 
management and integration adopted Semantic Web technologies for their purposes. A leading role 
in this latter development was taken by the life sciences, in particular related to health care and 
bioinformatics.

Usage of Semantic Web technologies on the web, however, hardly happened in these years, apart from 
use-case studies and prototypes. One prominent exception was Semantic MediaWiki* [30], a semantic 
enhancement of the MediaWiki software that underlies Wikipedia.† It was presented in 2006 and very 
quickly found substantial uptake with thousands of known installations worldwide. Indeed, efforts are 
currently under way to customize the extension for the use in Wikipedia.‡

Since 2007, and substantially driven by the advent of Linked Data, industrial uptake is rising signifi-
cantly, both on and off the web. At the time of this writing,§ Semantic Web technologies have started 
to deeply penetrate information technologies and can be expected to become part of the mainstream 
arsenal for application developers in the near future. This adoption of Semantic Web technologies does 
not necessarily mean the use of the exact standards described in Section 50.2, but rather the adherence to 
the general principles of using machine-readable and understandable metadata for information sharing, 
retrieval, and integration.

Adoption in practice of Semantic Web technologies is, to date, often restricted to the use of simple 
metadata, and in particular the systematic use of formal semantics is currently only possible in particu-
lar application areas and settings, since stronger solutions for some of the key issues listed in Section 
50.2.3 need to be developed first (see also Section 50.4).

*	 http://semantic-mediawiki.org/
†	 http://www.wikipedia.org/
‡	 http://meta.wikimedia.org/wiki/New_Wikidata
§	 August 2012.
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In the following, we list some of the most visible recent achievements of Semantic Web technologies 
with respect to practical applications:

•	 The need for meta-modeling has recently been picked up by some of the most prominent compa-
nies on the web. Facebook’s Open Graph protocol* is a prominent example, as is schema.org,† a 
joint effort by Bing, Google, and Yahoo! for improving web search. RDF versions are endorsed by 
these companies, and the schema.org ontology is officially available in OWL/RDF.‡

•	 In February 2011, the Watson system by IBM [15] made international headlines for beating the 
best humans in the quiz show Jeopardy!.§ The performance is already being considered as a 
milestone in the development of artificial intelligence techniques related to general question 
answering. Semantic Web technologies have been one of the key ingredients in Watson’s design.¶

•	 A significant number of very prominent websites are powered by Semantic Web technologies, 
including the New York Times,** Thomson Reuters,†† BBC [36], and Google’s Freebase, as well as 
sites using technology such as Yahoo! SearchMonkey [33], or Drupal 7‡‡ [13].

•	 The speech interpretation and recognition interface Siri launched by Apple in 2011 as an intel-
ligent personal assistant for the new generation of IPhone smartphones heavily draws from work 
on ontologies, knowledge representation, and reasoning [17].

•	 Oracle Database 11g supports OWL.§§

•	 Recently, The Wall Street Journal ran an article¶¶ announcing that Google is in the progress of 
enhancing its web search using Semantic Web technologies.

•	 The International Classification of Diseases, ICD, is the international standard manual for clas-
sifying diseases, endorsed by the World Health Organization and in use worldwide. It is currently 
revised, and ICD-11 (the 11th revision) is scheduled to appear in 2015. The revision is driven by a 
collaborative platform using OWL as underlying technology [41].

•	 Many governments and large companies now publish a plethora of governmental and other infor-
mation as Linked Data, with England and the United States being early adopters.***

50.4 R esearch Issues

Currently, the Semantic Web field is mainly driven by developments regarding Linked Data (see Section 
50.2.4). The amount of information available as Linked Data has shown exponential growth since its 
inception, and there are no indications that this will slow down soon. The Linked Data cloud indeed 
serves as an interlinked data source that is available in form of readily processable syntax (namely, 
RDF), and as such has the potential for widespread usage in data-intensive applications.

However, while it is certainly very helpful that Linked Data is available in RDF, there are very few 
general principles that would guide its creation.††† Consequently, Linked Data still suffers from many 

*	 http://ogp.me/
†	 http://schema.org/
‡	 http://schema.org/docs/schemaorg.owl
§	 http://www.jeopardy.com/
¶	 http://semanticweb.com/game-show-circuit-was-just-a-first-step-for-ibms-watson-and-deep-qa_b20431
**	 http://www.nytimes.com/, see also http://data.nytimes.com/
††	 http://www.opencalais.com/
‡‡	 http://semantic-drupal.com/
§§	 http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
¶¶	 http://online.wsj.com/article/SB10001424052702304459804577281842851136290.html
***	 See http://www.data.gov/semantic and http://data.gov.uk/linked-data/
†††	 This is, in principle, a good thing, and, in fact, is in line with the “bottom-up” nature of the World Wide Web itself.
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heterogeneity challenges which the Semantic Web field has initially set out to overcome [25,27]. In 
reference to the issues identified in Section 50.2.3, we note that co-reference identification is still a 
central and unsolved issue, even for Linked Data [42]. Likewise, efficiently addressing semantic het-
erogeneity in Linked Data, for example, by means of ontology alignment, has only recently started to 
be studied [26], in particular for the difficult quest of providing question answering systems based on 
Linked Data [29]. The development of special techniques for dealing with evolving Linked Data is also 
in very early stages.

Thus, there currently is a significant disconnect between the factually deployed Linked Data on the 
web, and the already established research results regarding the use of Semantic Web technologies and 
ontology languages. It appears to be the foremost current research question, how to enable these strongly 
and formally semantic approaches for use on and with Linked Data. And this quest is inherently tied 
with the current lack of useful schema knowledge in Linked Data [25].

The question, how Linked Data can indeed be evolved into a Semantic Web in the stronger sense of 
the term, is indeed very controversially discussed. And while it is certainly also a question about good 
underlying conceptual principles, it is foremost also a question of practicability, of finding suitable next 
steps for development that can find significant adoption in practice.

To address the relative lack of schema knowledge in Linked Data, a foremost requirement is the avail-
ability of strong tool support that makes Semantic Web technologies more easily accessible for practitio-
ners. This includes the automated, semi-automated, or manual generation of metadata, and ontologies, 
powerful ontology alignment systems, lifecycle support for metadata and ontologies such as versioning 
approaches and revision processes, and tools that enable an easier reuse of metadata and ontologies in 
applications for which they were not originally developed. In all these aspects, the research community 
has provided significant research advances which nevertheless remain to be further strengthened before 
they can find widespread adoption.

At the same time, a significant body of best practices guidelines need to be developed, which includes 
ontology creation and lifecycle aspects, but also methods and processes for making use of Semantic Web 
technologies. Of growing importance in this respect is the development of useful ontology design pat-
terns for ontology modeling [16].

Eventually, in order to meet the goals of the Semantic Web vision, strongly semantic approaches—
including ontology reasoning—will have to be embraced and brought to bear on realistic web data. In 
order for this to happen, researchers need to find clear answers on how to establish semantic interoper-
ability without giving up on semantic heterogeneity [28], to scalability issues of reasoning algorithms, 
and to the question how to deal with metadata which arises from the strongly collaborative web without 
central control, that is, metadata which substantially varies in modeling quality [21,25].

50.5  Summary

The Semantic Web is an interdisciplinary research field that aims at augmenting the existing World 
Wide Web with machine-readable and understandable metadata such that information on the web 
becomes available for processing in intelligent systems. In particular, it shall establish solutions for 
seamless information creation, retrieval, reuse, and integration on the web.

The key underlying technology is the use of so-called ontology languages for representing metadata 
information. There exist several such languages endorsed by the World Wide Web Consortium. They 
support formal semantics that enables automated reasoning using deductive logical methods.

Industry is increasingly adopting Semantic Web technologies, and this also includes adoption for 
purposes other than for information on the World Wide Web. One of the driving recent developments 
is the publishing of significant amounts of data in ontology language formats on the World Wide Web—
this information is referred to as Linked Data.
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Despite its success, many core issues still require further in-depth, and partially foundational, 
research, such as the systematic use of deep semantics on the web by means of automated reasoning 
techniques.

Key Terms

Annotation: The attaching of metadata information to entities on the web, such as web pages, text, 
text snippets, words or terms, images, tables, etc. These annotations are usually not visible in 
normal web browsers, but can be retrieved from the source code of the web page for further 
processing. For example, a picture could bear the annotation “Barack Obama,” indicating that 
it is a picture of Barack Obama.

Co-reference: This occurs when two different identifiers are used for one real-world entity. The iden-
tification of co-references in ontological data on the Semantic Web is a challenging research 
problem. The term is borrowed from linguistics.

Datalog: A rule-based knowledge representation language based on function-free Horn logic. It is used 
in deductive databases.

Description logics: A family of closely related knowledge representation languages. Traditionally, they 
are strongly based on first-order predicate logic from which they inherit their open-world 
semantics. Description logics are usually decidable.

Horn logic: A fragment of first-order predicate logic that can be expressed in the form of rules. It is the 
basis for the logic programming paradigm, and thus also for the logic programming language 
Prolog.

Linked Data: Data on the World Wide Web that is represented using RDF, following a few simple prin-
ciples. These datasets are strongly interlinked, thus forming a network of knowledge, often 
referred to as the Web of Data. If the data are available under an open license, it is called Linked 
Open Data, but often this distinction is not made in the literature. Linked Data is considered a 
major milestone in the development of the Semantic Web.

Logic programming: A knowledge representation and programming paradigm usually based on Horn 
logic with some modifications and extensions. In particular, it uses a closed-world paradigm. 
Prolog is the most widely known logic programming language.

Metadata: Data that provides information for other data, often through the process of annotation. 
Metadata can be of many different forms; in the simplest case it consists only of keywords 
(often called tags), but in a Semantic Web context metadata is usually expressed using some 
ontology language.

Ontology: A term borrowed from philosophy. In modern computer science, an ontology is a knowledge 
base that is expressed by describing relationships between concepts in a given domain of inter-
est. The relationships are described using knowledge representation languages—then called 
ontology languages—which are usually derived from first-order predicate logic or from the 
logic programming paradigm.

Ontology alignment: The establishing of formal relationships between the concepts and other terms 
in two different ontologies. This can be done manually, but there is also a significant area of 
research that develops automated ontology alignment systems.

Ontology design patterns: Schemas for sets of concepts and relations occurring frequently in ontology 
modeling. They are typically expressed in some ontology language.

Semantics: Sematics, more precisely formal semantics, usually refers to the notion of model-theoretic 
semantics in first-order predicate logic, adapted for an ontology language. The main purpose 
of such a formal semantics is to define a notion of logical consequence. In this sense, a formal 
semantics is an implicit specification for all the logical consequences that can be derived 
from an ontology or a knowledge base.
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URI: An abbreviation for uniform resource identifier. URIs are used to represent resources on the World 
Wide Web, for example, websites. It is not required that an entity identified by an URI can in 
fact be located or accessed on the World Wide Web.

Web of Data: See Linked Data.
World Wide Web Consortium W3C: The main international organization that develops standards for 

the World Wide Web.
XML: XML stands for Extensible Markup Language. It is a text-based format for the representation of 

hierarchically structured data. XML is ubiquitous on the World Wide Web, and often used for 
the interchange of data on the World Wide Web.
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Further Information

Semantic Web as a field of research and applications is still under rapid development. Textbooks on the 
topic thus tend to be outdated rather quickly, unless they focus on fundamental issues that already find a 
broad consensus in the community. We recommend the following three books as thorough introductions: 
Foundations of Semantic Web Technologies [23] by Hitzler, Krötzsch, and Rudolph; Semantic Web for the 
Working Ontologist [1] by Allemang and Hendler; and Semantic Web Programming [20] by Hebeler, Fisher, 
Blace, Perez-Lopez and Dean. The first mentioned book [23] focuses on foundations, in particular on a thor-
ough treatment of the standardized ontology languages, including their formal semantics. The other two 
books [1,20] are written from a more practical perspective—they convey more hands-on knowledge, but are 
less comprehensive in the formal foundations. All three books are widely acclaimed as excellent introductions.

The Handbook on Ontologies [39] edited by Staab and Studer is a popular resource that introduces 
many aspects of Semantic Web technologies. The chapters are written by well-known experts in the 
field. The book is necessarily much less systematic and thorough than a textbook, but its coverage is 
much wider and includes many topics that are of central importance for the Semantic Web, but that have 
not been developed far enough yet to be included in a standard textbook.

Primary resources for state-of-the-art developments in the field are the major journals and confer-
ences in the area. Many journals in computer science and adjacent fields in fact publish papers related to 
Semantic Web, but there are also some prominent ones that are dedicated exclusively to the field. These 
include the Journal of Web Semantics,* the Semantic Web journal,† and the International Journal on 
Semantic Web and Information Systems.‡ Major conferences in the area are the International Semantic 
Web Conference§ (see, e.g., [4,5]) and the Extended Semantic Web Conference¶ (see, e.g., [2,3]), which 
attract primarily researchers, and the Semantic Technology Conference** which targets industry. Many 
other major conferences also publish research papers in Semantic Web, for example, the comprehensive 
World Wide Web Conference†† (see, e.g., [38]).

*	 http://www.websemanticsjournal.org/
†	 http://www.semantic-web-journal.net/
‡	 http://www.ijswis.org/
§	 http://swsa.semanticweb.org/
¶	 http://eswc-conferences.org/
**	 See http://semanticweb.com/
††	 http://wwwconference.org/
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51.1  Introduction

The existence of an abundance of dynamic and heterogeneous information on the web has offered 
many new opportunities for users to advance their knowledge discovery. As the amount of information 
on the web has increased substantially in the past decade, it is difficult for users to find information 
through a simple sequential inspection of web pages or recall previously accessed URLs. Consequently, 
the service from a search engine becomes indispensable for users to navigate around the web in an 
effective manner.

General web search engines provide the most popular way of identifying relevant information on the 
web by taking a horizontal and exhaustive view of the world. Vertical search engines focus on specific 
segments of content and offer great benefits for finding information on selected topics. Search engine 
technology incorporates interdisciplinary concepts and techniques from multiple fields in computer 
science, which include computer systems, information retrieval, machine learning, and computer lin-
guistics. Understanding the computational basis of these technologies is important as search engine 
technologies have changed the way our society seeks out and interacts with information.

This chapter gives an overview of search techniques to find information on the web relevant to a 
user query. It describes how billions of web pages are crawled, processed, and ranked, and our experi-
ences in building Ask.com’s search engine with over 100 million North American users. Section 51.2 
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is an overview of search engine components and historical perspective of search engine development. 
Section 51.3 describes crawling and off-line processing techniques. Section 51.4 describes the online 
architecture and query-processing techniques. Section 51.5 explains ranking signals and algorithms. 
Section 51.6 discusses the metrics for evaluating a search engine. Finally, Section 51.7 concludes 
this chapter.

51.2  Search Engine Components and Historical Perspective

In general, a search engine consists of three main components as shown in Figure 51.1: a crawler, an 
off-line processing system to accumulate data and produce searchable index, and an online engine for 
real-time query handling. Their roles are summarized as follows:

•	 Crawling and data acquisition. A crawler discovers and adds the content of the web to the search 
engine’s data repository. Type of content gathered includes text pages, images, videos, and other 
types of content. Most crawlers find information by beginning at one page and then follow the 
outgoing URL links on that page. Therefore, if a page is not linked to from another page, this 
page may never be found by a search engine. In some cases, a search engine may acquire con-
tent through private data feeds from other companies. All of the information that a web crawler 
retrieves is stored in a data repository, which provides a foundation to build an online index 
searchable by users.

•	 The data repository and off-line processing. Some search engines have extremely large databases 
with billions of pages while others have comparatively smaller ones. A search engine may aggre-
gate results from its own database and from other search engines hosted in different locations to 
expand the database coverage. Off-line processing mainly takes a collection of pages and builds 
appropriate data structure for search. The off-line system also performs duplicate and spam detec-
tion and conducts additional data analysis to identify properties of a page as ranking signals.

•	 Online search engine and ranking. A search engine runs as a web service to answer queries from 
users. The query-processing system uses the index to find relevant documents and rank them. 
It generates a result page that contains top-ranked documents and serves this page to a user. As 
users interact with the search results, a search engine logs their browsing behavior and leverages 
such data for improving search quality.

Information retrieval researchers have studied document search for many years [1] before web search 
became popular in the early 1990s. An earlier system for locating Internet content was Gopher, 
used for file name lookup. One of the first “full-text” crawler-based search engines was WebCrawler, 
which came out in 1994. As the World Wide Web became popular, a number of search engines 
and portals offered search services, including AltaVista, Excite, Infoseek, Lycos, Inktomi, Northern 
Light, Yahoo!, and AOL.
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Online database
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Query
processing
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Search log
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FIGURE 51.1  Components of web search.
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In earlier 1999, Google’s search engine started to gain popularity with its new link-based ranking 
paradigm and a simple user interface. In 2002 and 2003, Yahoo! acquired Inktomi search and Overture, 
which owned AltaVista and All the Web, building its own search technology. Ask.com (formally called 
Ask Jeeves) acquired Teoma search in 2001 for providing search and question answering. Microsoft ini-
tially used search results from Inktomi and has gradually built its own engine: MSN search, Windows 
Live Search, Live Search, and Bing.

In Europe, Fast search was launched in 1999 to compete with Google and was acquired partially 
by Overture in 2003 and partially by Microsoft in 2007. In China, Baidu was started in 1999 and has 
become a dominating search engine. In Russia, Yandex search launched in 1998 and is currently domi-
nating, while in South Korea, Naver is a popular search engine launched in 2000.

Technology behind the major search engines has been seldom published because of fierce compe-
tition while some of their techniques have gradually appeared in patents and academic conferences. 
Academic conferences that cover more on search algorithms and data analysis include SIGIR, WWW, 
WSDM, and ECIR. Other related conferences for web data analysis include KDD, CIKM, SIGMOD, and 
VLDB. The system technology covering large-scale Internet systems and data platforms has appeared 
in various system conferences such as OSDI. Search engines have a major traffic impact to websites, 
and the search industry activity is closely watched by webmasters and various organizations including 
searchenginewatch.com. Recent textbooks that describe search algorithms and mining techniques can 
be found in [2–5].

There exist a number of open-source search engines and related data-processing tools available for 
search engine research and applications. The Apache Lucene/Solr package [6] is a Java-based search 
engine in which Lucene provides data indexing and full-text search capability while Solr provides a 
search user interface built on top of Lucene with additional support such as caching and replication 
management. Lemur [7] and Xapian [8] are open-source search engines with C++. Various open-source 
codes are available for underlying system support. Hadoop’s MapReduce [9] is a popular clustering 
package for parallel processing of off-line data. Apache HBase [10] and Cassandra [11] provide the key-
value data store support for accessing large datasets.

51.3  Crawling and Data Processing

51.3.1  Crawling

A web crawler is part of the search engine to gather data from the Internet; it can recognize and collect 
HTML pages and other types of documents including PDF, PowerPoint, Word, and Excel. It extracts 
text information from these documents through conversion software so that corresponding text infor-
mation is indexable and searchable. Figure 51.2a illustrates the architecture of a large-scale crawler we 
have developed in the past for discovering and downloading billions of web pages:

•	 The URL downloader fetches web pages following the hypertext transfer protocol (HTTP) proto-
col. Typically, a crawler uses a thread to handle an HTTP connection and maintains many con-
current threads to saturate the available download bandwidth. Since there can be a high latency 
in downloading a page from a site, a crawler machine can have a large number of HTTP requests 
outstanding. That increases system resource requirement as each machine needs to maintain 
information on all open connections.

•	 A DNS server resolves the IP address of URLs. Since there is a massive amount of DNS lookup of 
URL hosts, extra caching support can be useful.

•	 The URL extraction module parses downloaded pages and identifies the outgoing links. It may fil-
ter some of those URLs identified as low quality or duplicates. After filtering, it adds the extracted 
outgoing URLs to a URL queue. Since a crawler typically runs its service on a cluster of machines, 
extracted URLs from one machine may be distributed to URL queues in multiple machines as 
illustrated in Figure 51.2b.
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•	 The URL scheduling decides which URLs are to be visited in the next round of crawling. Given 
that websites have variable sizes, small sites can be crawled quickly while it takes a long time 
to visit a large site. A URL scheduler periodically analyzes the properties of the queued URLs, 
prioritizes them, and selects a subset of URLs to the URL download process, to accomplish the 
following goals: (1) large sites are crawled completely; (2) URLs are recrawled frequently to ensure 
freshness; (3) revisiting for recently crawled URLs are excluded to avoid the endless revisit of the 
same URLs; and (4) low-quality or duplicate pages are not crawled or crawled with a low priority.

•	 The URL property service maintains properties of URLs. There is a resource contention to accom-
plish these goals in parallel, and the URL scheduler uses properties of URLs such as the last 
successful crawling time and unsuccessful data fetch attempts to make a sound decision. Since 
there is a large number of data accesses in parallel at each second on each crawling machine 
and there are a large number of URLs to be crawled, accessing URL property information can 
become a crawling bottleneck. The design of an efficient data structure and crawler architecture 
is therefore crucial.

There are a number of factors that further complicate crawler management:

•	 Politeness. A website often hosts a large number of pages. To fetch these pages quickly, a crawler 
can occupy a significant amount of computing and bandwidth resource from this site, and this can 
affect the normal operation of such a site. To mitigate the negative impact on the site’s resources, a 
crawler must follow a politeness policy to limit its crawl rate. For instance, a crawler may not make 
more than one request to the same host at the same time, and possibly it should add a time delay 
between two consecutive requests to the same host.

•	 Robots exclusion protocol. A web administrator can exclude their pages from the index of a search 
engine by providing the /robots.txt file in the top directory of the website. This file specifies the 
visit restriction for a search engine’s crawler [12]. For example, a line with text “Disallow: /tmp/” 
in example.com/robots.txt means that visiting example.com/tmp is not allowed. When fetching 
a page from a site, a crawler must check the robots.txt from the corresponding web host. To avoid 
repeated access of the robot.txt file from the same host, a crawler may save a copy of such a file in 
its local cache system with a periodical update.

•	 Crawling abnormality. Some sites respond to a crawler’s request slowly or even fail to respond. 
Some sites may return wrong or broken results to a crawler. A crawler needs to be resilient to the 
failure or slowness of a website and be able to retry at a later time.

	   Another type of crawling abnormality is called crawling traps. In this case, a website keeps 
a crawler busy by dynamically feeding an infinite number of useless web pages. For example, 
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there can be an infinite number of calendar pages generated dynamically and accessible through 
“next day” button in a site. Such a trap can be detectable by site-oriented similar content analysis.

•	 Hidden web and sitemap. Crawlers from major search engines can effectively collect surface-level 
web pages, but there is a vast amount of hidden deep web information invisible to search engines. 
Any page that is not explicitly pointed by other web pages cannot be found by a crawler through 
hyperlink analysis. Dynamically generated pages that require HTML-form or Javascript submis-
sion are often invisible. Automatic form filling can explore deep web [13], and there is still a chal-
lenge to reach high accuracy or coverage. An alternative method is to use the sitemaps protocol 
[14], which enables webmasters to inform search engines about a list of pages that are available for 
crawling from their sites. A sitemap is an XML file that lists URLs for a site along with additional 
metadata about each URL. Thus, webmasters can advertise deep URLs, which are not even hyper-
linked from the surface web.

The freshness and content coverage of a data collection crawled are important for the quality of a search 
engine. The challenge a crawler faces is to discover newly created or updated pages on the web quickly. 
For known URLs, a crawler can revisit them frequently to detect if their content has been changed. The 
historical change frequency of a page and its site can guide how often a crawler should revisit this page. 
While crawling sites frequently can discover new pages, leveraging information published by a site such 
as RSS feeds can speed up this discovery process. An RSS feed is an XML-based file that provides a 
structured list of new pages added to a site. The RSS feeds are commonly associated with blogs and other 
information publishers. For example, CNN provides news RSS feeds under different categories. Amazon 
publishes RSS feeds on popular products with tags. There are additional signals that can be mined from 
the web to facilitate the discovery of new URLs, especially for hot or new topics. This includes the detec-
tion of new URLs that appear in news, blogs, search logs, and social network sites.

Earlier work that addresses parallel crawling and freshness appears in [15,16]. The order of crawling 
to fetch important pages under resource constraints was studied in [17]. A research crawler and related 
techniques were discussed in [18]. Focused crawling was addressed in [19] with content classification. 
A survey of crawling techniques appears in [20].

51.3.2  Off-Line Data Processing and Content Management

Off-line data processing for a search engine collects and parses web documents to produce a searchable 
index. The additional information collected in online database generation includes ranking features 
extracted from page links, anchor text, and user query log data. Content management organizes an 
online index with classification and partitioning; it also guides the crawling system to discover and 
refresh web documents. Some search engines have large databases with tens of billions of documents 
while others have comparatively smaller ones with a few hundred millions of pages, designed to handle 
a certain type of queries.

51.3.2.1  Document Parsing and Index Compression

Document parsing breaks apart the components of a document to form indexable tokens. Tokenization 
is straightforward for English documents while it is challenging for documents of other languages such 
as Chinese, Japanese, or Arabic. In those languages, words are not clearly delineated by white space. 
Natural language processing techniques can identify boundary of words with a good accuracy. A parser 
also detects the language of a document and its format because documents do not always clearly or 
accurately identify their language. Since documents do not always obey the desired format or syntax, a 
parser has to tolerate syntax errors as much as possible.

In tokenizing a document, there is an option to stem words and remove stop words. Stemming is 
the process for reducing inflected words to their base form. For example, a stemming algorithm [21,22] 
reduces the words “fishing,” “fished,” “fish,” and “fisher” to their root word “fish.” Stemming can produce 
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an improvement in ranking by matching more relevant documents while it can sometime cause a rel-
evance issue. For example, people search for “fishing” will be less interested in types of “fish.” Thus, 
stemming has to be applied conservatively, and one example is to restrict stemming and only derive 
plural forms for a selected set of keywords. Stemming is a language-specific technique, and some lan-
guages such as Chinese have no or little word variations while stemming for languages such as Arabic 
and Hebrew is more complex and difficult. Stop words are those words that contribute little on the topic 
of a document. The examples of stop words in English include “the” and “who.” Removing stop words 
explicitly from an index can impact search relevance because a stop word may carry a meaning in some 
cases. For example, “the who” is an English rock band. Typically a search engine indexes every word 
while incorporating removal of some stop words during query-time processing when appropriate.

Given a set of tokens (or called terms), a search engine normally represents a searchable database 
using a data structure called the inverted index, and a survey of inverted indexing can be found in [23]. 
An inverted index consists of a list of terms in the vocabulary of the data collection. For each term, the 
inverted index maintains a list of documents that contain such a term. This list of documents is often 
called a posting of the corresponding term.

For example, given two documents d1 = {a, b, c, a} and d2 = {c, e, c}, the inverted index is

	 a d b d c d d e d→ → → →{ }, { }, { , }, { }1 1 1 2 2

In addition to document identifications, a posting can store other information such as frequency of 
a term and positions of this term in each document. For example, the previous inverted index can be 
augmented as

	 a d b d c d d e d→ → → →{ , , ( , )}, { , , ( )}, { , , ( ), , , ( , )}, { ,1 1 1 2 22 1 4 1 1 1 3 2 1 3 11 1, ( )}

The meaning of the posting for term “a” is interpreted as follows. This term appears in document d1 with 
frequency 2 at positions 1 and 4.

The inverted index for a large web dataset takes a huge amount of space, and compression of the index 
data is necessary to enhance engine’s online performance and reduce hosting cost [24,25]. Typically 
document identifications in a posting are stored in an increasing order, and term positions of each docu-
ment are also arranged in an increasing order. To compress a sequence of these numbers in a posting, 
a transformation called delta encoding is applied first to represent these numbers using their difference 
gap. For example, given a list {23, 40, 104, 108, 200}, this list can be reformulated as {23, 17, 64, 4, 92}. The 
first number of this list is not changed. The second number is the gap between the second number and 
the first number. The average number in the reformulated list is much smaller than that in the original 
list. This motivation for using delta encoding is that compressing small numbers is easier.

The next step of compression is to represent these gaps using an encoding method. A bit-aligned 
encoding method is called Elias-γ [26], which encodes each number G using a pair of two numbers (b, r). 
They satisfy G = 2b + r and r = G mod 2b. Next, we discuss how to store the pair (b, r). The first number 
is stored as a unary code with b digits of 1s. The second number is stored as a standard binary number 
with b bits. Bit “0” is inserted to separate these two numbers. For instance, 17 = 24 + 1; the γ code for 
17 is 111100001. The leading 4 digits are all 1s, representing 24. Offset 0001 is found after the first 0 is 
encountered. In general, for each number G, this method costs 2 log G + 1 bits to encode. Thus, γ encod-
ing is only attractive to compress small numbers. To improve the effectiveness in compressing a larger 
number, the concept of δ encoding can be applied recursively to the first component b in the previous 
expression. Namely, G r= ++22b δ . This method is called Elias-δ method, which costs approximately 2 log 
log G + log G bits for each number G.

A bit-oriented encoding method has its weakness in performance because computer operations 
are relatively more efficient toward byte-oriented programs. A simple byte-aligned method is called 
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v-byte [27] that uses one byte to represent G if G < 128 and two bytes or more bytes for a bigger number. 
Seven bits of each byte store the content of G while 1 bit of such a byte indicates whether this byte is the 
last byte or not for the corresponding number. A comparison of compression algorithms can be found 
in [28,29].

51.3.3  Content Management

Content management plays the following roles in off-line data processing:

•	 Organize the vast amount of pages crawled to facilitate online search. For example, the online 
database is typically divided into content groups based on language and country. For each content 
group, there is a further division of content by tiers based on quality. Such a division also affects 
the crawling decision to prioritize on crawling targets and frequency.

•	 Perform in-depth analysis for better understanding of information represented in a document. 
Examples of such analysis are recognizing document title, section titles, and highlighted words 
that capture the meaning of a document with different weights; identifying the structure of a page 
and recognizing site menus, which do not contain primary material; and interpreting Javascript 
embedded in a page to capture the true content of the page.

•	 Collect additional content and ranking signals. While on-page text features are important for a 
search engine, critical ranking information can also be gathered from other sources. For example, 
user search log provides a feedback on how users interact with search results given their queries. 
There is a variety of special information available on the web, for instance, movie titles and show 
schedule. Such information can be organized for answering a class of queries or vertical search. 
For example, Ask.com has built a large database containing question–answer pairs extracted 
from the web and used this index for matching and answering live question queries.

An online database is often divided into multiple tiers and multiple partitions. One reason is that the 
capacity constraint of a data center often restricts the size of a database index that can be hosted. Another 
reason is the requirement for geographical data distribution. Commonly accessed content hosted close 
to users’ location in a targeted market can reduce the engine’s response time. In a multi-tier online 
database, the first tier usually contains frequently visited content of good quality. Even though there are 
tens of billions of pages available on the web, a query from a vast majority of users can be answered by 
using a small percentage of these pages. The lower tiers of an online database contain pages that are less 
likely to be used to answer queries. To partition content, one can exploit characteristics of pages such as 
reputation and the historical visit frequency.

Anti-spamming is an important task of content management to detect pages with malicious attempts 
to influence the outcome of ranking algorithms. For example, some websites present different content 
to a search engine’s crawler compared to what is presented to users’ web browsers. These websites dif-
ferentiate a crawler with a web browser based on the IP addresses or the user–agent header of the HTTP 
request. This spamming technique, called web cloaking, is often used by low-quality sites to deceive 
search engines. Other spamming tactics include link farms, invisible text with stuffed keywords, and 
exploitation through user-generated contention such as blogs. Automatic or semiautomatic techniques 
can be employed to identify spamming pages by examining content features, user browsing patterns, 
and hyperlink structure.

Search content management has adopted various classification techniques based on document fea-
tures. The supervised learning techniques [30] fit well for this purpose using a set of labeled data to train 
a classifier that can label future cases. The examples of automatic or semiautomatic classification tasks 
include language categorization (e.g., English vs. German), country classification (e.g., United States, 
United Kingdom, and Canada), and spam detection. Another use of classification is to aid online result 
ranking for intent matching or result diversification. Page segmentation was conducted in [31] to detect 
semantic content structure in a web page. While text features represent the important characteristics 
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of a web page, link structure among pages and feedback from a search log dataset also provide critical 
information in making classification decisions. Surveys of web page classification and text categoriza-
tion appear in [32,33]. A survey of related techniques can be found in [34].

51.3.3.1  Duplicate Elimination

A large number of pages crawled from the web have near-identical content. For example, several stud-
ies [35,36] indicate that there are over 30% of near duplicates in crawled pages. Search services need to 
return the most relevant answers to a query, and presenting identical or near-identical results leads to 
bad user experience. By removing duplicates, search result presentation would be more compact and 
save users’ time to browse results. Near duplicate detection can also assist low-quality page removal. For 
example, by identifying a set of spam pages with certain patterns, other pages that are similar to these 
pages are the candidates for being classified as spam pages.

There are two types of duplicates among web pages. The first type of duplicates is caused by page redi-
rection when one web page redirects to another, either through permanent or temporary HTTP redirect. 
Although the source and destination of redirection have identical contents, the crawler may visit them 
at different times and download different versions. Our experience is that up to 10% of duplicates in a 
large-scale database can be redirection-based. The second type is content-based when two web pages 
have near-identical information. This is measured by the percentage of content overlapping between the 
two pages. A popular way to model content similarity of two documents is to represent each document 
using shingles [37]. Let each document contain a sequence of terms, and each k-gram shingle contains 
k consecutive terms in this document. For example, let D = {a, b, c, e, f, g}, and its 2-gram shingle set is 
D2 = {ab, bc, ce, ef, fg}. Let Ak and Bk denote a set of k-gram shingle signatures derived from pages A and 
B, respectively. The Jaccard similarity of these two documents is
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An English web page on average has a few hundreds of words, and computing the Jaccard similarity of 
web pages is expensive when computation is conducted for every pair. The MinHash technique can be 
used to speed up with an approximation. The MinHash value with respect to a random permutation 
function R is
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It has been shown that Sim(A, B) value is the same as the probability that MinHash(Ak) = MinHash(Bk). 
Thus, Sim(A, B) can be approximated by using n random permutation functions and by computing the 
overlapping percentage of the corresponding n MinHash values.

In general duplicate removal can be conducted during online query processing or in an off-line 
processing stage. Removing redundant content in an off-line system requires a very high precision 
in duplicate judgment. Fast approximation algorithms [37–43] are often not sufficient to simultane-
ously deliver high precision and high recall. A combination of these algorithms with additional fea-
tures can improve precision (e.g., [44]). As a result, processing cost increases. Major search engine 
companies have often taken a compromised approach: while a relatively small percentage of dupli-
cates can be removed conservatively in the off-line process, a large portion of duplicates are kept in 
a live online database. During online query processing, duplicates are detected among top results 
matching a query, and only one result from duplicate pages is shown in the final search results. 
Such an approach simplifies off-line processing but increases the cost of online serving. To develop 
cost-conscious search applications, duplicates need to be removed in an off-line stage as much as 
possible [45].
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51.3.3.2  Distributed and Incremental Index Update

It is time consuming to process a large web data collection; this affects its freshness because data is 
continuously updated. Parallel processing using MapReduce [46] or other programming platforms can 
be used. Handling a large database from scratch still takes too much time, even in parallel on a large 
computer cluster. It is more effective to perform incremental update of the online database.

Figure 51.3 illustrates the architecture of a large-scale off-line system we have developed in the past 
for incremental processing of billions of web pages. The key service modules of this system include page 
repository, update manager, URL property, online content controller, indexer, link manager, and con-
tent analysis subsystem. Each of them is running on a cluster of machines:

•	 Once a set of crawled pages is received, the update manager consults with a URL property service 
and runs a quick classifier to determine whether these pages are new or have significant content 
update. If appropriate, these new or updated pages are routed to the online database controller, 
link manager, and content analysis manager for further data update.

•	 The online content controller manages the online partition structure. It decides when a new par-
tition should be added to the online service and notifies that some URLs in the existing online 
partitions are stale.

•	 The indexer module fetches pages of the desired partition to construct an inverted index; it creates 
a partition to include new or updated URLs. Noted that the same URLs in the existing partitions 
will be marked as stale.

•	 The link manager maintains hyperlinks among web pages and summarizes anchor text from 
incoming links to a document. The content analysis subsystem detects duplicates incrementally, 
and it conducts classification and other mining tasks.

Various underlying system support is incorporated for implementing the previous pipeline. That 
includes a middleware for managing continuously running services on a large cluster of machines, key-
value stores with fast disk I/0 [47] for page repository, high-throughput property services with a distrib-
uted hash table [48], and distributed message queuing for inter-component coordination.

The previous approach for incremental index has an advantage that online data management is sim-
plified: the modification to the existing partitions only needs to mark staleness when pages are updated. 
The online content controller makes a decision to remove an online partition when it contains too many 
stale URLs. Another approach for incremental index update is to merge the old index with new index 
[49]. The search system support for notification-based data updating is discussed in [50].
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FIGURE 51.3  Architecture of an off-line data-processing system with incremental update.
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51.4  Query Processing and Online Architecture

An online system of a search engine typically contains the following components:

	 1.	 Query processing. This step classifies a query and rewrites it for better matching of relevant results.
	 2.	 Document retrieval. That is to search the inverted index distributed in a cluster of machines and 

to collect relevant results.
	 3.	 Result ranking. Given a large number of matched relevant results, this step filters out low-quality 

results and ranks top results.
	 4.	 Snippet generation. This step provides a description for each URL to be shown in a search engine 

results page (SERP).
	 5.	 Result aggregation and displaying. Search results may be aggregated from multiple databases 

including the advertisement engine; this step merges these results and organizes them in a SERP.

51.4.1  Query Processing with Classification

Query processing classifies a query and rewrites it if needed with the goal of closely matching the 
searcher’s intent. Examples of query classification include detecting query language and user location 
and identify whether this query demands time-sensitive results or entity-oriented information such as a 
person, an organization, a movie, or a commercial product. The classification of a query helps the search 
engine to prioritize certain types of results in the final ranking, and it can also gives an indication if 
highly relevant results from some vertical channels should be included. For example, a query “white 
house” can trigger the inclusion of news, map, and image search results.

Common query rewriting operations involve stop word elimination, case folding, and spell correction. 
Stop word elimination detects the use of some popular terms, which may not be able to effectively reflect 
the intention of a user. For example, terms “the” and “of” may be removed from query “the address of 
white house.” Spell handling involves the examination of popular spell errors to suggest a correction. Case 
folding commonly used in web search engines does not differentiate cases. Case-insensitive search is more 
acceptable to users as it includes more relevant results to match users’ queries without differentiating cases.

The query rewriting process may be explicit or implicit to users, which can be categorized into the 
following three situations:

•	 Suggestion without query rewriting. A search engine may not change query terms but recommend 
a suggestion for correction. That is especially useful when the engine is not certain if the sug-
gested correction is necessary for most of users.

•	 Explicit alteration. For certain queries, the search engine may automatically alter user queries 
while informing users the correction incorporated.

•	 Implicit alternation. For many queries, a search engine may automatically rewrite without inform-
ing users. It may incorporate multiple rewritings and aggregate results based on an internal rank-
ing method. For example, the results for query “NJ tax return” may be supplemented with some 
additional results from “new jersey tax return.” Rewriting has to be conservative based on query 
context. For instance, while the short form of state “Virginia” is VA, “VA” can also stand for 
“US Department of Veterans Affairs.”

51.4.2  Page Partitioning and Retrieval

The index data of a search engine are typically partitioned and distributed in many machines at one or 
possibly multiple data centers. There are two ways to distribute data to multiple machines—term-based 
or document-based:

•	 Document-based partitioning divides the index data among machines based on document identifi-
cations. Each machine contains the inverted index only related to documents hosted in this machine. 
During query processing, a search query is directed to all machines that host subsets of the data.
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•	 Term-based partitioning divides the index based on terms and assigns postings of selected terms 
to each machine. This approach fits well for single-word queries, but it requires inter-machine 
result intersection for multi-word queries.

Document-based partitioning has several advantages. (1) It simplifies the database update process. 
When documents have a change of their content, only few machines that host these documents are 
affected. (2) It allows for good load balancing as the term distribution is more skewed. (3) It is more 
resilient to faults compared to term partitioning. If some machines fail, only the index of documents 
on these failed machines becomes unavailable, and the search engine may still be able to serve relevant 
results from other machines. For term-based partitioning, the failure of one machine could lead to more 
noticeable errors for certain queries, which contain terms hosted in the failed machines. The disadvan-
tage of document-based distribution is that all machines need to participate in query answering. Thus, 
the serving cost per query is more expensive. A combination of document- and term-based partitioning 
would be an option to exploit in hosting a large index database.

After the initial query processing, a search engine accesses the index following the semantics of a 
query. By default, query terms are considered to be conjunctive. Namely, a document is considered to be 
a match if and only if it contains all query terms. In a disjunctive mode, a document is considered to 
be a match if only one query term presents in the document. While a search engine often provides an 
advanced search feature that supports a combination of conjunctive and disjunctive search, the com-
mon usage of user queries follows a conjunctive format due to its simplicity.

Since the index is distributed to machines using document- or term-based partitioning, each of these 
machines returns a set of documents fully or partially matching the processed query; therefore, addi-
tional processing is needed. For example, for the query “Britney Spears,” the posting of term “Britney” 
is intersected with the posting of term “Spears.” If two postings are hosted in different machines, inter-
machine communication is necessary to accomplish this intersection. For document-based partition-
ing, the posting intersection is done within a machine, and each machine will report a subset of distinct 
documents that match this query. Once the search engine gathers matched documents, it ranks these 
matched documents and presents top results to users. We discuss page ranking in the next section.

Retrieval of relevant results during index matching is time consuming when searching a large data-
set and various techniques are developed to speed up this process. One technique is to divide the 
list of documents from the posting of a term into multiple chunks and add skip pointers in the data 
structure [51,52]. In performing conjunctive search among postings for multiple query terms, the 
maximum document identification of a chunk can be used to determine if a chunk can be skipped 
when intersecting with a document identification from another posting. A skipping pointer for a 
chunk can be inserted into the data structure of inverted index so that the scanning of this chunk can 
be easily avoided.

51.4.3 R esult Caching and Snippet Generation

Caching is a commonly adopted technique to speed up the query answering process because there 
are often over 50% of queries that can use previously computed search results. Caching provides load 
smoothing to deal with traffic spikes caused by hot events during which different users often type the 
same or similar queries again and again to check the latest development. A search engine may adopt a 
variety of hierarchical caching strategies. For example, cache the top HTML response with snippets, 
cache the top results without snippets, cache a matched URL list in a local machine before result aggre-
gation, and cache the postings of frequent query terms.

Given a limitation on cache size, results for most frequent queries can be cached, and some results may be 
pre-cached in anticipation of its popularity. Other replacement policies may consider weighted factors such 
as recomputing cost [53]. A key issue to consider for caching is freshness of cached results. As the search 
index is updated continuously, the concern can arise for the staleness of cached results. For example, a query 
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that contains news results may not be cacheable because a later query needs to be answered with the latest 
news results. One strategy is to cache results only for relatively stable answers.

When top search results are presented to users, each document is described with a summary of its 
content, which is known as a snippet. There are two categories of techniques for document summariza-
tion. One is query-independent static snippet where a document is summarized without knowing que-
ries. The second category is query-dependent dynamic summarization in which a snippet is composed 
of several short pieces of text, and each short piece often contains query terms. The selection of these 
text pieces depends on a number of features including the percentage of query terms covered, positions 
of text pieces in a document, importance of query terms covered, and the readability of the summary. A 
study on snippet readability was done in [54]. Producing high-quality snippets is time consuming, and 
efficient techniques for snippet generation were discussed in [55].

51.4.4 A n Example of Online Search Architecture

Figure 51.4 illustrates an online search architecture we have developed in the past in hosting billions 
of web documents and answering queries from tens of millions of queries every day. The database is 
divided following language and country classification of documents, and the query-processing module 
can route a query to a proper collection of index based on the targeted user region. For example, English 
queries are processed using English data partitions. There is a small percentage of queries that contain 
mixed languages; for those queries, multiple-language content groups are involved in search.

Once a query is received by the online system, this query is distributed to one of query-processing 
front ends through a load-balancing traffic switch. The query-processing module consults a multi-level 
cache to see if this query can be answered using the previously computed result with or without snip-
pets. If a query cannot be found from the cache, the page retrieval module searches URLs in Tier 1 of the 
online index and visits Tier 2 (or other lower priority tiers) only if the results matched from Tier 1 are 
not satisfactory. Our experience is that up to 70% of queries can be handled by Tier 1 without searching 
other tiers. There is an internal cache deployed for each partition so that retrieval results for frequent 
queries or compute-intensive queries are cached within each partition. There is also an aggregation 
module that combines results from multiple partitions and eliminates duplicates when needed, and this 
module can be deployed hierarchically also [56].

Ranking is conducted hierarchically. The page retrieval module selects top results from each partition, 
and these results are combined in an aggregation module, which performs additional filtering. Signals 
for ranking are discussed in the next section. Once top-ranked results are derived, the snippets for 
these results can be computed by accessing the text content of these documents from a page repository. 
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FIGURE 51.4  An online web search architecture.
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There is a heavy I/0 activity involved in accessing disk data for snippet generation, and caching snippets 
for popular queries can be used to improve the performance.

In addition to finding results from the HTML page collection, a query is also routed to vertical search 
channels including the advertisement engine and other types of popular web collections such as news 
and blogs, maps, images, and videos. The top results from multiple channels are combined in the SERP. 
Optimizing the selection and placement of these results from different channels in a SERP is critical for 
users’ experience with a search engine. Once a user browses URLs listed in the SERP, the search engine 
keeps a log on the click activity of this user. The user behavior extracted from this log provides a feed-
back for adjustment of ranking of results, triggering and placement of vertical search.

Each logical system component in Figure 51.4 runs on a large-scale computer cluster. As we mainly 
use a document-based distribution for search index, processing of each search request goes through 
thousands of machines. System support for the previous engine includes request and internal traffic 
scheduling, fault tolerance, and replication support; the middleware and related system techniques were 
discussed in [56–59].

51.5 R anking

Ranking plays the most visible role in a search engine since most users only look at top results. Ranking 
can be conducted in a centralized manner or hierarchically so that each subsystem selects the best results 
first before submitting selected results for the next round of ranking. Relevance scores for documents 
are computed by exploiting their text and authority features, which are often called ranking signals.

We first give an overview of query-dependent and query-independent ranking signals and describe fea-
ture analysis based on text, link, and click data. Then we will discuss score aggregation by using these signals.

51.5.1 R anking Signals

There are four aspects of ranking in matching the intent of a user.

	 1.	 Relevancy. Top documents need to be relevant to a user query.
	 2.	 Authoritativeness. High-quality content is normally preferred since users rely on trustful infor-

mation to learn or make a decision.
	 3.	 Freshness. Some queries are time sensitive and latest information is more appropriate for such 

type of queries.
	 4.	 Preference. Personal or geographical preference can also impact the choices of answers.

Rank signals are designed to reveal those aspects from the query or document point of view, and we 
summarize two categories of ranking signals as follows:

Query-Dependent Ranking Signals

•	 Document text. This feature measures the closeness between query words and what appears in a 
document. A web document can be divided into multiple text sections such as document title and 
body, and query words matched in different sections carry different weights. Additional weight-
ing can be considered if query terms are highlighted in a document. Proximity, positions, and 
frequency of query words matched in a document area prominent indicator of relevance.

	   Some of text features in a web document are not visible to users, for example, description and 
keyword tags of an HTML document. Spammers often exploit such a feature to present irrelevant 
keywords; thus, such features have to be used with caution.

•	 Anchor text. Anchor text of a web page appears in the hyperlinks of other web documents refer-
ring to this page. There can be many hyperlinks pointing to the same web document, and some of 
anchor text can be meaningless or of low quality. The commonality in anchor text and popularity 
of source web pages can be helpful in determining quality of anchor text.
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•	 URL text. Text of a URL, especially when appearing in a position within or close to the host 
name, may sometime reveal the semantic of its content. For example, “download” in http://
www.microsoft.com/en-us/download/ is an important keyword for matching query “Microsoft 
download.”

•	 Historical click-through data. A search engine collects the behavior data from users when they 
search and browse matched results. These URLs clicked by a user following a search query are 
often relevant to such a query.

•	 Query classification and preference. Implicit features of a query can be extracted during classifica-
tion to select preferred documents. For example, the language of a query prioritizes the language 
type of web documents to be matched. The originating geographical location of a query may 
direct the ranking system to select more content from this region. If a query matches a hot news 
topic, time-sensitive fresh content is preferred.

•	 Link citation. This feature uses the web hyperlink connectivity among those pages whose text 
matches a given query. A page cited by many other matched web pages can be a good indicator of 
authoritativeness for this query.

Query-Independent Signals

•	 Link popularity. This feature analyzes how pages link to each other and then uses this information 
to determine the importance of each page on the web. If a page is cited from a large number of 
pages, it is often ranked more prominently.

•	 Documentation classification and spam analysis. A classification of web documents can provide a 
signal in matching user preference. For example, users are more likely to be looking for content 
in their own language than in other languages. File types such as HTML and Microsoft Word can 
also be a preference for users. Since spam analysis leads to a rating of page quality, a spam score is 
also a useful quality indicator.

•	 URL preference. In many cases, users prefer a URL with a short length and prefer a static URL 
instead of a dynamically generated URL. Dynamically generated URLs tend to change content 
from time to time, and their average quality is often lower than that of static URLs.

•	 Site or page properties. Some additional information on a web page or its site can be an indication 
of web page quality. For example, frequency of user visits, the time duration of visit, and serving 
speed or reliability of the web host.

There are many methods for modeling above ranking signals, and we next describe some of techniques 
for analyzing text, links, and click data.

51.5.2 T ext Analysis

The goal of text analysis is to quantify the relevance of a document based on how query words appear 
in this document. Boolean and phrase operators are available in a search engine for advanced retrieval 
semantics, for example, “Retrieval” or “Search.” Since most people use simple and short queries, we 
focus on text analysis of a search query with conjunctive semantics.

There are three issues in developing a formula measuring the text closeness of document–query 
matching:

•	 What are basic units of information to match a query with a document? A document is normally 
tokenized a sequence of words after excluding HTML tags, and each word is a basic term for 
matching. Thus, a document can be considered as a bag of words. On the other hand, the order 
and closeness of terms play an important role. For example, “Paris Hilton” is the actress name 
while “Hilton Paris” could mean the Hilton hotel at Paris.

•	 What is the proximity of search words appeared in a document? When search words appear 
close to each other in a document, this document is often considered to have a high relevancy. 
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To capture word proximity, an n-gram term can be considered, which is defined as a consecutive 
sequence of n words in a document. An n-gram of size 1 is referred as a “unigram,” size 2 is a 
“bigram,” and size 3 is a “trigram.”

	   Another model for proximity is to use a text span [60,61]. A document is segmented into 
multiple disjoint spans that cover search terms. Each span may not contain every query term, 
and it is a minimum text window containing search terms as much as possible. Each span 
starts with the position of the first query term in a document and contains consecutive query 
terms in a document. This span ends when the distance between the current query term match 
position and the next query term match position exceeds a threshold. This span also ends if 
the current and next matches are the same term, or the previous query term is the same as the 
next query term.

•	 How are terms weighted? One method is to use a simple weighting based on where they appear. 
If a query term appears in the body of a document, it will receive credit. When it appears in the 
title, it receives weighted credit. Another method that uses the frequency information is known as 
term frequency and inverse document frequency (TF-IDF) weighting. In this scheme, the impor-
tance of a term increases when it appears many times in a document. If a term appears many 
times in many documents, its weight decreases because it becomes less effective in differentiating 
a relevant document from a non-relevant document. A common formula for TF-IDF is defined 
as follows:

	
tfidf t d tf t d
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where n is the number of documents in the collection, tf (t, d) is the occurrence count of term t 
in document d, and dft is the number of documents that term t appears. Because denominator dft 
may be zero, it is often adjusted as 1 + dft. Additionally, tf (t, d) is sometime normalized against 
the length of document d. Variations of the TF-IDF weighting have been suggested in the litera-
ture, for example, Okapi BM25 [62].

•	 How can the closeness of matching be represented by aggregating weights from multiple query 
terms? One model is to use the cosine-based similarity function. Let document d contain a set of 
terms with weight wi for each term, and let query q contain a set of query terms with weight qwi. 
These weights are normalized, and the aggregated text score is

	 Score d q w qwt q i ii( , ) *= ∈Σ

There are other ways to aggregate weights. Since text features can be represented in multiple ways to 
capture the appearance and proximity of search terms, they can be aggregated using a weighted sum-
mation function or a machine learning model. We discuss a weight-learning technique in Section 51.5.5.

51.5.3  Link Analysis

51.5.3.1  PageRank Algorithm

As a query-independent ranking signal, the earlier PageRank algorithm [63] measures the importance 
of a web document based on its presence in a large web graph. In this graph, each node is a web page and 
each edge is directed, representing a link from one page to another using the HTML hyperlink notation. 
The intuition underlying this link analysis is that highly linked pages are more important than pages 
with just few links, but not all links carry the same importance. A page with a link from a popular site 
may be ranked higher than other pages with more links but from obscure places.
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Let n be the number of pages in a web graph, and let x be a page. A simplified version of the PageRank 
model can be expressed as

	
R x
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where S(x) is the set of pages that x points to and P (x) is the set of pages that point to x.
PageRank computation can be conducted iteratively. Initially, every page has its initial value as 1

n . 
Then all pages will be assigned with a λ-linear combination of a rank value 1n  and additional rank credit 
propagated from its predecessors in the graph. After that, vector R() is normalized. This process repeats 
until all nodes have a converged rank value.

Computing the in-degree of a web page can approximate its link popularity score, but this score can 
be less resilient to link spamming. That is because it is relatively easy to create thousands of pages on the 
web pointing to a page. The PageRank algorithm was initially viewed as the key to Google’s differentia-
tion compared to other search engines when Google was launched. Various modifications have been 
suggested in the literature to improve relevancy or speed up computation. For instance, see [64,65].

51.5.3.2  HITS Algorithm

The HITS algorithm [66] provides query-dependent scoring to determine the authoritativeness of a web 
page relevant to a query. The key difference compared to PageRank is that HITS computes link scores 
within a subgraph of a web graph derived based on a user query. The HITS algorithm derives two scores 
for every page. The first score is called the authority score, representing the authoritativeness of a page 
relevant to the subject of a user query. The second score is called the hub score representing its rank value 
in serving as the compilation of relevant information. Let the authority score of a page x be A(x), and let 
the hub score of this page be H(x):

	 A x H y H x A yy P x y S x( ) ( ) ( ) ( )( ) ( )= =∈ ∈Σ Σand

where P(x) contains the predecessors of page x in this graph and S(x) contains the successors of x.
The computation of these scores is performed iteratively. After an initial score assignment, all pages 

update their hub and authorities based on the previous formula. These values are normalized at each 
iteration, and this process repeats until all pages have a converged value. Mathematically speaking, the 
previous process computes the principal eigenvector of matrix CtC and CCt where C is the connectivity 
matrix based on the link structure of the query graph, and Ct is the transpose of C.

The major challenge in using HITS is its online computation cost. There are several extension or 
follow-up work to improve the seminal work of PageRank and HITS. That includes topic distillation [67] 
and multi-community hub authority [68,69]. A fast algorithm for computing hub authority scores with 
sparse matrix approximation was developed at Teoma/Ask [70].

51.5.4  Click Analysis

Users interact with a search engine by clicking search results of a query, browsing them, reformulating 
their queries, and performing additional browsing. Such interaction is logged in a search engine, and the 
click data can be thought of as a tuple (t, u, q, c) indicating that user u clicks result c for query q at time t. 
While click data can be noisy, URLs clicked by users are likely to convey some information for relevance 
judgment. A document may be ranked high if it has attracted the greatest number of previous users for 
the same query. A log dataset can be divided into a sequence of search sessions for each user. Each user 
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session contains a sequence of queries and results picked by this user. The following correlations among 
queries and URL results can be extracted from session analysis:

•	 Query-to-pick (Q2P). A Q2P correlation associates a query with a pick. When a search engine 
returns a result in response to a query, and a user picks this result, that constitutes a correlation 
candidate. When multiple independent users make the same association, that makes this Q2P 
correlation more plausible.

	   As an extended association, after a user enters a query, picks recorded for a different query 
within the same user session can be associated with the initial query. Another extension is that 
different pages browsed as a result of a URL pick may also be associated with the original query. 
The previous two extensions represent the fact that a user often reformulates a query or browses 
beyond a search link to look for right content. Such an approach carries data errors and additional 
noise filtering techniques need to be applied. For instance, a restriction can be applied using query 
similarity from one pick to another in a session, the order and depth of query rewriting or brows-
ing steps, dwelling time, and the first and last choice of browsing.

•	 Query-to-query (Q2Q). This correlation associates queries issued during a user session. The confi-
dence for such association depends on various factors including query similarity, the issuing time 
between queries, the number of intervening queries or picks, the order of association, and the 
number of sessions sharing such an association. The Q2Q correlation can help the generation of 
query suggestions in search engine response pages.

	   For example, “electronic eavesdropping” is related to a query “eavesdropping devices.” Misspelled 
“Hotel Mariot” is related to “Hotel Marriott.”

•	 Pick-to-pick (P2P). This correlation associates picks issued during a user session, which is analo-
gous to the Q2Q correlation described earlier. The P2P correlation can reveal a set of URLs that 
are similar or related for certain topics. As an example, toyota.com is the top answer for answer-
ing “Toyota car,” honda.com and ford.com may also be listed as similar results in case users are 
interested in exploiting similar products.

While click-through data can be very noisy and incomplete with a sparse structure, it still provides 
valuable information for search quality improvement. Ask.com that bought DirectHit.com in 1999 was 
the earlier system that ranked search results based on URLs’ click-through rates, and the adjustment 
is applied when URLs with a relatively lower rank may receive more clicks compared to those with a 
higher rank. Ask.com further adopted session-based click data to improve ranking with Q2P and Q2Q 
correlations [71]. The use of click data to derive user’s relative preference was studied in [72] to train a 
ranking function. Query reformulation that expands the Q2P correlations in learning to rank was con-
sidered in [73]. The relevancy impact of integrating a number of click-based features was demonstrated 
in [74]. The bipartite graph structure of query–document relationship from a query log for modeling 
Q2P, Q2Q, and P2P correlations was studied in [75,76]. Integrating browsing activities of a search ses-
sion for ranking was considered in [77].

51.5.5  Score Aggregation and Learning to Rank

There are many ranking signals that can be extracted or characterized for each matched document in 
responding to a query. Those signals need to be aggregated, and their weights can be imposed empiri-
cally or derived using a machine learning method. Aggregation of these signals can be performed hier-
archically. In this way, ranking signals can be divided into several semantically relevant components for 
fine tuning.

Machine-learned ranking uses supervised or semi-supervised techniques that automatically con-
struct a ranking model from training data. Training data consists of a set of queries, and each query 
has a list of documents with a relevance label. The example of a relevance label is “relevant,” “related,” 
or “irrelevant” for a three-level judgment. There are various ways to model a learning function based on 
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a training dataset, and multiple models can be combined by an ensemble method such as bagging and 
boosting [78–80] to further improve the learning accuracy.

We illustrate a simple learning function as follows using the RankSVM method [72,81]. Let xi⃗ be a 
feature vector representing a set of ranking signals for document di. An aggregated score function f(xi) 
is a product of a weight vector w⃗ with xi⃗. Function f () defines ranking as follows: if f (xi⃗) > f (xj⃗), docu-
ment di should be ranked before dj in answering a query. This condition implies that we need to find w⃗ 
so that w⃗ × (xi⃗ − xj⃗)>0.

Following the previous condition, a training dataset is converted based on the pairwise relationship 
of documents. Assume that page di with a feature vector xi and another page dj with a feature vector xj 
are labeled for answering the same query. Define a new label ei,j for pair (di, dj) as 1 if di should be ranked 
before dj and −1 if di should be ranked after dj. The new training data can be thought of as a set of triplets. 
Each triplet is (Q, xi⃗ − xj⃗, ei,j), where Q is a test query and di and dj are from the labeled result list of Q. 
Then the hard-margin linear SVM model is to minimize ║w║⃗2 subject to a constraint for all points in 
the training data: w⃗ × (xi⃗ − xj⃗) × ei,j ≥ 0.

The previous process demonstrates that a ranking problem can be transformed to a classification prob-
lem, and other classification-based algorithms can also be used. Learning-to-rank algorithms have been 
categorized as pointwise, pairwise, and list-wise [82]. The pointwise approach predicts the relevancy score 
of each document for a query using a supervised learning method such as regression and classification. 
The pairwise approach considers learning as a binary classification problem to decide if a document should 
be ranked prior to another document. Examples of this approach are RankSVM [72,81], RankBoost 
[80], and RankNet [83]. The list-wise approach tries to directly optimize the cost function, following a 
relevancy evaluation measure. Examples of such an approach include LambdaMART [84], SVMmap [85], 
and AdaRank [86]. Machine-learned ranking has its advantage for leveraging a large training dataset 
while interpreting and adjusting its behavior in the failed cases can be hard sometime. In practice, a rank-
ing model that combines machine learning with human tuning may be used.

51.6  Search Engine Evaluation

51.6.1  Strategies in Quality Evaluation

A common evaluation for search engine quality is the relevance of search results as well as the speed in 
answering a query. It is not easy to define the metric for measuring the relevance of search results. This 
is because in many cases, it is hard to tell what a user really wants by viewing a query. Precise detection 
of user’s query intent is the holy grail of search. For navigational queries such as Microsoft, most users 
want to navigate to the respective sites. Queries such “US open” can have multiple answers from time to 
time. Intent of some queries can be heavily biased by locations or languages used. For instance, CMU 
can mean Central Michigan University, Carnegie Mellon University, or Central Methodist University, 
depending users’ location.

One way to judge result relevance of a search engine is to employ a team of evaluators, and let them 
type queries collected from an engine log, and assess if the returned answer matches the typed query. 
This has a challenge since sometime an evaluator may not be able figure out the right answers. Another 
complexity is that today’s search engine users expect more than just result relevance, and there are multi-
ple aspects of a search engine affecting the satisfactory degree of an end user. For example, are the results 
from authoritative sources? Are they free of spam? Are their titles and snippets descriptive enough? Are 
they fresh and timely? Does the answer include additional visual elements such as maps or images that 
may be helpful? A thorough evaluation needs to cover each of these dimensions when appropriate.

The search log data can be used to assess the quality of an engine and to capture the satisfactory 
degree of end users. When users engage a search engine and select presented results more frequently, 
this is a good indicator that users like this engine. The key metrics that can be derived from a search 
log include the daily or weekly user traffic, the visit frequency of users, result pick rate, and abandon 
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rate when users do not select any result. The metrics derived from a search log carry certain noise. For 
example, result pick rate is often affected by the placement of results and interface design in a SERP. 
Site traffic can be also affected by seasonality. The interpretation of these metrics requires a deep data 
analysis from multiple aspects.

51.6.2  Evaluation Metrics

To measure whether an information retrieval system returns relevant results or not, precision and recall 
are the two metrics developed in the earlier studies. Precision is the percentage of returned results that 
are relevant, and recall is the percentage of all relevant results covered in the returned list. For web 
search, when there are many results relevant to a query, a user normally only browses top few results; 
thus, precision is more critical than recall in such a setting. When there are only very few results relevant 
to a query, a recall ratio measures the ranking and crawling capability in finding these documents.

Another measure called the normalized discounted cumulative gain (NDCG) [87] that considers the 
graded relevance judgment and the usefulness of a document based on its position in the ranked result 
list. In this scheme, the result quality is judged using graded relevance with a multi-level label. For 
example, a six-level label can be “perfect,” “excellent,” “good,” “fair,” “poor,” or “bad.” The NDCG value 
starts with a following concept called the discounted cumulative gain (DCG) at a particular rank posi-
tion k:
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where reli is the graded relevance value at position i. For example, 0 stands for “bad,” 1 stands for “poor,” 
2 stands for “fair,” and so on. The NDCG value normalizes the DCG value as

	
N DCG k

DCG k

DCG k
[ ]

[ ]

[ ]
=

′

where DCG′[k] is the ideal DCG at position k. The DCG′[k] value is computed by producing the maxi-
mum possible DCG till position k. The NDCG value for all queries is averaged to assess the average 
ranking quality.

The other evaluation metrics for a search engine includes freshness and coverage. To assess the fresh-
ness, one metric can be the time from creation of a document on the web to the time when it appears 
in the online index. To measure the completeness, the size of database can be used. Since there are a 
large amount of low-quality URLs on the web, the size alone is not sufficient. An additional strategy is 
topic-based sampling to measure the satisfactory degree in answering users’ queries for selected topics.

The speed of the engine performance can be measured by the round-trip response time of a query. 
Typically a search engine is required to return a query result within a second, but in practice a search 
engine is able to deliver a search result within a few hundred milliseconds. During search engine capac-
ity planning, the throughput of an online system is also measured so that a system can be optimized to 
answer as many queries as possible at every second. When the engine configuration such as the database 
size changes, its performance metrics may be affected and need to be examined.

51.7  Concluding Remarks

The main challenge of search engine technology is the handling of big data with significant noise. Search 
engine technology has been improved steadily in the last decade while the expectation of Internet 
users has also increased considerably. There are still a large number of unsolved technical problems 
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to accurately capture the intent of search users. As more and more ranking signals are introduced to 
improve result relevance for different categories of queries, the interaction of these signals can some-
times yield to subtle side effects. Thus, further improvement of search quality toward the next level 
requires more effort. In the next ten years, mobile and multimedia search is a key battleground among 
search providers. With popularity of social networking, social search is also another hot topic to facili-
tate information sharing. Search-based information technology will continue to advance and evolve in 
multiple directions, so Internet and mobile users can find the information that they need quickly.
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52.1  Introduction

Process synchronization (also referred to as process coordination) is a fundamental problem in operat-
ing system design and implementation. It is a situation when two or more processes coordinate their 
activities based on a condition. An example is when one process must wait for another process to place 
a value in a buffer before the first process can proceed. A specific problem of synchronization is mutual 
exclusion, which requires that two or more concurrent activities do not simultaneously access a shared 
resource. This resource may be shared data among a set of processes where the instructions that access 
these shared data form a critical region (also referred to as a critical section). A solution to the mutual 
exclusion problem guarantees that among the set of processes only one process is executing in the criti-
cal region at a time.

Processes involved in synchronization are indirectly aware of each other by waiting on a condition 
that is set by another process. A form of this synchronization is waiting on an event, which may occur 
because of an action of the operating system, of another process or an entity external to the immediate 
system. Processes can also communicate directly with each other through interprocess communication 
(IPC). IPC causes communication to be sent between two (or more) processes. A common form of IPC 
is message passing.

The origins of process synchronization and IPC are work in concurrent program control by peo-
ple such as Dijkstra, Hoare, and Brinch Hansen. Dijkstra described and presented a solution to the 
mutual exclusion problem (Dijkstra 1965) and proposed other fundamental synchronization problems 
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and solutions such as the dining philosophers problem (Dijkstra 1971) and semaphores (Dijkstra 1968). 
Hansen (1972) and Hoare (1972) suggested the concept of a critical region. Hansen published a classic 
text with many examples of concurrency in operating systems (Hansen 1973). Hoare (1974) provided a 
complete description of monitors following work by Hansen (1973).

In discussing process synchronization and communication, it is critical to understand that these 
are no longer just operating system concerns, but broadly affect system and application design, par-
ticularly because multithreaded applications employed on multiprocessor and multicore architectures 
are now commonplace. Many of the primitives used for synchronizing processes also work for syn-
chronizing threads, which are discussed in the chapter on Thread Management. Investigation is being 
done on mechanisms that work in multicore/processor environments, discussed in the chapter on 
Multiprocessing and Multicore Programming, and extend to distributed ones. Concurrent program-
ming using synchronization and IPC in a distributed environment is more complex because there may 
be a failure by some processes participating in synchronization while others continue, or it is possible 
for messages to be lost or delayed in an IPC mechanism.

The remainder of this chapter discusses the underlying principles and practices commonly used for 
synchronization and IPC. Section 52.2 identifies fundamental problems needing solutions and issues 
that arise in considering various solutions. Section 52.3 discusses prominent results for synchroniza-
tion and IPC problems and discusses their relative merits in terms of these issues. The chapter con-
cludes with a summary, a glossary of terms that have been defined, references, and sources of further 
information.

52.2  Underlying Principles

Process synchronization and IPC arose from the need of coordinating concurrent activities in a multi-
programmed operating system. This section defines and illustrates traditional as well as more modern 
synchronization and IPC problems and characterizes the issues on which to compare the solutions.

52.2.1  Synchronization Problems

A fundamental synchronization problem is mutual exclusion, described by Dijkstra (1965). Lamport 
(1986) provides a formal treatment of the problem with Anderson (2001) surveying Lamport’s contribu-
tions on this topic. In this problem, multiple processes wish to coordinate so that only one process is 
in its critical region of code at any one time. During this critical region, each process accesses a shared 
resource such as a variable or table in memory. The use of a mutual exclusion primitive for access to a 
shared resource is illustrated in Figure 52.1, where two processes have been created that each access a 
shared global variable through the routine Deposit().

The routines BeginRegion() and EndRegion() define a critical region ensuring that Deposit() 
is not executed simultaneously by both processes. With these routines, the final value of balance is 
always 20, although the execution order of the two processes is not defined.

To illustrate the need for mutual exclusion, consider the same example without the BeginRegion() 
and EndRegion() routines. In this case, the execution order of the statements for each process is time 
dependent. The final value of balance may be 20 if Deposit() is executed to completion for each 
process, or the value of balance may be 10 if the execution of Deposit() is interleaved for the two 
processes. This example illustrates a race condition, where multiple processes access and manipulate the 
same data with the outcome dependent on the relative timing of these processes. The use of a critical 
region avoids a race condition.

Many solutions have been proposed for the implementation of these two primitives; the most well 
known of which are given in the following section. Solutions to the mutual exclusion synchronization 
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problem must meet a number of requirements, which were first set forth in Dijkstra (1965) and are sum-
marized in Stallings (2012). These requirements are as follows:

•	 Mutual exclusion must be enforced so that at most one process is in its critical region at any point 
in time.

•	 A process must spend a finite amount of time in its critical region.
•	 The solution must make no assumptions about the relative speeds of the processes or the number 

of processes.
•	 A process stopped outside of its critical region must not lead to blocking of other processes.
•	 A process requesting to enter a critical region held by no other process must be permitted to enter 

without delay.
•	 A process requesting to enter a critical region must be granted access within a finite amount of time.

Another fundamental synchronization problem is the producer/consumer problem. In this problem, 
one process produces data to be consumed by another process. Figure 52.2 shows one form of this prob-
lem where a producer process continually increments a shared global variable and a consumer process 
continually prints out the shared variable. This variable is a fixed-size buffer between the two processes, 
and hence this specific problem is called the bounded-buffer producer/consumer problem.

The ideal of this example is for the consumer to print each value produced. However, the processes 
are not synchronized and the output generated is timing dependent. The number 0 is printed 2000 times 
if the consumer process executes before the producer begins. At the other extreme, the number 2000 is 
printed 2000 times if the producer process executes before the consumer begins. In general, increasing 
values of n are printed with some values printed many times and others not at all. This example illus-
trates the need for the producer and consumer to synchronize with each other.

The producer/consumer problem is a specific type of synchronization that is needed between two 
processes. In general, many types of synchronization exist between processes. An increasingly impor-
tant one in the context of parallelization is a barrier, which is illustrated in Figure 52.3. A barrier syn-
chronizes the actions of multiple processes (or threads), shown as A, B, etc., in Figure 52.3, such that the 
execution of each process reaching the barrier is blocked until all processes have reached the barrier. 

int balance = 0;  /* global shared variable */

ProcessA()
{
    Deposit(10);
    print(“Balance is %d\n”, balance);
}

ProcessB()
{
    Deposit(10);
    print(“Balance is %d\n”, balance);
}

Deposit(int deposit)
{
    int newbalance; /* local variable */

    BeginRegion();  /* enter critical region */
    newbalance = balance + deposit;
    balance = newbalance;
    EndRegion();   /* exit critical region */
}

FIGURE 52.1  Shared variable access handled as a critical region.
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This type of synchronization is common for computations that have a mix of serial and parallel phases 
where a barrier is placed at the end of each parallelized phase.

Another type of synchronization problem that has always existed within operating systems, but has 
become increasingly important in other contexts is the detection and handling of external events that 
occur. Solutions to this problem must consider whether such events should be handled asynchronously 
via event handlers to handle the event when it occurs or synchronously via polling or blocking to stall 
execution until the event occurs. Solutions may also be needed that allow for one of many events to 
occur, such as waiting a maximum timeout period for a network packet to arrive.

52.2.2  Synchronization Issues

There are many approaches available for solving mutual exclusion and synchronization problems. There 
are a number of issues concerning the implementation of solutions to these problems, with the primary 
ones described in the following:

•	 Processor and store synchronicity: Solutions to synchronization problems that are processor syn-
chronous require that processors can be made uninterruptable. These solutions work for uni-
processor machines but not for multiprocessors where disabling the interrupts on one processor 

int n = 0; /* shared by all processes */

main()
{
    int producer(), consumer();
    CreateProcess(producer);
    CreateProcess(consumer);
    /* wait until done */
}
producer() // produce values of n
{
    int i;
    for (i=0; i<2000; i++)
        n++; // increment n
}
consumer() // consume and print values of n
{
    int i;
    for (i=0; i<2000; i++)
        printf(“n is %d\n”, n); /* print value of n */
}

FIGURE 52.2  Example of producer/consumer synchronization problem.

Barrier

A

B

A

B

FIGURE 52.3  Barrier synchronization for a set of processes.
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does not affect another. Solutions to synchronization problems that are store synchronous, which 
assumes individual references to main memory are atomic, are applicable to both uni- and mul-
tiprocessor machines.

•	 Busy waiting: Another issue in synchronization solutions is the consumption of CPU resources 
while a process is waiting for a condition to occur. Some solutions require busy waiting, the 
continued polling of a condition variable. These solutions are less efficient, particularly on 
a uniprocessor where busy waiting continues until the time slice of the waiting process is 
complete.

•	 Programmer errors: Potential programming errors inherent in using a particular synchronization 
approach must also be considered. Ordering of synchronization primitives is necessary for cor-
rect solutions with some primitives. Other primitives for synchronization have been specifically 
designed to minimize the possibility of such a programmer error.

•	 Starvation: It is possible for synchronization solutions to lead to the condition of starvation. 
Starvation occurs when a process is indefinitely denied access to a resource while other processes 
are granted access to the resource. Starvation is an issue in mutual exclusion if it is possible for 
one process to be indefinitely denied access to its critical region while access is granted to other 
processes.

•	 Deadlock: Another fundamental problem confronted by solutions is deadlock. Deadlock is the 
condition when a set of processes using shared resources or communicating with each other are 
permanently blocked. Coffman et al. (1971) describe three necessary, but not sufficient, conditions 
that must exist for deadlock to occur among a set of processes sharing resources:

	 1.	 Mutual exclusion: A resource may be used by only one process at a time.
	 2.	 Hold and wait: Processes holding resources can request new resources.
	 3.	 No preemption: A resource given to a process cannot be taken back.
		  For deadlock to actually take place, a fourth condition must also exist:
	 4.	 Circular wait: A set of processes are in a circular wait; that is, there is a set of processes 

{p0,  p1,…,  pn} where pi is waiting for a resource held by pi+1, and pn is waiting for a resource 
held by p0.

When combined with the three necessary conditions, the presence of the circular wait condition 
indicates that a deadlock has occurred and that no means exists for breaking the deadlock. When 
designing solutions to synchronization problems such as mutual exclusion, preventing deadlock 
involves disallowing one or more of the preceding conditions. Specific solutions to the deadlock 
problem are given in Section 52.3.

52.2.3  Interprocess Communication Problems

Interprocess communication problems generally involve direct communication between two or more 
processes, in contrast to synchronization where processes communicate indirectly by waiting on or set-
ting a condition. Thus, communication is indirect between the processes when using synchronization, 
whereas IPC mechanisms generally communicate by passing messages directly between processes. The 
primitives for handling messages are

•	 send(pid, &message)
•	 pid = receive(&message)

where send() sends the given message to a specific destination process and receive() receives the 
last message sent to it returning the process identifier (pid) of the sender.

Message passing is commonly used in operating systems and user applications for communicating 
between processes. In a message-based operating system where server processes perform many of the 
functions associated with an operating system, message passing is used to pass requests to the appropri-
ate server and to receive replies, as is shown in the example of Figure 52.4.
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52.2.4  Interprocess Communication Issues

As described in the previous example, IPC mechanisms typically involve the exchange of messages 
from one process to another. There are a number of issues concerning the implementation of a message 
passing mechanism, with the primary ones described in the following. Implementations of IPC mecha-
nisms, which address these issues, are described in Section 52.3.

•	 Direct vs. indirect communication: A key issue in a message passing system is how messages are 
addressed to their recipient. In a direct message passing scheme, the delivery address is a pro-
cess id. This approach is illustrated in Figure 52.4. In an indirect scheme, the address is an inter-
mediate repository, such as a mailbox or port, that is a drop-off point for the message for later pick 
up by the recipient.

•	 Buffering of data: Another issue is whether the message passing mechanism allows messages to be 
buffered if the receiving process is currently not ready to receive a message. If buffering is allowed, 
then another issue is the size of this buffer.

•	 Blocking vs. nonblocking operations: Related to the issue of buffering is the semantics of the 
send() operation when the message cannot be delivered. The operation can either block until 
the message can be delivered or the operation can immediately return with an error if blocking 
would occur. Similarly, the receive() operation can be defined to either block and wait for 
message delivery if no message is available or not block and return an error.

•	 Fixed- or variable-sized messages: Fixed-size messages allow for easier implementation but may 
require more work for the programmer. In contrast, variable-sized messages are easier to program 
but require more work to implement.

•	 Synchronous vs. asynchronous reception: Message passing mechanisms allow more process con-
trol if messages are received only when the receive() operation is invoked. However, some 
mechanisms allow for communication to be received when it arrives through an asynchronous 
approach using message handlers.

int serverpid;         /* well-known pid of the server */

Server()               /* server process code */
{
    int pid;           /* process id of the requesting process */
    Message request_msg, reply_msg;

    while (TRUE) {
        pid = receive(&request_msg);       /* receive message */
        /* handle request and build reply message */
        send(pid, &reply_msg);                  /* send the reply */
    }
}

int ServiceRequest(args)       /* service request function with arguments */
{
    Message request_msg, reply_msg;

    /* load args into request_msg */
    send(serverpid, &request_msg);
    (void)receive(&reply_msg);
    return(reply_msg.status);
}

FIGURE 52.4  Service request for a message-based operating system.
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52.3  Impact on Practice

This section discusses prominent results for synchronization and IPC. Each solution contains an 
example of its use, its relative merits, and problems for which it is useful. More examples of syn-
chronization mechanisms can be found in operating system texts (Tanenbaum 2008, Flynn and 
McHoes 2011, Silberschatz et al. 2012, Stallings 2012). Comer (2011) and Tanenbaum (1987) pres-
ent code for actual operating systems to show how synchronization and IPC mechanisms can be 
implemented. More concurrent programming examples can be found in Ben-Ari (1990), Raynal 
(1986), and Hansen (1973). Andrews and Schneider (1983) provide a survey of synchronization and 
IPC techniques. The chapter concludes with more classic synchronization problems and specific 
solutions to the deadlock problem.

52.3.1  Synchronization Mechanisms

The mechanisms for synchronization are divided into four types based on their level of implementa-
tion and support: software only, hardware support, operating system support, and language support. In 
addition, hybrid solutions exist that combine more than one of these approaches. Each approach shows 
a solution to the mutual exclusion problem along with other applicable synchronization problems and 
discusses the relevant synchronization issues.

52.3.1.1  Software Solutions

Software-based synchronization solutions require only that multiple processes can access shared global 
variables. The solutions use these variables to control access to the critical region. Dekker was the first to 
devise a software solution that correctly handles the mutual exclusion problem among a set of processes. 
A discussion of this solution is given in Dijkstra (1965). Peterson (1981) provided a simpler solution of 
the same problem, which is given in Figure 52.5 for two processes in terms of the BeginRegion() and 
EndRegion() routines.

This solution works correctly on any hardware (uni- or multiprocessor) in which references to main 
memory are atomic. The main disadvantage is that it requires busy waiting, continued polling of a status 
variable, before gaining access to the critical region if another process is already in the critical region. 
The solution can generalize to more processes, but better solutions are available.

int turn;                        /* whose turn is it? */
int flag[2];                     /* want the mutex? Initially FALSE */

BeginRegion(int pid)             /* pid is 0 or 1 */
{
    int other;                   /* pid of other process */

    other = 1 − pid;             /* the opposite of pid */
    flag[pid] = TRUE;            /* express interest in mutex */
    turn = pid;                  /* set flag */
    while ((turn == pid) && (flag[other] == TRUE))
        ;                        /* busy wait */
}

EndRegion(int pid)
{
    flag[pid] = FALSE;      /* drop interest in mutex */
}

FIGURE 52.5  Peterson’s solution of mutual exclusion for two processes.
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52.3.1.2  Solutions Using Hardware Support

Not all problems of synchronization, particularly ones in the operating system itself, can be handled 
solely with software-based solutions. As in other aspects of computing, hardware support can not 
only make the task easier but is also necessary for some levels of synchronization within the operat-
ing system.

One of the simplest ways to enforce mutual exclusion is to disable hardware interrupts at the start of 
the critical region, thus ensuring that the process does not give up the CPU (through a context switch) 
before completing the critical region. When the critical region is done, the process re-enables interrupts. 
The BeginRegion() and EndRegion() routines with this approach are shown in Figure 52.6.

This approach is fast and is used for manipulation of shared operating system data structures on a 
uniprocessor but in general has many disadvantages for general purpose use:

•	 Programmers must be careful not to disable interrupts for too long; devices that raise interrupts 
need to be serviced.

•	 The programmer must be careful about nesting. Activities that disable interrupts must restore 
them to their previous settings. In particular, if interrupts are already disabled before entering 
a critical region, they must remain disabled after leaving the critical region. Code in one critical 
region may call a routine that executes a different critical region.

•	 Disabling interrupts prevents all other activities, even though many may never execute the same 
critical region. Disabling interrupts is like using a sledge hammer; it is a powerful tool but bigger 
than is needed for most jobs.

•	 The technique is ineffective on multiprocessor architectures, where disabling interrupts on one 
processor still allows other processes to run on other processors.

Rather than perform mutual exclusion by controlling interrupts, a common approach is to use 
special instructions provided by the hardware to implement mutual exclusion. One such instruc-
tion is Test_and_Set, which is functionally defined by the procedure of Figure 52.7. It returns 
the previous value of a target variable and sets the target to the given value. Most importantly, 
this instruction is performed in an atomic manner so a context switch cannot occur in the middle 
of it. In addition, operations performed on two separate processors of a multiprocessor are guar-
anteed to occur in sequential order because of store synchronicity. Figure 52.7 shows how the 
BeginRegion() and EndRegion() primitives are implemented using this instruction. The vari-
able mutex is also referred to as a lock variable, and this approach to mutual exclusion is called a 
spin lock because a process spins in an infinite loop waiting for the lock. When the mutex variable 
is set to FALSE by a process exiting from its critical region, another process is allowed to gain access 
to its critical region.

This type of solution is particularly attractive for threaded environments because it allows for wait-
free or non-blocking atomic updates of shared resources. Herlihy (1991) shows that other primitives such 
as Compare_and_Swap are even more computationally strong than Test_and_Set. Fraser and 
Harris (2007) used these primitives as a basis to create practical programming solutions for atomic, 
nonblocking updates to multiword data structures.

BeginRegion()
{
    DisableInterrupts();
}

EndRegion()
{
    EnableInterrupts();
}

FIGURE 52.6  Mutual exclusion by disabling/enabling hardware interrupts.
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The primary disadvantage of this approach is its use of busy waiting, thus wasting CPU resources. 
The use of busy waiting also allows for process starvation if multiple processes are contending for a 
critical region. Finally, deadlock is possible on a uniprocessor machine if a lower priority process gets 
interrupted in the middle of its critical region and then a higher priority process tries to gain access 
to the same critical region. The higher priority process busy waits forever because the lower priority 
process never runs. This is a situation of priority inversion where a lower priority process affects access 
to a resource by a higher priority process. It is typically solved by temporarily raising the priority of the 
lower priority process.

52.3.1.3  Operating System Support

All of the synchronization approaches shown thus far can be implemented with the bare features of the 
hardware. The approaches also cause busy waiting if another process already is in its critical region. 
Semaphores, an important synchronization primitive, can be constructed by adding process coordi-
nation support to the operating system. Semaphores are data structures consisting of an identifier, 
a counter, and a queue; where processes waiting on a semaphore are blocked and placed on the queue, 
processes signaling a semaphore may unblock and remove a process from the queue, and the counter 
maintains a count of waiting processes.

The concept of a semaphore was first introduced by Dijkstra (1968). Dijkstra defined two atomic 
semaphore operations: wait and signal, which he termed the P-operation (for wait; from the Dutch word 
proberen, to test) and the V-operation (for signal; from the Dutch word verhogen, to increment).

A restricted version of a semaphore, called a binary semaphore, limits the value of the counter to 0 
and 1. However, the more general case is to use a counting semaphore, which has the following properties 
concerning the counter:

•	 A nonnegative count always means that the queue is empty.
•	 A count of negative n indicates that the queue contains n waiting processes.
•	 A count of positive n indicates that n resources are available and n requests can be granted with-

out delay.

There are four basic operations defined for creating, deleting, waiting on, and signaling a semaphore.

	 1.	semid = semcreate(val): Create a semaphore with the given initial value for the counter.
	 2.	semdelete(semid): Delete a semaphore.

int mutex = FALSE;                   /* global variable for mutex */

int Test_and_Set(int *pVar, int value)  /* atomic machine instruction */
{
    int temp;

    temp = *pVar;
    *pVar = value;
    return(temp);
}

BeginRegion()      /* Loop until safe to enter */
{
    while (Test_and_Set(&mutex, TRUE)) ;
        ; /* Loop until return value is FALSE */
}

EndRegion()
{
    mutex = FALSE;
}

FIGURE 52.7  Mutual exclusion using the test_and_set machine instruction.
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	 3.	semwait(semid): Wait on a semaphore. Decrement the semaphore counter. If the counter is 
negative, then suspend execution of the process and place it in the semaphore queue.

	 4.	semsignal(semid): Signal a semaphore. Increment the semaphore counter. Make the first 
process in the semaphore queue ready for execution.

Given these operations, a simple solution to the mutual exclusion problem is shown in Figure 52.8. 
Unlike previous solutions, a process waiting for its critical region does not busy wait. While it is wait-
ing, it is in a suspended state, allowing the CPU to perform other activities. Because semaphores are 
provided by the operating system, they work correctly on either uni- or multiprocessor machines.

Semaphores also provide a mechanism to solve the bounded-buffer producer/consumer problem, 
which was introduced in the example of Figure 52.2. A solution for this problem using semaphores is 
shown in Figure 52.9. This solution ensures that the consumer process prints all integer values from 1 to 
2000 by alternating between the producer and consumer.

Although semaphores provide straightforward solutions to both of these problems, semaphores 
themselves must be implemented in the operating system with lower level primitives such as the Test_
and_Set machine instruction. Semaphores work well for processes, which are allowed to block, but 
must not be used in code that cannot block such as interrupt service routines.

52.3.1.4  Language Constructs

The solutions presented thus far to the mutual exclusion problem each require the programmer to take 
explicit action to ensure mutual exclusion. To guarantee mutual exclusion some programming lan-
guages provide constructs to implicitly guarantee mutual exclusion. One such construct is a monitor 
(Hoare 1974), which permits only one process to be executing in a monitor at a time.

Monitors are a programming language construct, similar to abstract data types in that the pro-
grammer defines a set of data types and procedures that can manipulate the data, procedures can be 
exported to other modules, and the system invokes an initialization routine before execution begins. 
Monitors differ in that they support guard procedures. When a process invokes a guard procedure, 
its execution is delayed until no other processes are executing a guard procedure within the monitor. 
The Java programming language supports monitors using the synchronized primitive on meth-
ods within a class to prevent threads from simultaneously access of these methods (Arnold et  al. 
2005). Figure 52.10 revisits the mutual exclusion problem of Figure 52.1 using a solution written 
in Java. The definition of a monitor guarantees that the variable balance is not updated and read 
simultaneously.

Monitors are a programming language construct that must be implemented using a lower level facil-
ity provided by the hardware or operating system, such as semaphores. Although monitors provide 

int semid;

Initialization()
{
semid = semcreate(1);  /* initialize the semaphore count to 1 */
}

BeginRegion()
{
    semwait(semid);
}

EndRegion()
{
    semsignal(semid);
}

FIGURE 52.8  Mutual exclusion using semaphores.
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mutual exclusion, they need additional primitives to provide synchronization. To do so, monitors are 
defined to have condition variables, which are waited on and signaled similar to semaphores. Java pro-
vides a single, unnamed condition for a class with the wait() method used by a thread to wait on the 
condition and the notify() or notifyAll() methods to wake up one or all waiting threads. These 
primitives allow other synchronization problems such as the producer/consumer problem to be imple-
mented with monitors.

int psem, csem; /* semaphores */
int n = 0;      /* shared by all processes */
main()
{
    int producer(), consumer();
    csem = semcreate(0);  /* consumer initially blocks */
    psem = semcreate(1);  /* producer initially allowed to run */
    CreateProcess(producer);
    CreateProcess(consumer);
    /* wait until done */
}
producer()
{
    int i;
    for (i=0; i<2000; i++) {
        wait(psem);
        n++;  /* increment n by 1 */
        signal(csem);
    }
}
consumer()
{
    int i;
    for (i=0; i<2000; i++) {
        wait(csem);
        printf(“n is %d\n”, n);  /* print value of n */
        signal(psem);
    }
}

FIGURE 52.9  Bounded-buffer producer/consumer problem with semaphores.

public class Account {
    private int balance;

    public Account() {
        balance = 0;        // initialize balance to zero
    }

    // use synchronized to prohibit concurrent access of balance
    public synchronized void Deposit(int deposit) {
        int newbalance; // local variable

        newbalance = balance + deposit;
        balance = newbalance;
    }

    public synchronized int GetBalance() {
        return balance;          // return current balance
    }
}

FIGURE 52.10  Mutual exclusion using Java monitors.
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52.3.1.5  Hybrid Solutions

Modern operating systems have migrated from monolithic systems written for a uniprocessor in which 
critical regions were used to access shared data structures. These critical regions were guarded by setting 
the interrupt level appropriately. Current operating systems must not only support multiprocessors but 
also provide real-time capabilities, thus leading to multithreaded designs. In these designs, the use of 
interrupts to control access to shared data does not work. Rather, these systems have moved to solutions 
using complex locks, which combine the use of spin locks with the semantics of semaphores.

As one example, the Solaris operating system uses adaptive mutex locks (Eykholt et al. 1992), a type 
of complex lock, to protect access to shared data among a set of threads. The adaptive lock starts out 
executing like a standard spin lock. If the lock is currently free, then the issuing thread immediately 
obtains the lock. However, if the lock is in use, then the operating system checks the status of the thread 
holding the lock. If this thread is currently in the run state (as could be the case on a multiprocessor), 
then the issuing thread continues in a spin lock waiting for what is expected to be a short time for the lock 
to be released. If the holding thread is not in the run state (as would always be the case on a uniprocessor), 
then the issuing thread is suspended until the lock is released. The rationale is to use a spin lock if the wait 
for the lock is expected to be short and to actually suspend the thread if the wait is expected to be longer.

This hybrid approach tries to minimize overhead and maximize performance. If the size of a critical 
region is large (hundreds of instructions), then the adaptive mutex lock is less desirable compared to a 
lock that simply causes a thread to suspend when the lock is not available.

Another hybrid solution is the Linux construct futex (fast userspace mutex) (Franke et al. 2002). This 
construct allows a task to acquire a lock without making a system call if there are currently no other 
tasks waiting for the lock, but if it fails to acquire the lock then a system call is made to wait.

Another type of complex lock used in multithreaded operating systems is a read/write lock. These 
locks allow either a single writer or multiple readers to simultaneously hold the lock, thus increasing the 
parallelism when reading of a shared data structure predominates. Writers must wait until all readers 
have released the lock before obtaining the lock, whereas readers are granted immediate access to the 
lock in the absence of a writer. To prevent starvation of a writer, all read requests after a write request 
has been issued are queued until the write request has been satisfied. Starvation of readers in the face of 
multiple writers is similarly avoided.

52.3.1.6  Earlier Solutions

Many other synchronization primitives were initially proposed, but in general can be expressed in 
terms of the solutions already given. A sampling of these earlier primitives are critical regions (Hansen 
1972, Hoare 1972), serializers (Atkinson and Hewitt 1979), path expressions (Campbell and Habermann 
1974), and event counts and sequencers (Reed and Kanodia 1979).

52.3.2  Interprocess Communication Mechanisms

As with synchronization, a variety of IPC mechanisms are available. The following discusses a number 
of these mechanisms and how they handle the IPC issues raised in Section 52.2.

52.3.2.1  Direct Message Passing

The simplest form of message passing is to send messages directly from one process to another. An 
example of this approach is the low-level message passing facility used in the Xinu operating system 
(Comer 2011). Where send() sends a fixed, integer-sized message to a specific process and receive() 
returns the last message sent to it. A process can buffer only one message. If send() detects a message 
already buffered at the process then it returns immediately with an error, not delivering the message. If 
no message is buffered, then send() buffers the message and readies the receiving process if it is wait-
ing for a message. The receive() operation blocks if a message is not available.
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Another direct message passing mechanism is implemented in Minix (Tanenbaum 1987) where 
send() sends the given message to a specific destination process and receive() receives a message 
from a particular process. The source process for receive() can contain a wildcard value of ANY, 
indicating that messages from any process are accepted. Messages are a fixed size, but there is no buff-
ering. Rather the send() and receive() operations rendezvous so that both operations block until 
the receiving process has actually copied the message from the sender. The use of rendezvous explicitly 
synchronizes the execution of the sending and receiving process.

52.3.2.2  Mailboxes/Ports

Rather than send directly to process, a more common approach is to define another operating system 
abstraction called a mailbox (also referred to as a port). Mailboxes are buffers that hold messages sent by 
one process to be received by another process. Thus, there is indirect communication between the two 
processes. The primitives for handling messages are

•	 send(mailbox, &message)
•	 receive(mailbox, &message)

where send() buffers the message in the given mailbox and receive() removes a message from the 
mailbox.

As an example, the Unix operating system provides ports to allow for intra- and inter-machine com-
munication between processes. Ports often represent well-known services where a server process binds 
to a port and client processes of the service send requests to the port. The port buffers communication 
sent to the buffer until it is read by the receiving process. The messages sent to the port can be of vari-
able size.

Message passing can also be implemented by using shared memory and semaphores, illustrating the 
equivalence of synchronization and IPC primitives. Figure 52.11 shows message passing with shared 
memory and semaphores to implement a set of mailboxes. The mechanism uses fixed-size messages with 
each of four mailboxes containing eight message buffers. The send() operation blocks if there is no 
buffer space in the mailbox; similarly, the receive() operation blocks if there is no message available 
in the mailbox. The mutex semaphore is needed to guarantee that no more than one process tries to send 
to or receive from a mailbox at the same time. This semaphore would not be needed if only one process 
could send to and receive from a mailbox. The mutex semaphore would also not be needed if a mailbox 
contained only one buffer slot. This is also an example of a bounded-buffer producer/consumer problem 
where sending processes produce messages and receiving processes consume them.

52.3.2.3  Pipes

A special case of IPC is the pipe abstraction available, which was first available in the Unix operating 
system. A pipe is a unidirectional, stream communication abstraction. One process writes data to the 
write end of the pipe, and a second process reads data from the read end of the pipe. The pipe itself is a 
buffer between the two processes that causes the reader to block if no data are available and the writer to 
block if the buffer is full. As it implements a stream abstraction, there is no notion of fixed-size messages. 
A pipe is another example of a solution to the bounded-buffer producer/consumer problem where the 
writing process is a producer and the reading process is a consumer.

Figure 52.12 shows a simple example of the use of pipes in the Unix operating system. Pipes are typi-
cally requested and set up by a Unix command interpreter, but the example shows one process creating 
another process with fork() with a pipe between them. A string of characters is then written to and 
read from the pipe.

52.3.2.4  Events

Events provide synchronization via a primitive form of IPC. They allow a process to learn of an exter-
nally generated event. Environments with events may provide primitives for asynchronously handling 
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events, synchronously handling events or synchronously handling one of multiple events. An example 
for each of these in Unix operating system is provided in the following.

Events for a Unix process are generated as software interrupts. They are similar to hardware inter-
rupts in that when an interrupt of a process occurs, an interrupt handler routine corresponding to the 
type of interrupt is invoked. Interrupts are asynchronous so, when an interrupt is received, execution 
of the process stops and is restarted after the interrupt handling routine has been executed. Software 
interrupts are sent to a process using the process id of the process. Many interrupts are used for well-
known functions such as when the user types the interrupt key, a child process completes, or an alarm 
scheduled by the process has expired.

Two routines are used to send and handle software interrupts:

•	 SendInterrupt(pid, num): An interrupt of type num is sent to process pid. In the Unix 
operating system this routine is kill().

•	 HandleInterrupt(num, handler): This specifies that user supplied handler routine 
should be invoked when interrupt of type num occurs. Typical handlers are to ignore the inter-
rupt, terminate the process, or execute a user supplied interrupt handler. In the Unix operating 
system, this routine is signal().

#define N 8                     /* number of msgs buffered in a mailbox */
#define M 4                     /* number of mailboxes */

Message mailboxes[M][N];        /* shared memory for mailboxes of messages */

int semidMsg[M];                /* message available */
int semidSlot[M];               /* slot available */
int semidMutex[M];              /* controls access to critical region */

Initialization()
{
    int i;

    for (i = 0; i < M; i++) {
        semidMsg[i] = semcreate(0);   /* no messages are available */
        semidSlot[i] = semcreate(N);  /* N slots are available for messages */
        semidMutex[i] = semcreate(1); /* one process can enter region */
        /* initialize indices for inserting/deleting in mailboxes[i] */
    }
}

send(int m, Message *pmsg)       /* send message to mailbox m */
{
    semwait(semidSlot[m]);       /* is a slot available */
    semwait(semidMutex[m]);      /* enter critical region */
    addmessage(m, pmsg);         /* add msg to circular queue for mailbox m */
    semsignal(semidMutex[m]);    /* exit critical region */
    semsignal(semidMsg[m]);      /* signal message available */
}

receive(int m, Message *pmsg)    /* retrieve message from mailbox m */
{
    semwait(semidMsg[m]);        /* is a message available */
    semwait(semidMutex[m]);      /* enter critical region */
    removemessage(m, pmsg);      /* remove next msg from queue for mailbox m */
    semsignal(semidMutex[m]);    /* exit critical region */
    semsignal(semidSlot[m]);     /* signal slot available */
}

FIGURE 52.11  Message passing with semaphores and shared memory.



52-15Process Synchronization and Interprocess Communication

Figure 52.13 shows a sample program for the Unix operating system with software interrupts. It sets 
up two interrupt handlers for signals 1 and 2 and then goes into an infinite loop where it updates a 
counter and sleeps for 1 s. Figure 52.13 also shows a command line script with this program. Invoking 
the interrupt character from the command interpreter causes interrupt 2 to be sent to the process. The 
second invocation of the program causes it to be run in the background with a process id of 20822. The 
kill program is then used to send interrupts to the background process.

In some cases, it is desirable to wait for such events in a synchronous manner. Unix provides system 
calls that block a process until a given interrupt is received. For example, sleep() causes a timer to be 
set with the process blocking until the corresponding alarm software interrupt is generated. Similarly, 
the wait() system call blocks a process until a software interrupts signally the completion of a child 
process is generated.

In other cases, a process may need to wait for one from a number of events to occur. One example of 
this situation is a networked server, which may be looking to know when incoming data or connections 
from multiple network sockets are available while at the same time wanting a timeout event if none 
occur within a period of time. Figure 52.14 shows a sample function for the Unix operating system using 
the select() system call to multiplex the occurrence of multiple events where activity is detected on 
a file descriptor (socket) or the given timeout is reached. The function can be easily extended to handle 
detection of activity on multiple file descriptions.

52.3.3  Classic Problems

Two classic synchronization problems—the critical region and bounded-buffer producer/consumer—
have already been discussed. A slight variation of the producer/consumer problem is to use an unbounded 
buffer, in which case the producer never blocks because the buffer never fills. Many other classic syn-
chronization problems have been proposed and solved. The following describes two such problems.

52.3.3.1 R eaders/Writers Problem

The readers/writers problem occurs when multiple readers and writers want access to a shared object 
such as a database. The problem was introduced in Courtois et al. (1971). In the problem, multiple 

#define DATA “hello world”
#define BUFFSIZE 1024

int rgfd[2];              /* file descriptors of pipe ends */

main()
{
    char sbBuf[BUFFSIZE];

    pipe(rgfd);           /* create a pipe returning two file descriptors */
    if (fork()) {         /* parent, read data from pipe */
        close(rgfd[1]);   /* close write end */
        read(rgfd[0], sbBuf, BUFFSIZE);
        printf(“Pipe contents: %snn”, sbBuf);
        close(rgfd[0]);
    }
    else {                /* child, write data to pipe */
        close(rgfd[0]);   /* close read end */
        write(rgfd[1], DATA, sizeof(DATA)); /* write data to pipe */
        close(rgfd[1]);
        exit(0);
    }
}

FIGURE 52.12  Pipe example in the Unix operating system.
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int WaitForEvent(int fdIn, int timeout)
{
    fd_set bvfdRead;
    struct timeval tv;

    tv.tv_sec = timeout; /* put timeout secs into timeval struct */
    tv.tv_usec = 0;
    FD_ZERO(&bvfdRead);
    FD_SET(fdIn, &bvfdRead);    /* fd to look for input */
    /* size of bitmap to watch is one more than value of fdIn */
    return(select(fdIn+1, &bvfdRead, 0, 0, &tv));
}

FIGURE 52.14  Sample function to wait for multiple events in Unix.

#include <signal.h>

int n;

main(int argc, char **argv)
{
    void InterruptHandler(), InitHandler();

    n = 0;

    signal(SIGINT, InterruptHandler); /* signal 2 */
    signal(SIGHUP, InitHandler);      /* signal 1 */
    while (1) {
        n++;
        sleep(1);                     /* sleep for one second */
    }
}

void InterruptHandler()
{
    printf(“The current value of n is %dnn”, n);
    exit(0);
}

void InitHandler()
{
    printf(“Resetting the value of n to zeronn”);
    n = 0;
}

% cc −o signalex signalex.c
% signalex
ˆC             (interrupt character)
The current value of n is 3
% signalex &
[1] 20822
% kill −1 20822
Resetting the value of n to zero
% kill −2 20822
The current value of n is 19
[1]    Done                 signalex

FIGURE 52.13  Software interrupt program and script in the Unix operating system.
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readers are allowed to access the database simultaneously, but a writer must have exclusive access to 
the database before performing any updates for consistency. A practical example of this problem is an 
airline reservation system with many readers and an occasional update of the information.

Figure 52.15 shows a solution to this problem for multiple reader and writer processes with sema-
phores. The solution allows multiple readers access to the database at a time. A writer process can gain 
access only after all reader processes have relinquished the database. The solution gives priority to reader 
processes, who can gain access to the database even if a writer process is already requesting access to 
the database. Solutions giving more balanced priority to each type of process can also be constructed as 
discussed in (Flynn and McHoes 2011).

52.3.3.2  Dining Philosophers Problem

The dining philosophers problem was proposed and solved by Dijkstra (1971). It consists of five philoso-
phers sitting at a round table. Philosophers each have a bowl of rice in front of them and there is a chop-
stick in between each bowl (alternately, the problem is described using plates of spaghetti and forks). 

int readercount = 0;            /* number of readers currently reading */
int readermutex;                /* semaphore mutex for reader count */
int dbaccess;                   /* semaphore to control access to database */

main()
{
    readermutex = semcreate(1); /* mutex for reader count */
    dbaccess = semcreate(1);    /* mutex for database */
    CreateProcess(reader);      /* create a reader process */
    CreateProcess(writer);      /* create a writer process */
}

reader()
{
    while (TRUE) {
        semwait(readermutex);      /* get access to readercount */
        readercount++;             /* increment count */
        if (readercount == 1)      /* if first reader … */
            semwait(dbaccess);     /* gain access to database */
        semsignal(readermutex);    /* done with count */
        /* read database */
        semwait(readermutex);      /* get access to readercount */
        readercount−−;             /* decrement count */
        if (readercount == 0)      /* if last reader … */
            semsignal(dbaccess);   /* relinquish access to database */
        semsignal(readermutex);    /* done with count */
        /* use data read */
    }
}

writer()
{
    while (TRUE) {
        /* generate new data */
        semwait(dbaccess);          /* gain access to database */
        /* update database */
        semsignal(dbaccess);        /* relinquish access to database */
    }
}

FIGURE 52.15  Solution to the readers/writers problem with semaphores. Based on statements of the algorithm in 
Tanenbaum (2008). (From Tanenbaum, A., Modern Operating System, 3rd edn., Prentice Hall, Upper Saddle River, 
NJ, 2008.)
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The problem is illustrated in Figure 52.16 with the philosophers’ bowls labeled A–E and the chopsticks 
1–5. These philosophers have two functions in life: think, requiring no interaction with colleagues, and 
eat, requiring the philosopher to pick up the chopstick on the left and right.

This classic synchronization problem has potential for both deadlock and starvation (literally!). The 
straightforward solution for a philosopher to eat is to first pick up the left chopstick and then the right 
chopstick. However, if all philosophers pick up their left chopstick at the same time, they will all dead-
lock when they go to pick up their right chopstick. A simple modification to this approach is for the 
philosophers to put down the left chopstick if the right chopstick is not available, wait for some time, and 
try again. However, there is still a chance that the philosophers will operate in lock step and no philoso-
phers will acquire both chopsticks. This condition is called livelock and occurs when attempts by two 
or more processes (philosophers) to acquire a resource (the left and right chopsticks) run indefinitely 
without any process succeeding. The dining philosophers problem will be used as a guide in the follow-
ing discussion on deadlock and starvation.

52.3.4  Deadlock and Starvation

Deadlock occurs when a set of processes using shared resources are permanently blocked trying to 
gain access to those resources. Classic papers on this topic are Coffman et al. (1971) and Holt (1972). 
Zobel and Koch (1988) contains an annotated bibliography on the subject. Deadlock can occur with 
synchronization such as when two processes each need to gain access to two separate critical regions 
for execution. If one process gains access to the first critical region and the other process gains access 
to the second critical region, then these two processes will be in deadlock when they attempt to acquire 
the other needed critical region.

There are four principles used for dealing with the issue of deadlock in operating systems. These prin-
ciples are prevention, detection, avoidance, and recovery and are summarized in Isloor and Marsland 
(1980). Solutions to the deadlock problem exemplifying these principles are described in the following. 
Each of these solutions prevents deadlock by precluding one or more of the four conditions for deadlock 
given in Section 52.2. The solutions are characterized as being conservative or liberal depending on the 
degree of concurrency they allow.

The most liberal solution is to allocate requested resources to processes if the resources are avail-
able. This approach was given as an initial solution when introducing the dining philosophers problem. 
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FIGURE 52.16  Illustration of the dining philosophers problem.
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As was shown, it can lead to deadlock and requires that a deadlock detection process be periodically 
invoked. Deadlock detection involves detecting the circular wait condition through any algorithm 
for detecting cycles in directed graphs. Once deadlock occurs, a deadlock recovery method must be 
invoked either to take away resources from a victim process or to terminate the process altogether. In 
the dining philosophers problem, a recovery method would be to take away a chopstick from one of the 
philosophers.

At the other extreme, the most conservative deadlock prevention solution is serialization. This dead-
lock prevention approach guarantees no deadlock by allowing only one process to acquire resources at 
a time. In the dining philosophers problem, this approach means that only one philosopher is allowed 
to eat at any time. The approach prevents any concurrency and can lead to starvation if a philosopher is 
constantly passed over in obtaining chopsticks.

Another solution that allows more concurrency but still prevents deadlock is one-shot allocation. This 
approach requires that a process obtain all of its resources at once. Using this approach, a dining phi-
losopher must obtain both chopsticks at the same time. It avoids deadlock by preventing the hold and 
wait condition. This solution prevents deadlock but not starvation. It also requires that a process obtain 
all of its resources at the same time even if it does not currently need all of them.

A still more liberal solution that prevents deadlock is hierarchical allocation. This solution requires 
that all resources have a number associated with them as in Figure 52.16. Hierarchical allocation pre-
vents deadlock by requiring that processes can acquire only resources with a higher number than any 
resource it currently holds. Thus, in Figure 52.16, each philosopher must first acquire the left chopstick 
and then the right except for Philosopher E, who must first acquire the right chopstick. This solution is 
still conservative and requires processes to acquire resources not necessarily in the order they are needed 
but in the order resources are numbered. It avoids deadlock by preventing the circular wait condition.

As opposed to deadlock prevention, deadlock avoidance policies do not prevent deadlock a priori 
but monitor the allocation requests as they are made so as not to allow deadlock to occur. A solution 
using this approach is the bankers algorithm (also called the advanced claim algorithm) introduced in 
Dijkstra (1968). This solution is the most liberal that avoids deadlock but requires that each process 
know the maximum number from a class of resources that it may request at any time during execution. 
The algorithm performs as a banker giving out loans of money in that any resource requests are granted 
only if they

	 1.	 Do not exceed the total number of resources in a class
	 2.	 Do not exceed the maximum number of resources for that process
	 3.	 Lead to a safe state where a sequence of resource deallocations and allocations can allow all pro-

cesses to complete without deadlock

52.4 R esearch Issues and Summary

The research issues in synchronization and IPC correspond to the movement toward multithreaded 
systems running in multiprocessor/core environments. The adoption of traditional synchronization 
primitives for these environments and the exploration of better primitives is leading to work on hybrid 
approaches for synchronization. This work has also extending to distributed environments.

Research work continues on extending synchronization primitives and defining new problems. 
The issue of performance is a key area as researchers seek to minimize the cost of busy waiting in 
shared memory multi-processors/cores by using virtual memory to reduce memory access costs. Other 
research is investigating optimal tradeoff between the use of busy waiting for a lock versus suspending 
the thread or process. Performance is also a research issue for IPC mechanisms in client/server systems 
as they execute in intra- and inter-machine environments.

An ongoing research issue is correctness, particularly as the synchronization problems of modern 
operating systems become more complex. Ad hoc synchronization and its associated problems continue 
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to exist (Xiong et al. 2010). Using language constructs to better encapsulate the synchronization details 
is being explored, but this approach can lead to tradeoffs with performance. Tools for detecting synchro-
nization errors are also an ongoing area of research.

In summary, synchronization and IPC are fundamental to multiprogrammed operating system 
design. Many primitives to solve fundamental problems such as mutual exclusion and producer/
consumer exist ranging from software only approaches, to special hardware instructions, to primitives 
constructed by the operating system and programming languages. Many of the primitives are equiva-
lent in terms of their semantics, and one can be implemented in terms of another. Examples include 
implementing monitors with semaphores or message passing with shared memory and semaphores. 
Modern operating systems are using hybrid approaches, which adaptively switch between techniques 
according to the run-time operating environment.

Glossary

Busy waiting: Situation in synchronization when a process continuously polls the status of a condition 
variable.

Critical region: Set of instructions for a process that access data shared with other processes. Only one 
process may execute its critical region at a time.

Deadlock: Condition when a set of processes using shared resources or communicating with each other 
are permanently blocked.

Interprocess communication (IPC): Communication between two (or more) processes directly aware 
of each other.

Livelock: Condition when attempts by two or more processes to acquire a resource run indefinitely 
without any process succeeding.

Mailbox: An operating system abstraction containing buffers to hold messages. Messages are sent to 
and received from the mailbox by processes.

Monitor: Programming language construct providing abstract data types and mutually exclusive access 
to a set of guard procedures.

Mutual exclusion: A synchronization problem requiring that two or more concurrent activities do not 
simultaneously access a shared resource.

Priority inversion: Situation where a lower priority process affects access to a resource by a higher 
priority process.

Race condition: Situation where multiple processes access and manipulate shared data with the out-
come dependent on the relative timing of these processes.

Semaphore: Synchronization primitive consisting of an identifier, a counter, and a queue where pro-
cesses waiting on a semaphore are blocked and placed on the queue; processes signaling a 
semaphore may unblock and remove a process from the queue, and the counter maintains a 
count of waiting processes.

Spin lock: Mutual exclusion mechanism where a process spins in an infinite loop waiting for the value 
of a lock variable to indicate availability.

Starvation: Condition when a process is indefinitely denied access to a resource while other processes 
are granted access to the resource.

Synchronization: Situation when two or more processes coordinate their activities based upon a 
condition.

Further Information

Many good text books on operating systems, such as those by Silberschatz et al. (2012), Tanenbaum 
(2008), and Stallings (2012) exist, which describe problems, issues, and solutions for synchroniza-
tion and IPC. The book Principles of Concurrent and Distributed Programming by M. Ben-Ari (1990) 
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contains a number of problems and worked out solutions for both concurrent and distributed program-
ming. Algorithms for Mutual Exclusion by M. Raynal (1986) presents a comprehensive treatment of solu-
tions for the mutual exclusion problem. Andrews and Schneider (1983) provide a survey of processes, 
synchronization, and interprocess communication.

The Association for Computing Machinery (ACM) Special Interest Group on Operating Systems 
(SIGOPS) publishes Operating Systems Review four times a year. This publication contains work on 
a variety of operating system topics including synchronization. This group also sponsors the biennial 
ACM Symposium on Operating Systems Principles that cover the latest developments in the field of oper-
ating systems. Its proceedings are published in an issue of Operating Systems Review. Another ACM 
publication, the ACM Transactions on Computer Systems is good source for relevant work.

The USENIX Association sponsors a number of conferences on operating system-related topics. 
A general technical conference is sponsored each year. Two conferences, the Symposium on Operating 
Systems Design and Implementation (OSDI) and Workshop on Hot Topics in Operating Systems (HOTOS) 
are specific to operating system issues.
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53.1  Introduction

Disciplined concurrent programming can improve the structure and performance of computer pro-
grams on both uniprocessor and multiprocessor systems. As a result, support for threads, or lightweight 
processes, has become a common element of new operating systems and programming languages.

A thread is a sequential stream of instruction execution. A thread differs from the more tradi-
tional notion of a heavyweight process in that it separates the notion of execution from the other 
state needed to run a program (e.g., an address space). A single thread executes a portion of a pro-
gram, while cooperating with other threads that are concurrently executing the same program. Much 
of what is normally kept on a per-heavyweight-process basis can be maintained in common for all 
threads in a single program, yielding dramatic reductions in the overhead and complexity of a con-
current program.

Concurrent programming has a long history. The operation of programs that must handle real-world 
concurrency (e.g., operating systems, database systems, and network file servers) can be complex and 
difficult to understand. Dijkstra (1968) and Hoare (1974, 1978) showed that these programs can be sim-
plified when structured as cooperating sequential threads that communicate at discrete points within 
the program. The basic idea is to represent a single task, such as fetching a particular file block, within a 
single thread of control, and to rely on the thread management system to multiplex concurrent activities 
onto the available processor. In this way, the programmer can consider each function being performed 
by the system separately and simply rely on automatic scheduling mechanisms to best assign available 
processing power.
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In the uniprocessor world, the principal motivations for concurrent programming have been improved 
program structure and performance. Multiprocessors offer an opportunity to use concurrency in parallel 
programs to improve performance, as well as structure. Moderately increasing a uniprocessor’s power can 
require substantial additional design effort, as well as faster and more expensive hardware components. 
But once a mechanism for interprocessor communication has been added to a uniprocessor design, the 
system’s peak processing power can be increased by simply adding more processors. A shared-memory 
multiprocessor is one such design in which processors are connected by a bus to a common memory.

Multiprocessors lose their advantage if this processing power is not effectively utilized. If there are 
enough independent sequential jobs to keep all of the processors busy, then the potential of a multipro-
cessor can be easily realized: each job can be placed on a separate processor. However, if there are fewer 
jobs than processors, or if the goal is to execute single applications more quickly, then the machine’s 
potential can only be achieved if individual programs can be parallelized in a cost-effective manner. 
Three factors contribute to the cost of using parallelism in a program:

•	 Thread overhead: The work, in terms of processor cycles, required to create and control a thread 
must be appreciably less than the work performed by that thread on behalf of the program. 
Otherwise, it is more efficient to do the work sequentially, rather than use a separate thread on 
another processor.

•	 Communication overhead: Again in terms of processor cycles, the cost of sharing information 
between threads must be less than the cost of simply computing the information in the context 
of each thread.

•	 Programming overhead: A less tangible metric than the previous two, programming overhead 
reflects the amount of human effort required to construct an efficient parallel program.

High overhead in any of these areas makes it hard to build efficient parallel programs. Costly threads 
can only be used infrequently. Similarly, if arranging communication between threads is slow, then the 
application must be structured so that little interthread communication is required. Finally, if manag-
ing parallelism is tedious or difficult, then the programmer may find it wise to sacrifice some speedup 
for a simpler implementation. Few algorithms parallelize well when constrained by high thread, com-
munication, and programming costs, although many can flourish when these costs are low.

Low overhead in these three areas is the responsibility of the thread management system, which 
bridges the gap between the physical processors (the suppliers of parallelism) and an application (its 
consumer). In this chapter, we discuss the issues that arise in designing a thread management system to 
support low-overhead parallel programming for shared-memory multiprocessors. In the next section, 
we describe the functionality found in thread management systems. Section 53.3 discusses a number 
of thread design issues. In Section 53.4, we survey three systems for shared-memory multiprocessors, 
Windows NT (Custer 1993), Presto (Bershad et al. 1988), and Multilisp (Halstead 1985), focusing our 
attention on how they have addressed the issues raised in this chapter.

53.2 T hread Management Concepts

53.2.1 A ddress Spaces, Threads, and Multiprocessing

An address space is the set of memory locations that can be generated and accessed directly by a pro-
gram. Address space limitations are enforced in hardware to prevent incorrect or malicious programs in 
one address space from corrupting data structures in others. Threads provide concurrency within a pro-
gram, while address spaces provide failure isolation between programs. These are orthogonal concepts, 
but the interaction between thread management and address space management defines the extent to 
which data sharing and multiprocessing are supported.

The simplest operating systems, generally those for older style personal computers, support only a 
single thread and a single-address space per machine. A single-address space is simpler and faster since 
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it allows all data in memory to be accessed uniformly. Separate address spaces are not needed on dedi-
cated systems to protect against malicious users; software errors can crash the system but at least are 
localized to one user, one machine.

Even single-user systems can have concurrency, however. More sophisticated systems, such as Xerox’s 
Pilot (Redell et al. 1980), provide only one address space per machine, but support multiple threads 
within that single-address space. Because any thread can access any memory location, Pilot provides 
a compiler with strong type checking to decrease the likelihood that one thread will corrupt the data 
structures of another.

Other operating systems, such as Unix, provide support for multiple-address spaces per machine, but 
only one thread per address space. The combination of a Unix address space with one thread is called 
a Unix process; a process is used to execute a program. Since each process is restricted from accessing 
data that belong to other processes, many different programs can run at the same time on one machine, 
with errors confined to the address space in which they occur. Processes are able to cooperate by sending 
messages back and forth via the operating system. Passing data through the operating system is slow, 
however; only parallel programs that require infrequent communication can be written using threads 
in disjoint address spaces.

Instead of using messages to share data, processes running on a shared-memory multiprocessor can 
communicate directly through the shared memory. Some Unix systems allow memory regions to be set 
up as shared between processes; any data in the shared region can be accessed by more than one process 
without having to send a message by way of the operating system. The Sequent Symmetry’s DYNIX and 
Encore’s UMAX (Encore 1986) are operating systems that provide support for multiprocessing based on 
shared memory between Unix processes.

More sophisticated operating systems for shared-memory multiprocessors, such as Microsoft’s 
Windows NT and Carnegie Mellon University’s Mach operating system (Tevanian et al. 1987), support 
multiple-address spaces and multiple threads within each address space. Threads in the same address 
space communicate directly with one another using shared memory; threads communicate across 
address space boundaries using messages. The cost of creating new threads is significantly less than 
that of creating whole address spaces, since threads in the same address space can share per-program 
resources. Figure 53.1 illustrates the various ways in which threads and address spaces can be organized 
by an operating system.

53.2.2  Basic Thread Functionality

At its most basic level, a thread consists of a program counter (PC), a set of registers, and a stack 
of procedure activation records containing variables local to each procedure. A thread also needs a 
control block to hold state information used by the thread management system: a thread can be run-
ning on a processor, ready-to-run but waiting for a processor to become available, blocked waiting 
for some other thread to communicate with it, or finished. Threads that are ready-to-run are kept on 
a ready-list until they are picked up by an idle processor for execution. There are four basic thread 
operations:

•	 Spawn: A thread can create or spawn another thread, providing a procedure and arguments to be 
run in the context of a new thread. The spawning thread allocates and initializes the new thread’s 
control block and places the thread on the ready-list.

•	 Block: When a thread needs to wait for an event, it may block (saving its PC and registers) and 
relinquish its processor to run another thread.

•	 Unblock: Eventually, the event for which a blocked thread is waiting occurs. The blocked thread is 
marked as ready-to-run and placed back on the ready-list.

•	 Finish: When a thread completes (usually by returning from its initial procedure), its control 
block and stack are deallocated, and its processor becomes available to run another thread.
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When threads can communicate with one another through shared memory, synchronization is nec-
essary to ensure that threads do not interfere with each other and corrupt common data structures. 
For example, if two threads each try to add an element to a doubly linked list at the same time, one 
or the other element may be lost, or the list could be left in an inconsistent state. Locks can solve 
this problem by providing mutually exclusive access to a data structure or region of code. A lock is 
acquired by a thread before it accesses a shared data structure; if the lock is held by another thread, 
the requesting thread blocks until the lock is released. (The code that a thread executes while hold-
ing a lock is called a critical section.) By serializing accesses, the programmer can ensure that threads 
only see and modify a data structure when it is in a consistent state. Whena program’s work is split 
among multiple threads, one thread may store a result read by another thread. For correctness, the 
reading thread must block until the result has been written. This data dependency is an example of 
a more general synchronization object, the condition variable, which allows a thread to block until 
an arbitrary condition has been satisfied. The thread that makes the condition true is responsible for 
unblocking the waiting thread.

One special form of a condition variable is a barrier, which is used to synchronize a set of threads at a 
specific point in the program. In the case of a barrier, the arbitrary condition is: Have all threads reached 
the barrier? If not, a thread blocks when it reaches the barrier. When the final thread reaches the barrier, 
it satisfies the condition and raises the barrier, unblocking the other threads.

If a thread needs to compute the result of a procedure in parallel, it can first spawn a thread to execute 
the procedure. Later, when the result is needed, the thread can perform a join to wait for the procedure 
to finish and return its result. In this case, the condition is: Has a given thread finished? This technique is 
useful for increasing parallelism, since the synchronization between the caller and the callee takes place 
when the procedure’s result is needed, rather than when the procedure is called.

Locks, barriers, and condition variables can all be built using the basic block and unblock operations. 
Alternatively, a thread can choose to spin-wait by repeatedly polling until an anticipated event occurs, 
rather than relinquishing the processor to another thread by blocking. Although spin-waiting wastes 
processor time, it can be an important performance optimization when the expected waiting time is less 

One address space
one thread

Multiple address spaces
one thread per address space

One address space
multiple threads

Multiple address spaces
multiple threads per address space

FIGURE 53.1  Threads and address spaces. MS-DOS is an example of a one address space, one thread system. 
A Java run-time engine is an example of one address space with multiple threads. The Unix operating system is an 
example of multiple-address spaces, with one thread per address space. Windows NT is an example of a system that 
has multiple-address spaces and multiple threads per address space.
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than the time it takes to block and unblock a thread. For example, spin-waiting is useful for guarding 
critical sections that contain only a few instructions.

53.3  Issues in Thread Management

This section considers the issues that arise in designing and implementing a thread management system 
as they relate to the programmer, the operating system, and the performance of parallel programs.

53.3.1  Programmer Issues

53.3.1.1  Programming Models

The flexibility to adapt to different programming models is an important attribute of thread systems. 
Parallelism can be expressed in many ways, each requiring a different interface to the thread system and 
making different demands on the performance of the underlying implementation. At the same time, a 
thread system that strives for generality in handling multiple models is likely to be well suited to none.

One general principle is that the programmer should choose the most restrictive form of synchroni-
zation that provides acceptable performance for the problem at hand. For coordinating access to shared 
data, messages are a more restrictive and, for many kinds of parallel programs, are a more appropriate 
form of synchronization than locks and condition variables. Threads share information by explicitly 
sending and receiving messages to one another, as if they were in separate address spaces, except that 
the thread system uses shared memory to efficiently implement message passing.

There are some cases where explicit control of concurrency may not be necessary for good parallel 
performance. For instance, some programs can be structured around a single-instruction multiple-data 
(SIMD) model of parallelism. With SIMD, each processor executes the same instruction in lockstep, but 
on different data locations. Because there is only one PC, the programmer need not explicitly synchro-
nize the activity of different processors on shared data, thus eliminating a major source of confusion 
and errors.

Perhaps the simplest programmer interface to the thread system is none at all: the compiler is com-
pletely responsible for detecting and exploiting parallelism in the application. The programmer can 
then write in a sequential language; the compiler will make the transformation into a parallel program. 
Nevertheless, the compiled program must still use some kind of underlying thread system, even if the 
programmer does not. Of course, there are many kinds of parallelism that are difficult for a compiler to 
detect, so automatic transformation has a limited range of use.

53.3.1.2  Language Support

Threads can be integrated into a programming language; they can exist outside the language as a set of 
subroutines that explicitly manage parallelism; or they can exist both within and outside the language, 
with the compiler and programmer managing threads together.

Language support for threads is like language support for object-oriented programming or garbage 
collection: it can be a mixed blessing. On one hand, the compiler can be made responsible for com-
mon bookkeeping operations, reducing programming errors. For example, locks can automatically 
be acquired and released when passing through critical sections. Further, the types of the arguments 
passed to a spawned procedure can be checked against the expected types for that procedure. This is 
difficult to do without compiler support.

On the other hand, language support for threads increases the complexity of the compiler, an impor-
tant factor if a multiprocessor is to support more than one programming language. Further, the con-
currency abstractions provided by a single parallel programming language may not do quite what the 
programmer wants or needs, making it necessary to express solutions in ways that are unnatural or 
inefficient.
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A reasonable way of getting most of the benefits of language support without many of the disad-
vantages is to define both a language and a procedural interface to the thread management system. 
Common operations can be handled transparently by the compiler, but the programmer can directly 
call the basic thread management routines when the standard language support proves insufficient.

53.3.1.3  Granularity of Concurrency

The frequency with which a parallel program invokes thread management operations determines its 
granularity. A fine-grained parallel program creates a large number of threads, or uses threads that 
frequently block and unblock, or both. Thread management cost is the major obstacle to fine-grained 
parallelism. For a parallel program to be efficient, the ratio of thread management overhead to useful 
computation must be small. If thread management is expensive, then only coarse-grained parallelism 
can be exploited.

More efficient threads allow programs to be finer grained, which benefits both structure and per-
formance. First, a program can be written to match the structure of the problem at hand, rather than 
the performance characteristics of the hardware on which the problem is being solved. Just as a single-
threaded environment on a uniprocessor can prevent the programmer from composing a program to 
reflect the problem’s logical concurrency, a coarse-grained environment can be similarly restrictive. 
For example, in a parallel discrete-event simulation, physical objects in the simulated system are most 
naturally represented by threads that simulate physical interactions by sending messages back and forth 
to one another; this representation is not feasible if thread operations are too expensive.

Performance is the other advantage of fine-grained parallelism. In general, the greater the length of 
the ready-list, the more likely it is that a parallel program will be able to keep all of the available proces-
sors busy. When a thread blocks, its processor can immediately run another thread provided one is on 
the ready-list. With few threads though, as in a coarse-grained program, processors idle, while threads 
do I/O or synchronize with one another.

The performance of a fine-grained parallel program is less sensitive to changes in the number of 
processors available to an application. For example, consider one phase of a coarse-grained parallel 
program that does 50 CPU min worth of work. If the program creates five threads on a five-processor 
machine, the phase finishes in just 10 min. But if the program runs with only four processors, then the 
execution time of the phase doubles to 20 min: 10 min with four processors active followed by 10 min 
with one processor active. (Preemptive scheduling, which could be used to address this problem, has a 
number of serious drawbacks, which are discussed subsequently.) If the program had originally been 
written to use 50 threads, rather than 5, then the phase could have finished in only 13 min, a reasonable 
degradation in performance.

Of course, one could argue that the programmer erred in writing a program that was dependent on 
having exactly five processors. The program should have been parameterized by the number of proces-
sors available when it starts. But, even so, good performance cannot be ensured if that number can vary, 
as it can on a multiprogrammed multiprocessor. We consider further the issues of multiprogramming 
in the next section.

53.3.2  Operating System Issues

53.3.2.1  Multiprogramming

Multiprogramming on a uniprocessor improves system performance by taking advantage of the natural 
concurrency between computation and I/O. While one program waits for an I/O request, the processor 
can be running some other program. Because the processor and I/O devices are kept busy simultane-
ously, more jobs can be completed per unit time than if the system ran only one program at a time.

A multiprogrammed multiprocessor has an analogous advantage. Ideally, periods of low parallelism 
in one job can be overlapped with periods of high parallelism in another job. Further, multiprogramming 
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allows the power of a multiprocessor to be used by a collection of simultaneously running jobs, none of 
which by itself has enough parallelism to fully utilize the multiprocessor.

53.3.2.2  Processor Scheduling

Processor scheduling can be characterized by whether physical processors are assigned directly to 
threads or they are first assigned to jobs and then to threads within those jobs. The first approach, called 
one-level scheduling, makes no distinction between threads in the same job and threads in different 
jobs. Processors are shared across all runnable threads on the system so that all threads make progress 
at relatively the same rate. In this case, threads from all jobs are placed on one ready-list that supplies 
all processors, as shown in Figure 53.2. Although this scheme makes sense for a uniprocessor operating 
system, it has some unpleasant performance implications on a multiprocessor.

The most serious problem with one-level scheduling occurs when the number of runnable threads 
exceeds the number of physical processors, because preemptive scheduling is necessary to allocate pro-
cessor time to threads in a fair manner. With preemption, a processor can be taken away from one 
thread and given to another at any time. In a sequential program, preemption has a well-defined effect: 
the program goes from the running state to the nonrunning state as its one thread is preempted. The 
effect of preemption on the performance of a sequential program is also well defined: if n CPU-intensive 
jobs are sharing one processor in a preemptive, round-robin fashion, then each job receives 1/nth of the 
processor and is slowed down by a factor of n (modulo the preemption and scheduling overhead).

For a parallel program, though, the effects of untimely processor preemption on performance can be 
more dramatic. In the previous section, we saw how a coarse-grained program can be slowed down by a 
factor of two when the number of processors is decreased from five to four. That program exemplified a 
problem that occurs more generally with preemption and barrier-based synchronization. The program 
had an implicit barrier, which was the final instruction in the phase. Until all threads reached that 
instruction, the program could not continue. When one processor was removed, it took twice as long to 
reach the barrier because not all threads within the job could make progress at an equal rate.

Preemptive multiprocessor scheduling also affects program performance when locks are used, but 
for a different reason than with barriers. Suppose a thread holding a lock while in a critical section 
is unexpectedly preempted by the operating system. The lock will remain held until the thread is 
rescheduled. As threads on other processors try to acquire the lock, they will find it held and be 
forced to block. It is even possible that, as more threads block waiting for the lock to be freed, the 
number of that job’s runnable threads drops to zero and the application can make no progress until 
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FIGURE 53.2  One-level thread scheduling.
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the preempted thread is rescheduled. The overhead of this unnecessary blocking and unblocking 
slows down the program’s execution.

In the previous section, we saw how fine-grained parallelism can improve a program’s performance 
by increasing the chance that a processor will find another runnable thread when its current thread 
blocks. Unfortunately, a fine-grained parallel program that packs the ready-list interacts badly with the 
behavior of a one-level scheduler. In particular, when a program’s thread blocks in the kernel on an I/O 
request, the parallelism of the program can only be maintained if the kernel can schedule another of the 
program’s threads in place of the one that blocked. This benefit, though, comes at the cost of increased 
preemption activity and diminished overall performance.

The problems of one-level scheduling are addressed by two-level schedulers. With a two-level sched-
uler, processors are first assigned to a job, and then threads within that job are executed only on the 
assigned processors. Each job has its own ready-list, which is used only by the job’s processors, as shown 
in Figure 53.3. Thread preemption may no longer be necessary with a two-level scheduler since a pre-
empted thread will only be replaced by another thread from the same job. Further, for long intervals, 
a processor runs only threads from the same application, and so the cost of switching between threads 
is kept low.

In a two-level scheduling system, processors can be allocated to jobs either statically or dynamically. 
A static two-level scheduler never changes the number of processors given to a job from its initial allo-
cation; if some of those processors are needed by another job, the operating system must preempt all 
of the job’s processors. A dynamic scheduler can adapt the number of processors assigned to each job 
according to changing conditions.

Dynamic two-level scheduling can give better performance, because it overlaps periods of poor par-
allelism in one job with periods of high parallelism in another. One difficulty with a dynamic scheduler 
is that it requires more information from an application describing the current processor requirements. 
As a result, though, dynamic scheduling can also more easily handle changes in the number of running 
jobs. For example, when a job finishes, its processors can be reallocated to a running job whose parallel-
ism is increasing. To avoid the problems of one-level scheduling, though, it is crucial that the operating 
system coordinate with each application when it needs to preempt processors (e.g., to avoid preempting 
a processor when it would seriously affect performance). A dynamic scheduler always has the option, 
when it needs processors and no application has any available, of reverting to a static policy.

53.3.2.3  Kernel- versus User-Level Thread Management

Processor scheduling controls the allocation of processors to jobs. The operating system must be respon-
sible for processor scheduling because processors are a hardware resource and shifting a processor from 

Processors

P0 P1

Job D:  thread 1
Job A:  thread 8

Job A:  thread 3
Job A:  thread 7

Job A:  thread 10
Job-specific

thread ready-lists

Job D:  thread 12

Job D:  thread 9

Job D:  thread 5

Job D:  thread 16

P2 P3 P4

FIGURE 53.3  Two-level thread scheduling.



53-9Thread Management for Shared-Memory Multiprocessors

one job to another involves updating per-processor address space hardware registers. Spawning a thread 
so that it runs on an already allocated processor, however, does not require modifying privileged state. 
Thus, thread management and scheduling within a job can be done entirely by the application instead of 
by the operating system. In this case, thread management operations can be implemented in an applica-
tion-level library. The library creates virtual processors using the operating system’s processor schedul-
ing interface and schedules the application’s threads on top of these virtual processors.

Unlike processor allocation, where a single systemwide scheduling policy can be used, thread sched-
uling policies benefit from being application specific. Some applications perform well if their threads are 
scheduled according to some fixed policy, such as first-in–first-out or last-in–first-out, but others need 
to schedule threads according to fixed or even dynamically changing priorities. For example, consider 
a parallel simulation where each simulation object is represented by its own thread. Different objects 
become sequential bottlenecks at different times in the simulation; the amount of parallelism can be 
increased by preferentially scheduling these objects’ threads.

It is difficult to provide sufficient thread scheduling flexibility with kernel-level threads. While the 
kernel could define an interface that allows each application to select its thread scheduling policy, it is 
unlikely that the system designer could foresee all possible application needs.

Thread management involves more than scheduling. A trade-off exists between user- and kernel-level 
thread management. A user-level implementation provides more flexibility and better performance; 
implementing threads in the kernel guarantees a uniformity that eases the integration of threads with 
system tools.

The downside of having many custom-built thread management systems is that there is no standard 
thread. By implication, a kernel-level thread management system defines a single, systemwide thread 
model that is used by all applications. Operating systems that support only one thread model, like those 
that support only one programming language, can more easily provide sophisticated utilities, such as 
debuggers and performance monitors. These utilities must rely on the abstraction and often the imple-
mentation of the thread model, and a single model makes it easier to provide complete versions of these 
tools since their cost can be amortized over a large number of applications. Peripheral support for mul-
tiple models is possible, but expensive.

A standard thread model also makes it possible for applications to use libraries or canned software 
utilities. In the same sense that a standard procedure calling sequence sacrifices speed for the ability to 
call into separately compiled modules, a standard thread model allows one utility to call into another 
since they both share the same synchronization and concurrency semantics.

It is important to point out that two-level scheduling does not imply that threads are implemented 
at the application level; the job-specific ready queues shown in Figure 53.3 could be maintained either 
within the operating system or within the application. Also, a user-level thread implementation does 
not imply two-level scheduling, even though threads are being scheduled by the application. This impli-
cation only holds in the absence of multiprogramming or in cases where processors are explicitly allo-
cated to jobs. For example, a user-level thread implementation built on top of Unix processes that share 
memory suffers from the same problems relating to preemption and I/O as do one-level kernel threads 
because both are scheduled in a job-independent fashion.

53.3.3  Performance

The performance of thread operations determines the granularity of parallelism that an application can 
effectively use. If thread operations are expensive, then applications that have inherently fine-grained 
parallelism must be restructured (if that is even possible) to reduce the frequency of those operations. 
As the cost of thread operations begins to approach that of a few procedure calls, several issues become 
performance critical that, for slower operations, would merely be second-order effects.

Simplicity in the thread system’s implementation is crucial to performance (Anderson et al. 1989). There is 
a performance advantage to building multiple thread systems, each tuned for a single type of application. 
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Even simple features that are needed by only some applications, such as saving and restoring all float-
ing point registers on a context switch, will markedly affect the performance of applications that do not 
need the functionality. Each context switch takes only tens of instructions; a feature that adds even a few 
more instructions must have a large compensating advantage to be worthwhile. For example, the ability 
to preemptively schedule threads within each job makes the thread management system more slug-
gish at several levels, because preemption must be disabled (and then re-enabled) whenever scheduling 
decisions are being made. These scheduling decisions are on the critical path of all thread management 
operations.

Although kernel-level thread management simplifies the generation and maintenance of sys-
tem  tools, it increases the baseline cost of all thread management operations. Just trapping to the 
operating system can cost as much as the thread operation itself, making a kernel implementation 
unattractive for high-performance applications. Further, the generality that must be provided by a 
kernel-level thread scheduler hurts the performance of those applications needing only basic service. 
Kernel-level threads are less able to cut corners by exploiting application-specific knowledge. With a 
user-level thread system, the thread management system can be stripped down to provide exactly the 
functions needed by an application and no more. User-level thread operations also avoid the cost of 
trapping to the kernel.

Other performance issues have less to do with what a thread system does than with how it goes 
about doing it. For example, using a centralized ready-list can limit performance for applications that 
have extremely fine-grained parallelism. The ready-list is a shared data structure that must be locked to 
prevent it from being modified by multiple processors simultaneously. Even if the ready-list critical sec-
tions consist only of simple enqueue and dequeue operations, they can become a sequential bottleneck, 
since there is little other work involved in spawning/finishing or blocking/unblocking a thread. For an 
application with thread overhead of 20% of the total execution time, and half of that overhead is spent 
accessing the ready-list, then its maximum speedup (the time of the parallel program on P processors 
divided by the time of the program on one processor) is limited to 10.

The bottleneck at the ready-list can be relieved by giving each processor its own ready-list. In this way, 
enqueueing and dequeueing of work can occur in parallel, with each processor using a different data 
structure. When a processor becomes idle, it checks its own list for work, and if that list is empty, it scans 
other processors’ lists so that the workload remains balanced.

Per-processor ready-lists have another nice attribute: threads can be preferentially scheduled on the 
processor on which they last ran, thereby preserving cache state. Computer systems use caches to take 
advantage of the principle of locality, which says that thread’s memory references are directed to or near 
locations that have been recently referenced. By keeping references close to the processor in fast cache 
memory, the average time to access a memory location can be kept low. On a multiprocessor, a thread 
that has been rescheduled on a different processor will initially find fewer of its references in that proces-
sor’s cache. For some applications, the cost of fetching these references can exceed the processing time 
of the thread operation that caused the thread to migrate.

The role of spin-waiting as an optimization technique changes in the presence of high-performance 
thread operations. If a thread needs to wait for an event, it can block, relinquishing its processor, or 
spin-wait. A thread must spin-wait for low-level scheduler locks, but in application code, a thread should 
block instead of spin if the event is likely to take longer than the cost of the context switch. Even though 
context switches can be implemented efficiently, reducing the need to spin-wait, a hidden cost is that 
context switches also reduce cache locality.

53.4 T hree Modern Thread Systems

We now outline three modern thread management systems for multiprocessors: Windows NT, Presto, 
and Multilisp. The choices made in each system illustrate many of the thread management issues raised 
in the previous section.
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The thread management primitives for each of these systems are shown in Table 53.1. The table is 
organized to indicate how the primitives in one system relate to those in the others, as well as those 
provided by the basic thread interface outlined in the Basic Thread Functionality section.

Windows NT is an operating system designed to support Microsoft Windows applications on uni-
processors, shared-memory multiprocessors, and distributed systems. Windows NT supports multiple 
threads within an address space. Its thread management functions are implemented in the Windows NT 
kernel. Since NT’s underlying thread implementation is shared by all parallel programs, system services 
such as debuggers and performance monitors can be economically provided.

Windows NT’s scheduler uses a priority-based one-level scheduling discipline. Because Windows NT 
allocates processors to threads in a job-independent fashion, a parallel program running on top of the 
Windows NT thread primitives (or even a user-level thread management system based on those primi-
tives) can suffer from anomalous performance profiles due to ill-timed preemptive decisions made by 
the one-level scheduling system.

Presto is a user-level thread management system originally implemented on top of Sequent’s DYNIX 
operating system, but later ported to DEC workstations. DYNIX provides a Presto program with a fixed 
number of Unix processes that share memory. The Presto run-time system treats these processes as vir-
tual processors and schedules the user’s threads among them. Presto’s thread interface is nearly identical 
to Windows NT’s.

Presto is distinguished from most other thread systems in that it is structured for flexibility. Presto 
is easy to adapt to application-specific needs because it presents a uniform object-oriented interface 
to threads, synchronization, and scheduling. The object-oriented design of Presto encourages multiple 
implementations of the thread management functions and so offers the flexibility to efficiently accom-
modate differing parallel programming needs.

Presto has been tuned to perform well on a multiprocessor; it tries to avoid bottlenecks in the thread 
management functions through the use of per-processor data structures. Presto does not provide true 
two-level scheduling, even though the thread management functions (e.g., thread scheduling) are imple-
mented in an application library accessible to the user; DYNIX, the base operating system, schedules 
the underlying virtual processors (Unix processes) any way that it chooses. Although a Presto program 
can request that its virtual processors not be preempted, the operating system offers no solid guarantee. 
As a result, kernel preemption threatens the performance of Presto programs in the same was as it does 
Windows NT programs.

Although Windows NT and Presto are implemented differently, the interfaces to each represent a 
similar style of parallel programming in which the programmer is responsible for explicitly spawning 
new threads of execution and for synchronizing their access to shared data. This style is not accidental, 
but reflects the basic function of the underlying hardware: processors communicating through shared 
memory. One criticism often made of this style is that it forces the programmer to think about coordi-
nating many concurrent activities, which can be a conceptually difficult task.

Multilisp demonstrates how thread support can be integrated into a programming language in order 
to simplify writing parallel programs. In Multilisp, a multiprocessor extension to LISP, the basic concur-
rency mechanism is the future, which is a reference to a data value that has not yet been computed. The 
future operator can be included in any Multilisp expression to spawn a new thread that computes the 
value of the expression in parallel. Once the value has been computed, the future resolves to that value. 

TABLE 53.1  Basic Operations of Thread Management Systems

Basic Windows NT Presto Multilisp

Spawn Thread_create; thread_resume Thread::new; Thread::start (Future…)
Block Thread_suspend Thread::sleep Touch unresolved future
Unblock Thread_resume Thread::wakeup When future is resolved
Finish Thread_terminate Thread::terminate Resolve this future
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In the meantime, any thread that tries to use the future’s value in an expression automatically blocks 
until the future is resolved. The language support provided by Multilisp can be implemented on top of a 
system like Windows NT or Presto using locks and condition variables.

With Multilisp, the programmer does not need to include any synchronization code beyond the 
future operator; the Multilisp interpreter keeps track of which futures remain unresolved. By contrast, 
using the Windows NT or Presto thread primitives, the programmer must add calls to the appropri-
ate synchronization primitives wherever the data are needed. Multilisp, like Presto, uses per-processor 
ready-lists to reduce contention in scheduling operations.

53.5  Summary

This chapter has examined some of the key issues in thread management for shared-memory 
multiprocessors.

Shared-memory multiprocessors are now commonplace in both commercial and research comput-
ing. These systems can easily be used to increase throughput for multiprogrammed sequential jobs. 
However, their greatest potential—as yet not fully realized—is for accelerating the execution of single, 
parallelized programs.

As programmers make use of finer-grained parallelism, the design and implementation of the thread 
management system becomes increasingly crucial. Modern thread management systems must address 
the programmer interface, the operating system interface, and performance optimizations; language 
support and scheduling techniques for multiprogrammed multiprocessors are two areas that require 
further research.
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54.1  Introduction

Virtual memory is one of the engineering triumphs of the computer age. In the 1960s, it became a 
standard feature of nearly every operating system and computer chip. In the 1990s, it became also a 
standard feature of the Internet and the World Wide Web (WWW). It was the subject of intense contro-
versy after its introduction in 1959; today, it is such an ordinary part of infrastructure that few people 
think much about it.

Early programmers had to solve a memory overlay problem as part of their programming work. Early 
computers had very small amounts of random access memory (RAM) because storage technology was 
so expensive. Programmers stored a master copy of their programs (and data) on a secondary storage 
system—then a drum, today a disk—and pulled pieces into the RAM as needed. Deciding which pieces 
to pull and which parts of RAM to replace was called “overlaying.” It was estimated that most program-
mers spent half to two-thirds of their time planning overlay sequences. As a reliable method of automat-
ing, virtual memory had the potential to increase programmer productivity and reduce debugging by 
severalfold. Virtual memory was invented to automate solutions to the overlay problem.
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Virtual memory was taken into the large commercial operating systems of the 1960s to simplify the new 
features of time-sharing and multiprogramming. The RAMs were considerably larger, sometimes allowing 
individual programs to be fully loaded. Virtual memory provided three additional benefits in these sys-
tems: it isolated users from each other, it allowed dynamic relocation of program pieces within RAM, and it 
provided read–write access control to individual pieces. These benefits were so for fault tolerance (Denning 
1976) that virtual memory was used even when there was sufficient RAM for every program. Thus, the story 
of virtual memory is not simply a story of progress in automatic storage allocation; it is a story of machines 
helping programmers to protect information, reuse and share objects, and link software components.

The first operating system with virtual memory was the 1959 Manchester Atlas operating system 
(Fotheringham 1961, Kilburn et al. 1962). They called their virtual memory a “one-level store.” They 
simulated a large memory—sufficient to hold an entire program—by moving fixed-size pages of a large 
file on disk in and out of a small RAM. The system appeared as a large, slower RAM to its users. The 
term “virtual memory” soon superseded the original name because of an analogy to optics: a virtual 
image in a mirror or lens is an illusion, made from traces of a real object that is actually somewhere else.

54.2  Early Virtual Memory Systems

Electronic digital computers have always had memory hierarchies consisting of at least two levels 
(Figure 54.1):

	 1.	 The main memory, often called RAM, is directly connected to the central processing unit (CPU). 
RAM is fast and can keep up with the CPU. RAM is volatile; loss of power erases its contents. RAM is 
expensive.

	 2.	 The secondary memory is connected to RAM by a subsystem that implements “up” and “down” 
moves of blocks of data. It was originally rotating drums, and today it is usually rotating or solid 
state disks. It is persistent, meaning that data are written as magnetic or optical patterns that do 
not disappear until explicitly erased. It is much cheaper than RAM.

CPU

Segment
(original)

Segment
(copy)

RAM

Read, write, and fetch

Up and down

Disk

FIGURE 54.1  Two-level memory hierarchy. A processor executes a program from main memory. The entire pro-
gram is held in the secondary memory (DISK), and segments of it are copied to the main memory (RAM) for pro-
cessing. The overlay problem is to partition the program into segments and schedule their moves up and down the 
hierarchy. The manual work to construct a program’s overlay sequence doubles or triples the programming time 
from when no overlays are needed.
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Today’s disk technology is about a thousand (103) times cheaper per bit than RAM and about a million 
(106) times slower. These differentials make it a challenge to find a good trade-off between main and 
secondary storage. The goal is enough RAM to run programs at close to CPU speed and sufficient per-
manent storage for all data.

The secondary storage system can include other technologies such as solid state disks, CD/DVD 
recorders and players, flash memory sticks, tape backups, and remote Internet storage (such as dropbox.
com). These non-disk secondary devices are not usually part of the virtual memory system.

Data on RAM or disk are organized into blocks of contiguous bytes. The blocks are units of storage 
and transfer between the memory levels. Many systems use all blocks of the same fixed size, called pages. 
A few systems allow blocks of different sizes, in which case they are called segments.

54.2.1 A ddress Mapping

The original purpose of virtual memory was to solve the burdensome overlay problem by automating 
the movement of pages between memory levels. The 1959 Atlas computer system at the University of 
Manchester was the first working prototype (Fotheringham 1961, Kilburn et al. 1962). The heart of this 
system was a radical innovation: a distinction between address and memory location. An address was 
the name of a byte, and a location was the physical storage holding the byte. This distinction enabled 
designers to provide programmers a large address space (AS) even though the system had a smaller 
amount of RAM. Programmers could then design software as if all the code and data fit into a single, 
contiguous AS.

This distinction led the Atlas designers to three inventions: (1) They built an address translator, hard-
ware that automatically converted each address generated by the CPU to its current memory location. 
(2) They devised demand paging, an interrupt mechanism triggered by the address translator that moved 
a missing page from secondary memory to RAM. (3) They built the first replacement algorithm, a proce-
dure to detect and move the least useful pages back to secondary memory.

Despite the success of the Atlas memory system, the literature of 1961 records a spirited debate about 
the feasibility of automatic storage allocation in general-purpose computers. By that time, Cobol, Algol, 
Fortran, and Lisp had become the first widely used higher level programming languages. These lan-
guages made storage allocation harder because programs were larger, more portable, more modular, and 
their dynamics more dependent on their input data. Through the 1960s, there were dozens of experi-
mental studies that sought to either affirm or deny that virtual memory systems could do a better job 
at storage allocation than any compiler or programmer (Denning 1970). The matter was finally laid to 
rest—in favor of virtual memory—by an extensive study of system performance by an IBM research 
team led by David Sayre (Sayre 1969).

54.2.2  Multiprogramming

Convinced that virtual memory was the right way to go, the makers of major commercial computers 
adopted it in the 1960s. Virtual memory was in the IBM 360/67, CDC 7600, Burroughs 5500/6500, RCA 
Spectra/70, and Multics for the GE 645. By the mid-1970s, the IBM 370, DEC VMS, DEC TENEX, and 
Unix also had virtual memory.

All these systems used multiprogramming, a mode in which several programs simultaneously reside 
in RAM. Multiprogramming was intended for better CPU utilization and throughput: if a program 
stops for input–output, the CPU can switch to another program.

Virtual memory married nicely with multiprogramming. It gave a clean way to logically partition 
the RAM among multiple programs, preventing them from interfering with one another. This worked 
because the address translator in the CPU used a distinct mapping table for each program; the map-
ping table pointed only to the pages of that program’s AS. The address translator also recognized access 
codes, thus protecting read-only pages from being overwritten.
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54.2.3 T hrashing

But these design choices exacted an unexpected price. The first multiprogrammed virtual memory 
systems succumbed to an unexpected and most unwelcome surprise: thrashing. Thrashing was a 
condition of near-total performance collapse when the multiprogramming level became too high 
(Denning 1968). The performance collapse worked as follows. The system would be operating well, 
with good throughput. Occasionally, the activation of one additional program pushed the system 
over an edge into a state with extremely low throughput. Engineers soon determined that in this 
state, every job was waiting in the disk queue for a page to be moved; and when its page was moved, 
every job very quickly rejoined the queue with a new request. The engineers called this state “paging 
to death.” They did not understand the conditions that triggered it or how to design a load control 
that would prevent it.

The solution to thrashing lay with a new model of program behavior, called the working set (WS) 
model (Denning 1968). This model hypothesized that every program had a WS, a dynamic subset of 
pages that it needed in RAM for efficient execution; and that most of the time, the WS did not change 
much from one page reference to the next. Thrashing would be impossible as long as every program has 
its WS loaded in RAM. The operating system would not activate any new program whose WS could not 
fit into the unused part of RAM.

A series of early experiments confirmed the WS hypothesis and gave engineers insights on how to ret-
rofit their multiprogrammed virtual memory systems to avoid thrashing. It also stimulated a long line of 
experiments and models seeking to understand why computations would exhibit locality, the principle 
behind the working-set behavior. By the late 1970s, these investigations had produced deep understand-
ing of the principle of locality and had confirmed that working-set memory controllers would achieve 
throughput close to the theoretical optimum (Denning 1980).

New studies by Adrian McMenamin in 2011 for Linux reconfirmed the locality behavior of programs 
in modern systems and the efficacy of WS memory management (McMenamin 2011).

54.3  Cache Systems

The address mapping principle of virtual memory attracted hardware designers as well as software 
designers. In 1965, Maurice Wilkes proposed the slave memory, a small high-speed store included 
in the CPU to hold a small number of most recently used words from RAM (Wilkes 1965). Like 
virtual memory, slave memory used address translation, demand loading, and usage-based replace-
ment. Wilkes argued that designing translation, loading, and replacement strategies is easier when 
the memory hierarchy is two forms of RAM: moving small blocks is efficient because of smaller speed 
differences. By exploiting the principle of locality, a small slave memory eliminates many data trans-
fers between CPU and main memory, allowing the CPU to run much faster with hardly any increase 
of memory cost.

This idea became popular among hardware designers. IBM introduced a cache memory in 1968 as 
part of its 360/85 machine. IBM and others placed small caches in the CPU, enabling the CPU to run 
faster because it could bypass many accesses to RAM. Modern chips incorporate two levels of cache—L1 
operates at register speed and simulates a large set of registers, while L2 operates at a slower speed and 
bypasses many references to RAM. Cache memory is now a standard principle of computer architecture 
(Hennessey and Patterson 1990).

The term caching is often used to mean that a small set of data are moved to a location close to the 
CPU, enabling the CPU to run fast on that set, bypassing delays in accessing the data at a larger dis-
tance away. Data and instructions cached in the CPU enable faster CPU execution. Files cached in disk 
controllers enable fast re-access to recently used files. Web pages cached on local servers enable faster 
re-display and bypass the longer access times in the Internet.
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54.4  Object Systems

In the 1960s, virtual memory was seen as a method to make programming easier and more secure:

	 1.	 Programmers can write their code without having to worry about overlays, which are done auto-
matically by the system.

	 2.	 Programmers can share memory without fear of interference from other programs.

If it ended here, this story would already have guaranteed virtual memory a place in history. But the 
designers of the 1960s saw even more possibilities to adapt virtual memory to make programming more 
productive and secure. They added two new programming objectives:

	 3.	 Programmers can share, reuse, or recompile any program module without requiring changes to 
any other program module.

	 4.	 Programmers can define abstract data types by specifying a package consisting of a hidden inter-
nal data structure to represent an object’s state and procedures to access an object’s state.

The first new objective was met by a segmented AS, an extension of the original linear AS. The sec-
ond new objective was met by capability-based architecture, which later morphed into object-oriented 
programming. Both extended the basic virtual memory in important ways.

In 1965, the designers of Multics at MIT believed that programmer communities develop around 
interactive, time-shared computing systems, and that members of these communities want to share 
separately compiled program modules that can be linked together on demand (Dennis 1965, Organick 
1972). Link-on-demand was a significant departure from the more common practice of using a linking 
loader (or makefile program) to bind component files to together into an AS.

In a computer with 32 bit addresses, an AS can contain up to 232 addresses. Multics added a second 
dimension that selected one of 232 ASs, called segments. Thus, a Multics CPU address consisted of a pair 
of 32 bit addresses (s, x) denoting segment s, offset x.

In Multics, a program encountering a symbolic reference to a variable X within a segment S would 
be interrupted by a linkage fault. The linkage fault handler would convert the S to a segment number s 
and the X to a linear offset x. After the conversion, the program would not encounter the same linkage 
fault again.

The Multics virtual memory demonstrated innovations in sharing, reuse, access control, and pro-
tection. Many of its innovations, however, did not find their way beyond Multics; programmers were 
content with one private, linear AS and a handful of open files. As will be discussed, the WWW (Berners-
Lee 2000) changed this: programs and documents contain hypertext links: symbolic pointers to other 
objects that are not linked until the program references them for the first time.

In 1966, Jack Dennis and Earl Van Horn published a landmark paper that initiated a new line of com-
puter architectures: machines that helped programmers create protected managers of classes of objects. 
They anticipated what is now called object-oriented programming. They were especially concerned that 
objects be freely reusable and shareable and, at the same time, be protected from unauthorized internal 
access. They proposed an extension of virtual memory that used two levels of mapping instead of one to get 
to an object. The first level maps an object name to a persistent global identifier, called a capability, for the 
object. The second level maps the capability to the object’s location. Capabilities acted as tickets granting 
access to their objects. You could share an object by giving another person a copy of your capability for the 
object. Capability addressing offered an elegant solution to the problem of sharing and reusing modules.

Several commercial and academic capability systems were built in the 1970s: notably the Plessey 250, 
IBM System 38, Cambridge CAP, Intel 432, SWARD, and Hydra. These systems implemented capabili-
ties as long addresses (for example, 64 bits), which the hardware protected from alteration (Fabry 1974, 
Myers 1982, Wilkes and Needham 1979). The reduced instruction set computer, coupled with program-
ming languages with type checking, made capability-managing hardware obsolete by the mid-1980s. 



54-6 Operating Systems

But software-managed capabilities, now called handles, are indispensable in modern object-oriented 
programming systems, databases, and distributed operating systems (Chase et al. 1994). The same con-
ceptual structure reappeared in a proposal to manage objects and intellectual property in the Internet 
(Kahn and Wilensky 1995). It is a powerful structure indeed.

54.5  Virtual Memory in Other Systems

Some people wonder why virtual memory, which was so popular and ultimately successful in the oper-
ating systems of the 1960s and 1970s, was not present in initial versions of several new technologies of 
the 1980s:

•	 Personal computers (PCs)
•	 Highly parallel supercomputers
•	 Distributed memory computers
•	 WWW

These technologies emerged from new communities that initially had no contact with the earlier gen-
eration of operating systems or rebelled against that generation. PC developers, for example, distanced 
themselves from mainframe companies because they wanted computing affordable to an individual 
home user. They did not have the memory capacity or knowhow to implement a full operating system 
and often believed they could do much better with extreme simplicity. After a few years, however, they 
rediscovered the same programming issues that motivated the early operating system designers. They 
started to use locality and virtual memory to improve their productivity and build faster machines.

For PCs, the pundits of the microcomputer revolution proclaimed that PCs would not succumb to 
the diseases of the large commercial operating systems; the PC would be simple, fast, and cheap. Bill 
Gates once said that no user of a PC would ever need more than 640 K of main memory. His first 
Microsoft operating system, DOS (1982), did not include most of the common functions, such as mul-
tiprogramming and virtual memory. Eventually, the PC makers (Apple, Microsoft, and IBM) added 
multiprogramming and virtual memory to their operating systems. They were able to do this because 
the major chip makers had not lost faith; Intel offered virtual memory and cache in its 80386 chip in 
1985; Motorola did likewise in its 68020 chip. Apple offered multiprogramming in its MultiFinder and 
virtual memory in its System 6 operating system. Microsoft offered multiprogramming in Windows 3.1 
and virtual memory in Windows 95. IBM offered multiprogramming and virtual memory in OS/2.

A similar pattern appeared in the early development of distributed-memory multicomputers beginning 
in the mid-1980s. These machines allowed for a large number of computers, sharing a high-speed intercon-
nection network, to work concurrently on a single problem. Around 1985, Intel and N-Cube introduced 
the first hypercube machines consisting of 128 component microcomputers. Shortly thereafter, Thinking 
Machines produced the first commercial supercomputer of this genre, the Connection Machine, with as 
many as 65,536 component computer chips. These machines soon challenged the traditional supercom-
puter by offering the same aggregate processing speed at a much lower cost (Denning and Tichy 1990). 
Their designers initially eschewed virtual memory, believing that address translation and page swapping 
would seriously detract from the machine’s performance. But they quickly encountered new programming 
problems in synchronizing processes on different chips and exchanging data among them. The ordinary 
method of passing a message to another chip involved three copy operations: first from the sender’s local 
memory to a local buffer, then across the network to a buffer in the receiver, and finally to the receiver’s 
local memory. With virtual memory, the same transfer takes one copy, invoked at the time of reference. 
Virtual memory significantly decreased communication costs in these machines. Tannenbaum (1995) 
describes a variety of implementation issues under the topic of distributed shared memory.

The WWW, started in 1989 by Tim Berners-Lee, sought to link together all information in the world. 
It accomplished this by creating a virtual AS for objects in the WWW. The name of an object is given by 
its uniform resource locator (URL). The Web protocols (such as hypertext transfer protocol [HTTP] and 
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domain name service [DNS]) map URLs to hosts and files in the Internet. The mapping operations are 
performed only when someone tries to use a URL by clicking a mouse on it. The URL differs from a stan-
dard virtual address map because it is possible that a URL points to a nonexistent object or possibly to a 
new object given the same name as a previously deleted object. To avoid the problem of URLs becoming 
invalid when the object’s owner moves it to a new machine, Kahn and Wilensky proposed that objects 
be named by global persistent handles; handles are translated with a two-level mapping scheme first into 
a URL, then into the machine hosting the object (Denning and Kahn 2010, Kahn and Wilensky 1995). 
The handle scheme recalls the Dennis-Van-Horn capability system of the 1960s, but now with world-
wide, decentralized mapping systems. The Java language allowed URLs to address programs as well as 
documents; when a Java interpreter encounters the URL of another Java program, it brings a copy of that 
program to the local machine and executes it as an applet. These technologies, now seen as essential for 
the Internet, vindicate the view of the Multics designers in 1965—that many large-scale computations 
will consist of many processes roaming a large space of shared objects.

In the Internet, some objects such as Web pages or Web sites become very popular and attract many 
links. People using the links can create a high demand for a site, causing a queue of backlogged requests 
and thus a significant delay to a user wanting a fast access to the site. Even though the Internet archi-
tecture is relatively flat—the access time (“ping time”) to most sites is typically 20–30 ms—queueing at 
popular sites can cause very slow response times much longer than 30 ms. Caching solves this problem. 
A cache server can be placed in a cluster of users where it collects their recent web page requests; it can 
satisfy many repeat requests locally without going to the main site and its long queue. The company 
Akamai has become a leader in this performance-enhancing technology for the Internet.

From time to time over the past 50 years, various people have argued that virtual memory is not really 
necessary because advancing memory technology would soon permit us to have all the RAM we could 
possibly want. Each new generation of users has discovered that its ambitions for processing, memory, 
and sharing led it to virtual memory. It is unlikely that today’s predictions of the passing of virtual 
memory will prove to be any more reliable than similar predictions made every year since 1960. Virtual 
memory accommodates essential patterns in the way people use computers to communicate and share 
information. It will still be used when we are all gone.

54.6  Structure of Virtual Memory

Let us now examine the structure of virtual memory systems. We will begin with the simplest form, a 
paging system, which was historically the first form.

Virtual memory was originally designed to solve the overlay problem in systems with two levels of 
memory. In 1959, the time of the first virtual memory, main memory (RAM) access times were about 
10−6 s (1 μs) and secondary memory (drum) access times were about 10−2 s (10 ms), giving a speed ratio 
of about 104. A single-page fault (up-move) would force the CPU be idle for about 104 instructions, a stiff 
penalty. The designers, therefore, sought replacement policies that would minimize the number of page 
faults. The situation is worse today, with RAM access times around 10−9 s and disk around 10−3, for a 
speed ratio of 106. These speed ratios do not make virtual memory very attractive for those who believe 
that its primary purpose is to move pages up and down the hierarchy.

All virtual memories are based on the principle of distinguishing addresses from locations, and pro-
viding a dynamic map that translates an address to its storage location. The map can be updated when-
ever the location changes.

Every program and its data must fit inside a virtual AS, which is a sequential set of addresses that the 
CPU can generate. If addresses are k bits long, the AS consists of 2k bytes, designated 0, 1,…, 2k–1. Thus, 
16 bit addresses can span a space of 65,536 bytes. Today, 32 bit addresses are common, spanning spaces 
of about 4 gigabytes.

It would be too costly to build a mapping table that mapped individual bytes to their locations. With 
32 bit addresses, such a table would require 4 gigabytes of memory. A system with 64 running user 
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programs would require around a terabyte of memory just for the 64 mapping tables. The size of map-
ping tables is significantly reduced by dividing AS into equal size blocks, called pages, and the RAM into 
same-size blocks, called frames. The table maps pages to frames. If the page size were 1024 bytes (1010), 
the mapping table would be smaller by a factor of 1024. Such tables are feasible.

The mapping is organized as follows. A page table contains entries of the form, one for each page:

	 (P, U, M, A, B)

where

•	 P is a presence bit set to 1 when the page is in RAM
•	 U is a use bit set to 1 when the page is read or written
•	 M is a modified bit set to 1 when the page is written
•	 A is an access code indicating read or write permission
•	 B is the base address of the page in RAM

A virtual address of the CPU is encoded as

	 (i,x)

meaning page i, line x. This address is translated to a memory address by adding the displacement x to 
the page’s base address B.

With the help of Figure 54.2, let us walk through the components of a paged virtual memory. 
The circled numbers in the figure flag four key elements. Every virtual AS has its own page table; by 
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FIGURE 54.2  Structure of paged virtual memory system. The four numbered elements are discussed in the text.
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default there are no shared pages. The CPU register AS points to page table the CPU uses for address 
mapping on behalf of the process it is currently running.

54.6.1 � Element 1: Providing the Virtual Address 
to the Memory Mapping Unit

The memory mapping unit (MMU) is a hardware component that translates virtual addresses to memory 
locations. A virtual address is a linear offset into the AS. The high order bits of the virtual address in reg-
ister VA are interpreted as a page number and the low order bits as a line number. An example will show 
how this works. Assume a page size of 210 = 1024 bytes in a system with 32-bit addresses. In this case, the 
virtual AS will contain 222 = 4 million pages. In a 32-bit address, the 22 high-order bits are page number 
and 10 low order bits are the line number in the page. Thus, address 8044 will be on page 7, line 876, 
because 8044 = (7)(210) + 876.

54.6.2  Element 2: Mapping the Address

The MMU’s job is to map the incoming virtual address to a memory location. The MMU looks up the 
frame for the current page in the page table. In our example, the page table has one entry per page for a 
total of 222 entries. If page 7 is in frame 50, the base field B of the page table entry for page 7 will contain 
50, which we can write as PT[d,7].B = 50. The MMU decomposes the target address 8044 into the two 
components (7,876), retrieves 50 from page table entry 7, and then presents the location address (50,876) 
to the RAM.

The P-bit of a page table entry records whether the page is present in RAM. If page 7 is not pres-
ent, its P-bit will be 0. In that case, the MMU cannot map the virtual address. Instead, it halts with an 
error condition called page fault. The page fault condition triggers an interrupt, which passes control 
to an operating system routine called page fault handler (PFH). The operation of PFH will be discussed 
shortly at step 4.

54.6.3  Element 3: Checking the Translation Lookaside Buffer

The translation lookaside buffer (TLB) is a small set of high-speed associative registers attached to the 
MMU. Its purpose is to enable the MMU to bypass the page table lookup as often as possible. Without it, 
the virtual memory would run at half the rated RAM speed because every virtual address requires two 
RAM accesses.

A typical register in TLB contains the three components

	 (i,A,B)

where

•	 i is the page number (the tag in the TLB)
•	 A is the access code from the page table
•	 B is the frame number from the page table

Before accessing the page table, the MMU checks the TLB for an entry tagged as page i. If it finds such an 
entry, it immediately retrieves the access code A and the frame number B without having to look them 
up in the page table. If it does not find an entry for i, it proceeds with the normal page table lookup as 
described earlier and also creates a new TLB entry reflecting that access. The new entry replaces the least 
recently used (LRU) TLB entry.

Experience shows that with a relatively small TLB—from 32 to 128 registers—the MMU can achieve 
a sufficiently high hit rate in the TLB that the average slowdown for page table lookups is 1%–3% 
(Hennessey and Patterson 1990).
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54.6.4  Element 4: Managing the RAM Contents

The operating system maintains a complete copy of a program’s AS on the disk. The operating system 
also specifies a RAM allocation as a maximum number of pages from the AS. Thus, RAM contents are 
a subset of disk contents.

A page fault is an exceptional condition generated by the MMU when it encounters a missing page 
(P = 0). The operating system interrupts the running program and instead runs a special routine called 
PFH, which follows these steps:

	 1.	 Locates the needed page in the secondary memory
	 2.	 Uses a replacement policy to select a frame of main memory to put that page in
	 3.	 Empties that frame
	 4.	 Copies the needed page into that frame
	 5.	 Updates the page table entry to reflect these changes
	 6.	 Restarts the interrupted program, this time, allowing it to complete its reference

The replacement policy (step 2) has a significant effect on performance of a virtual memory system. 
Replacement policies generally try to predict which pages are most likely to be reused in the immedi-
ate future and protect them from replacement. Because recently used pages tend to be the most likely 
to be reused soon, the replacement policy identifies the pages with U = 0 as candidates for replacement. 
Among those, it favors one with M = 0 because an unmodified page does not need to be copied back 
to disk.

While no replacement policy can give a perfect prediction of the future, many years of experience and 
experiment have led to the consensus that the LRU policy is best when RAM allocations are fixed, and 
the WS policy is best when RAM allocations can vary (Denning 1980, McMenamin 2011).

54.6.5  Summary

Virtual memory makes address translation transparent to the programmer. Since the operating system 
maintains the contents of the map, it can alter the correspondence between pages and frames dynami-
cally. A program can now be executed on a wide range of system configurations, from small to large 
main memories, without recompiling it.

54.7  Cache Memories

The caching principle used in the TLB was first proposed by Wilkes (1965) as a direct hardware method 
for speeding up memory accesses for pages already loaded in RAM (Figure 54.3). The cache contains a 
set of “slots,” each the size of a page. A tag associated with a slot indicates which frame of RAM is copied 
in that slot. When the MMU of the processor generates location address (b,x)—meaning frame b line 
x—the cache hardware searches all of the tag registers in parallel for a match on b. If there is a match, 
it addresses byte x of that slot. If not, the hardware copies frame b into a slot, sets the slot’s tag to b, and 
then addresses byte x of that slot (see Hennessey and Patterson 1990).

Note how the virtual memory mapping principle has been applied to components of the vir-
tual memory system itself. The TLB is a cache of recent (page and frame) paths; a match bypasses 
the page table lookup. The slot-cache holds copies of recently used RAM frames; a match bypasses the 
RAM access. The TLB and cache access times are much faster than the corresponding RAM times. 
The virtual system will demonstrate significant accelerations with these caches, even when they 
are a small fraction of their maximum potential size. The costs of cache are small compared to full 
memory size.
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54.8  Multiprogramming

Multiprogramming is a mode of operation in which the RAM is shared simultaneously by multiple jobs. 
The set of pages a job has in RAM is called its resident set (or partition). The resident sets of all loaded 
jobs partition the RAM into disjoint subsets of frames.

Multiprogramming was originally introduced in the operating systems of the 1960s as a means to 
improve the utilization of a CPU: When a job stops to wait for an event, such as reading a file from a 
disk, the CPU can switch to another job ready to go. In the 1990s, multiprogramming was extended to 
allow each user to start and load multiple jobs in RAM. Users could switch among active programs such 
as word processor, spreadsheet, mail, and browser. Because virtual memory confines each process to its 
assigned AS, it provides an elegant and flexible way of partitioning a multiprogrammed memory.

Multiprogramming can be done with fixed or variable partitions. Fixed partitions are easier to imple-
ment but variable partitions offer much better performance. With variable partitions, the operating 
system can adjust the size of the partition so that the rate of page faults stays within acceptable limits. 
The operating system can transfer space from processes with small memory needs to processes with 
large memory needs. Variable partitions often improve over fixed even when the variation is random 
(Denning 1980). System throughput will be near optimal when the virtual memory guarantees each 
active process just enough space to hold its WS (Denning 1980).

54.9  Performance and the Principle of Locality

We can discuss performance of virtual memory systems in terms of decisions about loading and replac-
ing pages. Loading refers to the actions that bring a page into main memory. Most systems load pages 
only on demand because they have no reliable method of predicting future page use. Because the time 
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to load a page is usually 6 orders of magnitude higher than the time to access a loaded page, a few bad 
predictive guesses are more expensive than simply waiting for page faults. However, in some cases, 
enough is known about future references that pages can reliably be loaded ahead of time; for example, 
an application doing a long, linear scan of a database.

Replacement refers to the actions of removing pages from RAM. Each removal has a cost because 
most pages will be recalled into RAM by future page references. Because this is an ongoing process—
removal followed by recall—replacement is a major determinant of virtual memory performance.

The main metrics of system performance are throughput and response time. Throughput is measured 
as jobs or transactions completed per second and response time as the average number of seconds to 
complete a job or transaction after submission.

The main metric of memory usage is space-time, which is the total number of page-seconds accu-
mulated by a job while it holds RAM. Space-time is a like “rent” paid by a job for memory usage. There 
is a relation between throughput and space-time. It is called the space-time law and works as follows. 
If C jobs complete in T seconds, the throughput is X = C/T. When the total memory is M bytes, the 
total space-time available in the system is MT, and therefore the space-time per job is Y = MT/C = M/X. 
Thus, M = XY. This invariant relation is fundamental: it says that minimizing space-time is the same as 
maximizing throughput for a given amount of main memory. For this reason, the ideal of a replacement 
policy is minimizing the space-time of each job.

When a job holds RAM, it circulates among servers of the system for pieces of service it needs to 
complete. These servers include disks, directories, network requests, printing devices, and more. Each 
service delay accumulates some space-time toward the job’s total. The delays caused by page faults are 
only a subset of all the delays contributing to space-time. Still, reducing the number of page faults will 
reduce a job’s total space-time.

The parameters of system usage outside of virtual memory are normally unaffected by paging within 
the virtual memory. Therefore, the minimum space-time occurs when the page faults are minimum. 
The ideal policy—let us call it MIN—replaces the page that will not be used again for the longest time 
(Belady 1966). This policy causes the intervals between page faults to be as long as possible, which mini-
mizes total number of page faults.

MIN requires advance knowledge of the future. Because such knowledge is not usually available, 
replacement policies use past observations to predict future references. The predictions are necessarily 
imperfect.

The LRU replacement policy predicts that time until next reference to a page is same as time since last 
reference. Although not as good as MIN, LRU has been found to be quite robust over a range of programs, 
typically doing as well or better than other common policies, such as first-in-first-out (Belady 1966). LRU 
is often used in caches. A simple memory scan approximates LRU well: a pointer cycles through all the 
pages in the job’s resident set, skipping over those with usage bit U = 1 (and resetting to U = 0), until it 
finds an unused page.

If we remove the constraints that memory size is fixed and that replacements occur only at page-fault 
times, we can do better than MIN. The ideal variable-space policy—let us call it VMIN—operates as fol-
lows (Prieve and Fabry 1974). After each page reference, VMIN looks ahead to the moment of the next 
reference to that page: if the time to that reference exceeds a threshold T, VMIN immediately replaces 
the page; otherwise, it retains the page in memory until that next reference. As T gets larger, VMIN 
retains more pages and generates fewer page faults. Thus, the parameter T trades off the amount of 
memory used against the amount of paging generated. The reason no other policy can do as well is that 
VMIN minimizes space-time at every reference: VMIN retains a page only if the cost of recovering it by 
page-fault at the next reference exceeds the cost of retaining it.

The WS model gives a good approximation to VMIN (Denning 1968, 1970, 1980). A process’s 
WS is defined as the set of pages referenced in a window of size T references looking backwards 
from the current time. The WS replacement policy guarantees that every page of the WS is in RAM. 
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Under WS replacement, a page reference causes a page fault only if the time since prior reference 
to that page exceeds T. In other words, WS replacement generates exactly the same faults as VMIN. 
The difference between WS and VMIN is due solely to the extra space-time generated by WS for 
retaining pages for T seconds when the time until next reference exceeds T. The space-time “over-
shoot” is worst during a change of locality: VMIN unloads the pages of the current locality set 
prior to the change to the new locality set, while WS keeps the former locality set in memory for 
a while after the change. Many researchers looked at ways to reduce this overshoot, but none gave 
much benefit. The WS policy is about as close to optimal as can be found among non-lookahead 
replacement policies.

The WS policy works is especially well suited for multiprogramming. All jobs use a common window 
size T. The scheduler admits waiting processes to the RAM, one at a time, until the RAM space is filled with 
WSs. The global window size T can be adjusted empirically until it maximizes system throughput. System 
throughput may improve further by using a customized window size for each running process—but the 
space-time improvement is at most 5%–10% (Denning 1980).

Working-set memory management became popular because it prevented a system instability called 
thrashing (see Figure 54.4). Many early virtual memory systems attempted to extend the LRU policy 
to the entire memory by keeping track of the reference times of all pages in RAM. Extended this way, 
LRU is subject to thrashing because the normal cycles of the scheduler cause a process’s pages to look 
old by before it gets its next time slice. Extended LRU does not have a built-in load limit like the WS 
policy. Thrashing can be avoided by limiting the multiprogramming level either by a fixed limit or by 
a working-set policy. The working-set policy generally leads to more stable performance with higher 
throughput.

These replacement policies all do well because of the principle of locality. This principle says that a com-
putation tends to reference the same pages in the immediate future as it referenced in the immediate past. 
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FIGURE 54.4  The system throughput is depicted as a function of the multiprogramming level N, which is the 
number of active programs in RAM. When N is too large, programs have too little space for their working sets. 
This drives the paging rates up, turns the disk into the bottleneck, and dramatically slows down the system. The 
slowdown is called thrashing. The WS policy is ideal; it holds N near the throughput peak but does not allow it to 
fall off the thrashing cliff.
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In fact, computations tend to reference from the same subset of pages over extended intervals. The memory 
usage of a computation can be represented as a sequence

	 (L1,P1), (L2,P2),…, (Lk,Pk),…

where
Li is a “locality set”
Pk is the length of time the computation uses only that set (Pk is called the phase time)

Abrupt changes in locality sets at phase transitions are the norm. This principle accounts for the success 
of WS policies: the backward looking window T is usually much smaller than the phase times, and thus 
the WS sees the current locality set most of the time. In this way, WS reveals the pages that need to stay 
in RAM in the immediate future (Denning 1980).

Over the years, it became clear that locality is a deep principle of computing. It accounts for the uni-
versal success of caches in every form, whether as part of a virtual memory, a Web browser, or an edge 
server in the Internet. By 1980, we knew that locality is a product of the way the human mind works—
notably its tendencies to pay attention to the same things for a while and to divide big problems into 
smaller pieces for separate solution (Denning 1980).

In 2010, Moshe Vardi cited some new thinking on the question, “What is an algorithm?” (Vardi 2012). 
He cites a work of Yuri Gurevich, who defines an algorithm as a description of an abstract state machine, 
where states can be any data structure, and each operation can cause only a bounded change of state. By 
limiting the effect of an operation to a local set, this definition pulls the principle of locality into a fun-
damental definition of computation. Without locality, there is no computation. Locality has long been 
accepted as a fundamental principle of memory behavior, but it has never been so clearly linked to effec-
tive computation. By definition, every computation exhibits locality; some form of backward window 
can observe the pages of the current locality set and exempt them from replacement.

54.10  Object-Oriented Virtual Memory

Many computing environments offer abstractions and functions that require virtual addressing, but 
which are not easily accommodated by paging. These include

•	 Program objects—arrays, procedures, structures, and objects
•	 System objects—processes, message buffers, files, directories, and streams
•	 Concurrent processes (threads) with varying permissions sharing the same AS
•	 Modular programs
•	 Very large ASs containing many objects shared among many users

The designers of early virtual memories anticipated these uses with segmented and capability-based vir-
tual memories (Dennis 1965, Dennis and Van Horn 1966, Fabry 1974). The resulting storage systems are 
called object-oriented virtual memories. The Internet, an example of the last bullet, was not anticipated 
in the 1960s, but the addressing principles discovered then contributed to solutions of its addressing 
problems.

The earliest form of object-oriented virtual memory was the segmented AS. It appeared as a collec-
tion of named blocks (segments) of various sizes. Each segment was a container for a program object. 
In the Burroughs B5000 and later series, for example, the Algol compiler created program segments 
containing procedures and data segments containing array rows (Organick 1973). The compiler gener-
ated virtual addresses of the form (i,x), meaning segment i, line x. The size of each segment was explicitly 
recorded in the mapping table, so that the mapper could reject out-of-bounds addresses x.

Multics went further than the Burroughs Algol compiler. It let the programmer define the seg-
ments. In Multics PL/I, operands had symbolic two-part names S.X; the operating system used a 
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linkage fault to invoke a routine that mapped a symbolic name to its corresponding virtual segment 
number s and line number x (Organick 1972).

54.10.1 T wo-Level Mapping

In recognition that paging led to much simpler virtual memory structures, Multics combined 
segmentation with paging. It allowed each segment to be divided into pages. The offset into a seg-
ment was subdivided into a page and line number. It used a two-level map as follows to resolve an 
address (s,x):

	 1.	 The segment number s selects a segment table entry, which points to a page table for the segment. 
There is one segment table for each AS.

	 2.	 The offset x decomposes into a page number and line number, which are mapped through the 
page table as before. There is one page table for each segment.

The two-level mapping scheme makes it easy to share segments. Users simply share the segment’s page 
table. Users sharing a segment are likely to get different local segment numbers for their segment tables; 
but all those segment table entries point to the same page table. When it moves a page, the operating 
system records the new location in the page table. Instantly, all users sharing the page are mapped cor-
rectly to the new location. There is no need for the operating system to locate all the users and update 
their segment mapping tables.

Inspired by Dennis and Van Horn (1966), Robert Fabry formalized the two-level mapping scheme 
to allow any number of users to share any number of objects in large systems (Fabry 1974). Fabry’s 
addressing principle is summarized in Figure 54.5. The key idea is that the first level of mapping takes 
a segment number i to a system handle h; the second level takes a handle to a descriptor of the storage 
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FIGURE 54.5  The two-level mapping scheme replaces a page table with two tables. The capability list CL[d] 
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future lookup.
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space holding the object (Fabry used the terms “capability,” where we now say “handle”). All informa-
tion about the location of an object is recorded in the descriptor; any changes instantly affect anyone 
trying to use the object.

54.10.2  Protection of Handles and Objects

In the two level mapping system, a program that holds a handle can access the object regardless of 
whether it has permission to do so. In other words, having a handle confers permission to access 
the object.

Because the mere fact of holding a handle was like having super-user privilege to the designated 
object, the designers of early capability addressing systems thought that handles had to be heavily pro-
tected by the hardware from alteration. They saw no other way to prevent someone from manufacturing 
a handle pointing to someone else’s files or to prevent an erroneous program from corrupting a handle. 
Some early commercial systems such as Plessey 250 or IBM 360/38 used hardware protection for capa-
bilities. The Cambridge CAP system, a research project, also used hardware protection but concluded 
that hardware protection led to unwieldy complexity in the operating system (Wilkes and Needham 
1979). Eventually, operating system structures were discovered that hid handles from users, thus prevent 
tampering or alteration, without special hardware protection. For example, file and directory handles 
are stored in directories, where the user can invoke them by giving their symbolic names; but the han-
dles themselves never enter the user’s virtual AS.

One of the fundamental requirements of an operating system is that users cannot interfere with each 
other. That means, by default, they cannot see each other’s ASs. The virtual memory system plays an 
integral role in meeting this requirement. The images of ASs are always in disjoint regions of main 
memory. This property of virtual memory is called logical partitioning.

With simple virtual memory (Figure 54.2), a processor can address only the pages listed in its page 
table. With extended virtual memory (Figure 54.5), a processor can address only the objects listed in its 
capability list. In either case, unlisted objects are inaccessible. In effect, the operating system walls each 
process off, giving it no chance to read or write the private objects of any other process.

The mapping mechanisms further restrict individual accesses to those permitted by the access codes 
in the mapping tables. Thus, a read-only page or segment cannot be modified, or a read-only directory 
cannot be searched.

54.10.3  Protection of Procedures

One of the biggest vulnerabilities of systems is that procedures can be called incorrectly. The normal call 
puts the CPU instruction pointer to a designated “entry point” of the procedure. But a buggy or mali-
cious calling program can transfer to some other location in the procedure, causing erroneous operation 
or bypassing security checks at the procedure’s entry. The designers of early capability systems therefore 
provided protected entry, a method to guarantee that a procedure call could only start the CPU at the 
authorized entry point.

It is straightforward to structure a capability system to provide a protected entry operation (Dennis 
and Van Horn 1966, Wulf et al. 1974). An instruction “ENTER i” works only if object i (in the caller’s 
domain d1) is an enter capability. An enter capability points to the capability list of a new domain d2. 
Object “0” in every domain’s capability is the domain’s entry procedure. The effect of the enter instruc-
tion is to call the entry procedure of the target domain, simultaneously making its capability list the 
current capability list used by the CPU. The caller’s domain and instruction pointer are saved on the 
stack and restored when the called procedure returns (Figure 54.6).

These structures have important benefits for system fault tolerance. Should a process run amok, it can 
damage only its own objects: a program crash does not imply a system crash. An untrusted program 
can be encapsulated in a domain whose capability list contains only the objects it needs to execute; 
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any erroneous or malicious actions cannot access or damage anything outside this encapsulated domain. 
Systems that support this structure have found it effective against Trojan horses and other malware.

These benefits are so important that many systems use virtual memory even if they have sufficient 
RAM to eliminate overlaying.

54.11  Distributed Shared Memory

Starting in the mid-1980s, Sequent, Intel, Thinking Machines, N-Cube, and then later IBM, Cray, 
Kendall Square, and a few others introduced commercial multicomputers. These machines allowed for 
a large number of computers, sharing a high-speed interconnection network, to work concurrently on a 
single problem. Multicomputers soon began to challenge the traditional supercomputer by offering the 
same aggregate processing speed at a much lower cost (Denning and Tichy 1990).

In the mid 1990s, new operating systems like Beowulf provided the means to distribute tasks among 
ordinary computers registered as a cluster on a network. A large problem can be divided into numerous 
small problems for the cluster to solve, and their respective answers combined back into an answer to 
the original problem. Clusters provide supercomputer-grade processing power by mobilizing a large 
number of ordinary computers.

These new architectures introduced a host of new programming problems having to do with syn-
chronizing the processes on the different computers and exchanging data among them. Because these 
systems offered no common AS among all of the component computers, their programmers could share 
data only by copying it between machines. That causes high message overhead.

Much of the overhead can be eliminated if the multicomputers all share an AS. Now data can be 
passed from one computer to another simply by passing the virtual address. The cost of moving a single 
pointer is much less than copying the entire object from one AS to another.
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A virtual memory organized in this way is often referred to as distributed shared memory because the 
shared AS is composed from the RAMs of the individual computers (Tannenbaum 1995). Examples of 
such systems today include OpenSSI and MOSIX.

54.12  World Wide Web: A Global Name Space

The WWW allows an author to embed, anywhere in a document, a link to any file in the Internet. The 
link contains a URL, which is the symbolic name of a file. By clicking the mouse on a URL string, the 
user triggers the operating system to map the URL to the file and then bring a copy of that file from 
the remote server to the local workstation for viewing.

A URL is a string of the form hostname/pathname, where hostname identifies an Internet host, and 
pathname the name of a file in that host’s directory system. Since hostnames and pathnames are unique, 
the URL names a single object anywhere in the Internet. Tim Berners-Lee invented URL’s for the WWW. 
They define a scheme for naming objects that can be shared anywhere in the Web. The HTTP maps a 
hostname to its IP address (using the DNS) and sends a read-request message containing the pathname 
to that machine.

The URL system has a drawback that often causes problems: the URL names are not persistent. For 
example, if an owner deletes a file, any URL pointing to it will, by design, no longer function. However, if 
that owner creates a different file of the same name later, anyone holding the old URL will now get a copy 
of the new file. This means that a URL cannot be guaranteed to point to the same file as it did when a user 
first acquired it. Many service providers, notably publishers, want a naming system that uniquely identi-
fies each published object and guarantees that the unique identifier will never point to another object.

The handle system (handle.net) was invented in 1995 by Robert Kahn to provide persistent names 
for objects. The most well known use of the handle system is with digital object identifiers (DOIs) that 
are of the form A/B, where A is a numerical string assigned by a DOI registrar to a publisher, and B is a 
unique numerical string assigned by the publisher (Denning and Kahn 2010). For example, the author’s 
paper about WSs (Denning 1968) has DOI 10.1145/363095.363141, where “10.1145” is ACM’s unique 
identifier assigned by the DOI Foundation, and “363095.363141” is a number chosen by ACM to dis-
tinguish that paper from every other that ACM has ever published, or ever will. ACM provides a server 
that translates DOI’s to the current URLs of the papers. Thus, invoking the Web address “http://doi.
acm.org/10.1145/363095.363141” will get a copy of the paper. ACM can change the URLs, but no matter 
where ACM actually stores the paper the DOI will always find it.

The handle system (including DOI’s) is functionally similar to the handles described earlier in the 
extended, object-oriented virtual memory. The difference is that no attempt is made to hide the handles 
from users.

54.13  Conclusion

Virtual memory systems are used to meet one or more of these needs:

•	 Automatic storage allocation: Solving the overlay problem that arises when a program exceeds the 
size of the computational store available to it. Furthermore, it includes the problems of relocation 
and partitioning arising with multiprogramming.

•	 Logical partitioning: Each process is given access to a limited set of objects, its protection domain. 
The operating system enforces the rights granted in a protection domain by restricting references 
to the memory regions in which objects are stored. Processes cannot access objects beyond those 
listed in its local mapping tables.

•	 Access control: Within a protection domain, the operating system enforces further restrictions by per-
mitting only the types of reference stated for each object (for example, read, write, or apply a function). 
These constraints are easily checked by the hardware in parallel with the main computation.
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•	 Encapsulation and protected entry: Any untrusted software can be encapsulated in its own protec-
tion domain. Any unauthorized action will be automatically blocked by the access controls. It will 
be impossible to attempt access to any object outside the protection domain.

•	 Modular programs: Programmers should be able to combine separately compiled, reusable, and 
shareable components into programs without prior arrangements about anything other than 
interfaces and without having to link the components manually into an AS.

•	 Object-oriented programs: Programmers should be able to define managers of classes of objects 
and be assured that only the manager can access and modify the internal structures of objects 
(Myers 1982). Objects should be freely shareable and reusable throughout a distributed system 
(Chase et al. 1994, Tannenbaum 1995). (This is an extension of the modular programming 
objective.)

•	 Data-centered programming: Computations in the WWW tend to consist of many processes 
navigating through a space of shared, mobile objects. Objects are be bound to a computation 
on demand.

•	 Parallel computations on multicomputers: Scalable algorithms that can be configured at run time 
for any number of processors are essential to mastery of highly parallel computations on multi-
computers. Virtual memory joins the memories of the component machines into a single AS and 
reduces communication costs by eliminating some of the copying inherent in message passing.

Virtual memory, once the subject of intense controversy, it is now so ordinary that few people think 
much about it. Its original purpose—automating solutions to the overlay problem—is today less impor-
tant that it’s extended purposes for sharing and access objects in large name spaces. The success of vir-
tual memory is tied directly to the principle of locality, which is a fundamental principle of computation 
itself. Virtual memory is an enduring technology.

Key Terms

Access control: A means of allowing access to an object based on the type of access sought, the acces-
sor’s privileges, and the owner’s wishes.

Address fault: An error that halts the mapper when it cannot locate a referenced object in main memory; 
it invokes an interrupt, whose handler corrects the condition by loading the missing object.

Address map: A table that associates an object (or page) number with the main memory locations con-
taining the object.

Address space: The set of all addresses that a processor can issue while processing a program.
Bounds fault: An error that halts the mapper when it detects that the offset requested into an object 

exceeds the object’s size; it invokes an interrupt that terminates the program.
Capability: A systemwide unique identifier for an object; the bits of a capability are protected from 

alteration.
Context-switch: An operation that switches the CPU from one process to another by saving all of the 

CPU registers for the first and replacing them with the CPU registers for the second.
CPU: Central processing unit or processor.
Data-centered view: A view of computing that emphasizes navigation of many concurrent processes 

within a large space of objects.
Handle: A systemwide unique identifier for an object, like a capability without the system guarantee of 

integrity.
Location: A memory register with its own address.
Logical partitioning: A property of virtual memory, whereby the address spaces of different jobs are 

mapped into disjoint regions of memory.
Main memory: The highest level of the memory hierarchy; all CPU memory references are directed to 

main memory; CPU can access objects only when they are loaded in main memory.
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Memory hierarchy: A system of memory devices of different speeds and capacities; allows for trading 
off between capacity and speed, and between volatility and persistence.

Memory space: The set of all hardware addresses of memory locations in RAM available to a given 
address space.

Modular programming: Programs are divided into parts that can be shared, reused, and recompiled 
without affecting other parts of the system as long as the interfaces to modules are unchanged.

Object-oriented addressing: A form of virtual addressing in which object numbers are mapped 
to memory regions and internal object references are mapped to offsets within an object’s 
memory region.

Object-oriented programming: A form of programming in which data are organized into classes of 
objects, each with a specific set of functions that can be applied to the objects.

Page: a fixed size unit of storage and transfer in a memory hierarchy.
Page frame: A contiguous block of memory locations used to hold a page.
Paging: A method of virtual memory in which address space and memory space are paged.
Partition: A division of memory space into disjoint subsets of pages for each address space.
PC: Personal computer.
Permissions: Access rights granted by an object’s owner and represented as bits in the object’s 

access code.
Process: An abstraction of the execution of a program, usually represented as the sequence of values of 

its CPU state as the program traces through its instruction sequence.
Processor-centered view: A view of computing that emphasizes the work of a processor.
Protection fault: An error condition detected by the address mapper when the type of request is not 

permitted by the object’s access code.
Response time: The time from when a command is submitted to a computer until the computer responds 

with the result.
RAM: Random access memory.
RISC: Reduced instruction set computer (e.g., PowerPC, Sun SPARC, DEC Alpha, and MIPS).
Secondary memory: Lower, large capacity level of a memory hierarchy, usually a set of disks.
Segmentation: An approach to virtual memory when the mapped objects were variable-size memory 

regions rather than fixed-size pages.
Slave memory: A hardware cache attached to a CPU, enabling fast access to recently used pages and 

lowering traffic on the CPU-to-main-memory bus.
Space-time: The accumulated product of the amount of memory and the amount of time used by a 

process.
Thrashing: A condition of performance collapse in a multiprogramming system when the number of 

active programs gets too large.
Throughput: The number of jobs (or transactions) per second completed by a computer system.
TLB: Translation lookaside buffer, a cache that holds the most recently followed address paths in the 

mapper.
Two-level map: A two-tiered mapping scheme; the upper tier converts local object numbers into system 

unique handles, and the second tier converts handles to the memory regions containing the 
objects essential for sharing.

URL: Uniform resource locator (in the WWW).
Working set: The smallest subset of a program’s pages that must be loaded into main memory to assure 

acceptable processing efficiency; changes dynamically.
Working-set (WS) policy: A memory allocation strategy that regulates the amount of main mem-

ory allocated to a process, so that the process is guaranteed a minimum level of processing 
efficiency.

World Wide Web (WWW): A set of servers in the Internet and an access protocol that permits fetching 
documents by following hypertext links on demand.
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55.1  Introduction

The memory on a computer is organized into a hierarchy of storage. This storage ranges from small 
and fast to large and slow. Figure 55.1 shows a typical hierarchy. It is composed of two main parts: the 
primary store and the secondary store.
The main components of this hierarchy are the following:

	 1.	 The first level of the primary store is the cache memory hierarchy. It is often contained on the same 
chip as the central processing unit (CPU) or on other nearby chips that can be connected to the 
CPU with a minimum of delay. Because it must be able to run at close to the speed of the CPU, 
with access times of as little as a few nanoseconds, cache memory is typically small, rarely exceed-
ing a few megabytes (Mbytes). The cache is never used for permanent storage; it holds values that 
are actively being processed by the CPU.

	 2.	 The second level of the primary store is the main memory on the computer. It currently runs with 
access times of 40–80 ns that may delay a CPU running at 3 GHz by 200–300 instruction cycles. 
The size of main memory ranges from a few gigabytes (Gbytes) up to several terabytes (Tbytes). 
Like the cache, main memory is not used for permanent storage; it holds the active part of run-
ning programs. Inactive parts of running programs are swapped out of the main memory to sec-
ondary store when the main memory becomes full. Thus, the size of a program is not constrained 
to the size of the main memory.

	 3.	 The first level of the secondary store is often built from flash memory. Flash memory is a nonvolatile 
computer storage chip that can be electrically erased and reprogrammed. NAND flash memory is the 
type usually used for secondary storage because it is higher density than other types of flash memory. 
NAND must be read and written in pages much like the sectors on a disk. Unlike disks, it must 
be erased in large blocks of pages before these pages can be rewritten with new data. Because flash 
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memory avoids the mechanical delay of disks, it can typically access data about a hundred times faster 
than a disk (though it is still a hundred to a thousand times slower than main memory).

	 4.	 The second level of the secondary store is usually built from one or more disk drives. These 
disk drives are usually connected directly to the computer, though they may be located across 
a fast network on a central storage server. Disks are used for intermediate to long-term data 
storage. Access time for a fast disk is currently about 4–5 ms; thus, a CPU that needs to access 
data that is on disk will have to wait thousands of instruction cycles. Modern multitasking 
operating systems will suspend a program that awaits a disk access and run another program. 
Sometimes after the disk access has completed, the program that requested the data will begin 
to run again.

This chapter is concerned with the secondary part of the storage hierarchy; Chapters 18 and 54 discuss 
primary storage and its management. In particular, disks may be used as a temporary store when the 
main memory becomes full. This chapter considers the secondary storage solely from the perspective of 
its use as long-term storage media. The first half of this chapter will briefly discuss the hardware used 
to support secondary storage; Chapter 18 describes the storage hardware in much greater detail. The 
second half of the chapter will discuss filesystem software used to access and manage secondary storage.

55.2  Secondary Storage Devices

Many types of hardware are used to support secondary storage. This section will describe the most com-
monly used devices—solid-state disks (SSDs), magnetic disks, digital video disk (DVD) disks, and tape.

55.2.1  Solid-State Disks

A SSD is a data storage device that uses solid-state memory to store persistent data. By contrast, a tradi-
tional magnetic disk is an electromechanical device containing spinning disks and movable read/write 
heads. SSDs use the same interface as magnetic disk drives, thus easily replacing them in most applica-
tions. SSDs are typically less susceptible to physical shock, are silent, have lower access time and latency, 
but are more expensive per Gbyte.

SSDs contain no moving parts and most use NAND-based flash memory that retains memory even 
without power. NAND flash memory is organized in blocks that are a few Mbytes in size. Each of these 
blocks is made up of pages that are a few Kbytes in size. Each page can be read or written independently. 
Once written, a page must be erased before it can be written again. Erasure can only be done at a block 
level; erasing a block causes all the pages contained in that block to be erased. Flash memory can only be 
erased and rewritten a few hundred thousand times before it wears out and ceases to work.

Lower priced drives usually use multilevel cell (MLC) flash memory, which is slower and less reli-
able than single-level cell (SLC) flash memory. For MLC flash memory, a problem called lower page 
corruption can occur when MLC flash memory loses power while programming an upper page. The 
result is data written previously and presumed safe can be corrupted if the memory is not supported 
by a super capacitor covering for a sudden power loss. Another property of MLC flash memory is that 
the pages within a block must be written sequentially rather than being able to be written in a random 
order. These problems do not exist with SLC flash memory. Current controllers can mitigate the speed 
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and reliability issues of MLC memory by using more robust error-correcting codes and by using greater 
over-provisioning (more excess capacity) with which the wear-leveling algorithms can work.

The key components of an SSD are the controller and the flash memory to store the data. The control-
ler incorporates the electronics that bridge the NAND memory components to the host computer. The 
controller is an embedded processor that executes firmware-level code and is an important factor of SSD 
performance. Some of the functions performed by the controller include the following:

•	 Logical to physical block mapping: Unlike the magnetic disks that the SSD is emulating, it cannot 
overwrite an already written block until the page holding that block has been erased. Because 
erasure must be done in blocks of pages, the only practical way to overwrite a page is to write a 
new copy elsewhere.

The SSD needs to maintain a mapping from the logical block numbers being presented to it 
by the host to the physical block numbers in which those logical blocks are being stored. This 
mapping table needs to be updated each time a block is over-written and its physical location 
is changed. The mapping table must be stored in the nonvolatile memory of the drive so that it 
can be recovered after a crash or power failure as it would otherwise be impossible to recover the 
contents of the SSD. For performance reasons, the active part of the mapping table is kept in a 
dynamic-memory cache. The SSD needs either a capacitor or some form of battery to maintain 
data integrity such that the data in the cache can be flushed to the drive when power is dropped.
Some filesystems are beginning to maintain this table for the SSD as part of their operation; this 
integration of the filesystem with the SSD is described in more detail in the next section.

•	 Error correction: Flash memory is prone to error, especially as it begins to approach the end of its write 
cycles. Each page needs to have error-correcting codes associated with it so that these errors can be 
detected and corrected. When the number of errors gets close to the maximum number that the error-
correcting code can correct, the page must be retired from use by recording it in a bad-block table.

•	 Garbage collection: When the SSD controller finds that it is running out of unwritten pages, it 
must create new ones. Because erasure must be done in blocks, it must find a block whose pages 
have mostly been freed. The remaining valid pages in the block must be copied to free pages in 
another block. Once the valid pages are copied out, the block can be erased, and all its pages are 
then available for future write requests.

This extra writing that must be done to clear out a block before erasing is called write ampli-
fication. This multiplying effect increases the number of writes required over the life of the SSD 
that shortens the time it can reliably operate. The increased writes also consume bandwidth to the 
flash memory, which mainly reduces random write performance to the SSD. Many factors affect 
the write amplification of a SSD; some can be controlled by the user and some are a direct result 
of the data written to and usage of the SSD.

The SSD knows about the blocks it has freed owing to their being replaced by an over-write. To 
operate efficiently, it needs to know when blocks are no longer being used by the filesystem such 
as when an application deletes a file. Most filesystems today provide a TRIM command to inform 
a SSD that blocks of data are no longer in use by the filesystem and can be erased. While TRIM is 
frequently spelled in capital letters, it is not an acronym; it is merely a command name.

•	 Wear leveling: Because each page can only be written a finite number of times, pages that are 
approaching their write limit need to be switched to hold with static or infrequently changing 
data. Pages with low usage counts, because they have been holding static or infrequently changed 
data, need to be switched to hold more frequently changing data. The goal is to have as nearly 
equal write usage as possible. Ideally, the switching of high and low use pages can be done as a side 
effect of the garbage collection and the new block placement.

•	 Read scrubbing and read disturb management: Pages that are not read for months and pages that 
are read frequently begin to develop errors. The SSD controller must periodically read every page 
and rewrite any that have error rates that are close to what the error-correcting code can correct.
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•	 Encryption: Eliminating data on a magnetic disk can be done by over-writing it. Eliminating data 
on an SSD is much more difficult since any attempt to over-write it will leave the old data in place 
and place the replacement data elsewhere. Unless the drive provides a specific function to erase 
all the memory in the drive, there is no reliable way to ensure that any particular piece of data has 
been removed. Thus, many SSD drives provide the ability to encrypt all the data written to the 
drive and to decrypt it when it is read back. If the encryption is done on a file-by-file basis, a file 
can be reliably deleted by destroying its associated key.

•	 Read and write caching: As with magnetic disks, SSD drives usually provide cache memory to hold 
recently read pages and to as a staging area for data to be written to improve their response rates.

The performance of the SSD can scale with the number of parallel NAND flash chips used in the device. 
A single NAND chip is slow because of a narrow (8/16 bit) asynchronous input/output (I/O) interface 
and the additional high latency of basic I/O operations. Typically, it takes about 25 ms to fetch a 4 Kbyte 
page from the array to the I/O buffer on a read, about 250 ms to commit a 4 Kbyte page from the I/O 
buffer to the array on a write, and about 4 ms to erase a 1 Gbyte block. When multiple NAND devices 
operate in parallel inside a SSD, the bandwidth scales and the high latencies can be hidden, as long as 
enough outstanding operations are pending and the load is evenly distributed between devices. The 
2012 generation of SSD controllers deliver about 500 Mbyte per second read/write speeds.

55.2.2  Magnetic Disks

Data are transferred between the main memory and the disk by a disk controller. Most disk controllers 
transfer data between the disk and main memory using direct memory access. The CPU issues a com-
mand specifying the range of main memory addresses to be written or read and the disk sectors to or 
from which they should be transferred. The controller is responsible for issuing a seek command to the 
disk if necessary, waiting for the desired sectors to rotate under the head, transferring the data between 
the specified main memory locations, and interrupting the CPU to signal that the transfer has been 
completed.

To improve performance, disk controllers often provide a track cache, which holds the contents of the 
track containing the currently requested sector. For example, consider a file that fits on one track of a 
disk. Suppose the disk controller has been requested to read the first part of the file, but when the seek 
completes, the head is sitting over the middle of the file half a rotation away from its beginning. Instead 
of waiting for the disk to rotate the beginning of the file into position, the controller immediately begins 
reading the track into its cache. As the beginning of the file passes under the head, it is transferred into 
the main memory as requested, and the CPU is notified of its completion. Following the end of the 
requested data transfer, if there are no further requests awaiting the controller, it reads the remaining 
quarter of the track into its cache. Since files are often read sequentially, the controller will probably be 
asked to read the next quarter of the file. Instead of having to wait for the disk to rotate back into posi-
tion, it can satisfy this request from its cache. Thus, after one disk revolution, the controller can produce 
any part of the file with no rotational delay. Since the controller can transfer data from its cache to main 
memory much faster than data are delivered by the disk, the disk cache produces an even greater perfor-
mance gain than just that measured by eliminating rotational delay.

Using a cache to speed up disk writes is a bit more difficult. If the controller completes a seek half 
a rotation ahead of the spot that requests the write, there is nothing useful that it can do; it must wait 
for the requested position to rotate into place. Normally, the controller waits until the write completes 
before issuing a completion interrupt to the CPU. Typically, a millisecond or so of CPU processing 
occurs before it issues the next write request. If the next write request contiguously follows the previous 
write, then the disk head will have just missed the start of the block and will incur nearly an entire rota-
tion’s delay reaching the correct starting point. When writing a large contiguous file, the controller will 
consistently be delayed by a full rotation on each block, which leads to poor throughput. One approach 
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to correcting this problem is to transfer the requested block into the controller cache and then issue the 
completion interrupt before the block has been placed entirely on the disk. In this study, the CPU can 
prepare and issue the next request for the controller while the previous block is being written. With the 
new request in hand, the controller can start its transfer to the disk without loss of a revolution.

This approach has a serious failing if the controller does not have a nonvolatile cache. Many applica-
tions, such as databases, depend on the completion interrupt to let them know that critical data such as 
a transaction log have been stored in a location that will survive a system failure. If the data are only in 
the volatile controller cache and the system fails before the cache is written to disk, then the database 
will be unable to recover. Thus, early completion interrupts must be used only if the controller cache 
uses nonvolatile memory and has software to restart it and write out any incomplete blocks after a 
system failure.

A much better alternative is to use a technique called tag queuing. In this study, several requests are 
given to the disk controller, each of which is identified with a unique tag. When a request has been writ-
ten to the disk, an interrupt is generated that presents the tag of the completed transfer to the system. 
Tag queuing allows the disk to write contiguously without the need to depend on premature and pos-
sibly incomplete I/O. Thus, applications can reliably know that their data are on stable store.

The capacity of disks has been rising steadily; single disks today hold a few Tbytes of data. 
Unfortunately, disks are still able to transfer data from only one location at a time. As the amount of 
data on the disk grows, this serialized access has become more and more of a bottleneck. To compensate, 
some systems deliberately use smaller capacity disks to increase the total number of disks on the system, 
which allows more parallel data access.

55.2.3 R edundant Array of Independent Disks (RAID)

The biggest problem with magnetic disks is dealing with their inevitable failures. Because the heads fly 
only microns above the disk surface and because of the need to dissipate the heat that this small gap 
produces, even the best designed disks have a lifetime of only 5–7 years. On a large file server contain-
ing hundreds of disks, a disk failure is a common event. Traditionally, recovery from such failures were 
handled by use of a tape backup system. Every few weeks, a complete copy of each disk would be made 
on tape. Each day, a backup would be made of everything that had changed since the last complete copy 
had been made. When a disk failed, it would be replaced with a new disk; then the contents of the com-
plete copy, followed by all the daily changes, would be made to complete the recovery process.
There are three problems with this approach:

	 1.	 Capacity limits: As the capacity of disks has increased, the amount of data that must be backed 
up on tape has exploded. The large server above would have many Tbytes of disk space connected 
to it. Even with the high density tapes available today, it would take hundreds of tapes to back it 
up. The server would require several tape drives running continuously just to keep up with the 
backups.

	 2.	 Data loss: At best, most systems can only schedule backups once per day. If the disk crashes shortly 
before it is scheduled for its daily backup, everything that was done that day will be lost. For many 
businesses, losing even a few hours of work is unacceptable.

	 3.	 Recovery delay: Replacing a disk and recovering its contents from backup tapes takes several 
hours. During the recovery period, the disk is completely unavailable. This recovery delay is often 
unacceptable for time critical applications.

Two approaches have been taken to avoid these problems. The first of these approaches is a brute force 
solution called mirroring. The number of disks on the system is doubled. Disks are paired off and each 
pair keeps a copy of its partner. Thus, each time an application does a write, the changed data are writ-
ten to both disks in the pair. Reads may be done from either disk since they both contain the same 
data. If one disk in the pair fails, the other disk can continue servicing requests without interruption. 
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When the failed disk is replaced, its initial contents are copied in from its operating partner. Although 
it may take an hour or two to do the replacement and contents copy, users are unaware of the delay 
since they are running from the remaining good drive. In addition, no data are lost since there is no 
dependence on backup tapes for recovery. Mirroring has traditionally been used for time or business 
critical data, such as that handled by banking and airline reservation systems, where the extra cost can 
be justified.

The second approach to avoiding the tape backup problem is to collect several disks together and use one 
of them to store a parity of the others. Such an organization is referred to as a redundant array of indepen-
dent disks (RAID) (Patterson et al., 1988; Chen et al., 1994). A typical RAID cluster will contain five disks. 
Four of the disks contain data and the fifth contains a parity of the data on the other four. Each time data 
are written to any of the other four disks, a new parity must be computed and written to the fifth disk. In 
practice, the parity is not stored entirely on one disk as it would become the bottleneck when trying to write 
to one of the other four disks. Instead, each disk in a five disk RAID cluster would be divided so that 20% 
stores parity and 80% stores data that would be covered by parity on the other four disks. A more robust ver-
sion of RAID maintains two sets of parity that allows it to suffer two disk failures without losing any data.

Recovery from disk failure in a RAID cluster is not as transparent as it is with mirroring. Access to 
the RAID cluster can continue, but at approximately half of its regular access rate, while the broken disk 
is replaced and rebuilt. The replacement disk is initialized by reading the other four disks in the cluster 
and computing what value should be put onto the new disk. In data communications, parity can be used 
to detect errors, but not to correct them. That is because in data communications, the receiver does not 
know which bit is in error. Parity can be used for error correction for a RAID cluster because the cluster 
knows which disk failed. Thus, it can recompute the correct value for the failed disk using the data on 
the other drives. Failure recovery on a RAID cluster typically takes a few hours.

Once the recovery is complete, the cluster returns to the state it was in just before the disk failed. 
Thus, RAID clusters solve two of the three tape backup problems. They avoid the need for daily backups 
and they avoid losing data when they fail. While access to the data is slow during the recovery period, 
that period is typically about half the time required for a tape recovery. A RAID cluster is considerably 
cheaper than a mirroring strategy since there is only a 25% redundancy of hardware rather than a 100 
percent redundancy. Thus, the RAID cluster usage is increasing in less time-critical environments.

Even with RAID clusters, the need for backups is not completely eliminated. Full backups need to 
be taken and stored off-site for recovery if a major catastrophe such as a fire destroys the disks in a 
machine room. Backups are also needed to recover from user errors where an important file is acciden-
tally deleted. Neither of these problems can be handled by RAID clusters.

Mirroring can handle the catastrophic failure if the mirror disks are kept in physically separate loca-
tions. For genuine safety, the mirrors should be in different buildings that are at least several miles apart. 
Buying space on a cloud server is often a less expensive alternative than maintaining a second facility. 
The communication costs of the high-bandwidth network connection that is required sometimes makes 
a long distance mirroring solution unacceptably expensive. A less expensive alternative is to make peri-
odic tape backups and transport the tapes to the distant location for archival storage.

Distance mirroring does not provide recovery from user errors where an important file is accidentally 
deleted. As described in the next section of this chapter, modern filesystems provide the ability to take a 
snapshot of the filesystem. Logically, the snapshot represents a frozen copy of the filesystem as it existed 
at the time that the snapshot was taken. If a user accidentally deletes a file, they can copy a replacement 
for it from a recent snapshot.

55.2.4  DVD Disks

The ubiquitous DVD plays a small but important role in computer systems today (Asthana, 1995). Its 
primary use is as a software distribution medium where it has replaced tapes and floppy disks. It has 
the benefits of being cheap, reliable, and easily mass produced. It has the random access features of 
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a magnetic disk that makes it much more convenient than a tape. Because the software is often used 
directly from the DVD rather than being loaded onto the system disk, large software packages can be 
used on systems that are otherwise short of disk space. Even with all these benefits, the use of DVDs as 
a software distribution medium is declining as software is increasingly being downloaded directly from 
the Internet.

The DVD disks are more compact to store than tapes. Like tapes, all user writable DVDs can only 
hold data reliably for 5–8 years. Factory pressed (read-only) DVDs are expected to hold data reliably for 
50–100 years.

55.2.5 T apes

Tapes are used for archival and backup storage. The access time to get to the start of and begin read-
ing a file stored on a robotically managed tape system is several minutes. If a human operator must get 
involved, the access time takes longer. Historically, actively running programs directly manipulated 
data on tapes. Today, most applications arrange to have data read from tapes onto disk before beginning 
to access that data. Tapes are used primarily to archive data that is not currently accessed.

Tapes remain the most commonly used form of archival storage though they are being increasing 
replaced by cloud storage solutions. Early tape technology used 12 in. reels of half-inch tape that stored 
a little over 100 Mbytes of data. Current tape technology uses DLT cartridges that store Tbytes of data. 
The rule of thumb has been that the largest tapes hold about the same amount of data as the largest disks.

Data transfer to and from tapes tends to be slower than data transfer to and from disks. Random 
access to tapes is much slower than disks. Even modern DLT drives take about a minute to seek from 
one end of a tape to the other. The big benefit of tapes is that they are a tenth the cost of disks per Gbyte 
of storage. Furthermore, by installing a robotic tape system with a capacity of several hundred tapes, it is 
possible to create a file store capable of storing hundreds of Tbytes of data. While the access time to the 
data may be a minute or two, it is far cheaper than storing a similar amount of data on disk.

In practice, tape store is generally used as the final repository for data. Recently accessed data are 
stored on disk where it is more readily available. When the disks become full, the least recently accessed 
data are copied to tape and deleted from the disk. If it is later needed, it is reloaded onto the disk displac-
ing other less recently accessed data. To maintain reasonable access times, most systems arrange to have 
enough disk space to keep data disk resident for up to a year.

55.3  Filesystems

Most applications that users run on their computer do not write data directly onto the disk. The oper-
ating system provides an interface called a filesystem that organizes the data into files. The filesystem 
converts the file from the user abstraction as an array of bytes to the structure imposed by the underly-
ing physical medium and is responsible for deciding where the file contents should be placed on the disk.
The filesystem provides several important services:

•	 Protection: Most filesystems allow users to control access to their files. At a minimum, they can 
restrict access to themselves, a defined group of other users, or all other users of the system.

•	 Organization: Data in each file can be manipulated independently of data in other files. Data may 
be added or deleted from one file without affecting the data contained in other files. In particular, 
the user need not be concerned that one file might run into another file on the disk as they would 
if they were directly placing the data on the disk themselves.

•	 Multiple access: Modern filesystems allow multiple files to be accessed at the same time and even 
allow separate programs to consistently access the same file. Consistent access means that if one 
application writes a file while another is reading the same part of the file, the reader will see the file 
either before the write has been started, or after it has finished, but not in a partially written state.
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•	 Space management: The filesystem tracks the used and free space on the disk. When any file in the 
filesystem needs to grow, the filesystem finds an appropriate sized piece of free space and allocates 
it to the file. As long as there is free space left on the disk, the filesystem is prepared to allocate it 
to any file within the filesystem that wants to grow or to create a new file and allocate the space 
to that new file.

In addition, a filesystem is expected to optimize the use of disk bandwidth. Thus, it must not only find 
space to allocate to files, but it must try to find space that is contiguous or at least rotationally close 
together to minimize the time that it takes to read and write the file. Issues of space management are 
discussed in the subsequent sections.

55.3.1  Directory Structure

Most filesystems allow files to be grouped together into directories. These directories may then be fur-
ther grouped together into other directories. The files and directories are usually grouped together in a 
tree hierarchy; Figure 55.2 shows a typical filesystem hierarchy. The rounded boxes represent directories; 
the square boxes represent files. The top of the tree is referred to as the filesystem root. Files are accessed 
by giving the set of names of directories from the root of the tree down to the desired file, separated by 
slashes; this name is called the pathname. Unix-like systems such as Linux, Solaris, and FreeBSD use 
forward slashes; Windows uses back slashes. For example, access to the file mydata in Figure 55.2 would 
use the pathname /users/myhome/mydata (IEEE, 1994).

Many filesystems maintain a current working directory for the user. Instead of having to always 
specify a file by its complete pathname, the system keeps track of which directory the user is currently 
referencing and does all filename translation relative to that directory. The user initially specifies a cur-
rent directory using a complete pathname. Using the filesystem shown in Figure 55.2, the user might 
request that the current directory be set to /users/myhome. Thereafter, the reference to the file mydata 
can be used without specifying its entire path since it is resident in the current directory.

55.3.2  Describing a File on Disk

To allow both multiple file allocation and random access, most systems use a data structure similar to 
that shown in Figure 55.3 to describe the contents of a file. This structure includes

•	 Access permission for the file
•	 The file’s owner
•	 The time the file was last read and written
•	 The size of the file in bytes

Their data

Msg 1 Msg 2

Root of filesystem

Mail

�eir home

News Your data Junk

Users

Your homeMy home

My data

FIGURE 55.2  A set of files and directories.
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Notably missing in this structure is the filename. Filenames are usually maintained in directories rather 
than in this structure because a file may have many names, or links, and the name of a file may be large 
(often up to 255 bytes in length).

The file structure also contains an array of pointers to the blocks in the file. The system can convert 
from a logical block number to a physical block number by indexing into this array using the logical 
block number. A null array entry shows that no block has been allocated and will cause a block of zeros 
to be returned on a read. On a write of such an entry, a new block is allocated, the array entry is updated 
with the new block number, and the data are written on that physical block of the disk.

Since the filesystem must support many files and most files that it stores are small, the file structure 
has a small array of pointers for efficient use of space. The first few array entries are allocated in the file 
structure itself. For typical filesystems, these array entries allow the first 400 Kbytes of data to be located 
directly using a simple indexed lookup.

For somewhat larger files, Figure 55.3 shows how the file structure contains a pointer to a single indi-
rect block of pointers to data blocks. To find the hundredth logical block of a file, the system first fetches 
the block identified by the indirect pointer, then indexes into it by 100 minus the number of direct point-
ers, and fetches that data block.

For files that are larger than a few Mbytes, this single indirect block is eventually exhausted. These 
files must resort to using a double indirect block, which is a pointer to a block of pointers to pointers to 
data blocks. For files of multiple Gbytes or Tbytes, the system uses a triple indirect block, which contains 
three levels of pointers leading to the data block.

Although indirect blocks appear to increase the number of disk accesses required to reach a block of 
data, the overhead for this transfer is typically much lower. Most filesystems maintain a memory-based 
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FIGURE 55.3  Extensible data structure used to describe a file.
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cache of recently read disk blocks. The first time that a block of indirect pointers is needed, it is brought 
into the filesystem cache. Further accesses to the indirect pointers find the block already resident in 
memory; thus, they require only a single disk access to reach the data.

The filesystem handles the allocation of new blocks to files as they grow. Simple filesystem imple-
mentations, such as those used by early microcomputer systems, allocate files contiguously, one after 
the next, until the files reach the end of the disk. As files are removed, gaps occur. To reuse this freed 
space, the system must compact the disk to move all the free space to the end. Files can be created only 
one at a time; to increase the size of a file (other than the last one on the disk), it must be copied to the 
end and then expanded. For the more complex file structure just described, the locations of the data 
blocks in each file are given by its block pointers. Although the filesystem may cluster the blocks of a file 
to improve I/O performance, the file structure can reference blocks scattered anywhere throughout the 
disk. Thus, multiple files can be written simultaneously, and all the disk space can be used without the 
need for compaction.

55.3.3  Filesystem Input/Output

The filesystem implementation converts the file from the user abstraction as an array of bytes to the 
structure imposed by the underlying physical medium. Consider a typical medium of a magnetic disk 
with fixed-sized sectoring. Although the user may wish to write a single byte to a file, the disk supports 
reading and writing only in multiples of sectors. In this study, the system must read the sector containing 
the byte to be modified, replace the affected byte, and write the sector back to the disk. This operation of 
converting a random access within an array of bytes to reads and writes of disk sectors is called block I/O.

First, the system breaks the user’s request into a set of operations to be done on logical blocks of the 
file. Logical blocks describe block-sized pieces of a file. The system calculates the logical blocks by divid-
ing the array of bytes into filesystem-sized pieces. Thus, if a filesystem’s block size is 8192 bytes, logical 
block 0 would contain bytes 0–8191, logical block 1 would contain bytes 8,192–16,383, and so on.

Figure 55.4 shows the flow of information and work required to access the file on the disk. The 
abstraction shown to the user is an array of bytes. These bytes are collectively described by a file descrip-
tor that refers to some location in the array. The user can request a write operation on the file by pre-
senting the system with a pointer to a buffer, with a request for some number of bytes to be written. 
Figure 55.4 shows that the requested data need not be aligned with the beginning or end of a disk sector. 
Furthermore, the size of the request is not constrained to a single disk sector. In the example shown, the 
user has requested data to be written to parts of logical blocks 1 and 2.

The data in each logical block are stored in a physical block on the disk. A physical block is the loca-
tion on the disk to which the system maps a logical block. A physical disk block is constructed from one 
or more contiguous sectors. For a disk with 4096 byte sectors, an 8192 byte filesystem block would be 
built from two contiguous sectors. Although the contents of a logical block are contiguous on disk, the 
logical blocks of the file need not be laid out contiguously.

Returning to our example in Figure 55.4, we now know which logical blocks are to be updated. Since 
the disk can transfer data only in multiples of sectors, the filesystem must first arrange to read in the 
data for any part of the block that is to be left unchanged. The system must arrange an intermediate stag-
ing area for the transfer. This staging is done through one or more system-cache buffers.

In our example, the user wishes to modify data in logical blocks 1 and 2. The operation iterates over 
five steps:

	 1.	 Allocate a system-cache buffer.
	 2.	 Determine the location of the corresponding physical block on the disk.
	 3.	 Request the disk controller to read the contents of the physical block into the system-cache buffer 

and wait for the transfer to complete.
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	 4.	 Do a memory-to-memory copy of the next piece of the data from the user’s I/O buffer to the 
appropriate portion of the system-cache buffer.

	 5.	 Write the block to the disk.

Since the user’s request is incomplete, the process is repeated with the next logical block of the file. The 
system fetches logical block 2 and is able to complete the user’s request. Had an entire block been writ-
ten, the system could have skipped step 3 by simply writing the data to the disk without first reading the 
old contents. This incremental filling of the write request is transparent to the user’s process, because 
that process is blocked from running during this entire operation. It is also transparent to other pro-
cesses since the file is locked by this process; any attempted access to the file by any other process will be 
blocked until this write has completed.

55.3.4  Disk Space Management

The role of the filesystem code is not only to organize the data on a disk but also to minimize the time 
that it takes to read and write that data. There are two important measurements of access time. The first 
is the time that it takes to access the data contained within a particular file. The second is the time that 
it takes to access the data contained within a collection of files that are accessed together.

Examples of collections of files accessed together include files that are collected together in a spool 
area such as those destined to be sent to a printer or those being batched to be sent as a collection of 
electronic mail messages. Another example might be a collection of files that make up the components 
of a spreadsheet, a document, or a program. Directories provide a strong clue that a set of files will be 
accessed together. Thus, many filesystems will try to allocate all the files contained within a directory in 
close physical proximity to each other on the disk. If they are accessed together, the disk will not need to 
make long or multiple seeks to get from one to the next.

System buffers :

User : write (fd, buffer, cnt)

cnt

#32218

Disk : #51879

#119543 :

2 :

Buffer :

Logical file :

Logical file blocks : 0 1 2 3

0 :

1 : #90255

FIGURE 55.4  The block I/O system.
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Most filesystems put their greatest effort into optimizing the layout of individual files. The default 
assumption is that the files will be accessed sequentially starting at their beginning. Certain files, such 
as those that contain a large database, may have randomly scattered accesses. The optimal layout for 
such files is dependent on their access patterns, which may be known only to the database or application 
program, or that may not be known at all. For such files, the filesystem may allow the database or appli-
cation to direct the layout of the file. Alternatively, it may simply lay the file out sequentially and assume 
that the database or application will attempt to cluster related information within the file to minimize 
the time it takes to seek between file locations.

For a sequentially accessed file, the usual strategy is to allocate a contiguous piece of space on the disk 
on which it is stored. When a disk is first put into service, doing sequential allocation for files is easy. The 
filesystem has a large area of contiguous physical free space and allocates pieces out of that space for each 
new file. Unfortunately, this allocation approach quickly uses up all the physically contiguous space. 
As old files are deleted, they return the space that they were using. However, this unused space will be 
randomly scattered throughout the disk. Eventually, the disk will become completely fragmented with 
no large contiguous pieces of space remaining, thus making it impossible for the filesystem to allocate 
new files contiguously.

Filesystems often use defensive algorithms to reduce the rate of fragmentation of the free space on the 
disk. A key to reducing fragmentation is to observe that most of the files within a filesystem are small. 
When a new file is created, the filesystem can assume that it will be small. Instead of allocating its initial 
disk space in a large contiguous area of the disk, the file will be allocated in a smaller fragment that may 
have been freed when another small file was deallocated. If the file turns out to be small as expected, 
then it will nicely fit in the small space that it was initially allocated. If it continues to grow, then the 
filesystem can move it to a fragment left by a somewhat larger file. Only when the file grows large, it is 
finally relocated to the large contiguous space that the filesystem has now been able to hoard. By only 
allowing large files to be allocated in the large contiguous space, the filesystem is better able to ensure 
that some large contiguous space will be available when it is needed.

Moving files around on the disk can be a potentially slow and expensive operation if the file must be 
read and rewritten every time that the filesystem wants to move it. To reduce the relocation cost, the 
filesystem will attempt to defer writing the file until it has determined its final location on the disk. 
The deferral is done by holding blocks of the file in system-cache buffers until its size can be deter-
mined (see Figure 55.4). The steps involved in allocating space to a file are as follows:

•	 When the first block is written, a system-cache buffer is allocated, A single block-sized piece of 
free disk space is found, the address of that piece of disk space is assigned to the system-cache 
buffer, but the buffer is not written to the disk.

•	 If the file continues to grow, a second system-cache buffer is allocated. The filesystem finds a two 
block-sized piece of free space, frees the single block-sized piece of space originally assigned to the 
file, and assigns the addresses of the new larger block to the two buffers. As before, neither buffer 
is written to the disk.

•	 This process continues until the file has grown to the maximum sized block allowed (typically the 
size of a disk track) or the file has ceased to grow at which point the buffers are written to their 
final destination.

If the system-cache buffers are needed for another purpose, or the application explicitly requests that 
the file be stored on disk (for example, it is a transaction log that must be in stable storage before the 
application can proceed), the system-cache buffers always have a location to which they can be written. 
The only implication of doing the write early is the loss of performance that comes from writing the data 
to disk more than once.

This algorithm has the additional benefit that it allows even slowly growing files to be written con-
tiguously. If a file, such as one holding accounting records, grows at the rate of a few Kbytes per hour, it 
will be relocated to larger contiguous blocks periodically. In this study, the relocation usually involves 
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reading and rewriting the data, since the turnover in system-cache buffers causes them to be flushed 
before the new disk addresses for the data are assigned. Since the reallocation occurs only a few times 
per hour, the added I/O overhead does not adversely affect system performance.

To ensure successful layouts, a filesystem must have a quick method for finding contiguous and 
nearby free blocks on the disk and then allocating them. The most common data structure used for 
describing the free disk blocks is an array of bits. The blocks on the disk are sequentially numbered; 
the corresponding bit in the array is set to 1 if the block is being used and 0 if it is free. Block allocation 
involves setting the bits corresponding to the blocks being allocated; block deallocation involves clear-
ing the bits corresponding to the blocks being freed. Finding other nearby blocks can be done by looking 
for 0 bits in the array near the location of the most recently allocated block in the file. Clusters of blocks 
can be identified by looking for strings of 0 bits in the array.

The free disk block array is large for a big disk. Exhaustive searches of the array (for example, when 
the disk is nearly full and there are few free blocks remaining) would slow filesystem performance 
unacceptably. Consequently, most filesystems maintain auxiliary data structures that summarize the 
contents of subranges of this bit array. Such summaries include the number of free blocks and the maxi-
mum sized contiguous piece within each subrange of the bit map. When looking for a block or a cluster 
of blocks, the filesystem first scans the summary information to find a subrange of the bit map that has 
the necessary free space. Once it finds the needed space, the filesystem can narrow its search to that 
subrange of the bit map rather than searching the whole space.

An alternative to using an array of bits is to describe the free space using a more complex data struc-
ture such as a B+ tree. For example, a B+ tree is used for this purpose in the XFS filesystem (Sweeney 
et al., 1996). A B+ tree can also be used to locate the blocks for the file rather than using the indirect 
block scheme shown in Figure 55.3. B+ trees are described in Chapter 3 on data structures.

55.3.5  Filesystem Crash Recovery

Logging long has been used in database systems to provide recovery after a system failure (Date, 1995). 
The database periodically does a checkpoint of its on-disk data structures to ensure that they are in a 
consistent state. Following the checkpoint, the database keeps a log of every change that it commits. The 
log is usually written serially onto a disk that is dedicated to the log. Thus, the log can be written quickly 
since the disk head is always within no more than a rotational delay from the next location to be written.

If the system fails, the log does a roll forward operation on the database to bring it back to consis-
tency. The roll forward works by going through the log and ensuring that all the changes that it lists are 
reflected in the on-disk database state. The time required to recover the database after a system failure 
is bounded by the frequency of checkpoints. By checkpointing the database and resetting the log every 
few minutes, the recovery time for a disk failure can be kept to a few minutes or less.

The idea of using a log to recover a database has also been applied to filesystems. Like a database, the 
filesystem periodically checkpoints its state. It then writes all changes after that point both to its log and 
to the filesystem itself. When the log becomes full or a time limit is reached, the filesystem checkpoints 
itself again and resets its log. As with the database, the log is rolled forward after a system failure to 
ensure that all the changes made since the checkpoint are reflected in the filesystem. The log only needs 
to record modifications to the filesystem. While it has no effect on the speed with which data can be read 
from the filesystem, logging does introduce additional overhead when files are written. However, if the 
log is stored on a separate disk from the rest of the filesystem, writing to the log is seldom the limiting 
function on the speed with which data are placed into the filesystem. For systems that require high write 
performance, the logging disk can be replaced with nonvolatile memory.

Although a log provides fast recovery after a system failure, it does not provide the data recovery of 
mirroring or RAID that can recover from catastrophic disk failure. The reason that logging does not 
help with catastrophic disk failure is that data may be lost from parts of the disk that the filesystem 
thinks are stable and hence did not enter in the log.
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55.3.6  Non-Overwriting Filesystems

Traditional filesystem design makes updates by overwriting old versions of the data with new versions. 
If an application such as an editor writes new contents to a file, the new contents are written into the 
same space as was previously occupied by the old contents. The benefit of this design is that related files 
reside near each other on the disk even if they are written at different times. The drawback of this design 
is that the filesystem may be inconsistent during times when data destined for the disk is still in the 
main memory waiting to be written. Thus, some mechanism such as logging is necessary ensure that the 
filesystem can be recovered after a crash.

A more recent filesystem design has taken the approach of never overwriting existing data in the 
filesystem. Any time an update is made to a file, the changes are accumulated in memory. When a preset 
interval (usually less than 30 s) or a threshold of changes is reached, all the new data are written to free 
space on the disk. When all the changes have been written, the filesystem does one last checkpoint write 
to commit itself to its new state. As part of doing the filesystem checkpoint, the space formerly used by 
the files that have been updated is released for future use.

The filesystem always moves from one consistent state to the next and is never in an inconsistent state 
that needs to be recovered after a crash. After a crash, the filesystem can begin operating from its last 
consistent state. Such filesystems still need a log for use after a crash. Although they do not need it to 
recover the filesystem, they do need it to recover the changes that occurred since the last checkpoint. 
After a crash, the filesystem begins from its last checkpoint, all the changes in the log are applied to it, 
and a new checkpoint is taken to commit those changes.

A drawback of the non-overwriting filesystem design is that the data for related files no longer resides 
together on the disk. Instead, the files are laid out on the disk in the order in which they were written; if 
two related files are written at different times, they will likely be far apart from each other on the disk. 
Thus, reading those files at the same time will take longer than it would on a conventional filesystem. 
Furthermore, files that are written over time (such as system activity logs) will have their data scattered 
over the disk. Reading such files will be considerably slower than reading such a file on a traditional 
filesystem that will put all its data together in one place. These slow access patterns can be mitigated by 
using a large main-memory cache to hold frequently or commonly accessed data.

The ability to take a snapshot has become a popular filesystem feature. Snapshots are typically com-
pact as they reference the filesystem on a copy-on-write basis. So, the snapshot only needs to retain 
copies of the disk blocks that are modified. As the contents of most filesystems change slowly, the extra 
space required to hold a snapshot is small.

A major benefit of non-overwriting filesystems is that they can quickly take snapshots. Because exist-
ing data are never overwritten, the filesystem need only to take a checkpoint and then not release the 
previously used data until the snapshot is deleted. The commit record written to create the checkpoint 
is saved as the access point for the snapshot. When the snapshot is deleted, the commit record and space 
associated with it can be released. Because the commit records are small and there is no need to check 
for over-writing of filesystem blocks, a non-overwriting filesystem can cheaply retain tens or hundreds 
of snapshots.

Taking a snapshot in a traditional over-writing filesystems is time consuming and requires significant 
space since it must record every block in use at the time of the snapshot. Every time data are written 
to the filesystem, it must check every snapshot to see if it will overwrite a block in that snapshot and 
save a copy of the old contents when such an overwrite is made. Thus over-writing filesystems limit the 
number of snapshots that they will retain to avoid using up too much space and slowing down filesystem 
performance.

Non-overwriting filesystems work particularly well with SSDs. Because they never overwrite any 
existing data, the SSD seldom needs to change the mapping of logical blocks to physical blocks. The only 
time a remapping is needed is when blocks are moved as part of garbage collection or wear leveling.
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Some filesystems are now beginning to integrate more tightly with the SSD. Wear leveling is man-
aged by the filesystem as part of its block allocation strategy. Blocks with low write counts are allo-
cated to files and filesystem metadata structures that are expected to be short-lived, while blocks with 
high write counts are allocated to files and filesystem metadata structures that are expected to be 
long-lived.

Garbage collection is also coordinated with the filesystem. When the SSD selects a block for garbage 
collection, it notifies the filesystem of the blocks that will be moved. The filesystem updates its internal 
pointers to reference the new locations. Once the filesystem has committed these updates, the SSD can 
erase the selected block.

When a non-overwriting filesystem can support wear leveling and the block remapping associated 
with garbage collection, the SSD no longer needs to maintain the logical to physical mapping table. The 
removal of this extra level of indirection and the need for its maintenance dramatically reduces the cost 
of the SSD controller as well as improves its performance.

55.3.7  Versioning Systems

Users often want to retain previous versions of files, such as released versions of programs or docu-
ments. Usually, they use a revision control utility that maintains a database, which stores and retrieves 
the selected versions. Most version control systems only keep a complete copy of the original file. Each 
successive version is then stored as a set of differences from the previous version. Some version control 
systems operate by storing each version in a separate file, allowing fast and easy access to older versions 
(since it is just a matter of finding and reading the desired version). However, this method of version 
control is wasteful of space, especially if the file being versioned is large and the changes between ver-
sions are minimal.

The whole file copy version of revision control can be done by the filesystem itself. Each time a file is 
opened for writing, the contents of the old file are saved instead of being overwritten. The old file is kept 
around until the filesystem runs out of space. When additional space is needed for new files, the user 
must either explicitly delete unneeded earlier versions of files or request the filesystem to reclaim the 
space from the oldest of the earlier file versions.

The user interface for accessing older files may simply provide a list of different versions that are avail-
able and allow the user to specify the one that they want. Or it may be more sophisticated, allowing the 
user travel in time. For example, the user might be able to request all the files making up a particular 
program as they existed at the release date for the program.

Another variant of versioning involves taking a snapshot of the filesystem. When running on a non-
overwriting filesystem, it is possible to take a snapshot of a filesystem every few hours during the day. 
Often, the snapshots are put in a location accessible to the users so that they can go retrieve older ver-
sions of their files without the intervention of a system administrator. Thus, if a user wrote a file in the 
morning and accidentally overwrote it in the afternoon, they could retrieve the original copy from the 
late-morning snapshot.

Key Terms

Block I/O: The conversion of application reads and writes of records with arbitrary numbers of bytes 
into reads and writes that can be done based on the block size and alignment required by the 
underlying hardware.

Checkpoint: The writing of all modified data associated with a filesystem to stable storage (either non-
volatile memory or the disk). A checkpoint ensures that all operations completed before the 
checkpoint will be recovered following a system failure.
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Dirty blocks: In computer systems, modified, a system usually tracks whether an object has been 
modified—is dirty—because it needs to save the object’s contents before reusing the space held 
by the object. For example, in the filesystem, a system-cache buffer is dirty if its contents have 
been modified. Dirty buffers must be written back to the disk before they are reused.

Indirect block: A filesystem data structure composed of an array of pointers to disk blocks used to 
locate the data blocks associated with a file.

Logical block: The sequential fixed-sized pieces of a file. The logical block associated with a given byte 
offset in a file is calculated by dividing the offset by the filesystem block size. For example, byte 
20,000 is located in the third logical block of a file residing on a filesystem with 8 kbyte blocks.

No-overwrite policy: The filesystem never rewrites existing data in a file. New data are always written 
into a new location on the disk.

Physical block: The disk sector addresses associated with a logical block of a file. The filesystem finds 
the contents of a logical block in a file by using the logical block number as an index into an 
indirect block to find the disk sector address holding the requested data.

Roll forward: Used to recover after a system failure. The operation of rerunning the update operations 
stored in a log file against a filesystem or database to bring it to a consistent state as of the last 
update completed in the log.

Snapshot: A filesystem snapshot is a frozen image of a filesystem at a given instant in time.
System-cache buffers: System memory used to hold recently used data. For example, in the filesystem, 

system-cache buffers are used to hold recently accessed disk blocks.

Further Information

A good overview of filesystems can be found in Chapter 3 of Silberschatz and Galvin (1994).
Most operating systems today use filesystem designs similar to those found in (McKusick and 

Neville-Neil, 2005). This chapter summarizes information on file layout on disk described in Section 
79.2, filesystem naming described in Section 79.3, and the traditional disk space management described 
in Section 79.9.

A description of the non-over-writing Open Solaris ZFS filesystem can be found in (Solaris, 2012).
Ars Technica has an excellent in-depth article on SSD technology (Hutchinson, 2012).
The Stanford VLSI Group’s CPU database project has a catalog of evolving microprocessor technol-

ogy (Stanford, 2012).
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56.1  Introduction

Since the inception of computers, there has been intense interest in their performance. Other dimen-
sions are reliability [143], which is briefly discussed in the chapter on storage systems, power consump-
tion that arises in the broader context of green computing [1], footprint, ease of operation, etc.

Initial attention was paid to the speed of the central processing unit (CPU), specified in millions of 
instructions per second (MIPS) [2]. The MIPS rating of computer systems is specified with respect to 
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the VAX 11/780 marketed as a one MIPS computer [3]. The execution speed of a computer depends on 
the instruction mix, such as Gibson’s, but also the sequence of their execution as affected by data and 
control dependencies (branches) [73]. There is a slowdown when the instructions and data cannot be 
accessed in one cycle as a result of cache misses [73].

The slow speed of arithmetic logic units (ALUs) of early computers led to research in developing and 
implementing new arithmetic algorithms [63]. Pipelining was introduced to allow a new arithmetic 
operation to be started per CPU cycle, and this concept was extended to the instruction execution level. 
For example, the IBM 360/91 decoded one instruction per its 60 nanosecond (ns) cycle, so that at its best 
it could process 16.7 MIPS [4]. Unlike the IBM 360/85 introduced at about the same time, the 360/91 was 
not equipped with a cache memory, but rather a sufficient number of instruction registers to hold the 
inner loop of a program and 16-way memory interleaving for parallel data access.

Early computers were uniprocessors with expensive magnetic core memories. Given the high cost of 
CPU hardware, multiprogramming was introduced to take advantage of the CPU-I/O overlap in these 
computers, allowing the CPU to be shared by several jobs. A rule of thumb to determine the multipro-
gramming level (MPL) to fully utilize the CPU is discussed in Section 56.3.5. Multiprogramming is also 
required by online transaction processing (OLTP) to attain a higher transaction (txn) throughput at an 
acceptable mean txn response time.

Multiprocessors and multicomputers have been developed to attain more computing power than uni-
processors. Multiprocessors have been classified as shared everything systems by Stonebraker [107], since 
resources such as the main memory and disks can be accessed by all processors. There is a performance 
degradation due to cache interference and also synchronization delays in multiprocessors [70]. In shared 
disk or data-sharing systems, the processing is shared by two or more computers, which need to coordi-
nate their activities in processing database applications, such as coherency control of database buffers and 
concurrency control [96]. In the shared-nothing category, there are multicomputers, which share an inter-
connection network and communicate via message passing or a distributed shared memory (DSM) [57].

There are numerous applications requiring lengthy execution times if executed sequentially on a 
uniprocessor. There is also the issue of timeliness, that a computation needs to be completed by a cer-
tain deadline, for example, daily weather forecasting (although long-term forecasts are now available). 
Fortunately, many such computations exhibit a high degree of parallelism [57], so that their processing 
can be speeded up by parallel computing [5]. Parallelism is also exploited in database management sys-
tems (DBMSs) and web search engines to ensure timeliness of responses.

A semblance of parallelism can be attained by pipelining, which overlaps the processing of successive 
operations in time. Supercomputers in 1970s were highly pipelined vector computers, with Cray-1 being 
the world’s fastest computer at that time. Flynn classified computers in mid-1960s into four categories 
based on the number of instruction and data streams [6,73]: single instruction, single data stream (SISD) [7] 
computers are uniprocessors. Single instruction, multiple data stream (SIMD) computers such as the 
Illiac IV were an early form of parallel computing, where a control unit issued decoded instructions 
to 64 processing elements (PEs). This categorization also applies to vector computers, where a single 
instruction applies to elements of vectors. Graphics processing units (GPUs) belong to this category [73]. 
Multiple instruction, multiple data stream (MIMD)s are multicomputers. Several notable early comput-
ers are described in [44].

Amdahl in 1967 enunciated Amdahl’s law, as an argument against parallel computing to promote 
IBM’s uniprocessors at that time [8]. Given that a fraction 1 − F (of the sequential execution time of a 
program) cannot be parallelized to run at K processors Speedup = (1 − F + F/K)−1, for example, F = 0.5 
yields at most a speedup of two.

The highest computing power is currently attained by MIMD parallel processors with the message 
passing interface (MPI) [9]. IBM’s Deep-Blue computer, which allegedly beat world’s chess champion 
Kasparov in 1997 [10], was followed by the Blue-Gene supercomputer for understanding cellular archi-
tectures [11]. Another IBM computer called Watson consisting of 90 servers with 16 TB RAM outplayed 
human contestants of the TV game show Jeopardy [12]. Japan’s 10.51 Petaflops/second (1015 floating 
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point operations per second) K computer was the world’s fastest computer until IBM introduced the 
Sequoia 16.32 Petaflops computer at the Lawrence Livermore National Laboratory in June 2012 [13]. 
Changes in supercomputer rankings are listed in [14].

Growth in supercomputer performance is limited by reliability and power consumption consider-
ations. It was said in 1970s that the Illiac IV supercomputer failed every 30 s. When the failure was due 
to one of its 64 PEs, the system was fixed by manually substituting the failed PE with a spare and restart-
ing. Periodic checkpointing was used to save the state of the computation to ensure that completed work 
preceding a system failure is not lost [15]. The issue of power consumption is partially addressed by 
placing the supercomputers in areas where cheap hydroelectric power is available.

Current microprocessor speeds are specified in GigaHertz, which is an upper bound to instruction 
execution rate, assuming one instruction is decoded per cycle. The growth in microprocessor speeds 
since late 1970s is shown in Figure 1.1 in [73]. The increase in processor speeds has slowed down in 
recent years, but the fact that the number of transistors per chip can be increased at a faster rate than its 
speed is exploited in these systems by providing multiple cores (processors and caches), which provide 
an increase in raw computing power. An extra effort is, however, required to exploit the parallelism 
provided by multicore systems [73].

Since the cycle time of main memory is much slower than the processor, cache memories operating 
at processor speeds are provided to improve performance. Although CPU caches are much smaller 
than the main memory, they attain small miss rates due to spatial and temporal locality of references 
[53,73,86,106]. Spatial locality is exploited by prefetching, since it is more advantageous to access con-
secutive disk (resp. main memory) blocks with one disk (resp. memory) access [73]. An efficient imple-
mentation of cache coherence and synchronization in multiprocessor systems is critical for performance 
[57,73]. Several levels of caches referred to as L1, L2, …, are usually provided. In multiprocessors, L1 
caches are dedicated to one processor, while L2 caches are shared by two or more processors [16].

Cache, DRAM (main memories), and (magnetic) disk technologies and their performance are dis-
cussed in [75]. Hard disk drives (HDDs) are slow due to their mechanical nature, and their impact on sys-
tem performance and reliability is discussed in the chapter on storage systems. Numerous technologies 
referred to as storage class memory (SCM) are under development, which in addition to flash memories 
compete in replacing disks or at least serve as their caches. Performance modeling studies of the proces-
sor, caches, main memories, and peripheral devices are discussed in a collection of papers in [81]. The 
standard computer architecture textbook emphasizing system performance [73].

Benchmarks have been developed over the years for evaluating computer system performance [17]. 
Standard Performance Evaluation Corporation’s SPEC CPU2006 has a floating point and integer version [18]. 
SPECfp2000 results for several popular microprocessors are given in Figure 1.15 in [73]. Early database 
benchmarks are discussed in a handbook edited by Gray [19]. He was instrumental in proposing the 
debit–credit benchmark, which due to its simple nature suited Tandem’s shared-nothing organiza-
tion [20]. The performance goal for the debit–credit OLTP benchmark in 1985 was one kilo transactions 
per second (KTPS), which was determined at the point where the mean txn response time stayed below 
a certain time limit, say 2 s. The metric for batch applications, such as sorting, is elapsed time. Two 
computer systems are usually involved in benchmarking, with one system generating txns for the system 
under test (SUT). This benchmark termed TPC-1 was adopted by the Transaction Processing Council 
(TPC). TPC later introduced other benchmarks for processing ad hoc queries in relational DBMSs, deci-
sion support, data mining, and web applications [21].

I/O benchmarks were developed by the Storage Performance Council (SPC) to estimate the perfor-
mance and energy consumption of disk drives with OLTP and database applications generating random 
and sequential disk accesses for various RAID levels (see chapter on storage systems) [22].

This chapter deals mainly with methods that can be used to evaluate the performance of computer sys-
tems at a macro level, for example, txn response time versus throughput. The emphasis is on queueing 
theory, which has shown its usefulness in performance evaluation of computer systems, but also computer 
communication networks. Simulation is a much more flexible tool, which can be used when the system 
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under consideration is analytically intractable. In fact, passive resources such as miss rates in the memory 
hierarchy can be determined by trace-driven simulation. Finally, performance is evaluated via measure-
ment studies, which can be used for validating analytical and simulation models (see Section 2.2 in [83]).

In what follows, Section 56.2 is a brief introduction to queueing theory. Analysis of Markovian queue-
ing systems with exponential interarrival and service times is discussed in Section 56.3. Non-Markovian 
queueing systems including M/G/1 and GI/M/1 are discussed in Section 56.4. Several applications of 
these queueing systems are also provided. Fork-join queueing systems are discussed in Section 56.5. 
The analysis of queueing network models (QNMs) is discussed in Section 56.6. Buffer space management 
in computer systems is discussed in Section 56.7. The performance of concurrency control (CC) meth-
ods is analyzed in Section 56.8. Simulation modeling of computer systems is discussed in Section 56.9. 
Conclusions are presented in Section 56.10.

56.2  Queueing Theory Basics

Queueing systems consist of a single or multiple servers and a queue that holds incoming requests when 
all servers are busy. Requests are served as soon as a server becomes available, but forced idleness under 
some circumstances may reduce the mean overall response time, for example, when the overall queue 
length is short and one of two servers is considerably faster than the other (see Section 56.3.3). Incoming 
requests are lost when no queue is provided or the queue is full. Such requests may be resubmitted or are 
lost as in the case of a caller who does not redial after finding the line busy. The probability of requests 
being rejected due to a full queue is of interest in the design of multistage switches. Requests wait in 
the queue until they are served according to a scheduling policy, such as first-come, first-served (FCFS). 
Queueing theory mainly deals with estimating the waiting time in queues, which are formed by humans 
in the more civilized countries of the world.*

According to Kendall’s notation, interarrival and service times in queues are denoted by D (deter-
ministic), M (Markovian or exponential), G (general), Ek (Erlang with k exponential stages), Hk (k-way 
hyperexponential distribution), etc. We use GI/G/m/K/M to represent a queueing system with general 
independent interarrival time, general service time, m servers, total capacity K to hold requests, and M 
sources. By default K = ∞ and M = ∞.

Little’s law is a fundamental law in queueing theory, which was well known even before it was proved 
by him [23]. This law states that the long-term average number of requests in a stable system (L) is equal 
to the long-term average effective arrival rate (λ) multiplied by the average time requests spend at the 
system (W) or L = λW. A pictorial proof of Little’s law is given in [78,80,92].

Arrivals may be from an infinite or finite number of sources. Examples of the former are calls to 
a telephone switching system, txn arrivals at an OLTP system, and requests to a web server. Quasi-
random arrivals apply to the users of a time-sharing system, where a finite number of users generate 
successive requests following a delay known as think time [80]. The error introduced by approximating 
a finite number of sources in an M/G/1//N queueing system with M/G/1 is explored in Section 56.4.2.

The Poisson arrival process is associated with exponential interarrival times with probability distri-

bution function (PDF) A(t) = 1 − e−λt, t > 0, and probability density function (pdf) a t
dA t

dt
e t( )

( )
.= = −λ λ  

Poisson arrivals are uniformly distributed over intervals [78], for example, given a time interval (0, 1), 
n arrivals partition the interval to segments of average length 1/(n + 1). This observation was utilized 
in [134] in determining the mean seek distance according to the scan policy. Generally, we denote the 

pdf of a continuous random variable (r.v.) as f(x), so that for positive r.v’s f x dx( ) =
∞

∫ 1
0

 and the PDF is 

*	 John Milton, the English poet, ends his poem “On his blindness” with “They also serve who only stand and wait.” At US 
Congress, money is made by professional “waiters” who are hired by lobbyists to stand in their place for congressional 
hearings they wish to attend.
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F t f x dx
t

( ) ( )=∫0
, so that F(∞) = 1. This is not always the case, for example, the pdf of the busy period in 

M/G/1 is g y dy( ) =
∞

∫ 1
0

ρ, which is smaller than one for ρ > 1 (see Section 56.4.1). In the case of discrete 
r.v.’s instead of the pdf, we have the probability mass function (pmf) with pk

k
=

≥∑ 1
0
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distribution function (cdf) is P pk j
j

k

=
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, which tends to one as k → ∞ [42,143].
The mean, second moment, the variance, and coefficient of variation squared of the exponential dis-

tribution are
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The Laplace Stieltjes transform (LST) of a positive r.v. with pdf f(x) and its ith moment is given as fol-
lows [78,143]:
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For the exponential distribution, the LST. ith moment, the variance, and the coefficient of variation 
squared are
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The exponential distribution has the memoryless property, that is, given an elapsed time te, the time 
to the next arrival remains the same:
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The memoryless property also holds for the discrete geometric distribution. In tossing a coin given 
that p is the probability of a head and q = 1 − p the probability of a tail, then the pmf of the number of 
coin tosses leading to a head and the mean number of tosses is [42,143]:
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An alternate method to determine the moments of a discrete r.v. is to compute its z-transform, take 
its derivatives, and set z = 1:
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where the sum converges for |qz| < 1.
Taking the ith derivatives of P(z)’s, we have
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In the case of the geometric distribution (K ) and K K( )−1  are
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Consider passengers arriving at random instants at a bus station, where the bus interarrival time 
pdf is f(x). Of interest in the mean residual time to the next bus arrival (r1). Renewal theory shows that 
arrivals tend to occur during longer bus interarival times with a pdf fX(x) = xf(x)/m1, whose mean is 
X x f x dx m m1

2
2 1

0
= =

∞

∫ ( ) . The forward and backward recurrence times are identically distributed so 

that the forward recurrence time or the mean residual lifetimes is r1 = m2/(2m1) [78]. In the case of the 
exponential distribution for bus interarrival times, r1 = 1/λ, which is a consequence of its memoryless 
property. Given that the passenger arrives 1/λ time units after the arrival of the previous bus, then the 
bus interarrival time encountered by passengers is fX(x) = λ2xe−λx, which is the two-stage Erlang distri-
bution with mean 2/λ [143].

Generally the k-stage Erlang distribution (Ek) consists of k > 1 exponential stages with rate kμ, so that 
f x k k x e kE

k k x( ) ( ) ( )!= −− −µ µ µ1 1  for x ≥ 0. The mean, variance, the coefficient of variation squared, the 
LST, and the LST with an infinite number of stages (k → ∞) are
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In fact, e u xs− ⇔ −/ /µ µ0 1( ), which is a unit impulse at x = 1/μ. It is shown in Figure 4.5 in [78] that the 
pdf for Ek tends to a fixed value as k → ∞.

The pdf of the Gamma distribution is given as f x x e xG
x( ) ( ) ( )= − >− −α α ββ α1 1 0Γ for , where the 

Gamma function Γ( )t x e dxt x= − −
∞

∫ 1

0
. When t is an integer Γ(t) = (t − 1)!, which is the factorial function. 

The Gamma distribution in this case is tantamount to an Erlang distribution with t stages. The mean, 
variance, coefficient of variation squared, and LST for this distribution are
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The I-way Hyperexponential distribution (H2) f x p e xH i i
x

i

I
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1

. For two-way hyperexpo-
nential p1 = p and p2 = 1 − p with p ≠ 0 and p ≠ 1. The mean, second moment, coefficient of variation 
squared, and the LST of this distribution are
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The LST H*(s) is a weighted sum of I LSTs for corresponding exponentials. It can be shown easily 
that cH

2 1>  for I = 2. The CPU service time distribution has been approximated by the hyperexponential 
distribution as shown in Figure 3.13 in [144].

The exponential and related distributions are popular in that they lend themselves to tractable ana-
lytic solutions. The Erlang (resp. hyperexponential) distribution can be used as an approximation to 
distributions with a coefficient of variation smaller (resp. larger) than one. The Coxian distribution fC(x) 
consists of multiple exponentials in tandem similarly to an Erlang distribution, but with a variable num-
ber of stages being bypassed. Based on the choice of its parameters, it can attain a coefficient of variation 
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smaller or larger than one. In the case of the Coxian distribution with r stages with services rates μi for 
1 ≤ i ≤ r, the probability that the ith stage is visited is βi and γi = 1 − βi is the probability that an early exit 
is taken, so that γr + 1 = 1. An Erlang distribution is obtained by setting γi = 0, ∀i. The LST for the Coxian 
distribution can be specified as follows [78,79]:
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The integration is started at x = 0− to capture the discontinuity at x = 0, which has probability γ1. Given 
that βi = q, γi = 1 − q, ∀i, γr + 1 = 1 and μi = μ, ∀i then the mean, second moment, coefficient of variation 
squared, and the LST are
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The pdf of the uniform distribution can be specified as fU(x) = (b − a)−1 for a ≤ x ≤ b. Its mean, vari-
ance, coefficient of variation squared, and LST are
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Other arrival processes and service time distributions and methods to generate them are discussed in 
Sections 6.8 and 11.5.2 in [45], Also, see Chapter 5 by Shedler in [82].

We use a disk drive as an example of a server whose service time is its access time. Disks are in fact a 
complex queueing system in that the service time of requests is affected by the order in which requests 
are processed and hence the disk scheduling policy. For accesses to randomly placed small disk blocks, 
the disk access time is dominated by the positioning time of the read/write head, which is the sum of 
seek time and rotational latency [75]. The transfer time of small disk blocks is negligible for current disks 
with very high recording densities.

We consider a disk drive with a mean access time x–disk = 5 milliseconds (ms) with FCFS scheduling. It 
is intuitively obvious that this disk can process at most λmax = 1/x–disk = 200 accesses per second. This also 
follows from the fact that with an arrival rate λ the utilization of a single server, defined as ρ = λx–disk, is 
at most one. Note that ρ is also the fraction of time that the server is busy. Ordinarily for ρ < 1 the server 
alternates between idle and busy periods, but with an arrival rate λ > λmax and ρ > 1 the length of the 
queue increases indefinitely. For ρ > 1 the probability that the busy period ends is 1/ρ (see Equation 56.38 
for s = 0 and the discussion that follows). When the system load λx– > 1, the number of servers should be 
increased such that ρ = λx–/m is less than one. Attention should be paid to maintaining acceptable mean 
response time, for example, for ρ = 0.5 the mean response time in an M/M/1 queueing system is doubled 
and it increases 10fold for ρ = 0.9 (see Equation 56.14). It is interesting to note that this increase is only 
fivefold in an M/M/2 queueing system at the same utilization (see Equation 56.20).

Disk access time to randomly placed disk blocks is slow, since it is the sum of seek time, rotational 
latency, and transfer time [139]. This led to the proposal of the SCAN and shortest seek time first (SSTF) 
disk scheduling policies as improvements to FCFS scheduling in mid-1960s by Denning in [53]. Both 
are outperformed by the shortest access time first (SATF) policy, which was proposed by Jacobson and 
Wilkes at HP in 1991 to minimize the positioning time, that is, the sum of seek time and latency. SATF’s 
reduction in disk access time with respect to FCFS is ≈n1/5 [139], for example, with n = 32 enqueued 
requests x–SATF ≈ x–FCFS/2.
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The response time (r~) of a queueing system is the sum of waiting (w~) and service time (x~), that is, 
r~ = w~ + x~. The mean response time is obtained by taking the expectations of both sides as R = W + x–. 
The variance of response time (r~) is given as the sum of the variances of w~ and x~

	
σ σR WE w x W x W W x x E wx W x2 2 2 2 2 2 2 2 2= +  − + = −( ) + −( ) + − =( ) ( ) ( ) [ ]� � �� 22 2+ σX .

The expression E[w~x~] = Wx–, since the waiting time (w~) is independent from the service time (x~) for 
FCFS, LCFS (nonpreemptive), and service in random order (SIRO) scheduling policies.

The mean waiting time W for M/G/1 queues can be obtained by noting that due to Poisson Arrivals 
See Time Averages (PASTA) [45], arrivals encounter the mean queue length  N Wq FCFS=λ  and the equal-
ity holds due to Little’s law. Also due to PASTA a busy server is encountered with probability ρ, where 
the mean residual service time of the request in service is m x x1
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This equation is known as the Pollaczek-Khinchine (P. K.) formula for mean waiting time. There are 
two observations: (1) WFCFS increases in proportion to ρ/(1 − ρ) and as ρ → 1 W → ∞, (2) For a fixed ρ, 
WFCFS increases with c X

2 . With respect to WFCFS for the exponential distribution with c X
2 1=  is halved for a 

fixed service time with cF
2 0=  and doubled with a hyperexponential distribution with cH
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The P. K. formula for mean waiting time (W) also holds for LCFS and SIRO policies, but both policies 
have higher second moments than FCFS [56], as follows:
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A weakness of FCFS scheduling is that all requests, regardless of their service time, encounter the 
same mean waiting time (WFCFS). Round-robin (RR) scheduling allows CPU requests to make progress 
up to a short time quantum q before the request is preempted and another request is scheduled to run. 
Shorter requests leave the system after receiving a few quanta. This discrete time queueing model is 
analyzed in [53], and Chapter 6 in [111] is dedicated to discrete time systems. Processor sharing (PS) is 
an extreme form of RR with q → 0, which yields RPS(x) = x/(1 − ρ) when the service time is x. Given that 
the service time pdf is b(x), the mean response time for PS is
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Referring to Equation 56.13 it follows WPS < WFCFS for c X
2 1> , so that PS is the preferred policy when 

service times are more variable than the exponential.
Foreground/background (FB) scheduling attains even better response times for short requests than 

RR, since after the time quantum of a CPU expires, longer requests are demoted to lower priority queues, 
so that shorter requests do not compete with longer requests (see Section 56.4.6 in [79]).
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Request priorities can be assigned externally, for example, the processing of OLTP txns at the CPU 
is given a higher priority than batch jobs. CPU preemptions are possible because they incur a low over-
head and that the preemptive resume policy is applicable, so that by saving the state of the computation 
(the program counter and registers) in main memory, a preempted request may resume from the point 
it was interrupted. It is inefficient to implement preemptive disk scheduling, since only a preemptive 
repeat policy is applicable in this case, with the unproductive seek and latency phases being repeated. 
Preemption is only possible after the completion of a seek and during latency and transfer phases [129]. 
An efficient implementation of priorities with SATF disk scheduling is attained by multiplying esti-
mated access time of higher priority disk requests by α ≈ 0.625 [139]. Formulas for M/G/1 queueing 
systems with priorities are given in Section 56.4.6.

The conditional waiting time for the shortest processing time (SPT) first scheduling with job service 
time PDF B(x) is given in [53,56,78] as
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For small t W t W xSPT ( ) = =0
2 2λ , which is the mean residual service time, since the request is processed 

as soon as the current request is completed. For large t W t W WSPT FCFS( ) ( ) ( )= − = −0
21 1ρ ρ .

Table 3.1 in [79] is a summary of optimal scheduling algorithms. One dimension specifies preemp-
tiveness and the second dimension specifies whether (1) the processing time is known, (2) the process-
ing time distribution is known, and (3) no information about processing time is available. In case (1) 
SPT (also known as shortest job first (SJF)) and shortest remaining processing time (SRPT) are applicable 
depending on preemptiveness. In case (2) shortest expected processing time (SEPT) and shortest expected 
remaining time time (SERPT) are applicable, depending on preemptiveness. Finally in case (3) FCFS, 
LCFS, SIRO, PS, and FB are applicable.

56.3 A nalysis of Markovian Models

Queues with Poisson arrivals and exponential service times, referred to as Markovian are undertaken 
with continuous time Markov chains (CTMCs) models [42,45,78,80,143]. Markov chains for queueing 
systems have discrete states representing the number of requests in the system. Transitions among states 
are exponentially distributed. The transition rate from each state is the sum of the transitions due to 
arrivals and completions and the holding time in that state is the inverse of this sum. Systems modeled 
in this section can be represented by one-dimensional dimensional CTMCs known as birth-death (BD) 
processes. Only nearest neighbor transitions are allowed in the more simple queueing systems discussed 
in Chapter 3 in [78], but this is not so in the case of queueing systems with bulk arrivals and bulk service 
discussed in Chapter 4 in [78] and Section 56.3.6. The discussions in Chapters 3 and 4 in [78] are referred 
to as baby queueing theory by Kleinrock [24].

In Section 56.3.1, we use BD models to analyze the performance of M/M/1 queues. In Section 56.3.2, 
we analyze M/M/1/K queues as an example of a finite capacity system. In Section 56.3.3, we analyze the 
M/M/m queueing system with m = 2 to illustrate the benefits of resource sharing in this context and 
provide the analytical results for the M/M/m queueing system. In Section 56.3.4, we analyze the perfor-
mance of an M/M/2 queueing system, whose servers have different service rates. In Section 56.3.5, we 
analyze the performance of an M/M/1//M queueing system, which has finite sources. In Section 56.3.6, 
we describe Markovian systems with bulk arrivals and bulk service. The matrix geometric method 
(MGM) is briefly introduced in Section 56.3.7. We postulate FCFS scheduling in this section so that this 
fact is elided in the notation that follows.
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56.3.1  M/M/1 Queueing System

The operation of an M/M/1 queue can be represented by a BD process with states denoted by Sk, where 
k ≥ 0 is the number of requests at the system. The transition Sk → Sk+1 with rate λ denotes the arrival of 
a request or a birth at S k and the transition Sk+1 → Sk with rate μ denotes the completion of a request or 
a death at Sk+1. In summary, the arrival rate is λ and the service rate is μ.

The probability that the system is at state Sk in steady state is denoted by pk. This also means that for a 
long time interval T the system is at Sk for time Tpk. In other words, pk is the fraction of time that the system 
is at Sk. In equilibrium, the number of transitions in the two directions with increasing and decreasing 
number of requests are equal, that is, λTpk = μTpk+1, for k ≥ 0.* Dividing both sides by T we have λpk = μpk+1, 
for k ≥ 0. Given the utilization factor ρ = λ/μ, pk = ρpk−1 and pk = ρkp0. The sum S p pk

k
= = − −

≥∑ 0
1

0
1( )ρ  for 

ρ < 1. Since the probabilities sum to one, setting S = 1 yields p0 = 1 − ρ and hence pk = (1 − ρ)ρk for k ≥ 0, 
which is the modified geometric distribution [143]. The mean number of requests at the system is
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The second moment of N and its variance can be obtained as follows:
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The mean response time and mean waiting for M/M/1, which was given as a special case of Equation 
56.13 by Equation 56.14 can be obtained by applying Littles law:
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The z-transform for the number in system is
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where the sum converges for |ρz| < 1.

56.3.2  M/M/1/K Queueing System with Finite Capacity

An M/M/1/K queue can hold at most K requests, but requests arriving to a full system are lost, so that 
this queueing system is referred to as blocked calls cleared (BCC) in telephony [78]. The state equilibrium 
probabilities are pk = p0(λ/μ)k for 0 ≤ k ≤ K, so that pk

k

K

=
=∑ 1

0
 yields p K

0
1

1 1= −( ) − ( )( )+λ µ λ µ/ / . The 

fraction of arrivals lost is pK and the throughput of processed requests is λ′ = λ(1 − pK). It follows that 
the server utilization is ρ = λ(1 − pK)/μ. In the special case λ = μ, applying L’Hospital’s rule [95] yields 
pk = 1/(K + 1) for 0 ≤ k ≤ K. For K = 1, p0 = μ/(λ + μ) and p1 = λ/(λ + μ).

*	 The concept of equilibrium is illustrated in [78] by a passenger traveling among three cities: C1, C2, and C3. The probabil-
ity of ending up in Cj at the end of the day after being in Ci in the morning is given by the the probability matrix P = (pi,j) 
for 1 ≤ i, j ≤ 3. This is a discrete time Markov chain and assuming that the passenger is initially at Ci, then he is in one of 
the cities with probability π–(1) = π–(0)P after 1 day and after n days π–(n) = π–(0)Pn or π–(n) = π–(n − 1)P. As n → ∞, the time 
index can be elided and the set of equations can be expressed as π– = π–P, which implies the final state is independent of 
the initial state.
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56.3.3  M/M/m Queueing System and Resource Sharing

Consider an M/M/2 queue with arrival rate λ with two servers each with service rate μ, so that the server 
utilization is ρ = λ/(2μ). The state equilibrium equations are

	 λ µ λ µp p p p kk k0 1 12 1= = ≥+, .for

It follows from pk = 2p0ρk for k ≥ 1 and the fact that probabilities sum to one yields pk = (1 − ρ)/(1 + ρ) 
and hence
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The M/M/2 queueing system with an arrival rate 2λ, has the same server utilization as two (slow) 
M/M/1 queues with service rates μ, each with arrival rate λ. It is easy to see that R Rslow

M M M M/ / / /2 1< , which 
is because there is the possibility of queueing at one of the servers, while the other server is idle since 
the jockeying of requests is not provided. We next consider a single fast server with mean service time 
x–fast = 1/(2μ), and arrival rate 2λ, so that ρ = λ/μ. We have R fast

M M/ / ( ) ( )1 1 2 1= ( ) −µ ρ , which is smaller than 
RM/M/2. A generalization of this discussion appears in Section 5.1 in [79]. It is important to note that for 
highly variable service times the M/G/m queueing system is preferable to a single fast M/G/1 queue 
with the same total processing capacity, which is because with highly variable service times a lengthy 
requests may get in the way of all other requests in a single queue.

The M/M/∞ queueing system has an infinite number of servers so that there is no queueing delay. 
The state equilibrium equations λ µp k pk k= + +( )1 1 for k ≥ 0 lead to p p kk

K= ( )0 λ µ ! for k ≥ 0. It fol-
lows from p pk
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1λ µ  that p0 = e−λ/μ and p e kk
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distribution with mean and variance N N= =σ λ µ2  [42,78,143]. Note that this solution applies to 
an M/G/∞ queue with mean service time x– = 1/μ, so that R = x–. The transient probabilty distribution 
for the M/G/∞ queueing system is given by Equation 56.9 in [143] as P X t k e tp ktp k[ ( ) ] ( ) != = −λ λ , where 
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[143], which is previously obtained steady-state probability for M/M/∞.
For the M/M/m queueing system, ρ = λ/mu and pk can be expressed as follows:
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The probability of queueing P[k ≥ m] = Pm, the mean number in the system, and mean response 
time are
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56.3.4  M/M/2 with Heterogeneous Servers

The analysis of a two-server queue with heterogeneous servers, as given by Example 8.29 in [143], is 
significantly more complex than an M/M/2 queue. The service rate μ1 at server 1 is assumed to be higher 
than the service rate μ2 at server 2, that is, μ1 > μ2. The utilization factor is ρ = λ/(μ1 + μ2).
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The states of the CTMC are specified as (n1, n2), where n1 is the number of jobs in the queue including 
any at the faster server and n2 ∈ {0, 1} indicates whether the slow server is busy or not. Jobs arriving at 
an empty system are first served by the fast server. The state equilibrium equations are
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The mean number of jobs at the queueing system is

	
N

F
F

1

1

1 2 1

12
1 2

2( )
,

( )

( )
.

−
= +

+
+

−ρ
µ µ ρ
λ λ µ ρ 	

(56.23)

This analysis has been utilized to determine the effect of adding a slow computer to fast computer on 
improving the mean response time. At lower values of λ, the mean response time can be improved by 
not utilizing the slower computer at all, while at λ > μ1 the slower computer allows higher throughputs 
up to λ < μ1 + μ2 to be attained.

56.3.5  M/M/1//M or Machine Repairman Model

The machine repairman model (MRM) considers M machines with exponentially distributed times to 
failure with rate λ. Machines are repaired by a single repairman with exponentially distributed service 
time with rate μ. Alternatively there are M users with exponentially distributed think times with mean 
Z = 1/λ, which share a computer system with exponentially distributed processing times with mean 1/μ. 
The state equilibrium equations with k requests at the computer system are
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The probabilities are given as follows:
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It follows from Little’s result applied to the whole system that
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The normalized mean response time Rn = Rμ versus M has two regions: (1) For small M Rn ≈ 1, that is, 
no queueing delay. (2) For large M Rn ≈ M − μZ, that is, Rn increases by one for each additional user. The 
two lines intersect at M* = 1 + μZ, which is known as the saturation number (see Figure 4.27 in [79]). 
Under the best circumstances users do not encounter queuing delays up to M*. This model can be used 
to determine the minimum MPL in order to keep the CPU 100% utilized under perfect conditions, that 
is, fixed disk and CPU service times. Provided 1 millisecond (ms) of CPU processing entails a 10 ms disk 
access time requires the MPL to be equal to 11.
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User productivity at a time-sharing system is affected by the system response time, that is, user think 
times have been observed to decrease with subsecond response times. The number of programmer inter-
actions per hour is 180 for a mean response time of R1 = 3 s, but this number is doubled (to 371) when 
the mean response time is R2 = 0.3 s [25]. It follows from 3600 = 180(R1 + Z1) that Z1 = 17 and similarly 
Z2 = 9.4, that is, the mean think time is almost halved with the improved R.

This simple QNM was successfully utilized by Scherr in the analysis of the compatible time sharing 
system (CTSS) at MIT [26,104]. CTSS is a uniprogrammed system, which follows a round-robin policy 
in processing one program at a time (see Section 56.2). Once the time quantum is expired, the currently 
active request is preempted and swapped out to a drum, so that the next pending request can be loaded 
into main memory.

The single server in MRM can be replaced by a state-dependent server representing the computer 
system using the hierarchical decomposition approach, so that the service rate of the server is T(k), k ≥ 1 
(see Section 56.6.7).

56.3.6  Bulk Arrival and Bulk Service Systems

These systems analyzed in Chapter 4 in [78] are modeled by BD processes with non-nearest neighbor 
state transitions. We illustrate the analytic solution method required by considering the bulk arrival 
system, where the probability of i requests per arrival is gi with a z-transform G z g zi

i

i
( ) =

≥∑ 1
. The state 

equilibrium equations for the number of requests in the system and the associated z-transform is
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The unknown p0 can be obtained by noting that P(1) = 1. Since the fraction is indeterminate, we apply 
L’Hospital’s rule [95] by differentiating the numerator and denominator with respect to z. This yields 
p0 = 1 − ρ with ρ = λG′(1)/μ, where G′(1) is the average bulk size. The reader is referred to [78] for the 
solution of M/Er/1 queueing system.

We next consider bulk service systems, which can serve up to r requests simultaneously, so that the 
service rate is rμ and ρ = λ/(rμ). Service is not delayed if there are k < r requests in the systems and are 
served at service rate kμ. The state equilibrium equations in this case are
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The z-transform in this case is given as
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The denominator D(z) has r + 1 roots. Of these z = 1 is a root of N(z). It can be shown by Rouche’s 
theorem (see Appendix I in [78]) that D(z) has r − 1 roots with |z| < 1, which are also roots of N(z), since 



56-14 Operating Systems

P(z) is analytic. There is a single root |z0| > 1, so that P(z) = [K(1 − z/z0)]−1 and P(1) = 1 yields K = 1/(1 − 1/z0). 
Inverting P(z) we have a modified geometric distribution
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Queueing systems with Erlang interarrival and exponential service times and Poisson arrivals and 
Erlang service times, respectively, can be dealt with similarly. Note that Er/M/1 and M/Er/1 queues are 
special cases of GI/M/1 and M/G/1 queues and lend themselves to the alternative analysis in Sections 
56.4.7 and 56.4.1. A text dedicated to bulk queues is [51].

56.3.7  Brief Note on the Matrix Geometric Method

MGM, developed by Neuts and Lipsky, are a generalization of BD processes with vectors substituting 
single states. Solution techniques for MGMs are discussed in [45,92]. MGM is used to analyze schedul-
ing policies in mirrored disk systems in [142].

56.4 A nalysis of Non-Markovian Queueing Systems

This section is organized as follows. We first provide the analysis of the M/G/1 queueing system in 
Section 56.4.1. The inadequacy of the two moment approximation for M/G/m queueing system is 
shown in [71], which also proposes upper and lower bounds for its mean waiting time. In Section 
56.4.2, we use the mean response time of the M/G/1//N finite population model to assess the error 
introduced by the M/G/1 model with a Poisson arrival process. In Section 56.4.3, Lagrange multi-
pliers are used to minimize the mean response time in accessing data blocks from heterogeneous 
disks. The vacationing server model (VSM) in the context of M/G/1 queues is discussed in Section 
56.4.4. The application of the VSM to the analysis of the scheduling of readers and writers with a 
threshold policy is discussed in Section 56.4.5. We next proceed to the analysis of priority queue-
ing in Section 56.4.6. The analysis of the GI/M/m queues is discussed in Section 56.4.7. Request 
routing to minimize response time is discussed in Section 56.4.8. The analysis of polling systems 
is discussed in Section 56.4.9, followed by load-sharing in homogeneous distributed systems in 
Section 56.4.10.

56.4.1  M/G/1 and M/G/m Queueing Systems

The queueing system M/G/1 is a single server queue with Poisson arrivals with rate λ and general service 
time with pdf b(x), whose ith moment is xi  and its coefficient of variation squared is c x xX

2 2 2 1= −( )  . 
The LST of the b(x) is B*( ) ( )s b x e dxsx

o
= −

∞

∫ . The analysis of the FCFS scheduling policy to determine 

the mean (W) and second moment (W 2) of waiting time requires the first two and three moments of 
service time, respectively.

The distribution of the number in system (pk) is obtained by specifying the number of requests at the 
M/G/1 queue at departure instants [78]: q q vn n q nn+ += − +1 1∆ , where qn+1 and qn is the number of requests 
left behind by the n + 1st and nth requests at the system, and vn+1 is the number of arrivals while the 
n + 1st request was in service, and ∆qn = 0 if qn = 0 and is otherwise one. The probabilities at departure 
instants dk = P[qn] can be obtained by solving the recurrence relation for qn using z-transforms. Given 
one step transitions, in a nonsaturated M/G/1 system, the number of up and down transitions at arrival 
and departure instants are equal in the long run. Therefore, the probability of encountering k requests 
at an arrival instant rk = dk and due to PASTA the probabilities at an arrival instant are denoted by rk, so 
that rk = pk and hence pk = dk.
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It can be shown that the z-transform for the number in the system is
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V(z) is the z-transform of number of arrivals during the service time of a single request
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The substitution V(z) = B*(λ(1 − z)) in Equation 56.29 yields
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In the case of exponential service times B*(s) = μ/(s + μ),
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Inversions of Q(z) to yield pk for M/H2/1, M/D/1, and M/Ek/1 are given in Table 7.2 and graphed for 
ρ = 0.75 in Figure 7.4 in [92] (interestingly p1 > p0 = 0.25 for M/D/1).

Similarly to V(z) = B*(λ(1 − z)), it can be shown that the following relationship holds between the 
z-transform for the number of arrivals during the response time of a request, which is also the number 
of requests left behind by FCFS scheduling. Given dk = pk this is also the z-transform of the distribution 
of the number of requests in the system, hence Q(z) = S*(λ − λz), where S*(s) is the LST of response time 
pdf. Setting s = (1 − λ)z
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Given that r~ = w~ + x~ and that the mean waiting time x~ is independent from the service time (x~) for 
the FCFS policy, we have S*(s) = W*(s)B*(s). It follows that the LST for the waiting time pdf (w(t)) in 
M/G/1 is given as [78]
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Integration starting with t = 0− is necessary, because of the possibility of a unit impulse at the origin, that 
is, the probability that the waiting time is zero is 1 − ρ. The first and second moment of the waiting time 
can be obtained by differentiating W*(s) once and twice with respect to s and setting s = 0
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Takacs recurrence relation can be used to derive higher moments of waiting time as follows [78], 
where W 0 1= :
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A generalization of Little’s results is N N R( )− =1 2 2λ , which can be extended to higher moments [78].
In the case of M/M/1 queueing system, B*(s) = μ/(s + μ) and using tables for inverting LSTs in 

[42,78,143] we invert S*(s) as follows:
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where R = [μ(1 − ρ)]−1 is the mean response time. The LST S*(s) for the M/M/1 can be obtained directly 
by assuming that k requests are encountered by an arrival and unconditioning on pk
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The following approximations for the percentiles of M/G/1 response time, proposed by Martin, are 
quoted in [42]: R90% ≈ R + σR and R95% ≈ R + 2σR.

The busy period is the duration of the time required to serve jobs starting with an empty queueing 
system until it is empty again. For ρ < 1 M/G/1 queues alternate between busy and idle periods, with 
mean durations g1 and 1/λ, respectively. The mean duration of the busy period can be determined easily 
by noting that g1/(g–1 + 1/λ) = ρ, which is the fraction of time the server is busy.

The LST of the busy period can be specified noting that each one of the arrivals during the first 
request entails subbusy periods with the same distribution as the original distribution, as follows:
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The moments of the busy period can be obtained by taking its derivative
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Note that g2 increases very rapidly with increasing server utilization. For the M/M/1 queue with B*(s) = 
μ/(s + μ), the distribution of the busy period is given by a Bessel function of the first kind of order one, which is 
obtained by solving G G*( ) *( )s s s= + − +( )µ λ λ µ  and inverting the negative root of the quadratic equation
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The probability that the busy period ends is G*( ) ( )0 1
0

= =
∞

∫ g y dy /ρ. CTMCs have been classified in [78] 
as positive recurrent, null-recurrent, and transient. In the context of M/G/1 queues, the system is posi-
tive recurrent for ρ < 1, which implies that the expected time to return to an empty system is finite. For 
ρ = 1, the system is null-recurrent, which means that the probability that the system becomes empty 
again is one, but the expected time to reach an empty system is infinite. Finally, when ρ > 1, the system is 
transient, which means that with positive probability the system will never empty again.

The z-transform for the number of requests served in a busy period is given in [78], which can be used 
to determine the mean and variance of the number of requests
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No exact analysis is available for M/G/m queues, but the well-known two moment approximation for 
M/G/m can be expressed as [45]
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In the corresponding M/M/m queue, μ = 1/x– is the service rate and Pm = P[k ≥ m]. This formula is exact 
for M/M/m and M/G/1 queues.

This approximation is shown to be highly inaccurate against simulation results for higher values of c X
2  

in [71]. It is also shown that the lognormal and Pareto distribution with the same three moments have 
very different mean waiting times. Conjecture 1 in [71] provides the following higher and lower bounds 
for M/G/m with respect to M/D/m for any finite c X

2  and ρ < 1
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The additional term is added to the first term when the condition in the brackets is true and yields one. 
A simplified expression for M/D/m is given in [65], where D denotes the fixed service time
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Let pi denote the stationary distribution of i requests in the system
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The probability Qn that there are no more than n requests is difficult to compute since it requires the 
solution of an infinite set of linear equations [65,141]. A fast Fourier transform (FFT) and a geometric 
tail approach are proposed in [80a].

Several approximations for GI/G/m queues are listed in Section 2.5 in [79] and Section 6.3.6 in [45].
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56.4.2  M/G/1 Approximation to M/G/1//N

We repeat the discussion in [49], based on an analysis by Takacs (see [111] Volume 2), to explore the 
accuracy of approximating its mean response time (RN) in an M/G/1//N queueing system with N sources 
with the mean response time of an M/G/1 queue given by Equation 56.13. This is because of the difficulty 
of calculating RN as specified next
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The queueing system M/G/1 overestimates R for the same server utilization ρ. The accuracy of the 
approximation improves with increasing N as would be expected and is given as (R/RN − 1)100%. The min-
imum number of sources to attain a 5% error level increases with the coefficient of variation of the distri-
bution: constant, Erlang-2, exponential, and Hyperexponential-2 (with equal branching probabilities and 
branch means 0.5 and 1.5) for ρ = 0.1 is 2/2/3/4, for ρ = 0.4 is 10/16/21/25, and for ρ = 0.7 is 61/101/142/188.

The M/G/1//N and M/G/1/K queueing systems are analyzed in Chapters 4 and 5 of Volume 2 in 
Takagi’s three-volume series [111].

56.4.3 R outing to Minimize Mean Response Times

Data allocation to improve response time in the context of heterogeneous servers is considered in this 
section. Static policies that route requests in proportion to server speeds will balance server utilizations 
and under Markovian assumptions (exponential service times), the mean response times at server i (Ri) 
will be proportional to the mean service time at the server x–i = 1/μi.

The usual criterion is to minimize (mean) response time (MRP), but a more sophisticated policy is to 
minimize the maximum mean response time policy, which is referred as minimize maximum (mean 
response time) policy (MMP). The policies considered in this section are static, although dynamic poli-
cies such as shortest queue routing are expected to improve performance [91].

Data allocation on disks affects the mean access time. High degrees of access skew are observed 
among disks in large computer installation, where the utilization of most disks is negligible, see for 
example, [108]. Data reallocation methods in large file systems are considered in [147]. Striping in RAID 
(see chapter on storage systems) balances the load in each array, but there is still a need to balance loads 
across RAID5 arrays [139].

We consider the reallocation of data blocks in a disk array with N heterogeneous disks modeled as 
M/G/1 queues to minimize the overall mean disk response time. The mean and variance of access time 
to access data blocks at disk 1 ≤ i ≤ N is 1/μi and σi

2, respectively. We assume that disk capacity is not a 
problem and the data can be reallocated at the level of blocks such that disk access rates λi for 1 ≤ i ≤ N 
can be treated as continuous variables with a fixed sum Λ =

=∑ λi
i

N

1
 as data blocks are reallocated. The 

goal of the analysis is to determine the new arrival rates to the N disks also denoted by λi for 1 ≤ i ≤ N, 
which will minimize the mean response time over all disks [48].

The mean overall response time, given the mean responses time Ri for 1 ≤ i ≤ N, is given as
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The Lagrange multipliers method [95] is applied in [48] to minimize R with respect to λi for 1 ≤ i ≤ N 

subject to Λ =
=∑ λi

i

N

1
 and λi < μi for 1 ≤ i ≤ N [27]. There is no solution if Λ >

=∑ µi
i

N

1
. We define F as 

follows and set its derivatives with respect to λi’s equal to zero to determine their optimum values
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Li(k) are increasing functions in k and so is their sum L k L ki
i

N

( ) ( )=
=∑ 1

. The value of k satisfying Λ = L(k) 

may yield a solution with some of the λi’s negative at slower disks. This violation is resolved by repeating 
the optimization step but excluding slower disks from the allocation process.

Nonlinear optimization (Lagrangian functions) is used in [112] to optimize the routing of jobs to 
heterogeneous host computers, which are interconnected by a communication network whose delays 
satisfy the triangle inequality.

A static routing policy addressing fairness for user level performance measures, that is, mean response 
time in a multicomputer system with N heterogeneous processors with different speeds is proposed and 
evaluated in [68]. The criterion used for optimal workload allocation is the one minimizing the maxi-
mum expected response time at a subset of N processors to which jobs are routed. MMP equalizes the 
expected response times at utilized processors emphasizing fairness. Chapter 6 in [74] deals with the fair 
resource allocation problem.

The response time characteristic of the N heterogeneous processors Rn(λ), for 1 ≤ n ≤ N known to 
the router is a nondecreasing function of λ. For an arrival rate Λ, the router sends a fraction of requests 
pn = λ(n)/Λ to the nth processor. The mean response time of requests is
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Criterion of Optimality for MMP
For a given Λ > 0, find the probabilities pi(Λ), for 1 ≤ i ≤ N, so that the maximum average response 

time incurred on any system is minimized:

	 minmax ( ( ) ,n n nR pΛ Λ{ } < ∞

where pn
i n

N

( )Λ =
=∑ 1, pn(Λ) ≥ 0 for 1 ≤ n ≤ N.

It is shown in the chapter that provided λ does not exceed the sum of the maximum throughputs at 
the nodes

Proposition. There is an integer 1 ≤ K ≤ N and a vector of routing probabilities p = (p1, …, pK, 0, …, 0) 
such that

	 R p R i Ki i( ) ( )Λ Λ= ≤ ≤min for 1

where Rmin(Λ) is the minimum mean overall response time.
A simple algorithm to compute the allocation vector is given in the paper. Numerical results show 

that MMP attains fairness at a tolerable increase in mean response time.
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56.4.4  Vacationing Server Model

We consider the vacationing server model (VSM) in the context of M/G/1 queues [111]. According to 
the VSM, the server goes on vacation after the busy period ends. In the case of the VSM with multiple 
vacations, the server repeats its vacation if the queue is empty after it returns from vacation. Otherwise 
it serves enqueued requests in FCFS order until the queue is emptied. Variations of the VSM within the 
context of M/G/1 queueing systems are analyzed in detail in [111].

The VSM with multiple vacations of variable durations is utilized in [130] for the analysis of rebuild 
processing in RAID5 disk arrays (see chapter on storage systems). The variability in service times is due 
to the fact that the first access for rebuild reading requires a seek, while succeeding rebuild reads do not. 
This complexity is taken into account in the analysis in [130], but not in the analysis that follows, where 
all rebuild reads are assumed to have a fixed service time. Given that the ith moment of vacation time 
is given as yi , then the mean residual delay observed by requests arriving while rebuild is in progress is 
n y y1

2 2= ( ) [78]. Based on PASTA, the mean waiting time in M/G/1 queues with vacations is
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That the mean waiting time W in this case is the sum of the mean waiting time in M/G/1 (see Equation 
56.13) and the mean mean residual vacation time is attributable to the decomposition property of the 
VSM [67].

The busy period is elongated by the delay encountered by the first request arriving during the final 
vacation during which a request arrives. To simplify the discussion, we assume that vacation times have 
a fixed duration y = T, so that mean remaining vacation time after an arrival in a vacation period is 
given as

	

vr

t
T

t
T T

T
te dt

e dt

T

e
= − =

−
−

−

−
−

∫
∫

λ

λ
λ λ

0

0

1

1
.

The mean effective service time of the first request, which starts the next modified busy period, referred 
to as the delay cycle is given as z– = vr + x– is required to determine its duration [79]
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Note similarity to the duration of busy period, which was given as g1 = x–/(1 − ρ) [78].
The probability that an arrival occurs according to a Poisson process with rate λ in an interval T is 

p = 1 − e−λT. The distribution of the number of vacations taken in the idle period is Pk = p(1 − p)k−1 with a 
mean k– = 1/p. The time required per vacation is (d– + 1/λ)/k–.

The VSM can be used to determine the performance of rebuild processing in RAID5 to recon-
struct the contents of a failed disk on a spare disk [138]. This requires the reading of consecutive 
tracks from surviving disks and eXclusive-ORing (XOR)ing them to rebuild missing tracks. The 
rebuild reading of the track in progress is completed before the service of user requests starts. The 
response time of user requests is increased by n1 according to Equation 56.43, which equals T/2 in 
this case. The rebuild time can be estimated using the aforementioned analysis. The discussion can 
be extended to take into account the effect of read redirection and the update load as rebuild pro-
gresses [131,135].
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56.4.5  VSM Analysis of Scheduling for Readers and Writers

Readers and writers is a classical paradigm in OS theory and practice. Readers can be processed concur-
rently, while writers are processed one at a time. The processing of readers and writers in FCFS order 
can be inefficient compared to a policy that processes read requests uninterrupted as long as possible.

The VSM was applied to the analysis of the threshold fastest emptying (TFE) policy for scheduling 
readers and writers in [124]. There is an infinite backlog of readers, which are processed with a degree 
of concurrency M with rate ν. Writers arrive according to a Poisson process with rate λ and have service 
time moments xi  for i ≥ 1, so that the utilization of the system due to writers is ρ = λx– < 1. Writers are 
processed until the writer queue is emptied, after which the processing of readers is resumed. No new 
readers are processed when the number of writers reaches the threshold K ≥ 1. The analysis in [124] 
yields the throughput for readers and the mean number of writers in the queue
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(note correction to Equation 3.8 in [124]). The z-transform α(z) is for the number of arrivals during a 
vacation, which is the sum K + J~, where K is fixed and J~ is the number of arrivals while the system is 
being emptied from readers
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It is shown in [124] that TFE with threshold K = 1 attains a higher throughput for writers than FCFS. 
The difference between the two policies is that writers arriving in a busy period are served in spite of 
intervening reader arrivals.

With exponential writer service times, a CTMC, which is infinite in one of its two dimensions, can 
be used to analyze this system. The more interesting case with both reader and writer arrivals with two 
thresholds to balance reader and writer response times and to attain a higher throughput was investi-
gated via simulation in [133].

56.4.6  Priority Queueing Systems

The VSM is a special case of priority queues with an infinite backlog of low-priority requests. Consider 
an M/G/1 queue with P priority classes, where P is the highest priority. The arrival rate for class p 
requests is λp and the first two moments of its service time are x–p and x p

2 , respectively. According to 
Kleinrock’s conservation law [79],
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where ρp = λpx–p, ρ ρ=
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response time of some classes is at the cost of increased response time for others (borrow from Peter to 
pay Paul). In the case of two priority classes,
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Note that both waiting times are affected by the residual service time of requests in progress (as reflected 
by W0), but high-priority requests are only affected by ρ2.

In the case of preemptive priorities, as far as higher priority classes are concerned. It is as if lower 
priority classes do not exist. Hence, for class 2, we have an M/G/1 queueing system, the mean response 
time for class 1 requests according to Equation 3.65 in [82] is
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56.4.7  GI/M/m Queueing System

This queueing system has a general interarrival time and an exponential service times. The analysis is 
based on the embedded Markov chain at arrival instants [78] so that there is no residual interarrival 
time. The mean waiting time for the GI/M/1 queue can be specified similarly to M/M/1, but with a 
parameter σ instead of ρ, which in GI/M/1 queues is the probability that an arrival encounters a busy 
server. This parameter can be obtained by solving the following equation given in [78]

	 σ µ µσ= − ≥A* ( ), ,m m m 1 	 (56.48)

where the probability σ that an arrival finds the server busy is obtained by solving the aforementioned 
equation and A* (.) is the LST of interarrival time. The value of σ is different from ρ, so that PASTA does 
not apply anymore, unless GI is M. Unlike M/G/m, there is an exact analysis for GI/M/m starting with the 
solution of Equation 56.48. The mean waiting time encountered by arriving requests at GI/M/1 queues is
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It can be observed from Table 5.3.9 for GI/M/1 queues in [42] that for the four interarrival time 
distributions, H2, M, E3, and D, which have the same mean, the one with the smaller coefficient of 
variation has a lower σ and hence W, but this is not true in general.* That this is so we compute W 
with a uniform (U) and a Gamma (G) interarrival time distribution, whose mean, coefficient of varia-
tion, and LST are given by Equations 56.8 and 56.12 with the same mean and coefficient of variation. 
For the uniform distribution given a = 0 and b = 2, x–U = 1 and cu

2 1 3= / . For the Gamma distribution 
with α = β = 3 x–G = 1, cG

2 1 3= /  . We set x– = 1/μ = 0.5, so that ρ = 0.5 and WM/M/1 = ρx–/(1 − ρ) = 0.5. 
The solution of Eq. (??) for the two distributions are σU ≈ 0.361 and σG = 0.334. The Gamma distribu-
tion with α′ = β′ = 2.9 with c cG U′ = = >2 21 2 9 0 345/ . .  has a lower W than the uniform distribution since 
σG′ = 0.345. We have WU = × − ≈0 361 0 5 1 0 361 0 289. . ( . ) ./ , WG = × − =0 334 0 5 1 0 334 0 25075. . ( . ) ./  and 
WG ′ = × − =0 335 0 5 1 0 335 0 252. . ( . ) . ./ †

The probability that an arriving request encounters a queue of length k is given by rk = (1 − σ)σk. The 
PDF for the waiting time in GI/M/1 is W y y( ) ( )= − − −1 1σ µ σe , y ≥ 0, so that W(0) = 1 − σ. The pdf and 
w y u e y( ) ( ) ( ) ( )= − + − − −

0
11 1σ σ σ µ µ σ , y ≥ 0, where u0(1 − σ) signifies a unit impulse at the origin.

56.4.8 R outing in Distributed Systems

In the context of mirrored disks classified as RAID level 1, there is the question of which one of the two 
forms of static routing to two disks is better: (1) uniformly with equal probabilities and (2) round-robin. 
The service time distribution at the disks is assumed to be exponential with mean service time x– = 1/μ. 

*	 Private communications from Prof. L. Takacs at Case Western Reserve University, 1978.
†	 This approach was proposed by Prof. I. Adan at Technical University at Eindhoven, 2012.
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Given an arrival rate 2λ, the rate of arrivals to each disk is λ in both cases. In the first case, it follows 
from the decomposition property of Poisson processes that the arrival process at each disk is Poisson 
[42,78,80,143], so that the mean waiting time in this case is WM/M/1 = ρx–/(1 − ρ).

With round-robin routing, the interarrival time to each disk follows the Erlang-2 distribution with rate 
2λ per stage, so that the interarrival time LST is A*(s) = [2λ/(s + 2λ)]2 [78]. This is a GI/M/1 queue, so solv-
ing Equation 56.48 we obtain the smaller root σ ρ ρ= + − +( )1 4 1 8 2. It is easy to show that σ < ρ, so that 
round-robin routing yields a lower W than uniform routing (at least for exponential service times).

Routing of requests may be dynamic, that is, based on the current state of the system. Join the shortest 
queue (JSQ) is an optimal policy for exponential service times [145]. This is not always true, as in the 
case where most service times are negligible with a high probability, but there is a small probability of 
encountering a high service time. For nonexponential service times, the expected service times need to 
be considered and counterintuitive behavior can be observed in this case.

The response time of txns processed in a locally distributed database can be improved by judicious 
data allocation and txn routing. An integer programming formulation is used in [149] as a first step to 
assign datasets and txn classes to computer systems (with directly attached disks) to balance processor 
loads. There are two alternatives dealing with remote accesses: (1) function shipping is a remote proce-
dure call (RPC) to retrieve remote data. (2) I/O shipping returns referenced disk pages. The former can 
be implemented in SQL-based databases, which allow transparent distributed query processing, but 
this is not the case in navigational databases, such as IMS. Optimized static routing results in a further 
improvement in response time. Dynamic txn routing policies implemented at a frontend, which take 
into account routing histories and minimize the estimated response time of incoming txns is proposed 
and found to provide a substantial improvement over the optimal static strategy in [148].

56.4.9  Polling Systems

In the most common case, a single server serves a number of queues in a polling system in cyclic order 
[109,110]. Queues or buffers holding requests have been classified as single or infinite buffer systems. 
With infinite buffers the number of requests served per visit is exhaustive or gated. The latter means 
that requests arriving at a queue after service starts at the queue are not served in that service cycle. The 
default scheduling discipline from each queue is FCFS. Basic performance measures of interest are the 
mean cycle time E[C] and the mean waiting time E[W].

We consider a polling system with N queues. The switchover time from the ith node to the next node 
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In the case of the symmetric single buffer systems, the mean cycle time and mean waiting time are
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where E[Q] is the mean number of messages served in a polling cycle. Given the mean message interde-
parture time E[X] = E[W] + b + 1/λ, the system throughput is γ = 1/E[X].

A relatively simple expression for E[Q] is available only for constant service and switchover times
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The mean waiting time E[W] of a symmetric exhaustive service system is
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In the case of a symmetric gated service system,
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Polling analysis has been applied to evaluating the performance of communication network protocols 
and especially local area networks (LANs), see for example, [46].

56.4.10  Load Sharing Policies in Distributed Systems

A system with multiple sources and servers is considered by Wang and Morris in [144], which classifies 
load sharing algorithms as source-initiated and server-initiated. The results of the study based on simu-
lation and analysis show that (1) the choice of load sharing algorithm is a critical design decision. (2) For 
the same level of scheduling information exchange, server-initiative has the potential of outperforming 
source-initiative algorithms. (3) The Q-factor (quality of load sharing) performance metric summa-
rizes overall efficiency and fairness of an algorithm and allows them to be ranked. (4) Some previously 
ignored algorithms may provide effective solutions.

A homogeneous distributed systems with N servers, which can be represented as M/M/1 queues, is 
considered in [84]. The arrival rate of requests at the N servers is λ. Given that the server service rate is μ, 
the server utilizations are ρ = λ/μ. The probability that i servers are idle is Qi = (1 − ρ)i and Hj denotes the 
probability that j servers are not idle and at least one request waits in the queue Hj = ρ j − ρ j(1 − ρ) j. The 
probability Pw that at least one request waits, while at least one server is idle is
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Plotting Pw versus ρ shows that it reaches a peak at ρ ≈ 0.6, which is close to one at N ≥ 20, but is smaller 
for lower values of N. Provided the cost of transferring tasks is low, the system can be approximated by an 
M/M/N system, so that Pw = 0. Tasks are transferred from node to node when (1) A task arrives at a busy 
server and there are less than N tasks in the system. (2) A server completes at a server whose queue is empty 
and there are more than N tasks in the system. A lower bound to task transfers to minimize W is given as
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where pi are probabilities associated with an M/M/N system. Plotting LT versus N for varying arrival 
rates, it is observed that LT increases linearly with N and has a higher slope for higher values of λ.

Adaptive load sharing policies in homogeneous distributed systems are discussed in two companion papers 
by Eager, Lazowska, and Zahorjan [61,62]. The goal of these studies is to improve the performance of systems 
with N processors (servers) by averting load imbalance as in [84]. Sender initiated policies are explored in [61], 
while receiver initiated policies are proposed in [62] and compared with sender initiated policies.

In the case of sender-initiated policies, the transfer policy determines whether a task should be pro-
cessed locally or remotely. The transfer policy is based on a threshold whether the queue length at a node 
exceeds T. The location policy selects the node to which the task should be transferred. The following 
location policies are considered.
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Random policy: Transferred tasks at a receiver node are considered to be as a new arrival, so that they 
may be transferred again if T is exceeded. This may lead to an instability similar to the Aloha commu-
nication system due to packet collisions and retransmissions as discussed in Section 5.11 and shown in 
Figure 5.39 in [79]. The thrashing phenomenon is alleviated simply by limiting the number of retrans-
missions. No exchange of information among nodes is required for this policy.

Threshold policy: Random nodes are probed for their queue length. A task is transferred only if the num-
ber of tasks at the node is less than Lt, so that useless task transfers are avoided. Probing is stopped when 
the probe limit Lp is exceeded and the task is processed at the receiving node.

Shortest queue: Lp randomly selected nodes are probed and the one with the shortest queue is selected.

Figure 2 in [62] compares the mean response times (RT) for different policies with N = 20 nodes, 
service time S = 1, Lp = 1, and Lt = 3. The overhead associated with task migration is taken into account 
as 10% of S. Queueing systems M/M/1 and M/M/20 are upper and lower bounds to RT. It turns out that 
threshold and shortest outperform the random policy significantly.

In the case of the receiver initiated (RI) policy, a receiver that has less than T tasks when a task com-
pletes probes Lp other nodes to initiate a task transfer [62]. No transfer occurs if the Lp nodes had T or 
more tasks in their queue (such a policy with T = 1 was considered in [84]). The reservation policy is 
similar to sender policy, but differs in that task transfers are considered upon task arrival. It follows from 
the graph for RT versus system load in the extended abstract version of [62] that the sender initiated 
policy for T = 1 outperforms others for up ρ = 0.7, but is outperformed by a sender initiated policy for 
T = 2 and a receiver initiated policy for T = 1. The reservation policy has the highest RT.

56.5  Fork-Join Queueing Systems

In Fork-Join (F/J) queueing systems arriving jobs spawn K tasks, which are served by K parallel servers. We 
first consider the case when jobs arriving at a rate λ are processed one at a time. Each jobs spawns K inde-
pendent tasks to be processed at K servers, but this is done only when all the tasks associated with a previous 
job are completed. The completion time of all of the tasks of a job is simply the maximum of K service times 
denoted by Rk

max. The maximum throughput is then λK kRmax max= −[ ] 1. When the service times are exponen-
tially distributed with rate μ, then RK = HK/μ and λ µK KHmax = / , where H kK

k

K

=
=∑ 1

1
/  is the Harmonic 

sum. The server utilizations are given by ρ λ λ=min( , )K xmax , where x– = 1/μ is the mean service time.
F/J queueing systems allow overlapped execution of tasks belonging to successive jobs by sending the 

K tasks of an arriving job to the K queues for FCFS processing. When the arrival rate is λ and the service 
times are exponentially distributed with mean x– = 1/μ, then the server utilizations are ρ = λ/μ. In this case 
λ µK

max = , which exceeds the previous throughput by a factor HK. The distribution of response time at each 
server is exponential with mean R(ρ) = x–/(1 − ρ), so that the expected value of the maximum of K response 
times is R H RK K

max = × ( )ρ . This is an upper bound to RK
F J/ ( )ρ  for the exponential distribution according 

to [90]. Under Markovian assumptions, an exact analysis is available for two-way F/J queueing systems
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the introduced error increases with ρ. An approximate expression is obtained in [90] for Rk
F J/ ( )ρ  for 

2 ≤ K ≤ 32 with exponential service time distribution by curve-fitting against simulation results
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Empirical expressions for RK
F J/ ( )ρ  are derived in [128] for general service times by curve-fitting.
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Fork-join requests may be utilized to estimate the mean response time of accesses to a failed disk 
in RAID5 disk arrays (see chapter on storage systems). We simplify the discussion by assuming that 
all disk accesses are due to read requests. The contents of a failed disks in this case are reconstructed 
by accessing and XORing the corresponding blocks on surviving disks. Note that disks in addition 
to fork-join requests process requests accessing them directly, so that the access rate and disk utili-
zation on surviving disks are doubled. Simulation results in [128] have shown that for higher disk 
utilization due to interfering requests R RK K

F J/ ( ) ( )ρ ρ≈ max , so that there is no need to use Equation 56.55 
as was done in [87].

In order to compute RK
max , the response time distributions at the disks are approximated by the 

Erlang, Hyperexponential, Coxian, or the extreme-value distribution. The latter is defined as [76] 
F y P Y y eY

y a b( ) [ ] exp= < = −( )− − , which has a mean Y– = a + γb and variance σ πY b2 2 2 6= / . The maximum 
of K r.v.’s with this distribution is [76]

	
Y a b b K Y KK

Ymax ln= + + = + ( )( ) ln( ) ( ) .γ π σ6

Given that the extreme value distribution has two parameters, the mean and variance of response time 
in RAID5 arrays can be used to estimate them as was done in [136]. A detailed discussion of the queue-
ing analysis of F/J and related systems is given in [140].

56.6  Queueing Network Models

Queueing network models (QNMs) comprise a set of nodes, where each node has single or multiple serv-
ers. Jobs completing their service at a node are routed to another node according to probabilities that 
are specified by a first-order or higher-order Markov chain [80] until they depart from the system. Jobs 
in a QNM may belong to a single class or multiple classes as defined by being open or closed chains, as 
in the case of OLTP txns and batch jobs, respectively, their routing matrices, and their service demands. 
Chapter 7 in [83] provides numerical examples for justifying multiple job classes.

Jobs belonging to an open chain arrive at one of its nodes and visit appropriate nodes according to a 
transition probability matrix R = [ri,j], where ri,j is the probability that a job leaving node i joins node j. 
Jobs leave the system with a departure rate equal to the arrival rate provided that no node is saturated. 
The response time of requests in an open chain is the sum of residence times at the nodes visited by 
the chain.

Closed QNMs with a fixed number of jobs are used to represent batch systems with an infinite back-
log of jobs, so that as one job is completed there is another job available for activation. Closed chains 
have special transitions, signifying the completion of a job. This may be a transition to a delay server, 
which stands for user think times, or an immediate transition of a job to the same node, indicating its 
completion and replacement by a new job, so that the number of jobs in the closed QNM remains fixed. 
Hybrid QNMs allow both open and closed chains.

In what follows, we start our discussion with open QNMs in Section 56.6.1 and then proceed to closed 
QNMs in Section 56.6.2. Buzen’s algorithm for the analysis of closed QNMs is given in Section 56.6.3 
and mean value analysis (MVA) in Section 56.6.4. Bounds applicable to closed QNMs are specified in 
Section 56.6.5. The analysis of hybrid QNMs with open and closed chains is outlined in Section 56.6.6. 
Hierarchical decomposition and aggregation in the context of QNMs is discussed in Section 56.6.7. This 
approach is used to analyze parallel processing based on [122] and serialization delays based on [119].

56.6.1  Open QNMs

In open QNMs, external arrivals to the N nodes of the network are γi for 1 ≤ i ≤ N. The transition 
probability from node i to j is given by ri,j. The probability that a request leaves the network at node i 
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. The arrival rates to the nodes (λi for 1 ≤ i ≤ N) can be obtained by solving a set of 

linear equations given as
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where λ– and γ– are row vectors and R is a probabilistic routing matrix. The mean delay encountered by 
messages arriving at node j and departing at node k is denoted by Zj,k and γj,k is the rate of messages from 
node j to node k. The mean delay overall messages are then [79]
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Consider two queues in tandem, with the output from the first queue being fed to the second queue. 
The arrivals to the first queue are Poisson with rate λ. The service times at the two queues are exponen-
tial with rates μ1 and μ2. Provided the first queue is not saturated (λ1 < μ1), due to conservation of flow the 
arrival rate to the second queue is also λ. The utilizations of the two servers are ρ1 = λ/μ1 and ρ2 = λ/μ2, 
respectively. The system is not saturated if min(μ1, μ2) > λ. Burke’s theorem states that the arrival rate to 
the second queue is also Poisson with the same rate. A proof of Burke’s theorem based on [78] is given 
by Equation 56.58. The LST for interdeparture time (D*(s)) depends on whether the queue is busy or 
not. When the first queue is idle, the interdeparture time is the sum of interarrival and service times 
(product of the two LSTs), while it is simply the LST of service time when the server is busy
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Both queues can be analyzed simply since they have Poisson arrivals. In case a fraction q of departures 
from the first queue are fed back, then it can be shown that the arrival process to that queue is not 
Poisson, but the departure process from the queue remains Poisson [143].

The analysis of tandem queues undertaken in Chapter 3 in [77] demonstrates the difficulty of the 
problem at hand. This led to the proposal of the independence assumption that message lengths are resa-
mpled from an exponential distribution in the network. As verified by simulation results this assump-
tion is more accurate for higher fan-ins and fan-outs.

In the case of two queues in tandem with a Poisson arrival rate λ to the first queue and service rates μ1 
and μ2 at the two servers with min(μ1, μ2) > λ, the state equilibrium equations for the two-dimensional 
CTMC with states (k1, k2) are satisfied by

	 P k k k kk k[ , ] ( ) ( ) , .1 2 1 1 2 2 1 21 1 0 01 2= − − ≥ ≥ρ ρ ρ ρ for

Even when the transitions are not feedforward and hence the arrival rates to the nodes are not Poisson 
[143], Jackson’s theorem guarantees a product form solution in open QNMs where the external arrivals 
are Poisson with arbitrary transition probabilities, as if the arrival rates to all nodes are Poisson. Given 
mn servers with service rates μn at node 1 ≤ n ≤ N, the server utilizations at that node are ρn = λn/(mnμn). 
Given that Pn[kn] is the distribution of the number requests at node n, the probability that the system is 
at state k– = (k1, k2, …, kN) is given as [45,78,143]

	
P k P kn

n

N

n[ ] = [ ]
=
∏

1

.

	
(56.59)
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Analysis of open QNMs with multiple chains is given by Algorithm 7.1 in [83]. The analysis with sin-
gle servers, which can be easily extended to multiple servers, proceeds as follows: (1) ascertain that the 
server utilizations at no node exceeds one. (2) Obtain the residence times at various nodes. (3) Obtain 
queue lengths at various nodes. (4) Obtain residence time in QNM by summing residence times over all 
nodes constituting a chain (from the arrival node to the departure node). (5) Obtain the mean number 
of jobs in a chain by using Little’s result.

56.6.2  Closed QNMs

We next consider the closed QNM of the central server model (CSM), which consists of a single CPU 
(node 1) and N − 1 disks (nodes 2 : N). The number of jobs at the computer system or its MPL is M. Jobs 
alternate between processing at the CPU and the disks, returning to the CPU after completing their 
service at the disks. A job finishing its execution at the CPU completes its processing with probability 

p1 or accesses the nth disk with probability pn for 2 ≤ n ≤ N, so that pn
n

N

=
=∑ 1

1
. A completed job is 

immediately replaced by a new job, so that the MPL remains fixed at M. The number of visits to the CPU 
is given by the modified geometric distribution Pk = p1(1 − p1)k − 1, so that the mean number of visits to the 
CPU is v0 = 1/p1 and the disks vn n np p p p p= − − =( )( ( )1 1 11 1 1/ / /  for 2 ≤ n ≤ N.* Given that x–n is the mean 
service time per visit at node n, the service demands Dn = vnx–n for 1 ≤ n ≤ N. These are the mean times 
the jobs spend being served at the nodes of the QNM.

The state probabilities of closed QNMs with four types of nodes satisfying the conditions of the 
BCMP theorem can be expressed in product form [43,45,79,83]:

	 1.	 FCFS: exponential service time, single or multiple servers
	 2.	 Processor sharing (PS): general service time, single server
	 3.	 Infinite servers (IS): general service time, also a delay server
	 4.	 Last-come, first served (LCFS): preemptive resume, general service time, single server

The service rate at type 1 nodes with m servers equals kμ for k ≤ m and mμ for k ≥ m requests at the 
node. Multiservers and delay servers are examples of state-dependent servers. At type 3 nodes there is 
no queueing, since there are as many servers as there are requests, so that the mean response time equals 
the mean service time. The increase in the total service rate in multiprocessors is sublinear in the num-
ber of processors, which may be due to cache interference or synchronization delays [70]. For example, 
in a hypothetical four-way multiprocessor, the processing rate may increase as (1, 1.75, 2.5, 3.25).

Consider a closed QNM with N nodes and M jobs. The state of the QNM can be represented as m = 
(m1, m2, …, mN), so that m Mi

n

N

=
=∑ 1

. The probability distribution of the number of jobs at the N nodes 
is given as†
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(56.60)

The first expression for Fn(mn) is applicable to type 1, 2, and 4 state-independent queueing stations, while 
the second expression applies to multiservers and delay servers. Given Fn(0) = 1, F i D i F in n n n( ) ( ( )) ( )= −/α 1  
for i ≥ 1. For the aforementioned multiprocessor, α– = {1, 1.75, 2,5, 3.25, 3.25,…}.

*	 The analysis of the fundamental matrix in Section 7.2 in [143] to obtain the mean number of visits to the states of a finite 
state Markov chain is applicable to this discussion.

†	 In the case of single servers, the probabilities can be expressed as server utilizations by multiplying them by the system 
throughput (T(M)).
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Given the number of jobs M and the service demands D–  = (D1, D2, …, DN), a closed QNM can be solved 
to determine the throughput for jobs and their mean residence time in the QNM, device queue lengths, 
and utilizations. The job transition probability matrix should be specified to determine the job response 
time distribution.

There are several efficient algorithms for analyzing closed QNMs satisfying the BCMP theorem. 
Buzen’s algorithm [28,47] for single job classes was later extended to multiple job classes by Buzen, 
Reiser and Kobayashi at IBM’s T. J. Watson Research Center, and Williams and Bhandiwad using gener-
ating functions [45,146]. The analysis in the latter paper was extended by Thomasian and Nadji in [117]. 
Mean value analysis (MVA) [29,83,98] and REcursion by Chain ALgorithm (RECAL) [54,55] are two 
other algorithms for closed QNMs.

56.6.3  Buzen’s Algorithm

It can be shown that in a QNM with N nodes and M jobs there are S
M N

N
=
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



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1

1
 states for the number of 

jobs at the nodes. To show this is so consider (N − 1) bars to delineate the boundaries among the N nodes 
and M asterisks specifying as many jobs, so that the state of the system can be represented as ***|**|…|*, 
three jobs at node 1, two jobs at node 2, and one job at node N. There are (M + N − 1)! permutations, 
which are divided by M! for the M indistinguishable jobs and (N − 1)! for the (N − 1) indistinguishable 
bars [59]. Multiple job classes are not considered in this study for the sake of brevity, but it suffices to 

say that the number of states increases rapidly with K job classes, that is, S
M N

N
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normalization constant in Equation 56.60 is given as
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For state-independent nodes with the normalization constant, G(M) is the sum of the S terms of the 
form F m Dn n n

mn( ) = . A straightforward computation of G(M) requires at most M − 1 multiplications for 
each one of the S terms and S − 1 summations.

Arguments based on generating functions [78,143] have been used in [117,146] to derive the recursion 
for G(M) and other performance metrics. Provided that the dummy variable t is selected to be small 
enough (tDn < 1), the sum given next converges for state-independent servers
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The generating function for the QNM is
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(56.63)

Using Equation 56.62, the following recursion is obtained for the nth node
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(56.64)
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Setting the coefficients of the same powers of t on both sides equal to each other

	 G m G m D G m m M n Nn n n n( ) ( ) ( ) for , .= + − ≤ ≤ ≤ ≤−1 1 1 1 	 (56.65)

Instead of a two-dimensional array, memory space can be saved by using a one-dimensional array or 
a vector initialized as G(0) = 1 and G(m) = 0 for 1 ≤ m ≤ M. The iterative solution proceeds one node at 
a time, while varying the number of jobs at the node

	 G m G m D G m m M n Nn( ) ( ) ( ) for , .= + − ≤ ≤ ≤ ≤1 1 1 	 (56.66)

Generating functions can be used to show that T(M) = G(M − 1)/G(M), from which it follows that 
the mean residence time is R(M) = M/T(M). The utilizations and mean queue lengths at the nodes are 
Un(M) = DnT(M) and Q M D G M m G M n Nn n

N

m

M

( ) ( )= −( ) ≤ ≤
=∑ 1

1for , respectively.

Convolution is only applied to state-dependent servers, so that starting with g t g t x tn n n( ) ( ) ( )= −1  for 
1 ≤ n ≤ N and equating the coefficients of m on both sides we have
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If there is only one state-dependent server, the need for convolution is obviated by designating the state-
dependent node as node 1 G(m) = F1(m) for 1 ≤ m ≤ M.

56.6.4  Mean Value Analysis

The MVA method was developed at the IBM Research at Yorktown in late 1970s through a collabora-
tion between Reiser and Schweitzer according to [99], which also states that Lavenberg was instru-
mental in formalizing the proofs in [98]. The MVA method has the advantage over Buzen’s algorithm 
that it is easy to explain and intuitively appealing. Buzen’s algorithm for state-independent station is 
specified by two nested iterations in Equation 56.66, while the order of iterations is reversed in MVA, 
as specified next:

MVA algorithm for N single servers nodes and M jobs.
Initialize queue lengths at all nodes Qn(0) = 0, ∀n.
For 1 ≤ m ≤ M requests repeat steps inside brackets:
{
Compute residence time at all single server nodes: Rn(m) = Dn[1 + Qn(m − 1)].
Compute residence time at all IS nodes: Rn(m) = Dn.
Compute system throughput: T m m R mn

n

N

( ) ( )=
=∑ 1

.

Compute queue lengths at all nodes: Qn(m) = T(m)Rn(m), ∀n.
}
Compute device utilizations at all nodes: Un(m) = DnT(m), ∀n.

The formula for residence times is based on the Arrival Theorem [98], which states that arrivals to a 
node encounter a queue length, as if there is one less job in the closed QNM [98].

MVA can be easily extended to multiple job classes [45,82,83]. There are numerical stability problems 
associated with state-dependent servers, since instead of just the mean queue length, MVA computes 
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the distribution of the number of jobs at a node. The probability of zero jobs at a node may turn out to 
be negative for higher utilizations, since it is computed as one minus the sum of other probabilities (see 
Chapter 20 in [83]). This does not pose a problem in the case of Buzen’s Algorithm developed a decade 
before MVA. There is also the N-fold increase in memory size requirements for MVA with respect to 
Buzen’s algorithm (see Table 8.5 in [45]). Note that both time and space requirements grow as the prod-
uct of the number of jobs in different chains.

There are several approximate iterative methods based on MVA that lead to a direct solution for 
large number of jobs. The Bard–Schweitzer approximate iterative solution method is based on MVA 
[45,82,83]. It uses the initialization assuming that service demands at the nodes are equal Qn(M) = M/N 
and then sets Qn(M − 1) = [(M − 1)/M]Qn(M) for 1 ≤ n ≤ N. The iteration continues until Qn(M) obtained 
in successive iterations are approximately equal [45,83]. The self-correcting approximation technique 
(SCAT) and the linearizer [45,85] developed by Chandy and Neuse provide more accurate results than 
the Bard–Schweitzer approximation and allows state-dependent servers, while reducing the computa-
tional cost with respect to MVA. A comparison of approximate algorithms for QNMs is given in Table 
9.13 in [45]. This is a more important issue in QNMs with multiple job classes. See Table 8.5 in [45], 
which is extracted from [54].

Priority queueing at the CPU can be incorporated approximately in MVA by inflating the 
D D UCPU

low
CPU
low original

CPU
high= −( )− 1  and since UCPU

high  is not known a priori, iteration is required (see Algorithm 
11.1 in [83]). The so-called shadow CPU technique was proposed by Sevcik to obtain optimistic and 
pessimistic bounds on the performance of nodes with priorities. Additional approximations to deal 
with violations of the BCMP theorem, such as different exponential service times across job classes and 
nonexponential service times, both in the case of FCFS scheduling (see Chapter 11 in [83]).

56.6.5  Bounds to QNM Performance

The Balanced Job Bounds (BJB) [83] by Zahorjan, Sevcik, Eager, and Galler provides an upper bound to 
the throughput T(M) of closed QNMs (T(M)) with nodes with single servers using the average service 

demand D D Na n
n

N

=
=∑ 1

. In a balanced QNM due to symmetry, the queue lengths encountered at the 
nodes due to the Arrival Theorem are Qn(M − 1) = (M − 1)/N, ∀n. The residence time at node n is Rn(M) = 
Da(1 + M − 1)/N), ∀n, so that
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It can be observed from Equation 56.68 that in balanced QNMs T(M) increases with M. Generally, 
according to Theorem 2 in [60] the throughput characteristic of QNMs with state-independent and 
delay nodes is a concave nondecreasing function. This is shown in Figure 9.1 in [83], that is, T(M) > 
[T(M − 1) + T(M + 1)]/2.

An alternate analysis using generating functions and the binomial theorem [30] was developed by 
Thomasian and Nadji to derive Equation 56.68 [118]. The generating function for N single server stations is
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is the throughput in Equation 56.68.
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The same work develops an approximation based on Taylor series expansion with respect to the mean 
service demand D D Nn
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Successively more accurate approximations to T(M) as given by Equation 56.58, which may be consid-
ered a 0th order approximation, are given as follows
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The analysis has been extended to two job classes in [89].
Nodes with single servers and delay servers are considered in [83]. The service demands at the delay 

servers can be easily added to the mean residence time in the system R(M) in Equation 56.58.
Asymptotic bounds analysis (ABA) developed by Muntz and Wong in 1975 [79] is similar to BJB where 

the system is obtained using the maximum service demand [83], but in fact the former is more useful 
since it is applicable to all types of nodes, while the latter applies only to state-independent nodes. Given 
that the nth node has mn servers with service demand Dn for 1 ≤ n ≤ N.
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In the case of state-dependent servers with the implicit assumption that the service rate is an increasing 
function of the number of requests, the maximum throughput at each node can be used in this calcu-
lation. Tmax is approached as M → ∞. At lower values of M, T(M) is upper bounded by the line passing 
through (0, 0) and (1, T(1)), where T Dn

n
( )1 1= 



∀∑ . Chapter 5 in [83] has several examples on utiliz-

ing bounds in performance analysis.

56.6.6  Hybrid QNMs with Open and Closed Chains

We conclude the discussion of QNMs, which combine open and closed chains. We summarize 
Algorithm 7.4 in [83] with multiple open chains and a single closed chain. Only single server state-
independent nodes are considered at this point for the sake of brevity.

	 1.	 Solve QNM considering open chains alone and determine server utilizations due to them.
	 2.	 Expand service demands of closed chains by dividing them by one minus the server utilizations 

due to open chains.
	 3.	 Solve QNM for closed chains to determine queue lengths at the nodes.
	 4.	 Determine residence time for open chains and multiply them by one plus the sum of queue lengths 

for closed chains.
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56.6.7  Hierarchical Decomposition and Aggregation for QNMs

Hierarchical decomposition and aggregation can be explained by considering a multiprogrammed 
computer system represented by a closed QNM with a maximum MPL Mmax. It is substituted with a 
single Flow-Equivalent Service Center (FESC), with service rate T(m) for 1 ≤ m ≤ Mmax and T(m) = T(M) 
for m ≥ Mmax, which is a flattened throughput characteristic [83].

Given N users with think time Z = 1/λ and m jobs at the computer system, the arrival rate to the 
FESC representing the computer system is Λ(m) = (N − m)λ. The system can be analyzed by solving the 
BD process for the machine repairman model (MRM) in Section 56.3.5 with variable service rates. 
Alternatively a graphical method that plots the arrival rate and the completion rate versus the number 
of the jobs at the computer system can be adopted (see Figure 3.37 in [80] or Figure 20 in [59]). The 
intersection of the two graphs is the operational point of the system M*. The distribution of the num-
ber of jobs surrounding M* roughly follows a normal distribution [42,143]. Equilibrium point analysis 
(EPA), which is based on an iterative fixed point approximation (FPA), can be used to analyze the system 
directly without resorting to a detailed solution based on BDs [113].

The problem is more complex in the case of QNMs with external arrivals from multiple job classes 
and population size constrains. This problem has been studied in the context of multiprogrammed 
computers processing multiple job streams with Poisson arrivals. The MPL constraint may be per class 
or over all classes. Solution methods to deal with this problem are given in Chapter 9 in [83], while [121] 
compares the accuracy of several approximations proposed for this problem.

In a virtual memory environment as the number of activated jobs is increased, the main memory 
may be overloaded leading to excessive page faults. System resources will be used in handling page faults 
rather than in processing jobs, so that there is a drop in system throughput, which is known as thrashing 
[31]. Another reason for the drop in system throughput (in theory) is database lock contention, which is 
discussed in Section 56.8.1. According to Figure 8 in [127], there is a drop in T(m) for m ≥ 1 yields three 
intersection points with Λ(m) = (N − m)λ. The stable intersection points are A and C, where A is desir-
able and C is in the thrashing region, and B is unstable and the system can drift from it to the other two 
stable points.

Aggregation and decomposition has been applied in analyzing QNMs that do not lend themselves to 
a product-form solution. Two such examples are given next.

Serialization delays occur when the processing of certain phases of jobs in a computer system is 
single-threaded, so that only one of multiple jobs executing concurrently can proceed in the serialized 
phase, while the other jobs are blocked from entering the serialized phase. The analysis of a single job 
class with M = 4 jobs and S = 2 serialization phases (SPs) is considered in [119]. The underlying CSM con-
sists of a CPU and disks as in CSM. Jobs completing their service at the CPU access the disks or attempt 
access to one of two SPs. The job is blocked if there is another job already active at the SP.

A CTMC is required to specify the state of the system, which is represented by the numbers of jobs in 
the nonserialized phase and two serialized phases m— = (m0, m1, m2), so that m0 + m1 + m2 = M. The analy-
sis of the QNM yields Ti(m—), 0 ≤ i ≤ 2. The explosion in the number of CTMC states can be handled by 
coalescing states to attain a more compact state representation (SR). The number of states of the CTMC 
can be reduced from 15 to 12 by combining states (1,2,1) and (1,1,2) into (1,1,1) and also states (0,3,1), 
(0,2,2), and (0, 1, 3) into (0,1,1). The reduction in the number of states due to lumping of states is more 
dramatic when there are multiple job classes. Five different SRs with a large variation in the number of 
states are considered in [126].

QNMs whose jobs exhibit parallelism are not product-form, but can be analyzed using hierarchical 
decomposition. An efficient method to analyze such QNMs whose jobs can be specified as task struc-
tures was developed by Thomasian and Bay in [122]. We illustrate the analysis via a small example to 
determine the completion time of two parallel tasks T1 and T2, which belong to different job classes. The 
initial system state is (1, 1), with one job in each class. The throughputs in the two classes are Ti(1, 1) for 
i = 1, 2. Given that the completion rates of the two tasks are exponential, the probability that T1 completes 
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first is pi = Ti(1, 1)/T(1, 1), with T(1, 1) = T1(1, 1) + T2(1, 1). The holding time in that state is R(1, 1) = 1/T(1, 1). 
The completion of T1 and T2 leads to a transition to states (−, 1) and (1, −) with holding times R(2) and 
R(1), respectively. It follows that the completion time of the two tasks is given as C = R(1, 1) + p1R(2) + 
p2R(1). The solution method for complex task structures in [122] generates the states of the CTMC and 
computes their unnormalized probabilities one level at a time, after solving the underlying QNM. The 
number of states in the CTMC can be trimmed by ignoring states whose occurrence is highly unlikely.

The use of hierarchical decomposition in evaluating the performance of a CSM with higher priorities 
assigned to one of two classes was proposed in [117]. A similar example is given in Section 8.5.1 in [83].

The effect of lock contention on overall system performance is analyzed using the hierarchical decom-
position method in two companion papers. The effect of lock preclaiming on the delay of activating jobs 
due to lock conflicts with already active jobs is considered in [120], while [102] deals with dynamic lock-
ing systems, but uses a more detailed analysis than the one given in [127] (see Section 56.8.1 for details).

Hybrid models combine simulation for higher level activities, such as txn arrivals and job activation, and 
analysis of QNMs for lower level activities, such as the processing of txns by the CSM. The hybrid modeling 
of IBM’s System Resource Manager (SRM) for the MVS OS given in [52] is described in Section 15.6 in [83].

Hybrid simulation proposed by Schwetman in [105] counts cycles to determine job progress in a 
variation of CSM, referred to as the cyclic server model, where jobs leave the system after processing at 
the disks. This method was adopted in [123] in a simulation study to minimize the mean response time 
in distributed systems. Job processing demands are given as the service demands per cycle and the num-
ber of cycles required by jobs in a cyclic server model, where job completions occur at the disks rather 
than the CPU. Jobs may be characterized as CPU or I/O bound, so that it is the composition of jobs at the 
computer system rather than just their MPL that needs to be considered when routing incoming jobs. 
Jobs are routed to the node that minimizes their mean response time, but this mean response time will 
only hold if there are no further arrivals to the queue until the job completes. This method works better 
with high variability in interarrival times and in the extreme case of batch arrivals.

A first-order Markov chain model for routing of jobs implies a geometric distribution for the number 
of cycles pn = (1 − p)pn−1. Approximating the processing time of jobs per cycle with an exponential dis-
tribution (with parameter λ) implies an exponential residence time distribution with mean [(1 − p)λ]−1
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where K (.) is the z-transform of the number of cycles.
The mean and variance of this distribution are obtained by integration by parts (in what follows 
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The number of jobs completed in a time interval approaches a Poisson process when the cycling prob-
ability p → 1, signifying a large number of cycles, since transitions leading to a job completion are rare. 
Poisson inter-departure times imply exponentially distributed residence times [103].
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Several approximate analyses have been developed to estimate the distribution of response time 
distribution in QNMs. At a first glance its LST is given as the product of the LSTs at the nodes visited by 
the chain. Complications such as “overtaking” are discussed in Chapter 9 in [72].

56.7  Page Replacement and Buffer Management

Early studies in this area dealt with the page reference pattern of computer programs residing in a vir-
tual memory environment. The problem becomes more complex when multiple programs share mem-
ory space, which is referred to as multiprogrammed memory management. Early discussions of these 
two topics appear in Chapters 6 and 7 in [53].

Cache memories differ from virtual memories in that they utilize a smaller block size and are more 
restrictive from the mapping viewpoint, since they rely on a hardware implementation, such as direct 
or a low-degree set associative mapping for speed, while the more flexible fully associative mapping 
(with some limitations) is applicable to virtual memories [73]. Main memory access is only required 
when a CPU cache miss occurs and this requires the translation of virtual addresses generated by pro-
cessors to physical main memory addresses. This translation is assisted by associative memories known 
as translation lookaside buffers (TLBs) [73]. Very low miss rates at the caches and TLBs are required to 
ensure high performance. System performance at this level can only be determined a priori by trace-
driven simulation.

When the miss rates at the two levels are negligibly small, the effective mean access time can be 
approximated by the access time to the highest level. The following equation for two levels of caching 
can be generalized to multiple levels [73]

	 Hit time Miss rate time Miss_rate Miss_ _ (Hit_ _penaltL L L L1 1 2 2+ × + × yy .Main memory−

The execution of a program is interrupted and context switching occurs when it encounters a 
page fault in a virtual memory environment. With multiprogramming the processor is reassigned to 
another program, which is eligible for execution, for example, because its page fault was satisfied. The 
miss rate, which is the fraction of main memory accesses that result in a page fault, is an appropriate 
performance metric in this context. When page faults occur, the system throughput is not affected 
significantly since the CPU is kept busy in multiprogrammed computer systems. With the advent of 
large main memories, most programs are fully loaded so that the memory miss rate is not an impor-
tant issue.

A block (or page) replacement policy determines the block is to be overwritten. Better replacement 
policies minimize the number of misses by not overwriting blocks, which are referenced soon thereafter 
so that replacing them would result in increasing the execution time of a program. Stack algorithms 
which include the least recently used (LRU) policy have the desirable property of reducing the miss rate 
as the memory space allocated to a program is increased [100]. Policy MIN that minimizes the miss rate 
by replacing the page referenced furthest in the future, or not at all, is not a feasible policy, but useful in 
comparing the relative performance improvement. Several other page replacement policies are first-in, 
first-out (FIFO), Last-in, first-out (LIFO), CLOCK, Second-Chance, Generalized CLOCK, working set 
(WS), page fault frequency (PFF), etc. [32]. It is the size of allocated memory that has a first-order effect 
on the miss rate.

Overextending the main memory underlying the virtual memory may lead to the thrashing phenom-
enon [58], which may be dealt with by swapping out programs to make more memory space available for 
active jobs [50]. Programs exhibit a low miss rate when their working set is allocated in main memory so 
that the number of allocated pages should be increased when the miss rate is high [58]. The WS [58] and 
the PFF [94] algorithms vary the number of allocated pages in a multiprogrammed computer system 
to optimize performance. PFF allocates more memory pages when the the miss rate exceeds a certain 
threshold and otherwise reduces the number of allocated pages.
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Buffer management studies estimate the parameters of reference strings for a given reference 
model and propose and evaluate replacement policies. Two early page reference models are the 
independent reference model (IRM) (blocks are accessed with fixed probabilities) and the LRU 
stack-depth model (stack distances are given by fixed probabilities). McNutt’s hierarchical reuse 
(fractal) model reveals the following relationship between miss rates (s < s′) and memory sizes 
(m > m′) s/s′ = (m/m′)−1/3, that is, to halve the miss ratio an eightfold increase in the buffers size is 
required [86].

The miss rate can be evaluated using random-number-driven or trace-driven simulations. Trace 
driven simulations are the more credible, but multiple traces should be used for a higher confidence 
level (86 traces were used in evaluating the cache for the IBM’s 360/85, the first commercial com-
puter with a cache in late 1960s). There have been a limited number of analytic models of paging 
algorithms, for example, the analysis via a Markov chain model of the generalized CLOCK algo-
rithm in [93].

An empirical formula for the number of page faults (n) versus memory size (M) is derived in [114]. 
Memory sizes M0 and M* are the min and max M that are sufficient and necessary. The number of cold 
memory misses starting with an empty buffer is n0. The parameters vary with program behavior and 
replacement policy:
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One observation of this study is that policies have different n for smaller memory sizes and otherwise all 
policies yield about the same n.

The buffer miss rate (BMR) is applicable to various levels of the memory hierarchy. Misses in the main 
memory buffer result in accesses to the cache at the disk array controller (DAC) are accessed follow-
ing a miss at both levels. BMR is affected by the buffer size, the replacement policy, and the workload. 
Of interest is improving the performance of shared DAC caches in processing sequential and random 
streams for large disk arrays. The sequential prefetching adaptive replacement cache (SARC) improves 
performance by a judicious combination of caching and prefetching policies [69]. SARC dynamically 
and adaptively partitions the cache space between sequential and random streams so as to reduce read 
misses. It outperforms two variants of the LRU policy at peak system throughput in processing a TPC-1 
like workload in a RAID5 disk array with an 8 GB cache.

Early articles on page replacement and buffer management policies are summarized in a web page 
dealing with database implementation [33].

56.8 A nalyses of Concurrency Control Methods

Four requirements for txn processing systems are atomicity, consistency, integrity, and durability (ACID) 
[97]. Concurrency control (CC) methods are required to ensure database consistency and integrity and 
also correctness in txn execution, which is tantamount to serializability, that the execution of a sequence 
of txns is equivalent to their execution in some serial order [97]. Txn recovery methods, such as write-
ahead logging, are used to ensure txn atomicity and durability [97]. Almost all operational database 
systems utilize the standard locking method and the performance degradation due to this method is 
analyzed in Section 56.8.1. Two alternative CC methods have been proposed for high data contention 
environments [64]. Restart-oriented locking methods are discussed and their performance analyzed in 
Section 56.8.2. The results in the first two sections are due to Thomasian [127,132]. The analysis of the 
optimistic CC (OCC) in Section 56.8.3 is based on Morris and Wong in [88]. The extensions of this work 
by Ryu and Thomasian in [101] are briefly discussed.
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56.8.1  Standard Locking and Its Threshing Behavior

Standard locking follows the strict two-phase locking (2PL) paradigm, where locks are requested on 
demand and strictness requires that no locks are released until the completion of txn execution known 
as txn commit. This allows the undoing of txn updates when the txn is aborted [97,131]. Locks are 
released upon txn abort to resolve deadlocks or to relieve lock congestion in conjunction with restart-
oriented policies in Section 56.8.2.

An abstract model of standard locking to analyze the effect of lock contention on the performance of 
txn processing systems is postulated in [127]. There are M txns in a closed system, so that a completed 
txn is immediately replaced by a new txn. Txns of size k have k + 1 steps with mean duration (s), so that 
the mean txn residence time with no lock contention is rk = (k + 1)s. Locks are requested at the end of the 
first k txn steps and all locks are released at the end of the k + 1st step. The mean duration of each step 
taking into account txn blocking due to lock conflicts, but not txn restarts due to rare deadlocks is (s + u). 
We have u = PcW, where Pc is the probability of a lock conflict per lock request and W the mean waiting 
time per lock conflict [127]. The mean number of locks held by a txn is L– ≈ k/2. It is assumed that all 
locks are exclusive and are distributed uniformly over the D pages in the database, so that the probabil-
ity of lock conflict Pc ≈ (M − 1)L–/D tends to be small. Shared locks whose fraction is fS can be taken into 
account by adjusting the database size to D D feff S= −( )1 2  [131]. The probability that a txn encounters a 
lock conflict is P P kP M k Dw c

k
c= − − ≈ = −1 1 1 2( ) ( ) . A two-way deadlock can only occur if txn TA requests 

a lock held by txn TB, which is blocked because of its conflict with txn TA:
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Multiway deadlocks are not considered since they are rare. The aforementioned analysis was refined to 
take into account the fact that a deadlock only occurs if TB was already blocked [125]. We obtain the 
mean blocking delay of a txn with respect to an active txn holding the requested lock (W1) by noting that 
the probability of lock conflict increases with the number of locks held by the txn (j) and that there are 
(k − j) remaining steps [127]
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where s′ is the remaining processing time of a step at which the lock conflict occurred.
Since deadlocks are rare, the mean txn response time only takes into account txn blocking time due 

to lock conflicts, but not restarts due to deadlocks since they are rare Rk ≈ (k + 1)s + kPcW1. The fraction 
of txn blocking time per lock conflict with an active txn is A = W1/Rk ≈ 1/3. A more accurate expression 
for two-way deadlocks, as verified by simulation, is given by Equation 56.73 in [126] as P′D(2)(k) ≈ APD(2)(k) = 
PD(2)(k)/3. In the case of variable size txns (with a closed model), a completed txn is replaced by another 
txn of size ℓ with frequency fℓ. Given that the ith moment of the number of requested locks is Ki, then 
L– ≈ K2/K1 and A = (K3 − K1)(3K1(K2 + K1)) [128].

Ignoring the difference in the number of locks held by active and blocked txns, the probability that a 
txn has a lock conflict with an active txn at level i = 0 (resp. a blocked txn at level i = 1) in the forest of 
waits-for graph for active and blocks txns is 1 − β (resp. β) and the mean blocking time is W1 (resp. W2 = 
1.5W1). The expression for W2 relies on the fact that at the random instant when the lock conflict occurs, 
the active txn is halfway to its completion. The probability that a txn is blocked at level i is approximated as
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The mean delay at level i > 1 is approximated by Wi ≈ (i − 0.5)W1. The mean blocking time is a weighted 
sum of delays incurred by txns blocked at different levels
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Let M A and M M MB A= −  denote the mean number of active and blocked txns in a closed QNM with 
M txns. We multiply both sides of the equation by K1Pc/R and note that β = K1PcW/R is the fraction of 
blocked txns. We define the fraction of time txns are blocked by active txns as α = K1PcW1/R. It follows 
β = α(1 + 0.5β + 1.5β2 + 2.5β3 + …). A closed-form expression for β can be obtained by noting that β < 1 
and assuming that M is infinite yields

	 f ( ) ( . ) ( . ) .β β α β α β α= − + + + − =3 21 5 2 1 5 1 0

The function f(β) versus β is plotted in Figure 1 in [127]. The cubic equation has three roots 0 ≤ β1 < β2 ≤ 1 
and β3 ≥ 1 for α ≤ α* = 0.226 and a single root β3 > 1 for α > α*, where α* is the only root of the discriminant 
function of the cubic [34] (see Appendix B in [127]). The single parameter α determines the level of lock 
contention for standard locking and its critical value α* determines the onset of thrashing. The smallest 
root β1 for α ≤ α*, which determines the mean number of active txns M—A = M(1 − β1). M

—
A increases with 

the MPL M reaching a maximum point before dropping. This is because of a snowball effect that blocked 
txns cause further txn blocking. The associated thrashing behavior is shown in Figure 2 in [127]. It is also 
shown in this study that txn size variability has a major effect on lock contention.

56.8.2 R estart-Oriented Locking Methods

Performance degradation in standard locking is mainly caused by txn blocking, since deadlocks are rare 
and txn aborts to resolve deadlocks have little effect on performance. Restart-oriented locking methods 
follow the strict 2PL paradigm, but instead of blocking all txns when lock conflicts occur, txns are selec-
tively restarted to increase the degree of txn concurrency. This would allow higher txn throughputs in 
high data contention systems, such as an early release of DB2 with page level, rather than record level 
locking [97].

The running priority (RP) method aborts txn TB in the waits-for-graph TA → TB → TC, when TA 
encounters a lock conflict with TB [64]. Similarly according to symmetric RP, TB, which is already block-
ing TA, is aborted when it is blocked requesting a lock held by TC. In effect RP increases the degree of 
txn concurrency. The restart of an aborted txn is delayed until the conflicted txn has left the system. The 
no-waiting and cautious waiting methods abort and restart a txn encountering a lock conflict with an 
active and blocked txn, respectively. There is no increase in the number of active txns.

The wait depth limited (WDL) method measures txn progress by its length, which in [64] is approxi-
mated by the number of locks it holds. WDL differs from RP in that it attempts to minimize wasted lock 
holding time by not restarting txns holding many locks. For example, if TA, which is blocking another 
txn, has a lock conflict with TB, then if L(TA) < L(TB) then abort TA, else abort TB [64]. The superior per-
formance of WDL over RP and especially standard locking has been shown via random-number-driven 
simulation in [64], but also trace-driven simulation as discussed in [131]. RP and WDL attempt to attain 
essential blocking, that is, allowing a txn to be blocked only by active txns (bound to complete success-
fully) and not requesting a lock until required.

Immediately restarting an aborted txn may result in cyclic restarts or livelocks, which should be pre-
vented to reduce wasted processing and to ensure timely txn completion. Restart waiting delays the 
restart of an aborted txn until all conflicting txns are completed [64]. Conflict avoidance delays with 
random duration are a less reliable method to prevent cyclic restarts.
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Restart-oriented locking methods can be analyzed using Markov chain models [131,132]. Active 
(resp. blocked) txns with j locks are represented by states S2j for 0 ≤ j ≤ k (resp. S2j +1 for 0 ≤ j ≤ k − 1). 
In the case of the no-waiting or immediate restart method, there is a transition forward when there is 
no lock conflict: S2j → S2j +2 for 0 ≤ j ≤ k − 1, otherwise the txn is aborted S2j → S0. The state equilibrium 
equations for the Markov chain yield the steady-state probabilities πi for 0 ≤ i ≤ 2k. The mean number of 
visits vi to Si can be obtained similarly by noting that ν2k = 1, which is the state at which the txn commits. 
Given that hi is the mean holding time (the inverse of the transition rate) at Si, then πi i i j j

j

k

h h=
=∑v v

0

2

 

for 0 ≤ i ≤ 2k. The mean number of txn restarts is given by v0 − 1. A shortcoming of this analysis is that 
locks requested by restarted txns are resampled. Transition rates for the RP and WDL methods are given 
in [132].

56.8.3  Optimistic Concurrency Control Methods

A txn executing according to OCC copies pages (database blocks) it needs to modify to its private work-
space, by noting its timestamp, that is, the last time the page was modified. The validation phase ascer-
tains serializability, which is the universally accepted criterion for correct txn execution, that none of 
its accessed objects was modified by another txn after it was read. If the validation is successful, the 
txn commits and otherwise it is immediately restarted. Given that the k objects updated by txns are 
uniformly distributed over a database of size D, the probability of data conflict between two txns of size 
k is ψ = − − ≈1 1 2( )k D k Dk/ /  . This is referred to as the quadratic effect in [64]. The completion rate of suc-
cessfully validated txns is pμs(M), where p is the probability of successful validation and μ is the comple-
tion rate of txns. If there is no hardware resource contention s(M) ∝ M, but since hardware resource 
contention is inevitable s(M) is sublinear. A txn with processing time x will require xM/s(M) time units 
to complete, where s(M) is a nondecreasing function of M. A txn observes the commits of other txns 
at random times approximated by a Poisson process with rate λ = (1 − 1/M)pμs(M). Txns encountering 
data conflict with rate γ = λψ fail their validation with probability q e xM s M= − −1 γ ( ). The number of txns 
executing successfully at the system follows a geometric distribution Pj = (1 − q)qj − 1 for j ≥ 1 with a mean 
J q e xM s M= − =1 1/( ) ./ ( )γ  The system efficiency p can be expressed as the ratio of the mean execution time 
of a txn without and with data contention, that is, with the possibility of restarts due to failed validation
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The equation yields one acceptable root p < 1, provided γM/s(M) < μ and the integral in the denominator 
converges:
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Txn execution time is not resampled in this analysis because resampling processing times results in a 
mix of completed txns, which is shorter than the original processing time. Shorter txns have a higher 
probability of successful validation so that resampling would result in overestimating performance.

The aforementioned discussion follows static data access considered in [144], which postulates that 
all objects are accessed at the beginning of txn execution. This work was extended in [101] to allow the 
more realistic dynamic or on-demand data accesses preceded by lock requests [101]. The analysis is also 
that of OCC with the die method [64], which is inefficient in that a conflicted txn is allowed to execute 
to the end, at which point it is restarted. The OCC broadcast or kill method instead aborts a txn as soon 
as a data conflict is detected, alleviating further wasted processing [64,101].
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Although the optimistic die method seems to be less efficient than the kill method, this is not the 
case when due to database buffer misses txns make disk accesses. It is advantageous then to allow a 
conflicted txn to run to its completion to prime the database buffer with all the required objects for 
its re-execution in a second phase, which is expected to have a much shorter processing time, since 
disk accesses are not required. This is so provided access invariance or buffer retention prevails, that 
is, a restarted txn accesses the same set of objects as it did in its first execution phase [64]. The second 
execution phase may use the optimistic kill method. Standard locking with on demand lock requests, 
or lock preclaiming. The latter is possible since given access invariance prevails, the identity of pages to 
be locked by the txn has been determined in the first execution phase. Lock preclaiming ensures that 
the txn will not be restarted. In general, we have multiphase processing methods with CC methods with 
increasing strengths, for example, OCC followed by locking, so that a lock request on an object accessed 
in optimistic mode will result in the abort of the respective txn.

The WDL and RP restart-oriented locking methods outperform two-phase methods and are easier to 
implement since they only require modifications to the lock manager shared by DBMSs associated with 
IBM’s MVS OS and its descendants so that no modifications are required to the DBMSs.

56.9  Simulation Modeling and Measurement

The performance of computer systems is determined by hardware and software measurement tools. 
Most systems are also equipped with software to determine the causes of system crashes in operational 
systems. A description of measurement tools for IBM’s MVS operating system (OS) [35], which is a 
forerunner to the z/390 OS appears in [50] and Chapter 17 in [83]. These measurements are carried out 
at the level of workloads, for example, response time and throughput, and device level, for example, 
processors and disk utilizations and mean queue lengths. In the case of BGS’s BEST/1 capacity plan-
ning tool, complementary software was developed to summarize these results into service demands, 
which were direct inputs to BEST/1 [50]. For example, when the number of timesharing users is 
increased, BEST/1 can determine the effect of modifications to the current computer configuration 
to provide an acceptable response time. It is easier to deal with active rather than passive resources. 
Before proceeding with capacity planning, there is the important validation phase to ensure that the 
model accurately predicts performance. Otherwise the model has to be modified (see [59] and Section 
2.2 in [83]).

Robust performance models proposed in [115] take into account that the underlying system may be 
misconfigured or buggy. The IronModel is made part of the system and is aware of all system requests 
and their performance. It uses localization to determine the sources of mismatches and then uses refine-
ment techniques to make educated guesses. There is reliance on statistical methods and machine learn-
ing (ML) techniques such as classification and regression tree (CART) to modify the model [115]. A 
preliminary effort to build applications exporting their state and associated performance metrics is 
described in [116].

Simulation and analytical modeling can be carried out at multiple levels, such as estimating CPU 
performance as affected by its caches. While there have been analytic studies of caches and memory 
hierarchies [81], trace-driven simulation is more appropriate in this case. There are also simulation tools 
for disk subsystems, such as DiskSim from CMU’s Parallel Data Laboratory (PDL) [36]. Dixtrac extracts 
disk parameters, which are then used by the DiskSim simulation tool. The ns2 network simulator pro-
vides support for simulating transport control protocol (TCP), routing, and multicast over wired and 
wireless networks [37].

Random number simulations, as opposed to, trace-driven simulations, utilizes the pattern extracted 
from traces of workload activity, but are less credible than trace-driven simulations since workload 
characterization may not capture all subtleties of the workload. Trace analysis may show that accesses 
to a disk are concentrated in two small regions, but given that the accesses occurred in disjoint periods 
of time implies little seek activity.
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While simulations deal with multiple concurrent events, most simulation programs are sequential 
and use the next event approach processing one event at a time. Several languages developed for simula-
tion programming, but many sophisticated simulators, such as DiskSim and ns2 are mainly based on 
general purpose programming languages (such as C or C++). Simulator design and programming is 
described by Markowitz in Chapter 7 in [82].*

As events are generated they are held in an event queue based on their occurrence time in the future. 
With a large number events (n), efficient data structures such as heaps with an O(log2(n)) insertion 
and deletion cost may result in a significant reduction in simulation cost in comparison with O(n) for 
linear lists.

Random number generators (RNGs) are based on a pseudo-random sequence of a linear congruential 
generator (LCG) of the form X aX c mn n= +−1 ( )mod , where the modulus m is of the form m = 232 [38]. 
A “built-in radioactive RNG” in addition to a software RNG was used in [77]. X0 is the seed and determines 
the sequence of the numbers generated, hence the sequence is pseudo-random. Using the current com-
puter time as the seed has the advantage of generating an independent stream of pseudo-random numbers, 
which may be used by the batch means method (see below). It is best to use the same seed to reproduce 
the same events during the debugging phase. Uniform numbers 0 ≤ u ≤ 1 are generated using appropriate 
transformations, such as t = −(1/λ)ln(1 − u) or equivalently t = (−1/λ)ln(u) for an exponential distribution 
with parameter λ. RNG for discrete event simulation is described by Shedler in Chapter 5 in [82].

The simulation of a queueing system, such as a CSM with external arrivals, maintains statistics on 
response times and mean queue lengths at various devices. Simulations starting with an empty system 
require statistics accumulated in the warmup period to be discarded. There is the issue of the length of 
the simulation run. This is usually expressed by the number of completed jobs. The statistical analysis 
of simulation results is an important aspect of simulation. In the case of an M/M/1 queue with λ = 0.5 
and μ = 1, the mean response times is R = (μ − λ)−1 = 2, but even very lengthy simulations will only yield 
approximations to this value.

Thee methods—batch means, regenerative simulation, and spectral—are described in Chapter 6 by 
Welch in [82]. The batch means method is based on running the simulation n times (with different seeds) 
to obtain Ri for 1 ≤ i ≤ n. These are then used to obtain the mean and standard deviation: R R ni
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R z n± α σ/2 / , where zα/2 is 1.645, 1.96, and 2.576, respectively.
With the advent of fast inexpensive computers and the possibility of using idle workstation cycles in 

distributed systems [39], large-scale simulations at a low cost remain a possibility. Understanding the 
operation of complex systems and developing the simulator and interpreting simulation results remain 
the chief obstacles to such studies. Simulation tools for Extended QNMs described by Sauer and MacNair 
in [82] equipped with graphical interfaces are intended to reduce the difficulty of developing simulations.

56.10  Conclusions

A combination of analytic models, simulation, measurement, and statistical methods have been used 
for designing and operating computer complexes for web servers, e-commerce, etc. With the advent of 
cloud computing, existing tools may need to be extended for their performance analysis and capacity 
planning. As noted in [115] there is the issue of understanding system behavior. In a few cases, this 
has led to fixing implementation bugs, when the predicted performance does not agree with measured 
performance.

Real systems are rarely amenable to exact and even approximate analytic solutions, although the 
surprising robustness of QNMs based on operational analysis (OA) has been noted in [59]. OA proposed 

*	 Markowitz was the winner of a Nobel Prize in economics for his early work on portfolio selection and later got involved 
in developing the Simscript simulation language.
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by Buzen allows “queueing analysis” without resorting to stochastic processes. OA is therefore of great 
pedagogic value in explaining the behavior of queueing systems and their simulation and has been 
adopted in several textbooks, for example, [83].

Statistical methods have been used since the early days of computing in computer performance evalu-
ation. An early collection of papers in this area is [66]. Part 3 of [42,80,143] covers the application of 
statistical methods to computer system modeling. There is a recent interest in applying ML (machine 
learning) methods to performance analysis.

The use of Generalized Stochastic Petri Nets (GSPNs) in the performance analysis of computer systems 
has been advocated since mid-1980s by researchers at University of Torino in Italy [41]. These models are 
highly descriptive and can be used to evaluate aspects other than system performance, such as deadlock-
freedom. A GSPN has to be translated to a CTMC or a semi-Markov chain for analysis. Related tools 
have been developed by Trivedi at Duke University [40]. Direct and iterative methods for the analysis of 
linear equations arising in solving large CTMCs are described in Chapter 3 in [45].

Abbreviations

BD: birth-death process
CC: concurrency control
CPU: central processing unit
CSM: central server model
CTMC: continuous time Markov chain
DBMS: data base management system
FCFS: first-come, first-served
JSQ: join shortest queue
LCFS: last-come, first-served
LST: Laplace–Stieltjes transform
ML: machine learning
MPL: multiprogramming level
MRM: machine repairman model
MVA: mean value analysis
OA: operational analysis
OCC: optimistic concurrency control
OLTP: online transaction processing
pdf: probability density function
PDF: probability distribution function
QNM: queueing network model
RAID: redundant array of independent disks
r.v.: random variable
SATF: shortest access time first
SPT: shortest processing time
txn: transaction
VSM: vacationing server model
XOR: eXclusive-OR

Glossary

Arrival Theorem: The mean number of requests encountered by arrivals at the nodes of a closed QNM 
with M requests is the queue length of a QNM with M − 1 requests.

Asymptotic Bounds Analysis (ABA): The maximum throughput in a closed QNM with N nodes with 
service demand Dn and mn servers at node n is min∀n(mn/Dn).
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Balanced Job Bounds (BJB): Given that the service demands at the N nodes of a QNM with single serv-
ers are {D1, D2, …, DN}, then an upper bound to system throughput at MPL M is Tmax(M) = M/

[(N + M − 1)Da] with D D Na n
n

N

=
=∑ 1

.

BCMP Theorem: Named after the initials of the four authors of [43], who identified the four queueing 
systems, which lend themselves to a product-form solution. Thees are (1) FCFS with expo-
nential service times, (2) processor sharing (PS), (3) infinite servers (IS), and (4) last-come, 
first-served (LCFS) preemptive. The last three allow general service times. FCFS with multiple 
servers and IS are examples of state-dependent servers.

Buzen’s Algorithm: The state probabilities and performance metrics in closed QNMs with N nodes 
and M jobs are costly to calculate using a brute-force method because of the large number of 
system states. Buzen’s algorithm requires a multiplication and an addition per step for state-
independent modes. Calculating convolutions is required for state-dependent nodes unless 
they are designated as the first node.

Central Server Model (CSM): A closed QNM with N nodes, where the central server is the CPU and the 
peripheral severs are the disks. Job completions are indicated by a self-transition to the CPU, 
while in the cyclic server model jobs leave the system after completing their service at the disks.

Concurrency Control (CC): CC ensures transaction serializability and database integrity. Standard 
locking utilizes on demand locking and txns encountering a lock conflict are blocked. Restart-
oriented locking methods utilize txn restarts to relieve the level of lock contention. Optimistic 
CC checks whether any data conflicts were encountered during txn execution and if so aborts 
and restarts it.

Flow Equivalent Service Center (FESC): An FESC replaces multiple nodes in a QNM with a single state-
dependent server specified by the throughput characteristic T(m), 1 ≤ m ≤ Mmax. The CTMC for 
two job classes is specified by its throughputs in processing mixtures of the two job classes Ti(m1, 
m2), i = 1, 2.

Fork-Join: Jobs spawn K tasks to K independent servers. A job is considered completed when all K tasks 
complete, joining at a synchronization point.

Kendall’s Notation: A queueing system is specified as A/B/C/D/E. The arrival process is A ∈ {M, GI,…}, 
where M stands for Markovian or Poisson, GI for general independent, etc. The service time 
distribution is B ∈ {M, G,…}, where M is the exponential distribution, G a general distribution, 
etc. C is the number servers; D is the capacity of the system, which is equal to C if there is no 
queueing. E is the number of sources. D and E are infinite by default.

Little’s Result: The mean number of requests at the queue, the servers, a queueing subnetwork, and 
the QNM is the product of the arrival rate, which equals the completion rate, and the mean 
reidence time of requests at that entity.

Mean Value Analysis (MVA): A method to solve a closed QNM using the Arrival Theorem. It has higher 
computational cost and storage requirements than Buzen’s algorithm and is less robust numerically.

Page Replacement Algorithms: FIFO, LRU, Clock, generalized Clock, random, LIFO, OPT, working set 
(WS), page fault frequency (PFF), etc.

Poisson Arrivals See Time Averages (PASTA): This property is used in obtaining the mean waiting 
time incurred by incoming requests in the M/G/1 queue.

Queueing Network Model (QNM): In open and closed QNMs, jobs are routed from node to node. In 
open QNMs, there are external job arrivals and job departures. In closed QNMs, special job 
transitions signify the completion of the job and its replacement by a new job, so that the num-
ber of jobs in the QNM remains fixed.

Readers and Writers Scheduling: Readers can be processed concurrently with other readers, while writ-
ers can only be processed singly. A significant improvement in performance can be attained by 
not interrupting the processing of readers every time a writer arrives, for example, by adopting 
the threshold fastest emptying (TFE) policy.
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Scheduling Discipline: There are specialized scheduling disciplines at the computer system level for 
activating jobs, for CPU scheduling, and disk scheduling. Scheduling policies can be nonpre-
emptive or preemptive and the latter can be preemptive resume or repeat.

Serialization Delays: The processing of certain phases of a job in computer systems is single-threaded 
so that only one of multiple job executing concurrently can proceed in the serialized phase, 
while other jobs are blocked.

Thrashing: A severe degradation in system performance, which may be due to unproductive processing, 
such as excessive paging in a virtual memory environment. In the case of standard locking, 
trashing occurs when a large fraction of txns are blocked so that there is a significant drop in 
system throughput.

References to web pages occur in the order of their occurrence in the text, while other references are 
listed alphabetically according to the last name the first author and the year. Readers should attempt 
searches of their own with appropriate keywords since web pages may become unavailable over time. It 
is assumed that the reader has access to digital libraries to check referenced papers.

Further Information

Readers are expected to have access to digital libraries for the journals and conferences referenced in this 
paper. Given a background in elementary calculus, the interested reader should first study appropriate 
chapters in one of the following texts [42,143] to gain the necessary background in probability and stochas-
tic processes. The reader can then proceed to read queueing theory texts such as [78,79]. We recommend a 
comprehensive textbook on performance modeling and analysis by Kobayashi and Mark [80a], which does 
not however cover some material in Kobayashi’s early textbook [80], so that text is given as a reference.

Journals and conferences on systems and performance evaluation and analysis are reviewed in [137]. 
Conferences and journals sponsored by ACM: http://www.acm.org. IEEE: http://www.ieee.org. and 
its Computer Society: http://www.computer.org. and USENIX: http://www.usenix.org. There are large 
number of high quality publications on queueing theory: Operations Research, Queueing Systems, 
Management Science, Naval Research Logistics, etc.

Performance evaluation is covered by numerous conferences. ACM’s SIGMETRICS Conf. on 
Measurement and Modeling of Computer Systems is held annually and together with the IFIP Working 
Group 7.3 Performance Conference every other year. ACM publishes the quarterly Performance 
Evaluation Review (PER), which includes the proceedings of the SIGMETRICS Conf. and various work-
shops, such as MAthematical performance Modeling and Analysis (MAMA). Performance Evaluation is 
a reviewed journal published since 1981 by Elsevier, which also publishes papers from the Performance 
Conference. The Computer Performance journal was published for several years by IPC Science and 
Technology Press until 1984. Computer Systems: Science and Engineering partially replaces Computer 
Performance, since 1986. http://www.crlpublishing.co.uk/.

IEEE’s Trans. on Computers, Trans. on Software Engineering, and Trans. on Parallel and Distributed 
Systems (TPDS) publish papers dealing with computer performance analysis. ACM’s Trans. on 
Computer Systems (TOCS) Trans. on Storage Systems (TOS), Trans. on Database Systems (TODS), Trans. 
on Modeling and Computer Simulations (TOMACS) are also relevant.

The IEEE/ACM Int’ l Symp. on Modeling, analysis and Simulation of Computer and Telecommunication 
Systems (MASCOTS) is in its 20th year in 2012. The Int’ l Conf. on Quantitative Evaluation of Systems 
(QEST) has been held in Europe since 2004 and is sponsored by the IEEE Computer Society. The 
Winter Simulation Conference http://www.wintersim.org. is held annually with multiple sponsors, 
such as: American Statistical Association (ASA), http://www.amstat.org. ACM, IEEE’s Man and 
Cybernetics Society (IEEE/SMC): http://www.ieeesmc.org. Institute for Operations Research and 
the Management Sciences: Simulation Society (INFORMS-SIM): http://www.informs.org. National 
Institute of Standards (NIST): http://www.nist.gov. and the Society for Modeling and Simulation (SCS), 
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which also sponsors the Int’ l Symp. on Performance Evaluation of Computer and Telecommunication 
Systems (SPECTS). http://www.scs.org. The Computer Measurement Group (CMG): http://www.cmg.
org. holds an annual conference of interest to Information Technology professionals.

ACM’s Int’l Symp. on Computer Architecture (ISCA) and USENIX’s File and Storage Technologies 
(FAST) are two conferences with papers dealing with the performance of computer systems and storage 
systems, respectively. Database conferences such as SIGMOD, http://www.sigmod.org. Very Large Data 
Bases (VLDB): http://www.vldb.org. and the IEEE Int’l Conf. on Data Engineering (ICDE) publish papers 
dealing with database performance. There is also the VLDB Journal.

The material in Section 56.8 is complementary to the Chapter on Concurrency Control and Recovery. 
The material in Section 56.7 on page replacement and buffer management is complementary to the 
Chapter on Operating Systems. This also applies the analysis of QNMs and measurement and simula-
tion in Section 56.9. 
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57.1  Introduction

Scientists and practitioners are increasingly reliant on large amounts of computational resources to 
solve complicated problems and obtain results in a timely manner. To satisfy the demand for large com-
putational resources, organizations build or utilize distributed computing systems.

A distributed computing system is essentially a set of computers that share their resources via a com-
puter network and interact with each other toward achieving a common goal [31]. The shared resources 
in a distributed system include data, computational power, and storage capacity. The common goal can 
also range from running resource-intensive applications, tolerating faults in a server, and serving scal-
able Internet applications.

Distributed computing systems such as Clusters, Grids, and recently Clouds have become ubiquitous 
platforms for supporting resource-intensive and scalable applications. However, surge in demand is still 
a common problem in distributed systems [26] in a way that no single system (specially Clusters and 
Grids) can meet the needs of all users. Therefore, the notion of interconnected distributed computing 
systems has emerged.

In an interconnected distributed computing system, as depicted in Figure 57.1, organizations 
share their resources over the Internet and consequently are able to access larger resources. In fact, 
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interconnected distributed systems construct an overlay network on top of the Internet to facilitate 
resource sharing between the constituents.

However, there are concerns in interconnected distributed systems regarding contention between 
requests to access resources, low access level, security, and reliability. These concerns necessitate a 
resource management platform that encompasses these aspects. The way current platforms consider 
these concerns depends on the structure of the interconnected distributed system. In practice, intercon-
nection of distributed systems can be achieved in different levels. These approaches are categorized in 
Figure 57.2 and explained over the following paragraphs.

•	 User level (Broker-based): Is useful for creating loosely coupled interconnected distributed sys-
tems. In this approach, users/organizations are interconnected through accessing multiple dis-
tributed systems. This approach involves repetitive efforts to develop interfaces for different 
distributed systems and, thus, scaling to many distributed systems is difficult. Gridway [103] 
and GridBus broker [104] are examples of broker-based interconnection approach. The former, 
achieves interconnection in organization level, whereas the latter, works in the enduser level.

•	 Resource level: In this approach, different interfaces are developed on the resource side and con-
sequently the resource can be available to multiple distributed systems. This approach involves 
administration overhead, since the resource administrator has to be aware of well-known ser-
vices. This approach is difficult to scale to many distributed systems, hence, it is suggested mostly 
for large distributed systems. Interconnection of EGEE, NorduGrid, and D-Grid is done based on 
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this approach [31]. Particularly, D-Grid [35] leverages interconnectivity via implementing inter-
faces of UNICORE, gLite, and Globus on each resource provider in a way that resources can be 
accessed by any of the middlewares.

•	 Platform level (Gateways): A third platform (usually called a gateway) handles the arrangements 
between distributed systems. Ideally, the gateway is transparent both from users and resources 
and makes the illusion of single system for the user. However, in this approach gateways are single 
point of failure and also a scalability bottleneck. InterGrid [26] and the interconnection of Naregi 
and EGEE [65] are instances of this approach.

•	 Standardization: Common and standard interfaces have been accepted as a comprehensive and 
sustainable solution for interconnecting distributed systems. However, current distributed systems 
(e.g., current Grid platforms) have already been developed based on different standards and it is a hard 
and long process to change them to a common standard interface. Issues regarding creating standards 
for interconnecting distributed systems are also known as interoperability of distributed systems.

UniGrid [88] is a large-scale interconnected distributed system implemented based on a stan-
dard and connects more than 30 sites in Taiwan. It offers a web interface that bridges the user 
and the lower-level middleware. The core of UniGrid orchestrates different middlewares, includ-
ing Globus Toolkit [33], Condor [96], and Ganglia [80] transparently from the user. Another 
project that sought to achieve the idea of World Wide Grid through developing standards and 
service-oriented architecture is GRIP [25].

Grid computing is a prominent example of interconnected distributed systems. Grids are usually comprised 
of various organizations that share their resources (e.g., Clusters or SMPs) and form Virtual Organizations 
(VOs). The concept of Grid has specifically been fascinating for users/organizations that did not have huge 
resources available or did not have the budget to manage such resources. Nowadays, Grids are utilized pre-
dominantly in scientific communities to run high performance computing (HPC) applications. Over the 
last decade, variety of Grids have emerged based on different interconnection mechanisms. TeraGrid in the 
United States [102], DAS in the Netherlands [61], and Grid5000 in France [17] are such examples.

Generally, in an interconnected environment, requests from different sources co-exist and, therefore, 
these systems are prone to contention between different requests competing to access resources. There 
are various types of contentions that can occur in an interconnected distributed system and, accord-
ingly, there are different ways to cope with these contentions.

The survey will help people in the research community and industry to understand the potential ben-
efits of contention-aware resource management systems in distributed systems. For people unfamiliar 
with the field, it provides a general overview, as well as detailed case studies.

The rest of this chapter is organized as follows: In Section 57.2, an overview on resource manage-
ment systems of interconnected distributed systems is presented. Next, in Section 57.3 contention in 
interconnected distributed systems is discussed which is followed by investigating the architectural 
models of the contention-aware resource management systems in Section 57.4. In Section 57.5, we dis-
cuss about different approaches for contention management in well-known interconnected distributed 
systems. Finally, conclusion and avenues of future works for researchers are provided in Section 57.6.

57.2 R equest Management Systems

Interconnected distributed systems, normally, encounter various users and usage scenarios from users. 
For instance, the following usage scenarios are expectable:

•	 Scientists in a research organization run scientific simulations, which are in the form of long run-
ning batch jobs without specific deadlines.

•	 A corporate web site needs to be hosted for a long period of time with a guaranteed availability 
and low latency.

•	 A college instructor requires few resources at certain times every week for demonstration purposes.
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In response to such diverse demands, interconnected distributed systems offer different service levels 
(also called multiple quality of service (QoS) levels).

For example, Amazon EC2* supports reserved (availability guaranteed), on-demand, and spot (best-
effort) virtual machine (VM) instances. Offering a combination of advance-reservation and best-effort 
schemes [93], interactive and batch jobs [109], tight-deadline and loose-deadline jobs [37] are common 
practices in interconnected distributed systems.

These diverse service levels usually imply different prices and priorities for the services that have to be 
managed by the resource management system. Additionally, interconnected distributed systems can be 
aware of the origin of the requests and they may discriminate requests based on that. Another challenge 
in job management of interconnected distributed systems is managing accounting issues of sending/
receiving requests to/from peer distributed systems.

There are many approaches for tackling these challenges in resource management systems of inter-
connected distributed systems. One common approach is prioritizing requests based on criteria, such 
as service (QoS) or origin. For example, in an interconnected distributed system usually local requests 
(i.e., local organizations’ users) have priority over the requests from external users [5]. Another example 
is in urgent computing [15] (urgent applications), such as earthquake and bush-fire prediction applica-
tions where the applications intend to acquire many resources in an urgent manner. In circumstances 
that there is surge in demand, requests with different priorities compete to gain access to resources. This 
condition is generally known as resource contention between requests.

Resource contention is the main challenge in request management of interconnected distributed sys-
tems and occurs when a user request cannot be admitted or cannot receive adequate resources, because 
the resources are occupied by other (higher priority) requests.

In the remainder of this survey, we explore different aspects of resource contention in interconnected 
distributed systems and also we investigate the possible solutions for them.

57.3  Origins of Resource Contentions

There are various causes for resource contention in interconnected distributed systems. They broadly 
can be categorized as request-initiated, interdomain-initiated, origin-initiated and hybrid. A taxonomy 
of different contention types along with their solutions is shown in Figure 57.3.

57.3.1 R equest-Initiated Resource Contention

Request-initiated resource contention occurs if any of the requests monopolizes resources to such an 
extent that deprives other requests from gaining access to them. It is prevalent in all forms of distributed 
systems, even where there is no interconnection. There are several scenarios that can potentially lead to 
request-initiated resource contention. One important situation is when there is an imbalance in request 
sizes, mainly, in terms of required number of nodes or execution time (duration). In this circumstance, 
small requests may have to wait for a long time behind a long job to access resources.

Another cause for request-initiated resource contention is situation that requests have QoS con-
straints and they selfishly try to satisfy them. Generally, resource management systems can support 
three types of QoS requirements for users’ requests:

	 1.	 Hard QoS: Where the QoS constraints cannot be negotiated. These systems are prone to QoS 
violation and, hence, managing resource contention is critical [73].

	 2.	 Soft QoS: Where the QoS constraints are flexible and can be negotiated based upon the resource 
availabilities or when there is a surge in demand. The flexibility enables resource management 
systems to apply diverse resource contention solutions [73].

*	 http://aws.amazon.com/ec2/
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	 3.	 Hybrid QoS: Where the resource management system supports a combination of Hard QoS and 
Soft QoS requirements for the user requests. This fashion is common in commercial resource 
providers such as Cloud providers. For instance, Amazon EC2 supports services with distinct 
QoS requirements including reserved (hard QoS), and spot (soft QoS) VM instances. Another 
example, are the resource management systems that support combination of interactive (hard 
QoS) and batch requests (usually soft QoS) [109].

Solutions for managing request-initiated contentions are mostly achieved in the context of schedul-
ing and/or admission control units of resource management systems. Over the next paragraphs, we 
categorize and describe different solutions for resource contention.

Differentiated services (DiffServ) technique that initially was used in Computer Networks and devel-
oped to guarantee different QoS levels (with different priorities) for various Internet services, such as 
VOIP and web. In Computer Networks, DiffServ guarantees different QoSs through dividing the ser-
vices into distinct QoS levels. According to IETF RFC 2474, each level is supported by dropping TCP 
packets of lower priority levels.

Similar approach can be taken in the context of request-initiated resource contentions in distrib-
uted systems. For this purpose, the resource management system presents different QoS levels for user 
requests. Then, requests are classified in one of these levels at the admission time. However, in this scheme 
there is no control on the number of requests assigned to each QoS level. As a result, QoS requirements 
of request cannot be guaranteed. Therefore, DiffServ scheme is appropriate for soft QoS requirements.

Variations of DiffServ technique can be applied when contention occurs due to imbalanced requests. 
Silberstein et al. [89] also sought to decrease the response time of short requests in a multigrid environment. 
For that purpose, they apply a multilevel feedback queue (MLFQ) scheduling. In their policy, Grids are placed 
in different categories based on their response speed. Requests are all sent to the first queue upon arrival and 
if they cannot get completed in the time limit of that level, then they are migrated to the lower level queue 
which is a larger grid. The process continues up until the task finishes or reaches down the hierarchy.

In the Partitioning scheme, the resources are reserved for requests with different QoS levels. 
Unlike DiffServ scheme, in this approach boundaries of the reservations (partitions) can adaptively 
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move, based on the demand in different QoS levels. This solution can also be considered as a type of 
DiffServ that is suitable for requests with hard QoS requirements.

Economic scheme solutions either work in an auction-based or utility-based manner. In the former, 
both resource provider and resource consumer have their own agents. Through an auctioneer the con-
sumer bids on the resources and also provides a valuation function. Then, the provider agent tries to 
maximize the utility based on the valuation function and comes up with a set of resources for the user. 
In the latter, a utility function that generally reflects the revenue earned by running a request is calcu-
lated for all contentious requests. Then, the request that maximizes the utility function has the priority 
of accessing resources. These approaches are commonly applied in market-oriented scheduling [36].

Fair scheme that guarantees contentious requests receive their share of the system resources [3]. This 
scheme is used to resolve resource contentions resulting from imbalanced requests in the system and 
assures starvation-free scheduling of the requests.

Outsourcing scheme: Interconnection of distributed systems creates the opportunity to employ 
resources from other distributed systems in the case of resource contention. Outsourcing is applied for 
both causes of request-initiated resource contention (i.e., request imbalance and QoS levels). Specially, 
Cloud providers have been extensively employed for outsourcing requests [84]. This issue has helped in 
emergence of hybrid clouds, which are a combination of a private (organizational) resources and public 
Clouds [12]. Although we categorize outsourcing as a resolution for request-initiated contentions, it can 
be applied for interdomain and origin initiated contentions as will be discussed in the next parts.

57.3.2  Interdomain-Initiated Resource Contention

Interdomain-initiated resource contention occurs, when the proportion of shared resources to the con-
sumed resources by a constituent distributed system is low. In other words, this resource contention 
happens when a resource provider contributes few resources while demand more resources from other 
resource providers in an interconnected distributed system. Unlike request-initiated contention, which 
merely roots in request characteristics and can take place in any distributed system, interdomain con-
tention is based on the overall consumption and contribution of each resource provider.

There are several approaches for handling interdomain-initiated contentions, namely, global sched
uling, incentive, and token-based schemes (see Figure 57.3). These approaches are discussed in detail in 
what follows .

Global schedulers: In this approach, which is appropriate for large-scale distributed systems, there are 
local (domain) schedulers and global (meta) schedulers. Global schedulers are in charge of routing user 
requests to local schedulers and, ultimately, local schedulers, such as Condor [96] or Sun Grid Engine 
(SGE) [16], allocate resources to the requests.

Global schedulers can manage the interdomain resource contention by admitting requests from dif-
ferent organizations based on the number of requests it has redirected to the resources of each organi-
zation. Since global schedulers usually are not aware of the instantaneous load condition in the local 
schedulers, it is difficult for them to guarantee QoS requirements of users [11]. Thus, this approach is 
useful for circumstances where requests have soft QoS requirements.

Incentive scheme: In this approach, which is mostly used in peer-to-peer systems [71], resource provid-
ers are encouraged to share resources to be able to access more resources. Reputation Index Scheme 
[58] is a type of incentive-based approach in which the organization cannot submit requests to another 
organization while it has less reputation than that organization. Therefore, in order to gain reputation, 
organizations are motivated to contribute more resources to the interdomain sharing environment.

Quality service incentive scheme [70] is a famous type of incentive-based approach. Quality ser-
vice is an extension of Reputation Index Scheme. The difference is that depending on the number of 
QoS levels offered by a participant, a set of distinct ratings is presented where each level has its own 
reputation index.
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Token-based scheme: Operates based on the principle where a certain amount of tokens, which are 
allocated to an organization, is proportional to its resource contribution. If a user wants to get access to 
another organization resources, its consumer agent must spend amount of tokens to get the access. This 
scheme encompasses request-initiated and interdomain resource contentions. To address the request-
initiated resource contention, valuation functions can be used to translate the QoS demands of user 
to the number of tokens to be used for a request. The provider agent can then use its own valuation 
functions to compute the admission price for the request. Finally, the request will be admitted only if 
the admission price is less or equal to the number of tokens that the requesting organization is willing 
to pay [73].

57.3.3  Origin-Initiated Resource Contention

In interconnected distributed systems, users’ requests originate from distinct organizations. More 
importantly, these systems are prone to resource contention between local requests of the organiza-
tion and requests from other organizations (i.e., external requests). Typically, local requests of each 
organization have priority over external requests [5]. In other words, the organization that owns the 
resources would like to ensure that its community has priority access to the resources. Under such a 
circumstance, external requests are welcome to use resources if they are available. Nonetheless, external 
requests should not delay the execution of local requests.

In fact, origin-initiated resource contention is a specific case of interdomain-initiated and request-
initiated resource contentions. Consequently, the approaches of tackling this type of resource conten-
tion is similar to the already mentioned approaches. Particularly, partitioning approach both in static 
and dynamic forms and global scheduling are applicable for origin-initiated resource contentions. There 
are also other approaches to cope with origin-initiated contentions that we discuss in this part.

Preemption scheme: This mechanism stops the running request and free the resources for another, pos-
sibly higher priority, or urgent request. The higher priority request can be a local request or a hard 
QoS request in an interconnected distributed system. The preempted request may be able to resume its 
execution from the preempted point. If suspension is not supported in a system, then the preempted 
request can be killed (canceled) or restarted. For parallel requests, full preemption usually is performed, 
in which whole request leaves the resources. However, some systems support partial preemption, in 
which part of resources allocated to a parallel request is preempted [86].

Although preemption mechanism is a common solution for origin-initiated contentions, it is also 
widely applied to solve request-initiated resource contentions. Due to the prominent role of preemption 
in resolving these types of resource contentions, in Section 57.4.5 we explain preemption in details.

Partitioning scheme: Both static and dynamic partitioning of resources, as mentioned in Section 57.3.1, 
can be applied to tackle origin-initiated contentions.

In dynamic partitioning of resources, the local and external partitions can borrow resources from 
each other when there is a high demand of local or external requests [11].

Several queues: In this approach when requests arrive [59], they are categorized in distinct queues, based 
on their origin. Each queue can independently have its own scheduling policy. Then, another scheduling 
policy determines the appropriate queue that can dispatch a request to the resources.

Combinations of the aforementioned contentions (mentioned as hybrid in Figure 57.3) can occur 
in an interconnected distributed system. The most common combination is the origin-initiated and 
request-initiated resource contentions. For instance, in federated Grids and federated Clouds, origin-
initiated contention occurs between local and external requests. At the same time, external and local 
requests can also have distinct QoS levels, which is a request-initiated resource contention [5,6,81]. 
Generally, Resolution of hybrid resource contentions is a combination of different strategies men-
tioned earlier.
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57.4  Contention Management

Resource management system is the main component of a distributed system that is responsible for 
resolving resource contentions. Various elements of a resource management system contribute in resolv-
ing different types of resource contentions. They apply different approaches in managing contentions. 
Different components of resource management systems and the way they deal with resource contention 
is presented in Figure 57.4.

57.4.1 R esource Provisioning

Resource provisioning component of a resource management system is in charge of procuring resources 
based on user application requirements. Resource provisioning is performed based on a provisioning 
model that defines the execution unit in a system. In fact, requests are allocated resources based on the 
resource provisioning model.

Resource provisioning models do not directly deal with resource contentions. However, the way other 
components of resource management system function strongly depends on the resource provisioning 
model.

Provisioning resources for users’ requests in distributed systems has three dimensions as follows:

	 1.	 Hardware resources
	 2.	 Software available on the resources
	 3.	 Time during which the resources are available (availability)

Satisfying all of these dimensions in a resource provisioning model has been challenging. In practice, past 
resource provisioning models in distributed systems were unable to fulfill all of these dimensions [93]. 
Emergence of virtual machine (VM) technology as a resource provisioning model recently has posed an 
opportunity to address all of these dimensions. Over the next subsections, we discuss common resource 
provisioning models in current distributed systems.

57.4.1.1  Job Model

In this model, jobs are pushed or pulled across different schedulers in the system to reach the destination 
node, where they can run. In job-based systems, scheduling a job is the consequence of a request to run 
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the job. Job model resource provisioning has been widely employed in distributed systems. However, 
this model cannot perfectly support all resource contention solutions.

Job-based systems provision hardware for jobs while they offer a limited support for software avail-
ability. In fact, in job-based model users do not have root access, therefore it is difficult to install and 
use required software packages. Many job-based systems support availability based on queuing the-
ory along with scheduling algorithms. However, queue-based systems usually do not assure specific 
time availabilities.

To support availability and hardware dimensions, Nurmi et al. [68], present advance reservation (AR) 
model over the job-based provisioning model. They support AR through predicting waiting time of jobs 
in the queue. Hovestadt et al. [45] propose plan-based scheduling (opposite to queue-based) that finds 
the place of each job (instead of waiting in the queue) to be able to support AR model. In this system, on 
the arrival of each job the whole schedule is re-planned to optimize the resource utilization.

Falkon [75], Condor glidin [34], MyCluster [108], and Virtual Workspace [53] have applied a multilevel/
hierarchical scheduling on top of a job-based system to offer other provisioning models (such as lease-
based model, which is described in Section 57.4.1.3). In these systems, one scheduler allocates resources 
to another scheduler and the other scheduler runs the jobs on the allocated resources.

57.4.1.2  Virtual Machine Model

Virtual machines (VMs) are considered as an ideal vehicle for resource provisioning in distributed sys-
tems. The reason is that, in VM model, unlike the job model, hardware, software, and availability can be 
provisioned for user requests. Additionally, VMs’ capability in getting suspended, resumed, or migrated 
without major utilization loss have proved to be useful in resource management. Therefore, VM-based 
provisioning model is commonly used in current distributed systems.

The VM-based resource provisioning model is used in creating virtual Clusters on top of an existing 
infrastructure. Virtual clusters (VC) are usually utilized for job-based batch processing. For example, 
in MOSIX [13], Clusters of VMs are transparently created to run high performance computing (HPC) 
applications. The Nimbus toolkit [52] provides “one-click virtual Cluster” automatically on heteroge-
neous sites through contextualizing disk images. Amazon EC2, provides VM-based Cluster instances* 
that offer supercomputing services to expedite execution of HPC applications, without delaying the user 
in a queue or acquire expensive hardware. Automatic VM creation and configuration in short time is 
also considered in In-VIGO [2] and VMplants [56]. An extension of Moab [29] creates VM-based virtual 
Clusters to run HPC batch applications.

Many commercial datacenters use VM-based provisioning model to provide their services to resource 
consumers. Such datacenters offer services such as Virtual Cluster, or hosting servers including web, 
email, and DNS.

Datacenters usually contain large scale computing and storage resources (order of 100s–1000s) and 
consume so much energy. A remarkable benefit of deploying VM-based provisioning model in data-
centers is the consolidation feature of VMs that can potentially saves the energy consumption [105]. 
However, VM consolidation requires accurate workload prediction in the datacenters. Moreover, the 
consolidation impact on service level agreements (SLA) needs to be considered. VM consolidation can 
be performed in a static (also termed cold consolidation) or dynamic (hot consolidation) manner. In the 
former, VMs needs to be suspended and resumed on another resource that involves time overhead. In 
the latter approach, live migration [107] of VMs is used, thus, is transparent from the user.

Solutions such as VMware, Orchestrator, Enomalism, and OpenNebula [32] provide resource man-
agement for VM-based data centers.

There are also concerns in deploying VM-based provisioning model and Virtual Clusters. Networking 
and load balancing among physical Clusters is one of the challenges that is considered in Vio-Cluster [79]. 
Power efficiency aspect and effectively utilizing VMs capability in suspending and migrating are also 

*	 http://aws.amazon.com/hpc-applications/
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considered by many researchers [51,66,106]. Overhead and performance issues involved in applying 
VMs to run compute-intensive and IO-intensive jobs, fault tolerance, and security aspects of VMs are 
also of special importance in deploying VM-based provisioning model.

57.4.1.3  Lease Model

This model is considered as an abstraction for utility computing in which the user is granted a set of 
resources for specific interval and agreed quality of service [39]. In this model, job execution is inde-
pendent from resource allocation, whereas in the job model resource allocation is the consequence of 
running a job.

Formally, a lease is defined by Sotomayor [93] as “a negotiated and renegotiable contract between a 
resource provider and a resource consumer, where the former agrees to make a set of resources avail-
able to the latter, based on a set of lease terms presented by the resource consumer.” If lease extension 
is supported by resource management system, then users would be able to extend their lease for a 
longer time. This is particularly useful in circumstances that users have inaccurate estimation of 
required time. Virtual machines are suitable vehicles to implement lease-based model. Depending 
on the contract, resource procurement for leases can be achieved from a single provider or from 
multiple providers.

57.4.2  Scheduling Unit

The way user requests are scheduled in an interconnected distributed system affects types of resource 
contentions occurring. Efficient scheduling decisions can prevent resource contention or reduce its 
impact whereas poor scheduling decisions can lead to more resource contentions.

In an interconnected distributed system, we can recognize two levels of scheduling, namely, local 
(domain level) scheduling and global scheduling (meta-scheduling). The global scheduler is generally 
in charge of assigning incoming requests to resource providers within its domain (e.g., Clusters or 
sites). In the next step, the local scheduler performs further tuning to run the assigned requests effi-
ciently on resources.

From the resource contention perspective, scheduling methods can either react to resource conten-
tion or proactively prevent the resource contention to occur.

57.4.2.1  Local Scheduling

Local scheduler deals with scheduling requests within each distributed system (e.g., Cluster or site). 
Scheduling policies in this level can mainly deal with request-initiated and origin-initiated contentions. 
Indeed, there are few local schedulers that handle interdomain-initiated contention.

Backfilling is a common scheduling policy in local resource management systems (LRMS). The aims 
of backfilling are increasing resource utilization, minimizing average request response time, and reduc-
ing queuing fragmentation. In fact, backfilling is an improved version of FCFS in which requests that 
arrive later, possibly are allocated earlier in the queue, if there is enough space for them. Variations of 
backfilling policy are applied in local schedulers:

•	 Conservative: In which a request can be brought forward if it does not delay any other request in 
the queue.

•	 Aggressive (EASY): The reservation of the first element in the queue cannot be postponed. 
However, the arriving request can shift the rest of scheduled requests.

•	 Selective: If the slowdown of a scheduled request exceeds a threshold, then it is given a reservation, 
which cannot be altered by other arriving requests.

There are also variations of backfilling method that are specifically designed to resolve request-
initiated resource contentions. Snell et al. [91] applied preemption on backfilling policy. They pro-
vide policies to select the set of requests for preemption in a way that the requests with higher 
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priority are satisfied and, at the same time, the resource utilization increases. The preempted request 
is restarted and rescheduled in the next available time slot.

Multiple resource partitioning is another scheduling approach for local schedulers by Lawson and 
Smirni [59]. In this approach, resources are divided into partitions that potentially can borrow resources 
from each other. Each partition has its own scheduling scheme. For example, if each partition uses 
EASY backfilling, then one request from another QoS level can borrow resources, if it does not delay the 
pivot request of that partition.

In FCFS or backfilling scheduling policies, the start time of a request is not predictable (not deter-
mined). Nonetheless, in practice, we need to guarantee timely access to resources for some requests 
(e.g., deadline-constraint requests in a QoS-based system). Therefore, many local schedulers support 
Advance Reservation (AR) allocation model that guarantees resource availability for a requested time 
period. Resource management systems such as LSF, PBSPRO, and MAUI support AR.

Advance Reservation is prone to low-resource utilization specially if the reserved resources are not 
used by the users. Additionally, it increases the response time of normal requests [63,90]. These side-
effects of AR can be minimized by limiting the number of AR, and leveraging flexible AR (in terms of 
start time, duration, or number of processing elements needed).

57.4.2.2  Global Scheduling (Meta-Scheduling)

Global scheduler in an interconnected distributed system usually has two aspects. On the one hand, 
the scheduler is in charge of assigning incoming requests to resource providers within its domain 
(e.g., Clusters). On the other hand, it is responsible to deal with other distributed systems such as sched-
ulers or gateways that delegate other peer distributed systems. This aspect of global schedulers can par-
ticularly resolve interdomain-initiated and origin-initiated resource contentions.

The global scheduler either works off-line (i.e., batches incoming requests and assigns each batch to a 
Cluster), or is online (i.e., assign each request to a local scheduler as it is received). The global schedulers 
can proactively prevent resource contentions.

57.4.3 A dmission Control Unit

Controlling the admission of requests prevents the imbalanced deployment of resources. By employing an 
appropriate admission control policy different types of resource contentions can be avoided. An example 
of the situation without admission control in place is when two requests share a resource but one of them 
demands more time. In this situation, the other request will face low-resource availability and subsequently, 
high response time. Thus, lack of admission control can potentially lead to request-initiated contention.

Admission control behavior should depend on the workload condition in a resource provider. 
Applying a strict admission control in a lightly loaded system results in low resource utilization and 
high rejection of requests. Nonetheless, the consequence of applying less strict admission control in a 
heavily loaded resource is more QoS violation and less user satisfaction [112].

Admission control can function in different ways. To tackle request-initiated contention, admission 
control commonly carried out via introducing a valuation function. The valuation function relates the 
quality constrains of users to a single quantitative value. The value indicates the amount a user is willing 
to pay for a given quality of service (QoS). Resource management system use the valuation functions to 
allocate resources with the aim of maximizing aggregate valuation of all users.

Admission control also can be applied in interdomain-initiated contentions to limit the amount of 
admitted requests of each organization to be proportional to their resource contribution. Similarly, 
admission control can be applied to avoid origin-initiated resource contention. For this purpose, admis-
sion control policy would not admit external requests where there is peak load of local requests.

Placement of admission control component in a resource management system of a interconnected dis-
tributed system can be behind the local scheduler and/or behind the global scheduler. In the former, for 
rejecting a request there should be an alternative policy to manage the rejected request. In fact, rejecting by 
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a local scheduler implies that the request has already been admitted and, hence, has to be taken care. For 
instance, the rejected request can be redirected to another resource provider or even queued in a separate 
queue to be scheduled later. Deploying admission control behind the global scheduler is easier in terms 
of managing the rejected requests. However, the drawback of employing admission control with global 
scheduler is that the global scheduler may not have updated information about site’s workload situation.

57.4.4  Outsourcing Unit

Interconnectivity of distributed systems creates the opportunity to resolve the resource contention via 
employing resources from other distributed systems. Therefore, resource management systems in inter-
connected distributed computing systems usually have a unit that decides about details of outsourcing 
requests (i.e., redirecting arriving requests to other distributed systems) such as when to outsource and 
which requests should be outsourced. In terms of implementation, in many systems, the outsourcing 
unit is incorporated into either admission control or scheduling unit. However, it is also possible to have 
it as an independent unit in the resource management system.

Outsourcing is generally applied when there is a peak demand or there is a resource contention (spe-
cially request-initiated contention). In this situation to serve requests without resource contention, some 
requests (e.g., starved requests) are selected to be redirected to other distributed systems.

Cloud computing providers have been of special interest to be employed for outsourcing (off-loading) 
requests [84]. This issue has pushed the emergence of hybrid clouds, which are a combination of a private 
(organizational) Cloud and public Clouds.

57.4.5  Preemption Mechanism

Preemption mechanism in a resource management system makes the resources free and available for 
another, possibly higher priority, request. Preemption is a useful mechanism to resolve request-initiated 
and origin-initiated contentions. Preemption of a running process can be performed manually or auto-
matically through the resource management system.

The way preemption mechanism is implemented, depends on the way checkpointing operation is car-
ried out. If the checkpointing is not supported, then the preempted process has to be killed and restarted 
at a later time. If checkpointing is supported (both by the running process and by the scheduler), then 
the preempted request can be suspended and resumed at a later time. However, checkpointing is not a 
trivial task in distributed systems. We will deal with checkpointing hurdles in Section 57.4.5.4.

Due to the critical role of preemption in solving different types resource contentions, in this sec-
tion, we investigate preemption in distributed systems from different angles. Particularly, we consider 
various usages of preemption and the way they solve resource contentions. Then, we investigate pos-
sible side-effects of preemption. Finally, we discuss how a preempted request (i.e., job/VM/lease) can be 
resumed in a distributed system.

57.4.5.1 A pplications of Preemption Mechanism

Preemption in distributed systems can be applied for reasons that are presented in Figure 57.5. As we 
can see, preemptions can be used to resolve resource contention. However, there are other usages of 
preemption in distributed systems that we will discuss them in this part.

Preemption is used to resolve request-initiated resource contentions. One approach is employing preemp-
tion in local scheduler along with the scheduling policy (e.g., backfilling) to prevent unfairness. For instance, 
when a backfilled request exceeds the allocated time slot and interferes with the reservation of other requests 
preemption mechanism can preempt the backfilled requests and therefore the reservations can be served on 
time. The preempted request can be allocated another time slot to finish its computation [40].

A preemptive scheduling algorithm is implemented in MOSIX [4] to allocate excess (unclaimed) 
resources to users that require more resources than their share. However, these resources will be released 
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as soon as they are reclaimed. MOSIX also support situation that there are local and guest jobs and can 
consider priority between them (origin-initiated contention).

Scojo-PECT [92] provides a limited response time for several job classes within a virtualized Cluster. 
It employs DiffServ solution that is implemented via coarse-grained preemption to cope with the 
request-initiated resource contention. The preemptive scheduler aims at creating a fair-share schedul-
ing between different job classes of a Grid. The scheduler works based on a coarse-grained time sharing 
and for preemption it suspends VMs on the disk.

Walters et al. [109] introduced a preemption-based scheduling policy for batch and interactive jobs 
within a virtualized Cluster. In this work, batch jobs are preempted in favor of interactive jobs. The 
authors introduce different challenges in preempting jobs including selecting a proper job to be pre-
empted, checkpointing the preempted job, VM provisioning, and resuming the preempted job. Their 
preemption policy is based on weighted summation of factors such as the time spent in the queue.

Haizea [93] is a lease scheduler that schedules a combination of advanced reservation and best effort 
leases. Haizea preempts best effort leases in favor of advance reservation requests. Haizea also considers 
the overhead time imposed by preempting a lease (suspending and resuming included VMs).

Preemption of parallel jobs has also been implemented in the Catalina job scheduler [63] in San-Diego 
Supercomputer Center (SDSC). They have added preemption to conservative backfilling. The job preemp-
tion is carried out based on job priorities which is determined based on weighted summation of factors such 
as the time a request waits in the queue, the size (number of processing elements) required by the request, 
and expansion factor of the request. In general, the policy tries to preempt jobs that require fewer process-
ing elements because they impose less overhead to the system for preemption. In fact, preempting jobs with 
larger size (wide jobs) implies more overhead because of the time needed for saving messages between nodes.

Isard et al. [49] have investigated the problem of optimal scheduling for data intensive applications, 
such as Map-Reduce, on the Clusters where the computing and storage resources are close together. To 
achieve the optimal resource allocation, their scheduling policy preempts the currently running job in 
order to maintain data locality for a new job.

Preemption can be applied to resolve the origin-initiated resource contentions. Ren et al. [76] have 
proposed a prediction method for unavailable periods in fine-grained cycle sharing systems where there 
are mixture of local jobs and global (guest) jobs. The prediction is used to allocate global requests in a 
way that do not disturb local requests.

Gong et al. [38] have considered preemption of external tasks in favor of local tasks in a Network 
of Workstations (NOW) where local tasks have preemptive priority over external tasks. They pro-
vided a performance model to work out the run time of an external task that is getting preempted by 
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FIGURE 57.5  Different usages of preemption in distributed systems.
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local tasks in a single processor. The performance model also covers the average runtime of the whole 
external job which is distributed over NOW.

There are other research works such as [5,6,81,82] that apply preemption for removing origin-
initiated contentions.

Apart from removing resource contention, preemption has other usages in resource management 
systems. More importantly, preemption can be applied to improve the quality of scheduling policies. In 
fact, preemption can be used as a tool by scheduler to enforce its policy.

Scheduling algorithms in distributed systems are highly dependent on user runtime estimation. 
There are studies (e.g., [99]) that demonstrate the inefficiency of these estimations and how these wrong 
estimation can compromise the scheduling performance. In the presence of inaccurate estimations, pre-
emption can be deployed to help the scheduler in enforcing its decision through preempting the process 
that has wrong estimations. Particularly, this is critical for systems that support strict reservation model 
such as advanced reservation. In this situation, preemption abstracts the scheduling policy from the 
obstacles in enforcing that policy [44].

Preemption can be applied to improve the optimality of resource scheduling. Specifically, online 
scheduling policies are usually not optimal because jobs are constantly arriving over time and the 
scheduler does not have a perfect knowledge about them [4]. Therefore, preemption can potentially 
mitigate the nonoptimality of the scheduling policy.

Preemption mechanism can be employed for managing peak load. In these systems, resource-intensive 
applications or batch applications are preempted to free the resources during the peak time. Accordingly, 
when the system is not busy and the load is low, the preempted requests can be resumed [69].

Preemption can be employed to improve the system and/or user centric criteria, such as resource 
utilization and average response time. Kettimuthu et al. [54] have focused on the impact of preempting 
parallel jobs in supercomputers for improving the average and worst-case slowdown of jobs. They sug-
gest a preemption policy, called Selective Suspension, where an idle job can preempt a running job if the 
suspension factor is adequately more than the running job.

A recent application of preemption is in energy conservation in datacenters. In fact, one prominent 
approach in energy conservation of virtualized datacenters is VM consolidation, which takes place 
when resources in the datacenter are not utilized efficiently. In VM consolidation, VMs running on 
under-utilized resources are preempted (suspended) and resumed on other resources. VM consolida-
tion can also occur through live migration of VMs [107] to minimize the unavailability time of the VMs. 
When a resource is evacuated, it can be powered off to reduce the energy consumption of the datacenter.

Salehi et al. [83] have applied VM preemption to save energy in a datacenter that supports requests 
with different SLAs and priorities. They introduce an energy management component for Haizea [93] 
that determines how resources should be allocated for a high-priority request. The allocation can be car-
ried out through preempting lower-priority requests or reactivating powered off resources. The energy 
management component can also decide about VM consolidation, in circumstances that powered on 
resources are not being utilized efficiently.

Preemption can be used for controlling administrative (predetermined) thresholds. The thresholds 
can be configured on any of the available metrics. For instance, the temperature threshold for CPUs can 
be established that leads to the system automatically preempts part of the load and reschedule on other 
available nodes. Bright Cluster Manager [1] is a commercial Cluster resource management system that 
offers the ability to establish preemption rules by defining metrics and thresholds.

57.4.5.2  Preemption Challenges

Operating systems of single processor computers have been applying preemption mechanism for a 
long time to offer interactivity to the end-user. However, since interactive requests are not prevalent 
in distributed systems, there has been less demand for preemption in these systems. More impor-
tantly, achieving preemption in distributed systems entails challenges that discourage researchers 
to investigate deeply on that. This challenges are different based on the resource provisioning model.
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In this part, we present the detailed list of challenges that distributed systems encounter in preempt-
ing requests in various resource provisioning models. Moreover, a summary of preemption challenges 
based on different provisioning models is provided in Table 57.1.

•	 Coordination: Distributed requests (jobs/VMs/leases) are scattered on several nodes by nature. 
Preemption of the distributed requests have to be coordinated between the nodes that are execut-
ing them. Lack of such coordination leads to inconsistent situation (e.g., because of message loss) 
for the running request.

•	 Security: Preemption in job-based systems implies security concerns regarding files that remain 
open and swapping-in the memory contents before job resumption. In other words, in job-based 
systems operating system has to provide the security of not accessing files and data of the pre-
empted processes. Since VM- and lease-based systems are self-contained (isolated) by nature, 
there is not usually security concern in their preemption.

•	 Checkpointing: Lack of checkpointing facilities is a substantial challenge in job-based resource 
provisioning model. Because of this problem, in job-based systems the preempted job is gener-
ally killed, which is a waste of resources [91]. Checkpointing problem is obviated in VM and 
lease-based resource provisioning models [94]. Due to the fundamental role of checkpointing for 
preemption mechanism, in Section 57.4.5.4 we discuss it in details.

•	 Time overhead: In VM- and lease-based resource provisioning models, time overhead imposed to 
the system to perform preemption is a major challenge. If preemption takes place frequently and 
the time overhead would not be negligible, then the resource utilization will be affected.

Additionally, disregarding the preemption time overhead in scheduling, prevents requests to 
start at the scheduled time [94]. In practice, resource management systems that support preemp-
tion, must have an accurate estimation of the preemption time overhead. Overestimating the 
preemption time overhead results in idling resources. However, underestimating the preemp-
tion time overhead ends up in starting leases with delay, which subsequently might violate SLA 
agreements.

Sotomayor et al. [94] have presented a model to predict the preemption time overhead for VMs. 
They identified that the size of memory that should be de-allocated, number of VMs mapped to 
each physical node, local or global memory used for allocating VMs, and the delay related to com-
mands being enacted are effective on the time overhead of preempting VMs. To decrease the pre-
emption overhead, the number of preemptions that take place in the system has to be reduced [87].

•	 Permission: In the lease-based resource provisioning model, preempting leases is not allowed by 
default. In fact, one difference between lease-based and other resource provisioning models is that 
jobs and VMs can be preempted without notifying the user (requester), whereas leases require 
the requester’s permission for preemption [39]. Therefore, there must be regulations in the lease 

TABLE 57.1  Preemption Challenges in Different Resource 
Provisioning Models

Challenge

Resource Provisioning Model

Job-Based VM-Based Lease-Based

Coordination ✓ ✓ ✓
Security ✓ ✕ ✕

Checkpointing ✓ ✕ ✕

Time overhead ✓ ✓ ✓
Permission ✓ ✓ ✕

Impact on queue ✓ ✓ ✓
Starvation ✓ ✓ ✓
Preemption candidates ✓ ✓ ✓
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terms to make lease preemption possible. These terms can be in the form of QoS constraints of the 
requests or can be bound to pricing schemes. For instance, requests with tight deadline, advance 
reservations, or requests with tight security possibly choose to pay more instead of getting pre-
empted while they are running.

•	 Impact on other requests: Most of the current distributed systems use a variation of backfilling 
policy as the scheduling policy. In backfilling, future resource availabilities are reserved for other 
requests that are waiting in the queue. Preempting the running process and allocating resources 
to a new request affects the running job/lease as well as the reservations waiting in the queue. 
Re-scheduling of the preempted requests in addition to the affected reservations are side-effects 
of preemption in distributed systems.

•	 Starvation: Preemption leads to increasing the response time and, in the worst case, starvation for 
low-priority requests [5]. There is a possibility that low-priority requests get preempted as soon 
as they start running. This leads to unpredictable waiting time and unstable situation for low-
priority requests. Efficient scheduling policies can prevent unstable and long waiting time situ-
ation. One approach to cope with the starvation challenge is restricting the number of requests 
admitted in a distributed system. Salehi et al. [82] have proposed a probabilistic admission control 
policy that restricts the queue length for low-priority requests in a way that they would not suffer 
from starvation.

•	 Preemption candidates: By allowing preemption in a distributed system, there is a possibility that 
several low priority requests have to be preempted to make sufficient vacant resources for the 
high-priority request. Therefore, there are several sets of candidate requests whose preemption 
can create adequate space for the high-priority request. As it is expressed in Figure 57.6, there are 
several candidate sets (Figure 57.6b) that their preemption can vacate resources for the required 
time interval (i.e., from t1 to t2 as indicated in Figure 57.6a).

Selecting distinct candidate sets affects the amount of unused space (also termed scheduling 
fragment) appear in the schedule. Furthermore, preempting different candidate sets imposes dif-
ferent time overhead to the system because of the nature of the requests preempted (e.g., being 
data-intensive). In this situation, choosing the optimal set of requests for preemption is a chal-
lenge that needs to be addressed.

To cope with this challenge, backfilling policy has been extended with preemption ability in Maui 
scheduler [91] to utilize scheduling fragments. Salehi et al. [5] have proposed a preemption policy 
that determines the best set of leases to be preempted with the objective of minimizing preemption 
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time overhead. A preemption policy is also presented by Walter et al. [109] in a VM-based system 
with the objective of avoiding starvation for batch requests where a combination of batch and 
interactive requests co-exist in the system.

57.4.5.3  Possibilities for Preempted Requests

Issues discussed thus far are related to preemption mechanism and its challenges. However, making a 
proper decision for the preempted request is also important. This decision depends on the facilities pro-
vided by the resource management system of a distributed system. For example, migration is one choice 
that is viable in some distributed systems but not in all of them.

Thanks to the flexibility offered by deploying VM-based resource provisioning models, resource 
managers are capable of considering various possibilities for the preempted request. Nonetheless, in job-
based systems, if preemption is possible, the possible action on the preempted job is usually limited to 
killing or suspending and resuming of the preempted job. Over the next paragraphs, we introduce vari-
ous cases that can possibly happen for preempted VMs/leases. Additionally, in Figure 57.7 it is expressed 
that how different possibilities for the preempted VM affect the VMs’ life cycle.

•	 Cancelling: VMs can be canceled (terminated) with/without notifying the request owner. VMs 
offered in this fashion are suitable for situation that the resource provider does not have to guar-
antee the availability of the resources for a specific duration. Spot instances offered by Amazon 
EC2 is an example of cancelling VMs. Isard et al. [49] have used cancelling VMs to execute map-
reduce requests. Cancelling VMs imposes the minimum overhead time that is related to the time 
needed to terminate VMs allocated to the request.

		    In job-based systems, cancelling (killing) jobs is a common practice [91] because of the dif-
ficulty of performing other possible actions.

•	 Restarting: In both job-based and VM-based systems, the preempted request can be killed (similar 
to cancelling) and restarted either on the same resource or on another resource. The disadvantage 
of this choice is losing the preliminary results and wasting the computational power. Restarting 
can be applied for best-effort and deadline-constraint requests. In the former, restarting can be 
performed at any time whereas, in the latter, deadline of the request has to be taken into account 
for restarting.
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•	 Malleability (partial preemption): In this manner, the number of nodes/VMs allocated to a 
request might be changed while it is executing. In this approach, the request should be designed 
to adapt dynamically to the changes. This action can be applied on malleable jobs [72] in job-
based systems. In VM and lease-based systems, frameworks such as Cluster-on-Demand (COD) 
[64], support this manner of preemption via cancelling some of the VMs of a lease. Malleability 
is also known as partial-preemption and can be used to implement dynamic partitioning (see 
Section 57.3.1).

•	 Pausing: When a VM is paused, it does not get any CPU share, however, it remains in the mem-
ory. Resumption of the VM, in this case, happens by getting CPU share and, thus, is very fast 
(Figure 57.7). Hence, we cannot consider pausing as a complete preemption action.

		    Nonetheless, the main usage of pausing is to perform lease-level preemption. In preempting a 
lease (several correlated VMs), to prevent inconsistency or message loss, first, all VMs are paused 
and then, suspension takes place [44] (link between pause state and sleep (suspended) state in 
Figure 57.7). In Section 57.4.5.4, we discuss how pausing VMs helps in preempting leases.

•	 Suspending: When a VM is suspended, the entire state of the VM (including the state of all pro-
cesses running within the VM) is saved to the disk. At resumption time, the VM continues oper-
ating from the suspended point. The suspended request has to be rescheduled to find another free 
time slot for the remainder of its execution. In job-based systems, the operating system should 
retain the state of the preempted process and resume the job.
  An important question after suspension is where to resume a VM/lease? Answering this ques-
tion is crucial particularly for data-intensive applications. A suspended request can be resumed in 
one of the three following ways:

	 1.	 Resuming on the same resource; this case does not yield to optimal utilization of whole resources.
	 2.	 Resuming on the same site but not essentially on the same resource; In this case, usually data 

transfer is not required.
	 3.	 Resuming on different site: This case leads to migrating to another site, which entails data 

transfer. This is, particularly, not recommended for data-intensive requests.
•	 Migrating: VMs of the preempted request are moved to another resource provider to resume the 

computation (also called cold migration). According to Figure 57.7, migrating involves suspend-
ing, transferring, and resuming VMs. Transferring overhead in the worst case includes transfer-
ring the latest VM state in addition to the disk image of the VM. One solution to mitigate this 
overhead is migrating to another site within the same provider which has a high bandwidth con-
nection available (e.g., within different Clusters of a datacenter). In terms of scheduling, multiple 
reservation strategies can be applied to assure that the request will access resources in the destina-
tion resource provider [93].

•	 Live Migration: Using live migration preemption can be carried out without major interrup-
tion in running VMs involved in preemption (see live migration link in Figure 57.7). This is 
particularly essential in conditions that no interruption can be tolerated (e.g., Internet servers). 
For this purpose, the memory image of the VM is transferred over the network. There are 
techniques to decrease the live migration overhead, such as transferring just the dirty pages of 
the memory.

Apart from the aforementioned choices, there are requests that cannot be preempted (i.e., nonpre-
emptable requests). For example, critical tasks in workflows that have to start and finish at exact times to 
prevent delaying the execution of the workflow [57]. Another example is secure applications that cannot 
be moved to any other provider and cannot also be interrupted in the middle of execution.

In a particular resource management system, one or combination of the mentioned actions can be 
performed on the preempted request. The performed action can be based on the QoS constraints of the 
requests or restrictions that user declares in the request. Another possibility is that the resource man-
agement system dynamically decide the appropriate action on the preempted request.
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57.4.5.4  Checkpointing in Distributed Systems

Checkpointing is the function of storing the latest state of a running process (e.g., job, VM, and 
lease). Checkpointing is an indispensable part of preemption, if the preempted request is going to 
resume its execution from the preempted point. In fact, checkpointing is the vehicle of implement-
ing preemption. Apart from preemption, checkpointing has other usages including providing fault-
tolerance for the requests.

Checkpointed process can be stored on a local storage, or carried over the network to a backup 
machine for future recovery/resume. Checkpointing has to be achieved in an Atomic way, which 
means either all or none of the modifications are checkpointed (transferred to the backup machine). 
There are various approaches to achieve checkpointing which are presented brief ly in Figure 57.8. 
In this section, we explain checkpointing strategies for different provisioning models in distrib-
uted systems.

57.4.5.4.1  Checkpointing in Job-Based Provisioning Model
Checkpointing approaches are categorized as application-transparent and application-assisted (see 
Figure 57.8). In application-assisted (user-level) checkpointing, the application defines the neces-
sary information (also called critical data area) that have to be checkpointed. The disadvantage of 
this approach is that it entails modifying the application by the programmer. However, this approach 
imposes little overhead to the system because it just checkpoints the necessary parts of the application; 
additionally, the frequency of performing checkpointing is determined by the user. User-level check-
pointing can be further categorized as follows:

•	 Source-code level: In this manner, checkpointing codes are hard-coded by developers. However, 
there are some source code analysis tools [21,30] that can help developers to figure out the suitable 
places that checkpointing codes can be inserted.

•	 Library level: There are ready-made libraries for checkpointing, such as Libckpt [74] and Condor 
libraries [62]. To use this kind of checkpointing, developers have to recompile the source code by 
including the checkpointing library in their program.

As noted in Figure 57.8, checkpointing can also be done in application-transparent manner. This 
approach is also known as system level, Operating System level, or kernel level in the literature. As the 
name implies, in this approach the application is not aware of checkpointing process. Therefore, the 
application does not need to be modified to be checkpointable. Application-transparent checkpointing 
technique is particularly applied in preemption whereas application-assisted scheme is more used in 
fault-tolerance techniques. Examples of system level checkpointing in the system level are BLCR [41] 
and CRAK [111].

Checkpointing

Application
 assisted

Application
transparent

Library level

Source code
 level

Thorough

Incremental 

FIGURE 57.8  Checkpointing methods in distributed systems.
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Since the application-transparent checkpointing methods have to checkpoint the whole applica-
tion state, they impose significant time overhead to the system. Another drawback of this approach 
is that the system-level checkpointing methods are dependent on a specific version of the operating 
system that they are operating on and, hence, are not entirely portable.

In order to mitigate the checkpointing overhead, incremental checkpointing technique is used [43] 
in which just the changes since the previous state are checkpointed. Typically, a page-fault technique is 
used to find the dirty pages and write them to the backup [43,50].

Checkpointing of the distributed applications that run in a distributed system, such as a Cluster, is 
more complicated. For these applications, not only the state of the application on each running node 
should be checkpointed, but it has to be assured that the state of the whole application across several 
nodes remains consistent. Therefore, the checkpointing process across nodes that run the applica-
tion must be synchronized in a way that there would be neither message loss nor message reordering. 
Checkpointing of the distributed applications (also termed coordinated checkpointing) tradition-
ally is developed based on the global distributed snapshot concept [22]. These solutions are generally 
application-level, dependent on a specific version of operating system, and also dependent on the 
platform implementation (e.g., MPI implementation). Cocheck [95], BLCR [41], and MPICHV [24] are 
examples of these solutions.

There are various approaches for managing the connections between processes running on different 
nodes while the checkpointing is performed. In MPICHV [24], the connection among processes has to 
be disconnected before each process saves its local state to the checkpoint file. In this approach, con-
nections should be re-established before processes can resume their computation. Another approach, 
which is used in LAM/MPI, uses bookmarking mechanism between sender and receiver processes to 
guarantee message delivery at the checkpointing time.

57.4.5.4.2  Checkpointing in VM-Based Systems
Virtualization technique provides application-transparent checkpointing as an inherent feature that 
involves saving (suspending) and restoring (resuming) of the VM state [14,20,55].

In a virtualized platform, hypervisor (also called virtual machine monitor) is an essential compo-
nent that manages different VMs concurrently running on the same host. Generally, the hypervisor is 
in charge of VM checkpointing. To checkpoint a VM, its internal state including memory, cache, and 
data related to the virtual devices have to be stored on the disk. Disk image snapshot also has to be 
stored, specially when the checkpointed VM is transferred and sharing image is not possible. Current 
virtual machine monitors, such as VMware, Xen, and KVM, support saving/restoring the state of VMs 
to/from a file. However, taking a copy of the disk image is not practically possible because of the size of 
the disk [69]. Therefore, currently, checkpointing is mostly carried out within resources with a shared 
storage, such as NFS.

Accordingly, distributed applications running on VMs across several nodes within a Cluster can be 
checkpointed [46]. Checkpointing of such applications is complicated because of the possible correla-
tions between VMs (e.g., TCP packets and messages exchanged between VMs). The checkpointing pro-
cess should be aware of these correlations, otherwise the checkpointing process leads to inconsistency 
in running the distributed applications.

To handle the checkpointing, when a checkpointing event is initiated, all the nodes that run 
a process of the distributed application receive the event. Upon receiving the event, the hypervi-
sor pauses computation within VMs in order to preserve the internal state of VM and also to stop 
submitting any new network message (see Figure 57.7). In the next step, checkpointing protocols 
save the in-flight messages (i.e., network packets). For this purpose, the hypervisor collects all the 
incoming packets and queue them. Finally, a local VM checkpointing is performed through which 
the VM’s internal state, VM disk image, and queued messages for that VM are saved in the check-
point file [44].
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57.5  Contention Management in Practice

Various types of distributed systems for resource sharing and aggregation have been developed. They 
include Clusters, Grids, and Clouds. In this section, we study these systems from the resource conten-
tion perspective. We identify and categorize properties of the reviewed systems and summarize them in 
Table 57.2 for Clusters and in Table 57.3 for Grids and Clouds.

57.5.1  Contention Management in Clusters

Compute Clusters are broadly categorized as dedicated and shared Clusters. In dedicated Clusters a 
single application exclusively runs on the Cluster’s nodes. Mail servers, and web servers are examples of 
dedicated Clusters.

By contrast, in a shared Cluster the number of requests is significantly higher than the number of 
Cluster nodes. Therefore, nodes have to be shared between the requests by means of a resource manage-
ment system [100]. From the resource contention perspective, shared Clusters are generally prone to 
request-initiated contention.

Virtual Clusters are another variation of Clusters that work based on VMs. Although users of these 
Clusters are given root access to the VMs, these resources are not dedicated to one user in hardware level 
(i.e., several VMs on the same node can be allocated to different users).

A multicluster is an interconnected distributed system that consists of several Clusters possibly 
in different organizations. Multiclusters are prone to origin-initiated contentions as well as request-
initiated contention.

TABLE 57.2  Role of Different Components of Cluster Management Systems in Dealing 
with Resource Contentions

System
Provisioning 

Model
Operational 

Model Context
Contention 
Initiation

Contention 
Management

RMS 
Component

Haizea [93] Lease Reactive Cluster Request Preemption Local sched
VioCluster [79] VM Proactive 

and reactive
MultiCluster Origin Preemption Local sched

Snell et al. [91] Job Reactive Cluster Request Preemption Local sched
Lawson Smirni [59] Job Proactive 

and reactive
Cluster Request Partitioning Local sched

Walters et al. [109] VM Reactive Cluster Request Preemption Local sched
Scojo-PECT [92] VM Reactive Cluster Request DiffServ and 

preemption
Local sched

MOSIX [4] VM Reactive Cluster Origin Fairness and 
preemption

Local sched

Sharc [100] Job Reactive Cluster Request Partitioning Local sched and 
Admission ctrl

COD [64] Lease Reactive Cluster Request Partial 
preemption

Local sched

Cluster reserves [10] Job Proactive Cluster Request Partitioning Local sched
Muse [23] Job Reactive Cluster Request Economic 

(utility)
Local sched

Shirako [48] Lease Reactive MultiCluster Interdomain Token Local sched
Lee et al. [60] Job Proactive 

and reactive
MultiCluster Request Fairness Global and 

Local sched
MUSCLE [42] Job Proactive MultiCluster Request Utility Global sched
Percival et al. [73] Job Reactive Cluster Request Economic 

(utility)
Admission ctrl
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Shirako [48] is a lease-based platform for on-demand allocation of resources across several Clusters. 
In Shirako, a broker receives user’s application and provides it tickets that are redeemable at the provider 
Cluster. In fact, Shirako brokers handles interdomain-initiated contentions by coordinating resource 
allocation across different Clusters. However, the user application should decide how and when to use 
the resources.

VioCluster [79] is a VM-based platform across several Clusters. It uses lending and borrowing poli-
cies to trade VMs between Clusters. VioCluster is equipped with a machine broker that decides when to 
borrow/lend VMs from/to another Cluster. Machine broker also has policies for reclaiming resources 
that reacts to origin-initiated contention by preempting a leased VM to another domain. Machine prop-
erty policy monitors the machine properties that should be allocated to the VMs such as CPU, memory, 
and storage capacity. Location policy in the VioCluster proactively determines if it is better to borrow 
VMs from other Cluster or waiting for nodes on a single domain.

Haizea [93] is a lease manager that is able to schedule combination of Advanced Reservation, Best 
Effort, and Immediate leases. Haizea acts as a scheduling back-end for OpenNebula [32]. The advantage 
of Haizea is considering and scheduling the preparation overhead of deploying VM disk images. For 
scheduling Advanced Reservation and Immediate leases, leases with lower priority (i.e., Best Effort) 
are preempted (i.e., suspended and resumed after the reservation is finished). In fact, Haizea provides a 
reactive resource contention mechanism for request-initiated contentions.

Sharc [100] is a platform that works in conjunction with nodes’ operating system and enables resource 
sharing within Clusters. Architecturally, Sharc includes two components, namely, control plane and 
nucleus. The former is in charge of managing Cluster-wide resources and removing request-initiated 
contentions, whereas the latter, interacts with the operating system of each node and reserves resources 
for requests. Control plane uses a tree structure to keep information of resources are currently in use 
in the Cluster. The root of the tree shows all the resources in the Cluster and each child indicates one 
job. The nucleus uses a hierarchy that keeps information about what resources are in use on a node and 

TABLE 57.3  Role of Different Components of Grid/Cloud Resource Management Systems in Dealing 
with Resource Contentions

System
Provisioning 

Model
Operational 

Model Context
Contention 
Initiation

Contention 
Management

RMS 
Component

GridWay [103] Job Reactive Grid Federation Request Outsourcing Global sched 
(outsourcing)

Amazon Spot Market VM Reactive Cloud Request Economic (auction) Global sched
Van et al. [101] VM Reactive Cloud Request Economic (utility) Global sched
OurGrid [9] Job Reactive Grid Interdomain Incentive Global sched
Ren et al. [76] Job Proactive Desktop Grid Origin Preemption Local sched
Salehi et al. [6] Lease Proactive Grid Federation Origin Preemption Global sched
InterGrid [26] Lease Proactive Grid Federation Origin Partitioning Global sched
InterCloud [97] VM Reactive Cloud Federation Request Economic (utility) Admission ctrl
RESERVOIR [78] VM Reactive Cloud Federation Request Outsourcing Outsourcing
Sandholm et al. [86] VM Reactive Grid Request Partial preemption Admission ctrl
InterGrid Peering [26] Lease Reactive Grid Federation Interdomain Global scheduling Global sched
Salehi et al. [82] Lease Proactive Grid Federation Origin Preemption Admission ctrl
NDDE [67] VM Reactive Desktop Grid Origin Preemption Local sched
Gong et al. [38] Job Proactive NOW Origin Preemption Local sched
Delegated-

matchmaking [47]
Job Reactive Grid Federation Request Outsourcing Outsourcing

Gruber [28] Job Reactive Grid Interdomain 
and Request

Global scheduling 
and outsourcing 

Global sched 
and 
outsourcing
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by whom. The root of hierarchy shows all the resources on that node and each child represents a job on 
that node. In fact, there is a mapping between the control plane hierarchy and the nucleus hierarchy that 
helps Sharc to tolerate faults.

Cluster-on-Demand [64] (COD) is a resource management system for shared Clusters. COD sup-
ports lease-based resource provisioning in the form of virtual Clusters where each Virtual Cluster is an 
isolated group of hosts inside a shared hardware base. COD is equipped with a protocol that dynami-
cally resizes Virtual Clusters in cooperation with middleware components. COD uses group-based 
priority and partial preemption scheme to manage request-initiated resource contention. Specifically, 
when resource contention takes place, COD preempts nodes from a low-priority Virtual Cluster. For 
preemption the selected Virtual Cluster returns those nodes that create minimal disruption to the 
Virtual Clusters.

Cluster Reserves [10] is a resource allocation for Clusters that provides services to the clients based on 
the notion of service class (partitioning). This is performed by allocating resource partitions to parallel 
applications and dynamically adjusting the partitions on each node based on the user demand. Indeed, 
Cluster Reserve applies partitioning scheme to cope with the request-initiated contention problems. The 
resource management problem is considered as a constrained optimization problem where the inputs of 
the problem are periodically updated based on the resource usage.

Muse [23] is an economy-based architecture for dynamic resource procurement within a job-based 
Cluster. Muse is prone to request-initiated contention and applies a utility-based, economic solution to 
resolve that. In the model, each job has a utility function based on its throughput that reflects the reve-
nue earned by running the job. There is a penalty that the job charges the system when its constrains are 
not met. Resource allocation is worked out through solving an optimization problem that maximizes 
the overall profit. Muse considers energy as a driving issue in resource management of server Clusters.

MUSCLE [42] is an off-line, global scheduler for multiclusters that batches parallel jobs with high 
packing potential (i.e., jobs that can be packed into a resource space of a given size) to the same Cluster. 
In the next step, a local scheduler (called TITAN) performs further tuning to run the assigned jobs with 
minimized make span and idle times.

Lee et al. [60] have proposed a global and a local scheduler for a multicluster. The local scheduler 
is a variant of backfilling that grants priority to wide jobs to decrease their waiting time and resolves 
the request-initiated contention. The global dispatcher assigns requests to the proper Cluster by com-
paring the proportion of requests with the same size at each participant Cluster. Therefore, a fairly 
uniform distribution of requests in the Clusters is created which leads to a considerable impact on 
the performance.

Percival et al. [73] applied an admission control policy for shared Cluster. There is a request-initiated 
contention because some large jobs takes precedence over many small jobs that are waiting in the 
queue. Resource providers determine the resource prices based on the degree of contention and instan-
taneous utilization of resources. Consumers also bid for the resources based on their budget. In gen-
eral, a job can get a resource if it can compensate the loss of earning resulting from not admitting 
several small jobs.

57.5.2  Contention Management in Desktop Grids

This form of distributed computing (also known as volunteer computing) inherently relies on partici-
pation of resources, mainly Personal Computers. In desktop Grids, participants become available dur-
ing their idle periods to leverage the execution of long running jobs. They usually use specific events 
such as screen-saver as an indicator for idle cycles. SETI@home [8] is a famous desktop Grid project 
that works based on BOINC [7] software platforms and was originally developed to explore the exis-
tence of life out of the earth. Desktop Grids are prone to origin-initiated resource contentions that take 
place between the guest requests (come from the Grid environment) and local requests (initiated by the 
resource owner) in a node.
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In desktop Grids, the guest applications are running in the user (owner) environment. Running 
the external jobs along with other owner’s processes, raised the security concern in desktop Grids and 
became an obstacle in prevalence of these systems. However, using the emulated platforms, such as Java, 
and sand-boxing the security concern were mitigated.

Another approach in desktop Grids is rebooting the machine and run an entirely independent oper-
ating system for the guest request. As a result, the guest request does not have access to the user environ-
ment. Instances of this approach include HP’s I-cluster [77] and vCluster [27]. However, this approach 
can potentially interrupt the interactive user (owner). Therefore, idle cycle prediction has to be done 
conservatively to avoid interrupting the interactive user (owner). Both of these approaches are heavily 
dependent on the efficient predicting and harvesting of the idle cycles. Indeed, these approaches func-
tion efficiently where there are huge idle cycles.

Recently, VM technology has been used in desktop Grids. The advantages of using VMs in these envi-
ronments are threefolds. First and foremost is the security that VMs provide through an isolated execu-
tion environment. Second, VMs offer more flexibility in terms of the running environment demanded 
by the guest application. The third benefit is that by using VMs fragmented (unused) idle cycles, such as 
cycles at the time of typing or other light-weight processes, can be harvested.

NDDE [67] is a platform that utilizes VMs to exploit idle cycles for Grid or Cluster usage in corpora-
tions and educational institutions. This system is able to utilize idle cycles that appear even while the user 
is interacting with the computer. Indeed, in this system the guest and owner applications are run concur-
rently. This approach increases the harvested idle cycle to as many as possible with minor impact on the 
interactive user’s applications. NDDE has more priority than idle process in the host operating system 
and, therefore, will be run instead of idle process when the system is idle. At the time the owner has a new 
request, the VM and all the processes belong to NDDE are preempted and changed to “ready-to-run” state.

Fine-grained cycle sharing system (FGCS) [76] runs a guest request concurrently with the local 
request whenever the guest process does not degrade the efficiency of the local request. However, FGCS 
are prone to unavailability because of the following reasons:

	 1.	 Guest jobs are killed or migrate off the resource because of a local request
	 2.	 Host suddenly discontinue contributing resource to the system

To cope with these problems, they define unavailabilities in the form a state diagram where each state is 
a condition that resource becomes unavailable (e.g., contention between users, and host unavailability). 
The authors have applied a Semi-Markov chain Process to predict the availability. The goal of this predic-
tor engine is determining the probabilities of not transferring to unavailable states in a given time period 
of time in future.

57.5.3  Contention Management in Grids

Grids are initially structured based on the idea of the virtual organizations (VOs). A VO is a set of users 
from different organizations who collaborate towards a common objective. Several organizations con-
stitute a VO by contributing share of their resources to that and as a result their users gain access to the 
VO resources. Contributing resources to a VO is carried out via an agreement upon that an organization 
gets access to the VO resources according to the amount of resources it offers to the VO.

Organizations usually retain part of their resources for their organizational (local) users. In other 
words, VO (external) requests are welcome to use resources if they are available. However, VO requests 
should not delay the execution of local requests.

Indeed, Grids are huge interconnected distributed systems that are prone to all kinds of resource con-
tentions [85]. Particularly, interdomain-initiated resource contention arises when organizations need to 
access VO’s resources based on their contributions. Origin-initiated resource contention occurs when 
there is a conflict between local and external users within the resources of an organization. Finally, 
request-initiated contention exists between different types of requests (short/long, parallel/serial, etc.).
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Gruber/Di-Gruber [28] is a Grid broker that deals with the problem of resource procurement form 
several VOs and assigns them to different user groups. Gruber provides monitoring facilities that can be 
used for interdomain-initiated contentions. It also investigates the enforcing of usage policies (SLA) as 
well as monitoring the enforcement. Another component of Gruber sought to cope with request-initiated 
resource contention through monitoring resources’ loads and outsource jobs to a suitable site (site selec-
tor component). Di-Gruber is the distributed version of Gruber which supports multiple decision points.

InterGrid [26] is a federation of Grid systems where each Grid receives lease requests from other 
Grids based on peering arrangements between InterGrid Gateways (IGG) of the Grids. Each Grid serves 
its own users (e.g., organizational/local users) as well as users coming from other Grids (external). 
InterGrid is prone to origin-initiated (between local and external requests) and interdomain-initiated 
(between different Grids) resource contentions.

Peering arrangements between Grids coordinate exchanging resources and functions based on peer-
to-peer relations established among Grids. Each peer is built upon a predefined contract between Grids 
and handles interdomain-initiated contentions between the two Grids. Outsourcing unit of InterGrid 
is incorporated in the scheduling and determines when to outsource a request. Salehi et al. [6] have 
utilized probabilistic methods and proposed contention-aware scheduling that aims at minimizing the 
number of VM preemptions (and therefore minimizing contention) in a Grid.

They have also come up [82] with an admission control policy to reduce origin-initiated contention in 
InterGrid. The admission control policy works based on limiting queue length for external requests in a 
way that their deadline can be met. For that purpose they anticipate the average response time of exter-
nal requests waiting in the queue by considering characteristics of local requests such as interarrival rate 
and size. In this situation, the external requests are accepted up until the response time is less than the 
average deadline.

Delegated-matchmaking [47] proposes an architecture that delegates the ownership of resources to 
users in a transparent and secure way. More specifically, when a site cannot satisfy its local users, the 
matchmaking mechanism of Delegated-matchmaking adds remote resources to the local resources. In 
fact, in Delegated-matchmaking the ownership of resources are delegated in different sites of Grids. 
From the resource contention perspective, matchmaking mechanism is in charge of dealing with 
request-initiated contentions through outsourcing scheme.

GridWay [103] is a project that creates loosely coupled connection between Grids via connecting 
to their meta-schedulers. GridWay is specifically useful when a job does not get the required process-
ing power or the job waiting time is more than an appointed threshold. In these situation, GridWay 
migrates (outsource) the job to another Grid in order to provides the demanded resources to the job. 
We can consider GridWay as a global scheduler that deals with request-initiated resource contentions.

OurGrid [9] is a Grid that operates based on a P2P network between sites and share resources based on reci-
procity. OurGrid uses network of favors as the resource exchange scheme between participants. According to 
this network, each favor to a consumer should be reciprocated by the consumer site at a later time. The more 
favor participants do, the more reward they expect. From the resource contention perspective, OurGrid uses 
incentive-based approach to figure out the problem of interdomain-initiated contentions in a Grid.

Sandholm et al. [86] investigated how admission control can increase user fulfillment in a computa-
tional market. Specifically, they considered the mixture of best effort (to improve resource utilization) 
and QoS-constrained requests (to improve revenue) within a virtualized Grid. They applied a reactive 
approach through partial preemption of best-effort requests to resolve request-initiated contentions. 
However, the admission control proactively accepts a new request if the QoS requirements of the current 
requests can still be met.

57.5.4  Contention Management in Clouds

Advances in virtual machine and network technologies has led to appearing commercial providers 
that offer numerous resources to users and charge them in a pay-as-you-go fashion. Since the physical 
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infrastructure is unknown to the users in these providers; they are known as Cloud Computing [18]. There 
are various fashions for delivering Cloud services, which are generally known as XaaS (X as a Service). 
Among these services Infrastructure as a Service (IaaS) offers resources in the form of VM to users.

From the availability perspective, Cloud providers are categorized as public, private, and hybrid 
Clouds [19]. To cope with the shortage of resource availability, particularly in private Clouds, the idea of 
federated Cloud has been presented [18]. Cloud federation is a possible solution for a Cloud provider in 
order to access to a larger pool of resources.

Similar to Grid environments, Clouds are also prone to different types of resource contentions. 
However, as Clouds are more commercialized in comparison with Grids, the resource contentions solu-
tions are also mostly commercially driven.

Recently, Amazon started to offer spot instances to sell the unused capacity of their data centers 
[110]. Spot instances are priced dynamically based on users’ bids. If the bid price is beyond the current 
spot instance price, the VM instance is created for the user. The spot instance’s price fluctuates and if 
the current price goes beyond the bid price, the VM instance is canceled (terminated) or alternatively 
suspended up until the current price becomes lower than the bid. Indeed, the spot market presents 
a request-initiated resource contention where the contention is solved via an auction-based scheme. 
Kondo and Andryejak [110] have evaluated the dynamic checkpointing schemes, which is adaptive to 
the current instance price, and achieves cost efficiency and reliability in dealing with spot instances.

Van et al. [101] have proposed a multilayer, contention-aware resource management system for Cloud 
infrastructure. The resource management system takes into account both request’s QoS requirements and 
energy consumption costs in VM placement. In the request (user) level, a local decision module (LDM) mon-
itors the performance of each request and calculates a utility function that indicates the performance satis-
faction of that request. LDM interacts with a global decision module (GDM) which is the decision-making 
component in the architecture. GDM considers the utility functions of all LDMs along with system-level per-
formance metrics and decides about the appropriate action. In fact, GDM provides a global scheduling solu-
tion to resolve request-initiated contentions between requests. The output of the GDM can be management 
commands to the server hypervisor and notifications for LDMs. The notifications for LDM includes adding 
a new VM to the application, upgrading or downgrading an existing VM, preempting a VM belonging to a 
request. Management actions for hypervisors include the starting, stopping, or live migration of a VM.

RESERVOIR [78] is a research initiative that aims at developing the technologies required to address 
the scalability problems existing in the single provider Cloud computing model. To achieve this goal, 
Clouds with excess capacity offer their resources, based on an agreed price, to the Clouds that require 
extra resources. Decision making about where to allocate resources for a given request is carried out 
through an outsourcing component, which is called placement policy. Therefore, the aim of project is 
providing an outsourcing solution for request-initiated resource contention.

InterCloud [18] aims to create a computing environment that offers dynamic scaling up and down 
capabilities (for VMs, services, storage, and database) in response to users’ demand variations. The 
central element in InterCloud architecture is the Cloud Exchange, which is a market that gathers ser-
vice providers and users’ requests. It supports trading of Cloud services based on competitive eco-
nomic models, such as financial options [98]. Toosi et al. [18,97] consider circumstances that each 
Cloud offers on-demand and spot VMs. The admission control unit evaluates the cost–benefit of out-
sourcing an on-demand request to the InterCloud or allocating resource to that via terminating spot 
VMs (request-initiated contention). Their ultimate objective is to decrease the rejection rate and having 
access to seemingly unlimited resources for on-demand requests.

57.6  Conclusions and Future Research Directions

Due to resource shortage as well as surge in demand, distributed systems commonly face contention 
between requests to access resources. Resource contentions are categorized as request-initiated, when 
a user request cannot be admitted or cannot acquire sufficient resources because the resources are 
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occupied by other requests. Origin-initiated resource contention refers to circumstances that requests 
are from different sources with distinct priorities. Interdomain-initiated resource contentions take place 
when the proportion of shared resources to the consumed resources by a resource provider is low.

Resource contention can be handled by different components of resource management system. 
Therefore, solutions for resource contention depends on the structure of resource management in a 
distributed system. In this research, we recognized the role of resource provisioning model, local sched-
uling, global scheduling, and admission control unit in a resource management system on various 
types of resource contentions. We also realized that the emergence of VM-based resource provisioning 
model has posed the preemption as a predominant solution for different types of resource contentions. 
Therefore, in this survey we also investigated the challenges and opportunities of preempting VMs.

We reviewed systems in Clusters, Grids, and Clouds from the contention management perspec-
tive and categorized them based on their operational model, the type of contention they deal with, the 
component of resource management system involved in resolving the contention, and the provisioning 
model that contention is considered. We also closely investigated preemption mechanism as the sub-
stantial resolution for resource contention.

There are avenues of future research works in managing resource contentions that can be pursued 
by researchers. Proactive resource contention management methods are required specifically for inter-
domain-initiated contentions. This means that in an interconnected distributed system when resource 
management system decides to outsource a request, contention probability in the destination provider 
has to be considered.

Combination of different resource contentions (hybrid contention) requires further investigation. 
For example, resolving contention where there is a combination of origin-initiated and request-initiated 
contentions. Moreover, economical solutions can be taken into consideration to resolve the origin-
initiated and interdomain-initiated resource contentions.

We also enumerated several options that can be considered for resuming a preempted request. 
Current systems usually choose one of these options. However, it will be interesting to come up with a 
mechanism that dynamically (e.g., based on the request condition) chooses one of the available options. 
A more specific case is when preemption via suspension happens. In this situation, determining the 
appropriate place to resume the preempted request is a challenge. For instance, if it is data-intensive 
request, then it might be better to wait in the queue instead of migrating to another resource.
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58.1  Introduction

The discipline of real-time computing studies computer systems in which certain computations have 
both a logical and a temporal notion of correctness: the correct result must be produced, at the right 
time. As computer systems come to play an increasingly important role in monitoring and controlling 
ever more aspects of the physical world and our interactions with it, principles of real-time computing 
are fast becoming central to broad areas of computer science and engineering, including embedded 
systems, cyber-physical systems, electronic commerce, multimedia, communication and networking, 
and robotics.

This discipline grew out of a need to be able to ensure provably correct behavior in safety-critical 
embedded systems such as the ones found in aerospace and armaments applications. The focus ini-
tially was therefore on the worst-case analysis of very simple systems that are restricted to execute in 
tightly controlled environments, with the objective of ensuring that all timing constraints are always 
met. As more and more application domains have come to explicitly recognize the real-time nature of 
their requirements, the kinds of systems falling within the scope of the discipline of real-time com-
puting have broadened considerably in many ways: systems subject to real-time analysis are no longer 
simple but display significant complexity and heterogeneity in composition and in requirements, and 
are expected to operate correctly in relatively unpredictable environments. This expansion in scope has 
considerably enriched the discipline, rendering it far more challenging and interesting.
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58.2  Underlying Principles

A real-time system is specified by specifying a workload, and a platform upon which this workload 
is to execute. The workload is often modeled as consisting of a number of jobs, each of which has a 
release time, an execution requirement, and a deadline. The interpretation is that the job needs to 
execute for an amount equal to its execution requirement within a scheduling window that is the 
interval between its release time and its deadline. If a workload consists of a finite number of jobs 
that are all known beforehand, it may sometimes be specified explicitly. More commonly, however, 
real-time systems are reactive [26] in the sense that they maintain an ongoing interaction with their 
environment at a speed determined by the environment: they obtain information about the envi-
ronment using sensors and may seek to change the environment via actuators. For such reactive 
systems, constraints of various kinds (such as precedence constraints, periodicity constraints, mini-
mum inter-arrival separation constraints, and mutual exclusion constraints) are specified for the 
kinds of (potentially infinite) collections of jobs that are legal for a given system. Such constraints are 
typically specified within the context of a formal model for representing a real-time workload—some 
commonly used models are described in Section 58.2.4. A schedule for a real-time system specifies 
which jobs are to execute on each part of the platform at each instant in time. A scheduling algorithm 
generates a schedule.

58.2.1  Hard versus Soft Real-Time Systems

For a hard real-time (HRT) system, it is imperative that all deadlines always be met; in soft real-time 
(SRT) systems, it is acceptable to miss an occasional deadline (the consequences of doing so are usu-
ally quantitatively specified as part of the system model). A special kind of SRT system is a firm real-
time system, in which there is a reward associated with completing each job by its deadline (but no 
penalty for failing to do so), and the objective of a scheduling algorithm is to maximize the cumulative 
reward obtained.

58.2.2  Pre-Run-Time Analysis

One of the salient features of the discipline of real-time computing is its strong emphasis on the 
analysis of systems prior to their deployment. This is particularly true for safety-critical systems: 
such systems must be demonstrated to always exhibit safe behavior during run time before they can 
be deployed. (In some application domains, including civilian aviation and medical devices, prior 
certification of such safe behavior may be required from statutory certification authorities.) Pre-
run-time analysis may take different forms, including the use of theorem-provers, model-checking, 
and the application of rigorously derived properties of resource-allocation and scheduling algo-
rithms. Most of the analysis techniques considered in this chapter fall into the latter of these pos-
sible approaches.

A given schedule is said to be feasible for a workload that is specified as a collection of jobs upon a 
specified platform if it provides sufficient execution for each job to complete within its scheduling win-
dow. A specified collection of jobs is feasible upon a specified platform if there exists a feasible schedule 
for it. A specified collection of jobs is said to be schedulable by a given scheduling algorithm if the algo-
rithm produces a feasible schedule.

The aforementioned definitions generalize from workloads that are specified as collections of jobs to 
workloads that are specified using more general models in the natural way: a workload is feasible if there 
is a feasible schedule for every legal collection of jobs that is consistent with the specified constraints, 
and it is schedulable by a given algorithm if the algorithm finds a feasible schedule for every such legal 
collection of jobs.
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With regard to workloads that are specified according to a particular model (see Section 58.2.4 for a 
listing of some such models) and that are to be implemented upon a specified platform, a schedulabil-
ity test for a given scheduling algorithm is an algorithm that takes as input a workload specification 
and provides as output an answer as to whether the workload is schedulable by the given scheduling 
algorithm. A schedulability test is exact if it correctly identifies all schedulable and unschedulable task 
systems. It is sufficient if it correctly identifies all unschedulable task systems, but may misidentify some 
schedulable systems as being unschedulable.

For any scheduling algorithm to be useful for HRT applications, it must have at least a sufficient 
schedulability test that can verify that a given workload is schedulable. The quality of the scheduling 
algorithm and the schedulability test are thus inseparable for HRT systems.

58.2.3 T ime-Triggered versus Event-Triggered Scheduling

In designing scheduling algorithms, two major alternative paradigms have emerged. In a time-
triggered (TT) schedule, all scheduling activities are initiated by the progress of time. That is, the 
entire schedule is predetermined before the system is deployed, and all scheduling activities are ini-
tiated (“triggered”) at prespecified points in time. TT schedules are typically (although not always) 
stored as lookup tables and are suitable for use in highly deterministic systems, in which the entire 
real-time workload can be completely characterized as a particular collection of jobs prior to system 
run time. For systems that are not completely deterministic, the event-triggered (ET) paradigm is 
more appropriate. In an ET schedule, it is events, rather than the passage of time, that initiate schedul-
ing activities. These events can be external (such as the release of a job or the arrival of an interrupt 
signal) or internal (e.g., the completion of the execution of a currently executing job). ET scheduling is 
able to deal with some kinds of incompletely specified workloads in a more resource-efficient manner 
than TT scheduling.

58.2.4  Models for Recurrent Tasks

The workload of a real-time system is often modeled as consisting of a finite number of recurrent tasks 
or processes. Each such task usually represents code embedded within an infinite loop: each iteration of 
the loop gives rise to one or more jobs.

The periodic task model [39] is the simplest model for representing such recurrent tasks. Each task 
τi in this model is characterized by a worst-case execution time (WCET) parameter Ci and a period Ti, 
with the interpretation that this task releases a job at each integer multiple of Ti, with this job having a 
deadline that is Ti time units after its release and needing to execute for up to Ci time units by this dead-
line. A generalization to the model allows for the specification of an additional parameter Oi called the 
initial offset, with the interpretation that the first job is released at time Oi and subsequent jobs Ti time 
units apart. A further generalization [36,37] allows for the specification of a relative deadline parameter 
Di: the deadline of a job is Di time units after its release (rather than Ti time units). In this most general 
form, thus, each task τi = (Oi, Ci, Di, Ti) releases a job with WCET equal to Ci at time instant Oi + k · Ti, 
and deadline at time-instant Oi + k · Ti + Di, for each integer k ≥ 0.

Recall that the release of a job may be triggered by the occurrence of an external event. In many real-
time systems, such external events may not occur periodically (i.e., exactly Ti time units apart); model-
ing the task that is responsible for processing such events as a periodic task therefore results in a loss 
of accuracy. If it is, however, possible to provide a lower bound on the minimum amount of time that 
must occur between the occurrence of successive events, the sporadic task model [42] is able to model 
the processing of these events. In this model, a task τi is again characterized by the same four-tuple of 
parameters: τi = (Oi, Ci, Di, Ti); however, the interpretation of the first and fourth parameters (Oi and Ti) is 
different. Specifically, such a task generates a sequence of jobs with the release time of the first job ≥ Oi, 
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and the release times of successive jobs separated by an interval of duration ≥Ti; each job has a WCET Ci 
and a deadline Di time units after its release time.*

There is a classification of real-time systems consisting entirely of sporadic tasks, depending on the 
relationship between the Di and Ti parameters. In this classification,

•	 Any task system consisting entirely of sporadic tasks is called an arbitrary-deadline sporadic task 
system

•	 In constrained-deadline sporadic task systems, Di ≤ Ti for all tasks τi

•	 In implicit-deadline sporadic task systems, Di = Ti for all tasks τi

(It is evident from these definitions that each implicit-deadline sporadic task system is also a con-
strained-deadline sporadic task system, and each constrained-deadline sporadic task system is also an 
arbitrary-deadline sporadic task system.)

Several models that are more general than the ones described earlier have also been proposed for 
representing recurrent real-time task systems; these include the multiframe model [43], the generalized 
multiframe model [8], the recurring real-time task model [7], and the digraph task model [54]. Models 
incomparable to the ones discussed earlier include the pinwheel model [28], and various models used for 
representing firm-real-time task systems such as the imprecise computation model [38] and the (m, k)-
task model [25].

58.2.5  Priority-Driven Scheduling Algorithms

Most run-time scheduling algorithms are implemented as follows. At every instant during run time, 
each job that is eligible to execute is assigned a priority (either explicitly or implicitly), and the highest-
priority jobs are selected for execution. Depending upon the manner in which priorities are assigned, 
algorithms for scheduling recurrent tasks can be classified [17] into three major categories:

	 1.	 In fixed-task-priority (FTP) scheduling algorithms, each recurrent task gets assigned a dis-
tinct priority and each job gets the priority of the task that generated it. Common examples 
of FTP scheduling algorithms include the rate-monotonic (RM) algorithm, in which tasks are 
assigned priorities according to their period parameters (tasks with smaller periods get greater 
priority), and the deadline monotonic (DM) algorithm, in which priorities are assigned accord-
ing to the relative deadline parameters (tasks with smaller relative deadline are assigned 
greater priority).

	 2.	 In fixed-job-priority (FJP) scheduling algorithms, different jobs of the same task may be assigned 
different priorities; however, each job gets assigned exactly one priority upon its release and this 
priority may not change until the job has completed execution. The earliest deadline first algo-
rithm (EDF), in which jobs with earlier deadlines are assigned greater priority (with ties broken 
arbitrarily), is a common example of an FJP scheduling algorithm.

	 3.	 There are no restrictions on the priority-assignment procedure for dynamic priority (DP) sched-
uling algorithms: different jobs of the same task may have different priorities and the priority of 
a job may change arbitrarily often. The least laxity (LL) algorithm, in which the priority assigned 
to a job depends upon the difference between the amount of time remaining to its deadline and 
its remaining execution, is an example of a DP scheduling algorithm: under LL scheduling, an 
executing job does not have its priority change, whereas a job that is awaiting execution sees its 
priority increase.

*	 In specifying sporadic task systems, the first parameter—the initial offset Oi—is often left unspecified; it seems that 
knowledge of this parameter does not significantly help in determining scheduling algorithms for systems of sporadic 
tasks.
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58.2.6  Synchronous Real-Time Systems

The synchronous paradigm of real-time computation [24] posits that all actions execute instanta-
neously. In practice, this requires that the program reacts rapidly enough to perceive all external events 
in suitable order [24, p. 6]. For this paradigm to be applicable, it is therefore necessary that an atomic 
time-slice be sufficiently large (equivalently, that the clock used be sufficiently coarse-grained to 
allow any action that begins execution at a clock-tick to complete execution, and have its results com-
municated to where it may be needed, by the next clock-tick). Synchronous programming languages 
such as ESTEREL [12] have been developed for implementing real-time systems when these condi-
tions are satisfied.

Although synchronous programming is an extremely powerful programming technique for specify-
ing and proving the correctness of complex real-time systems, it is difficult to obtain implementations of 
such systems that make efficient use of platform resources; in essence, this is because the time-granularity 
at which platform resources may be allocated corresponds to the maximum amount of time needed for 
any action to complete execution. In their purest forms, the synchronous paradigm and the priority-
driven one (which is the focus of much of this chapter) can be thought of as representing two alternative 
approaches: by using the synchronous paradigm it is easier to specify a real-time application but more 
difficult to obtain a resource-efficient implementation, whereas specifying an application using the task 
system models discussed in this chapter may be more difficult, but the resulting abstract model can be 
implemented in a very resource-efficient manner.

58.2.7  Execution Platform

In large part, the discipline of real-time systems has focused on optimizing the use of the proces-
sor (often called the CPU); additional platform components (memory, bandwidth, energy, etc.) have 
received much less attention. This is beginning to change; in Section 58.4, we will see how some of these 
additional resources give rise to a number of important and interesting research directions.

The execution model can be preemptive or nonpreemptive. In preemptive scheduling, an executing 
job may have its execution interrupted in order to execute some other job, with the interrupted job 
resuming execution later. In nonpreemptive scheduling, by contrast, an executing job may not be inter-
rupted until it has completed execution.

With regard to the processing resource, both uniprocessor and multiprocessor platforms have been 
considered. A uniprocessor platform consists of a single CPU upon which the entire real-time workload 
is required to execute. Real-time systems were initially primarily implemented on uniprocessor plat-
forms, but the advent of multicore technologies prompted many real-time researchers to begin inves-
tigating multiprocessor-related resource allocation problems. Given a system of recurrent tasks and a 
number of processors, it is possible to divide the processors into clusters and assign each task to a cluster. 
A scheduling algorithm is then applied locally in each cluster to the jobs generated by the tasks that are 
assigned to the cluster. The following two extremes of clustering have attracted the most attention from 
the real-time research community:

•	 Partitioned scheduling: Each processor is a cluster of size one. Historically, this has been the first 
step in extending single-processor analysis techniques to the multiprocessor domain.

•	 Global scheduling: There is only one cluster containing all the processors.

When resources other than the processors are taken into consideration, it is sometimes useful to con-
sider cluster sizes other than these two extremes. For example, many multicore CPUs have on-chip 
multilevel cache memory that is shared among different sets of processing cores; it may be beneficial to 
consider cores that share a common cache as a single cluster.



58-6 Operating Systems

A classification of multiprocessor platforms considers the relationship between the different 
processors:

•	 Identical multiprocessors: All the processors exhibit the same characteristics.
•	 Uniform multiprocessors: Some processors are “faster” than others, in the sense that a job would 

require less time to execute on the faster processor. All jobs experience the same speedup upon 
the faster processor.

The uniform multiprocessor model is useful for modeling platforms in which all the proces-
sors are of the same family of processors, but some may be of a newer generation than others. 
Alternatively, it may be the case that only a fraction of the computing capacity of each processor 
is available to the real-time workload (and this fraction is not the same for all the processors).

•	 Unrelated multiprocessors: Different jobs experience different speedups on different processors.

The unrelated multiprocessor model models multiprocessor platforms consisting of different kinds of 
processors (such as DSPs and GPUs). Depending on what they are doing, different jobs may be expected 
to have different execution rates on different processors—for example, a graphics-intensive job would 
probably experience greater speedup on a GPU than some other jobs. As such platforms become ever 
more common (particularly on multicore CPUs), the unrelated multiprocessor model is expected to 
become more important for the modeling of real-time application systems.

58.3  Best Practices

58.3.1  Scheduling on Uniprocessors

The scheduling of recurrent task systems on uniprocessor platforms is a well-studied subject. Much of 
the work has focused on preemptive scheduling; however, there are also several interesting and impor-
tant results concerning nonpreemptive scheduling.

58.3.1.1  Earliest Deadline First

One of the seminal results in uniprocessor scheduling is that EDF is optimal for scheduling collections 
of independent jobs on a preemptive uniprocessor, in the sense that if a given collection of jobs can be 
scheduled on a preemptive processor such that each job will complete by its deadline, then scheduling 
jobs according to their deadlines will also complete each job by its deadline [18,39]. This optimality 
result also holds for real-time workloads modeled using any of the models described in Section 58.2.4.

58.3.1.2  FTP Scheduling

EDF is an example of a FJP scheduling algorithm (see Section 58.2.5). A couple of FTP algorithms are 
also very widely used: rate-monotonic (RM) and deadline-monotonic (DM). In RM scheduling [39], a 
task is assigned a priority depending on its period parameter Ti: the smaller the period, the greater the 
priority (with ties broken arbitrarily). In DM scheduling [37], priorities are assigned depending on the 
relative deadline parameter Di: the smaller the relative deadline, the greater the priority (with ties again 
broken arbitrarily). Observe that for implicit-deadline sporadic task systems, RM and DM assign priori-
ties in an identical manner (since Ti = Di for all tasks in such systems). The following results are known 
concerning RM and DM scheduling:

	 1.	 DM is an optimal FTP algorithm for scheduling constrained-deadline sporadic task systems on a 
preemptive uniprocessor, in the sense that if a given collection of constrained-deadline sporadic 
task is schedulable by any FTP algorithm then it is also schedulable by DM [37].

	 2.	 DM is also an optimal FTP algorithm for scheduling periodic task systems satisfying the addi-
tional properties that (a) all the offset parameters (the Oi’s) are equal—periodic task systems 
satisfying this property are called synchronous periodic task systems; and (b) Di ≤ Ti for each 
task τi.
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	 3.	 A direct corollary of the aforementioned results is that RM is optimal for implicit-deadline spo-
radic task systems and for synchronous periodic task systems with Di = Ti for all τi; this result was 
previously proved in [39].

	 4.	 DM and RM are not optimal for asynchronous periodic task systems, and for sporadic task sys-
tems in which Di may exceed Ti for some tasks τi.

58.3.1.3  Shared Nonpreemptable Resources

The uniprocessor platforms upon which real-time systems execute may include nonpreemptable serially 
reusable resources in addition to the shared processor; these could be software resources such as shared 
data structures or hardware resources such as sensors and actuators. Access to such shared resources is 
typically made within critical sections of code that are guarded using mutual-exclusion primitives such 
as semaphores.

Priority-based scheduling algorithms have been extended to handle resource-sharing of this kind. 
Under priority inheritance protocols [49] for resource-sharing, a blocking job—that is, a job that holds 
a nonpreemptable resource and thereby prevents the execution of a higher-priority job—has its sched-
uling priority temporarily elevated to the priority of the blocked job. A particular kind of a priority 
inheritance protocol, called the priority ceiling protocol (PCP), restricts the conditions under which 
a job is eligible to begin execution. Another version—the Stack Resource Policy (SRP) [3]—defines a 
different set of restrictions. It has been shown that PCP is optimal for the FTP scheduling and that 
SRP is optimal for the FJP scheduling (and, therefore, also for FTP scheduling), of sporadic task sys-
tems on a platform consisting of a single preemptive processor and additional nonpreemptive serially 
reusable resources.

58.3.2  Scheduling on Multiprocessors

There has recently been a considerable amount of effort devoted to obtaining better algorithms for 
scheduling real-time systems on platforms containing multiple processors. Much of this work stud-
ies partitioned and global preemptive scheduling of HRT workloads represented using the sporadic 
task model (Section 58.2.4) and implemented upon identical multiprocessors; a few results concerning 
scheduling on uniform and unrelated multiprocessors have also been obtained.

58.3.2.1  Partitioned Scheduling on Identical Multiprocessors

The partitioned scheduling of a collection of recurrent tasks can be thought of as a two-step process. The 
first step occurs prior to run time: during this step, each task in the collection needs to be assigned to one 
of the processors. This step reduces the multiprocessor problem to a series of uniprocessor problems, 
one on each processor—the subsequent step solves these uniprocessor problems using, for example, the 
techniques discussed in Section 58.3.1.1. In the following, we therefore focus on the partitioning step.

It is evident that the partitioning step is a generalization of the bin-packing problem, which is known 
to be NP-hard in the strong sense. Therefore, most positive results concerning partitioned scheduling 
concern approximation algorithms. Several such positive results have been obtained for partitioning 
implicit-deadline sporadic task systems. Lopez et al. [41] have proposed a partitioning algorithm based 
on the first-fit decreasing bin-packing heuristic and have obtained a sufficient schedulability condition 
when the subsequent partitioning step is done using EDF; similar sufficient schedulability conditions for 
RM scheduling have also been obtained [40,44]. In more theoretical work, a polynomial-time approxi-
mation scheme (PTAS) for partitioned EDF scheduling is easily derived from the results in [27], while a 
3/2-approximation algorithm for partitioned RM scheduling was presented in [29].

The partitioned scheduling of constrained- and arbitrary-deadline sporadic task systems is less 
well studied. A polynomial-time partitioning algorithm called first-fit with increasing deadline (FFID) 
was proposed in [10] for partitioned EDF scheduling; a variant for partitioned DM scheduling was 
derived in [21].
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58.3.2.2  Global Scheduling on Identical Multiprocessors

The global scheduling of implicit-deadline sporadic task systems can be done optimally using a dynamic 
priority (DP) scheduling algorithm called pfair [9] and its variants and refinements.

As stated in Section 58.3.1, upon preemptive uniprocessors EDF is an optimal FJP algorithm, and 
DM is an optimal FTP algorithm for constrained-deadline task systems. These optimality results do not 
hold for global multiprocessor scheduling; in fact, a phenomenon commonly called Dhall’s effect [20] 
means that such algorithms can perform arbitrarily poorly when used for global scheduling. Phillips 
et al. [46] studied the global preemptive EDF scheduling of collections of independent jobs; their results 
have spawned a host of results scheduling algorithms and schedulability tests for the FJP and FTP global 
scheduling of implicit-deadline, constrained-deadline, and arbitrary-deadline sporadic task systems on 
identical multiprocessor platforms. These include FTP algorithms in which priorities are assigned using 
strategies other than RM or DM (see, e.g., [1,2]), as well as hybrid scheduling algorithms in which some 
tasks’ jobs are assigned highest priority while remaining tasks’ jobs have priorities assigned according to 
EDF (e.g., [23]). Various sufficient schedulability conditions for EDF and FTP scheduling (with a given 
priority assignment) have been derived [4,5,13,45].

58.3.2.3  Scheduling on Uniform and Unrelated Multiprocessors

As is evident from the earlier sections, considerable progress has been made on better understanding the 
scheduling of sporadic task systems on identical multiprocessors. Far less work has been done concern-
ing real-time scheduling in uniform and unrelated multiprocessors. Funk’s PhD dissertation [22] has a 
series of results for global and partitioned scheduling of implicit-deadline sporadic task systems on uni-
form multiprocessors. On unrelated multiprocessors, results from [33,34,51] can be applied to obtain 
polynomial-time approximation algorithms for partitioned scheduling of implicit-deadline sporadic 
task systems on unrelated multiprocessors; results from [31] can be used to obtain a polynomial-time 
algorithm for global scheduling of implicit-deadline sporadic task systems on unrelated multiproces-
sors. Global scheduling of arbitrary-deadline sporadic task systems on uniform processors is considered 
in Ref. [11].

58.3.3  Verification and Certification

As stated in Section 58.2.2, pre run-time analysis is often very important in real-time computing, par-
ticularly for safety-critical systems. Considerable effort has been devoted to the design of tools and 
methodologies for the formal verification of safety-critical real-time systems; these may involve the use 
of logic-based theorem provers, model-checking, automata-based tools, etc.

In safety-critical systems, certification refers to the process of demonstrating the correctness (or 
at least, safety) of a safety-critical system to a statutory authority. For example, aircraft are generally 
required to obtain an airworthiness certificate from the Federal Aviation Administration in order to 
be authorized to operate within US civilian airspace. Certification authorities (CAs) are entrusted by 
governments or other entities with certification responsibility over specified application domains; these 
CAs establish standards that must be met in order to obtain certification. Coming up with real-time 
system design processes that ameliorate the effort needed to obtain certification is an active ongoing 
research area, particularly for mixed criticality [6] systems: real-time systems in which different tasks 
perform functions that are of different degrees of importance (or criticality) to the overall performance 
of the system and are therefore subject to different certification requirements.

58.3.4  Operating Systems Issues

A real-time operating system (RTOS) provides system support for predictably satisfying real-time con-
straints. An RTOS differs from a traditional OS in that the time dimension is elevated to a central 
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principle; in contrast, traditional OSes tend to abstract real time away to facilitate specification, design, 
and verification of systems. An RTOS needs to have a highly integrated time-cognizant resource allo-
cation approach that provides support for meeting deadlines and for predictability; such a resource 
allocation approach must be built upon the foundational principles described in Sections 58.3.1 and 
58.3.2. Some features typically found in current RTOSs* include the following:

•	 A real-time clock
•	 A priority scheduling mechanism
•	 A fast and predictable context switch
•	 A fast and predictable response to external interrupts
•	 Provides for special alarms and timeouts
•	 Permits tasks to invoke primitives to delay by a fixed amount of time and to pause/resume 

execution

Current RTOSs can be placed in one of two broad categories: those that are specifically built for real-
time use and those that are obtained by adding some support for real time to general-purpose operating 
systems (various flavors of real-time Linux typically fall within this second category). A further clas-
sification of purpose-built RTOSs is proposed in [14, Section 2.5.1]:

•	 Deeply embedded RTOSs, for use in applications where resources are at a premium and mostly 
static, single-purpose workloads are prevalent. Such RTOS kernels are also sometimes called 
“executives.”

•	 Full-featured RTOSs, for applications where UNIX-like OS abstractions and multitasking are 
desirable, and the system design can afford the additional resources required to support them 
(e.g., extra memory and faster processors). Such RTOSs may find use in, for example, factory 
automatization and telecommunication infrastructure.

•	 Certification compliant RTOSs, for use in safety-critical applications that are subject to mandatory 
certification requirements. RTOSs in this category, also called separation kernels, are commonly 
used in avionics applications, where government-mandated standards such as the DO-178B stan-
dard for avionics impose strict isolation of safety-critical subsystems from faults in non- or less-
safety-critical subsystems. The RTOS itself may have obtained certification, thereby facilitating its 
adoption in applications subject to certification.

There are hundreds of small and large RTOS products and projects; see, for example, [53] and [14, 
Chapter 2.5] for discussions concerning some of them.

58.4 R esearch Issues

As real-time embedded systems become ever more important, time plays an increasingly more central 
role in the specification, design, implementation, and validation of computing systems. This phenom-
enon has led to some prominent researchers in real-time computing making a case (see, e.g., [32,52]) 
that the entire foundations of computing, starting from the Turing abstraction, need to be revisited 
to place time in a more central role. Of course, such a radical rethink of the discipline of computing 
gives rise to a host of deep open questions; these questions, although important, will not be addressed 
further in this section—the interested reader is encouraged to read the cogent and convincing argu-
ments put forth by Lee [32] and Sifakis [52], and consider their proposed avenues toward solving the 
problems identified.

Even from a less radical perspective, though, there are many interesting and important unresolved 
research issues in many areas of real-time computing. We list some of these areas next.

*	 The term RTOS is often applied to minimal custom-designed run-time environments that are developed for use in spe-
cific embedded systems; the discussion during the remainder of this section does exclude such RTOSs.
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58.4.1  Scheduling

In real-time scheduling theory, researchers are working on developing algorithms and techniques for 
implementing real-time workloads on heterogeneous platforms that consist of different kinds of process-
ing elements. Determining efficient scheduling strategies for meeting specified end-to-end deadlines on 
distributed platforms is also an active research area.

58.4.2  Programming Languages

The design of specification formalisms and programming languages for specifying and implementing 
real-time systems is an active research area. This research aims to resolve the ongoing tension between 
the need for a formalism to be adequately expressive and easy to use, while simultaneously being imple-
mentable in a resource-efficient manner. If a programming model is too close to an abstract specifica-
tion, then it is difficult to obtain an efficient implementation. On the other hand, if a programming 
model is too close to the execution platform, then programming becomes a challenge. (This tension was 
highlighted in Section 58.2.6 with respect to the synchronous paradigm of real-time computing, which 
is easier to program in vis a vis a priorities-based programming model, but typically results in less effi-
cient use of platform resources.)

58.4.3 R eal-Time Networking

Since embedded real-time systems are typically implemented upon distributed platforms, it is imperative 
that communication between the different nodes of the platform be guaranteed to occur in real time. The 
discipline of real-time networking studies the challenges associated in providing such communication.

58.4.4  Energy and Thermal Issues

There was initially an expectation that Moore’s law would eventually render resource-efficiency less of 
an issue, but that expectation has not been realized; instead, resources other than processing or memory 
capacity have become the scarce ones. One particularly important resource in this regard is the energy 
consumed by the real-time system, particularly in mobile embedded systems that are not tethered to 
the electricity grid. A related concern is ensuring that temperature does not rise too much, since the 
overheating of hardware components can change their behavioral characteristics and compromise their 
reliability and longevity. Energy-aware and thermal-aware real-time computing are very active research 
areas today.

58.4.5 R eal-Time Operating Systems

New approaches for implementing RTOSs that are more general (i.e., offer services closer to those 
offered by general-purpose OSs) and are known to be correct to a high level of assurance (e.g., by being 
certified correct) are another active research area. There is much work on adapting the server or con-
tainer abstraction, which allows for multiple applications of different criticalities to coexist on a shared 
platform, for use in RTOSs.

58.4.6  Soft Real-Time Computing

Much of the discussion in this chapter has been about HRT systems; this reflects the current focus 
of the community. However, SRT considerations are becoming increasingly more significant, as ever 
more SRT applications (such as multimedia and gaming) pay increasing attention to temporal issues. 
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Many different notions of SRT have been explored in some depth; the time-utility function approach [48] 
and the bounded tardiness approach [19,35] merit special mention for the comprehensive nature of the 
research that has been done and the results that have been obtained.

Further Information

The textbooks by Burns and Wellings [15], and Buttazzo [16], provide further information about many 
of the concepts introduced in this chapter. Kopetz [30] provides in-depth coverage of the concepts and 
results on time-triggered scheduling; the text by Halbwachs [24] is an introduction to the synchronous 
paradigm of real-time computing.

Proceedings of research conferences serve to provide an up-to-date snapshot of the current state of 
knowledge in the discipline and can be a useful source for recent results. The IEEE Real-Time Systems 
Symposium (RTSS), which has been held annually since 1980, is one of the flagship academic research 
conferences in real-time computing. The EuroMicro Conference on Real-Time Systems (ECRTS) and the 
ACM International Conference in Embedded Software (EMSOFT) are other important annual confer-
ences. The archival journal Real-Time Systems is, as its name suggests, devoted to publishing research 
and survey articles on real-time computing principles and applications. The November 2004 issue of 
this journal is a special anniversary issue containing invited survey papers on a number of important 
topics in real-time computing, including scheduling theory [50], the issue of predictability in real-time 
computing [55], real-time databases [47], and real-time operating systems [53].
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59.1  Introduction

In this chapter, scheduling is defined as the activity that consists in mapping a task graph onto a 
target platform. The task graph represents the application, nodes denote computational tasks, and 
edges model precedence constraints between tasks. For each task, an assignment (choose the proces-
sor that will execute the task) and a schedule (decide when to start the execution) are determined. 
The goal is to obtain an efficient execution of the application, which translates into optimizing some 
objective function.

The traditional objective function in the scheduling literature is the minimization of the total execu-
tion time, or makespan. Section 59.2 provides a quick background on task graph scheduling, mostly to 
recall some definitions, notations, and well-known results.
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In contrast to pure makespan minimization, this chapter aims at discussing scheduling problems 
that arise at large scale and involve one or several different optimization criteria, that depart from, or 
complement, the classical makespan objective. Section 59.3 assesses the importance of key ingredi-
ents of modern scheduling techniques: (1) multicriteria optimization; (2) memory management; and 
(3) reliability. These concepts are illustrated in the following sections, which cover four case stud-
ies. Section 59.4 is devoted to illustrate multicriteria optimization techniques that mix throughput, 
energy; and reliability. Sections 59.5 and 59.6 illustrate different memory management techniques to 
schedule large task graphs. Finally, Section 59.7 discusses the impact of checkpointing techniques 
to schedule parallel jobs at very large scale. We conclude this chapter by stating some research direc-
tions in Section 59.8, defining terms in key terms, and pointing to additional sources of information 
in further information.

59.2  Background on Scheduling

59.2.1  Makespan Minimization

Traditional scheduling assumes that the target platform is a set of p identical processors, and that no 
communication cost is paid. In that context, a task graph is a directed acyclic vertex-weighted graph 
G = (V, E, w), where the set V of vertices represents the tasks, the set E of edges represents precedence 
constraints between tasks e u v E u v= ∈( )( , ) if and only if ≺ , and the weight function w V: *→ �  gives 
the weight (or duration) of each task. Task weights are assumed to be positive integers. A schedule σ of 
a task graph is a function that assigns a start time to each task: σ : *V → �  such that σ(u) + w(u) ≤ σ(v) 
whenever e = (u,v) ∈ E. In other words, a schedule preserves the dependence constraints induced by the 
precedence relation ≺ and embodied by the edges of the dependence graph; if u ≺ v, then the execution 
of u begins at time σ(u) and requires w(u) units of time, and the execution of v at time σ(v) must start 
after the end of the execution of u. Obviously, if there was a cycle in the task graph, no schedule could 
exist, hence the restriction to acyclic graphs (DAGs).

There are other constraints that must be met by schedules, namely, resource constraints. When there 
is an infinite number of processors (in fact, when there are as many processors as tasks), the problem is 
with unlimited processors, and denoted P∞|prec|Cmax in the literature [25]. We use the shorter notation 
Pb(∞) in this chapter. When there is only a fixed number p of available processors, the problem is with 
limited processors, and denoted Pb(p). In the latter case, an allocation function alloc: V → P is required, 
where P = { , , }1 … p  denotes the set of available processors. This function assigns a target processor to each 
task. The resource constraints simply specify that no processor can be allocated more than one task at the 
same time:

	
alloc alloc( )

( ) ( ) ( )

( ) ( ).
T T

T w T T

T w T T
= ′ ⇒

+ ≤ ′

 ′ + ′ ≤ ′

 ( )
or ( )

σ σ
σ σ

This condition expresses the fact that if two tasks T and T′ are allocated to the same processor, then their 
executions cannot overlap in time.

The makespan MS(σ, p) of a schedule σ that uses p processors is its total execution time: MS(σ, p) = 
maxv∈V{σ(v) + w(v)} (assuming that the first task(s) is (are) scheduled at time 0). The makespan is the total 
execution time, or finish time, of the schedule. Let MSopt(p) be the value of the makespan of an optimal 
schedule with p processors: MSopt(p) = minσ MS(σ, p). Because schedules respect dependences, we have 
MSopt(p) ≥ w(Φ) for all paths Φ in G (weights extend to paths in G as usual). We also have Seq ≤ p × 

MSopt(p), where Seq MS= =
∈∑ w v

v V
opt( ) ( )1  is the sum of all task weights.

While Pb(∞) has polynomial complexity (simply traverse the graph and start each task as soon as 
possible using a fresh processor), problems with a fixed amount of resources are known to be difficult. 
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Letting Dec(p) be the decision problem associated with Pb(p), and Indep – tasks(p) the restriction 
of Dec(p) to independent tasks (no dependence, i.e., when E = 0), well-known complexity results are 
summarized next:

•	 Indep – tasks(2) is NP-complete but can be solved by a pseudo-polynomial algorithm. Moreover, 
∀ ε > 0, Indep – tasks(2) admits a (1 + ε)-approximation whose complexity is polynomial in 1/ε.

•	 Indep – tasks(p) is NP-complete in the strong sense.
•	 Dec(2) (and hence Dec(p)) is NP-complete in the strong sense.

Because Pb(p) is NP-complete, heuristics are used to schedule task graphs with limited processors. 
The most natural idea is to use greedy strategies: at each instant, try to schedule as many tasks as possible 
onto available processors. Such strategies deciding not to deliberately keep a processor idle are called list 
scheduling algorithms. Of course, there are different possible strategies to decide which tasks are given 
priority in the (frequent) case where there are more free tasks than available processors. Here a free task 
is a task whose predecessors have all been executed, hence which is available and ready for execution 
itself. But a key result due to Graham [26] is that any list algorithm can be shown to achieve at most 
twice the optimal makespan. More precisely, the approximation factor with p processors is 2p−1/p, and 
this bound is tight.

A widely used list scheduling technique is critical path scheduling. The selection criterion for ready 
tasks is based on the value of their bottom level, defined as the maximal weight of a path from the task 
to an exit task of the graph. Intuitively, the larger the bottom level, the more “urgent” the task. The criti-
cal path of a task is defined as its bottom level and is used to assign priority levels to tasks. Critical path 
scheduling is list scheduling where the priority level of a task is given by the value of its critical path. 
Ties are broken arbitrarily.

59.2.2  Dealing with Communication Costs

Thirty years ago, communication costs have been introduced in the scheduling literature. Because the 
performance of network communication is difficult to model in a way that is both precise and condu-
cive to understanding the performance of algorithms, the vast majority of results hold for a very simple 
model, which is defined as follows.

The target platform consists of p identical processors that are part of a fully connected clique. All 
interconnection links have same bandwidth. If a task T communicates data to a successor task T′, the 
cost is modeled as

	
cos ( , )

( , ) ,
t

if ( ) ( )

otherwise
T T

c T T

T T
′ =

′







= ′0 alloc alloc

where alloc(T) denotes the processor that executes task T, and c(T,T′) is defined by the application 
specification. The time for communication between two tasks running on the same processor is negli-
gible. A schedule σ must still preserve dependences, a condition that now writes
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This so-called macro-dataflow model makes two main assumptions: (1) communication can 
occur as soon as data are available and (2) there is no contention for network links. Assumption 
(1) is reasonable as communication can overlap with (independent) computations in most mod-
ern computers. Assumption (2) is much more questionable (although it makes sense in a shared-
memory environment). Indeed, there is no physical device capable of sending, say, 1000 messages 
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to 1000 distinct processors, at the same speed as if there were a single message. In the worst case, 
it would take 1000 times longer (serializing all messages). In the best case, the output bandwidth of 
the network card of the sender would be a limiting factor. In other words, assumption (2) amounts to 
assuming infinite network resources. Nevertheless, this assumption is omnipresent in the traditional 
scheduling literature.

Including communication costs in the model makes everything difficult, including solving Pb(∞), 
which becomes NP-complete in the strong sense. The intuitive reason is that a trade-off must be found 
between allocating tasks to either many processors (hence balancing the load but communicating inten-
sively) or few processors (leading to less communication but less parallelism as well). Even the problem 
in which all task weights and communication costs have the same (unit) value, the so-called UET-UCT 
problem (unit execution time-unit communication time) is NP-hard [40].

With limited processors, list heuristics can be extended to take communication costs into account, 
but Graham’s bound does not hold any longer. For instance, the Modified Critical Path (MCP) algorithm 
proceeds as follows. First, bottom levels are computed using a pessimistic evaluation of the longest path, 
accounting for each potential communication (this corresponds to the allocation where there is a differ-
ent processor per task). These bottom levels are used to determine the priority of free tasks. Then each 
free task is assigned to the processor that allows its earliest execution, given previous task allocation deci-
sions. It is important to explain further what “previous task allocation decisions” means. Free tasks from 
the queue are processed one after the other. At any moment, it is known which processors are available 
and which ones are busy. Moreover, for the busy processors, it is known when they will finish computing 
their currently allocated tasks. Hence, it is always possible to select the processor that can start the execu-
tion of the task under consideration the earliest. It may well be the case that a currently busy processor 
is selected.

The last extension of the “classical” line of work has been to handle heterogeneous platforms, that 
is, platforms that consist of processors with different speeds and interconnection links with different 
bandwidths. The main principle remains the same, namely, to assign the free task with highest prior-
ity to the “best” processor, given already given decisions. Now the “best” processor is the one capable 
to finish the execution of the task at the earliest, rather than starting the execution of the task, because 
computing speeds are different. These ideas have led to the design of the list heuristic called HEFT, for 
Heterogeneous Earliest Finish Time [51]. We refer the reader to [13] for a complete description of HEFT 
because we have omitted many technical (but important) implementation details. We stress that HEFT 
has received considerable acceptance and is the most widely used heuristic to schedule a task graph on 
a modern computing platform.

59.2.3 R ealistic Communication Models

Assuming an application that runs threads on, say, a node that uses multicore technology, the network 
link could be shared by several incoming and outgoing communications. Therefore, the sum of the 
bandwidths allotted by the operating system to all communications cannot exceed the bandwidth of 
the network card. The bounded multiport model proposed by Hong and Prasanna [28] assesses that an 
unbounded number of communications can thus take place simultaneously, provided that they share 
the total available bandwidth.

A more radical option than limiting the total bandwidth is simply to forbid concurrent communica-
tions at each node. In the one-port model, a node can either send data or receive data, but not simulta-
neously. This model is thus very pessimistic as real-world platforms can achieve some concurrency of 
communication. On the other hand, it is straightforward to design algorithms that follow this model 
and thus to determine their performance a priori.

There are more complicated models such as those that deal with bandwidth sharing protocols [35,36]. 
Such models are very interesting for performance evaluation purposes, but they almost always prove too 
complicated for algorithm design purposes. For this reason, when scheduling task graphs, one prefers 
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to deal with the bounded multiport or the one-port model. As stated earlier, these models represent a 
good trade-off between realism and tractability, and we use them for all the examples and case studies 
of this chapter.

59.3  Underlying Principles

As stated in the introduction, the case studies provided in this chapter depart from pure makespan 
minimization. In this section, we briefly overview the main objectives that can be addressed instead of, 
or in complement to, the total execution time.

59.3.1  Multicriteria Optimization

The first case study (Section 59.4) deals with energy consumption. Processors can execute tasks at differ-
ent frequencies, and there is a trade-off to achieve between fast execution (which implies high frequen-
cies) and low-energy consumption (which requests low frequencies). To complicate matters, running 
at low frequencies increases the probability of a fault during the execution. Altogether, one faces a tri-
criteria problem, involving makespan, energy, and reliability.

How to deal with several objective functions? In some approaches, one would form a linear combi-
nation of the different objectives and treat the result as the new objective to optimize for. But it is not 
natural for the user to maximize a quantity like 0.6M + 0.3E + 0.1R, where M is the makespan, E the 
energy consumption, and R the reliability. Instead, one is more likely to fix an execution deadline and 
a reliability threshold, and to search for the execution that minimizes the energy consumption under 
these makespan and reliability constraints. One single criterion is optimized, under the condition that 
the constraints on the other criteria are not violated.

59.3.2  Memory Management

The second and third case studies (Sections 59.5 and 59.6) both deal with memory management issues. 
In Section 59.5, the goal is to traverse a task graph (an out-tree) and execute it with a prescribed amount 
of main memory. To execute a task, one needs to load the files produced by the parent of the task, the 
object code of the task itself, and all the files that it produces for its children. If there is not enough main 
memory available, secondary (out-of-core) memory must be used, at the price of a much slower execu-
tion. The ordering of the tasks chosen by the scheduler will have a dramatic impact on the peak amount 
of memory that is needed throughout the execution.

The problem investigated in Section 59.6 also deals with out-trees and is expressed as follows: How to 
partition the leaves of the tree in fixed-size parts so that the total memory load is minimized? Here the 
load of a part if the sum of the weights of the subtree formed by the leaves in the part. Intuitively, the 
goal is to construct parts whose leaves share many ancestors, so that the cost of loading theses ances-
tors is paid for only a reduced umber of times. Both case studies arise from scientific applications (such 
as multifrontal method for sparse linear algebra) that deploy large collections of tasks, and an efficient 
memory management is the key component to efficiency.

59.3.3 R eliability

The fourth case study (Section 59.7) addresses a completely different problem. Instead of dealing with 
task graphs, it deals with a single job that must be executed by one or several processors. This (large) job 
is divisible, meaning that it can be split arbitrarily into chunks of different sizes. Processors are subject 
to failures, which leads to take a checkpoint after each successful execution of a chunk. Indeed, after a 
failure, the execution can resume at the state of the last checkpoint. Frequent checkpoints avoid to lose 
(in fact, re-execute) a big fraction of the work when a failure occurs, but they induce a big overhead. 



59-6 Operating Systems

What is the optimal checkpointing policy? In some way, this problem can be viewed as a trade-off 
between makespan and reliability, but the framework is totally different from that of Section 59.4. The 
goal here is to minimize the expected makespan on a platform subject to failures. With the advent 
of future exascale machines that gather millions of processors, the problem has become central to 
the community.

59.4 � Case Study: Tri-Criteria (Makespan, Energy, 
and Reliability) Scheduling

In this section, we are interested in energy-aware scheduling: the aim is to minimize the energy consumed 
during the execution of the target application. Energy-aware scheduling has proven an important issue in 
the past decade, both for economical and environmental reasons. This holds true for traditional computer 
systems, not even to speak of battery-powered systems. More precisely, a processor running at frequency 
f dissipates f 3 watts per unit of time [7,9,15], hence it consumes f 3 × d joules when operated during d units 
of time. To help reduce energy dissipation, processors can run at different frequencies, that is, different 
speeds. A widely used technique to reduce energy consumption is dynamic voltage and frequency scaling 
(DVFS), also known as speed scaling [7,9,15]. Indeed, by lowering supply voltage, hence processor clock 
frequency, it is possible to achieve important reductions in power consumption; faster speeds allow for a 
faster execution, but they also lead to a much higher (supra-linear) power consumption. Processors can 
have arbitrary speeds, and can vary them continuously in the interval [fmin, fmax]. This model of continuous 
speeds is unrealistic (any possible value of the speed, say e π , cannot be obtained), but it is theoretically 
appealing [9].

Obviously, minimizing the energy consumption makes sense only when coupled with some perfor-
mance bound to achieve, otherwise, the optimal solution always is to run each processor at the slowest 
possible speed. We consider a directed acyclic graph (DAG) of n tasks with precedence constraints, and 
the goal is to schedule such an application onto a fully homogeneous platform consisting of p identical 
processors. This problem has been widely studied with the objective of minimizing the total execution 
time, or makespan, and it is well known to be NP-complete [12]. Since the introduction of DVFS, many 
papers have dealt with the optimization of energy consumption while enforcing a deadline, that is, a 
bound on the makespan [5,7,9,15].

There are many situations in which the mapping of the task graph is given, say by an ordered list 
of tasks to execute on each processor, and we do not have the freedom to change the assignment of a 
given task. Such a problem occurs when optimizing for legacy applications, or accounting for affini-
ties between tasks and resources, or even when tasks are pre-allocated [45], for example for security 
reasons. While it is not possible to change the allocation of a task, it is possible to change its speed. This 
technique, which consists in exploiting the slack due to workload variations, is called slack reclaiming 
[32,43]. In our previous work [5], assuming that the mapping and a deadline are given, we have assessed 
the impact of several speed variation models on the complexity of the problem of minimizing the energy 
consumption. Rather than using a local approach such as backfilling [43,54], which only reclaims gaps 
in the schedule, we have considered the problem as a whole.

While energy consumption can be reduced by using speed scaling techniques, it was shown in 
[17,57] that reducing the speed of a processor increases the number of transient fault rates of the sys-
tem; the probability of failures increases exponentially, and this probability cannot be neglected in 
large-scale computing [39]. In order to make up for the loss in reliability due to the energy efficiency, 
different models have been proposed for fault-tolerance. In this section, we consider re-execution: a 
task that does not meet the reliability constraint is executed twice. This technique was also studied in 
[42,56,57], or in the case study of Section 59.7. The goal is to ensure that each task is reliable enough, 
that is, either its execution speed is above a threshold, ensuring a given reliability of the task, or the 
task is executed twice to enhance its reliability. There is a clear trade-off between energy consumption 
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and reliability, since decreasing the execution speed of a task, and hence the corresponding energy 
consumption, is deteriorating the reliability. This calls for tackling the problem of considering the 
three criteria (makespan, reliability, and energy) simultaneously. This tri-criteria optimization brings 
dramatic complications: in addition to choosing the speed of each task, as in the makespan/energy bi-
criteria problem, we also need to decide which subset of tasks should be re-executed (and then choose 
both execution speeds).

Given an application with dependence constraints and a mapping of this application on a homoge-
neous platform, we present in this section theoretical results for the problem of minimizing the energy 
consumption under the constraints of both a reliability threshold per task and a deadline bound.

59.4.1 T ri-Criteria Problem

Consider an application task graph G E= ( , )V , where V = {T1, T2, …, Tn} is the set of tasks, n = |V|, and 
where E  is the set of precedence edges between tasks. For 1 ≤ i ≤ n, task Ti has a weight wi, that corresponds 
to the computation requirement of the task. We also consider particular class of task graphs, such as lin-
ear chains where E = →=

−
+∪ i

n
i iT T1

1
1{ }, and forks with n + 1 tasks {T0, T1, T2, …, Tn} and E = →=∪ i

n
iT T1 0{ }.

We assume that tasks are mapped onto a parallel platform made up of p identical processors. Each 
processor has a set of available speeds that is continuous (in the interval [ fmin, fmax]). The goal is to mini-
mize the energy consumed during the execution of the graph while enforcing a deadline bound and 
matching a reliability threshold. To match the reliability threshold, some tasks are executed once at a 
speed high enough to satisfy the constraint, while some other tasks need to be re-executed. We detail 
next the conditions that are enforced on the corresponding execution speeds. The problem is therefore 
to decide which task to re-execute and at which speed to run each execution of a task.

In this section, for the sake of clarity, we assume that a task is executed at the same (unique) speed 
throughout execution, or at two different speeds in the case of re-execution. In Section 59.4.2, we show 
that this strategy is indeed optimal. We now detail the three objective criteria (makespan, reliability, and 
energy), and then define formally the problem.

The makespan of a schedule is its total execution time. We consider a deadline bound D, which is a 
constraint on the makespan. Let Exe w fi( , ) be the execution time of a task Ti of weight wi at speed f. We 
assume that the cache size is adapted to the application, therefore ensuring that the execution time is 
linearly related to the frequency [37]: Exe w f w fi i( , ) = / . When a task is scheduled to be re-executed at 
two different speeds f (1) and f (2), we always account for both executions, even when the first execution is 
successful, and hence Exe w f f

w

f

w

f
i

i i( , , ) .( ) ( )
( ) ( )

1 2
1 2

= +  In other words, we consider a worst-case execution 

scenario, and the deadline D must be matched even in the case where all tasks that are re-executed fail 
during their first execution.

To define the reliability, we use the fault model of Zhu et al. [56,57]. Transient failures are faults 
caused by software errors for example. They invalidate only the execution of the current task and the 
processor subject to that failure will be able to recover and execute the subsequent task assigned to it 
(if any). In addition, we use the reliability model introduced by Shatz and Wang [48], which states that 
the radiation-induced transient faults follow a Poisson distribution. The parameter λ of the Poisson 
distribution is then

	 λ λ( ) ,f e
d

f f

f f=
−

−�
�

0

max

max min 	 (59.1)

where
fmin ≤ f ≤ fmax is the processing speed, the exponent d~ ≥ 0 is a constant, indicating the sensitivity of 

fault rates to DVFS
λ
~

0 is the average fault rate corresponding to fmax
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We see that reducing the speed for energy saving increases the fault rate exponentially. The reliability 
of a task Ti executed once at speed f is R f ei

f xe w fi( ) ( ) ( , )= − ×λ E . Because the fault rate is usually very small, 
of the order of 10−6 per time unit in [8,42], 10−5 in [4], we can use the first-order approximation of Ri(f) as

	
R f f xe w f e

w

f
i i

df i( ) ( ) ( , ) ,= − × = − ×−1 1 0λ λE

where

d
d

f f
=

−

�

max min

λ λ0 0= � edfmax

This equation holds if εi if w f= ×λ( ) / �1. With, say, λ(f) = 10−5, we need w fi / ≤ 103 to get an accurate 
approximation with εi ≤ 0.01: the task should execute within 16 min. In other words, large (computa-
tionally demanding) tasks require reasonably high processing speeds with this model (which makes full 
sense in practice).

We want the reliability Ri of each task Ti to be greater than a given threshold, namely Ri(frel), 
hence enforcing a local constraint dependent on the task Ri ≥ Ri(frel). If task Ti is executed only once 
at speed f, then the reliability of Ti is Ri = Ri(f). Since the reliability increases with speed, we must 
have f ≥ frel to match the reliability constraint. If task Ti is re-executed (speeds f (1) and f (2)), then the 
execution of Ti is successful if and only if one of the attempts do not fail, so that the reliability of Ti is 
R R f R fi i i= − −( ) −( )1 1 11 2( ) ( ) ,( ) ( )  and this quantity should be at least equal to Ri(frel).

The total energy consumption corresponds to the sum of the energy consumption of each task. Let 
Ei be the energy consumed by task Ti. For one execution of task Ti at speed f, the corresponding energy 
consumption is E f xe w f f w fi i i( ) ( , )= × = ×E 3 2, which corresponds to the dynamic part of the classical 
energy models of the literature [5,7,9,15]. Note that we do not take static energy into account, because all 
processors are up and alive during the whole execution.

If task Ti is executed only once at speed f, then Ei = Ei(f). Otherwise, if task Ti is re-executed at speeds 
f(1) and f(2), it is natural to add up the energy consumed during both executions, just as we add up both 
execution times when enforcing the makespan deadline. Again, this corresponds to the worst-case exe-
cution scenario. We obtain E E f E fi i i i i= ( ) + ( )( ) ( )1 2 . In this work, we aim at minimizing the total energy 
consumed by the schedule in the worst case, assuming that all re-executions do take place. This worst-
case energy is E Ei

i

n

=
=∑ 1

.

Some authors [56] consider only the energy spent for the first execution, which seems unfair: re-exe-
cution comes at a price both in the deadline and in the energy consumption. Another possible approach 
would be to consider the expected energy consumption, which would require to weight the energy spent 
in the second execution of a task by the probability of this re-execution to happen. This would lead to 
a less conservative estimation of the energy consumption by averaging over many execution instances. 
However, the makespan deadline should be matched in all execution scenarios, and the execution speeds 
of the tasks have been dimensioned to account for the worst-case scenario, so it seems more important 
to report for the maximal energy that can be consumed over all possible execution instances.

We are now ready to define the optimization problem: given an application graph G E= ( , )V , mapped 
onto p homogeneous processors with continuous speeds, Tri-Crit is the problem of deciding that tasks 
should be re-executed and at which speed each execution of a task should be processed, in order to 
minimize the total energy consumption E, subject to the deadline bound D and to the local reliability 
constraints Ri ≥ Ri(frel) for each Ti ∈ V.

We also introduce variants of the problems for particular application graphs: Tri-Crit-Chain is 
the same problem as Tri-Crit when the task graph is a linear chain, mapped on a single processor; 



59-9Scheduling for Large-Scale Systems

and Tri-Crit-Fork is the same problem as Tri-Crit when the task graph is a fork, and each task is 
mapped on a distinct processor.

59.4.2  Complexity Results

Note that the formal proofs for this section can be found in [6]. As stated in Section 59.4.1, we start by 
proving that there is always an optimal solution where each task is executed at a unique speed:

Lemma 59.1

It is optimal to execute each task at a unique speed throughout its execution.

The idea is to consider a task whose speed changes during the execution; we exhibit a speed such 
that the execution time of the task remains the same, but where both energy and reliability are maybe 
improved, by convexity of the functions.

Next we show that not only a task is executed at a single speed, but that its re-execution (whenever it 
occurs) is executed at the same speed as its first execution:

Lemma 59.2

It is optimal to re-execute each task (whenever needed) at the same speed as its first execution, and this 

speed f is such that f f fi
( )inf

rel≤ < 1

2
, where

	

λ0

2

w
e

f

e

f
i

df

i

dfi− −

( )
=

( )

( )
.

inf
rel

inf rel
2 	 (59.2)

Similarly to the proof of Lemma 59.1, we exhibit a unique speed for both executions, in case they 
differ, so that the execution time remains identical but both energy and reliability are improved. If this 
unique speed is greater than 

1

2
frel, then it is better to execute the task only once at speed frel, and if f 

is lower than fi
( ),inf  then the reliability constraint is not matched. Note that both lemmas can be applied 

to any solution of the Tri-Crit problem, not just optimal solutions. We are now ready to assess the 
problem complexity:

Theorem 59.1

The Tri-Crit-Chain problem is NP-hard, but not known to be in NP.

Note that the problem is not known to be in NP because speeds could take any real values. The 
completeness comes from SUBSET-SUM [22]. The problem is NP-hard even for a linear chain appli-
cation mapped on a single processor (and any general DAG mapped on a single processor becomes a 
linear chain).
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Even if Tri-Crit-Chain is NP-hard, we can characterize an optimal solution of the problem:

Proposition 59.1

If  frel < fmax, then in any optimal solution of Tri-Crit-Chain, either all tasks are executed only once, at 

constant speed max , ;
w

D
f

i
i

n

=∑















1
rel  or at least one task is re-executed, and then all tasks that are not 

re-executed are executed at speed frel.

In essence, Proposition 59.1 states that when dealing with a linear chain, we should first slow 
down the execution of each task as much as possible. Then, if the deadline is not too tight, that is, 

if f
w

D

i
i

n

rel > =∑ 1 , there remains the possibility to re-execute some of the tasks (and of course it is 

NP-hard to decide which ones). Still, this general principle “first slow-down and then re-execute” can 
guide the design of efficient heuristics (see [6]).

While the general Tri-Crit problem is NP-hard even with a single processor, the particular variant 
Tri-Crit-Fork can be solved in polynomial time:

Theorem 59.2

The Tri-Crit-Fork problem can be solved in polynomial time.

The difficulty to provide an optimal algorithm for the Tri-Crit-Fork problem comes from the fact 
that the total execution time must be shared between the source of the fork, T0, and the other tasks that all 
run in parallel. If we know D′, the fraction of the deadline allotted for tasks T1, …, Tn once the source has 
finished its execution, then we can decide which tasks are re-executed and all execution speeds. Indeed, 
if task Ti is executed only once, it is executed at speed f w D f fi

once
i

( )
maxmin max , , .= ′( )( )/ rel  Otherwise, 

it is executed twice at speed f w D f f fi
twice

i i
( )

min
( )

maxmin max , , , ,= ′( )( )2 / inf  where fi
( )inf  is the minimum 

speed at which task Ti can be executed twice (see Lemma 59.2). The energy consumption for task Ti is 
finally E w f w fi i i

once
i i

twice= × ×( )min ,( ) ( )2 , and the case that reaches the minimum determines whether 
the task is re-executed or not. There remains to find the optimal value of D′, which can be obtained by 
studying the function of the total energy consumption, and bounding the value of D′ to a small num-
ber of possibilities. Note however that this algorithm does not provide any closed-form formula for the 
speeds of the tasks, and that there is an intricate case analysis due to the reliability constraints.

If we further assume that the fork is made of identical tasks (i.e., wi = w for 0 ≤ i ≤ n), then we can pro-
vide a closed-form formula. However, Proposition 59.2 illustrates the inherent difficulty of this simple 
problem, with several cases to consider depending on the values of the deadline, and also the bounds on 
speeds f f fmin max, , ,rel etc.( ) First, since the tasks all have the same weight wi = w, we get rid of the fi

( )inf  
introduced earlier, since they are all identical (see Equation 59.2): f fi

( ) ( )inf inf=  for 0 ≤ i ≤ n. Therefore 
we let fmin = max( fmin, f (inf)) in the following proposition below:

Proposition 59.2

In the optimal solution of Tri-Crit-Fork with at least three identical tasks (and hence n ≥ 2), there are 
only three possible scenarios: (1) no task is re-executed; (2) the n successors are all re-executed but not 
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the source; and (3) all tasks are re-executed. In each scenario, the source is executed at speed fsrc (once 
or twice), and the n successors are executed at the same speed fleaf (once or twice).

For a deadline D w

f
< 2

max

, there is no solution. For a deadline D
w

f

w

f

n

n
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 no task is 

re-executed (scenario (1)) and the values of fsrc and fleaf are the following:
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Note that for larger values of D, depending on fmin, we can move to scenarios (2) and (3) with partial 
or total re-execution. The case analysis becomes even more painful, but remains feasible. Intuitively, the 
property that all tasks have the same weight is the key to obtaining analytical formulas, because all tasks 
have the same minimum speed f (inf) dictated by Equation 59.2. Beyond the case analysis itself, the result 
of Proposition 59.2 is interesting: we observe that in all cases the source task is executed faster than the 
other tasks. This shows that Proposition 59.1 does not hold for general DAGs and suggests that some 
tasks may be more critical than others. A hierarchical approach that categorizes tasks with different 
priorities may guide the design of efficient heuristics (see [6]).

59.4.3  Conclusion

In this case study, we have accounted for the energy cost associated to task re-execution in a more real-
istic and accurate way than the best-case model used in [56]. Coupling this energy model with the clas-
sical reliability model used in [48], we have been able to formulate a tri-criteria optimization problem: 
How to minimize the energy consumed given a deadline bound and a reliability constraint? The “antag-
onistic” relation between energy and reliability renders this tri-criteria problem much more challenging 
than the standard bi-criteria (makespan, energy) version. We have assessed the intractability of this tri-
criteria problem, even in the case of a single processor. In addition, we have provided several complexity 
results for particular instances. Note that several polynomial time heuristics are discussed in [6].

Further work could tackle the design of efficient approximation algorithms. However, this is quite 
a challenging work for arbitrary DAGs, and one may try to focus on special graph structures, for 
example, series-parallel graphs. However, looking back at the complicated case analysis needed for 
an elementary fork-graph with identical weights (Proposition 59.2), we cannot underestimate the 
difficulty of this problem. Also, it could be interesting to study the expected energy consumption, 
instead of the worst-case energy consumption. However, the complexity of the problems is likely 
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to increase drastically. Finally, we point out that energy reduction and reliability will be even more 
important objectives with the advent of massively parallel platforms, made of a large number of clus-
ters of multicores. More efficient solutions to the tri-criteria optimization problem (makespan, energy, 
and reliability) could be achieved through combining replication with re-execution. A promising (and 
ambitious) research direction would be to search for the best trade-offs that can be achieved between 
these techniques that both increase reliability, but whose impact on execution time and energy con-
sumption is very different. The comprehensive set of theoretical results presented in this case study 
provides solid foundations for further studies and constitutes a partial yet important first step for solv-
ing the problem at very large scale.

59.5  Case Study: Memory-Aware Scheduling

In this section, we review the latest results in memory-aware scheduling. When processing an applica-
tion on a computational grid, it is likely that the involved data will have a very high volume. Such large 
data sizes may prevent the processing of some task on given resources, and more often, may prevent 
the processing of two data-intensive tasks on the same resource, because of the input and output data 
needed for these tasks. In this case, some of the data may need to be discarded from the main storage 
system (such as memory) and to be written to a secondary storage system (such as disk), to be able to 
proceed with the execution.

In grid computing, workflows are usually modeled as Directed Acyclic Graph (DAG), where nodes 
represent computational tasks and edges represent the dependencies among tasks. The dependencies 
are in the form of input and output files: each node accepts a set of (large) files as input, and produces 
a set of (large) files as output, each of them accepted by different child tasks. The execution scheme 
of such a workflow corresponds to a traversal of the DAG, where visiting a node translates into read-
ing the associated input files and producing output files. Even on a single machine, finding a way to 
traverse the DAG to minimize the needed storage is a difficult problem: when restricting the problem 
to uniform sizes, it is similar to the pebble game problem, which has been proven NP-hard by Sethi 
[47] (the general problem allowing recomputation, that is, re-pebbling a vertex that has been pebbled 
before, has been proven Pspace complete by Gilbert, Lengauer and Tarjan [24]). Latest studies focus 
on the restricted problem of traversing tree-shaped DAGs to minimize the memory demand on a 
single machine.

For convenience we refer to the two levels of storage as main memory and secondary memory, and 
also as in-core and out-of-core. Many combinations such as cache and RAM, or RAM and disk, or even 
disk and tape, lead to the same association of a faster but smaller storage device together with a larger 
but slower device. The difficulty remains the same for all combinations: find an execution scheme that 
makes the best use of main memory, and minimizes accesses to secondary memory.

Throughout the case study we consider out-trees where a task can be executed only if its parent has 
already been executed. However, all results equivalently apply to in-trees, where tasks are processed 
from the leaves up to the root, as explained later. Each task (or node) i in the tree is characterized by 
the size fi of its input file (data needed before the execution and received from its parent), and by the 
size ni of its execution file. During execution, nonleaf nodes generate several output files, one for each 
child, which can have different sizes. A task can be processed only in-core; its execution is feasible only 
if all its files (input, output, and execution) fit in currently available memory. More formally, let M be 
the size of the main memory, and S the set of files stored in this memory when the scheduler decides 
to execute task i. Note that S must contain the input file of task i. The processing of task i is possible if 
we have

	
Mem q i f n f M fi i j

j Children i

j

j S j i

Re ( )
( ) ,

= + + ≤ −
∈ ∈ ≠
∑ ∑ 	 (59.3)
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where MemReq(i) denotes the memory requirement of task i (and Children(i) its child nodes in the tree). 
Once i has been executed, its input file and execution file can be discarded, and replaced by other files in 
main memory; the output files can either be kept in main memory, in order to execute some child of the 
task, or they can temporarily be stored into secondary memory (and retrieved later when the scheduler 
decides to execute the corresponding child of i). The volume of accesses (reads or writes) to secondary 
memory is referred to as the I/O volume.

Clearly, the traversal, that is, the order chosen to execute the tasks, plays a key role in determining 
which amount of main memory and I/O volume are needed for a successful execution of the whole tree. 
More precisely, there are two main problems that the scheduler must address

MinMemory Determine the minimum amount of main memory that is required to execute the 
tree without any access to secondary memory.

MinIO Given the size M of the main memory, determine the minimum I/O volume that is 
required to execute the tree.

Obviously, a necessary condition for the execution to be successful is that the size M of main memory 
exceeds the largest memory requirement over all tasks:

	
max

i
MMemReq i( ) ≤

However, this condition is not sufficient, and a much larger main memory size may be needed for the 
MinMemory problem.

This problem has two main motivations. The first one (chronologically) arose from numerical lin-
ear algebra. Tree workflows (assembly or elimination trees) appear during the factorization of sparse 
matrices, and the huge size of the files involved makes it absolutely necessary to reduce the memory 
requirement of the factorization. The trees arising in this context are in-trees (as said before, there is 
no difference between in-trees and out-trees). Liu [33] discusses how to find the best traversal for the 
MinMemory problem when the traversal is required to correspond to a postorder traversal of the tree. 
In the follow-up study [34], an exact algorithm is proposed to solve the MinMemory problem, without 
the postorder constraint on the traversal. Another exact algorithm has been proposed recently [29]. 
Although its theoretical worst-case complexity is similar to Liu’s algorithm, it performs better on elimi-
nation trees arising from real sparse matrix factorizations.

The second motivation for this problem comes from computations and simulations involving large 
objects, such as the accurate modeling of the electronic structure of atoms and molecules in quan-
tum chemistry, or in some computational physics code. In this context, Liu’s exact algorithm has been 
recently rediscovered by Lam et al. [31]. In the following, we first propose a formal model for the prob-
lem. Then we review state-of-the-art results and algorithms for the MinMemory and MinIO problems.

59.5.1  Problem Modeling

We consider a tree workflow T  composed of p nodes, or tasks, numbered from 1 to p. Nodes in the tree 
have an input file, an execution file (or program), and several output files (one per child). More precisely  
the following conditions hold true:

•	 Each node i has an input file of size fi. If i is not the root, its input file is produced by its parent 
parent(i); if i is the root, its input file can be of size zero, or contain input from the outside world.

•	 Each node i in the tree has an execution file of size ni.
•	 Each nonleaf node i in the tree, when executed, produces a file of size fj for each j ∈ Children(i). 

Here Children(i) denotes the set of the children of i. If i is a leaf node, then Children(i) = 0 
and i produces a file of null size: we then consider that the terminal data produced by leaves are 
directly written to the secondary memory or sent to the outside world, independently from the 
I/O mechanism.
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The memory requirement MemReq(i) of node i is the total amount of main memory that is needed to 
execute node i, as underlined in Equation 59.3. After i has been processed, its input file and program can 
be discarded, while its output files can either be kept in main memory (to process the children of i) or be 
stored in secondary memory temporarily.

59.5.2  In-Core Traversals and the MinMemory Problem

For the MinMemory problem, we are given a tree T  with p nodes and an initial amount of memory M. 
A traversal is an ordering of the p nodes that specifies at which step they are executed. A traversal must 
obey precedence constraints (a node is always scheduled after its parent) and must never exceed the 
available memory. A formal definition of a traversal is given next.

Definition 59.1  (InCoreTraversal)

Given a tree T  and a amount M of available memory, the problem InCoreTraversal( , )T M  consists 
in finding a feasible in-core traversal σ described by a permutation of the nodes of a tree T  such that

	 ∀ ≠ <i root parent i i, ( ( )) ( )σ σ 	 (59.4)
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In this definition, Equation 59.4 accounts for precedence constraints and Equation 59.5 deals with 
memory constraints. A postorder traversal is a traversal where nodes are visited according to some top-
down postorder ordering of the tree nodes. Hence, in a postorder traversal, after processing a vertex i, 
the whole subtree rooted in i is completely processed.

Definition 59.2  (MinMemory)

Given a tree T , determine the minimum amount of memory M such that InCoreTraversal ( , )T M  
has a solution. MinMemory-PostOrder is the same problem restricted to postorder traversals.

Here, we have chosen to define the problem for out-trees and top-down traversals. However, it is 
possible to define a similar problem for in-trees and bottom-up traversals. Both problems are equiva-
lent. Consider an in-tree T  and the out-tree ′T  obtained when reversing all its edges. Then, from any 
traversal of T  we can obtain a valid traversal of ′T  with same memory footprint simply by reversing 
the order of visited nodes. Thus, all results mentioned in the following apply both for in-trees and 
out-trees.

59.5.2.1  Postorder Traversals

Postorder traversals are very natural for the MinMemory problem, and they are widely used in sparse 
matrix software like MUMPS [2,3]. Liu [33] has characterized the best postorder traversal, leading to a 
fast but suboptimal solution for MinMemory. In a nutshell, the best postorder is obtained by guaran-
teeing that in the resulting order the children of a node are listed in the increasing order of the memory 
requirement of their respective subtrees. This can be done with a recursive algorithm, which computes 
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a memory-optimal schedule for each subtree: at each level subtrees are sorted in nonincreasing order of 
maxi subtree subrootMem i f∈ −( )Req( )  (where subroot is the root of the current subtree). In the following, we 
denote this algorithm by PostOrder. Although it has a low time complexity O p plog( )( )( ) and it is widely 
used in practice, it may require arbitrarily more main memory than the optimal traversal.

Theorem 59.3

Given any arbitrarily large integer K, there exist trees for which the best postorder traversal requires at 
least K times the amount of main memory needed by the optimal traversal for MinMemory.

The proof of this results relies on the family of trees illustrated in Figure 59.1, where all branches 
are identical and all tasks have a zero length execution file. On the single-level tree of Figure 59.1a, any 
postorder traversal requires an amount of M + ε + (b − 1)M/b main memory, while the optimal traversal 
(which alternates between branches) only requires Mmin = M + ε. Now replace each leaf by a copy of the 
harpoon graph, as shown in Figure 59.1b. The value of Mmin is unchanged, while a postorder traversal 
requires M + ε + 2(b − 1)M/b. Iterating the process K times leads to the desired result.

The tree used to prove that postorder may require an arbitrarily large memory compared from 
the optimal is very different to usual trees encountered in practice: it has many edges with zero 
weight, and on a path from the root, the edge weights alternate between large and small values. It is 
thus interesting to compare the actual performance of PostOrder in terms of the memory require-
ment of the resulting traversal with respect to the optimal value on realistic trees. To this goal, one 
can use assembly trees that arise from the factorization of matrices obtained from the University 
of Florida Sparse Matrix Collection (see [29] for details on the experimental dataset). The opti-
mal memory requirement of a traversal is computed using the exact algorithms presented later. 
The experiments show that in 95.8% of the cases, PostOrder is optimal. In the nonoptimal cases, 
PostOrder requires up to 18% more memory than the optimal solution (the average increase is in 
memory is around 1%).
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FIGURE 59.1  First levels of the graph for the proof of Theorem 59.3. Here b is the number of children of the 
nodes with more than one child: (a) One level and (b) two levels.
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59.5.2.2  Exact Algorithms

Liu [34] proposes an algorithm for MinMemory that is optimal among all possible traversals, not only 
postorder ones. It is a recursive bottom-up traversal of the tree that, at each node of the tree, combines 
the optimal traversals built for all subtrees (see Algorithms 59.1 and 59.2). The combination is based on 
the notion of Hill-Valley Segments: the schedule corresponding to a subtree is split into a sequence of 
segments. Each segment ends at a (local) minimum memory: to minimize the memory, it is better to 
totally process a segment before switching to the processing of another subtree. Then, the sequence of 
segments computed for all subtrees are ordered by nonincreasing hill – valley value and merged. The 
motivation is then to process first segments with high memory peak (hill) but small residual memory 
requirement (valley).

Liu provides a complex proof for the optimality of the obtained schedule. It also states that the worst-
case complexity of this algorithm is O(p2) using some sophisticated multiway merging algorithm.

Algorithm 59.1  LiuMinMem(T)

Input: tree T rooted at r
if r is a leaf then

 return the sequence consisting of the node r
else

 Let T1, …, Tk be the subtrees rooted at the children of r for i = 1, …, k do
        Si ← LiuMinMem(Ti)
 return S = Combine(T, S1, …, Sk)

Algorithm 59.2  Combine (T, S1, …, Sk)

for i = 1, …, k do
 Compute the memory occupation at each step of Si when processing subtree Ti

 Split Si into a series of m segments such that:

•	 the memory occupation at the end of the first segment is the minimum memory (valley) 
in Si

•	 the memory occupation at the end of the ith segment is the minimum memory in Si 
restricted to segments i to m

For each segment s, compute its hill (maximum memory) and valley (minimum memory) values
Sort all segments by hill-valley value
return this ordering of the nodes

Another optimal algorithm, the MinMem has been proposed in [29] to minimize memory dur-
ing the tree traversal. It is based on an advanced tree exploration routine: the Explore algorithm 
described in Algorithm 59.3. The Explore algorithm requires a tree T to explore and an amount of 
available memory Mavail. With these parameters, the algorithm computes the state with minimal 
residual memory that can be reached with memory Mavail. If the whole tree can be processed, then 
the minimal residual memory is zero. Otherwise, the algorithm stops before reaching the bottom 
of the tree, because some parts of the tree require more memory than what is available. In this 
case, the state with minimal residual memory corresponds to a cut in the tree: some subtrees are 
not yet processed, and the input files of their root nodes are still stored in memory. The Explore 
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algorithm outputs the cut with minimal memory occupation, as well as a possible traversal to 
reach this state with the provided memory.

When called on a tree T, the algorithm first checks if the current node can be executed. If not, the 
algorithm stops. Otherwise, it recursively proceeds in its subtree. The optimal cut is initialized with 
its children, and iteratively improved. All the nodes in the cut are explored: if the cut Lj found in the 
subtree of a child j has a smaller memory occupation than the child itself, the cut is updated by removing 
child j, and by adding the corresponding cut Lj. When no more nodes in the cut can be improved, then 
the algorithm outputs the current cut.

The Explore algorithm can be used to check whether a given tree can be processed using a given 
memory. A possible way to compute the minimum memory to process the tree is then to perform a 
binary search on the available memory. However, there are several ways to speed-up such an algorithm 
(for details, see [29]):

•	 We can transform the Explore algorithm so that it also returns the minimum increment in the 
available memory needed to explore more nodes. This helps to reduce the number of calls to 
Explore.

Algorithm 59.3  Explore(T, Mavail)

Input: tree T rooted at r and available memory Mavail

Output: �⟨L, m, S⟩ where L is a state (described by the input files it contains) with minimum memory m 
which can be reached with memory M, and S a schedule to reach it.

if r is a leaf and there is enough memory for its processing then
 return ⟨0, 0, (r)⟩

if there is not enough memory to process r then
 return ⟨0, ∞, 0⟩

S ← (r)
CurrentCut ← {Children of r}
stopped ← 0
while stopped ≠ 1 do

 stopped ← 1
 foreach j ∈ CurrentCut do
        Compute the available memory for the processing of the subtree at j:

        M Mj j
k CurrentCut j

f
k

avail avail← −
∈∑ \{ }

        L m S Explore T Mj j j j, , ,← ( )avail

        if exploring the subtree at j leads to state with less memory: mj ≤ fj then
               stopped ← 0
               CurrentCut ← CurrentCut\{j} ∪ Lj

               append traversal Sj to the end of S: S ← S ⊕ Sj

m
j CurrentCut f j←
∈∑

return ⟨CurrentCut, m, S⟩

•	 When calling Explore several times on the same subtree with an increasing memory, the begin-
ning of the subtree will be explored many times. To avoid this, it is possible to store the cur-
rent state of exploration, as well a the current schedule. This ensures that nodes are not visited 
several times.
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Using these optimizations, it is possible to prove that the MinMem algorithm based on the Explore pro-
cedures has a similar time complexity with LiuMinMem(O(p2)). Although both exact algorithms have 
the same worst-case time complexity, it is interesting to note that MinMem is faster than LiuMinMem 
on realistic trees: Experiments on the same set of trees described earlier show that MinMem is the fastest 
algorithm in 80% of the cases. This is explained by the fact that LiuMinMem has to sort segments when 
merging schedules obtained for subtrees. On the contrary, MinMem does not use sorting. This can make 
a significant difference if, for example, for each node, the size of the input file is larger than the size of 
the output files, MinMem will run in O(n) for a tree of n nodes.

59.5.3  Out-of-Core Traversals and the MinIO Problem

Out-of-core processing enables solving large problems, when the size of the data cannot fit into the main 
memory. In this case, some temporary data are copied into the secondary memory, and unloaded from 
the main memory, so as to leave room for other computations. Since secondary memory has a smaller 
access rate, the usual objective is to limit the volume of I/O operations.

Defining traversals that perform I/O operations is more complicated than defining in-core traversals: 
in addition to determining the ordering of the nodes (the permutation σ), at each step we have to identify 
which files are written into secondary memory (if necessary). When a task i is scheduled for execution 
but its input file was moved to secondary memory, that file must be read and loaded back into the main 
memory before processing task i. Thus, a given file is written at most once in the secondary memory. 
Moreover, if a file is to be written in the secondary memory, it is always beneficial to write it as soon as it 
is created. Thus, we can model the I/O operations via a binary function δIO such that δIO(i) = 1 if and only 
if the input file of task i (of size fi) should be moved to secondary memory. Formally, a valid out-of-core 
traversal can be defined as follows.

Definition 59.3  (OutOfCoreTraversal)

Given a tree T  and a fixed amount of main memory M, the problem OutOfCoreTraversal(T , M) 
consists in finding an out-of-core traversal, described by a permutation σ of the nodes in T  (corre-
sponding to the schedule of computations), and a binary function δIO (corresponding to I/O operations), 
such that:

	 ∀ ≠ <i root parent i i, ( ( )) ( )σ σ 	 (59.6)
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Then the amount of data written in secondary memory is given by
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 corresponds to the files that have been 

written into secondary memory at step σ(i). The MinIO problem, which asks for an out-of-core traversal 
with the minimum amount of I/O volume, can be defined as follows.
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Definition 59.4  (MinIO)

Given a tree T , and a fixed amount of main memory M, determine the minimum I/O volume IO needed 
by a solution of OutOfCoreTraversal (T , M).

The following three variants of the problem are NP-complete.

Theorem 59.4

Given a tree T  with p nodes, and a fixed amount of main memory M, consider the following problems:

	 (i)	 Given a postorder traversal σ of the tree, determine the I/O schedule so that the resulting I/O 
volume is minimized.

	 (ii)	 Determine the minimum I/O volume needed by any postorder traversal of the tree.
	 (iii)	 Determine the minimum I/O volume needed by any traversal of the tree.

The (decision version of) each problem is NP-complete.

Note that (iii) is the original MinIO problem. Also note that the NP-completeness of (i) does not a priori 
imply that of (ii), because the optimal postorder traversal could have a particular structure. The same 
comment applies for (ii) not implying (iii). The proof of these three results all relies on a reduction from 
2-Partition problem [22], using the tree illustrated in Figure 59.2. Scheduling this tree with a memory 
M = 2S an maximum amount IO of IO = 2/S requires to process first task Tbig, and thus to select a subset of ais 
(the input file of tasks Ti), which sums exactly to S/2. For more details on the proofs for all variants, see [29].

59.5.4  Perspectives and Open Problems

We have gathered in this section existing results on the problem of scheduling trees under memory con-
straints. Many problems are still open. The first one concerns splittable files. Indeed, the NP-completeness 
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FIGURE 59.2  Reduction of an instance of the 2-Partition problem for the NP-completeness proof of MinIO.
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of the MinIO problem comes from the difficulty to find a subset of files whose sizes sum up to a given 
bound. However, most memory systems nowadays are paginated and allows to write only portions of 
files to secondary memory. Therefore, studying the complexity of the MinIO problem with splittable 
files is very relevant. This problem is still open.

The results presented here only concern the processing of trees on a single machine. It is crucial to 
extend these results for other type of graphs (like series-parallel graphs, or any DAGs), and for parallel 
machines. It is likely that most problems will be NP-complete, but the results on trees may be useful to 
derive good heuristics, in the best case with approximation bounds. Even if approximation algorithms 
seem out of reach for general traversals, there is hope to derive an approximation algorithm for post-
order traversals of trees, which are simpler to analyze than arbitrary traversals.

59.6  Case Study: Partitioning Tree Structured Computations

The problem addressed in this case study arises in the solution of linear systems with a direct method, 
and with an out-of-core environment [1]. In order to make the section self-contained, we investigate the 
combinatorial problem (in Sections 59.6.1 through 59.6.3) without linear algebra notions and refer the 
curious reader to the related reference items. We briefly discuss the mentioned application and one more 
related scenario in Section 59.6.4.

59.6.1  Definitions

Let T = (V, E) be a rooted tree where all the edges are toward the root node r. Each node u, except the 
root, has a parent. Each node u, except the leaves, has a set of children, which are the nodes whose parent 
is u. For each node u, the vertices in the unique path from u to r are called the ancestors of u, and they 
are denoted by P(u). The nodes u and r are included in P(u). A subtree of T rooted at a node u contains 
all nodes v for which u ∈ P(v); we use T(u) to denote that subtree and use L(u) to denote the leaf nodes in 
the subtree T(u). A topological ordering of a tree T = (V, E) is an ordering of the nodes V in such a way 
that any node is numbered before its parent; the root node is ordered last. A postorder traversal of a tree 
is a topological ordering where the nodes in each subtree are numbered consecutively.

There is a weight associated with each internal node of T. We use w(u) to denote the weight of the 
node u. Leaf nodes are special and have zero weight. We are given a set of n tasks t1, t2, …, tn. Each task 
is associated with a unique leaf node. In order to execute the task ti, one starts from a leaf node ℓi and 
visits all the internal nodes in P(ℓi). Visiting an internal node u entails a cost, w(u). A task requires a 
unit amount of memory storage throughout its execution. The task executions are nonpreemptive, that 
is, when a task is started, it continues until the root node. One can execute two or more tasks concur-
rently at each internal node, where the cost payed at a node u is always w(u), irrespective of the number 
of concurrent tasks. As each task requires a unit amount of memory storage, the number of concurrent 
tasks is limited. In such a case, one takes as many tasks as possible and executes them concurrently till 
the root node. The problem then becomes that of partitioning the tasks into groups so that each group 
can be stored in the memory while the total cost is minimized.

We now define the problem formally. The cost associated with a task ti is
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If we execute a set S of tasks concurrently, the associate cost is
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Let B be the maximum number of tasks one can execute concurrently. Then we have the following 
TreePartitioning problem. Given a tree T, a set of tasks S = {t1, t2, …, tn}, and an integer B ≤ n, partition 
S into a number of subsets S1, S2, …, SK such that |Sk| ≤ B, for k = 1, …, K and the total cost

	
cost

k

K

kS
=
∑

1

( ) 	 (59.9)

is minimum. The number of parts K is not specified (but for feasibility we have K n B≥  / ).

59.6.2  Complexity Results

Before introducing the complexity results (and algorithms), we present a lower bound for the cost of an 
optimal partition.

Theorem 59.5

Let T be a node weighted tree, w(u) be the weight of node u, B be the maximum allowed size of a parti-
tion, and L(u) be the number of leaf nodes in the subtree rooted at u. Then we have the following lower 
bound, denoted by η, on the optimal solution c* of the TreePartitioning problem:
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Each internal node is on a path from (at least) one leaf node, therefore L u B( ) /  is at least 1, and we 
have w u c
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Theorem 59.6

The TreePartitioning problem is NP-complete.

Proof.  We consider the associated decision problem: given a tree T with n leaves, a value of B, and a cost 
bound c, does there exist a partitioning S of the n leaves into subsets whose size does not exceed B, and 
such that cost(S) ≤ c? It is clear that this problem belongs to NP since if we are given the partition S, it 
is easy to check in polynomial time that it is valid and that its cost meets the bound c. We now have to 
prove that the problem is in the NP-complete subset.

To establish the completeness, we use a reduction from 3-PARTITION [22], which is NP-complete in 
the strong sense. Consider an instance I1 of 3-PARTITION: given a set {a1, …, a3p} of 3p integers, and an 
integer Z such that a pZj

j p1 3≤ ≤∑ = , does there exist a partition of {1,…, 3p} into p disjoint subsets K1, …, Kp, 

each with three members, such that for all 1 ≤ i ≤ p, a Zj
j Ki∈∑ = ?

We build the following instance I2 of our problem: the tree is a three-level tree composed of 
N = 1 +3p + pZ nodes: the root vr, of cost wr, has 3p children vi, of the same cost wv, for 1 ≤ i ≤ 3p. In turn, 
each vi has ai children, each being a leaf node of zero cost. This instance I2 of the TreePartitioning 
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problem is shown in Figure 59.3. We let B = Z and ask whether there exists a partition of leaf nodes of 
cost c = pwr + 3pwv. Here wr and wv are arbitrary values (we can take wr = wv = 1). We note that the cost 
c corresponds to the lower bound shown in Theorem 59.5; in this lower bound, each internal node vi is 
loaded only once, and the root is loaded p times, since it has pZ = pB leaves below it. Note that the size 
of I2 is polynomial in the size of I1. Indeed, because 3-PARTITION is NP-complete in the strong sense, 
we can encode I1 in unary, and the size of the instance is O(pZ).

Now we show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution 
K1, …, Kp. The partition of leaf nodes corresponds exactly to the subsets Ki: we build p subsets Si whose 
leaves are the children of vertices vj with j ∈ Ki. Suppose now that I2 has a solution. To meet the cost 
bound, each internal node has to be loaded only once, and the root at most p times. This means that 
the partition involves at most p subsets to cover all leaves. Because there are pZ leaves, each subset is of 
size exactly Z. Because each internal node is loaded only once, all its leaves belong to the same subset. 
Altogether, we have found a solution to I1, which concludes the proof.

We can further show that we cannot get a close approximation to the optimal solution in poly-
nomial time.

Theorem 59.7

Unless P = NP, there is no 1
1+ 



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o
m

 polynomial approximation for trees with m nodes in the 
TreePartitioning problem.

Proof.  Assume that there exists a polynomial 1+ ε( )m

m
 approximation algorithm for trees with m nodes, 

where limm→∞ ε(m) = 0. Let ε(m) < 1 for m ≥ m0. Consider an arbitrary instance I0 of 3-PARTITION 
with a set {a1, …, a3p} of 3p integers, and an integer Z such that a pZj

j p1 3≤ ≤∑ = . Without loss of gen-

erality, assume that ai ≥ 2 for all i (hence Z ≥ 6). We ask if we can partition the 3p integers of I0 into p 

triplets of the same sum Z. Now we build an instance I1 of 3-PARTITION by adding X times the integer 
Z − 2 and 2X times the integer 1 to I0, where X m Z p= − + −max([( ) )] , )0 1 3 1/( . Hence, I1 has 3p + 3X 
integers and we ask whether these can be partitioned into p + X triplets of the same sum Z. Clearly, I0 
has a solution if and only if I1 does (the integer Z − 2 can only be in a set with two 1s).

We build an instance I2 of TreePartitioning from I1 exactly as we did in the proof of Theorem 
59.6, with wr = wv = 1, and B = Z. The only difference is that the value p in the proof has been replaced by 

r

v2

wv wv
wv
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v1 v3p
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FIGURE 59.3  The instance of the TreePartitioning problem corresponding to a given 3-PARTITION 
PROBLEM. The weight of each node is shown next to the node. The minimum cost of a solution for B = Z to the 
TreePartitioning problem is p × wr + 3p × wv, which is only possible when the children of each internal node are 
all in the same part, and when the children of three different internal nodes, say vi, vj, vk, are put in the same part. 
This corresponds to putting the numbers ai, aj, ak into a set for the 3-PARTITION problem, which sums up to Z.
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p + X here, therefore the three-level tree now has m = 1 + 3(p + X) + (p + X)Z nodes. Note that X has been 
chosen so that m ≥ m0. Just as in the proof of Theorem 59.6, I1 has a solution if and only if the optimal 
cost for the tree is c* = 4(p + X), and otherwise the optimal cost is at least 4(p + X) + 1.

If I1 has a solution, and because m ≥ m0, the approximation algorithm will return a cost at most
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whether I1, and hence I0 , has a solution. This is a contradiction unless P = NP.

59.6.3 A pproximation Algorithm

Consider the heuristic PoPart shown in Algorithm 59.4 for the TreePartitioning problem. As seen in 
Algorithm 59.4, the PoPart heuristic first orders the leaf nodes according to their rank in the postorder. 
It then puts the first B leaves in the first part, the next B leaves in the second part, and so on. This simple 
partitioning approach results in n B/  parts, for a tree with n leaf nodes, and puts B nodes in each part, 
except maybe in the last one. We have the following theorem, which states that this simple heuristic 
obtains results that are at most twice the cost of an optimum solution.

Algorithm 59.4  PoPart: A postorder-based partitioning

Input T = (V, E) with n leaves; each requested entry corresponds to a leaf node.
Input B: the maximum allowable size of a part.
Output ΠPO = {S1, …, SK} where K n B=  / , a partition on the leaf nodes.
  1: compute a postorder of the nodes of T
  2: L ← sort the leaf nodes according to their rank in the postorder
  3: S i k B i k B nk = − × + ≤ ≤ ×{L( ) : ( ) min { , }1 1 , for k =  }1, . . . , /n B

Theorem 59.8

Let ΠPO be the partition obtained by the algorithm PoPart and c* be the cost of an optimum solution. Then

	 cost( ) * .ΠPO c≤ ×2

Proof.  Consider node u. Since the leaves of the subtree rooted at u are sorted consecutively in L, the 

contribution of node u to the cost will be at most L u

B
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59.6.4 A pplication Scenarios

In the application of the TreePartitioning problem described by Amestoy et al. [1], each task cor-
responds to a sparse triangular solve operation with a right-hand-side (RHS) vector containing a single 
nonzero. There is a tree that describes the data requirements for each solve operation. Each internal 
node of the tree corresponds to parts of the triangular matrices stored in a file at disk. Solve operation 
for a given RHS vector starts from a leaf node and climbs up to the root. At each internal node, the 
matrix parts associated with that node are read from a file, and their inverse are applied to the RHS 
vector. All the RHS vectors are of the same size, and there is a huge number of them. Due to the limited 
memory size, one can hold only a certain number of RHS vectors at once in memory. In this setting, one 
organizes the solve operations in epochs where at each epoch a set of RHS vectors are solved for. Any 
internal node is accessed at most once during an epoch, but it can be accessed in multiple epochs. The 
solution time of an epoch is dominated by the time spent in reading the files containing the parts of the 
triangular matrices. In order to minimize the completion time of the application, one has to minimize 
the total size of the files read in. This is an instance of the TreePartitioning problem where the tasks 
are solve operations; B is the number of unit size RHS vectors that one can hold in memory; the cost 
associated with an internal node is the size of the corresponding file; and the objective function is the 
total size of the files read in.

Consider a hypothetical application whose tasks correspond to paths from a leaf node to the root in a 
given tree. Assume that each internal node is associated with a data. Consider the following paralleliza-
tion approach. Each task is to be executed by a single processor. This necessitates replicating the nodes 
of the tree at different processors so that each task can be executed by the owner processor. This can be 
again described as an instance of the TreePartitioning problem, where this time B is a function of the 
available processors. Consider again the same application, where we do not want to replicate the data. 
In a possible parallelization approach, the data should be partitioned, and the tasks should be migrated 
from one processor to the other whenever needed (e.g., when the parent of a node and the node itself 
are at different processors). This time, one partitions the internal nodes of a tree so that the leaf-to-root 
paths are split among as few parts as possible. This seemingly different problem is addressed elsewhere 
[23] with techniques that are very different than what we saw in this section. However, it is possible to 
express both problems using hypergraph models and use a common algorithm to obtain effective solu-
tions [52].

59.7  Case Study: Checkpointing Strategies

Any hardware component may be subject to faults. The Mean Time Between Failures (MTBF) of a pro-
cessor is typically of the order of 100 years. The reader can thus very safely bet that his laptop processor 
will not fail within the next month. Therefore, she does not need any fault-tolerance technique to safely 
run a computation on his laptop for, say, 12 h. Things are completely different if the 12-h computation is 
performed using a large number of processors. Indeed, the probability that one of the processors used 
by the application will fail during the 12 h of the application execution dramatically increases with the 
number of processors enrolled in the execution. For instance, the 45,208-processor Jaguar platform is 
reported to experience on the order of one failure per day [10,38]. In other words, during any execu-
tion that would run for 12 h using the entire Jaguar platform, there is one chance out of two that a fault 
will occur. Faults that cannot be automatically detected and corrected in hardware lead to application 
failures. Using fault-tolerance techniques is thus mandatory when using a large number of processors 
for a significant amount of time. Resilience—the ability to resist to failures—is thus a key challenge for 
modern and future high-performance computing (HPC) systems [18,46].

The most used fault-tolerance technique is rollback recovery: after a failure, job execution is resumed 
from a previously saved fault-free execution state, or checkpoint. Rollback recovery implies frequent 
(usually periodic) checkpointing events at which the job state is saved to resilient storage. More frequent 
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checkpoints lead to higher overhead during fault-free execution, but less frequent checkpoints lead to 
a larger loss when a failure occurs. The design of efficient checkpointing strategies, which specify when 
checkpoints should be taken, is thus key to high performance.

In this case study, we consider a single job to be executed on a predefined number of processors. The 
scheduling problem, here, is then to decide when (and how many times) to checkpoint the job in order 
to minimize its expected execution time.

59.7.1  Problem Statement

We consider an application, or job, that executes on p processors. The job must complete W units of 
(divisible) work: there are no constraints on when the job state can be checkpointed. We assume coor-
dinated checkpointing [53], that is, that all processors checkpoint the job state simultaneously. We call 
chunk the fraction of the whole job that is executed between two consecutive checkpoints. Defining the 
sequence of chunk sizes is therefore equivalent to defining the checkpointing dates. We use C to denote 
the time needed to perform a checkpoint. The processors are subject to failures, each causing a down-
time period, of duration D, followed by a recovery period, of duration R. The downtime accounts for 
software rejuvenation (i.e., rebooting [14,30]) or for the replacement of the failed processor by a spare. 
Regardless, we assume that after a downtime the processor that failed is fault-free and begins a new 
lifetime at the beginning of the recovery period. This period corresponds to the time needed to restore 
the last checkpoint. Note that although C and R can fluctuate depending on cluster and network load, 
as in most works in the field we assume they are constant. Finally, we assume that failures can happen 
during recovery or checkpointing, but not during a downtime (otherwise, the downtime period could 
be considered part of the recovery period).

We consider the processors from time t0 onward. We use Psuc(x|τ1, …, τp) to denote the probability 
that none of the processors fail for the next x units of time, knowing that the last failure of processor Pi 
occurred τi units of time ago, for 1 ≤ i ≤ p. The failure interarrival times on the different processors are 
defined by independent and identically distributed random variables. Let Xi be the random variable for 
the interarrival time on processor Pi between the last failure (that happened τi units of time ago) and the 
next one. Then we have

	 P x X x X x X Xsuc p p p p p| , ..., , ...., | , ..., .τ τ τ τ τ τ1 1 1 1 1( ) = ≥ + ≥ + ≥ ≥( )P

Note that we do not assume that the failure stochastic process is memoryless.

59.7.2  Minimizing the Expected Makespan

Our aim is to minimize the job execution time. However, as we are trying to execute the job on a failure-
prone platform, this execution time cannot be known beforehand: it depends on whether and when 
failures will impact the job execution. Therefore, our objective will not be the minimization of the 
makespan, like for instance in Section 59.4, but the expectation of the makespan, that is, the average 
makespan, the average being taken over all possible failure scenarios.

59.7.2.1  Formal Problem Definition

A solution to our scheduling problem is fully defined by a function f(ω|τ1, …, τp) that returns the size 
of the next chunk to execute given the amount of work ω that has not yet been executed successfully 

f p( | , ..., )ω τ τ ω1 ≤ ≤( )W  and the amount of time τi elapsed since the last failure of processor Pi, 1 ≤ i ≤ p. 
f is invoked at each decision point, that is, after each checkpoint or recovery. Our goal is to determine a 
function f that defines an optimal solution. Assuming unit-speed processors without loss of generality, 
the time needed to execute a chunk of size w is w + C if no failure occurs.
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For a given amount of work ω and a time elapsed since the last failure τ, we define T(ω|τ1, …, τp) 
as the random variable that quantifies the time needed for executing ω units of work. Given a solu-
tion function f, let ω1 = f(ω|τ1, …, τp) denote the size of the first chunk. We can write the following 
recursion:
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These two cases are explained as follows:

•	 If none of the processors fail during the execution and checkpointing of the first chunk (i.e., for 
ω1 + C time units), there remains to execute a work of size ω − ω1 and the time since the last failure 
is incremented on each processor by ω1 + C.

•	 If at least one processor fails before the successful completion of the first chunk and of its check-
point, then some additional delays are incurred, as captured by the variable Twasted(ω1 + C | 
τ1, …, τp). The time wasted corresponds to the execution up to the failure, a downtime, and a 
recovery during which some additional failures (and downtimes) may happen. Regardless, once a 
successful recovery has been completed, there still remain ω units of work to execute, and the time 
since the last failure of a processor depends on whether it fails (and when) during the attempt to 
process the first chunk, or the subsequent downtime and recovery.

We define Makespan formally as find f that minimizes E T pW τ τ1
0 0, ...,( )( ), where E( )X  denotes the 

expectation of the random variable X, and τi
0 the time elapsed since the last failure of processor Pi that 

happened before t0.

59.7.2.2  Solving Makespan for the Exponential Distribution

In this section, we assume that the failure inter-arrival times of any processor follow an Exponential 
distribution with parameter λ, i.e., each Xi = X has probability density fX(t) = λe−λt dt and cumulative 
distribution FX(t) = 1 − e−λt for all t ≥ 0. The advantage of the Exponential distribution, exploited time 
and again in the literature, is its “memoryless” property: the time at which the next failure occurs does 
not depend on the time elapsed since the last failure occurred. Therefore, in this section, we simply write 
T(ω), Twasted(ω), and Psuc(ω) instead of T(ω|τ1, …, τp), Twasted(ω|τ1, …, τp), and Psuc(ω|τ1, …, τp).

A challenge for solving Makespan is the computation of Twasted(ω1 + C). We rely on the following 
decomposition:

	 T C T C Twasted lost rec( ) ( )ω ω1 1+ = + +

Where
Tlost(x) is the amount of time spent computing before a failure, knowing that the next failure occurs 

within the next x units of time
Trec is the amount of time needed by the system to recover from the failure (accounting for the fact 

that other failures may occur during recovery)

The expectation of the makespan can then be expressed as a “simple” recursion:
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Lemma 59.3

Let W  be the amount of work to execute on p processors whose failure inter-arrival times follow iid 
Exponential distributions with parameter λ. The Makespan problem is equivalent to finding a function 
f minimizing the following quantity:
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The memoryless property makes it possible to solve the Makespan problem analytically:

Theorem 59.9

Let W be the amount of work to execute on p processors whose failure inter-arrival times follow iid 
Exponential distributions with parameter λ. Let K p

e p C0 11
=

+ − − −
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λ
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, where L, the Lambert function, is 
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The checkpointing strategy in Theorem 59.9 can be shown to be optimal among all deterministic and 
nondeterministic strategies, as a consequence of Proposition 4.4.3 in [44].

Interestingly, although we know the optimal solution with p processors, we are not able to compute 
the optimal expected makespan analytically. Indeed, E Trec( ), for which there is a closed form in the 
case of sequential jobs [11], becomes quite intricate in the case of parallel jobs. This is because during 
the downtime of a given processor another processor may fail. During the downtime of that processor, 
yet another processor may fail, and so on. We would need to compute the expected duration of these 
“cascading” failures until all processors are simultaneously available. However, as the value of E Trec( ) is 
independent of the choice of the chunk sizes, not knowing its value does not forbid to find the optimal 
chunk size function.

59.7.2.3  Makespan and Arbitrary Distributions

Solving the Makespan problem for arbitrary distributions is difficult because, unlike in the mem-
oryless case, there is no reason for the optimal solution to use a single chunk size [50]. In fact, the 
optimal solution is very likely to use chunk sizes that depend on additional information that becomes 
available during the execution (i.e., failure occurrences to date). For sequential jobs, approximated 
dynamic programming solutions have been proposed [11]. They cannot be extended to the parallel 
case as this would require to memorize the evolution of the time elapsed since the last failure for 
all possible failure scenarios for each processor, leading to a number of states exponential in p. As 
we cannot attempt to solve directly Makespan, we introduce a new related optimization problem. 
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This is especially important as failures in real-world computer systems are recognized not to follow 
exponential distributions but rather distributions like the Weibull distribution.

59.7.3  Maximizing the Expectation of the Amount of Work Completed

Rather than directly minimizing the job expected makespan, as in the Makespan problem, in the 
NextFailure optimization problem we try to maximize the expected amount of work completed before 
the next failure occurs. NextFailure amounts to optimizing the makespan on a “failure-by-failure” 
basis, selecting the next chunk size as if the next failure were to imply termination of the execution. 
Intuitively, solving NextFailure should lead to a good approximation of the solution to Makespan, 
at least for large job sizes W. Therefore, we use the solution of NextFailure in cases for which we are 
unable to solve Makespan directly.

59.7.3.1  Formal Problem Definition

For a given amount of work ω and a set of times elapsed since the last failure τ1, …, τp, we define 
W(ω|τ1, …, τp) as the random variable that quantifies the amount of work successfully executed before 
the next failure. Given a solution function f, let ω1 = f(ω|τ1, …, τp) denote the size of the first chunk. We 
can write the following recursion:
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This recursion is simpler than the one for Makespan because a failure during the computation of the 
first chunk means that no work (i.e., no fraction of ω) will have been successfully executed before the 
next failure. We define NextFailure formally as find f that maximizes E W W τ τ1

0 0, ..., p( )( ) .
59.7.3.2  Solving NextFailure

Weighting the two cases in Equation 59.11 by their probabilities of occurrence, we obtain the expected 
amount of work successfully computed before the next failure:

	
E EW P C W Cp suc pω τ τ ω τ τ ω ω ω τ ω1 1 1 1 1 1 1, ..., | , ... | , ...,( )( ) = +( ) + − + + ττ ωp C+ +( )( )( )1 .

Here, unlike for Makespan, the objective function to be maximized can easily be written as a closed 
form, even for arbitrary distributions. Developing the expression above leads to the following result:

Proposition 59.3

The NextFailure problem is equivalent to maximizing the following quantity:
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 is the total time elapsed (without failure) before the start of the execution 
of chunk ωj and since the last failure of processor Pi prior to the beginning of the application processing, 
and K is the (unknown) target number of chunks.

Unfortunately, there does not seem to be an exact solution to this problem. However, the recursive 
definition of E W pW | , ...,τ τ1( )( )  lends itself naturally to a dynamic programming algorithm. Formally:

Proposition 59.4

Using a time quantum u, and for any failure inter-arrival time distribution, DPNextFailure (Algorithm 
59.5), called with parameters W , , ...,τ τ1

0 0
p( ), computes an optimal solution to NextFailure in time 
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W
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Algorithm 59.5:  DPNextFailure (W, τ1, …, τp)

1 if W = 0 then return 0
2 best ← 0
3 chunksize ← 0
4 for ω = min{quantum, W} to W step quantum do
5       (expected_work, 1st_chunk) ← DPNextFailure(W − ω, τ1 + ω + C, …, τp + ω + C)
6       cur_exp_work ← Psuc(τ1 + ω + C, …, τp + ω + C | τ1, …, τp) × (ω + expected_work)
7       if cur_exp_work > best then best ← cur_exp_work
8       chunksize ← ω
9 return (best, chunksize)

59.7.4  Conclusion

In this case study, we have considered the problem of deciding when to save the execution state of an 
application, that is, when to take a checkpoint, in order to minimize the expectation of the execution 
time of an application in a failure-prone environment. We have showed that the optimal solution was to 
take periodic checkpoints when failures follow an exponential distribution. In the general case, it is not 
known how to solve the problem analytically. Instead, we have built an approximation of the optimal 
solution through a dynamic programming algorithm.

We have considered the problem in a simple setting where all checkpointing and recovery times were 
constant. Furthermore, we have analyzed the simplest checkpointing protocol, namely, coordinated 
checkpointing. More complex protocols have been designed in order to (try to) alleviate the cost of the 
coordination [19,20].

Rollback-recovery, as studied here, is only one of several fault-tolerance mechanisms. Another often 
used mechanism is replication (see [21] for a coupling of replication with rollback recovery). The ques-
tion with replication is to decide which task should be replicated and how many times. The optimization 
objective could be the minimization of the expectation of the execution time (as in this study), or the 
maximization of the probability that the computation succeeds (reliability), or a multicriteria optimiza-
tion mixing reliability and performance.
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59.8  Conclusion

In this chapter, we have presented several case studies that we believe to be representative of mod-
ern scheduling problems that arise at large scale. Energy consumption, fault-tolerance, and memory 
management are important objectives that must be taken into account in addition to pure makespan 
minimization.

The case studies are also representative of the increased level of difficulty of modern scheduling prob-
lems, which typically involve multicriteria optimization. A variety of mathematical tools and algorith-
mic techniques are used to solve such problems, and we hope to have convincingly illustrated many of 
them in this chapter. In addition, many bibliographical items have been provided within the text, and 
in further information.
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Key Terms

Checkpoint and rollback recovery: The technique of saving the current state of the execution at different 
points in time; when a failure occurs, the application can rollback to, and recover from, the most 
recently saved state: execution resumes from that state instead of from the very beginning.

Dynamic voltage and frequency scaling (DVFS): By lowering supply voltage, hence processor clock 
frequency, it is possible to achieve important reductions in power consumption; faster speeds 
allow for a faster execution, but also lead to a much higher (supra-linear) power consumption.

Heterogeneity: Resources are said to be heterogeneous when they do not have all the exact same char-
acteristics. For instance, the set of processors in a grid is heterogeneous if they do not all have 
the same processing capabilities or the same amount of memory.

Makespan: The makespan of an application is the time at which the application execution is 
completed.

Re-execution: A task whose execution is not reliable enough (for instance, because its execution speed 
is below a threshold) is executed twice (or more) to enhance its reliability.

Resource selection: Is the problem of deciding which, among all available resources, should be used to 
solve a given problem.

Scheduling: Is the problem of deciding at what time (when), and on which resource (where), to execute 
each of the (atomic) tasks that must be executed on the given platform.

Further Information

There is a very abundant literature on scheduling and load balancing strategies for parallel and/or dis-
tributed systems. The survey [49] is a good starting point to this work. The most famous heuristic to 
schedule a task graph on an heterogeneous platform is HEFT [51].

A good introduction to multicriteria optimization is the book by Pinedo [41]. Section 59.4 is mainly 
based on [6]. Section 59.5 is mainly based on [29]. Liu proposes two optimal algorithms for optimal 
memory traversal of trees, the first one restricted to postorder traversals [33], the second one for any 
traversal [34]. For more information on the pebble game model such as complexity results for general 
DAGs, see the seminal work of Sethi [47] and Gilbert, Lengauer and Tarjan [24].

The problem discussed in Section 59.6 is mainly based on a recent work by Amestoy et al. [1]. The 
paper includes some improved algorithms for the TreePartitioning problem, as well as a hyper-
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graph partitioning based formulation. The postorder-based algorithm discussed in Section 59.6.3 is 
implemented and incorporated in Mumps [2], a sparse direct solver.

Young is the author of a seminal study of periodic checkpointing policies [55]. His work was later 
extended by Daly [16]. Section 59.7 is mainly based on [11], which contains references to many studies 
of checkpointing policies. For noncoordinated checkpointing protocols, [27] by Guermouche et al. is a 
good starting point.
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Distributed file systems (DFSs) provide common file access to a collection of computers; all in the 
collection can access files as if they were local, even though the files do not reside in their local file 
systems. The need for such a distributed system grew out of the switch in the 1980s from multiuser time-
shared systems to networks of workstations (or personal computers). A community of people using a 
time-sharing system shared a single file system, all files were accessed identically by programs, and files 
were shared trivially. Furthermore, the file systems were easily administered—they were all attached to 
one machine and could be easily backed up. A DFS provides all the benefits of the file system on a time-
sharing system and opens them up to users of collection of personal computers.

The history of DFSs goes back to the late 1970s and early 1980s. The first commercially successful DFS 
came as part of the Apollo Domain system, released in 1982, soon followed by Sun’s network file system 
(NFS). What motivated both these systems was the desire not only to share files but also, since disks 
were fairly expensive, to support relatively cheap, diskless workstations.

To a certain extent, the ideal DFS behaves as if all parties were on the same computer—in other 
words, as if it really were not a distributed system. Programs designed to work using a local file system 
should work just as well using a DFS. Coming close to this ideal is possible, but most existing systems do 
not—they make trade-offs so as to improve performance and reduce complexity.

Things get complicated when we consider failures: client crashes, server crashes, and communica-
tion failures. In the single-computer case, either the entire system is up or the entire system is down; we 
typically do not worry about file-system semantics on “partially up” or “partially down” systems since 
these cases simply do not arise. In a DFS, though, what should happen if a server crashes but its clients 
remain up? Or suppose clients and servers are up, but the network connections between them are down. 
Or suppose a client crashes while the rest of the system remains up.

The most obvious benefit of the DFS is that files are shared. If I want to let you work with one of my files, 
I simply give you its pathname. You see everything I’ve done to the file. If you make any modifications to 

60
Distributed File Systems*

60.1	 Basics.................................................................................................60-2
60.2	 NFS Version 2...................................................................................60-5

RPC Semantics  •  Mount Protocol  •  NFS File Protocol  •  Network 
Lock Manager

60.3	 Common Internet File System.....................................................60-12
SMB Protocol  •  Opportunistic Locks

60.4	 DFS...................................................................................................60-17
60.5	 NFS Version 4.................................................................................60-20

Managing State  •  Dealing with Failure
60.6	 Conclusions....................................................................................60-26
References...................................................................................................60-26

Thomas W. Doeppner
Brown University

*	 Doeppner, Thomas W., Operating Systems In Depth: Design and Programming (New Jersey, John Wiley & Sons, 2011). 
This material is reproduced with permission of John Wiley & Sons, Inc.



60-2 Operating Systems

it, I see those modifications. Neither of us needs to worry about synchronizing the contents of multiple 
copies of a file. Without the DFS, we would have to exchange files by e-mail or use applications such as 
the Internet’s file transfer protocol.

A related benefit of a DFS is that my programs can access remote files as if they were local. The remote 
files have no special application-program interface; they are accessed just like local ones. With this 
property, known as access transparency, programs need not be aware whether a file is remote or local.

Finally, a DFS is easier to administer than multiple local file systems. Typically in such a system, a 
small number of server machines provide files to a large number of clients. Rather than having to back 
up files on each of the clients, only the servers’ files need to be backed up.

Another term for DFS is network attached storage, referring to attaching to the network servers that 
provide file systems. A similar-sounding term that refers to a very different approach is storage area 
network. Here, the intent is to make available over the network not file systems but storage devices. For 
example, an organization might own a few large-capacity redundant array of independent disks (RAID) 
devices, each providing many terabytes of storage. The total capacity might be split into a number of 
logical storage devices, each assigned to a specific server. Some of the servers might be file servers, which 
use their logical storage devices to hold a file system. Others might be database systems, which use their 
logical storage devices to hold databases. The capacity can be shuffled among logical devices as needed 
to meet new requirements; the redundancy provided by RAID is shared by all. See Figure 60.1.

60.1  Basics

The ideal DFS should not give its users any unpleasant surprises: it should behave as much as possible 
as if it and its users were all on the same computer. The semantics of file operations should be exactly 
the same for DFSs as for local file systems. When multiple applications access the same file, the result 
should be the same on the distributed system as if all parties, clients and server, were on the same sys-
tem. Failures, such as communication problems and crashes of client and server computers, should be 
minimally disruptive. And to top it all off, performance should be good.
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FIGURE 60.1  The relationship between network attached storage (NAS) and a storage area network (SAN).
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Designing such a system entails determining how its various components are distributed—what 
resides on the servers, what resides on the clients. We categorize this information as follows:

•	 The data state: this is the contents of files.
•	 The attribute state: this is information about each file, such as its size, most recent modification 

time, and access-control information.
•	 The open-file state: this is the information indicating which files are open or otherwise in use as 

well as describing how files are locked. For example, in both Unix and Windows systems, open-
ing a file adds to its reference count, and a file cannot be deleted unless its reference count is zero. 
A range of bytes of a file can have a shared (or read) lock or an exclusive (or write) lock applied to it.

As shown in Figure 60.2, each of these components might be kept on the server or on the clients, 
either in volatile storage (which is lost if a machine crashes) or in non-volatile storage (which is not lost 
after a crash). We think of the data state as permanently residing on the server’s local (disk) file system, 
but recently accessed or modified information might reside in volatile storage in server or client caches 
(or both). Some systems even cache data on client disks. Similarly, the attribute state resides perma-
nently on the server’s local file system, but might be cached on servers and clients. The open-file state is 
transitory; it changes as processes open and close files. Thus, it makes sense for this to reside in volatile 
storage, but, as we discuss in the subsequent sections, for crash-recovery purposes, some systems keep a 
portion of it in non-volatile storage.

Three basic concerns govern this placement:

	 1.	 Access speed: Access is slow if the information resides on the server, yet is accessed and modified 
by clients. Caching such information on clients improves performance considerably. Information 
stored in volatile storage can be accessed and modified much more quickly than information 
stored in non-volatile storage.

	 2.	 Consistency: If clients cache information, do all parties share the same view of it?
	 3.	 Recovery: If one or more computers crash, to what extent are the others affected? How much infor-

mation is lost?
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FIGURE 60.2  Possible locations for caches and open-file state in a distributed file system.
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Though the factors affecting access speed are straightforward, those affecting consistency and 
recovery are not. So, before discussing the trade-offs among these concerns, we first spend some time 
discussing consistency and recovery, giving a quick overview of what is relevant to DFSs and focusing 
on data consistency.

Suppose a single thread is performing operations on files. We want the order in which these opera-
tions occur on the files to be the same as was executed by the thread; that is, we want the operations to 
be time-ordered. If things were otherwise, we would consider the file system broken and would not use 
it. If no operations are performed by other threads, any read of a particular location of a file by a thread 
retrieves the result of the thread’s most recent write to the location. We call this property single-thread 
consistency.

It is not a big stretch to extend this form of consistency to an entire client computer: the operations 
on the file system by the computer are time-ordered, and thus, in the absence of operations by other 
computers, any read of a particular file location by a thread on the computer retrieves the result of the 
most recent write to the location by any thread of the computer. This we call single-client consistency.

It is a bigger step to extend consistency to the threads on all the client machines of a distributed sys-
tem. But if all operations on a file system are time-ordered, and thus any read of a particular file location 
by any thread on any computer retrieves the result of the most recent write to that location by any thread 
on any computer, the file system is said to have strict consistency.

It may be difficult if not impossible to time-order the operations coming from many client comput-
ers. If operations are executed on different client computers, how do we know which happened first? 
In general, if this cannot be determined, it probably does not matter. What is important is that all par-
ties agree on whatever order is selected and that the selected order be one that could have happened. 
Suppose Ted is updating a file on one computer and Alice is reading that file on another computer, if 
they do these operations at about the same time, and if the clocks on the various computers either are 
not synchronized well enough or do not have enough resolution to order the two events, then it really 
is not clear which happened first and either order makes sense—neither Ted nor Alice will be surprised 
by either outcome. Assuming that the system remains single-client consistent, this weakening of strict 
consistency is known as sequential consistency (Lamport 1979).

But suppose Ted’s and Alice’s computers are a foot apart and Alice reads the file immediately after Ted 
tells her he’s modified it, both Ted and Alice will be unpleasantly surprised if Alice gets the old version 
of the file. To rule out such surprises, we might insist that our system by strictly consistent.

On the other hand, if Ted and Alice are savvy computer users, they would realize that expecting 
deterministic results from concurrent operations on remote files without some form of synchronization 
might not be realistic. So Ted might apply a write lock to the file before modifying it, and Alice might 
apply a read lock before reading it. Though this file system is not strictly consistent, it is said to have 
entry consistency (Bershad and Zekauskas 1991) if some acquire operation (such as taking a lock) can 
guarantee the client that the most recent contents of file locations are protected by the lock, and if some 
release operation can make the client’s changes available to others.

What sorts of consistency do DFSs provide for data? NFS, as discussed in Sections 60.2 and 60.5 in 
the subsequent sections, provides single-client consistency but not strict consistency. If applications lock 
the files they are using, they get entry consistency, but this is strictly up to the applications. Common 
internet file system (CIFS), as discussed in Section 60.3, provides strict consistency. DFS, as discussed in 
Section 60.4, also provides strict consistency.

All systems must provide strict consistency for the lock-state portion of open-file state—locks make 
no sense otherwise. But, as described in Section 60.2, NFS versions 2 and 3 get away with not even 
sharing the reference state of files, let alone doing so consistently. Most systems keep the attribute state 
strictly consistent, but NFS provides at best entry consistency.

What happens if there is a failure? In a non-distributed system, a failure takes down the application 
and everything else. In a distributed system, failure of a client computer takes down its application. But 
if the server or other clients fail, the application is not necessarily affected at all. Another way of putting 
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this is that for non-distributed systems, either the entire system is up or the entire system is down. When 
the system comes back up after a crash, people do not expect the cache and the open-file state to be 
as they were before the crash—all application processes must be restarted anyway.

But with a DFS, partial crashes can happen and must be dealt with. One or more clients might crash, 
the server might crash, and there might be times during which certain computers cannot communicate 
with one another due to network problems. In some cases, complete recovery is possible. In others, for 
instance when a client crashes, problems are restricted to the crashed computer—no other computer is 
adversely affected. In still other cases, problems can occur that would not have happened if a local file 
system were being used.

For example, an application that has locked a file might discover that, because of a combination of 
server crashes and network problems, not only has it lost its lock on the file but also the file has been 
locked by another application. Ideally, of course, such “surprises” will not happen. But, as explained 
in the following sections, these surprises, though rare, are unavoidable. The best we can ask for is that 
applications are notified when they occur.

In the subsequent sections, we look at a few representative DFSs, discussing the trade-offs taken 
among speed, consistency, and recoverability. We start with NFS version 2, a relatively simple yet suc-
cessful system. As already noted, it has a fairly relaxed approach to consistency but handles failures well. 
Next, we cover CIFS, which provides strict consistency but is essentially intolerant of server failures 
and network problems. We then discuss DFS, which provides strict consistency and is tolerant of server 
failures and network problems, but requires the cooperation of applications in coping, and finally NFS 
version 4, which does as good a job with failures as is probably possible.

A final concern, independent of the others, is the file-system name space. If all parties are on 
one computer, there is probably just a single directory hierarchy and thus one name space. But for 
the distributed case, the one-name-space approach does not necessarily make sense. Both NFS and 
CIFS allow each client to set up its own name space, and both also provide a means for all clients to 
share the same name space. DFS uses a model in which one global name space is shared by all in the 
distributed system.

60.2  NFS Version 2

NFS was developed by Sun Microsystems in the mid-1980s. Its design is simple,* yet successful; it and 
its descendants have been widely used ever since, uniquely among DFSs of its time. In this section, we 
focus on NFS version 2. Version 1 was used strictly within Sun. At the time of this writing, version 3 is 
in common use, while version 4 (discussed in Section 60.5) is beginning to be adopted.

NFSv2 servers are passive parties that give their clients a simple file store. They respond to client 
requests, but take no actions on their own. NFS clients actively maintain caches of information obtained 
from servers, performing read-aheads and write-behinds as necessary. The approach to consistency is 
rather relaxed but works well in practice. Here is how things work. An NFS server gives its clients access 
to one or more of its local file systems, providing them with opaque identifiers called file handles to refer 
to files and directories. Clients use a separate protocol, the mount protocol, to get a file handle for the 
root of a server file system. They then use the NFS file protocol to follow paths within the file system and 
to access its files, placing simple remote procedure calls to read them and write them. A third protocol 
added later, the network lock manager protocol (NLM), can be used to synchronize access to files. All 
communication between client and server is with a remote procedure call (RPC) protocol known as 
open network computing (ONC) RPC (see Chapter 9 of Doeppner (2011)).

Here, we call the combination of the mount protocol and the NFS file protocol basic NFS; basic NFS 
plus NLM we call extended NFS. We begin by discussing basic NFS.

*	 This characterization applies only to version 2 of NFS!
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All open-file state information resides on the clients. Servers are thus called stateless since they are 
essentially unaware of what files clients have open, though they necessarily do hold data and commu-
nications state.

Figure 60.3 summarizes the information maintained on clients and servers. Clients maintain caches 
of file data and attributes as well as hold all open-file information (except for locks, which are main-
tained on the server via the NLM protocol). No other open-file information is held on the server.

To see how NFSv2 operates, let us work through an example. Suppose a Unix thread executes the fol-
lowing instructions, accessing a file system on an NFSv2 server:

	 char buffer[100];
	 int fd = open(“/home/twd/dir/fileX”, O _ RDWR);
	 read(fd, buffer, 100);
	 …
	 lseek(fd, 0, SEEK _ SET);
	 write(fd, buffer, 100);

Our thread opens a file, reads the first 100 bytes, then writes 100 bytes at the beginning of the file, 
replacing the previous data there. The kernel data structures representing the open file are just what 
they would be if the file were local. The only difference from the client operating system’s point of view 
is that the actual operations on the file are handled by the NFSv2 client code rather than by a local file 
system such as FFS.

The NFSv2 server has its own directory hierarchy and exports a number of subtrees of this hierarchy 
to its clients. The client’s operating system has mounted one of them on the local directory /home/
twd. It did this by first placing a remote procedure call, using the mount protocol, to the server, and 
obtaining a file handle for the root of this subtree. As Figure 60.4 shows, any attempt to access the 
directory /home/twd is now interpreted as an attempt to access the remote directory represented by 
the file handle.
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FIGURE 60.3  Distribution of components in NFSv2.
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Thus to follow the path /home/twd/dir/fileX, our thread, executing in the client operating system, 
goes as far as /home/twd and discovers that a remote file system is mounted there. It places a remote 
procedure call to the NFSv2 server’s lookup routine, passing it the file handle for the remote file system’s 
root as well as the pathname /dir/fileX. The server returns a file handle for fileX.

The client operating system records the fact that fileX is open, just as it would for a local file. However, 
rather than representing the file with an inode or equivalent, it uses the file handle together with a com-
munication handle representing the remote server (see Figure 60.5).
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FIGURE 60.4  The client has mounted the server’s /home/twd on its own /home/twd.

0
1
2
3

n–1 

File-descriptor
table

File 
descriptor

User
address space

Kernel address space

Ref
count

Access
mode

File
location

File
handle +
comm.
handle

Refers to file 
on server

FIGURE 60.5  Open-file data structures on client.



60-8 Operating Systems

When the thread performs the read, it first checks its local cache within the client operating system. If 
the data are not there, it places a remote procedure call to the server’s read routine, passing the file han-
dle, the offset within the file (0) and the length (100). The server returns the 100 bytes from that location.

The lseek call sets the local file offset to 0, but does not cause a request to be sent to the server. When 
the thread calls write, the data are first copied to the local cache. Sometime later, a kernel thread places 
a remote procedure call containing the file handle, the current offset (0), the data, and the length to the 
server’s write routine. The server returns an indication of successful completion of the operation.

This is remarkably simple and straightforward, though we have omitted a few details (to be covered 
in Section 60.2.3). But let us look at the ramifications of this simplicity. We have already noted that the 
server maintains no open-file state: the client obtains a file handle for the file, but the server has no 
record that some client is using the file.

Consider the following code fragment:

	 int fd = creat(“/home/twd/dir/tempfile”, 0600);
	 char buf[1024];
	 unlink(“/home/twd/dir/tempfile”);
	 …
	 write(fd, buf, 1024);
	 …
	 lseek(fd, 0, SEEK _ SET);
	 read(fd, buf, 1024);
	 close(fd);

The file /home/twd/dir/tempfile is created, then its directory entry is immediately removed. If this 
were done on a local file system, the file itself would continue to exist, even though there no longer is 
a directory entry referring to it—that the file is open makes it continue to exist. This code sequence is 
rather common in Unix programs, since it is a standard technique for creating a temporary file, one 
guaranteed to disappear once the process terminates: as soon as the file is closed, there is no longer a 
reference to it and the operating system deletes it.

Since NFSv2 servers do not keep track of whether files are open, the unlink request in the code above 
removes the last link to the file and leaves it with no other references—the file is then deleted, much to 
the client’s surprise.

NFSv2 relies on the client to keep track of such state information and to modify its requests to the 
server accordingly. In our example, the client would realize that asking the server to unlink an open 
file is not in its best interests. So, rather than doing that, it sends it a rename request, changing the file’s 
name to a special name that does not show up in normal directory lookups (in Unix, this is accom-
plished by using “.” as its first character). Thus, the file no longer exists under its original name, yet the 
client’s file handle still refers to it. When the client process closes the file, it sends an unlink request to 
the server, removing the file’s special name from the directory and thus finally deleting the file.

This solution is clearly not perfect: it works only if the file is open on the same machine as the 
one doing the unlink. In practice, this is the only case that matters, so it does well enough. But what 
happens if the client renames a file, but crashes before the file is closed? Then the renamed file is not 
deleted and remains on the server. The server must periodically check for such orphaned files and 
delete them.

The NFS Mount Protocol, described in Section 60.2.2, lets clients access subtrees of server directory 
hierarchies. Clients may place these subtrees in their own directory hierarchies wherever they please, 
but it is usually more convenient to handle this automatically so that all clients have the same file-
system name space. Most organizations using NFS define such a name space in an organization-wide 
database. Each client, using software known as the automounter, consults this database and mounts 
server-provided subtrees into its own directory hierarchy as necessary.
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60.2.1 R PC Semantics

The NFSv2 protocols are layered on top of ONC RPC and depend on it for reliable communication 
between client and server. RPC extends the procedure-call abstraction across different computers. Ideally, 
when a client calls a remote procedure, it is assured that the procedure is invoked exactly one time, and 
the results are returned to the client. This assurance is made difficult because of the possibility of network 
and server failures. For example, if a client invokes a procedure on the server, but does not get a response, 
is it because of a network failure, a server failure, or both? Perhaps, the remote procedure was actually 
executed on the server, but due to a network failure, the response did not arrive at the client.

If the effect of executing a remote procedure multiple times is the same as executing it once, that is, 
the procedure is idempotent, then it is safe for the client to repeat a request if it does not get a response. 
Most of the procedures provided by NFSv2 servers for their clients are idempotent. For example, to 
modify a file, a client invokes a WRITE procedure providing the file’s identity, the data to be written, 
and the file location that is to be modified. If the procedure is executed twice, the same data are re-
written to the same location, but the effect is as if it has been written only once.

However, some NFSv2 procedures are not idempotent. For example, consider the procedure to unlink 
a file from a directory (which deletes the file if its only directory link is being removed). If the procedure 
is executed once, the link is removed. If it is executed again, the request fails, because the link cannot be 
removed (since it no longer exists). There is no harm done on the server from executing the procedure twice, 
but the result can harm a client application that inexplicably has a request fail that should have succeeded.

ONC RPC copes with this problem through the use of duplicate request caches (DRCs) on serv-
ers, which maintain lists of recently received RPC requests and their responses. Whenever a request is 
received, the server checks its DRC to determine if the request is a duplicate of one already received 
(clients assign unique identifiers to their requests; a retransmission of a request carries the same ID as 
the original transmission). If the request is a duplicate, then, rather than re-execute it, the server simply 
sends back the original response. This approach works perfectly if items are not removed from the cache 
unless they will never be received again. NFSv2 and v3 servers remove items from their DRCs after they’ve 
been there for a certain amount of time. This works well if clients and servers reside in “reasonably well 
behaved” networks, but, if the network is not-so-well-behaved, servers may re-execute a duplicate request. 
NFSv4’s DRC does a much better job, as described in the subsequent sections.

ONC RPC handles requests as follows. If user datagram protocol (UDP), an unreliable protocol, is the 
transport protocol, the client RPC layer repeatedly retransmits each request (with suitable delays in between) 
until it gets a response. If transmission control protocol (TCP), a reliable protocol, is the transport protocol, 
the client RPC layer does not retransmit unless there is a loss of connection, in which case, a new connection 
is made and the client retransmits over it. With both transports, the effect is that requests are received by the 
server’s RPC layer at least once. Most requests are for idempotent procedures, and thus can be safely executed 
many times in a row. The server uses its DRC to handle duplicate non-idempotent requests.

What is particularly nice about this approach is that client applications need not be aware that they 
are using a DFS and need do nothing special to cope with crashes or network problems. The client RPC 
layer eventually makes the desired result happen: if the server crashes while an application is attempt-
ing to read from a file, the read system call simply appears to be slow, but it eventually returns with the 
desired data (assuming the server recovers from the crash).

As an option, a client can set things up so that system calls on files of a particular remote file system 
eventually time out if the server has crashed or there is a network problem. In practice, this is done only 
rarely, because few applications do anything intelligent in response to such timeouts.

60.2.2  Mount Protocol

This is by far the simplest of the NFSv2 protocols. Its primary job is to provide clients with file handles for 
roots of exported file systems. It also provides limited security by giving these file handles only to certain 
specified clients.
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What are file handles? Servers give them to clients to identify files on the server. From the client’s 
point of view, they are completely opaque: their contents have no meaning other than as interpreted on 
the server.

From the server’s point of view, however, file handles play a role similar to that of Unix inodes: they 
uniquely identify files. While a file might have multiple pathnames, it has only one file handle. A file 
handle must identify a file even if the file has been renamed; it must continue to be valid until the file is 
deleted. After a file has been deleted, its file handle must be invalid, so that clients can reliably determine 
that a file no longer exists.

So, what does a file handle contain? For a Unix server that actually identifies files by their inodes, the 
file handle contains an identifier for the file-system instance (the server might have many) as well as the 
inode number. Thus, it identifies a particular file within the file system.

But this is not enough: if a file is deleted, its file handle must become invalid. The problem with using 
the combination of inode number and file-system identifier as a handle is that, though this combination 
will be invalid immediately after the file is deleted, the inode number might be reused for a new file. 
Thus, the handle becomes valid again and refers to a different file from what the holder had intended.

To get around this problem, we need a way to distinguish between different uses of the same inode 
number (or similar identifiers). What is done is to tag each inode with a generation number, a 32-bit field 
that takes on a different value each time the inode is reused—a random value works well here. The file 
handle contains a copy of the value that is current when the handle is created. If the corresponding file 
is deleted and its inode reused, the generation number in the file handle no longer matches that of the 
inode, and the handle is rejected—the error message is “stale file handle.”

60.2.3  NFS File Protocol

The NFS File Protocol does most of NFS’s work. It is responsible for communicating file data between 
client and server and for maintaining client caches and keeping them reasonably consistent. Its basic 
operation is remarkably simple. Client application processes make system calls on files. Forget-type 
operations—fetching data, file attributes, etc.—if the relevant information is in the cache, the call com-
pletes immediately. Otherwise, the NFS client code places a RPC to the server both to obtain the needed 
information for the cache and to return it to the application. For most put-type operations, such as file 
writes, the information is stored in the local cache, and sometime later NFS client code updates the 
server via a RPC.

Assuming the communications protocol is providing exactly once semantics for each client’s RPC 
requests, the client caches are single-client consistent. But what happens if more than one client is using 
a file? The basic premise of NFSv2 is that file sharing takes place primarily for read-only files, such as 
binaries. Writable files are generally used by only one client at a time. So, with this premise as justifica-
tion, NSFv2 uses an approximate approach to consistency. For cases in which the premise is unjustified, 
the separate NLM comes into play, as described in Section 60.2.4.

In the NFSv2, approximate approach to consistency, cached information is assumed to be valid for 
a certain period of time after it is put in the cache. NFS client code periodically checks with the server 
for changes to files that are at least partially cached on the client. If so, regardless of the extent of the 
changes, the cached information for the file is invalidated and subsequent get-type requests result in 
RPCs to the server.

To aid in doing this, clients maintain a separate cache of file attributes—information obtained from 
the server about the files they are accessing (see Figure 60.6). This information is essentially anything 
the server can provide, including access permissions, file size, creation time, access time, and modifi-
cation time. This cached information is used to satisfy requests by processes for file attributes (via the 
stat and fstat system calls in Unix). It is also used in determining whether the cached data from a file 
is up to date. Cached attributes are valid only for a brief period of time, ranging from a few seconds to 
a minute, and cached file data are valid only while the file’s attributes are valid. If an attempt is made 
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to access cached data beyond the attributes’ validity period, a “GETATTR” RPC request is sent to the 
server asking for the file’s current attributes. On return, the new attributes are cached; if they indicate 
that the file has not been modified since the previous attributes were cached, the cached data are still 
used. Otherwise, the file’s cached data are flushed—this means that modified file blocks are sent to the 
server via WRITE RPC requests and unmodified blocks are removed from the cache.

This attribute caching helps keep caches “sort of” consistent but does not give any useful guarantees. 
Many NFS implementations go a step farther and provide “close-to-open” consistency: when a file is 
closed, all changes are sent to the server. When a file is opened, the remaining validity time for its cached 
blocks is ignored, and a GETATTR is sent to the server. The blocks are flushed if the new attributes indi-
cate recent changes. This procedure helps prevent surprises: if a file is shared by multiple clients, but is 
open on at most one at a time, the clients’ caches will be consistent.

Given the near lack of state information the NFS File Protocol keeps on the server, dealing with 
client and server crashes is straightforward—nothing needs to be done! However, care must be taken 
with certain operations so that crashes do not cause undue surprises. If a client application performs a 
synchronous request, such as writing to a file synchronously, the request really needs to be performed 
synchronously—the application should not be notified of its completion until after the server file system 
has been updated. Otherwise, in the event of a client or server crash, the user of the application may be 
under the false impression that the file has been modified.

In fact, all RPC calls that update the server must be synchronous: a client that receives a “successful-
completion” response assumes its job is done—the server has been updated and the client can move on. 
So the modifications really must have been committed on the server. Otherwise, if the server crashes 
before the updates have been committed, they are lost forever.

This synchronous-update requirement slows file updates on NFSv2 systems, since, for example, all 
WRITE RPC requests must be synchronous. Some implementations handled this by providing a non-
volatile cache into which updates could be committed on the server. The cache survived crashes, and its 
contents were written to the file system as part of crash recovery.

One of the major improvements in NFSv3 was to weaken the requirement for synchronous updates. 
Writes in NFSv3 may be asynchronous, meaning that the server may return a response even though the 
data has not been written to disk. But when the client sends a COMMIT RPC request, the server may 
not respond until the data from all previous writes to the file are safely on disk.

60.2.4  Network Lock Manager

The final component of NFSv2, forming extended NFS from basic NFS, is its network lock manager 
(NLM) protocol, which enables clients to lock files. While in the rest of NFSv2, the open-file state 
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FIGURE 60.6  An NFSv2 client’s data and attribute caches.
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resides in the clients, NLM maintains lock state on the servers, as well as on the clients. Its operation is 
simple: clients place RPC calls to the server requesting locks on files, and the server grants or refuses 
these requests on the basis of state information it maintains locally. But this shared lock state adds a 
new wrinkle to NFS: significant work must be done to recover from both client and server crashes.

NLM supports the standard Unix notion of file locks: locks are advisory, meaning that applications 
are free to ignore them, and are byte-range, meaning that they are applied to a range of locations within 
a file. They come in two forms, shared locks and exclusive locks. The latter are essentially write locks: no 
two may have overlapping ranges on the same file at the same time. The former are essentially read locks: 
they may overlap with each other, but not with exclusive locks.

The lock state is shared consistently by keeping most of it on the server, which keeps track of the locks 
applied to all its files. An application process applies locks to remote files just as it does to local ones—it 
issues a system call and is notified whether or not it was successful. The local (client) operating system 
places a LOCK RPC request to the server, which locks the file if possible, updating its own lock-state 
information, and sends back a success/failure response. If successful, the open-file state on the client is 
updated to indicate that a portion of the file has a lock applied to it.

The hard part of maintaining lock state is coping with crashes. NLM avoids much of the potential 
complexity of crash recovery by simply ignoring the difficult cases. In practice, this has worked reason-
ably well, primarily because NFSv2 is used in well behaved environments that lack Byzantine routers 
and other networking problems.

The first issue in crash recovery is determining that there has been a crash. This is fraught with dif-
ficulty since a false determination causes big problems. NLM avoids these problems by being extremely 
conservative. A computer is deemed to have crashed only when it comes back up and announces it is 
restarting. Otherwise, it is assumed to be running fine (despite, say, being unresponsive for the past 
hour).

Thus, NLM clients keep on disk a list of which servers they are holding locks from, and servers keep 
on disk a list of which clients are holding locks on their files. When a client restarts, it notifies the servers 
in its list that it is restarting, and the servers release all the client’s locks.

Recovering from a server crash involves recovering the lock state of all the clients. This would be 
trivial if the state had been stored on disk along with the client list, but for performance reasons, it is not. 
Instead, the lock state is kept in volatile memory and thus disappears with a server crash. To recover it, 
servers rely on their clients.

As when clients restart, when a server restarts, it notifies all the clients in its list of lock holders. These 
clients then have a certain period of time, the grace period (typically 45 s), to reclaim the locks they held 
before the server crashed. During this period, the server accepts no new lock requests.

NLM’s approach to recovery is not perfect. We take this up again in Section 60.5.2, when we 
discuss NFSv4.

60.3  Common Internet File System

CIFS is Microsoft’s DFS. Its long history goes back to the mid-1980s, when it was developed by IBM and 
was known as the server message block (SMB) protocol, running on top of Network Basic Input/Output 
System (NetBIOS). Microsoft took over further development of SMB and renamed it CIFS in the late 
1990s. Though it still can run on top of NetBIOS, NetBIOS is often layered on top of TCP and, with some 
simple extensions, SMB can run directly on top of TCP (without NetBIOS). The term SMB is still used 
to refer to the RPC-like communications protocol on which CIFS is layered.

The CIFS approach is to provide strict consistency among clients and servers, allowing client-side 
caching for efficient handling of the two most common file usages—when a number of clients are 
sharing a file read-only and when a file is being used exclusively by one client. One way to character-
ize the differences between CIFS and NFSv2 is that CIFS is always strictly consistent and usually 
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fast, while NFSv2 is always fast and usually strictly consistent. Though keep in mind that by “fast,” 
we mean only that client-side caching is used.

Unlike basic NFS (see Section 60.2), CIFS servers hold open-file state from their clients. Thus if a cli-
ent crashes, this state must be cleaned up. On the other hand, if a server crashes, clients make no attempt 
to recover their state when it comes back up: operations on files that were open at the time of a crash 
will fail.

CIFS requires the transport protocol to be reliable and regards the transport connection as the sole 
indication of the health of the computer at the other end. So if the connection is lost, perhaps because of 
a network timeout, CIFS considers the other computer to have crashed.

This approach to failure allows CIFS to be simpler than NFSv2 and other DFSs. A request is not 
retried if the connection is lost: the application must assume the worst, that the server has crashed and 
there is no hope of recovery. Whether or not the remote procedure is idempotent does not matter.

The organization of the CIFS namespace is similar to that of NFS. Servers export “shares,” subtrees 
of their own hierarchies. Clients may place them in their local namespaces as desired—Windows 
clients typically assign drive letters to them (creating a local “forest”). Alternatively, much as NFS 
defines a namespace shared by all clients by using the automounter and a distributed database, 
Windows uses a distributed database called “active directory” to define a namespace shared by all 
clients.

To get a better idea of how CIFS works, consider the code in the following text, which is similar to the 
code we examined in Section 60.2 when looking at NFSv2:

         char buffer[100];
          HANDLE h = CreateFile(
                          “Z:\dir\file”,	 //	 name
                           GENERIC _ READ|GENERIC _ WRITE,	 //	 desired access
                           0,	 //	 share mode
                           NULL,	 //	 security attributes
                           OPEN _ EXISTING,	 //	 creation disposition
                           0,	 //	 flags and attributes
                           NULL	 //	 template file
          );
          ReadFile(h, buffer, 100, NULL, NULL);
          …
          SetFilePointer(h, 0, NULL, FILE _ BEGIN);
          WriteFile(h, buffer, 100, NULL, NULL);
          CloseHandle(h);

In this code, a thread opens an existing file (despite the name of the system call!), requesting both 
read–write access and that the file not be shared with others until the returned handle is closed (it does 
this by supplying a “share mode” parameter of 0—we discuss share modes later in this section). It reads 
100 bytes from the beginning of the file, then, after resetting the file pointer, writes 100 bytes to the 
beginning of the file. Finally, it closes the handle, allowing others to open the file.

Here, in outline form, is what takes place for all this to happen. At some point before this code is 
executed, the client must have created a transport connection with the server. Then, so that the server 
can do access checking, the client identifies itself to the server (and proves its identity). Next, the client 
identifies to the server the “disk share” it wants to access. This is a subtree of the server’s file system that 
the server is willing to export. If the client is allowed access to the share, the server returns a “tree ID” 
(TID) identifying the share. Our client associates this exported file system with the drive letter “Z.” Note 
that this is much as in the NFSv2 mount protocol, via which the client obtains a file handle for the root 
of a server file system (see Section 60.2.2).
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At this point, our client thread can issue the CreateFile system call to open the file it wants. It passes 
to the server the UID, identifying the user, the TID, identifying the share, and the path (in this case\
dir\file) to follow in that share. In addition, it passes the desired access, which the server checks to make 
certain it is allowed, the share mode, which the server must honor, and the other parameters (except for 
the template file, which is ignored when opening an existing file, but may be used as a source for the 
attributes if creating a new file). If successful, the server returns a “file ID” (FID), which the client sub-
sequently uses to identify the file.

As in NFS, read and write system calls by client threads do not necessarily send requests to the server 
immediately; they might instead be satisfied by a local cache. But when the client operating system 
fetches data from the server or sends modified data back to it, it sends read and write requests that 
identify the file by the FID. The file pointer, used by the application thread to identify file position, is 
maintained on the client side; read and write requests sent to the server contain an explicit file location.

Unlike NFSv2 servers, CIFS servers must be aware of what their clients are doing. In general, they 
keep track of not only the reference counts on files, but also the share modes. These indicate in what 
ways a file may have concurrent opens. The default, a share mode of 0, is that concurrent opens are not 
allowed. But a thread can specify, for example, that others can open the file for reading or that others 
may open the file for writing, or perhaps for both. Thus, when a thread tries to open a file, the open suc-
ceeds only if the desired access does not conflict with the share mode of all the other current opens of 
that file.

CIFS supports “byte-range” locks that are similar to those supported by NFSv2 in that application 
threads can lock portions of a file. However, CIFS’s locks are mandatory—they must be honored by all 
threads on all clients, unlike the locks supported by NFSv2 (and NFSv3). From the client application’s 
perspective, locks are associated with the combination of the file handle and the process: all threads of 
one process using the same file handle share the lock on a byte range of a file. Even if this file handle is 
shared with threads of a different process, these latter threads do not share the lock. If another handle 
for the file is created in the original process (by opening the file again), threads using that second handle 
do not share the lock. Thus, the server must keep track of not only which file handle a lock is associated 
with but also with which process on which client machine.

60.3.1  SMB Protocol

The SMB protocol plays the role of RPC for CIFS. Like RPC, it is a request-response protocol: clients 
(and sometime servers) send requests; servers (and sometimes clients) send responses. However, unlike 
a true RPC protocol, it is not extensible. It consists of a predefined set of requests and responses, all in a 
fixed format. Nevertheless, it suffices for CIFS (after all, it was designed for CIFS!).*

As the name SMB implies, requests and responses are sent as message blocks, each containing a 
standard header along with some arguments and data. A client first sets up a session with a server that 
has already established the client user’s identity. The client and server must first negotiate, which version 
of the SMB protocol they are using and then, via a log-on procedure, establish the user’s identity (thus 
setting the UID) and prove it to the server. After the session is established, the client may request access 
to one or more server “shares,” obtaining a TID for each. With such a TID, the client may open a file, 
thus obtaining a FID.

Each client operating system must identify which user process is sending a request by supplying a 
process ID (PID) unique to the client. PIDs are necessary for correctly implementing locks but are also 
used to match responses to requests. The idea is that a process has only one outstanding request at a 
time—which made sense before processes were multithreaded, but not since. To allow the client operating 

*	 Microsoft RPC is actually layered on top of SMB, primarily so that it can exploit the authentication and resource (share) 
identification provided by SMB. However, CIFS does not use Microsoft RPC.
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system (OS) to sort out responses to multithreaded processes, yet another ID is used: a multiplex ID, 
which, along with the PID, performs the function of ONC RPC’s XID.

The set of IDs form the context for a request and are included in special field in the header, as needed. 
For many of the details of SMB see Storage Networking Industry Association (2002).

Table 60.1 (adapted from Storage Networking Industry Association (2002)) shows a typical exchange 
of messages.

A fair number of messages must be exchanged before the client can get any data from a file, and most 
of these messages simply add one more ID to the context. So, rather than require these messages in 
sequence, SMB lets them be batched: a client sends a sequence of requests in a single message, and the 
server responds to all of them in a single response message. This batching ability is given the ungainly 
name of “andX.” Thus in the sample exchange, in Table 60.1, the requests starting with the session setup 
request through the read request can all be sent in one message. If they all succeed, the server sends 
back a single response containing all the IDs that have been established and the data requested by the 
read. If any of the requests fails, the server handles no further requests from the message and returns the 
cumulative result of all requests up through the failing one. Any request (or response) may be at the end 
of a batch; only those requests (or responses) whose names end with “_ANDX” may come before other 
requests (or responses) in a batch.

60.3.2  Opportunistic Locks

One way to achieve strict consistency is to perform all operations at the server without caching data at 
clients. This is CIFS’s default approach, but definitely not the only one possible. Local caching of a file’s 
data at a client is safe, with respect to consistency, either if the client is the only one using the file or if all 
clients using the file are doing so read-only. The hard part is limiting such caching to just those two cases.

CIFS relies on the server’s knowledge of clients’ open-file states to determine when it is safe for a client 
to do local caching. If a client opens a file for reading and writing that is not otherwise open, the server 
may notify the client that caching is safe. If another client wants to open the file (assuming the share 
mode permits it), the server must notify the first client that caching is no longer safe and that the client 
must send all changes it is made to the file back to the server. Then both clients may use the file, but no 
local caching is permitted on either.

TABLE 60.1  SMB Message Exchange in CIFS

Message Meaning

SMB_COM_NEGOTIATE -> server Client gives server list of SMB versions it is willing to use.
client <- SMB_COM_NEGOTIATE Server chooses one and informs client. It also sends the 

client a security challenge.
SMB_COM_SESSION_SETUP_ANDX -> server Client sends encrypted challenge to server, along with 

user’s identity.
client <- SMB_COM_SESSION_SETUP_ANDX Server verifies identity and fills in UID field.
SMB_COM_TREE_CONNECT_ANDX -> server Client identifies the share it wants to use.
client <- SMB_COM_TREE_CONNECT_ANDX Server fills in security fields and TID field.
SMB_COM_OPEN_ANDX -> server Client sends path name of file.
client <- SMB_COM_OPEN_ANDX Server performs access checks (based on UID) and, 

if OK, responds by filling in FID field.
SMB_COM_READ -> server Client requests data from file.
client <- SMB_COM_READ Server returns data.
SMB_COM_CLOSE -> server Client closes file.
client <- SMB_COM_CLOSE Server returns success.
SMB_COM_TREE_DISCONNECT -> server Client disconnects from share.
client <- SMB_COM_TREE_DISCONNECT Server returns success.



60-16 Operating Systems

When a client opens a file, as part of the open SMB request, it may ask for an opportunistic lock 
(or oplock). There are two categories of such locks: level I and level II. The former allow exclusive access; 
the latter allow shared access. The server may or may not grant the request depending on whether and 
how the file is open by others. If the client obtains a level-I oplock, then it is assured that no other client 
has the file open and thus it can safely cache file data (and metadata) locally. If it obtains a level-II oplock, 
then it is assured that no other client has the file open in a mode that allows changes, and thus it can 
safely cache blocks from the file, but any changes it makes must be sent directly to the server, and the 
server will then revoke all level-II oplocks on the file. Thus, if a file is being used for both reading and 
writing, a level-I oplock is needed, but if it is being used just for reading, level II suffices. Note that the 
client application is oblivious of oplocks—it simply opens files and performs operations on them. It is 
the client’s operating system that is responsible for local caching and thus must request oplocks.

To revoke an oplock, the server sends the client an oplock-break SMB request. If a level-I oplock is 
being revoked, the server will give it a level-II oplock if possible. The client must send back all changes 
to the server, then signify it is done so by sending a response to the oplock-break request. Since there is 
nothing to send back when a level-II oplock is being revoked, no response is required.

The CIFS protocol does not allow a client to request a level-II oplock. Instead, it must request a level-I 
oplock, but it might, at the server’s discretion, get a level-II one instead. This might seem a bit strange; 
the rationale is that though files are often used read-only, rarely are they opened that way. Thus, most 
opens are read-write, even though writing may well not be done. So, if one client has a file open read-
write but does not write, and another client opens the same file read-write but does not write either, then 
if both clients request level-I oplocks, they will end up with level-II oplocks.

If a client closes a file for which it has an oplock, will its cache still be useful if it opens the file again 
a short time later? The SMB close request releases all oplocks associated with the file, so there’s no 
guarantee that cached data are valid if the file is reopened—since the client no longer has an oplock, the 
server is not obliged to notify the client if any other client opens the file. However, the client might cheat 
a bit: rather than sending an SMB close request to the server when its user application closes the file, it 
can keep quiet in hopes that some local application opens the file again. If this indeed happens and the 
client still holds the oplock, then the client is guaranteed that its cache is still valid. On the other hand, 
if another client opens the file, the server will revoke the original client’s oplock, thus telling it that its 
cache is no longer valid. At this point the client might tell the server that the file is really closed.

For level-II oplocks, such a delayed-close strategy might seem easy: the client holds a level-II oplock 
when the application closes the file. Shortly thereafter, an application opens the file again. Since the cli-
ent already has a level-II oplock, not only is the cache still valid but no sort of request needs to be sent 
to the server. However, as we just mentioned, few applications open files read-only. Thus the second 
open will probably be for read-write use (even though the file might never be written to). Since the 
only opportunity the client has to request an oplock is when the file is opened, the client must request a 
level-I oplock on the off chance that the application might actually write to the file. Thus, an SMB open 
request must be sent to the server, and the server might grant the level-I oplock or might simply let the 
client keep the level-II oplock. But the cached file blocks at the client are still valid, so despite the need 
to send a request to the server, the delayed-close strategy is a win.

The delayed-close strategy for level-I oplocks works a bit differently. If an application closes a file 
and then it or some other client application opens it again, a level-I oplock need not be requested of the 
server, since the client already has one. Thus, until the level-I oplock is revoked, there is no need for the 
client to notify the server of any changes to the open state of the file, nor any need to write back modified 
file blocks (other than to reduce loss in the event of a client crash). However, if the server does revoke the 
level-I oplock, the client must not only send back to the server all modified file blocks but also update 
it to the file’s current open state by sending it whatever SMB open and close requests will get it there.

Not all clients are capable of doing this sort of batching, so there are actually two kinds of level-I 
oplocks—exclusive and batch. If a client holds an exclusive oplock, it must send the server an SMB close 
request along with all modified blocks when the application closes the file. It must then obtain a new 
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oplock if the file is reopened, at which time it may not use any previously cached blocks from the file. 
If a client holds a batch oplock, then it uses the delayed-close strategy mentioned earlier. Only on older 
systems do clients still use exclusive locks.

60.4  DFS

DFS, the DFS of distributed computing environment (DCE), is no longer in common use but is interesting 
because of its approach to caching and failure recovery. It is derived from an earlier DFS, Andrew File 
System (AFS).* Both systems addressed the need for client caching of files in a day when primary storage 
was expensive: they use client disks to cache files from the server. AFS caches files in their entirety; DFS 
caches data from files in 64 KB blocks.

Like CIFS, DFS provides strictly consistent sharing of files. However, unlike CIFS, clients always use 
their caches, even if multiple clients are making changes to the same file. Further unlike CIFS, DFS 
attempts to recover from server crashes.

The DFS server coordinates its clients’ use of their caches by passing out “tokens,” each of which 
grants the client permission to perform a certain operation (such as read or write) on a range of bytes 
within a file. Since all operations are done in the client’s cache, the tokens control the use of the cache.

Suppose an application on client A opens a file for reading and writing, client A’s DFS cache manager 
(running as part of the operating system) sends an open request to the DFS server (using DCE RPC) 
asking for OPEN_READ and OPEN_WRITE tokens for the file (see Figures 60.7 through 60.12). The 
server sends back a response containing the tokens, keeping as part of its token state that such tokens 
are at client A. In response to the application’s first read of the file, client A’s cache manager requests 
data from the server, along with a DATA_READ token giving it permission to use this data in its cache. 
It fetches not just the data needed but 64 kB data blocks, thus performing aggressive read-ahead. If the 
client application performs a write system call, the client’s cache manager first obtains a DATA_WRITE 
token from the server, granting the client permission to modify a range of bytes in its cache.

Suppose an application on client B opens the same file for reading and writing. Client B’s cache 
manager obtains OPEN_READ and OPEN_WRITE tokens, as did client A’s. The application now 

*	 AFS stands for Andrew File System, so called because it was developed at Carnegie Mellon University: both Mr. Carnegie 
and Mr. Mellon had the first name Andrew.
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FIGURE 60.7  A DFS client opens a file read-only.
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performs a read system call for a portion of the file for which client A has a DATA_READ token (but 
not a DATA_WRITE token). This is not a problem, so the DFS server sends client B the data along with 
a DATA_READ token.

Now the application performs a read system call for a portion of the file for which client A has a 
DATA_WRITE token. Before the DFS server can grant B a DATA_READ token, it sends a revoke 
request to client A revoking its DATA_WRITE token. Client A responds by both giving up the token and 
sending back the modified file data from its cache. The server now sends client B both a DATA_READ 
token and the data.
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FIGURE 60.8  The DFS client reads data from the file.
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FIGURE 60.9  Another DFS client opens the file for both reading and writing.
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This is all straightforward, though perhaps laborious. Like both NFSv2 and CIFS, DFS handles 
the common cases efficiently: if only one client is modifying a file and no clients are reading it, or if a 
number of clients are reading a file but none are modifying it, all file data resides in client caches and 
just a minimal number of messages are exchanged. Unlike NFSv2 but like CIFS, all client caches are 
strictly consistent with the server.
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FIGURE 60.10  The second DFS client reads from the file.
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The DFS server, like the CIFS server, maintains a fair amount of state information about its clients. 
In DFS, this information consists of all the tokens held by each of the clients. If a client crashes, the DFS 
server simply removes the client’s tokens from its state information. If the server crashes, then a procedure 
almost identical to that used by NFSv2’s network lock manager recovers the server state from the clients.

Providing strict consistency is relatively easy when, as in CIFS, no attempt is made to recover from 
server crashes. Recovering from server crashes is relatively easy when, as in NFSv2, no attempt is made 
to provide strict consistency. DFS tries to do both and has to make some compromises.

The primary issue is client behavior while the server is not responding. If the server is actually down 
and the client’s tokens will not have timed out by the time the server comes back up, then it would be rea-
sonable to let client applications continue to function, where possible, using their local caches. But it could 
be that the server is not down, just unreachable because of network problems. If so, it is possible that the 
server, not being able to contact our client, has assumed it to have crashed; our client’s tokens might then 
be unilaterally superseded by the actions of another client, one that can communicate with the server.

Because of this uncertainty, DFS forces system calls on open files to fail once the client determines 
that the server is not responding. When the server does respond, perhaps having just recovered from a 
crash, then if the client’s tokens are still valid, system calls on open files succeed again.

This approach has the advantage of adhering to POSIX file semantics as long as system calls succeed. 
However, unlike NFSv2, where client applications can be oblivious to periods of server unresponsiveness, 
DFS requires the client to be prepared for system calls to fail while the server is unreachable and to retry 
them explicitly. Furthermore, contact with the server might be lost after an application has performed its last 
write to a file but before it has closed the file and before the data has been transferred to the server. Thus the 
only system call left that can fail, and thus tell the application that something is wrong, is the close. It is there-
fore important that applications check for errors from close when using files from a DFS server. However, 
few applications do this, since with other file systems it seems inconceivable that close could actually fail.

60.5  NFS Version 4

NFSv4 is a major revision of NFS. Its designers’ goals were to provide better performance, stronger con-
sistency, and stronger security than in prior versions, to support not only Unix clients but also Windows 
clients, and to work well on the modern Internet, particularly where clients and servers may be behind 
firewalls. A side effect of all this is that the three separate protocols of prior NFS versions (mount proto-
col, file protocol, and network lock manager) are all combined into a single protocol.

NFSv4 dispenses with the mount protocol by having servers combine their exported file systems 
into a single “pseudo file system” and supplying a RPC request to obtain the root of that file system. 
Figure 60.13 shows the file system of a server that exports a few of its subtrees to clients; Figure 60.14 
shows the pseudo file system that is made available to clients—note that anything not exported by the 
server is not seen by clients.
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NFSv4 reduces network traffic by using compound RPC, which allows a number of RPC requests to be 
encoded in a single message and their responses to be returned in a single message, much as is the case 
with CIFS’s and X facility.

We focus here on consistency and failure handling. Of particular interest is NFSv4’s support for 
mandatory locks (it supports advisory locks as well) and share reservations—the same thing as share 
modes in Windows. The network lock manager of prior NFS versions supported only advisory locks. 
Mandatory locks are expected by Windows applications and supported by some versions of Unix. Share 
reservations are not really usable by Unix applications—there is no standard API for them—but they are 
required by Windows applications.

NFSv4’s consistency model essentially combines the rather weak consistency of prior NFS versions 
and the strict consistency of CIFS. If clients use locks or share reservations appropriately when accessing 
files, NFSv4 guarantees entry consistency. If locks are not used, consistency is the same as that in prior 
NFS versions. As a performance optimization, NFSv4 uses a technique similar to CIFS’ oplocks called 
open delegation. It allows a server to delegate to a client the chores of managing opens, locks, and cach-
ing for a file, while no other clients are performing conflicting operations.

The big difference between NFSv4 and CIFS is NFSv4’s tolerance for failures. Prior versions of NFS 
were failure-tolerant as well, but NFSv4 is a step more so, since its servers hold much more state informa-
tion than those of prior versions.
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FIGURE 60.14  The pseudo file system that clients of the server of Figures 60.10 through 60.13. (see /admin 
and /vol/vol2 are not seen.)
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FIGURE 60.13  The directory hierarchy of an NFSv4 server that exports three subtrees.
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CIFS depends on the transport protocol to insure that requests are properly ordered, without 
duplicates. NFS, on the other hand, effectively has the notion of a session layer above the transport, and 
it is this session layer that insures proper ordering of requests.* Thus if the transport connection is lost, 
CIFS has no additional information to insure proper request ordering and must delete all client state 
on the server, causing any current and subsequent client requests to fail. NFS does not depend on the 
transport protocol for proper ordering and thus can recover from a loss of transport connection (and 
can run on unreliable, connectionless transports such as UDP).

In prior versions of NFS, this connection layer does not require any state information on the server other 
than the DRC, and thus clients do nothing explicit to set up the session or take it down. But NFSv4, as we dis-
cuss in Section 60.5.1, requires more substantial session-oriented state information. Though clients explicitly 
establish sessions, there is no explicit action to take them down. Instead, as explained in the subsequent sec-
tions, servers remove session state when the client appears to be no longer active, but clients can recover it.

60.5.1  Managing State

NFSv4 servers maintain a hierarchy of state. At the top is the inventory of active clients. Each client 
identifies itself to the server, providing a unique client ID. In response, the server puts together client-ID 
state, which includes a lease period: if the server does not hear from the client during this period, it con-
cludes that it has crashed or has otherwise lost interest, and thus the server can rid itself of the client-ID 
state and all subordinate state. A client renews its lease by making any sort of NFSv4 request to the server. 
If it has nothing else to say, it can send a special renew request that does nothing but renew the lease.

When a client does open a file, there are additional concerns. To support share reservations, each time 
some client opens a file the server must put together an open-state record containing the access modes 
and the share reservation. The server returns the client a state ID to refer to it, which, along with the 
NFS file handle, plays the role of a Unix file descriptor or a Windows file handle and is included with 
subsequent file operations to identify the caller’s open state.

The open-state records and state IDs form the elaborate data structure shown in Figure 60.15 in which 
the client has a number of files open, each with its own open-state record. We explain this figure more 
fully in the subsequent sections, where we explore the notion of an “open owner.”

*	 The session layer is implicit in NFS through version 4.0 and is made explicit starting in version 4.1.
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60.5.1.1  Mandatory Locks

NFSv4 supports not only advisory byte-range locks but mandatory ones as well. The latter are a rarely 
used feature of Unix, partly because it has not been supported by NFS in the past, partly because using it 
is somewhat obscure (it is enabled by turning on a file’s set-group-ID access-permission bit and turning 
off its group-execute permission bit. On Linux, one must additionally turn on this facility for an entire 
file system by setting a mount flag). Adding to the confusion is the fact that Windows’ semantics for 
mandatory byte-range locks (it does not support advisory locks) are different from Unix’s. In both sys-
tems, byte-range locks belong to a process. Thus, for example, in Unix, suppose a process P1 opens file 
F, producing file descriptor FD1, and then forks a child process P2. If P2 places a mandatory exclusive 
byte-range lock on byte 0 of the file via FD1, then only P2 may access that byte—not P1, even though 
they share the same open-file-table entry for the file. Now suppose P2 opens the same file again, this 
time producing file descriptor FD2. Even though P2 had locked byte 0 via FD1, it can still access that 
byte via FD2—what matters is that the process has the file locked; it does not matter which file descriptor 
is used.* However, things are different in Windows, where the lock is associated not just with the process 
but also with the Windows file handle. Thus in a Windows version of this example, the process is not 
allowed to access byte 0 via FD2 until the lock placed via FD1 is removed.

When a server receives a read or write request from a client, it needs to know which locks held by 
the client actually apply to this particular request. For a Unix client, the answer would be all locks held 
by the client process for the file in question, but for a Windows client, it would be just those locks held by 
the client process that were placed using the same Windows file handle as was used for the read or write 
request. But the server does not necessarily know, which requests came from which processes or which 
requests were made through which Windows file handles.

Rather than give the server this information (which would have to include whether Unix, Windows, 
or some other lock semantics are being used), the NFSv4 client instead assigns “owners” to locks. When 
it issues a read or write request, it lets the server know which locks apply by telling it who the owner is. 
So, for Unix clients, all locks taken by a particular process might be given the same owner, or perhaps 
all locks taken by a particular process on a particular file might be given the same owner (it does not 
matter which, since the read or write request identifies the file). For Windows clients, all locks taken by 
a particular process via a particular Windows file handle are given the same owner. The server does not 
need to know what the client’s lock semantics are; it just needs to keep track of lock owners.

A lock owner on a client is simply a unique (to the client) integer. When the client requests a lock 
requiring a new lock owner, it passes the corresponding integer to the server. In response, the server 
establishes lock state to represent this lock owner and returns to the client a lock-state ID referring to the 
state. Henceforth, the client uses this lock-state ID rather than the lock-owner integer. When the client 
requests additional locks for the same lock owner, it passes the corresponding lock-state ID to the server. 
When, for example, the client sends a write request to the server, it includes a lock-state ID to tell the 
server which locks should apply (a special lock-state ID is sent if no locks apply). Thus the server’s lock 
state represents all the locks held by a particular client lock owner. See Figure 60.16.

60.5.1.2  Maintaining Order

NFSv4’s state hierarchy of client ID, open state, and lock state presents challenges. Client crashes must be 
detected and no-longer-useful state removed from the server. Not only must server crashes be detected, 
but clients must reestablish their state on the servers. And finally, everything must function correctly in 
spite of Byzantine routers.

Establishing the client-ID state is far from immune to problems with late-arriving duplicates. If the 
server receives a request to establish a client ID that already exists, it might decide that the client has 

*	 Another property is that all byte-range locks of a file are removed if any of the process’s file descriptors for the file are 
closed. So suppose P2 in our example was not aware that FD1 and FD2 refer to the same file. If it then locks the file via 
FD2 and closes FD1, it might be surprised to discover that the file referred to by FD2 no longer has a lock.
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crashed and has restarted. Even a request to establish a client ID that does not exist might be a long-delayed 
duplicate from a client that is no longer active. Setting up the state again might tie up resources needlessly.

Open requests (with share reservations) and mandatory lock requests are particularly sensitive to 
Byzantine routers. Suppose, for example, a portion of a file is locked, then unlocked, and then a much-
delayed duplicate of the lock request arrives at the server. If the server does not realize it is a duplicate 
and locks the file again, then, since the client does not know the file is locked, the file might stay locked 
for an arbitrarily long period of time.

An explicit session layer, introduced in NFSv4.1, simplifies matters tremendously. Recall that a prob-
lem with the DRC of prior NFS versions was determining how long a request must remain in the DRC—
the intent is that a late-arriving duplicate request will be recognized as a duplicate, no matter how late it 
is. Earlier versions of NFS used a simple time-based mechanism for removing requests from the DRC. 
In NFSv4, clients identify concurrent streams of NFS requests; requests within each stream are assigned 
sequence numbers, and the streams themselves are assigned slot numbers. The DRC is divided into cor-
responding slots. When a request is received, it is cached in the associated DRC slot. When a request 
with a larger sequence number is received, it replaces the previous entry in the DRC slot. If a request with 
a sequence number equal to the one in the DRC slot is received, the previous response is returned. If a 
request with a smaller sequence number is received, it must be a very late-arriving duplicate and is dis-
carded (see Chapter 9 of Doeppner (2011) for details). With this approach, in the absence of server crashes, 
open requests, lock requests, data-transfer requests (reads and writes), etc. have exactly once semantics—
there are no problems with Byzantine routers and duplicates that cross transport-connection boundaries.

60.5.2  Dealing with Failure

NFSv4 deals with failure issues not handled by its predecessors. Though it uses basically the same strategy 
for recovery from server failures as the network lock manager of v2 and v3, there is more state to recover 
and there are more operations that depend on this state. Not only locks but also all open state must 
be recovered. Because locks may be mandatory and share reservations definitely are mandatory, it is 
particularly important that crashed clients be detected quickly and restarted servers recover their state 
quickly. But in addition, there is a new problem: when a server restarts, the client with the most recent 
lock state might be temporarily unreachable, but a client with older, superseded lock state might try to 
reclaim that state on the server.
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FIGURE 60.16  Lock state in NFSv4.
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Leases provide the basic defense against client crashes. Clients are expected to renew their leases; if 
a client ID’s lease time expires, the server assumes it has crashed and may dispose of all its state, thus 
closing all files and breaking all locks. This might be considered pretty drastic if the client has not really 
crashed but there is merely a temporary network problem. It is also very different behavior from that 
experienced by NFSv2 and v3 clients: they never had to worry about the server’s closing their files, since 
the server never knew they were open in the first place. However, such behavior is unavoidable when 
unresponding clients hold lock state or share reservations.

A client might crash, reboot, and recontact the server well before its original lease has expired. The 
fact that the client is reestablishing its client ID might be a clue to the server that it has restarted, but 
there are reasons other than crashing that a client might do this. So included with the client-ID state on 
the server is a 64-bit verifier that is supplied by the client when it establishes its client ID and is different 
each time the client reboots. Thus, if the server receives a set-up-client-ID request from a client for which 
it still has state, if the verifier supplied with the request is different from what’s included with the saved 
state, then the server knows the client has restarted and the saved state should be discarded. But if the 
verifiers are the same, then the saved state is still valid.

Clients find out about server crashes when RPC requests that depend on open and lock state return 
error codes indicating that the state no longer exists. For a period before then (while the server was 
down), such calls might have timed out, but the only way for a client to distinguish a server problem 
from a temporary communications problem is for the server to give a positive indication that it has no 
record of the client. The problem might turn out to be not that the server crashed, but that the client’s 
lease expired; but from the client’s point of view, lease expiration is just as bad, if not worse.

As with the network lock manager in v2 and v3, when a server restarts, it establishes a grace period 
during which clients may recover their states. How long should the grace period be? A client would not 
discover that the server has crashed until it sends it a request. But the client is not required to send the 
server a request until just before its lease expires. So, in case a client renewed its lease just before the 
server crashed, the server’s grace period should be at least as long as the lease period.

Suppose a client discovers that its server state has disappeared, its first response is to reestablish its 
client-ID state, along with a new verifier. Then, as with the network lock manager, it tries to reclaim its 
previous state.

Now the server has decisions to make. If it is not in its grace period following a restart, then the reason 
the client’s state no longer exists is probably that it was discarded after the client’s lease expired. This 
could be due to incompetence on the client’s part, but is most likely the result of a network problem. If 
the server can determine that no conflicting opens or locks have been given to other clients since the 
lease expired, then it may allow the client to reclaim its state. But, in general, the server probably can-
not determine this, so it must refuse the reclaim request and the client must report an error back to the 
application (and thus the application must be prepared to cope with the bad news).

If the server is within its grace period, then the reclaim request is probably for state held when the 
server crashed, and thus it should be granted. However, the client might have been disconnected from 
the server because of a network problem. In the meantime, the client’s lease expired, the server granted 
a conflicting lock to another client, and then the server crashed. Finally, the network problems experi-
enced by the first client have been solved, and it is now trying to reclaim its (ancient) state. But it really 
should be the second client whose state is reclaimed.

The general problem for the server when it receives a reclaim request is to make sure that the state 
being reclaimed has not been superseded by more recent operations by other clients. The NFSv4 speci-
fication (RFC 3530*) requires servers to err on the side of safety: if they are not sure, they must refuse 
the reclaim request.

The only way for a server to be absolutely sure is to record all share reservations and locks in stable 
storage, so that they can be recovered after a crash. This is probably too time-consuming for most servers. 

*	 http://www.faqs.org/rfcs/rfc3530.html.
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At the other extreme, a server could simply refuse to accept reclaims on the grounds that it does not have 
enough information to determine if any of them are for the most recent state.

A reasonable compromise is for the server to keep enough information on stable storage to determine 
which client IDs hold state. Then, during the grace period, it can refuse all reclaim requests from clients 
who did not hold state at the time of the most recent crash.
RFC 3530 suggests servers record the following information on stable storage for each client ID:

•	 Client ID.
•	 The time of the client’s first acquisition of a share reservation or lock after a server reboot or client 

lease expiration.
•	 A flag indicating whether the client’s most recent state was revoked because of a lease expiration.

In addition, the server stores on stable storage the times of its two most recent restarts. Doing this 
requires minimal server overhead, yet allows it to determine whether a client definitely held valid server 
state at the time of the last server crash. We take this up in Exercise 9.

60.6  Conclusions

DFSs are normally made as transparent as possible to users and their applications; as we have seen, 
much has been done to make accessing remote files indistinguishable from accessing local files. The 
major problem is coping with failure, both of communication and of machines. NFS has been successful 
because of its compromises. Prior to version 4, it provided semantics that were “pretty close” to local 
Unix file semantics, with a response to failure that “pretty well” insulated the client from server and net-
work problems. CIFS, and to a certain extent DFS, were based on the premise that providing semantics 
that are exactly the same as local semantics is more important than insulating the client from server 
and network problems. NFSv4 is attempting to come as close as possible to achieving local-file-system 
semantics while still insulating clients from server problems (and vice versa).
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61.1  Introduction

A mobile operating system, or mobile OS, is an operating system that is designed to run on a mobile 
device, such as a mobile phone, personal digital assistant (PDA), or a tablet computer. Like traditional 
operating systems, a mobile OS is the software layer that sits between the device’s hardware and its 
application layers. As such, a mobile OS is an abstraction built in software that hides the details of the 
hardware layer from the applications that sit atop it.

Its primary role is to manage the device’s hardware resources—the processor, memory, input/output 
(I/O) devices, network, etc.—and to provide a variety of services and easy-to-use software interfaces to 
support the device’s various uses. This would include providing a user interface (UI) as well as provid-
ing programming interfaces that allow developers to create applications to extend the device’s basic 
functions.

Although many of the issues and challenges that characterize operating systems research and devel-
opment are present also in mobile OS development, the field is characterized by distinctive computa-
tional issues made important by the size limitations of mobile devices, their reliance on battery power, 
and by their mobility.

61.1.1  Historical Overview

A mobile phone (or cellular phone) can send and receive telephone calls over a radio link. The calls are 
transmitted over a cellular network that is operated by a service provider. The very first mobile tele-
phone call was made in 1946 from a car using Bell Laboratory’s Mobile Telephone Service (MTS). MTS 
became a commercial service provided by AT&T in St. Louis and other metropolitan areas. The system 
had very few radio channels and relied on a human operator to connect calls. Ten years later, a Swedish 
company developed the first automatic car phone system, which used vacuum tube technology and 
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weighed 88 pounds [Wikipedia: History of the mobile phone 2012]. Named mobile telephone system A, 
it allowed calls to be made and received in the car using a rotary dial. The car phone could also be paged.

The first handheld mobile device was developed in 1973 by Motorola. It weighed 2.5 lb and offered a 
talk time of 30 min and took 10 h to recharge [Wikipedia: History of the mobile phone 2012]. The world’s 
first public cellular call was made in the New York City to a landline by Dr. Martin Cooper, a general 
manager for the communications systems division at Motorola. “As I walked down the street while talk-
ing on the phone,” Cooper once told an interviewer, “sophisticated New Yorkers gaped at the sight of 
someone actually moving around while making a phone call” [Greene 2011].

In 1983, Motorola commercially released the DynaTAC phone—seen sported by Michael Douglas in 
the 1987 movie Wall Street—which is considered one of the world’s first mobile phones. Based on the 
prototype developed in 1973, the DynaTAC weighed almost two pounds, provided 1 h of battery life, 
and stored 30 phone numbers in its phonebook.

In 1987, Nokia launched the Mobira Cityman 900—the first handheld mobile phone for Nordic 
Mobile Telephony (NMT) networks. The Mobira Cityman 900 became an iconic device when Soviet 
leader Mikhail Gorbachev was photographed using a Cityman to make a call from Helsinki to Moscow 
[Ross Catanzariti n.d.]. In 1989 Motorola MicroTAC 9800X was released, which was one of the first truly 
portable phones, with its ability to be slipped into a jacket pocket. The Motorola International 3200 fol-
lowed in 1992 as the first digital hand-sized telephone.

Early mobile phones did not have operating systems in the full sense of the term. Rather, they were 
controlled by embedded systems—that is, a system that is specifically designed to control the device’s 
particular hardware components, such as its battery and radio transmitter, and software. Unlike a true 
operating system, an embedded operating system does not load and execute applications and is not 
designed for general purpose computing system.

61.1.2  Cellular Networks

With the advent of the mobile telephony devices, there was a need for cellular network technology 
that could provide broader coverage and faster and more reliable data transmission capabilities. The 
introduction of cellular technology made possible the re-use of frequencies by multiple users in small 
adjacent areas covered by relatively low-powered transmitters, making widespread adoption of mobile 
telephones economically feasible.

AT&T’s MTS, introduced in 1947, now considered zero-generation service, was a precursor to mod-
ern day cellular networks. The service relied on an operator to connect both incoming and outgoing 
calls [Massa 2006]. In the 1970s, AT&T introduced the first-generation (1G) analog mobile phone ser-
vices, one of the first automatic mobile networks to get Federal Communications Commission approval 
in the United States [AT&T 2012].

These systems were referred to as cellular, due to the method by which the signals were handed off 
between towers. A cell can be visualized as a geographic area with a single transceiver known as a base sta-
tion or cell tower. In order to avoid interference, adjacent cells use different sets of frequencies [Marshall 
Brain 2011]. Contemporary cellular networks use a system whereby towers are situated at three corners 
of a hexagonal shaped cell. As shown in Figure 61.1, each tower broadcasts three directional signals, 
each of a different frequency. The frequencies within a given cell differ from the frequencies in all six 
adjacent cells. As a device travels through a geographical area, it switches from one frequency to another 
in a process known as a handoff [Wikipedia: Cellular network 2012]. Typically, the base station chooses 
a frequency as the device enters its area and the device automatically switches to the new frequency. To 
the cell phone user, the switch is usually imperceptible and, ideally, communication is not interrupted.

In terms of global systems, the Japanese telecommunications company, NTT, built its own network 
in 1979. Five years later, it was the first 1G network to cover an entire country. The NMT network oper-
ated in Denmark, Sweden, Finland, and Norway followed in 1981, becoming the first system to feature 
international roaming.
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The 1990s saw the emergence of two digital networking standards: the European global system 
for mobile communications (GSM) standard and the North American code division multiple access 
(CDMA) standard [Wikipedia: 2G 2012]. GSM-based phones use subscriber identity modules—SIM 
cards—to store user data and are not linked to a particular device. In the United States, CDMA carriers 
use network-based white lists to verify their subscribers. That means, you can only switch phones with 
your carrier’s permission, and a carrier does not have to accept any particular phone onto its network. 
Both CDMA and GSM are multiple access technologies—that is, they enable users to combine multiple 
phone calls or Internet connections into one radio channel.

GSM is a time division system. Voice signals are transformed into digital data and then given a chan-
nel and a time slot. On the other end, the receiver listens only to the assigned time slot and pieces the 
call back together. CDMA is a code division system. A call’s data are encoded with a unique key and 
combined with other calls and all are transmitted in the same time slot. Receivers use the key to divide 
the combined signals into its individual calls [Segan 2012]. In addition to sound, CDMA and GSM net-
works are also capable of transmitting small amounts of data, making possible such features as the short 
message system (SMS), or text messaging, caller ID, and voicemail.
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Nokia’s 1011 was the world’s first commercially produced GSM mobile phone, becoming the model for 
the “candy-bar” design found in many of today’s low-cost mobile phones. The 1011 had a monochrome 
display (see Figure 61.2), an extendable antenna, and a phonebook that stored up to 99 phone numbers.

In the late 1990s, the general packet radio service (GPRS) standard emerged. This added packet-
switched data capabilities to existing GSM networks, which initially used a circuit-switched telephony 
system. Informally, GPRS is also called 2.5G. It allows users to send graphics-rich data as packets and to 
transmit IP packets to external networks such as the Internet [GSM World 2012]. GSM/GPRS accounts 
for over 80% of all 2G subscribers [Wikipedia: 2G 2012].

The introduction of the third-generation (3G) networks allowed mobile telephone customers to use 
audio, graphics, and video applications, enabling widespread mobile Internet services. NTT DoCoMo 
launched the first commercial 3G network in 2001, using the wideband CDMA (W-CDMA) wireless 
standard. W-CDMA, also known as universal mobile telephone system, offers greater spectral efficiency 
and bandwidth for more data capacity and is a refinement of the 2G CDMA system [Wikipedia: History 
of the mobile phone 2012].

In 2009, the fourth-generation (4G) network standard emerged, which includes such communica-
tion technologies as long-term evolution, worldwide interoperability for microwave access, and evolved 
high-speed packet access. These 4G standards are shepherded by the 3G partnership project, a standards 
governing body for GSM technologies that is responsible for the technical specifications [3rd Generation 
Partnership Project 2012]. The 4G networks use an IP-based architecture where everything (including 
voice) is handled as data, similar to the Internet. These data-optimized networks are geared toward an 
ever expanding demand for bandwidth and mobile capacity.

By the end of 2011, there were 6 billion mobile subscriptions, according to estimates by the International 
Telecommunication Union, the United Nations Agency responsible for information and communica-
tion technologies [International Telecommunication Union 2011]. With each progressive generation of 
cellular technology, we see improvements in data transfer capabilities, range, and reliability of the cel-
lular networks, as summarized in Table 61.1. The increasing capabilities of services from 1G to 4G has 
led to the increasing popularity of smartphones.

61.1.3  Smartphone

A smartphone is a mobile phone with computer-like features, including a larger screen and an operating 
system capable of supporting third-party applications and running on different hardware architectures 
[Oxford University Press 2010]. Phones that typically have smaller screens and the ability to support 
some advanced functionality, such as web browsing or music and videos, are known as feature phones. 

FIGURE 61.2  Nokia 1011. (http://www.reghardware.com/2007/11/09/ft_nokia_1011/)
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They usually have a limited operating system and, in general, do not support third-party software. If 
they do, they usually run on Java or binary runtime environment for wireless and are often standalone 
items that do not integrate with other features of the phone [Lee 2010].

Smartphones have revolutionized the way people interact with each other and with digital media. The 
first smartphone can be traced to Bell South’s and IBM’s Simon, released in 1993, which was a phone, 
personal data assistant (PDA), and fax machine, built into a single mobile device about the size of brick 
[Reed 2010]. It included a stylus-operated touchscreen and let you send and receive fax messages. It also 
included a built-in notepad, an e-mail client, contact list, and a calendar (Table 61.2).

Ericsson was the first brand to coin the term “smartphone” with the release of its GS88 in 1997, which 
contained a built-in keyboard and touchscreen and personal data assistant application suite [Wikipedia: 
Smartphone 2012]. Nokia released the Nokia 9000 Communicator in 1996 with a flip open keyboard 
design. In 2000, the touchscreen-based Ericsson R380 smartphone was the first device to use an open 
operating system called Symbian OS developed by Nokia. Microsoft released its first operating system 
targeted at the mobile device market, the Pocket PC, in 2000. This represented the first major push by 
a software company (as opposed to a phone company) into the mobile space. In 2001, we see Palm OS, 
BlackBerry OS, and Windows CE coming onto the scene. In 2002, Research in Motion (RIM) entered 
the mobile phone market with its BlackBerry 5810 device, the first mobile device optimized for e-mail 
and web browsing. During the 2000s, the Symbian system was the market leader for smartphone operat-
ing systems until it was surpassed by the Android operating system in 2011.

In 2007, the introduction of the Apple iPhone’s iOS Operating System, the first major mobile OS to 
come out since the early 2000s, made a notable impact on the mobile OS marketplace. During most of 
the 2000s, the design of mobile OS, for the most part, did not undergo major change [Brookes 2012]. 
At the same time, however, hardware devices were making substantial technical leaps in terms of the 
capabilities and performance. iOS changed the perception of smartphones from that of a device targeted 
largely toward the business community to that of a commodity that all consumers could use. With this 
change came an increased emphasis on enhancing and enriching the user experience. Consequently, iOS 
focused more attention on the UI, including high resolution screens with spectacular graphics and such 
features as multi-touch, all of which were designed to appeal to the everyday consumer.

Apple also introduced a software developer kit to enable third-party application developers to write 
their own programs and distribute them to the end users through a common marketplace. This created a 
large community of developers writing applications (“apps”) that extended the functionality of the devices.

TABLE 61.1  Network Generations

Generation
Commercially 

Available Dominant Technology Applications Speed

1G Japan, 1979 Analog—AMPS Voice only and no data 
services

14.4–28.8 kbps

2G Finland, 1991 Digital circuit 
switch—GSM and 
CDMA

Short messaging service 
(SMS) and digital 
encryption

56–115 kbps

3G Japan, 2001 Digital Packet 
Switched—W-CDMA 
(UMTS)

Mobile TV, video on 
demand, video 
conferencing, and 
location-based (GPS) 
services

2+ to 56 Mbps

4G South Korea, 2006 IP-based network—LTE 
and WiMax (3GPP)

Broadband services and 
HD video streaming

100 Mbps–1 Gbps

5Ga Anticipated in 2020 Still in R&D phase Improved service 
quality and intelligent 
networks and devices

1 Gbps +

a	At present, 5G is not a term officially used for any particular specification.



61-6 Operating Systems

In 2008, HTC released the HTC Dream, based on the Android operating system. Android was devel-
oped by Google in conjunction with the Open Handset Alliance (OHA), a consortium of 84 tech-
nology and mobile companies committed to developing open standards for mobile devices [Open 
Handset Alliance 2012]. OHA members include mobile operators, handset manufacturers, semicon-
ductor companies, software companies, and commercialization companies. Google also released the 
Android market place (known today as Google play) for third-party application developers to develop 
and distribute applications. Unlike Apple’s iOS, which is proprietary and not licensed to third par-
ties, Google’s Android operating system was released under the Apache open source license and was 
adopted by many mobile device manufactures. As a result, perhaps of its open licensing approach, 
Android has become the market leader for mobile OS, capturing over 50% of the market share in 2011 
[Gartner Inc. 2012].

61.1.4  Commercial Development

As the preceding discussion highlights, the field of mobile OS is a rapidly growing area of research and 
development, most of which has been driven by the mobile phone and mobile technology industries. 
During the first few years of smartphone technology, the market was dominated by one or the other 
major phone manufacturers such as Nokia and RIM. Since 2007, however, the mobile OS market has 
come to be dominated by companies known for their software products, mainly Apple and Google 
as shown in the worldwide smartphone sales in the subsequent sections (Figure 61.3). Similar to the 
browser wars of the 1990s between Microsoft’s Internet Explorer and Mozilla’s Firefox and the earlier 
battles between Macs and IBM PCs, the mobile OS ecosystem has come to be dominated by a couple 
of players.

The current market leader is the Android operating system with over 56% of the global market 
as of February 2012, followed by Apple’s iOS operating system. The other systems, including RIM’s 
Blackberry, Microsoft’s Windows Mobile, and the Symbian OS, trail far behind the two leaders 
(Figure 61.4).

TABLE 61.2  Advanced Devices

Device Capabilities Device Capabilities

Basic mobile phone Network services, including: Smartphone As featurephone plus:
Voice telephony and 

voicemail
Video camera
Web browser
GPS (global positioning system)
3G+ internet access
Mobile operating systems (such as 

iOS, android, and blackberry)
Ability to download and manage 

applications
VoIP (voice over internet protocol)
Mobile TV
Removable memory card

SMS (short message service)
USSD (unstructured 

supplementary service data)

Feature phone As basic mobile phone plus: Tablet As smartphone plus:
MMS (multimedia 

messaging service)
Still picture camera
MP3 music player
2G+ data access

Front and rear facing cameras
Larger screen and memory 

capabilities
Faster processors
External device connectivity ports.

Source:	� World Bank. Information and Communication for Development 2012: Maximizing Mobile. Case 
Study, Washington, DC: World Bank, 2012.

Note:	 The list of capabilities is not exhaustive and not all devices have all features.
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61.2  Underlying Principles

What distinguishes mobile OS from traditional operating systems are three main characteristics: (1) the 
relatively small size of the devices, (2) their mobility, and (3) their inclusion of hardware that is not typi-
cally found on laptop and desktop computer systems.

The relatively small size of mobile devices and the competitive drive to pack as much functional-
ity as possible into a small space leads to important design considerations regarding power, memory 
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FIGURE 61.4  Mobile operating systems global leaders. (Gartner Inc. “Android Extended Lead While Apple 
iOS Market Share Growth Paused.” Gartner Newsroom. August 12, 2012. http://www.gartner.com/it/page.
jsp?id=2120015 [accessed October 3, 2012].)
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management, and processor utilization. Mobile OS are tasked with functioning within these resource-
starved environments, while being accessible at a moment’s notice.

As is true of desktop computers, a phone’s ability to run multiple applications simultaneously 
depends on the amount of RAM it contains and the clock speed of the processor [Ginny Mies 2010]. 
Current generation smart phones typically have a 1Ghz, single-core processor and 512 MB of RAM 
with about 8–16 GB of storage built in. By comparison, a typical desktop computer is equipped with 
a 3+ Ghz multi-core processor, 2–4 GB of RAM, and 500 GB+ of external storage. Older and lower-
end smartphones usually have around 256 MB of RAM—enough to run a handful of applications 
with little or no decrease in performance. Such a phone is capable of supporting texting, making 
calls, browsing the Web, and playing a few app games. High-end phones, such as the iPhone 4 and the 
Samsung Nexus S, have 512 MB of RAM and can run more applications without slowing the phone’s 
performance.

Battery life is a key consideration for a mobile OS, as the majority of the time the device is not directly 
plugged into a power source and needs to be on or in-standby mode in order to respond to incoming 
calls and messages. A battery’s up time will vary depending on the amount of time spent making phone 
calls, running apps, whether the apps are using such features as Wi-Fi or global positioning system 
(GPS), and other factors.

Most smartphones and regular cell phones today use liquid crystal display technology, range in size 
from 3 to 4.3 in., and are capable of displaying high definition video. Smartphones generally have a 
touchscreen interface and allow the user to interact directly with the phone’s features and operating 
system. Some models have physical keyboards. The limited screen size is a consideration for both the 
mobile OS and application developers.

The phone’s mobility poses special challenges for a mobile OS. Perhaps, the primary challenge at the 
OS level is optimizing battery usage. Another unique challenge is maintaining connectivity with cell 
phone towers though the device’s radio hardware. The mobile OS must take into account the type and 
nature of a connection available to it and seamlessly transition for the user without interrupting ongo-
ing activities such as making calls or receiving and sending text messages and other data transmissions. 
Mobile applications need to be able to function in an environment where the network connectivity is 
intermittent and can be interrupted. For instance, when a user is downloading a file or playing a video, 
the phone must still be able to respond to an incoming phone call or message. Obviously, phone func-
tionality and communication ability are high priorities for mobile devices.

Although mobile devices contain some of the same features as desktop and laptop computers—for 
example, cameras, Bluetooth—supporting these features poses unique challenges for the mobile OS 
because of the relatively small size and power constraints of mobile devices. However, mobile devices 
also contain features not typically found in laptop and desktop computers. One of the prime examples, 
perhaps, is the inclusion of GPS hardware and gyroscope and accelerometer sensors. Such features place 
unique demands on the system to provide services that permit the easy development of location aware 
applications. Similarly, because of their small size and power needs, touchscreen interfaces place unique 
demands on the operating system.

Finally, because of the constant connectivity of mobile devices and the increasing consumer demand 
for sharing all types of information—images, messages, locations—data protection and information 
security are important considerations for mobile OS designers and app developers alike.

61.2.1  Mobile OS

There are a wide range of mobile OS and releases, far too many to provide a detailed description of each 
one. In this section, we will provide a brief summary of some of the most influential systems that have 
emerged, focusing on systems that have played some kind of unique role in the history or development 
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of this field. According to a 2012 Gartner report, the top mobile OS are Android, Symbian, Apple iOS, 
RIM BlackBerry, MeeGo, Windows Phone, and Bada [Gartner Inc. 2012] (Table 61.3).

•	 Android (Google Inc.): Initially released in 2005, programmed in C/C++ and Java and based on 
the Linux platform, Android has become the dominant operating system for smartphones and 
tablet devices. As an open source platform, it has been readily adopted and modified by multiple 
manufacturers and mobile operators and as such there is a proliferation of versions and variants 
in use today. Android’s App Inventor programming language developed by MIT allows users with 
limited programming ability to write their own apps using their web browser and a block-based 
development environment [Massachusetts Institute of Technology 2012].

•	 Bada (Samsung Electronics): A proprietary platform initially released in 2010, programmed in 
C++. Samsung is using its own Bada operating system, in parallel with Android OS and Windows 
Phone, for smartphones they develop (Samsung 2012).

•	 Blackberry OS (RIM): A proprietary platform initially released in 1999, programmed in Java, the 
BlackBerry platform is best known for its native support for corporate e-mail services including 
Microsoft Exchange, Lotus Domino, and Novell GroupWise. BlackBerry used to make up 52.4% 
of the smartphone market in 2008. According to Q2 2012, the present mobile market share held 
by BlackBerry is 5.2% [Gartner Inc. 2012].

•	 iPhone OS/iOS (Apple): A proprietary platform initially released in 2007, programmed in C/C++ 
and Objective-C, the iOS mobile OS is available only on Apple manufactured devices and has 
not been licensed for third-party hardware. Apple iOS is derived from Apple’s Mac OS X Debian 
Linux-based operating system [Apple Inc: Start Developing iOS Apps Today 2012].

•	 Symbian (Accenture): Initially released in 1997, programmed in C++ and Qt, Symbian originally devel-
oped by Nokia, was transferred to Accenture in 2011 (Accenture 2011). Symbian is one of the oldest and 
the most successful mobile OS until 2010, when it dramatically lost market share to Android and iOS.

•	 Windows Phone (Microsoft): Initially released in 2010, the Windows Phone OS is programmed in 
C/C++ and NET built on the Windows CE platform. With Windows Phone, Microsoft features 
its design language called Metro, also found in Windows 8. The Windows Phone OS replaces the 
previous Windows Mobile OS developed in 2000 by Microsoft. Windows Mobile was discontin-
ued in 2011 (Microsoft: Channel 9 2010).

We now provide a more detailed description and discussion of the two most dominant systems at the cur-
rent time—Google’s Android OS and Apple’s iOS. We will focus on three main roles that the mobile OS 

TABLE 61.3  Worldwide Mobile Device Sales to End Users by Operating 
System in 2012 (Thousands of Units)

Operating System 2012 Units
2012 Market 

Share (%) 2011 Units
2011 Market 

Share (%)

Android 98,529.3 64.1 46,775.9 43.4
iOS 28,935.0 18.8 19,628.8 18.2
Symbian 9,071.5 5.9 23,853.2 22.1
Research in Motion 7,991.2 5.2 12,652.3 11.7
Bada 4,208.8 2.7 2,055.8 1.9
Microsoft 4,087.0 2.7 1,723.8 1.6
Others 863.3 0.6 1,050.6 1.0
Total 153,686.1 100.0 107,740.4 100.0

Source:	� Gartner Inc. “Android Extended Lead While Apple iOS Market Share 
Growth Paused.” Gartner Newsroom. August 12, 2012. http://www.
gartner.com/it/page.jsp?id=2120015 (accessed October 3, 2012).
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plays: (1) the abstraction it presents in hiding hardware details from the application layer, (2) the approaches 
it takes to managing the systems resources, and (3) the interface it presents to users and developers.

61.2.2 A ndroid OS

61.2.2.1  Linux Kernel

As shown in Figure 61.5, the Android OS is built on the Linux Kernel. Initial versions of the OS were 
based on the Linux 2.6 kernel. Version 4.0 and above are based on Linux 3.3 kernel. Although Android 
runs on Linux, it would be misleading to consider it a Linux distribution, or distro, because it leaves so 
much out of the Linux system, including many standard libraries, shells, editors, and programming 
frameworks [Bray 2010].

61.2.2.2  System Libraries

On top of the Kernel sits a collection of C/C++ libraries, including, among others, the following 
[Android: App Framework 2012]:

•	 Libc—a Berkeley Software Distribution (BSD)-based version of the standard C system library.
•	 SGL—a 2D graphics library.
•	 OpenGL—a 3D graphics library.
•	 SQLite—a lightweight relational database system.
•	 WebKit—a web browser engine that allows apps to include an embedded Web view.
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61.2.2.3  Dalvik Virtual Machine

Android runs primarily on hardware platforms based on the Advanced RISC Machine (ARM) archi-
tecture, a 32 bit reduced instruction set architecture that is widely used in mobile devices [Wikipedia: 
ARM Architecture 2012]. ARM’s dominance among mobile phone architectures—according to Stephen 
Furber, one of the original designers of the ARM architecture, there are more ARMs than people on 
the planet [Fitzpatrick 2012]—is due primarily to its power efficiency. It reportedly consumes one-tenth 
the amount of electricity as other 32 bit processors. Android has also been ported to the ×86 platform 
[Shah 2011].

Android’s runtime environment is based on the open source Dalvik Virtual Machine (VM), 
originally designed and written by Daniel Boorstein in cooperation with Google [Dalvik Virtual 
Machine 2008]. The Dalvik VM is designed for machines with memory and speed constraints and 
is therefore well suited for mobile devices. Unlike the Java VM, which uses a stack-based architec-
ture, the Dalvik VM is register based. It is optimized for low memory requirements and it allows 
multiple VM instances to run at the same time. It relies on the underlying Android OS to handle 
process isolation, memory management, threading support, and other system functions, as shown 
in Figure 61.6.

Android applications are written in Java and compiled first into Java byte code (.class) files. 
These are then compiled into Dalvik byte code (.dex) files before loading onto the Android device. 
In early Android versions, the Dalvik VM ran interpreted. The Froyo (2.2) release of Android con-
tains a just-in-time compiler for Dalvik. Although this improves the run-time performance over 
previous releases, there is still considerable discussion and debate about Android’s choice of the 
Dalvik over the Java VM. For example, one recent comparison of the two systems, by an Oracle 
engineer, claims that Dalvik runs two to three times more slowly than Oracle’s Java SE Embedded 
Hotspot VM [Vandette 2010]. Of course, this sort of comparison between the Java VM and Dalvik 
does not take into account other factors that may make Dalvik a more suitable choice for Android, 
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including its open source license and the fact that it can run multiple instances simultaneously. 
The picture is also clouded by the fact that Google is currently being sued by Oracle over its use of 
Java in the Android OS [Lowe 2012].

61.2.2.4 R esource Managers

Atop the system libraries sits collection of managers that comprise the application framework. The 
framework provides abstractions for controlling and managing the various functions that make up 
system’s operations. Some of the main managers are as follows:

•	 Activity manager: An Android application is comprised of a collection of activities, which rep-
resent the different tasks or actions that users can do—for example, make a phone call, send an 
e-mail message, and take a picture. Activities are designed to interact with the user [Android: 
Activity 2012]. The activity manager interacts with the activities currently running in the system. 
We discuss the activity life cycle in more detail in the subsequent section.

•	 Content providers: Content providers manage access to structured data. They encapsulate various 
kinds of data and provide a unified interface (abstraction) for storing, retrieving, and securing data 
of various kinds. They also provide a mechanism through which data are shared among different 
processes and applications. Content resolver objects are used as clients that communicate with con-
tent providers through a client/server like interface. The provider object receives data requests from 
clients, performs the requested action, and returns the results. Android provides built-in content pro-
viders for audio, video, images, and personal contact information [Android: Content Providers 2012].

•	 Package manager: The package manager installs, removes, and manages all of the application 
packages that are installed on the system. Among other tasks, the package manager oversees the 
systems security, granting, and authenticating the various permissions needed by applications 
to manage systems resources. Android applications run in a sandbox and need explicit permis-
sion to perform specific tasks such as making telephone calls, taking pictures, and accessing the 
Internet (Android: Package Manager 2012).

•	 Telephony manager: The telephony manager provides access to information about the telephony 
services on the device and manages access to the various services needed to make and receive 
calls, provided the application has the necessary permissions (Android: Telephony 2012).

•	 Location manager: The location manager provides access to information about the device’s loca-
tion services. Applications can use the methods in this class to determine the availability and 
type of services to register listeners to receive notification of location changes (Android: Location 
Manager 2012).

61.2.2.5 A pplications

Android applications are bundled into packages or archives that have an .apk suffix [Android Open 
Source Project 2012]. The package contains all of the application’s code, data, and resource files (Android: 
Permissions 2012). Android uses a sandbox model based on the principle of least privilege for managing 
applications and maintaining security during runtime. Under this model, an application has access only 
to those components required to do its work. An application can access only those parts of the system 
for which it is given explicit permission.

Applications are isolated from one another in terms of both their identities and runtime contexts:

•	 Applications are considered Linux users, and each application has a unique user ID. Permissions 
to access the application’s files are controlled through the user ID. An application is only able to 
access its own files.

•	 Each application runs in its own process on its own VM. Thus, the application’s code is completely 
isolated from that of other applications and from the system.
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In terms of sharing data among applications, although it is possible for two applications to share the 
same user ID and inhabit the same process, applications share data or resources primarily through 
a permissions system. For example, access to a user’s contacts or SMS messages must be requested. 
Permissions for such accesses are granted (or not) when the application is installed.

Applications are made up of four basic types of components [Android: App Framework 2012]:

	 1.	 Activities: An activity is the basic computational unit that interacts with the user. It consists of a 
single screen, or view, which contains the UI. An application typically consists of several activi-
ties that work together. For example, an e-mail application might have an activity for composing 
e-mail messages and an activity for listing the user’s messages.

	 2.	 Services: A service is a component that runs in the background to perform some long-running 
task. For example, a service might be used to download data from the Internet. Services do not 
have an UI.

	 3.	 Content providers: A content provider manages a collection of persistent data that can be stored in 
a database, on a website, in the file system, or in some other form. Applications with the appro-
priate permissions can query content providers to access or modify data. An example would be 
saving and retrieving photos in an image gallery.

	 4.	 Broadcast receiver: A broadcast receiver responds to system-wide broadcasts, for example, the 
announcement that an e-mail or SMS message has been received or that the system’s battery is 
low. Broadcasts may come from the system or from another application. Broadcast receivers do 
not have a UI, but they can use notifiers to display messages on the phone’s status bar.

61.2.2.6 A ctivities and User Interaction

Activities are the basic computational units that interact with users. The Activity class takes care of cre-
ating a window and defining the UI [Android: Activity 2012].

The activity architecture is designed around the principle of responsiveness—that is, providing a crisp, 
responsive UI, with user interactions taking priority over other system operations [Android: Designing 
for Responsiveness 2012]. The activity manager and the window manager guard against applications 
that are insufficiently responsive, posting an Application Not Responding (ANR) dialog if the applica-
tion cannot respond to user input or does not respond within a certain time limit. This could happen if 
the application blocks while waiting for an I/O operation to complete or takes too much time to build 
a complex data structure in memory. The ANR dialog permits the user to kill the app or to continue 
waiting, but its presence is usually a sign that something is wrong with the app’s design or performance.

Android activities are managed with an activity stack. When a new activity is started, it is placed on 
top of the stack and becomes the running activity. The activities below it are, typically, kept in memory, 
but would not come to the foreground until all the activities above them are popped off the stack. Thus, 
the user is always interacting with the top activity on the stack.

Activities can be in one of four states [Android: Activity 2012]:

	 1.	 Active or running—it is on the top of the stack and visible in the foreground.
	 2.	 Paused—it has lost focus but is still visible. It retains its state but the user cannot interact with it. 

For example, a paused activity may be one that has displayed an interactive dialog that is prompt-
ing the user for some action. The system can kill a paused activity if its memory is needed.

	 3.	 Stopped—it is completely obscured by another activity. Stopped activities retain their state but 
they can be killed by the system if their memory is needed.

	 4.	 Killed—if an activity is killed by the system, it is dropped from memory either by asking it to fin-
ish or by simply killing its process. When it is displayed again, it must be restarted from scratch.

Figure 61.7 provides an overview of the activity lifecycle. The ovals represent the activity’s state, and the 
rectangles represent callback methods available to the program as the activity progresses through its 
lifecycle.
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For the applications programmer, the following interface provides access to all the main points of activ-
ity’s lifecycle:

       public class Activity extends ApplicationContext {
            protected void onCreate(Bundle savedInstanceState);
            protected void onStart();
            protected void onRestart();
            protected void onResume();
            protected void onPause();
            protected void onStop();
            protected void onDestroy();
       }

As the names of these methods suggest, the entire life cycle is event driven. When the system finds it nec-
essary to interrupt an activity—for example, because of an incoming phone call—it dispatches an event 
that can be handled by one or the other of these methods. Because applications can be interrupted at any 
time, it is important that they be designed for such possibilities. For example, an app that is accepting 
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input from the user—for example, composing an e-mail message—must be able to save the application’s 
state if interrupted so that it can be restored when the application is restarted. Persistent data can be 
saved in the onPause() method and restored in the onResume() method. In terms of saving dynamic 
parts of the application’s state, Android provides the onSaveInstanceState(Bundle) method, which is 
invoked just before the activity is placed in the background, and onRestoreInstanceState(Bundle), which 
is invoked just before the activity is placed in the foreground. Note that the onCreate() method can 
restore such state even if the activity is killed by the OS.

The design of the Activity lifecycle promotes a response UI and the ability of the OS to interrupt an 
activity at any time in response to incoming phone calls, battery failures, lack of memory, and other events.

61.2.2.7  Intents and Intent Filters

Communication within and among applications and activities take place through messaging objects 
known as Intents [Android: Intent 2012]. An Intent is a passive data structure that represents an opera-
tion or task to be performed. Intents can be used to start activities and applications or to communicate 
with background services. They provide a mechanism for late runtime binding between the code dif-
ferent applications.

The Android system provides both explicit and implicit intents. An explicit intent specifies a par-
ticular component or activity by its name—for example, an e-mail component or list activity—and is 
primarily used to communicate among the activities and services that make up a single application. 
The intent is used to instantiate the component or start the activity and pass information to it—work-
ing in a similar fashion to a non-blocking remote procedure call. An implicit intent does not identify a 
particular object or activity. Instead, it describes a particular task—such as the “send email” task. The 
OS then takes responsibility for identifying objects that are available in the system to perform that task. 
For example, the built-in ACTION_SENDTO action expresses a request to send some type of message 
(e-mail or SMS). The type of message, the destination phone number or e-mail address, and the message 
itself would be specified in a uniform resource identifier identifying the target of the intent. The system 
then searches among registered entities for an e-mail or messaging application that handles that type 
of action and sends a broadcast to all entities that satisfy the target criteria.

Components use intent filters to identify to the system which intents they can handle. For example, 
a broadcast receiver would use an intent filter to identity those applications it will accept text messages 
from—that is, Google Voice, Android Messaging, or some other application. For system-wide intents, 
this would typically be done in the Android manifest, a static document that describes the application’s 
activities and permissions and informs the system about its various intent filters.

61.2.2.8  User Interface

Android provides a variety of pre-build UI components such as structured layout objects and UI con-
trols that allow you to build the graphical UI for your app. Android also provides other UI modules for 
special interfaces such as dialogs, notifications, and menus [Android: User Interface 2012].

All UI elements in an Android app are built using View and ViewGroup objects [Android: User 
Interface 2012]. A View is an object that draws something on the screen that the user can interact with. 
A ViewGroup is an object that holds other View (and ViewGroup) objects in order to define the layout of 
the interface. Android provides a collection of both View and ViewGroup subclasses that offer common 
input controls (such as buttons and text fields) and various layout models (such as a linear or relative layout).

A typical Android app consists of action bars and the app content area [Android: Design 2012].

	 1.	 Main action bar is the command and control center for an app. The main action bar includes ele-
ments for navigating the app’s hierarchy and views and also surfaces the most important actions.

	 2.	 View control allows users to switch between the different views that the app provides. Views typi-
cally consist of different arrangements of data or different functional aspects of the app.
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	 3.	 Content area is the space where the content of the app is displayed.
	 4.	 Split action bars provide a way to distribute actions across additional bars located below the main 

action bar or at the bottom of the screen.

61.2.3 A pple iOS

61.2.3.1  Overview

The mobile OS that runs on the Apple iPhone, iTouch, and iPad devices is iOS. Unlike Android, an open 
source system running on many hardware platforms, iOS is a proprietary system that is not licensed to 
third parties and runs exclusively on Apple products.

iOS is derived from Apple’s OS X system, with which it shares the Darwin system. Darwin is Apple’s 
open source, POSIX-compliant OS first released in 2000.* Darwin currently includes support for the 
64 bit Intel x86 processors as well as for the 32 bit ARM processors used in the iPhone, iTouch, and iPad 
[Wikipedia 2012]. Darwin does not include many of the defining elements of Mac OS X and iOS, in 
particular the Cocoa API and thus, Darwin by itself cannot run Mac or iOS applications.

The Cocoa and Cocoa Touch APIs are what give Mac and iOS applications their distinctive look and 
feel. Cocoa contains several API kits—for example, the Foundation Kit, the Application Kit, and the 
Core Data Frameworks—and the libraries and frameworks to support those kits. It also includes the 
Objective-C runtime library [Wikipedia: Cocoa API 2012]. Cocoa applications are typically written 
in Objective-C using Apple’s proprietary development environment, which consists primarily of the 
Xcode integrated development environment (IDE) and its built-in Interface Builder, an application for 
building UIs (Apple Inc: Cocoa 2012).

Cocoa Touch is an API for building UIs for the iOS (Apple Inc: Cocoa 2012). It includes features and 
technologies to support multitasking, gesture recognition, and animation and includes several kits and 
frameworks that extend the functionality of Cocoa. The UI kit, which extends Cocoa’s Application Kit, 
provides the API for supporting graphical user interfaces. The Game Kit framework provides an API for 
game developers. The iAd and Map Kit frameworks provide API support for Apple’s mobile advertise-
ment platform and its newly unveiled mapping platform. The layer architecture for iOS is depicted in 
Figure 61.8.

The iOS system interfaces are organized into frameworks. A framework is a directory that contains a 
dynamic shared library and the resources (such as header files, images, helper apps, and so on) needed 
to support that library. Frameworks are linked to the application project.

*	 POSIX, which stands for portable operating system interface, is a set of IEEE standards for Unix operating systems that 
define the programming interface (API) and command shells.
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61.2.3.2  Core OS

iOS is a Unix system based on the Mach kernel. Mach is the operating system kernel developed at 
Carnegie Mellon University in the mid 1980s. Although sometimes mentioned as one of the first micro-
kernels, the version of Mach used in iOS is not a microkernel.*

Darwin, the Mac OS X kernel, is based in turn on the XNU (X is not Unix) kernel, a hybrid kernel that 
combines features of the Mach kernel with components from BSD, and Driver Kit, an object-oriented API 
for writing device drivers. The Mach kernel, which was developed at Carnegie Mellon University in the 
mid 1980s, is a simple kernel that runs core OS functions as separate processes. Darwin incorporates cer-
tain features from BSD (Wikipedia 2012)—specifically from the FreeBSD kernel—including the following:

•	 POSIX API (BSD system calls)
•	 Unix process model atop Mach tasks
•	 Basic security policies
•	 User and group IDs
•	 Permissions
•	 The network stack
•	 Virtual file system code
•	 Local file systems, including hierarchical file system and network file system
•	 Cryptographic framework
•	 Inter-process communication system

From the perspective of the application developer, the core OS layer contains the following low-level 
system features and frameworks [Apple Inc: The iOS Environment 2012].

•	 The accelerator framework (introduced in iOS 4.0) contains digital signal processing, linear alge-
bra, and image-processing libraries.

•	 The core Bluetooth framework contains libraries for interacting with Low Energy Bluetooth accessories.
•	 The external accessory framework provides libraries for communicating with devices that can be con-

nected to an iOS device through its 30 pin dock connector or through its wireless Bluetooth interface.
•	 The generic security services framework based on the IETF RFC 2743 and RFC 4401 standards. In 

addition to offering the standard interfaces, iOS includes some additions for managing creden-
tials that are not specified by the standard but that are required by many applications.

•	 The security framework provides interfaces for managing certificates, public and private keys, 
and trust policies. It supports the generation of cryptographically secure pseudorandom num-
bers. It also supports the storage of certificates and cryptographic keys in the keychain, which is a 
secure repository for sensitive user data.

61.2.3.3 R untime Environment

The iOS system is based on the same technologies used by Mac OS X, namely, the Mach kernel and 
BSD interfaces. Thus, iOS apps run in a Unix-based system and have full support for threads, sockets, 
and many of the other technologies typically available at that level. However, there are places where the 
behavior of iOS differs from that of Mac OS X [Apple Inc: The iOS Environment 2012].

•	 The virtual memory system: In iOS, each program still has its own virtual address space, but unlike 
Mac OS X, the amount of usable virtual memory is constrained by the amount of physical mem-
ory available. iOS does not support paging to disk when memory gets full. Instead, the virtual 

*	 A microkernel is the bare minimum of mechanisms needed to implement an operating system. It typically consists of 
low-level address space management, thread control, and interprocess communication (IPC) functions. These are the 
software elements that run at the most privileged level (e.g., in kernel mode or supervisor mode). By contrast, a mono-
lithic kernel, would include other traditional operating system functions, such as device drivers, schedulers, virtual 
memory, and file systems.
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memory system simply releases read-only memory pages, such as code pages, when it needs more 
space. If memory continues to be constrained, the system may send notifications to any running 
applications, asking them to free up additional memory.

•	 The automatic sleep timer: When the system does not detect touch events for an extended period 
of time, it dims the screen initially and eventually turns it off altogether. For applications that do 
not use touch inputs, such as a game that relies on the accelerometer, the automatic sleep timer 
can be disabled to prevent the screen from dimming.

•	 Multitasking support: In iOS 4 and later, multitasking allows apps to run in the background even 
when they are not visible on the screen. Most background apps reside in memory but do not actu-
ally execute any code. These apps are suspended by the system shortly after entering the back-
ground to preserve battery life.

At install time, iOS places each app (including its preferences and data) in a sandbox—that is, a set of fine-
grained controls that limit the app’s access to files, preferences, network resources, and hardware. As part of 
the sandboxing process, the system installs each app in its own sandbox directory, which acts as the home 
for the app and its data. User sensitive data can be stored in a keychain, an encrypted container for pass-
words and other secrets specific to an app. Keychain data for an app are stored outside of the app’s sandbox.

61.2.3.4  Programming Model

iOS application development depends on the iOS software development kit (SDK) and Xcode, Apple’s 
IDE. Xcode employs a single window, called the workspace window that presents most of the tools 
needed to develop apps (Apple Inc: Xcode 2012). The iOS SDK extends the Xcode toolset to include the 
tools, compilers, and frameworks you need specifically for iOS.

iOS apps are written in objective-C, an object-oriented language, that extends the standard ANSI C 
programming language with syntax for defining classes and methods [Apple Inc: Start Developing iOS 
Apps Today 2012]. It also promotes dynamic extension of classes and interfaces that any class can adopt.

Figure 61.9 shows the key objects that are most commonly found in an iOS app. iOS apps are orga-
nized around the model-view-controller design pattern (Apple Inc: Cocoa 2012). This pattern separates 
the data objects in the model from the views used to present that data. Models encapsulate application 
data, views display and edit that data, and controllers mediate the logic between the two. This separation 
promotes code reuse by making it possible to swap out your views as needed.

61.2.3.5  User Interface

Apple’s iOS devices are known for their aesthetically pleasing and intuitive UI that has set Apple devices 
apart from other mobile OS. The iOS Human Interface Guidelines is a high level document that describes 
the guidelines and principles that developers follow for UI and user experience design. It does not 
describe how to implement designs in code.

An iOS app has a single window, unless it supports an external display; the user sees one screen at a 
time. An app’s window fills the device’s main screen and provides an empty surface that hosts one or 
more views that present the app’s content. An iOS window differs in important respects from a window 
in a typical computer app. For example, an iOS window has no visible components (such as a title bar 
or a close button) and it cannot be moved to a new location on the device display. Instead, the window 
simply represents a container for visual content that is mapped to the device’s screen. Users experience 
an iOS app as a sequence of screens through which they navigate. From this perspective, a screen gener-
ally corresponds to a distinct visual state or mode in an app.

In iOS, the UIKit framework provides the infrastructure for building graphical applications, manag-
ing the event loop, and performing other interface-related tasks [Apple Inc: Start Developing iOS Apps 
Today 2012].

For a more in-depth look at the iOS programming guidelines and documentation visit the iOS 
Developer Library (http://developer.apple.com/library/ios).
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61.3  Impact on Practice

In 2012, 75% of the world’s population currently has access to a mobile subscription [World Bank 2012]. 
A total of 13.2% of the world’s 6.1 billion cell phones are smartphones, but the rate exceeds 30% in 
larger markets like the United States, Germany, and Britain [O’Brian 2012]. Mobile computing devices 
bring computing to the masses in a way not seen since the introduction of the personal computer in 
the 1980s.

A new wave of “apps,” or smartphone applications, and services, driven by high speed networks, 
social networking, and online crowd sourcing, is helping mobile phones transform the lives of peo-
ple around the globe. Nearly 40 billion apps for iPhones and Android devices have been downloaded 
worldwide by mid 2012 [Lunden 2012]. Research reports forecast the worldwide smartphone application 
market, which it estimates will grow from $1.94 billion in 2009 to $15.65 billion by 2013 [Wauters 2012] 
(Figure 61.10).

As the mobile landscape develops and smartphones gain market share, content providers are finding 
new ways to reshape and broadcast information to the public. Regular websites can be reformatted to 
meet mobile capabilities. Mobile phones are becoming the “third” screen (after television and PCs) used 
to access content and are reshaping content delivery.

Given technological convergence, smartphones can now function as a digital equivalent of a Swiss 
army knife a wallet, camera, television, alarm clock, calculator, address book, calendar, newspaper, 
navigational device, and gaming console combined. The latest smartphones are not just invading the 
computer space; they are reinventing it by offering so much more in both voice and non-voice services.
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61.3.1  In Healthcare

According to research conducted by Manhattan Research in 2009 on the professional use of smartphones 
by physicians, about 64% of the physicians in the United States used smartphones in 2009 compared to 
only 30% in 2001. This report found a noticeable increase in smartphone adoption and predicted that 
81% of physicians would use smartphone in the United States by 2012 [Cooper 2009].

Mobile OS platforms are capable of running third-party applications specifically developed for the 
healthcare field. For instance, John Hopkins antibiotics guide “Johns Hopkins ABX Guide,” which is 
available for the Android, iOS, Blackberry, and Windows platforms, provides information on the treat-
ment of infectious diseases to help make decisions at the point of care. The guide breaks down details 
of diagnosis; drug indications, dosing, pharmacokinetics, side effects, and interactions; pathogens; 
management; and vaccines into easily accessible, frequently-updated, quick-read entries on the mobile 
device [Unbound Medicine Inc. 2012].

Market research firm Juniper Research believes that some 3 million smartphone users will be using 
their devices for remote health monitoring by 2016 [Thomas 2012]. Patients and doctor alike can access 
electronic health records (EHR) through smartphone applications such as MEDITECH EMR, which 
using a web browser to access clinical data including laboratory results, vital signs, intake and output, 
allergies, active medications, and documents (reports and notes) (MEDITECH 2012).

There are many health education-based applications available on the App stores that range from 
teaching children healthy eating habits, blood glucose calculators, telemedicine applications to a fall 
detector that uses the built-in accelerometer to work out if a person has fallen. Smartphones are poised 
to change the way we interact with our medical professionals.

The challenges of smartphone-based healthcare include limited battery life, small screen size, poten-
tially erroneous data input, computer viruses including spyware, magnetic interference with medical 
devices, potentially inefficient patient–physician interactions, loss or theft, and breaches of data privacy 
and security [Mosa 2012].
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61.3.2  In Agriculture

In addition to weather updates, facts and figures that were once the scribbled domain of old receipts 
and tattered pieces of paper at the farm are now organized on a smartphone [Gerke 2012]. From pasture 
grazing records to serial numbers and checkbook register, applications are available to help keep track 
of important information quickly and easily.

Mobile applications for agriculture and rural development have generally been designed locally and 
for specific target markets, with localized content specific to the languages, crop types, and farming 
methods in the region.

61.3.3  In Banking

As the adoption of smartphones continues and speed of access improves, customers across every age 
group are becoming increasingly comfortable with conducting more and increasingly complex transac-
tions through their mobile phones. EBay Inc.’s PayPal division handled $4 billion in mobile payments in 
2011 [Kucera 2012]. Banks now offer customers extended mobile services, which allow them to deposit a 
check (using a picture of the check), check their balances, transfer money, and locate cash points.

Japan’s Jibun Bank, for example, was created in 2008 as a joint venture between the country’s largest 
bank, BTMU and KDDI, a telecommunications operator. Designed from the outset as a mobile-only 
bank—that is, without being based on a network of physical branch offices—within 2 years, it had more 
than one million accounts and US $1.7 bn in deposits [KPMG 2011].

61.3.4  Privacy and Security

With the proliferation of mobile apps that provide electronic monetary transactions to accessing medi-
cal records on a smartphone, one has to take into consideration the security and privacy of the underly-
ing data. In addition to the obvious risk of losing one’s mobile device, smart phones can be vulnerable 
to third-party information-stealing applications and other malware. Security is intimately bound to the 
design of the platform for which the mobile application is built.

Smartphone operating systems have both advantages and disadvantages with respect to offered secu-
rity. On the one hand, they use application sandboxing to contain exploits and limit privileges given to 
malware. On the other hand, they collect and organize many forms of security and privacy sensitive 
information—such as location information and phone status—simply as a matter of operation, and 
make that information easily accessible to downloaded third-party applications [SPSM workshop 2012]. 
Users and application developers are restricted from accessing and modifying core elements of the OS 
such as the kernel and system daemons through software and policy controls. These controls are imple-
mented by mobile OS developers, cellular carriers, and smartphone manufactures. But given the fact 
that consumers can choose, wittingly or unwittingly, to allow third-party applications to have access to 
that data, such controls can only go so far in protecting sensitive personal data.

For example, when an Android application is downloaded from the market, the user is presented with 
a list of permissions that the application requires—for example, access to the Internet, to their Google or 
Twitter accounts, to the phone’s camera, etc. But the details and implications of granting such permis-
sion is not totally transparent and may lead to unanticipated data sharing.

61.4 R esearch Issues

The advent of mobile computing has introduced new challenges for the designers of mobile devices and 
mobile OS. One such challenge is to reduce power consumption in ways that minimize the adverse effect 
on usage. Savings in power consumption can be “spent” by extending battery life and (or) by reducing 
the physical size of batteries, thus reducing the physical size of mobile computing devices [Welch 1995].
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For software developers, the availability of multiple platforms and the lack of standardization make 
it difficult to decide what mobile OS to develop on. Processing power, storage, and functionality differ 
wildly from device to device. It is virtually impossible to build and maintain one application that will 
run on Blackberry, Symbian, Android, iOS, and other mobile platforms. Supporting multiple operating 
systems requires one to rewrite the application in each of the different native environments. Needing to 
build and maintain two or more versions of a smartphone app raises the difficulty level of many develop-
ment projects significantly.

Indeed, even confining one’s focus to the Android platform presents considerable challenges given 
the large number of manufacturers and phone companies providing Android products and competing 
with each other for market share. Already, there are significant differences among the various Android 
versions and among the features promoted by the different vendors. So far, this variability among sys-
tems has not proved to be an impediment in Android’s adoptability as some had predicted. The situation 
is somewhat better for iOS developers because of Apple’s tight and proprietary control of the platform. 
But even on the iOS platform, or any single platform, given the rapid development and advancement of 
device features, an application developed for one version of iOS may quickly become incompatible with 
newer devices, which require new releases of the OS.

In an attempt to address this challenge, cross-platform development tools for mobile systems are begin-
ning to emerge. Among these tools are Appcelerator Titanium, Phonegap, QuickConnect, Rhomobile, 
and WidgitPad (Warren 2012). Most use a mix of HTML, CSS, and JavaScript, plus some native “wrapper” 
code for accessing hardware features like GPS, a camera, or an accelerometer [Dern 2010]. Considerable 
“tweaking” is required to get applications to function at all across multiple-platforms. One limitation of 
cross-platform tools is that they may not support particular functionality specific to one operating sys-
tem or the other. However, in some cases, they do help reduce application development time and costs, 
while exposing an application to a larger smartphone market segment.

Among the numerous areas of research and development are the following:

•	 Haptic technology, or haptics, is a tactile feedback technology that takes advantage of the sense of 
touch by applying forces, vibrations, or motions to the user [Shubha 2012]. An example would be 
the use of vibration to confirm that a touchscreen button has been pressed. Haptic devices may 
incorporate tactile sensors that can measure the force exerted by the user on the interface. These 
would then be interpreted by the operating system to provide input to the application or feedback 
to the user. The interface acts as both an input and output mechanism to enhance the user experi-
ence. Immersion, a developer of touch feedback technology, announced a new Developer Kit that 
allows a form of adaptive feedback. For instance, while swiping through Facebook pictures, the 
force feedback will change from light clicks to longer rumbles according to how many comments 
it had.

•	 The emergence of voice activated, intelligent personal assistants is an area of applications research. 
Apple’s iPhone has “Siri,” the voice-activated virtual assistant that it introduced in October 2011 
with the iPhone 4S (Dolcourt and Bennett 2012). The feature has the potential to change how con-
sumers retrieve information and interact with their mobile devices, giving them the ability to find 
information on the Web with natural voice commands and to perform other tasks. “Google Now” 
for the Android 4.1 Operating System introduced a similar voice search service for Android-
based devices shortly after.

•	 Google and its mobile partners introduced an alternative to the credit card with a technology 
called near-field communications (NFC) that lets users make payments wirelessly at cash registers 
[Wingfield 2012]. NFC is a set of standards for smartphones and similar devices to establish radio 
communication with each other by touching them together or bringing them into close proxim-
ity, usually no more than a few centimeters.

•	 Project Glass is a research and development program by Google to develop an augmented reality 
head-mounted display [Goldman 2012]. The intended purpose of Project Glass products would be 
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the hands-free displaying of information currently available to most smartphone users. Virtual 
objects and information could be overlaid on the real world and displayed to the wearer.

•	 As mobile connectivity and smartphone devices become ubiquitous, we are seeing a shift in the 
perception and expectations of end users, with access to media rich content virtually anywhere. 
Unified communications (UC) is the integration of real-time communication services with non 
real-time communication services into a single platform [Vodafone 2010]. As such, UC is not 
a single product but a portfolio of products that provide a consistent UI and user experience 
across multiple devices, platforms, and media types. In many cases, these solutions can be hosted 
remotely, effectively providing a scalable Cloud Service for mobile devices.

•	 In 2010, Apple filed a patent application for a small fuel-cell power supply that could poten-
tially give the iPhone and iPad enough power to last for weeks without the need to plug them in 
[Wingfield 2012]. Fuel cells use hydrogen and oxygen to produce electricity with no pollution.

61.5  Summary

Mobile devices are arguably the most ubiquitous modern technology: in some developing countries, 
more people have access to a mobile phone than to a bank account, electricity, or even clean water. 
Mobile communications now offer major opportunities to advance human development—from provid-
ing basic access to education or health information to making cash payments to stimulating citizen 
involvement in democratic processes [World Bank 2012].

As we have seen in this chapter, the smartphone has evolved over a short period of time and is still 
at the start of its growth curve. Devices and operating systems are becoming more powerful and less 
expensive to operate. The App development market has rapidly grown and continues to evolve. Today, 
mobile development is a multi-disciplinary endeavor requiring familiarity with a host of other areas, 
including wireless networking, location-based systems and distributed application development [Finkel 
2004]. The mobile OS share the common goals to: (1) to hide details of hardware by creating abstrac-
tions, (2) to allocate resources to processes, and (3) to provide an effective UI, similar to desktop operat-
ing system, while operating within the parameters of a mobile environment with limited connectivity, 
small footprint, power, and hardware resources.

This chapter has attempted to condense a rich and in-depth field of mobile OS to provide a brief his-
torical overview of the field and the evolution of the present day smartphone and mobile OS. It provided 
a summary look into the architecture of two of the most popular OS: Google’s Android OS and Apple’s 
iOS. For an in-depth study, the reader should refer to the corresponding developer guides.

Key Terms

1G: 1G is short for first-generation wireless telephone technology. This generation of phones and net-
works is represented by the brick-sized analog phones introduced in the 1980s.

2G: 2G is a second-generation digital mobile phone network allowing for the introduction of digital data 
services, such as SMS and e-mail.

3G: 3G is a third-generation mobile phone network that supports higher data capacities, enabling fea-
tures such as mobile Internet access. A 3G network is also capable of video calling.

4G: 4G is like the other generations in that its advantage lies in increased speeds in data transmission. 
There is currently no formal definition for 4G, but there are objectives. One of these objectives 
is for 4G to become a fully IP-based system, much like modern computer networks. The sup-
posed speeds for 4G will be between 100 Mbit/s and 1 Gbit/s.

BREW: Binary runtime environment for wireless is an application development platform created by 
Qualcomm, originally for code division multiple access (CDMA) mobile phones, featuring 
third-party applications such as mobile games. It is offered in some feature phones but not in 
smartphones.
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GSM: Global system for mobile communications. GSM is the most popular standard for mobile phones 
in the world.

HSDPA: High-speed downlink packet access. HSDPA is a 3G mobile protocol that offers higher data 
capacity and transfer speeds. This means that more information—such as video—can be 
transferred wirelessly to your phone at faster speeds.

Infrared: Infrared (IrDa) is a short-range wireless technology that provides a way to connect and 
exchange data between mobile phones. It has largely been succeeded by Bluetooth.

MMS: Multimedia messaging service. MMS is the sending of messages that include multimedia such as 
images, audio, video, and text.

Pre-paid: Pre-paid is a mobile phone account where credit for phone calls is paid up front and not billed 
by the month.

Push e-mail: When new e-mail is sent to you, it is instantly transferred (or “pushed”) to a mobile phone 
handset.

SIM card: Subscriber identity module card. A SIM card is a removable “smartcard” that is inserted into 
a mobile phone. SIM cards store the service provider details and identify the customer to the 
mobile network. You need a SIM to connect to a mobile phone network and make calls.

SMS: Short message service. SMS is the sending of short (160 characters or less) text messages, to and 
from mobile phones. Receiving SMS messages is free of charge but sending them costs 25 cents 
across all networks in Australia. Some networks may offer discounted rates for SMS messages 
sent across their own network.

WAP: Wireless application protocol. WAP is an Internet-like service for a mobile phone. WAP is not the 
same as using a browser on a computer.

Wi-Fi: Wi-Fi stands for Wireless Fidelity and is a wireless technology that allows connection to the 
Internet when in range of an “access point.” It is normally associated with accessing the 
Internet from a computer, but many mobile phones—particularly business smartphones—
have Wi-Fi as a feature.
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62.1  Background

The original motivation to introduce a layer between the user application and the underlying hardware 
was based on the assumption that certain tasks are common across certain applications and the applica-
tion developer needs an abstraction layer from the underlying hardware. Early operating systems had 
not been much more than a hardware abstraction layer offering basic interfaces to interact with external 
input and output devices and essential intrinsics of the processing units for computing, graphics, sound, 
or other special purpose processors.

Over the years operating systems evolved significantly in complexity accordingly with the new hard-
ware functionalities available and the introduction of graphical user interfaces as an essential part of the 
abstraction layer. However, for performance hungry applications, the layer introduced by the operating 
system and the libraries on top of it aimed at achieving maximum portability was not appropriate. Using 
the new features of the most recent graphics cards has been essential for high-end games and key to dif-
ferentiating them from their competitors. As a result, environments offering a more direct access to the 
capabilities of their underlying hardware, such as DirectX or OpenGL, offer in principle an alternative 
operating environment to normal applications. As the complexity of the operating system is depen-
dent on the variety of the hardware platforms where it may run, some operating systems have limited 
such platforms (e.g., Mac OS X has a significantly reduced number of platforms compared to Microsoft 
Windows or Linux). An extreme case are gaming consoles with a clearly defined hardware profile as well 
as a significantly reduced footprint.

In this chapter, we argue that with the current trend of exploding complexity of the hardware layer 
within a computing system, and across computing systems, traditional operating system approaches 
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are not only a threat for the application developers that need to program around their limitations, but 
prevent the developers from taking advantage of the opportunities of a connected world.

The core part of this chapter is the discussion of a new approach called service-oriented operating 
system. We conclude the chapter with the application of the model to three scenarios, one from the 
high-performance computing domain, another one inspired by an ambient intelligence setting, and a 
third one from intelligent manufacturing systems.

62.1.1  Current and Future Hardware Evolution

While many innovations are integrated into every new generation of computing hardware, systems have 
appeared quite stable for many years from an application developer viewpoint. Most computers have 
been using the x86 architecture based microprocessor with increasing frequency and transistor count. 
Most application developers focus their designs and implementations on a sequential platform consid-
ering communication and computing as separate functions. Better performance could be achieved by 
investing regularly in new hardware with only moderately increasing power costs. The motivation to 
spent effort in software optimization was limited to special application domains. Legacy applications, 
even if developed many years ago, would run faster by simply porting them to new architectures.

Recently the situation has dramatically changed, driven by the need to improve the power efficiency. 
Even low-end computing systems and smartphones include multicore processors. These devices have 
integrated graphic capabilities which are also used for computing. However, they run into performance 
bottlenecks when accessing data stored in the memory or communicating with other computing subsys-
tems. The general availability of parallel computing capabilities comes with increased heterogeneity of 
the computing platform and, at the same time, increased demand for optimization. Nowadays a typical 
computing system is equipped with one or more multicore CPUs with different types of connectivity 
between each other and to the peripherals (e.g., the core closer to the communication bus can send and 
receive data over the network faster), and accelerating components such as general purpose graphic pro-
cessing units. Hierarchical memory approaches with fast and large memory areas and fused processor 
architectures bringing together CPUs, graphic processors, and communication capabilities on one single 
chip will soon be available. Moreover, within the family of x86-based CPUs more and more differences 
between vendors in specific instruction sets and cache architectures are emerging. Competing architec-
tures, such as ARM-based processors, are moving from the embedded systems domain into mainstream 
computing.

The energy efficiency of applications is now a major concern. An application that is using only five 
percent of the theoretical peak performance, for example, because it has bad cache hit rates, is wasting 
much more energy than the one saved through hardware optimization. Consequently, the application 
developer is facing two major challenges at the same time. On the one hand, the underlying platform is 
becoming increasingly complex and heterogeneous, and innovation cycles for new hardware is shorter 
than ever. At the same time, there is a need to handle parallelism and save energy by designing algo-
rithms that exploit data locality and use efficiently the available computing capabilities. Application 
developers are finding it extremely difficult to cope with these new realities.

62.1.2  Programming Models

Parallel programming is not a new topic, and a couple of programming models have been used on 
high-performance computing (HPC) systems for over a decade. Besides simple multithread program-
ming approaches, applications are very often parallelized using specific programming models such as 
OpenMP and/or the Message Passing Interface (MPI). These programming models have been designed 
for scientific/technical computing intensive applications and are only partially suited for other kinds 
of applications. In particular, if used in conjunction to realize node parallelism (across the cores of 
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a single server) with OpenMP and using MPI for the communication across nodes, the correct usage 
is very complex and demanding for programmers.

Partitioned global address space (PGAS) approaches, such as Co-Array Fortran (CAF) or Unified 
Parallel C (UPC), bring parallelism as a basic element into the programming language to deliver an 
abstraction layer for distributed data. This approach is more suited to reach the application developer 
community at large. However, achieving high performance and scalability is complex as it is with other 
parallelization methods.

For addressing the heterogeneity of the computing platforms, approaches to deliver a higher level 
of abstraction to the application developer are available. Models, such as OpenAcc or Task-based 
approaches as StarSs and OpenMP 4.0, are competing with more hardware-oriented models such as 
OpenCL and CUDA. These models, while conceptually supporting different architectures, are often 
limited to a few platforms.

62.1.3  Communication Models

With the increasing amount of computing capability in a single node/server, very often applications need 
to be spread across several computing systems to overcome limitations on memory size or to achieve 
strong scaling (delivering a solution of fixed size in shorter time, in contrast to weak scaling solving a 
larger problem in similar time). Consider an extreme case where an application could be distributed 
across as many nodes as the number of its subproblems, where the subproblems fit in each node’s cache. 
While this would clearly speed up the calculation on each node (as access to the cache is much faster 
than accessing to the main memory) for most problems, the synchronization across the nodes sharing 
intermediate results might become the dominating factor in the execution time. While in this scenario 
the latency will be dominating, in other cases the bandwidth limitations and the time needed to transfer 
data from main memory to the network and back into the main memory of the receiving server might 
be the limiting factor.

Consequently, communication and computing cannot be considered to be orthogonal elements of an 
application, but their balance have to be integral part of the design and implementation.

62.2 A nalysis

The trends in hardware development discussed in the previous section have increased, and will con-
tinue to increase, the complexity of programming. The fundamental assumption of the authors is 
that current models will lead to a significant and increasingly, growing gap between the capabilities 
of the hardware and the ability of the averagely skilled application developer to exploit these capabili-
ties. This “parallel divide,” where an increasing number of application developers is no longer able 
to efficiently exploit new hardware capabilities, demands for a new software development model. 
Such a model has to be able to make use of the wide variety of available computing resource types, 
taking advantage of its specific characteristics while at the same time reducing the complexity of 
programming.

Although advanced or specialized application developers will still be able to efficiently use the com-
plex machine’s computing resources, it is necessary to provide a solution for the average programmers. 
The approach must be more abstract, reduce noticeably the development time, and ease portability while 
having only an acceptable performance penalty compared to handmade optimizations.

The current situation resembles the dilemma between writing code in assembler or in a higher-level 
language. An experienced programmer with in-depth knowledge of the underlying hardware might 
extract more performance, but using a high-level language will reduce development time, facilitate 
debugging, and allow easier portability among different hardware architectures.
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62.2.1  Need for a New Programming Model

Existing programming models are not able to deliver this abstraction level as they are typically too 
tightly coupled with the hardware system and rely on lower layers to control the communication and 
execution of the program.

Extending or combining existing programming models, for example, to reflect specific user needs 
or individual application domains (such as OpenMP for parallelization in a cache-coherent common 
address space machine and MPI for parallelization in a non cache-coherent or noncommon address space 
machine), will further increase programming complexity. In the current programming models, optimiza-
tions have to be done manually by the developer by adapting the source code to the destination platform 
or by the compiler performing static analysis and specific optimizations for the destination infrastructure. 
But to obtain an efficient utilization of the infrastructure, the developer must take into consideration as 
many details as possible of the destination infrastructure. For example, performance is negatively affected 
by cache misses; organizing and partitioning the data structures according to the processor’s cache size 
to minimize this impact will greatly improve performance. The main problem is that different processors 
have different cache sizes, access patterns, and hierarchies. Consequently optimizing a program for one 
platform can lead to performance degradation on another system or even limit program portability if 
specific instructions are used.

On the other hand, one cannot expect compilers to generate completely optimized code by just using 
static analysis of the program for different platforms. Typically this leads to parallel branches for differ-
ent architectures for the same program to overcome limitations of the hardware, the specific compiler 
capabilities, or even conceptual limitations of the programming language.

A new programming model has to consequently rely on the user knowledge to express optimization 
hints coming from the problem domain, perform run-time code analysis, and realize a segmentation 
and distribution across the infrastructure that can change and adapt over time. Language extensions 
and optimization hints might range from low-level ones (to unroll loops over communication patterns) 
to data layout assertions to express domain-specific elements.

62.2.2  OS Support

Many of the issues previously exposed could be solved by constant recompilation of an annotated source 
code or by making the operating system aware of its environment, enabling it to predict memory usage 
and code dependencies in order to adapt the program to the running environment characteristics. The 
source code or the programming model, when the application is not written for an specific machine, do 
not know about the level of parallelism and concurrency of the machine and the infrastructure specif-
ics, while the processor architecture has no view of the overall program and its possible threads. The 
operating system, being the middle tier between the two perspectives, is hence the ideal place to address 
this; the only execution “layer” having access to all the information required to resolve these issues is 
the operating system. The operating system is the interface between the hardware, usually unknown to 
the software developer, and the program.

Current operating systems cater for threads and processes—its distribution and scheduling—, and 
to memory management; they control the machine and program interaction with the hardware. But 
this is one of the main limitations under the current hardware evolution. The execution environment 
itself should cater for the right functionalities, reflecting the infrastructure specifics to the current 
deployment. In other words, the developer should have a common interface for all segments/processes 
for communication, message exchange etc., without having to restrict to the specifics of the current 
deployment. This would mean, for example, that threads just specify the data they use and access it in a 
common fashion, regardless whether the underlying platform is a shared-memory, cache-consistent, or 
nonunified memory access architecture.
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Even though the execution environment will know the details of the hardware infrastructure, it is 
obviously not sufficient to just leave the matching of the access operations to the environment, as it will 
not know the details about which data is required where and when. In a straight-forward approach, 
all data access would be matched to the necessary messaging and routing, thereby creating a central 
memory instance. This in turn would create an immense overhead in communication on the network, 
downgrading the performance even more than for an implementation that does not match the infra-
structure details but takes into account segmentation, distribution, and prefetching of the data.

In fact, information from both sides, that is, the hardware layout and the work/data layout of the pro-
gram have to be aligned with each other by the operating system. This implies however that our way of 
specifying the work and data layout of code has to change into a way that allows for the best mapping to 
different environments. For example, the coder should identify which part of the data is manipulated by 
which part of the code, so that a compiler or intermediary analyzer can identify how to distribute data and 
when consistency needs to be maintained. This information can then be used by the execution environ-
ment dynamically depending on the destination platform layout, respectively, of the specific architecture 
of that platform.

Each thread or code instance would therefore need a different way of realizing the same logical func-
tionality, depending on the real data dependencies and access requirements, as well as on the destina-
tion platform specifics. With traditional architectures, the operating system would effectively have to 
cater for all the related functionalities itself and “outsource” the intelligence to finding the right map-
ping to the developer.

As mentioned earlier, the application developer should not have to worry about the code distribution 
to nodes, as this depends on the specifics of the destination platform, that is, memory architecture, I/O, 
available devices, etc. But the developer must provide enough information for the operating system’s 
code analyzer so that it can identify the cross-segment exchange of data, without having to restrict itself 
to a specific deployment or segmentation.

Even though monolithic operating systems still scale well, they are tightly coupled to a specific resource 
type, making the integration diverse resource types difficult to manage. Furthermore, monolithic OS 
assume that the infrastructure is comparatively static and thus cannot provide simple means to cater for 
fault tolerance response as the corresponding supervision would produce additional management over-
head. Monolithic approaches also tend to lose efficiency when cross-process communication reaches a 
certain threshold as there are too many synchronization steps have to be managed.

62.3  Derived Operating System Model

A primary concern for the efficient execution of distributed programs in future infrastructures consists 
in providing an execution environment that does not control the process(es) from a central point and 
that is capable of providing and exploiting the capabilities of each individual resource. A major concern 
is the degree of messaging overhead created by centralized control and cache misses. To reduce the 
amount of messaging, it must be ensured that each part of the code can effectively run as a completely 
independent (i.e., concurrent) process. This means that data exchanges have to be reduced to a mini-
mum, with other processes or even the operating system. The degree of “independence” is thereby not so 
much defined by the total number of shared data but by the amount of messaging relative to the underly-
ing connectivity speed. If timing is correctly exploited, messaging has no impact on performance since 
no process has to wait for another due to lack of data (i.e., locking).

As has been noted, most “processes” or segments forming an application require minimal operating 
system requirements toward the environment they are running on, if they are carefully restructured. 
Often enough, developers completely depend on integrated frameworks (such as .NET) that are so 
tightly integrated with the operating system that even simple process calls will lead to system interrupts 
and therefore to unnecessary overhead.
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In principle, any program can be written so that it does not require any operating system support—
this implies however that effectively the developer writes his own operating system as part of his intended 
application logic, which is neither realistic nor helpful. Instead, we require an execution environment 
(operating system) that can itself be distributed and adjusted in a fashion that it only provides essential 
capabilities to each executing thread/process, and still maintains consistency with as minimal impact 
on execution and communication overhead as possible.

62.3.1  Modular OS Architectures

Effectively the architecture should provide minimal OS environments per executing segment that 
nonetheless still caters for all the additional capabilities and requirements to maintain a distributed 
execution and therefore all the dependencies between the executing segments. For example, a regular 
multi-threaded application with one main thread and a hundred worker threads that all read data from 
a central main memory should implement the functionalities for accessing this memory location, but 
requiring hardly any other OS support. What is more though, this functionality differs strongly between 
platforms and their organization, that is, whether memory is shared, whether remote memory access is 
supported, etc.

This means implicitly that even though only limited functionality is required, the different require-
ments originating from the environment impose that no single implementation can provide the neces-
sary capabilities. The current approach consists in the operating system providing a variety of strongly 
related functionalities that can be exploited for a wide set of tasks.

This is where the strength of modular approaches comes in: from the programmer’s perspective, only 
specific functionalities are required that can be exposed in a common way, leaving it to the execution 
environment to decide on the actual implementation of the respective functionalities. This is not unlike 
dynamically shared libraries where the right implementation of the library can be chosen on basis of 
the hardware specifics. Shared libraries thereby are essentially nothing more than programming exten-
sions, built up on the operating system.

With the modular approach the functionalities are tightly integrated with the rest of the execution 
environment. Effectively, the whole operating system makes use of the same operations, though with 
different flavors, according to the execution circumstances. This can increase performance drastically 
and allows for better alignment between execution and platform.

One very essential consequence of this approach is the fact that applications and the operating system 
are equally structured in a modular/segmented fashion. In other words, the operating system invokes 
its functionalities in the same way as the applications, putting the applications essentially on the level of 
control of the operating system.

Modules forming the essential operating system behavior and contributing to the application execu-
tion can therefore be deployed in any fashion across the infrastructure. To this end, however, a strong 
messaging mechanism must be in place that can realize the communication between modules across 
the deployment—this implicitly puts messaging in a special position compared to all other modules (see 
section on OS capabilities).

As opposed to classical operating system architectures, this implies that there is not one, common 
deployment and instance of the whole operating system within the infrastructure, but instead there are 
different modules instantiated all across the environment that communicate with one another to fulfill 
the respective functionality. The operating system is effectively spread all over the environment.

In order to allow for coordinated execution, the individual modules need to be carefully controlled 
and configured so as to compensate and supplement each other, rather than competing against each 
other as it is currently the case when multiple OS instances run within the same environment.

The modules are not so much higher order extensions, comparable to libraries, but can be compared 
better to service instances in a distributed environment such as web services. What is more though, the 
“service” or module does not have to reside at a designated, static location, but can be freely relocated, 
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instantiated, and replicated according to the current requirements, therefore comparing it more with 
the classical ideas behind grid computing or cloud computing.

62.3.2  Execution Lifecycle and Background Support

Before we take a look at the actual architecture of such a modular, distributed operating system, it is 
worth examining how the system behaves principally as a whole, if a new application is executed within 
such an environment. We can thereby identify the following major steps:

	 1.	 Analysis
	 2.	 Preparation
	 3.	 Deployment
	 4.	 Execution and maintenance

During analysis the code to be executed is analyzed with respect to its specific preconditions and 
requirements toward the infrastructure and its potential to be executed in parallel/concurrent segments. 
This means in particular that the indicators provided by the developer with respect to the code–data 
relationship and the degree of parallelism, and respectively the concurrent code segments, are identi-
fied. There are different means to support the automation of this step, such as dependency identification, 
code segmentation, automated parallelization, etc. For the operating system to work properly, the actual 
mechanisms to identify these possibilities are secondary. What is of main relevance is how this informa-
tion relates to the distributed execution of the code.

The main information required for enabling distributed execution consists in bringing out all aspects 
that create any form of dependency beyond the local code. This implies the following:

	 1.	 Remote memory access: Any access to nonlocal memory space, whereby “local” means local to 
the executing segment (thread, process), which does not necessarily mean local to the function/
class/object in the source code.

	 2.	 Explicit communication: Any explicit invocation or messaging with nonlocal (see earlier text) 
code instances, segments, or even devices. Again the actual scope depends more on the executed 
segmentation than on the source code structure.

	 3.	 Work segmentation: Similar to communication and memory access, code execution may jump 
between threads/processes/segments in order to perform the actual distributed execution—this 
equally covers intended jumps (invocations, branches), as well as unintended ones (created by 
segmentation) and ones to exploit concurrency (executing multiple segments at once).

Principally, the developer needs to indicate the data and code segment dependencies and relation-
ships in a form that is understandable by the compiler, analyzer, or interpreter that converts the infor-
mation into an executable form that the operating system can handle. The most promising approach is 
a graph representation of the code structure whereby the different types of dependencies are denoted as 
weighed edges. The weighs can convey different information with respect to amount of data communi-
cated, frequency of communication, etc. Edge direction can represent direct access types (read, write). 
This graph not only allows for easy identification of concurrent code segments but also of communica-
tion points, data dependencies, etc.

In [6], we elaborate about mechanisms that allow for automated characteristics extraction and match-
ing. New models are thereby required to specify the capabilities of hardware in an abstract form.

Preparation of the application code and the computing environments involves conversion of the code 
to accommodate for the requirements arising from the segmentation and deployment, as well as the 
selection, instantiation and configuration of the required operating system modules, i.e., enabling pro-
visions with the right functionalities.

Code preparation may include replacing the dependencies with explicit system calls to cater for the 
distributed execution, that is, in particular, to inject messaging points where according to the original 
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code only foresee memory access and where the dependency graph identifies a cross-segment relation-
ship. Nonetheless, the preparation phase can be regarded as part of the compilation step, if we consider 
dynamic re-arrangement as a form of re-compilation.

It must be noted that with the growing heterogeneity and principally dynamicity at execution time, 
the classical concept of completely isolated development, compilation, and execution steps can no longer 
take place as such—instead, the steps must become intertwined to fully exploit the potential of future 
hardware infrastructures.

Though developers will not and should not write code for a specific destination platform, they will have 
to give explicit hints that implicitly relate to the mapping of the code to the infrastructure, particularly 
regarding dependencies and concurrency. As the deployment may change depending on time-sharing and 
available resources, the operating system must be able to rearrange and re-distribute the code without hav-
ing to go through an explicit compilation phase. Just-in-time compilers are a clear indicator of this trend.

At the Deployment phase, the selected segmentation of the code, including all its required operating 
system modules, will be deployed in the infrastructure according to the application’s layout identified 
during the preceding stages. This step includes all configuration steps required in order to make dis-
tributed execution take place, such as registration of the communication endpoints, reservation and 
registration of the address spaces, etc.

If the analysis and preparation are considered outside the actual operating system lifecycle, the main 
OS operation starts with the deployment of the code, as well as the deployment of the operating system 
modules themselves.

Finally, during the Execution phase, the application will be executed across the deployment created 
in the preceding phase. It must be noted that not all code will necessarily be designated to a specific 
processing unit during the execution initialization. Instead, the application behaves more like a work-
flow, with individual segments (“services”) being deployed at run time upon invocation. This way, con-
currency can be exploited even if the exact timing behavior can only be estimated, and thus allow for 
dynamic reaction to the arising time-sharing constraints.

The operating system must be able to dynamically create and relocate instances of both the applica-
tion, and—more crucially—of itself; its own modules.

The major task for the operating system during distributed execution consists of ensuring state con-
sistency and communication across the individual instances—both on the OS and the application level. 
Since the deployment is not fixed and may change dynamically at run time, the operating system as a 
whole has to ensure that all the relevant parts are always reachable from all communicating segments. 
In other words, the segments can always be executed as if the environment would adhere to the original 
specification, even as if the platform would be a single-core sequential processor.

In close relationship to the types of dependencies identified earlier, this means, in particular, that the 
operating system must provide mechanisms to

•	 Access memory and maintain state
•	 Access (I/O) devices
•	 Communication routing between instances/segments
•	 Event handling across instances

In general, the operating system will provide a dedicated (virtual and managed) address space for 
each application, allowing the memory manager of the processor to execute relative jumps and calls 
within the same local address space range and leaving it up to the operating system to handle the page 
swaps. In most cases (with the exception of applications dedicated to parallel execution), the address 
space will be continuous, that is, at least within the same physical location. This means that jumps and 
calls will not leave the machine, unless the developer has explicitly specified it.

In the more dynamic distributed case, this assumption does not generally hold true, as any jump or 
memory access may imply leaving the physical boundary of the executing entity, and therefore out of the 
locally assigned address space. The classical way of handling this via a page miss event may not suffice 
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anymore in this case, as the access may imply remote processing. Remote page swapping, that is, copy-
ing data from a remote location just into cache, without having another local replica, is generally not 
advisable, as it implies that every page swap would have to deal with all the communication overhead, 
even if the cache was not altered, that is, no update is required.

The key factor consists of good data segmentation and identification of the right points for the com-
munication and update of data. Without loss of generality, we assume that the system calls are embed-
ded by the compiler on basis of the annotations provided by the developer and the results from the 
analysis and matching phase prior to the execution of the code. Memory access in such a distributed 
environment turns from the explicit access to a specific memory space into requesting the operating sys-
tem to make the corresponding data set available for accessing. The developer does not have to identify 
the origin of the corresponding data, nor for distributing it to all linked code segments.

All communications must be executed in the background in order to be nonblocking, and thus allow 
the execution of other operations before the actual memory access takes place. At the same time, the 
operating system must offer support to handle communication in different forms, wherever the devel-
oper explicitly requests it.

Considering the circumstances, in particular regarding the flexible, potentially dynamic distribution of 
processes across the infrastructure, a particular task for the operating system consists of maintaining the right 
communication endpoints. To realize this, such an operating system must support multiple mechanisms:

•	 Hierarchical lookup tables: Primarily serve the purpose of providing the right communication 
endpoints for specific address spaces.

•	 Routing: Due to the potential dynamicity, endpoints may move without all related instances being 
informed; the operating system must provide means to forward the communication from the old 
to the new endpoint.

•	 Fault handling mechanisms: Fault handling mechanisms must ensure that wrong lookups do not 
automatically lead to failure of the according application, but the study of this issue is beyond the 
scope of the current document.

62.3.3  Essential OS Capabilities

Based on the preceding discussion, we identify a set of essential functionalities that a distributed operating 
system must offer over a classical, monolithic and centralized OS architecture. We must thereby explicitly 
distinguish between exposed functionalities (as visible to the developer or user) and actions arising from 
the distributed usage of the available functions. As discussed at the beginning of this section, messaging 
mechanisms must be exposed to the user without adding any further burden to the endpoint. Messaging 
depends thereby very much on the processor architecture and thus differs between different deployments 
and execution cycles. Notably, the same level of distinction also applies to the operating system itself: due 
to its modular organization, many of its functionalities are implicit to the way execution is handled.

On the other hand, the individual functionalities should not hide capabilities and mechanisms that 
the user may potentially want to exploit for his own benefit that he may want to be able to control at least 
to a certain degree (such as specifying a security protocol, distinguishing different means for ensuring 
consistency, etc.).

It is of utmost relevance that the dependencies between functionalities is kept to an absolute mini-
mum, so as to (a) allow easy replacement and adaptation, and (b) not generate management and com-
munication overhead that would exceed the gains of a modular architecture again.

We can identify the following main base capability categories an operating system must provide in 
order to enable distributed execution:

•	 Communication: With a messaging-based approach, communication support is implicitly an 
inherently relevant capability, covering not only the message exchange between the execution 
segments (code blocks), but also the implicit and explicit communication between operating 
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system modules. Communication is a transparent underlying capability for routing invocations 
and messages to the necessary endpoint without the respective code having to identify it explic-
itly. Nonetheless, the developer must be able to explicitly use the communication capabilities to 
send messages to dedicated endpoints in a thread-/MPI-like fashion.

•	 Memory management: With the application and its data being distributed all across the infra-
structure, memory access is not straight-forward from any executing code; in particular with 
multiple blocks being executed concurrently, the data space may either be replicated or central-
ized. In either case, the developer should not have to cater for the specific mechanisms. Instead, 
the operating system must provide means that grant managed access according to the deployment 
specifics. This means that memory management is tightly coupled to the communication capa-
bilities in order to enable remote access and state maintenance.

•	 Scheduling: Multitasking was originally implemented by sharing the same resource between 
multiple processes and having the scheduler distribute the processing time between them. With 
large scale, distributed infrastructures, the primary goal of a scheduler is distribution and timely 
invocation of the blocks. From a single processing unit’s point of view, execution ideally becomes 
a fairly sequential task, thus dedicating most of the unit’s performance to the respective task. 
Nonetheless, some use cases will initiate more processes than resources are available to run them 
on, and individual processes may be stalled due to communication delays and interdependen-
cies, so that the scheduler will still have to be able to execute classical context switches in order to 
maximize resource usage.

•	 Deployment and process management: Strongly related to scheduling, the operating system must 
be able to remotely deploy and trigger processes (or more correctly: code segments) in order to be 
able to distribute the application across the infrastructure in a way that reflects the parallelism 
and concurrency of the code. This implies that the designated destination resource provides the 
base means that allow reception, deployment, and linking of the code. This includes, in particular, 
communication and memory management functionalities.

In addition to these, we can identify lower-level functionalities that at first glance would have to be 
considered subsumed by the ones listed earlier. These however may be explicitly used by the application 
and must therefore be exposed in a way that the developer can invoke them according to his needs:

•	 File management and I/O management: Devices in a system are generally exposed via a common 
communication bus, classically denoted as I/O (input and output). Modern systems distinguish 
between different buses, depending on the type (and location) of the device in question. Most of 
these devices must be accessible to the user at least in some form, such as the disk drivers, printers, 
screens, etc. The OS must provide common means to reach the devices and interact with them with-
out having to cater for the protocol details. The location of the according devices may thereby not 
be known to the user, so that similar routing mechanisms are needed as for memory management.

•	 Interrupt handling: Handling requests from devices and software instances is an essential fea-
ture of all operating systems to control the infrastructure. Some interrupt events are obviously 
handled by the operating system, but the developer may want to exploit, inspect, and react to such 
events by capturing them. The corresponding capability must be available to both the operating 
system itself (infrastructure management) and the developer through an extended forwarding 
mechanism.

Finally, to enhance the operating system behavior, additional, so-called “supporting” capabilities are 
required, which provide the essential information for the individual OS components to execute the code 
in the way described earlier:

•	 Code analysis and segmentation: The introduction of web services and the cloud gave rise to 
increased exploitation of remote procedure call like interactions, and thus to a workflow-like 
segmentation of the application in the first instance. The code analysis must identify external 
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dependencies, that is toward libraries, operating system calls, devices, etc., that effectively define 
the segmentation and mapping of the code on the infrastructure. Notably, the segmentation iden-
tified by the developer does not have to be the most suitable for the destination infrastructure and 
also the data structure plays an important role in the sensible distribution of code, as it may create 
dependencies that effectively counter any segmentation. This analysis results in a dependency 
graph of potential code and data segments, including any form of additional constraint informa-
tion as given by the developer, that can be exploited for the purpose of distribution and mapping 
to the destination platform.

•	 Resource management: In the environment described earlier, resources are no longer treated as 
concrete processor models, micro-architectures, device types, etc., but instead as abstract enti-
ties that provide certain capabilities and impose specific constraints. As heterogeneity increases, 
devices must be characterized according to their capabilities and must be classified according to 
how code can make use of these characteristics. Along the same line, resources must be discov-
erable; changes in the resource setup must be communicated to all related nodes, so as to take 
potential recovery actions, respectively, to exploit the additional resources. This step is particu-
larly relevant as a precedent to deploying the code.

•	 Code transformation: In order to match the code against the infrastructure and to exploit its 
characteristics, it is necessary to transform the code accordingly. This is an extension to the classi-
cal compilation step, which involves optimization steps. More important, due to the segmentation 
and re-arrangement of the memory layout, additional commands for maintaining communica-
tion and accessibility to the data have to be injected. Since the layout of the code and infrastruc-
ture may change at run time, the mapping and the code transformation should not be a static; it 
must be possible to adapt the code at run time according to the environmental conditions.

Effectively, the “vertical” supporting capabilities can be regarded as part of the code compilation pro-
cess, as their main tasks consist in converting the code so as to meet the infrastructure and distribution 
requirements. It must be noted, however, that many of the steps may have to be executed again at run 
time. We can thus distinguish between preparational steps and steps to be performed at execution run 
time under dynamic conditions. This leads to a compilation structure that effectively incorporates the 
following four steps:

	 1.	 Analysis of the code
	 2.	 Conversion into a pre-executable code
	 3.	 Just-in-time adaptation to infrastructure
	 4.	 Just-in-time compilation to destination

62.3.4  OS Layout

The primary concern when building an operating system architecture that meets the capabilities listed 
earlier consists in identifying a minimal representation of these capabilities in terms of software com-
ponents. In other words, in identifying the set of minimal components that are sufficient to provide 
the necessary functionalities, yet do not create performance issues simply because of communica-
tion overhead created by segmenting the functionalities into individual components. Essentially, this 
means that the dependencies between the given set of capabilities in different usage contexts need to 
be identified.

We can categorize the core functionalities into five major domains (cf. Figure 62.1), namely, 
capabilities related to executing the processes, handling memory and storage, handling the devices 
and hardware, supervising the infrastructure, and finally, the messaging support across all these 
domains.

The primary principle of a service-oriented operating system architecture consists of instantiating 
only the essential capabilities that are required for executing a specific functionality. Deployment 
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does not have to be co-located with the calling code/function, due to the message-based approach, 
but remote invocation implicitly leads to higher communication overhead that can stall the pro-
cess. An optimal segmentation of components keeps the communication overhead and the load on 
memory (and therefore chances for cache misses) low.

This means that even though the components belonging to the functional groups identified earlier 
provide the same type of functionality, their individual instantiation can differ quite significantly. We 
can best exemplify this by a process load operation from a specific designated memory space, local 
to the full application. In other words, the data space is global to the application but not necessarily to 
the  individual process trying to invoke it. Any memory access can therefore be regarded as a load 
operation from an unknown source that takes a specific amount of time. If the timing behavior can be 
predicted and if the usage logic is known, prefetching mechanisms can be enacted to improve process-
ing performance [2].

The developer will not want to decide between server (remote) and client (local) invocations either, 
but instead the programming convention must follow traditional standards. The compiler or runtime 
handler must be able to replace the memory accesses with invocations to the memory management 
system.

A completely managed environment, where all data access is first routed through the operating sys-
tem, on the other hand, will create additional system management overhead to memory accesses that 
could be handled directly in cache. The best approach in terms of performance is determined by the 
type and amount of data, as well as the degree of sharing. In general, the analysis must identify these 
dependencies and inject the right access means accordingly.

62.4 A pplying Service-Oriented Operating Systems

As already discussed, future infrastructures will be characterized by a high degree of mobility, paral-
lelism, and heterogeneity of resources while users expect more and more performance. This can only 
be achieved by exploiting parallelism and concurrency of the applications. This section will dem-
onstrate how the architecture outlined in the preceding section behaves in the following scenarios.

62.4.1  High-Performance Computing Scenario

High-performance computing (HPC) is designated by a single application requiring a large amount of 
resources to achieve the necessary performance, with respect to precision, amount of data and/or speed. 
Performance is primarily defined by the degree of communication taking place during execution, as 
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FIGURE 62.1  High-level architecture of the service-oriented OS architecture.
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data consumption/production is in general faster than communication allows. Reducing any form of 
communication is thereby the primary concern of any developer.

As can be shown, a centralistic operating system creates additional communication overhead that 
outweighs the overhead generated by a message-based system [1]. What is more, due to the mono-
lithic organization of current operating systems, system invocations may cause a huge amount of cache 
misses [6]. Finally, the overhead for creating and handling threads ranges in the number of hundreds 
of thousands of cycles [3,4] as classical operating systems have not been designed for parallel applica-
tions, thereby hindering low workload threads in a large-scale programs, and thus optimal exploitation 
of the environment.

The actual system support required by each thread is comparatively low and relates in particular to 
handling memory and I/O. With the current structure of OS architectures, each thread is effectively 
lugging a whole management system with it that obstructs execution and leaves a major footprint on 
the local memory. The service-oriented approach generates stand-alone (barebone) applications out of 
each thread that can run without the full management environment of an operating system. As these 
threads effectively run directly on the chip/core without any intermediary layers, they can be instan-
tiated and executed much faster, very similar to classical DOS applications. Any additional require-
ments relating to security, reliability, etc., can thereby be dynamically added at the cost of degrading 
performance.

62.4.2  Connected World Scenario

In the future, we must not expect the user to outsource specific tasks, for example, to a HPC platform 
anymore, but instead the user will expect to be integrated into the resource mesh, that is, that the under-
lying resources and infrastructure becomes seamlessly available to the running applications, thereby 
extending capabilities, usage (such as sharing of data), and performance.

In the classical approach for the connected world scenario, the user would own a global ID that 
enables him to be recognized in a variety of contexts and that allow the respective application to pull 
information (such as favorite songs) from a distributed or cloud-like data storage environment. This 
would however only partially address the requirements of the future mobile user, in particular where 
execution of interactive applications (such as a document editor with shared data) is required. In such 
cases, some part of the application has to reside locally with the user to provide the necessary interfaces, 
even if the interface itself is displayed in a browser-like application.

The user’s applications may vary widely and will not be restricted to commonly known and deployed 
applications, such as Open Office, but also include less common applications, and even completely self-
developed code. Applications in turn may be composed of a variety of other functionalities (services, 
applications, etc.) that each in turn has different requirements toward the executing infrastructure, 
ranging from high performance to shared or social connectivity. Identification of the identity of the user 
alone is thereby insufficient, for example, if the user wants to run complex simulations on (or from) his 
mobile device.

Whilst web service like approaches allow integration of remote services, they do not offer the flex-
ibility or performance needed in most cases. For example, communicating the necessary data from the 
United States to France will lead to significant delays even with the future network developments and 
increase in performance. This requires a more flexible distribution of code and data than currently con-
sidered in any application code. Some global cloud infrastructures may already exhibit indicators of a 
development in this direction, yet this is far from providing users with the full flexibility of deployment 
and execution.

With a service-oriented operating system, this capability essentially comes for free with the structure 
of the OS itself. The principal organization scheme of the OS thereby allows realization of the old grid 
dream where any resource can be designated host of a dedicated service [5]. The approach goes even 
further by allowing partial integration of the resource for only limited capabilities and execution, much 
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like sharing cores for multiple tasks in a local desktop. In this case, it is not so much the other device get-
ting access granted to the user data, but hosting temporarily a function on behalf of the user that in turn 
enables accessing the respective data. In other words, the user will not only be able to play his favorite 
playlists, but also can use his favorite application for doing so.

Future offices, hotels and conference centers can essentially offer pure resource power to their users 
who plug in any low power mobile device to run their own applications and perform their individual 
tasks with extended execution performance. The resources become effectively nothing else but exten-
sions to the mobile device that dynamically move with and adapt to the user’s behavior and require-
ments. The mesh of resources used for this purpose form an isolated environment of their own, with 
external interfaces only provided and used as specified by the user, respectively developer.

62.5  Conclusions

With the introduction of multicores, specialized infrastructures, Internet provided utility computing, 
etc., the IT environment is quickly building up to significant changes in our way of thinking of software 
and hardware. These changes are thereby not matched by our approach for dealing with them, in par-
ticular in terms of software development and execution. The average programmer still treats the system 
like a single core Turing machine with immediate data availability. As the heterogeneity and dynamicity 
grows, however, solving the problem cannot be put onto the developer alone, but must be matched by the 
infrastructure’s capabilities to adjust itself and the code according to the current requirements.

This all builds up toward an environment where the individual resource can never satisfy all the user’s 
requirements without incorporating additional devices and/or services. Already we have the notion of 
such global infrastructures through web services, social networks, and clouds, yet they are countered by 
the increasing demand for performance in complex applications.

Classical operating systems are simply not designed for such environments and they lead to increas-
ing overhead both in terms of execution performance and development time/effort. Bringing service 
orientation not only to the application but also to the underlying execution management framework, 
that is, the operating system, enables the realization of such scenarios while reducing the inherent per-
formance losses.

The service-oriented approach does not only match the requirements for minimal load on the indi-
vidual processing unit and for distributed deployment and management of applications spanning mul-
tiple devices. It also allows for much easier adaptation toward and integration of new device types. 
Where classical operating systems effectively had to be rewritten completely even for minor changes 
(see, e.g., [1]), the service orientation allows for component-wise adaptation and instantiation according 
to the device properties.

For decades, the monolithic, centralized operating system architecture has prevailed. All the adjust-
ments to meet a specific processor model have made the OS sluggish to adaptation. New infrastruc-
tures and usage demand for a much meaner and leaner architecture than monolithic approaches can 
offer. Service orientation needs to become a natural part of such architectures in order to meet these 
requirements.
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63.1  Introduction

In the 1940s, John von Neumann pioneered the design of basic computer architecture by structur-
ing computers into two major units: a central processing unit (CPU), responsible for computations, 
and a data storage unit, or memory. This architecture is demand driven, based on a command- and 
instruction-oriented computing model. The basic unit cycle of execution, typically composed of a single 
instruction, consists of four steps:
	 1.	 Obtain the addresses of the result and operands.
	 2.	 Obtain the operand data from the operand location(s).
	 3.	 Compute the result data from the operand data.
	 4.	 Store the result data in the result location.

Note here how separation of the execution unit from the memory unit has structured the sequence. Data 
must be located and piped from memory, operated on, and transferred back to memory to be available for the 
next operation. All operations in a von Neumann machine operate this way, in a stepwise, structured man-
ner. The von Neumann model has been the basis of nearly every computer built since the 1940s.

Imperative programming languages are modeled after the von Neumann model of machine execu-
tion and were invented to provide the abstractions of machine components and actions in order to make 
it easier to program computers. Abstractions such as variables (which model memory cells), assignment 
statements (which model data transfer), and other language statements are all abstractions of the basic 
von Neumann approach.
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In this chapter, we address the fundamental principles underlying imperative programming 
languages and examine the way the constructs of imperative languages are represented in several lan-
guages. We devote special attention to features of more modern imperative programming languages, 
among them support for abstract data types (ADTs) and newer control constructs such as iterators 
and exception handling. Examples in this chapter are given in a variety of imperative programming 
languages, including FORTRAN, Pascal, C, C++, MODULA-2, and Ada 83. In the Best Practices sec-
tion, we explore in more detail the languages FORTRAN IV (chosen for historical reasons), C and C++ 
(its imperative parts), and Ada 83.

63.2  Data Bindings: Variables, Type, Scope, and Lifetime

In this section, we discuss some of the fundamental properties of imperative programming languages. 
In particular, we address issues related to binding time, the properties of variables, types, scope, and 
lifetime.

63.2.1  Binding Time

We will find it useful to classify many of the differences in programming languages based on the notion of 
binding time. A binding is the association of an attribute to a name. The time at which a binding takes place 
is an important consideration. There are many times when a binding can occur. Some of these are as follows:

•	 Language definition: when the language is designed. An example is the binding of the constant 
name true to the corresponding Boolean value.

•	 Language implementation: when a compiler or interpreter is written. An example is the binding of 
the representation of values of various types.

•	 Compile time: when a program is being translated into machine language. For example, the type 
of a variable in a statically typed language is bound at compile time. In statically typed languages, 
overloaded functions are bound at compile time.

•	 Load time: when the executable machine language image of the program is loaded into the mem-
ory for execution by the execution unit. The location of global variables is bound at load time.

•	 Procedure or function invocation time: the time a program is being executed. Actual parameters are 
bound to formal parameters and local variables are bound to locations at procedure invocation time.

•	 Run time: any time during the execution of a program. A new value can be bound to a variable at 
run time. In dynamically typed languages, overloaded functions are bound at run time.

As we examine fundamental issues in the definition of imperative programming languages, we will 
keep in mind the distinctions between languages based on differences in binding time.

63.2.2  Variables

Imperative languages support computation by executing commands whose purpose is to change the 
underlying state of the computer on which they are executed. The state of a computer encompasses the 
contents of memory and also includes both data that are about to be read from outside of the computer 
and data that have been output.

Variables are central to the definition of imperative languages as they are objects whose values are 
dependent on the contents of memory. A variable is characterized by its attributes, which generally 
include its name, location in memory, value, type, scope, and lifetime.

Depending on context, the meaning of a variable may be considered to be either its value or its loca-
tion. For instance, in the assignment statement, x:= x + 1, the meaning of the occurrence of the variable x 
to the left of the assignment symbol is its location (sometimes called the l-value of x), whereas the mean-
ing of the occurrence on the right side is its value, that is, the value stored at the location corresponding 
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to x (sometimes called the r-value). The location of global variables is bound at load time, whereas the 
location of local variables and reference parameters is typically bound at procedure entry. The value of 
the variable can be changed at any point during execution of the program.

63.2.3 T ypes

Types in programming languages are abstractions that represent sets of values and the operations and 
relations that are applicable to them. Types can be used to hide the representation of the primitive values 
of a language, allow type checking at either compile time or run time, help disambiguate overloaded 
operators, and allow the specification of constraints on the accuracy of computations. Types also can 
play an important role in compiler optimization.

Types in a programming language include both simple and composite types. The use of simple types 
such as integer, real, Boolean, and character types allows the user to abstract away from the actual 
computer representation of these values, which may differ from computer to computer. The operations 
on simple types may or may not be supported directly by the underlying hardware. For instance, many 
early microprocessors supported only real or floating-point operations in software.

Some languages (e.g., those derived from Pascal) allow the programmer to define their own simple 
enumerated types by simply listing the values of the type. The ordering of elements in this enumeration 
is significant as these types typically support successor and predecessor functions as well as ordering 
relations. Later we will discuss mechanisms for supporting ADTs, another way of constructing types 
that can be used as though they were primitive to a language.

Many languages support the creation of subrange types, which allows a programmer to define a new 
type as a copy of a type with a subset of its values. The new type comes equipped with the same operators 
as its parent type and is usually compatible with the original type.

Composite or structured data types can be created from simple types using type constructors. Typical 
composite types include arrays, records (or structures), variant records (or unions), sets, subranges, 
pointer types, and, in a few languages, function or procedure types. For instance, arrays are typically 
constructed from two types: a subrange type that provides the set of indices of the array and another 
type representing the values stored in the array. Not all languages support all these type constructors. 
For instance, function and procedure types are provided by MODULA-2 but are not available in Ada 83. 
Many languages support strings as special types of composite types, for instance, as arrays of characters, 
but they may also be provided as built-in types.

Most imperative languages bind types to variables statically. These bindings are usually specified 
in declarations, but some languages, such as FORTRAN, allow implicit declaration of variables, with 
the type binding determined by the name of the identifier (e.g., in FORTRAN if the name starts with I 
through N, then the variable is an integer, otherwise real).

An important issue in type-checking programming languages is type equivalence. When do two 
terms have equivalent types? The two extremes in the definitions of type equivalence are structural and 
name equivalence:

•	 Structural equivalence: Two types are said to be structurally (or domain) equivalent if they have 
the same structure. That is, they are built from the same type constructors and built-in types in 
the same way.

•	 Name equivalence: Two types are name equivalent if they have the same name.

The language C uses structural equivalence, whereas Ada 83 uses name equivalence. There are also a 
range of possibilities between these two extremes. For instance, Pascal and MODULA-2 use declaration 
equivalence: two types are declaration equivalent if they are name equivalent or they lead back to the 
same structure declaration by a series of redeclarations.

Inequivalent types may be compatible in certain situations. For instance, two types are assignment 
compatible if an expression of one type may be assigned to a variable of another. For instance, in Pascal, 
a subrange of integer is assignment compatible with integer, even though the types are not equivalent.
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An application of these ideas can be found in the rules for determining whether a particular actual 
parameter may be used in a procedure call for a particular formal parameter. In Pascal, if the formal 
parameter is a reference parameter, then the actual parameter must be a variable of equivalent type. 
If the formal parameter is a value parameter, then the actual parameter must be assignment compatible.

As mentioned earlier, some languages support the creation of subrange types. The new subrange type 
is usually assignment compatible with the original type. Because of this compatibility, the new type 
is called a subtype of the parent in Ada. Another mechanism available in Ada, called derived typing, 
defines a new type by constructing an exact copy of a type that already exists. However, the resulting 
new type is distinct and is not type equivalent or even assignment compatible with the existing type.

The type equivalence rules are the cause of one of the greatest limitations in the use of Pascal. If a for-
mal parameter has an array type, then the actual parameter must have an equivalent type. In particular, 
the subscript ranges of the two arrays must be identical. Thus, it is impossible to write a procedure in 
Pascal that can be used to sort different-sized arrays of real numbers. (Actually, the current ANSI stan-
dard Pascal provides a special mechanism to allow exceptions to this rule.)

Ada escapes from this problem by designating some properties of types to be static, while others are 
dynamic. For example, in a type defined to be a subrange of integers, the underlying static type is integer 
while the subrange bounds are a dynamic property. Only the static properties of types are considered at 
compile time by the type checker, whereas restrictions due to dynamic properties are checked at run time.

Consider the following Ada declarations as an example of type bindings:

type COINS is (PENNY, NICKEL, DIME, QUARTER);
subtype SILVER is COINS range (NICKEL..QUARTER);
type CHANGE is new COINS;

C1, C2; COINS;
S: SILVER;
CH: CHANGE;

COINS is an enumerated type, defined by the programmer to allow assignments such as

C1 := DIME.

SILVER is a subrange of COINS, which includes only the values NICKEL, DIME, and QUARTER. 
CHANGE is a derived type taken from COINS.

Because Ada employs name equivalence, only C1 and C2 are equivalent, but S is assignment compat-
ible with them. If Ada used structural equivalence, then variables C1, C2, and CH would be equivalent.

63.2.4  Scope

The scope of a binding is the area or section of a program in which that particular binding is effective. The 
method and extent of scope rules that define a binding scope will, to a large degree, affect the usefulness and 
applicability of a language. If, for instance, the rules allow the scope of a binding to be determined by the exe-
cution path of a program, the language might be more flexible, yet the code becomes harder to understand.

Scope rules are tied tightly to concepts of binding time. Static scope rules determine the scope of a 
binding at compile time and are based on the lexical structure of the program. Dynamic scope rules 
determine the scope of a binding at run time. Thus, an occurrence of a variable name in a procedure 
may refer to one variable the first time it is evaluated yet refer to an entirely different variable the next 
time, depending on the execution path at run time. Most imperative languages use static scope rules.

As an example of scope rules in Ada, consider the code in Figure 63.1. Static scope rules are deter-
mined by the program block structure, which does not change while the program runs. Therefore, the 
call to procedure P prints the variable J defined in the outer, main program, no matter where it is called 
from. Likewise, the assignment in block 1 at reference point A changes J from the block and not from 
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the main program. Dynamic scope rules, on the other hand, typically follow dynamic call paths to 
determine variable bindings. If Ada used dynamic scope rules, the first call to P from block 1 would 
print the value 10 corresponding to the J from block 1, whereas the second call to P would print the 
value 3 corresponding to the J from the main program.

63.2.5  Execution Units: Expressions, Statements, Blocks, and Programs

An expression is a program phrase that returns a value. Expressions are built up from constants and 
variables using operators. As described earlier, variables may represent two values, depending on con-
text: their location and the value stored at that location. Operators may be built-in, like the arithmetic 
and comparison operators, or may be user-defined functions.

Reflecting the sequential order of von Neumann computation, an imperative language specifies the 
order in which operations are evaluated. Typically, evaluation order is determined by precedence rules. 
A typical precedence rule set for arithmetic expressions might be the following:

	 1.	 Subexpressions inside parentheses are evaluated first (according to the precedence rules).
	 2.	 Instances of unary negation are evaluated next.
	 3.	 Then, multiplication (*) and division (/) operators are evaluated in left to right order.
	 4.	 Finally, addition (+) and subtraction (−) are evaluated left to right.

Although procedure rules are commonly used by imperative languages, some languages use other con-
ventions to avoid precedence rules. For example, PostScript uses postfix notation for expressions, while 
LISP uses prefix notation. APL evaluates all expressions from right to left without regard to precedence, 
using only parentheses to change the evaluation order.

The fundamental unit of execution in an imperative programming language is the statement. A state-
ment is an abstraction of machine language instructions, grouped together to form a single logical activity.

The simplest and most fundamental statement in imperative programming languages is the assign-
ment statement. This statement, typically written in the form x := e or x = e with x a variable 

with TEXT_IO; use TEXT_IO;
procedure SCOPED is
  package INT_IO is new INTEGER_IO (integer); use INT_IO;
  I, J: integer;

  procedure P is begin put (J); new_line; end P;

  begin
    J := 0;
    I := 10;
    declare –– Block 1
      J: integer;
    begin
      j := I; –– reference point A
      P;
    end;
    put (J); new_line;
    declare –– Block 2
      I: Integer
    begin
      I := 5
      J := I + 1; –– reference point B
      P;
    end;
    put (J); new_line;
end;

FIGURE 63.1  Scoping rules in Ada.
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(or other expression representing a location) and e an expression, is usually interpreted by evaluating e and 
copying its value into the location represented by x. This is known as the copy semantics for assignment.

Less common are languages that use the sharing interpretation of assignment. In these languages, 
variables generally represent references to objects that contain the actual values. The assignment x:= y 
would then be interpreted as binding the object referred to by y to x rather than its value. Since both 
variables refer to the same object, they share the same value. If the value of one is changed, the value of 
the other will also change. This is the sharing semantics for assignment.

Declarations and statements may be grouped together to form a block. Procedure and function bodies 
are represented as blocks, whereas control structures (discussed subsequently) can also be understood 
as acting on blocks of statements (generally without declarations). The most general form of a block 
contains a declarative section, which contains the declarations that define the bindings that are effective 
in the block, and an executable section, which contains the statements over which the binding is to hold, 
that is, the scope of the declarations.

In the so-called block-structured languages (including most languages descended from ALGOL 60, 
e.g., Pascal, Ada, and C), blocks may be nested. Within any block, therefore, there can be two kinds 
of bindings in force: local bindings, which are specified by the declarative sections associated with the 
block, and nonlocal bindings (also known as global bindings), which are bindings defined by declarative 
sections of blocks within which the specific block is nested.

Consider again the code from Figure 63.1. The first two assignments of the main program assign J from 
the main program the value 0 and I from the main program the value 10. The next assignment assigns 
the value 10, derived from the global I, to the variable J from the first inner block. When the definition 
of the second inner block is encountered, the variable I is found in the local scope, while J is found in the 
outer scope, that of the main program. The value 6 will be printed for J at the end of the main program.

63.3  Control Structures

By adopting the semantics of the basic execution cycle of a von Neumann architecture, an imperative lan-
guage adopts a strict sequential ordering for its statements. By default, the next statement to execute is the next 
physical statement in the program. Control structures in imperative languages provide ways to alter this strict 
sequential ordering. The most common control structures are conditional structures and iterative structures. 
Unconstrained control structures are also allowed in most languages through the use of goto statements.

63.3.1  Conditional Structures

Conditional control structures (also known as selection statement) determine whether or not a block of 
statements is executed based on the result of one or several tests. These structures fall into one of the 
two following classes:

63.3.1.1  If Statements

All imperative languages include some form of if statement. This control structure provides a text and 
a single statement or statement block to be executed if the test evaluates to a true value. Optionally, the 
programmer may provide another block of statements that can be executed only if the test evaluates to 
false. The following is a simple example from Ada:

if (x = 2) then
  y := 3;
else
  y := 6;
end if;

The variable y is set to either 3 or 6 depending on the value of x.
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In most languages, if statements can be nested within other control structures, including other if 
statements. However, nested if statements can result in awkward, deeply nested code. Thus, many lan-
guages provide a special construct (e.g., elsif in Ada) to represent else if constructs without requiring 
further nesting. The two Ada examples given next are equivalent semantically, though the first, which 
uses elsif, is easier to read than the second, which uses nested conditionals:
if (x = 2) then	 if (x = 2) then
   y := 3;	 y := 3;
elsif (x = 3) then	 else
   y := 15;	 if (x = 3) then 
elsif (x = 5) then	 y := 15;
   y :=18;	 else
else	 if (x = 5) then 
   y := 6;	 y := 18;
end if;	 else
	 y := 6;
	 end if;
	 end if;
	 end if;

63.3.1.2  Case Statements

This conditional combines case-by-case expression examination with a restricted multiway conditional. 
This conditional may be seen to be simply a syntactic convenience, but in many cases its implementation 
results in a much faster determination at run time of the actual block of code to be executed. Consider 
the following case statement from Ada:
case y is
  when 2 => y := 3;
  when 3 => y := 15;
  when 15 => y := 18;
  when others => y := 6;
end case;

An expression (y in this case) of an ordinal type occurs after the keyword case. Each when clause con-
tains a guard, which is a list of one or more constants of the same type as the expression. Most languages 
require that there be no overlap between these guards. The expression after the keyword case is evaluated, 
and the resulting value is compared to the guards. The block of statements connected with the first matched 
alternative is executed. If the value does not correspond to any of the guards, the statements in the others 
clause is executed. Note that the semantics of this example is identical to that of the previous example.

The case statement may be implemented in the same way as a multiway if statement, but in most 
languages it will be implemented via table lookup, resulting in a constant time determination of which 
block of code is to be executed.

C’s switch statement differs from the case previously described in that if the programmer does not 
explicitly exit at the end of a particular clause of the switch, program execution will continue with the 
code in the next clause.

63.3.2  Iterative Structures

One of the most powerful features of an imperative language is the specification of iteration or statement 
repetition. Iterative structures can be classified as either definite or indefinite, depending on whether 
the number of iterations to be executed is known before the execution of the iterative command begins:

•	 Indefinite iteration: The different forms of indefinite iteration control structures differ by where 
the test for termination is placed and whether the success of the test indicates the continuation 
or termination of the loop. For instance, in Pascal the while-do control structure places the 
test before the beginning of the loop body (a pretest), and a successful test determines that the 
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execution of the loop shall continue (a continuation test). Pascal’s repeat-until control struc-
ture, on the other hand, supports a posttest, which is a termination test. That is, the test is evalu-
ated at the end of the loop and a success results in termination of the loop.

	 Some languages also provide control structures that allow termination anywhere in the loop. The 
following example is from Ada:

loop
  …
  exit when test;
  …
end loop

	 The exit when test statement is equivalent to if test then exit.
	 A few languages also provide a construct to allow the programmer to terminate the execution of 

the body of the loop and proceed to the next iteration (e.g., C’s continue statement), whereas 
some provide a construct to allow the user to exit from many levels of nested loop statements 
(e.g., Ada’s named exit statements).

•	 Definite iteration: The oldest form of iteration construct is the definite or fixed-count iteration 
form, whose origins date back to FORTRAN. This type of iteration is appropriate for situations 
where the number of iterations called for is known in advance. A variable, called the iteration 
control variable (ICV), is initialized with a value and then incremented or decremented by regu-
lar intervals for each iteration of the loop. A test is performed before each loop body execution to 
determine if the ICV has gone over a final, boundary value. Ada provides fixed-count iteration as 
a for loop; an example is shown next:

for i in 1..10 loop
  y := y + i;
  z := z * i;
end loop;

Here, i is initialized to 1, and incremented by 1 for each iteration of the loop, until it exceeds 10. 
Note that this type of loop is a pretest iterative structure and is essentially a syntactic sugar for an 
equivalent while loop.

An ambiguity that may arise with a for loop is what value the ICV has after termination of the loop. 
Most languages specify that the value is formally undetermined after termination of the loop, though 
in practice it usually contains either the upper limit of the ICV or the value assigned that first passes the 
boundary value. Ada eliminates this ambiguity by treating the introduction of the control variable as a 
variable declaration for a block containing only the for loop.

Some modern programming languages have introduced a more general form of for loop called an 
iterator construct. Iterators allow the programmer to control the scheme for providing the ICV with 
successive values. The following example is from CLU (Liskov et al. 1977). We first define the iterator:

string_chars = iter (s : string) yields (char);
  index: Int	:= 1;
  limit: Int	:= string$size (s);
  while index <= limit do
    yield (string$fetch(s, index));
    index := index + 1;
  end;
end string_chars;

which can be used in a for loop as follows:

for c: char in string_chars(s) do LoopBody end;
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When the for loop controlled by an iterator is encountered, control is passed to the iterator, which runs 
until a yield statement is executed. The value associated with the yield statement is used as the ini-
tial value of the iterator control variable c, and the body of the loop is executed. Control is then passed 
back to the iterator, which resumes execution with the statement following the yield. Control is passed 
to the loop body each time a yield statement is executed and back to the iterator each time the loop body 
finishes execution. Thus, iterators behave as a restricted form of coroutine, passing control back and 
forth between the two blocks of code. The loop is terminated when the iterator runs to completion. In 
the preceding examples, this will occur when index > limit.

63.3.3  Unconstrained Control Structures: Goto and Exceptions

Unconstrained control structures, generally known as goto constructs, cause control to be passed to the 
statement labeled by the identifier or line number given in the goto statement. Dijkstra (1968) first ques-
tioned the use of goto statements in his famous letter, “Goto statement considered harmful,” to the editor 
of the Communications of ACM. The controversy over the goto mostly centers on readability of code and 
handling of the arbitrary transfer of control into and out of otherwise structured sections of program code.

For example, if a goto statement passes control into the middle of a loop block, how will the loop be initial-
ized, especially if it is a fixed-count loop? Even worse, what happens when a goto statement causes control to 
enter or exit in the middle of a procedure or function? The problems with readability arise because a program 
with many goto statements can be very hard to understand if the dynamic (run time) flow of control of the 
program differs significantly from the static (textual) layout of the program. Programs with undisciplined 
use of gotos have earned the name of spaghetti code for their similarity in structure to a plate of spaghetti.

Although some argue for the continued importance of goto statements, most languages either greatly 
restrict their use (e.g., do not allow gotos into other blocks) or eliminate them altogether. In order to 
handle situations where gotos might be called for, other more restrictive language constructs have been 
introduced to make the resulting code more easily readable. These include the continue and exit 
statements (particularly labeled exit statements) referred to earlier.

Another construct that has been introduced in some languages in order to replace some uses of the 
goto statement is the exception. An exception is a condition or event that requires immediate action on 
the part of the program. An exception is raised or signaled implicitly by an event such as arithmetic 
overflow or an index out of range error, or it can be explicitly raised by the programmer.

The raising of an exception results in a search for an exception handler, a block of code defined to 
handle the exceptional condition and (hopefully) allow normal processing to resume. The search for 
an appropriate handler generally starts with the routine that is executing when the exception is raised. 
If no appropriate handler is found there, the search continues with the routine that called the one that 
contained the exception. The search continues through the chain of routine calls until an appropriate 
handler is found, or the end of call chain is passed without finding a handler.

If no handler is found, the program terminates, but if a handler is found, the code associated with 
the handler is executed. Different languages support different models for resuming execution of the 
program. The termination model of exception handling results in termination of the routine containing 
the handler, with execution resuming with the caller of that routine. The continuation model typically 
resumes execution at the point in the routine containing the handler that occurs immediately after the 
statement whose execution caused the exception.

The following is an example of the use of exceptions in Ada (which uses the termination model):

procedure pop(s: stack) is 
  begin
    if empty(s) then raise emptyStack
                else …
  end;
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procedure balance (parens: string) return boolean is 
    pStack: stack
  begin
    …
    if … then pop(s) … 
  exception
    when emptyStack => return false
  end

Many variations on exceptions are found in existing languages. However, the main characteristics 
of exception mechanisms are the same. When an exception is raised, execution of a statement is aban-
doned and control is passed to the nearest handler. (Here “nearest” refers to the dynamic execution path 
of the program, not the static structure.) After the code associated with the handler is executed, normal 
execution of the program resumes.

The use of exceptions has been criticized by some as introducing the same problems as goto state-
ments. However, it appears that disciplined use of exceptions for truly exceptional conditions (e.g., error 
handling) can result in much clearer code than other ways of handling these problems.

We complete our discussion of control structures by noting that, although many control structures exist, 
only very few are actually necessary. At one extreme, simple conditionals and a goto statement are sufficient 
to replace any control structure. On the other hand, it has been shown (Boehm and Jacopini 1966) that 
a two-way conditional and a while loop are sufficient to replace any control structure. This result has led 
some to point out that a language has no need for a goto statement; indeed, there are languages that do not 
have one.

63.3.4  Procedural Abstraction

Support for abstraction is very useful in programming languages, allowing the programmer to hide 
details and definitions of objects while focusing on functionality and ease of use. Procedural abstraction 
(Liskov and Guttag 1986) involves separating out the details of an execution unit into a procedure and 
referencing this abstraction in a program statement or expression. The result is a program that is easier 
to understand, write, and maintain.

The role of procedural abstraction is best understood by considering the relationships between the 
four levels of execution units described earlier: expressions, statements, blocks, and programs. A state-
ment can contain several expressions; a block contains several statements; a program may contain several 
blocks. Following this model, a procedural abstraction replaces one execution unit with another one that 
is simpler. In practice, it typically replaces a block of statements with a single statement or expression.

The definition of a procedure binds the abstraction to a name and to an executable block of statements 
called the body. These bindings are compile-time, declarative bindings. In Ada, such a binding is made 
by specifying code such as the following:

procedure area (height, width: real; result: out real) is 
  begin
     result := height * width;
  end;

The invocation of a procedure creates an activation of that procedure at run time. The activation 
record for a procedure contains data bound to a particular invocation of a procedure. It includes slots 
for parameters, local variables, other information necessary to access nonlocal variables, and data to 
enable the return of control to the caller. In languages supporting recursive procedures, more than one 
activation record can exist at the same time for a given procedure. In those languages, the lifetime of the 
activation record is the duration of the procedure activation.

Although scoping rules provide access to nonlocal variables, it is generally preferable to access nonlo-
cal information via parameter passing. Parameter-passing mechanisms can be classified by the direction 
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in which the information flows: in parameters, where the caller passes data to the procedure, but the pro-
cedure does not pass data back; out parameters, where the procedure returns data values to the caller, but 
no data are passed in; and in out parameters, where data flow in both directions.

Formal parameters are specified in the declaration of a procedure. The actual parameters to be used in 
the procedure activation are specified in the procedural invocation. The procedure passing mechanism 
creates an association between corresponding formal and actual parameters. The precise information 
flow that occurs during procedure invocation depends on the parameter-passing mechanism.

The association or mapping of formal to actual parameters can be done in one of three ways. The most 
common method is positional parameter association, where the actual parameters in the invocation are 
matched, one by one in a left-to-right fashion, to the formal parameters in the procedural definition. 
Named parameter association also can be used, where a name accompanies each actual parameter and 
determines to which formal parameter it is associated. Using this method, any ordering can be used to 
specify parameter values. Finally, default parameter association can be used, where some actual param-
eter values are given and some are not. In this case, the unmatched formal parameters are simply given 
a default value, which is generally specified in the formal parameter declaration.

Note that in a procedural invocation, the actual parameter for an in parameter may be any expression 
of the appropriate type, since data do not flow back, but the actual parameter for either an out or an in 
out parameter must be a variable, because the data that are returned from a procedural invocation must 
have somewhere to go.

Parameter passing is usually implemented as being one of copy, reference, and name. There are two 
copy parameter-passing mechanisms. The first, labeled call by value, copies a value from the actual to 
the formal parameter before the execution of the procedure’s code. This is appropriate for in parameters. 
A second mode, called call by result, copies a value from the formal parameter to the actual parameter 
after the termination of the procedure. This is appropriate for out parameters. It is also possible to com-
bine these two mechanisms, obtaining call by value result, providing a mechanism that is appropriate 
for in out parameters.

The call by reference passes the address of the actual parameter in place of its value. In this way, the 
transfer of values occurs not by copying but by virtue of the formal parameter and the actual parameter 
referencing the same location in memory. Call by reference makes the sharing of values between the 
formal and actual a two-way, immediate transfer, because the formal parameter becomes an alias for 
the actual parameter.

Call by name was introduced in ALGOL 60 and is the most complex of the parameter-passing mecha-
nisms described here. Although it has some theoretical advantages, it is both harder to implement and 
generally more difficult for programmers to understand. In call by name, the actual parameter is reeval-
uated every time the formal parameter is referenced. If any of the constituents of the actual parameter 
expression has changed in value since the last reference to the formal parameter, a different value may 
be returned at successive accesses of the formal parameter. This mechanism also allows information to 
flow back to the main program with an assignment to a formal parameter. Although call by name is no 
longer used in most imperative languages, a variant is used in functional languages that employ lazy 
evaluation.

Several issues crop up when we consider parameters and their use. The first is a problem called 
aliasing, where the same memory location is referenced with two or more names. Consider the follow-
ing Ada code:

procedure MAIN is
  a: integer;
  procedure p(x, y: in out integer) is
    begin
       a := 2;
       x := y + a;
    end;
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  begin
    a := 10;
    p(a,a);
    … 

end;

During the call of p(a, a), the actual parameter a is bound to both of the formal parameters x and y. 
Because x and y are in out parameters, the value for a will change after the procedure returns. It is not clear, 
however, which value a will have after the procedure call. If the parameter-passing mechanism is call by 
value result, then the semantics of this program depend on the order in which values are copied back to the 
caller. If they are copied into the parameters from left to right, the value of a will be 10 after the call. The 
results with call by reference will be unambiguous (though perhaps surprising to the programmer), with 
the value of a being 4 after the call. In Ada, a parameter specified to be passed as in out may be passed using 
either call by value result or call by reference. The preceding code provides an example where, because of 
aliasing, these parameter-passing mechanisms give different answers. Ada terms such programs to be erro-
neous and considers them not to be legal, even though the compiler may not be able to detect such programs.

Most imperative programming languages support the use of procedures as parameters (Ada is one of 
the few exceptions). In this case, the parameter declaration must include a specification of the number 
and types of parameters of the procedure parameter. MODULA-2, for example, supports procedure 
types that may be used to specify procedural parameters. There are few implementation problems in 
supporting procedure parameters, though the implementation must ensure that nonlocal variables are 
accessed properly in the procedure passed as a parameter.

There are two kinds of procedural abstractions. One kind, usually known simply as a procedure, 
is an abstraction of a program statement. Its invocation is like a statement, and control passes to the 
next statement after the invocation. The other type is called a value returning procedure or function. 
Functions are abstractions for an operand in an expression. They return a value when invoked, and, 
upon return, evaluation of the expression containing the call continues.

Many programming languages restrict the values that may be returned by functions. In most cases, 
this is simply a convenience for the compiler implementor. However, although common in functional 
languages, most imperative languages that support nested procedures or functions do not allow func-
tions to return other functions or procedures. The reason has to do with the stack-based implementation 
of block-structured languages. If allowed, it might be possible to return a nested procedure or function 
that depends on a nonlocal variable that is no longer available when the procedure is actually invoked.

To avoid confusion, most languages allow a name to be bound to only one procedural abstraction 
within a particular scope. Some languages, however, permit the overloading of names. Overloading 
permits several procedures to have the same name as long as they can be distinguished in some man-
ner. Distinguishing characteristics may include the number and types of parameters or the data type of 
the return value for a function. In some circumstances, overloading can increase program readability, 
whereas in others it can make it difficult to understand which operation is actually being invoked.

Program mechanisms to support concurrent execution of program units are discussed in Chapter 52. 
However, we mention briefly coroutines (Marlin 1980), which can be used to support pseudoparallel 
execution on a single processor. The normal behavior for procedural invocation is to create the proce-
dural instance and its activation record (runtime environment) upon the call and to destroy the instance 
and the activation record when the procedure returns. With coroutines, procedural instances are first 
created and then invoked. Return from a coroutine to the calling unit only suspends its execution; it 
does not destroy the instance. A resume command from the caller results in the coroutine resuming 
execution at the statement after the last return.

Coroutines provide an environment much like that of parallel programming; each coroutine unit can 
be viewed as a process running on a single processor machine, with control passing between processes. 
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Despite their interesting nature (and clear advantages in writing operating systems), most programming 
languages do not support coroutines. MODULA-2 is an example of a language that supports coroutines. 
As mentioned earlier, iterators can be seen as a restricted case of coroutines.

63.3.5  Data Abstraction

Earlier in this chapter, we introduced the idea of data types as specifying a set of values and operations 
on them. Here we extend that notion of values and operations to ADTs and their definitional structures 
in imperative languages.

The primitive data types of a language are specified by both a set of values and a collection of opera-
tions that may be applied to them. Clearly, the set of integers would be useless without the simultaneous 
provision of operation on those integers. It is characteristic of primitive data types that the programmer 
is not allowed access to their representations.

Many modern programming languages provide a mechanism for a programmer to specify a new type 
that behaves as though it were a primitive type. An ADT is a collection of data objects and operations 
on those data objects whose representation is hidden in such a way that the new data objects may be 
manipulated only using the operations provided in the ADT. ADTs abstract away the implementation 
of a complex data structure in much the same way primitive data types abstract away the details of the 
underlying hardware implementation.

The specification of an ADT presents interface details relevant to the users of the ADT, whereas 
the implementation contains the remaining implementation details that should not be exported to 
users of the ADT. Encapsulation involves the bundling together of all definitions in the specification 
of the ADT in one place. Because the specification does not depend on any implementation details, 
the implementation of the ADT may be included in the same program unit with the specification or 
it may be contained in a separately compiled unit. This encapsulation of the ADT typically supports 
information hiding so that the user of the ADT (1) need not know the hidden information in order 
to use the ADT and (2) is forbidden from using the hidden information so that the implementation 
can be changed without impact on correctness to users of the ADT (at least if the specifications of 
the operations are still satisfied in the new implementation). Of course, one would expect a change in 
implementation to affect the efficiency of programs using the ADT. A further advantage of informa-
tion hiding is that, by forbidding direct access to the implementation, it is also possible to protect the 
integrity of the data structure.

CLU was among the earliest languages providing explicit language support for ADTs through its 
clusters. Ada also provides facilities to support ADTs via packages. Let us consider an example from 
MODULA-2, a successor language to Pascal designed by Niklaus Wirth. The stack ADT provides a 
stack type as well as operations init, push, pop, top, and empty. A MODULA-2 specification for a stack 
of integers resembles the following:

DEFINITION MODULE StackADT;
   TYPE stack;
   PROCEDURE init (VAR s: stack);
   PROCEDURE push (VAR s: stack; elt: INTEGER);
   PROCEDURE pop (VAR s: stack);
   PROCEDURE top (s: stack): INTEGER;
   PROCEDURE empty (s: stack): BOOLEAN
END StackADT.

Note the declaration includes the type name and procedural headers only. The type stack included in 
the preceding specification is called an opaque type in MODULA-2, because users cannot determine 
the actual implementation of the type from the specification. This ADT specification uses information 
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hiding to get rid of irrelevant detail. Now, this specification can be placed in a separate file and made 
available to programmers. By including the following declaration:

FROM StackADT IMPORT stack, init, push, pop, top, empty;

at the beginning of a module, a programmer could use each of these names as though the complete 
specification was included in the module. Thus, the user can write

var s1, s2: Stack;
begin
  push(s1, 15);
  push(s2, 20);
  if not empty(s1) then pop(s1) …

in such a module.
In MODULA-2, the complete definitions of the type stack and its associated operations are pro-

vided in an implementation module, which typically is stored in a separate file:

  IMPLEMENTATION MODULE StackADT;
  TYPE stack = POINTER TO stackRecord;
       stackRecord = RECORD
                      top: 0..100;
                      values: ARRAY[1..100] of INTEGER;
                      END;
  PROCEDURE init(VAR s: stack);
    BEGIN
       ALLOCATE(s, SIZE(stackRecord)); 
       S∧.top :=0
    END
  PROCEDURE push (VAR s: stack; elt: INTEGER);
    BEGIN
       S∧.top := S∧.top + 1;
       S∧.value[S∧.top] := elt
    END;
  PROCEDURE pop(VAR s: stack); …
  PROCEDURE top(s: stack): INTEGER; …
  PROCEDURE empty(s: stack) BOOLEAN; …
END StackADT.

Notice that the type name stackRecord is not exported.
The specification module must be compiled before any module that imports the ADT and before its 

implementation module, but importing modules and the implementation module of the ADT can be 
compiled in any order. As previously suggested, the implementation is irrelevant to writing and com-
piling a program using the ADT, though, of course, the implementation must be compiled and present 
when the final program is linked and loaded in preparation for execution.

There is one important implementation issue that arises with the use of language mechanisms sup-
porting ADTs. When compiling a module that includes variables of an opaque type imported from an 
ADT (e.g., stack), the compiler must determine how much space to reserve for these variables. Either the 
language must provide a linguistic mechanism to provide the importing module with enough informa-
tion to compute the size required for values of each type or there must be a default size that is appropriate 
for every type defined in an ADT. CLU and MODULA-2 use the latter strategy. Types declared as CLU 
clusters are represented implicitly as pointers, whereas in MODULA-2 opaque types must be represented 
explicitly using pointer types as in the Stack ADT example just given. In either case, the compiler needs 
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reserve for a variable of these types only an amount of space sufficient to hold a pointer. The memory 
needed to hold the actual data pointed to is allocated from the heap at run time. As discussed later, Ada 
uses a language mechanism to provide size information for each type to importing units.

The definition of ADTs can be parameterized in several languages, including CLU, Ada, and C++. 
Consider the definition of the stack ADT. Although the preceding example was specifically given for 
an integer data type, the implementations of the data type and its operations do not depend essentially 
on the fact that the stack holds integers. It would be more desirable to provide a parameterized definition 
of stack ADT that can be instantiated to create a stack of any type T.

Allocating space for these parameterized data types raises the same problems as previously discussed 
for regular ADTs. C++ and Ada resolve these difficulties by requiring parameterized ADTs to be instan-
tiated at compile time, whereas CLU again resolves the difficulty by implementing types as implicit 
references.

63.4  Best Practices

In this section, we will examine three quite different imperative languages to evaluate how the features of 
imperative languages have been implemented in each. The example languages are FORTRAN (FORTRAN 
IV for illustrative purposes), Ada 83, and C++. We chose FORTRAN to give a historical perspective on 
early imperative languages. Ada 83 is chosen as one of the most important modern imperative languages 
that support ADTs. C++ might be considered a controversial choice for the third example language, as it 
is a hybrid language that supports both ADT-style and object-oriented features. Nevertheless, the more 
modern feature contained in the C++ language design makes it a better choice than its predecessor, C 
(though many of the points that will be made about C++ also apply to C). In this discussion, we ignore 
most of the object-oriented features of C++, as they are covered in more detail in Chapter 64.

63.4.1  Data Bindings: Variables, Types, Scope, and Lifetime

Like most imperative languages, all three of our languages use static binding and static scope rules. 
FORTRAN is unique, however, because it supports the implicit declaration of variables. An identifier 
whose name begins with any of the letters I through L is implicitly declared to be of type integer, whereas 
any other identifier is implicitly declared to be of type real. These implicit declarations can be overrid-
den by explicit declaration. Therefore, in the fragment

INTEGER A 
I = 0
A = I
B = C + 2.3

A and I are integer variables, while B and C are of type real. Most other statically typed languages (includ-
ing Ada and C++) require explicit declaration of each identifier before use. Aside from providing better 
documentation, these declarations lessen the danger of errors due to misspellings of variable names.

FORTRAN has a relatively rich collection of numerical types, including integer, double precision 
(real), and complex. Logical (Boolean) is another built-in type, but FORTRAN IV provided no direct 
support for characters. However, characters could be stored in integer variables. (The character data 
type was added by FORTRAN 77.) FORTRAN IV supported arrays of up to three dimensions but did 
not support records. Strings were represented as arrays of integers. FORTRAN IV did not provide any 
facilities to define new named types.

Later languages provided much richer facilities for defining data types. Pascal, C, MODULA-2, Ada, 
and C++ all provided a full range of primitive types as well as constructors for arrays, records (structures 
in C and C++), variant records (unions in C and C++), and pointers (access types in Ada). All provided 
facilities for naming new types and for constructing types hierarchically (constructing nested types). 
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Variant records or unions opened up holes in the static type systems of most of these languages, but Ada 
(and CLU before it) provided restrictions on the access to variants and built-in run time checks in order 
to prevent type insecurities.

The scope rules for each language, though static in nature, differ significantly. In FORTRAN, the 
rules are the simplest. The unit of scope for an identifier is either the main program or the procedural 
unit in which it is declared. Declarations of procedures (subroutines) and functions are straight-
forward as well in FORTRAN, with no nesting and all parameters passed by reference. Whereas 
FORTRAN does not support access to nonlocal variables through scoping rules, it allows the pro-
grammer to explicitly declare that certain variables are to be more globally available. When two 
subprograms need to share certain variables, they are listed in a common statement that is included 
in each subprogram. If different combinations of subprograms need to share different collections 
of variables, several distinct common blocks can be set up, with each subprogram specifying which 
blocks it wishes access to.

Ada (like Pascal) supports nested declarations of procedures and functions. As a result, block struc-
ture becomes extremely important to scope determination.

Whereas C and C++ do not provide for nested procedures and functions, they do share with Ada 
the ability to include declaration statements in local blocks of code. In C++, blocks are syntactically 
enclosed in bracket {…} symbols, and any declarations that occur between the symbols hold for the 
duration of the block. Consider the following code:

for (i = 0; i<20; i++) {
  int i = 1, j;
  j = 0;
  while (i < 25) {
    j += i*2;
    i ++;
  }
}

One might think that when the inner loop is done, the outer loop also will be done, because i has the 
value 26. But since the inner block of statements redeclared i, the scope rules state that the new, inner i 
was manipulated, leaving the outer i untouched and free to correctly manipulate the for loop.

In FORTRAN IV, the lifetime of all variables is the lifetime of the program. As a result, all memory 
in a program could be statically allocated, including activation records. Because each subprogram has 
only one activation record, FORTRAN could not support recursion.

Pascal, Ada, C, and C++ all support recursive functions and procedures. In order to support these, 
implementations generally rely on stack-allocated activation records. Thus, the lifetime of a local vari-
able in a procedure p extends from the call of p to the return to its caller. Each of these languages also 
supports pointer or access types, generally representing data accessed from the heap (though C and 
C++ also allow pointers to stack-allocated memory). The lifetime of these variables is generally from the 
time that the programmer executes a creation instruction until a corresponding destruction statement 
is executed.

63.4.2  Execution Units

FORTRAN and Ada make a strong distinction between expressions and statements, with expressions 
simply returning a value, but with statements forming the basic unit for program execution. In C and 
C++, however, these two units of execution are merged, with statements treated as expressions. The 
statement x = 5 assigns the value 5 to the variable x. But, in C++, the = sign is also an operator, and this 
assignment statement is actually an expression that returns the value being assigned. Thus, the state-
ment y = x = 5 assigns the value 5 to both x and y, because the value 5 is assigned to x and the expression 



63-17Imperative Language Paradigm

x = 5 returns 5, which is assigned to y. Although interesting, it can also be very confusing. Because many 
expressions will have side effects; the order of evaluation will affect the value returned from an expres-
sion. Consider the code

if ((y = ++x) == (x + 6)) { … }

This code actually has two statements embedded in it; first, ++x increments x, then this value is assigned 
to y, then the value assigned is tested against the value of x + 6. If the compiler decides to change the order 
in which the subexpressions are evaluated (a not unheard of occurrence in C++ compilers), it may change 
whether the guard on the if statement is true or false.

Allowing statements to be part of expressions also means that typographical errors are more likely to 
give rise to syntactically correct (but logically incorrect) statements. For instance, if one of the = signs in

if (x == 6) { … }

is omitted, then it will assign of value 6 to x and the conditional will always evaluate to true as all non-0 
integers in C and C++ are treated as representing true.

63.4.3  Control Structures

Because FORTRAN was one of the earliest high-level languages, it is not surprising that its control struc-
tures are much closer to the underlying machine language instructions. Aside from the do loop (which 
was similar to the for loop in Pascal and Ada), most other control structures were based on the use of 
goto statements. Thus, the if statement of FORTRAN IV evaluated an integer expression and, depending 
on whether the result was negative, zero, or positive, resulted in a jump to one of three statement labels 
included with the statement. Aside from the usual goto statement, FORTRAN IV also included assigned 
and computed gotos, which provided some of the flexibility of case statements. FORTRAN 77 and the 
more recent FORTRAN 90 provide more modern control structures such as the if and while statements 
of other languages.

The control constructs in Ada are similar to those of Pascal, including if, case, while, and for loops, 
as well as indefinite loops, which are terminated with exit statements. Several of these were described 
earlier in the general discussion of control structures.

C and C++ include if statements and a switch construct that is similar to the case statement. The while 
loop is similar to that in Pascal and Ada, but for loops in C and C++ are more general than those in most 
other languages. For loops have the form

for (E1; E2; E3) S;

where E1 is initialization code, E2 is a test for termination, E3 contains code to update variables for the 
next iteration of the loop, and S represents the code to be executed each time through the loop. The test 
for termination is executed before the update code. Thus, a statement of the form

for (i = 1; i < 10, i++) S;

will result in S being executed once for each value of i from 1 to 10. (The expression i ++ is an expression 
that increments the value of i.) However, much more flexible statements are also possible:

for (i = 1; not done and i < 1024; i = 2 * i) S;

This statement repeatedly executes S while i ranges through the powers of 2 from 1 to 1024. If done is 
ever true, it will terminate early.
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63.4.4  Procedural Abstraction

Each of Ada, FORTRAN, C, and C++ provides procedural abstraction. Ada and FORTRAN distinguish 
between functions and procedures, whereas C and C++ do not since procedures are just functions that 
return an element of type void. FORTRAN IV also supported single-line statement functions, which 
could be defined local to a program or subprogram. As noted earlier, Ada, C, and C++ all support recur-
sive functions and procedures, whereas FORTRAN does not.

The languages differ in minor ways in how they return values from functions. FORTRAN, like Pascal, 
treats the name of the function as a pseudovariable that can be assigned to. An explicit return statement 
returns control to the calling program unit. When the function returns, the last value stored in the func-
tion name is returned as the value of the function. Ada, C, and C++ use return statements of the form 
return exp to return control to the calling program unit. The value of the expression associated with the 
return statement is the value returned from the function.

Most programming languages provide system-defined overloaded functions, such as arithmetic 
operators (+, −, *, etc.) and comparison functions (e.g., =, <). Ada and C++ are relatively unusual, 
though, in allowing user-defined overloading. In both, the compiler must be able to disambigu-
ate at compile time whichever of the versions of the overloaded operator are called for at each of its 
occurrences.

C++ determines which version is called for by looking at the number and types of the actual 
parameters.

Ada goes further and can also use the return type to determine which version works in the particular 
context in which it is found. Thus, in Ada one may overload the + operator to take two integer param-
eters and return a user-defined rational type, even though there already exists a built-in version of + that 
takes two integer parameters and returns an integer. If + occurs in a context in which only an integer 
result would make sense, the built-in version would be selected. If + occurs in a context in which only 
a rational value would make sense, the user-defined version would be selected. If the system cannot tell 
which should be used, then an error will occur at compile time.

Unlike FORTRAN, Pascal, and C, both Ada and C++ provide language support for exceptions. Ada 
and C++ both use the termination model for program resumption after handling the exception.

63.4.5  Data Abstraction and Separate Compilation

FORTRAN provides support for separate compilation of subroutines and functions but provides no 
type checking across compilation unit boundaries. Thus, the main program may call a function F with 
two real parameters, but the definition of F in a separately compiled unit may have only one formal 
parameter, and it might be an integer. Because FORTRAN does not support the definition of new named 
types, it provides no support for ADTs.

C and C++ provide slightly better support for separate compilation by allowing the programmer to 
put external function and procedure declarations in a header file, which may be included into compila-
tion units that use them. The header files are treated as though they were textually part of the compilation 
unit into which they are included. C provides no support for ADTs, though C++ does provide strong 
support through its class facilities. C++ classes give the programmer control over which aspects of a data 
type the user will be allowed to see and use. Because C++ is described in some depth in Chapter 64, we 
omit a detailed description here.

Standard Pascal provides no support for separate compilation, though virtually all Pascal implemen-
tations provide support for separately compiled units. These units typically include both interface and 
implementation sections. The interface of a unit may be explicitly imported into another compilation 
unit with a uses statement. This provides for separate, but not independent, compilation without requir-
ing the programmer to create individual header files by hand. These units generally do not provide sup-
port for information hiding.
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Ada provides both separate compilation and strong support for ADTs. Like MODULA-2’s modules 
described earlier, Ada packages come in two separately compiled units, the specification and body. Only 
items listed in the nonprivate part of the package specification are accessible at compile time to units 
that import the package. The following is an Ada package specification for stacks:

package StackADT is
     type stack is private;
     procedure push(s: in out stack; elt: in integer);
     procedure pop(s: in out stack);
     procedure top(s: in stack) return integer;
     procedure empty(s: in stack) return boolean;
  private
     type stack is record
        top: integer := 0;
        values: array (1..100) of integer
     end record
  end StackADT;

The private section of a package specification is necessary to provide a description of private types. This 
is necessary so that importing programs know how much space to provide for a variable of that type. 
This is not as clean as the MODULA-2 solution, since any change of representation of the type will 
require the recompilation of the specification and hence of any program that imports the package. For 
this particular representation of stack, no initialization routine is necessary because top is initialized to 
0 in the declaration of the type.

If the implementation of the private variable is a pointer, then only partial type information need be 
provided. That is, if we replace the private part of the preceding example by

private
  type stackRecord;
  type stack is access StackRecord;
end StackADT;

then this would provide sufficient information for importing programs to determine the memory needs 
for a variable of this type (i.e., the amount of space necessary to hold a pointer).
An implementation of the original package specification is given next:

package body StackADT is
  procedure push (s: in out stack; elt: in integer) is 
    begin
       s.top := s.top + 1;
       s.value[s.top] := elt
    end push;
  procedure pop(s: in out stack); …
  function top(s: in stack): integer; …
  function empty(s: in stack) boolean; …
end StackADT;

The StackADT package specification can be imported into an Ada program unit by including with 
StackADT at the beginning of the unit. Components can be referred to as record components, for 
example, StackADT.stack and StackADT.push. The package name prefix can be omitted if use 
StackADT is also included at the beginning of the unit.

Both Ada and C++ provide mechanisms for supporting parameterized packages (or classes in the case of 
C++). The C++ template mechanism is quite primitive, with template instantiations being treated as being 
similar to compile-time macroexpansions. The template is never type checked, only its instantiations.
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Ada also requires its generic packages to be instantiated at compile time, but the generics are type 
checked before, rather than after, instantiation. Thus, a generic package can be compiled and later used 
in another until that does not have access to the implementation.

The following is an example of the header of a generic BinarySearchTree package:

generic
  type Element is private;
  with function LessThan (x, y: Element) return boolean;
package BinarySearchTree is type BSTree is private;
  …
end BinarySearchTree;

This can be used in another unit by instantiating it with a type and appropriate function, for example,

package PeopleDict is new BinarySearchTree(People, PeopleComp)

where PeopleComp is a function taking pairs of type People and returning a Boolean. PeopleDict 
can then be used like any other package. The ability to require generic package instantiations to include 
necessary functions and values as well as types ensures that they will not be instantiated with types 
which do not support the appropriate operations.

63.5 R esearch Issues and Summary

Research issues in imperative languages in recent years have tended to focus on many of the new con-
structs presented in this chapter. These include support for exceptions, iterators, ADTs, and parameter-
ized or generic types. It is fair to say that most current research in programming languages is devoted 
to implementation and environment issues or to other programming paradigms. There are not many 
new concepts currently being introduced into imperative programming languages. Many languages 
that formerly were purely imperative have recently been extended to include object-oriented concepts 
(e.g., Object Pascal, Objective C, C++, Ada 95). Another series of extensions has provided features for 
concurrent and distributed programming.

From our earlier discussion, it is clear that support for abstraction plays an important role in imper-
ative language design and use. Variables abstract away details of memory usage; data types (and in 
particular ADTs) abstract from the representation of values to provide support for operations that are 
independent from the actual implementation; execution units abstract away details of machine instruc-
tion execution and expression computation while providing clean interfaces for sharing information 
between caller and callee.

A second major focus in the development of modern imperative programming languages has been 
the enrichment of type systems, especially static type systems. ADTs can be understood as the enrich-
ment of type systems with the so-called existential types, in which the existence of a type is revealed be 
instantiated with any type (or in Ada and CLU’s case any type that comes supplied with the appropriate 
operations). These more flexible type systems allow for the construction of safe statically typed pro-
gramming languages that are more expressive than their predecessors. There is hope that we are moving 
forward to a time when most programmers will see such secure languages as assisting them in their goal 
of creating correct and efficient software, rather than getting in the way. (See Chapter 69 for a further 
discussion of type systems.)

We have surveyed the class of programming languages modeled after the sequential organization of 
the von Neumann architecture. The imperative programming language paradigm is characterized by its 
sequential, stepwise statement execution.

As discussed in Section 63.4, the imperative programming constructs are implemented in a variety of 
ways in different languages. There are many languages to choose from; choosing the right language for 
the applications at hand is an important first step to software implementation.
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It could be argued that the object-oriented paradigm is simply a minor variation on the imperative 
paradigm in which remote procedure and function calls replace the more familiar imperative calls. 
However, the object-oriented paradigm requires an entirely different way of thinking about the organi-
zation of a program, with the traditional conception of a program as a series of operations being applied 
to values replaced in the object-oriented view by an organization of more distributed responsibility. In 
this view, values (typically referred to as objects) are responsible for knowing how to perform their own 
operations, and the programmer is responsible for bringing together a group of objects with appropriate 
capabilities and organizing a program that relies on these distributed capabilities to accomplish a task. 
Subtyping and inheritance provide important organizing tools and promote code reuse in ways unavail-
able in traditional imperative languages.

Most programmers today are initially taught to program in imperative languages. Thus, these lan-
guages reflect the way that most programmers currently think about algorithm construction and pro-
gram execution. Whether this will continue in the face of the challenge of the object-oriented paradigm 
will be interesting to see.

Key Terms

Abstract data type: A collection of data type and value definitions and operations on those definitions 
that behave as a primitive data type. The specifications of these types, values, and operations 
are generally collected in one place, with the implementations hidden from the user.

Binding: A connection between an abstraction used in the language and a data object as it exists in the 
computer hardware. The usage, establishment, and number of these bindings characterize the 
various imperative languages and affect their ease of use and performance.

Control structures: Structures or statements that alter the strict sequential ordering in an imperative 
program, presenting alternatives to sequential control. Control structures can be conditional, 
iterative, or unconstrained.

Derived type: A new data type constructed by copying a type that already exists. The resulting new type 
is distinct and not identified as being copied from the existing type, though operations on the 
old type are automatically inherited in the new type.

Identifier: The name bound to an abstraction.
Parameters: Data objects passed between the caller and the called procedural abstraction.
Procedural abstraction: Separating out the details of an execution unit in such a way that it may be 

invoked in a program statement or expression.
Scope rules: Rules in a language that define the area or section of a program in which a particular bind-

ing is effective.
Subtype: A new data type defined as a copy of another defined type, typically with a restricted subset of 

its values. It may generally be used in the same contexts as its parent type.
Type: A collection of values with an associated collection of primitive operations on those values.
Type equivalence: Rules that govern when variables or values from two different data types may be used 

together.
Variable: An abstraction used in imperative languages for a memory location or cell.

Further Information

A good examination of imperative languages, as well as other paradigms, can be found in the following 
texts:

Dershem, H. L. and Jipping, M. J. 1995. Programming Languages: Structures and Models, 2nd edn. PWS, 
Boston, MA.

Louden, K. C. 2003. Programming Languages: Principles and Practice, 2nd edn. PWS-Kent, Boston, MA.
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Pratt, T. W. and Zelkowitz, M. V. 2001. Programming Languages: Design and Implementation, 4th edn. 
Prentice Hall, Englewood Cliffs, NJ.

Sebesta, R. 2013. Concepts of Programming Languages, 10th edn. Pearson, New York.
Sethi, R. 1996. Programming Languages: Concepts and Constructs, 6th edn. Addison-Wesley, Reading, MA.

Several journals are devoted to programming languages and language design. ACM Transactions on 
Programming Languages and Systems and Computer Languages both feature referred papers on pro-
gramming languages. ACM SIGPLAN Notices is a collection of unreferenced papers from the ACM 
Special Interest Group on Programming Languages. Proceedings of the ACM conferences, Principles 
of Programming Languages (POPL), and Programming Language Design and Implementation, provide a 
good presentation of current research in programming languages.
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64.1  Introduction

While invented in the 1960s, it was during the 1990s that object-oriented programming (OOP) estab-
lished itself as the dominant programming paradigm. Although it was first viewed as a revolutionary 
new programming paradigm, such a characterization is only partly accurate.

OOP is, to be sure, a paradigm in the current sense of that term. It embodies a way of organizing 
and representing knowledge, “a way of viewing the world” (Budd 2002), that encompasses a wide range 
of programming activities, including program analysis, design, and implementation. The paradigm 
derives its power from its view of computation as the simulation of real-world entities. That is, accord-
ing to Dan Ingalls, “Instead of a bit grinding processor … plundering data structures, we have a universe 
of well-behaved objects that courteously ask each other to carry out their various desires” (Ingalls 1981).

Central to this view of computation is the notion of self-contained little systems that work together. 
OOP tools and languages facilitate the description of objects as self-contained systems that maintain 
their own internal state (data), perform actions (methods) in their own interest, and interact with other 
objects (by sending messages to one another). Objects can be low-level programming tools, such as lists, 
stacks, and trees, akin to traditional abstract data types (ADTs). They can also be higher-level abstrac-
tions that reflect what a program is intended to model: an automated teller machine, a deck of playing 
cards, an elevator, or a collection of graphical objects on a screen.

The primary power of OOP derives from the fact that, once defined, objects enjoy a type-like status 
(as we will explain later, objects are defined via classes, which are very much like types). That is,

•	 An object can be used without knowing the details of its implementation
•	 An object’s implementation detail is hidden and therefore protected
•	 Objects can be used according to a standard notation, using names, symbols, and operators in 

conventional ways
•	 Objects can be combined with other objects and types in expressive and efficient ways (composi-

tion and hierarchy) to define new, more complex types
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Whereas structured programming languages such as C and PASCAL allowed a programmer to define 
new types, these were primarily a notational convenience. In such languages, user-defined type names 
served as shorthand to improve readability and as aids to compilers for recognizing type equivalences. 
These types, though, did not enjoy the status or flexibility of the built-in types. That is, one could not 
overload operators to apply to these new types and, more importantly, one could not easily hide the 
implementation details of a new type.

The seeds for the object-oriented paradigm can be found in the languages that developed in the 1970s 
and 1980s to provide more direct support for building user-defined ADTs. ADA-83, for example, allows 
one to build clearly specified, modular software components that effectively hide their implementation 
details. ADA-83 uses the package construct to describe type specifications and subprograms that can 
belong to a user-defined ADT. Languages that provide this level of support for ADTs are now called 
object-based.

In many ways, the evolution of the OOP paradigm extends that of the structured paradigm, which 
preceded it. We saw the structured paradigm, as manifested in a succession of increasingly high-level 
programming languages, progress from straight-line code laced with unconditional transfers of control, 
to block-oriented code that exploited control structures, to finer-grained code built from simple subpro-
grams, to top-down, structured code that relied on parameterized, and separately developed libraries of 
code which distinguished a subprogram’s interface from its implementation. The object-based paradigm 
followed to enable the capture of ADTs. Finally, OOP combines procedural and data abstraction into the 
notion of a class that can be part of a class hierarchy.

Hindsight being what it is, we can now see how the seeds of OOP have been nurtured by develop-
ments in many subfields of computer science (CS) over the past three decades: the basic idea of com-
putation as simulation was first popularized in the programming language SIMULA 67, which also 
introduced the concepts of class, object, and message. Hardware architectures were developed in the 
1970s using an object-based approach to describe the components of the machine and their interactions 
at a higher, more natural level. This development was further motivated by operating systems and appli-
cations that depended increasingly on graphical interfaces, which lend themselves directly to object-
oriented descriptions. In the entity-relationship database model, in which a collection of information is 
described in terms of entities, attributes, and relations among entities, we see yet another manifestation 
of objects (at least the information content aspect of them). Even in knowledge representation schemes 
that supported work in artificial intelligence (frames, scripts, and semantic networks), we can clearly 
see this object orientation. Most clearly, the first purely object-oriented language, Smalltalk, has been 
around since the early 1970s.

Still, all of the premonitions of OOP did not coalesce into a recognizable influence on program-
ming language and practice until they were motivated to do so by our collective practical experience 
in software engineering. As we became increasingly adept at exploiting the procedural paradigm and 
its languages, we recognized more directly their shortcomings. The more we pushed that paradigm, the 
more difficult it was to support data abstraction to that same degree that algorithm abstraction could be 
supported. Furthermore, methods of encapsulation were relatively primitive, thus making it difficult to 
develop safe, reusable code. Finally, software analysis and design techniques that relied on procedural 
abstraction as the basis for performing decomposition of complex systems were proving increasingly 
awkward to apply to domains that were increasingly dependent on data, as opposed to algorithms.

In summary, structured methods flourished in the era of application domains that were either algo-
rithm-centric or information-centric. These same methods prove less useful in an increasingly complex 
application world, where functionality and information structure must be considered in context. The 
concept of an object is a simple and elegant combination of all informational and algorithmic aspects of 
an application entity.

Today, all of these technologies have matured and all of the motivations have been established to the 
extent that OOP is a viable, recognizable, and popular approach to software development. Programming 
languages and commercial development environments abound. Smalltalk, as an example of a pure OOP 
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language, is still commercially available; however, Java and C# have become the poster children for pure 
OOP languages. C++ is also commonly referred to as an object-oriented programming language, while 
strictly it is a hybrid, that is, it extended an existing language with essential OOP features. Other notable 
OOP languages are Eiffel, and the hybrids Objective-C and Visual Basic.

Because OOP is rightly referred to as a paradigm, it has spawned the development of many software 
analysis and design techniques that support the identification and description of objects in a problem 
specification. As with all paradigms, OOP languages and techniques are best suited for problems that 
match the paradigm’s view of the world. The use and popularity of OOP rises with the increased demand 
for complex, interface-intensive systems, ones that can be modeled in real-world terms.

Finally, if OOP raises the level of abstraction to bridge the gap between programmer and machine, 
it may be that novice programmers would stand to benefit the most from its use. Indeed, Smalltalk 
was developed based on research detailing how young children describe and interact with the world in 
solving problems. OOP is now influencing significantly how we teach and learn programming. There 
is a growing recognition that object orientation makes learning to program easier for the novice. Many 
universities are teaching object orientation as part of the CS introduction. Java is widely used through-
out the CS curriculum.

However, it is also recognized that there is a pool of experienced programmers and software engineers 
that must be retrained significantly: not because object orientation is hard, but because of their experi-
ence in traditional, function-centered (or information-centered) problem solving. These programmers 
must, as Bertrand Meyer puts it, reacquire an object-oriented frame of mind (Meyer 2000).

Proponents of OOP claim that the paradigm represents the state of the art in terms of bridging the lan-
guage gap between programmer and machine. It offers the prospect for achieving many of the software 
quality goals to which all programmers aspire: easily designed, safe, efficient, and uniform software.

64.2  Underlying Principles

OOP takes a quite natural, but also quite different, view of programming. In a process-state view of 
computing (which reflects both the machine’s fetch-execute cycle and its data processing nature), one 
thinks about programs as lists of instructions executed sequentially, and serving to manipulate and 
change the state of memory is the fundamental strategy of imperative languages. In contrast, OOP sees 
a software system as set of collaborating objects. Old-style programming involves thinking in terms 
of algorithms and data structures separately. OOP languages, on the other hand, permit the program-
mer to take a broader view and think of a program as a collection of cooperating objects, each of which 
encapsulates both structure and function.

Each object has three aspects: what it is, what it does, and what it is called. We illustrate these aspects 
by considering a geometric object, a circle. Most programming languages do not have circles as built-in 
data type, so if we want to write a program that manipulates circles, we must write our own description 
of circle objects in a program. The descriptive information associated with an object, called its state, 
includes its properties and the values of these properties. For most objects, the state properties do not 
change, although the state values may very well be modified during the object’s lifetime. For instance, a 
circle has a radius and a center, and at a given time, these might have the values 4.67 and (0, 0). A circle 
object will always have a radius and a center, although their values will change if the circle’s size or loca-
tion changes.

The collection of actions an object may perform on itself is called its behavior. In our example, we may 
want to use a circle as part of a program that draws on a computer screen, and so we would need to be 
able to set the center and radius of the object and instruct the circle to draw itself on the screen. Notice 
that we said a circle would draw itself on the screen. This is an important feature of the object-oriented 
approach. In a language with an algorithmic approach, one could describe circles by radius and center, 
as we have, but the description of the methods to perform on a circle would not be as tightly associated 
with the state data as it is here. That is, the drawing method would not be part of the circle object itself. 
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Encapsulating data and methods together in an object helps us design and understand a program because, 
for instance, all circle-related data and methods are collected in one place. If we had to modify a circle 
object’s definition, we would know exactly where the modifications would go. Furthermore, we would 
know that we would not have to modify any other part of the program.

Finally, each object has an identity, which serves to distinguish it from all others. One can refer to 
an object uniquely via its identity. In most programming languages, we identify an object by giving it a 
name, so we might call our circle theCircle—theCircle is our reference to the object.

It is entirely reasonable to assume that a program that would use one circle object might use several. 
All of these circle objects would be similar, in that they would have the similar collection of data and 
methods. It would clearly be a wasteful duplication of effort to describe each separately, since they would 
differ only in their data values and names. Object-oriented languages allow one to describe a stencil, if 
you will, for an entire set of objects. Such a stencil is called a class.

A class is used to generate a set of objects that share common properties. Continuing our example, 
we could describe a class, circles, by describing the state properties (but generally not the state values) 
and behaviors of all objects that belong to that class. Then, we could describe as many circle objects as 
we needed merely by declaring that they are instances of the circles class, that is, they are circle objects. 
An object can never exist in isolation; every object must be an instance of some class. This means that if 
we are going to use an object in a program, we must first provide the class to which the object belongs.

One can think of a class as a means for implementing an ADT. That is, to describe a class, we identify 
the properties that any instance of the class (a particular object) must have. These properties consist 
of state information (referred to as data fields) and a collection of behaviors (referred to as methods) 
that such objects are capable of performing. Methods typically involve accessing, setting, or otherwise 
manipulating the object’s data fields.

Methods are invoked by an object in response to a message (i.e., a request of the object to perform 
one of its methods). Message passing as a means for invoking methods differs subtly from subprogram 
invocation in most other programming paradigms. In OOP, there is a formal distinction between the 
subprogram call (the sending of a message) and the invocation of the subprogram (when the message 
is received). It is the responsibility of the receiver of a message to interpret the message, that is, to 
determine which of its methods to perform in response. Think of OOP as programming by sending 
messages to objects.

Taken together, these two mechanisms support the description of full-fledged ADTs in a more gen-
eral and extensible way than was provided by the first object-based languages. In particular, classes 
provide an abstraction mechanism that can be used to model a wide range of information structures and 
information processing agents. Using classes as the primary descriptive vehicle also characterizes an 
OOP approach to program design that has proved extremely effective for many real-world applications.

Not only are classes a rich descriptive tool they are also safe, in the software engineering sense of that 
term. That is, classes effectively encapsulate the abstractions they model by controlling (either implicitly 
or explicitly, depending on the language being used) access to an object’s data fields and methods. Some 
of an object’s data fields and methods will be public in nature (visible and accessible to other objects), 
and some will be private to the object itself (visible and accessible only to other methods). Many OOP 
languages also support a formal distinction between a class’s interface and its implementation.

Classes are also an efficient means of representation by virtue of the fact that they can be related to 
one another both compositionally (an object of one class can serve as a member field of an object of 
another class) and hierarchically (to express is-a relationships). This latter feature is unique to OOP, and 
it affords a means for describing directly any information that is hierarchical in nature.

In cases where classes are arranged in a hierarchy, a subclass is said to inherit from its superclass. That is, 
instances of the subclass contain (either directly as copies or indirectly via the superclass) both the data 
fields and methods described by the superclass. These same general properties are associated with all 
subclasses of the particular superclass. Each subclass extends the descriptions of its superclass by adding 
specialized data fields and methods that differentiate it from the superclass and from other subclasses.
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Going back to our geometric example, we do not have to limit our objects to just circles; we could 
equally well have objects that are rectangles, triangles, and so on. We could augment our program 
by including declarations and definitions for the classes rectangles and triangles, just as we did 
when we defined the circles class. In doing so, we notice that all of these are what we might call 
geometric objects.

Object-oriented languages allow a class like rectangles to inherit the data fields and methods from 
a parent class, such as GeometricObjects. For example, because every object in our hierarchy has an 
extent (a bounding rectangle inside which the object fits as closely as possible), we could declare the 
method ReportBounds and some appropriate data fields within a superclass named GeometricObjects. 
These would apply to all the subclasses rectangles, triangles, and circles. Doing this, we would not 
need to re-declare the method and data fields in any of these subclasses. They would be inherited 
from the superclass GeometricObjects. Indeed, it is sometimes useful to define a superclass, such as 
GeometricObjects, knowing full well that we will never be interested in generating direct instances 
of it. That is, the only instances of GeometricObjects that we will use in our programming are those 
that are also instances of its subclasses: circles, triangles, or rectangles. In such a case, the superclass 
is referred to as abstract class.

Inheritance is not only distinctive of OOP languages it is also the means by which the paradigm 
addresses many software engineering concerns. For example, inheritance is an efficient, non-redundant 
notation for representing information that is hierarchical in nature. It is natural in the sense that 
it reflects how we humans tend to describe such information (which explains in part why OOP has 
spawned so many related program design techniques). The efficiency of the notation derives from the 
ability to reuse code that was used in defining a superclass when defining a subclass. This, in turn, allows 
the inherited data fields and methods of classes that are derived from one another to project consistent 
interfaces to their consumers. That is, data and methods can be referred to by the same names in both 
the super- and subclasses.

There are times, though, when a superclass method or state might not be appropriate for use by a 
subclass. All of the classes in our hierarchy would have draw methods, but drawing a rectangle might 
involve different strategies than drawing a circle. OOP languages allow a derived class to redefine, or 
override, a method inherited from a base class. If, for example, we have an object called theShape and 
send it a message to draw itself, how is the computer to know which draw method to use? Whereas 
procedural languages and object-based ones would resolve this ambiguity statically (i.e., based on the 
declared type of theShape), an OOP language solves this problem at run time, by looking up the class to 
which theShape belongs and finding an appropriate draw method.

This ability to use the same name for methods on objects of different classes is an example of a kind 
of polymorphism (called inclusion polymorphism) that is common to all OOP languages. In the OOP 
sense of the term, polymorphism describes the fact that a superclass includes all instances of its sub-
classes. Thus, the notion of a geometric object contains all circle, rectangle, and triangle objects. As a 
result, a generic entity can take on different types of information during the execution of a program. For 
example, a geometric object can be a circle, a rectangle, or a triangle at any point during our program.

The concept of interface is related to the polymorphic use of the class concept. An interface is a listing 
of methods where, for each method, one only lists its name and any potential parameters. OO languages 
allow classes to implement an interface, that is, the classes provide explicit bodies for all methods listed 
in the interface.

Other forms of polymorphism often supported in OO languages include the following:

•	 Overloading: two or more functions or operators can share the same name, so the + operator is 
allowed to apply to both integers and real numbers.

•	 Parametric polymorphism: a parameter is used to establish choices: for example, C++ class tem-
plates use parameters to allow another level of abstraction.

•	 Coercion polymorphism: C type casting is an example.
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The following characteristics are the essence of OOP:

Objects—As a means for encapsulation of state and behavior
Classes—As stencil for generating objects
Message passing—As the mechanism by which computation takes place
Dynamic method invocation—As the means by which methods are bound and interpreted
Inheritance—As a technique for modifying classes and creating subclasses
Inclusion polymorphism—As a means for allowing expressions of one type to be used in place of 

expressions of a supertype

Each contributes significantly to the overall utility of the paradigm, and each allows the paradigm to 
address one of the many software engineering concerns that motivated it. Whereas different program-
ming languages implement them in various combinations and to varying degrees, any language that 
implements them all is considered object oriented.

64.3  Impact on Practice

To illustrate these characteristics of OOP, let us construct a very simple application to deal with queues 
of packets as they might appear in a network simulation. Packets in our program maintain their names 
and priorities and allow their observation and comparison. Different kinds of packets are modeled as 
subclasses: one for packets that carry protocol information (Ack) and one for packets that carry data 
(data). The subclasses specialize how packets are observed. The second set of classes models the queue 
concept. Class FifoQueue represents the algorithmic and data abstraction of a standard first-in-first-out 
queue. Internally, it employs a doubly linked list—anchored by a head and tail data field—to maintain 
the packets currently queued. The methods enter and remove implement the standard protocol of such 
a queue. The FifoQueue class ignores the packet’s priority information but also serves as a superclass 
for two additional subclasses, PriQueue and QueuePri, which use the packet’s comparison abilities to 
handle packets of different degrees of importance.

We will develop the example in terms of Java, C++, C#, and Objective-C. The four major OOP lan-
guages are in use today. Our intention here is to provide quick overviews of these languages and to 
illustrate the different notations and styles for implementing the object-oriented paradigm.

64.3.1  Java

Java is perhaps the most compelling entry into the landscape of OOP languages. Java was developed 
in the mid-1990s by James Gosling at Sun Microsystems (which is now part of Oracle Corporation) 
(Gosling et al. 2005). The language was positioned to empower developers to write software indepen-
dently of specific platforms: “Write once, run anywhere” was a slogan to illustrate the cross-platform 
benefits of the Java language. Today, Java is one of the most popular programming languages, especially 
for client-server web applications.

From an object-oriented perspective, Java can be seen as a distillation of many of the good features 
from Smalltalk and C++. From C++, it inherits its style of syntax, but with great simplifications. From 
Smalltalk, it inherits its execution model: all objects carry a unique identifier, and all methods are 
dynamically bound. It is compiled into byte codes that are interpreted within the target environment, 
and all class information is available at run time, which provides additional type-checking capability 
and robustness. Java also provides automatic garbage collection, which simplifies a programmer’s task 
significantly and tends to reduce many errors related to memory management. And of course, Java 
comes with a large class library that contains support for graphical user interfaces (GUIs), networking, 
web application development, and much more.
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Let us develop a Java program for our network/packet/queue example. We start by describing the class 
packet:

public class Packet {
     int priority;
     String name;
     public Packet(String n, int p) {
          name = n;
          priority = p;
     }
     public void list() {
          System.out.print(name + “ packet: ”);
     }
     public boolean more(Packet other) {
          return priority > other.priority;
     }
     public boolean less(Packet other) {
          return priority <= other.priority;
     }
}

The basic syntactic style is borrowed from the C programming language. The keyword class precedes the 
name packet of the class that is defined here. The keyword public denotes that this class is visible beyond 
the scope of the package in which it is defined. The packet class defines two data fields and four methods. 
Java data fields are explicitly typed: priority is of atomic type int for integer, name is of class String. The first 
method is special, it has the same name as the class: Packet. It is called a constructor and serves to initialize a 
new instance of the class when it is created. The constructor parameters (n and p) are used to give initial val-
ues to the data fields priority and name. The method list prints the name of the packet followed by some text. 
The boolean methods more and less implement the comparison capability of packet objects. All four meth-
ods use the keyword public to denote that they are accessible or visible outside of the packet class. Data fields 
priority and name do not have an access specifier, that is, they are only visible within the current package.

Java insists on a closed-class hierarchy: all classes must have a superclass. If a superclass is not speci-
fied as in the packet class declaration, then it defaults to class object. In effect, all Java objects can be 
thought of as instances of that class. This superclass enables broad run-time support, such as automatic 
garbage collection.

Class Ack is defined as a subclass to packet. The extends clause defines the inheritance relationship 
among classes. Java allows a class to have a single superclass only.

public class Ack extends Packet {
     public Ack() {
          super(“Ack”,10);
     }

     public void list() {
          System.out.println(“ acknowledged”);
     }
}

It defines two methods: the constructor and list. The constructor uses the keyword super to invoke the 
constructor of the superclass. The list method redefines the list method that would normally be inher-
ited from the packet class.



64-8 Programming Languages

Class data is just slightly more complicated: it also extends class packet. It defines a data field body of 
class string. The two methods are the constructor and a redefined version of list.

public class Data extends Packet {
     private String body;

     public Data(String b, int p) {
          super(“Data”, p);
          body = new String(b);
     }

     public void list() {
          super.list();
          System.out.println(body);
     }
}

The keyword super refers to the method of the same name in the superclass. Method list first invokes the 
superclass version of list and then adds the string stored as body.

The packet class hierarchy is now complete. Before we construct our queue class, we need one more helper 
class: node, which will be used to implement a doubly linked list. The node class defines three data fields: value 
to hold a packet object, next to refer to the next node in the list, and previous to refer to the previous node in 
the doubly linked list. The node constructor sets value packet and initializes the next and previous links.

class Node {
     Packet value;
     Node next, previous;
     Node(Packet p) {
          value = p;
          next = previous = null;
     }
}

Notable here are the types associated with fields next and previous. Both are defined as being of type 
node. This does not mean that a node object will contain other node objects. They will, however, contain 
the object identifiers of other node objects. Thinking of object identifiers as pointers to objects yields the 
conventional linked list metaphor. Moreover, a true OOP language does not need pointers at all. Since 
all objects carry their unique identity, it can be used instead. That is why Java need not support pointers.

Now, we can construct the class FifoQueue to implement our first-in-first-out queue abstraction. 
Class FifoQueue defines two data fields: head, to refer to the beginning of the list of nodes, and tail, to 
hold on to the end of the list. Fields head and tail are specified as protected, which extends their visibility 
to all subclasses. Protected data fields or methods are accessible in subclasses, whereas private ones are 
not. The class also defines a constructor and three public methods: enter, remove, and list. The construc-
tor simply initializes the head and tail to null to create an empty queue.

public class FifoQueue {
     protected Node head, tail;
     public FifoQueue() {
          head = tail = null;
     }

     public void enter(Packet it) {
          Node tmp = new Node(it);
          tmp.previous = tail;
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          tail = tmp;
          if (head != null)
               tmp.previous.next = tail;
          else
               head = tmp;
     }

     public Packet remove() {
          Packet it = head.value;
          if (head == tail)
               head = tail = null;
          else if (head.next != null) {
               head = head.next;
               head.previous = null;
          }
          return it;
     }

     public void list() {
          for (Node tmp = head; tmp != null; tmp = tmp.next)
               tmp.value.list();
     }
}

Method enter first creates a new node object tmp to hold the parameter packet object it. Object tmp is then 
added to the end of the existing linked list. If the list is empty, that is, head is null, then it will become the 
only object in the list. Method remove first captures the packet that is to be removed and stored as value 
of the head node. It then removes the first node from the linked list and reconnects the links. Method list 
walks through all nodes in the list and sends message list to the packet stored in the node’s value.

The next class doubles as the main program. Java does not allow the definition of stand-alone func-
tions. The class has a single static method called main, which creates a few objects and starts execution. 
The purpose of our main program is to exercise and test our queue class. The main function defines five 
objects: two data packets, two Ack packets, and one FifoQueue. Objects are entered into the queue in 
this order: d1, a1, d2, and a2.

class Main {
     public static void main(String args[]) {
          Data d1 = new Data(“first packet”, 5);
          Ack a1 = new Ack(), a2 = new Ack();
          Data d2 = new Data(“second packet”, 6);

          FifoQueue q = new FifoQueue();

          q.enter(d1);
          q.enter(a1);
          q.enter(d2);
          q.enter(a2);

          System.out.println(“The FIFO queue:”);
          q.list();

          System.out.println(“Order of leaving:”);
          q.remove().list();
          q.remove().list();
          q.remove().list();
          q.remove().list();
}
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Once all four packet objects are entered, sending message list to object q will produce this output:

The FIFO queue:
Data packet: first packet
     acknowledged
Data packet: second packet
     acknowledged

which is followed by:

Order of leaving:
Data packet: first packet
  acknowledged
Data packet: second packet
  acknowledged

Not surprisingly, the packet objects are stored by the queue object in the order in which they were 
entered, and then they are released in exactly the same order. Since our queue class was meant to imple-
ment a first-in-first-out sequence, we notice that our programming effort was successful.

To continue our example, we can now extend our queue abstraction by taking the importance 
(i.e., priority) of packets into account. Class PriQueue is defined as a subclass of FifoQueue. It inherits all 
data fields and methods, but specializes the enter method:

public class PriQueue extends FifoQueue {
     public void enter(Packet it) {
          Node tmp = new Node(it);

          if (tail == null) {
               tail = tmp;
               head = tmp;
          } else {
               Node p = tail;
               for (; p != null; p = p.previous)
                    if (it.less(p.value))
                         break;
               if (p == null) {
                    tmp.next = head;
                    head.previous = tmp;
                    head = tmp;
               } else {
                    tmp.previous = p;
                    tmp.next = p.next;
                    if (p == tail)
                         tail = tmp;
                    else
                         p.next.previous = tmp;
                    p.next = tmp;
               }
          }
     }
}

The implementation of enter for priority queues is significantly more complex. It traverses the existing 
linked list for each packet that is to be entered to determine its relative importance. The enter method 
uses the less method defined for packet objects.
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While the PriQueue class specializes the enter instance method of class FifoQueue, another way of 
providing a queue with priority handling would be to specialize the remove method rather than enter. 
Class QueuePri, described next, does that:

public class QueuePri extends FifoQueue {
     public Packet remove() {
          Node it = head;
          if (head == tail)
               head = tail = null;
          else {
               // find the highest priority
               for (Node p = head; p != null; p = p.next)
                    if (p.value.more(it.value))
                         it = p;
               if (it == tail) {
                    tail = it.previous;
                    tail.next = null;
               } else if (it == head) {
                    head = it.next;
                    it.next.previous = null;
               } else {
                    it.previous.next = it.next;
                    it.next.previous = it.previous;
               }
          }
          return it.value;
     }
}

The strategy for implementing a priority queue is straight forward. Whenever a packet is to be removed 
from the queue, we traverse the linked list and determine which of the packets has the highest priority. 
The good news is that FifoQueue, PriQueue, and QueuePri objects can now be used interchangeably, 
depending on what kind of queuing strategy is desired. All three classes provide the same protocol; that 
is, their objects understand the same set of messages.

In summary, Java is a complete and truly OOP language. It also supports a very open and flexible style 
of encapsulation via the access specifiers public, protected, and private and an unspecified default: pack-
age. All data fields and methods are of access right package unless explicitly stated otherwise. All classes 
in Java belong to packages, and all package-defined fields and methods are accessible from within any 
class within the package. Java also uses packages to organize its source and compiled code. Java also 
provides garbage collection as a means to reclaim obsolete objects. Java does not have a delete operator: 
objects cannot be deleted explicitly.

Java does not support multiple inheritance, where a class can have more than one superclass. Java 
supports the notion of interface, a specification of the public methods that an object can respond to. 
The interface does not include any data fields or method bodies. Multiple inheritance is supported for 
interfaces. Classes can be declared to implement interfaces. Interfaces allow the programmer to establish 
declared relationships between modules, which in turn can change their underlying implementation as 
the class changes.

64.3.2  C++

Our next OOP language is C++ developed at Bell Laboratories. C++ is an evolutionary enhance-
ment to the C language to support OOP features. It is most accurately described as a hybrid language 
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(i.e., one that extends a traditional procedural language and remains compatible with that language, to 
include a variety of OOP features). Basically, this is C with classes, inheritance, and polymorphism. As 
Bjarne Stroustrup, the designer of the language, likes to point out, C++ is not an OOP language, but a 
language with which one can write an object-oriented program (Stroustrup 1994).

In C++, a class specification is separated into two files: a header file that contains a class declaration 
(listing the class name, fields, and method signatures) and a body file that contains all method bodies. 
C++ uses the C preprocessor to unite the two files upon compilation. It also enables that client code need 
only to include the header file to be able to use a class.

As our first example, we list the header for class packet. The keyword public indicates that the meth-
ods, now called member functions in C++ terminology are publicly visible. The data fields (or, as 
referred to in C++, member fields) are private by default. That is, they are not visible outside of this class.

class Packet {
     const char *name;
     int priority;
public:
     Packet(const char *n, int p) :
          name(n), priority(p) {
     }
     virtual void list();
     int operator>(Packet &);
     int operator<=(Packet &);
};

The class header declares the member fields and member functions, along with their accessibility. 
Priority is defined as an integer number (int); name is a string (const char *). The comparisons are 
defined as operator functions—the ampersand (&) denotes call by reference. The header shows one other 
important member function: it has the same name as the class and is referred to as the constructor. The 
constructor serves to initialize a new instance of the class when it is created. Here, a new packet needs 
a name and a priority. The keyword virtual in the declaration of member function list enables dynamic 
binding in C++. It is needed to allow inclusion polymorphism to work. Without it, C++ will use static 
binding, as in conventional programming languages.

The class body elaborates the bodies of the member functions:

int Packet::operator>(Packet &other) {
     return priority > other.priority;
}

int Packet::operator<=(Packet &other) {
     return priority <= other.priority;
}

void Packet::list() {
     cout << name << “ packet: ”;
}

where cout is the predefined output object in C++. It receives message << and prints out its parameters. 
Subclass Ack is very simple:

class Ack: public Packet {
public:
     Ack() :
          Packet(“Ack”, 10) {
     }
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     void list() {
          cout << “ acknowledged\n”;
     }
};

Its constructor uses a special syntax to invoke the constructor of its superclass packet. This class header 
also shows that a member function can (if it is short enough) be fully defined right away.

Similarly, for class data:

class Data: public Packet {
     const char *body;
public:
     Data(const char *b, int p) :
          Packet(“Data”, p), body(b) {
     }
     void list() {
          Packet::list();
          cout << body << endl;
     }
};

The constructor for class data is defined with two parameters: one to initialize the body field and one for 
the priority field. The member function list refers to packet::list(), which is the list function defined in 
the packet class. Java uses the simpler approach of using the keyword super to refer to a method defined 
in a superclass. The word endl ensures that the output ends with a new line.

The next class, FifoQueue, first needs the definition of class node:

class Node {
     Packet & value;
     Node *next, *previous;
     Node(Packet &p) :
          value(p) {
          next = previous = NULL;
     }
     friend class FifoQueue;
};

The member fields of class node default to private. Since class FifoQueue needs to be able to access these 
fields, we include a friend clause to extend their visibility to class FifoQueue.

Here now is class FifoQueue

class FifoQueue {
protected:
     Node *head, *tail;
public:
     FifoQueue() :
          head(NULL), tail(NULL) {
     }
     ;
     virtual void enter(Packet &);
     virtual Packet& remove();
     void list();
};
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The member fields head and tail are specified as protected. C++ allows explicit control whether sub-
classes have access to inherited members. Protected members are accessible in subclasses, whereas pri-
vate members are not. The body of class FifoQueue details the member functions enter, remove, and list:

void FifoQueue::enter(Packet &it) {
     Node *tmp = new Node(it);
     tmp->previous = tail;
     tail = tmp;
     if (head)
          tmp->previous->next = tail;
     else
     head = tmp;
}
Packet& FifoQueue::remove() {
     Packet &it = head->value;
     if (head == tail)
          head = tail = NULL;
     else if (head->next) {
          head = head->next;
          head->previous = NULL;
     }
     return it;
}
void FifoQueue::list() {
     for (Node* tmp = head; tmp; tmp = tmp->next)
          tmp->value.list();
}

We can now exercise our objects. This program produces the same output as our previous example writ-
ten in Java:

int main() {
     Data d1(“first packet”, 5);
     Ack a1, a2;
     Data d2(“second packet”, 6);

     FifoQueue *q = new FifoQueue();

     q->enter(d1);
     q->enter(a1);
     q->enter(d2);
     q->enter(a2);

     cout << “The FIFO queue:\n”;
     q->list();

     cout << “Order of leaving:\n”;
     q->remove().list();
     q->remove().list();
     q->remove().list();
     q->remove().list();
}

Again, we can use FifoQueue as the base class for subclass PriQueue to refine the enter member function:

class PriQueue: public FifoQueue {
public:
     void enter(Packet &) {
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          // logic as before
     }
};

In addition, of course, a similar class QueuePri is also possible, as follows:

class QueuePri: public FifoQueue {
public:
     Packet& remove(){
          // logic as before
     }
};

In summary, C++ provides detailed support for specifying the degree of access to its members. C++ 
goes beyond what we have illustrated so far—it allows one to specify the type of inheritance that is used: 
public, protected, or private. All our examples use public inheritance, which propagates the accessibil-
ity of members to the subclass. Protected and private inheritance allows one to hide the fact that a class 
is based on a superclass. C++ supports both single and multiple inheritance. It requires that dynamic 
binding (i.e., the object-oriented behavior of an object to search for a suitable method for a message 
at run-time) be explicitly requested per member function. C++ uses the keyword virtual to request 
dynamic binding; otherwise, it defaults to static binding. C++ leaves memory management to the pro-
grammer, as garbage collection is not supported.

64.3.3  C#

C# (pronounced C sharp) is the latest significant entry into the landscape of OOP languages. C# was 
developed by Anders Hejlsberg of Microsoft as part of its .NET initiative (Hejlsberg et al. 2010). From 
an object-oriented perspective, C# can be seen as a distillation of many of the good features of Java and 
C++, plus influences from ObjectPascal.

Like Java, C# is compiled into byte codes from a common language run-time specification. All class 
information is available at run time, which provides additional type-checking capability and robust-
ness. C# also provides automatic garbage collection, which simplifies a programmer’s task significantly 
and tends to reduce many errors related to memory management. In addition, of course, C# comes with 
a large class library, called common language infrastructure, which contains support for common data 
structures, GUIs, database access, networking, and much more.

Consider this C# version of our packet class:

public class Packet {
     private int priority;
     private String name;
     public Packet(String n, int p) {
          name = n;
          priority = p;
     }
     virtual public void list() {
          Console.Write(name + “ packet: ”);
     }
     public bool more(Packet other) {
          return priority > other.priority;
     }
     public bool less(Packet other) {
          return priority < other.priority;
     }
}
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The resemblance to Java is clear. The basic syntax, including declarations and control structures, use the 
C++ style. All object handling is done by reference. Access specifiers (like private, protected, or public) 
are listed per field or method. As in C++, dynamic binding must be requested using the virtual keyword. 
C# comes with a significant set of predefined classes to allow input and output. The example lists the 
console class, which defines the write method. C# insists on a closed-class hierarchy: all classes must 
have a superclass. If a superclass is not specified in the class declaration, then it defaults to class object.

A C# subclass specification resembles C++ more closely than Java. In the following example, class Ack 
is defined as a subclass of packet. The colon is used to designate the superclass. The constructor uses the 
base reference to denote the invocation of the superclass constructor. The list method is explicit about 
redefining the superclass’s virtual list method by using the keyword override. If the superclass did not 
have a list method, the compiler would flag an error.

public class Ack : Packet {
     public Ack() : base(“Ack”, 10) { }
     override public void list() {
          Console.WriteLine(“ acknowledged”);
     }
}

Class data is just slightly more complicated. It inherits from class packet and redefines the list method. 
The keyword base is used to refer to methods defined in the superclass.

public class Data : Packet {
     private String body;
     public Data(String b, int p): base(“Data”, p) {
          body = String.Copy(b);
     }
     override public void list() {
          base.list();
          Console.WriteLine(body);
     }
}

Again, before we can define the FifoQueue class, we need the node class. Class node is defined here as a 
simple class with a data field of class packet. This limits our queues to contain only packet objects. The fields 
next and previous embody out doubly-linked list implementation. Like Java, C# does not need pointers.

public class Node {
     public Packet value;
     public Node next, previous;
     public Node(Packet p){
          value = p;
          next = previous = null;
     }
}

Class FifoQueue makes use of these classes to implement our first-in-first-out queue abstraction. The 
code closely resembles Java. The keyword virtual ensures that subclasses can override the methods, and 
that dynamic binding is used.

public class FifoQueue {
     protected Node head, tail;

     public FifoQueue() {
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          head = tail = null;
     }
     public virtual void enter(Packet it) {
          Node tmp = new Node(it);
          tmp.previous = tail;
          tail = tmp;
          if (head != null)
               tmp.previous.next = tail;
          else
               head = tmp;
     }
     public virtual Packet remove() {
          Packet it = head.value;
          if (head == tail)
               head = tail = null;
          else if (head.next != null) {
               head = head.next;
               head.previous = null;
          }
          return it;
     }
     public void list() {
          for (Node tmp = head; tmp != null; tmp = tmp.next)
               tmp.value.list();
     }
}

As in the Java version of the example, our main program is a class with a static method main, where we 
assemble a few objects and send messages to test our packet and FifoQueue classes:

class Main {
     public static void Main(String[] args) {
          Data d1 = new Data(“first packet”, 5);
          Ack a1 = new Ack(), a2 = new Ack();
          Data d2 = new Data(“second packet”, 6);

          FifoQueue q = new FifoQueue();
          q.enter(d1);
          q.enter(a1);
          q.enter(d2);
          q.enter(a2);

          Console.WriteLine(“The FIFO queue:”);
          q.list();

          Console.WriteLine(“Order of leaving:”);
          q.remove().list();
          q.remove().list();
          q.remove().list();
          q.remove().list();
     }
}

This program produces the same output as in our Java discussion. Classes PriQueue and QueuePri can 
be defined as follows. Both classes inherit from FifoQueue, one redefining method enter and the other 
remove. Because the superclass did define both methods as virtual, C# needs the keyword override here. 
Dynamic binding is enabled for the enter and remove methods, that is, given a variable of type FifoQueue 
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that holds a reference to a PriQueue, it would respond to an incoming message enter with the correctly 
redefined, that is via override, method defined in the PriQueue class.

public class PriQueue : FifoQueue {
     override public void enter(Packet it) {
          // logic as before
     }
}
public class QueuePri : FifoQueue {
     override public Packet remove() {
          // logic as before
     }
}

In summary, C# is a complete and truly OOP language. C# also provides garbage collection as a means 
to reclaim obsolete objects. C# also supports the notion of interface, a specification of the public methods 
that an object can respond to. The interface does not include any data fields or method bodies. Multiple 
inheritance is supported for interfaces. Classes can be declared to implement interfaces. Interfaces allow 
the programmer to establish declared relationships between modules, which in turn can change their 
underlying implementation as the class changes.

C# supports some additional novel features: it allows programs to treat values of atomic types, such as 
int or char, as objects with a process called boxing. Boxing automatically converts an atomic value that 
is being stored in the execution stack to wrapper objects that are allocated on the heap and referenced 
from the stack. The reverse process, unboxing, is also done automatically. The advantage of this boxing 
feature is that values of atomic types can be passed by reference as parameters to methods.

64.3.4  Objective-C

Objective-C is another interesting entry into the landscape of OOP languages. It was developed in 
the early 1980s by Brad Cox and Tom Love. Like C++, it extends the C language with OOP concepts. 
However, its style is heavily influenced by Smalltalk. Cox relates the concept of class to that of an inte-
grated circuit (IC), where “Software ICs”, that is off-the-shelf classes, could dramatically increase soft-
ware productivity (Cox et al. 1991).

While Objective-C is an old OOP language, it has only recently come out of obscurity by virtue of 
being the main programming language in the Apple OS X and iOS operating systems. The Apple Cocoa 
framework and class library is written in Objective-C.

An Objective-C class is written in two separate parts: a class interface and a class implementation. 
The interface lists the class name, its superclass, data fields, and method headers. Our packet class inter-
face looks like this:

@interface Packet : NSObject {
     int priority;
     char *name;
}
+ (Packet *) new: (char *) n pri: (int) p;
- (BOOL) more: (Packet *) other;
- (BOOL) less: (Packet *) other;
- (void) list;
@end

Class packet is defined as a subclass of NSObject. NSObject is the typical root of the Objective-C class 
hierarchy. Most built-in classes feature the “NS” prefix, which is short for NextStep, which is the ancestor 
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of the OS X operating system and framework. The methods are automatically “public.” The “+” denotes 
a class-level method, that is, it is invoked for the class, much like a constructor, whereas “-” methods 
are regular methods invoked for an instance of a class. Now, consider the packet class implementation:

@implementation Packet
+ (Packet *) new: (char *) n pri: (int) p {
     Packet *id = [super new];
     id->name = n;
     id->priority = p;
     return id;
}
- (BOOL) more: (Packet *) other {
    return priority > other->priority;
}
- (BOOL) less: (Packet *) other {
    return priority <= other->priority;
}
- (void) list{
    printf(“%s packet: ”, name);
}
@end

It contains the bodies of the methods. Note, how parameters are not enclosed in parenthesis, but rather 
labeled, such as new: and pri:. That is Smalltalk style. The phrase [super new] is also borrowed from Smalltalk: 
code enclosed in brackets denotes a message-sending expression. Here, message new is sent to object super. 
super refers to the superclass of packet, here NSObject, which implements the basic new method to create 
a new object. The other methods are prefixed with a “-”, indicating regular instance methods. Note, in 
method print, good old C standard library function printf is used for output. On to subclass Ack:

@interface Ack : Packet
+ (Ack *) new;
- (void) list;
@end

@implementation Ack

+ (Ack *) new {
    return [ super new: “Ack” pri: 10 ];
}
- (void) list {
    printf(“ acknowledged\n”);
}
@end

The new method creates a new instance by sending a message to the new:pri: method of the superclass, 
that is, packet. Similarly, for class data

@interface Data : Packet {
     char * body;
}
+ (Data *) new: (char *) b pri: (int) p;
- (void) list;
@end

@implementation Data
+ new: (char *) b pri: (int) p {
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     Data * id = [ super new: “Data” pri: p ];
     id->body = b;
     return id;
}
- (void) list {
     [ super list ];
     printf(“%s\n”, body);
}
@end

Both the new:pri: method and the list method take advantage of methods inherited from the packet 
superclass.

The next class, FifoQueue, first needs the definition of class Node:

@interface Node : NSObject {
     @public
     Packet * value;
     Node * next, * previous;
}
@end

By default, the data fields of class node would not be accessible from the outside of the class. Since class 
FifoQueue needs to be able to access these fields, we include a “@public” clause to make them accessible.

Here now is class FifoQueue, first the class interface

@interface FifoQueue : NSObject {
     Node * head, *tail;
}
- (void) enter: (Packet *) aPacket;
- (Packet *) remove;
- (void) list;
@end

followed by the class implementation

@implementation FifoQueue
- (void) enter: (Packet *) aPacket {
     Node * tmp = [ Node new ];
     tmp->value = aPacket;
     tmp->previous = tail;
     tail = tmp;
     if (head)
          tmp->previous->next = tail;
     else
          head = tmp;
}
- (Packet *) remove {
    Packet * it = head->value;
    if (head == tail)
        head = tail = NULL;
    else if (head->next) {
        head = head->next;
        head->previous = NULL;
    }
    return it;
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}
- (void) list {
     for (Node *tmp = head; tmp; tmp = tmp->next)
          [ tmp->value list ];
}
@end

Most of the method implementations feature straight C-style code, with the occasional message-send 
expression enclosed in brackets.

We can now exercise our objects. This program produces the same output as our previous examples 
written in Java, C++, and C#:

int main (int argc, const char * argv[]) {

     Data *d1 = [ Data new: “first packet” pri: 5 ];
     Ack *a1 = [ Ack new ];
     Data *d2 = [ Data new: “second packet” pri: 6 ];
     Ack *a2 = [ Ack new ];

     FifoQueue *q = [ FifoQueue new ];

     [ q enter: d1 ];
     [ q enter: a1 ];
     [ q enter: d2 ];
     [ q enter: a2 ];

     printf(“The FIFO queue:\n”);
     [ q list ];

     printf(“Order of leaving:\n”);
     [[ q remove ] list ];
     [[ q remove ] list ];
     [[ q remove ] list ];
     [[ q remove ] list ];
}

In summary, Objective-C has a unique style, which traces its Smalltalk heritage. Objective-C supports gar-
bage collection; however, it is at the discretion of the programmer. Instead of garbage collection, a program-
mer can also opt for explicit reference counting to determine when an object becomes obsolete. Like the other 
OOP languages, Objective-C can draw upon a large library of classes, which make it easy to add animation, 
networking, and the native platform appearance and behavior to applications with only a few lines of code.

64.4  Language Implementation Issues

In evolutionary terms, OOP languages can be described as either pure or hybrid. The hybrid approach 
adds object-oriented features on top of a procedural core: C++ and Objective-C are representatives of 
this approach. The pure approach, Java and C#, limits the language features to those that are strictly 
object oriented. C# presents a compromise in that it enforces its object-oriented principles but allows 
unsafe code, as long as it is clearly labeled.

In theoretical terms, the primary distinction between these kinds of languages lies in their interpre-
tation of the concept of type. Because of their origins, hybrid languages rely on a traditional approach 
to typing. That is, the type of something resides with its container. Thus, when we declare an integer 
variable i in C++, for example, as int i;, variable i is of basic type integer. In Smalltalk, variables do not 
carry the type of what they contain. That is, variables are untyped: they can contain any object. Rather, 
the command Integer new returns an integer object. The type in this case is seen to reside with the object, 
and if we store a reference to it in a variable, the variable could be said to be of type Integer. Objective-C 
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retains this Smalltalk approach: it features a type id, which can refer to any object. In code, any message 
can be sent to a variable of type id. Only at run time, when the message is actually received by the object, 
might we notice an error, if the object’s class does not implement the corresponding method.

In implementation terms, representing values of basic types as objects carries penalties in storage 
amount and performance: if an integer value is stored as an object, it will occupy about double the 
amount of storage, let us say four bytes for its value and four bytes for the object reference. To access the 
value as an object, we first must dereference the object reference, then retrieve the value from the object. 
Java stores all values of basic types as simple values and does not treat them as objects. The programmer 
must explicitly create a wrapper object to treat the value as an object. C# does this implicitly through its 
boxing and unboxing mechanisms.

Another critical distinction between OOP languages is in how they handle the binding of messages 
to methods. The purest approach is to perform this binding dynamically (at run time): an object receives 
a message, and the search for an appropriate method begins at the class of the object. The search con-
tinues through superclasses until the message can be processed. Although this approach affords the 
programmer tremendous flexibility, it can cause instability at run time. A more efficient approach is to 
leave the binding choice to the system (i.e., the compiler and linker). That is, the system tries to deter-
mine at compile time which method should be invoked for each message sent. In cases where inclusion 
polymorphism is used (and it may be unclear which class to refer to), binding can be performed at run 
time using techniques varying from simple case statements to a more complex system of virtual method 
tables. In any case, it is still up to the compiler to detect and indicate the need for run-time binding.

Another important issue to consider in the context of language implementation is the approach one 
adopts in regards to memory management. OO languages are relatively uniform in their approaches to 
memory allocation (object creation). Creating objects and all that that entails (determining how much 
memory to allocate, the types of data fields, etc.) is performed by the system. Initialization, on the other 
hand, is left to the programmer. Many languages provide direct support for initializing objects: we have 
constructors in C++, Java, and C#, and new methods in Objective-C. There are two common approaches 
to deleting objects from memory (deallocation). In the programmer-controlled approach, one uses a 
delete operator. The system-enabled approach to deleting objects uses the concept of garbage collection. 
All objects that are unknown to other objects are garbage. To check whether an object is referred to by 
another is quite compute-intensive. To lighten the impact on system performance, garbage collection is 
typically done either during times of idling or when some threshold of memory usage is reached. On the 
other hand, memory leaks, that is, memory that is occupied by deleted objects, can occur easily in large 
bodies of code written without garbage collection.

64.5  Summary

OOP languages have matured dramatically and have gained a significant degree of acceptance over their 
40 years of history. Many of the original motivations for the OOP paradigm have been justified by our 
practical experience with it. OOP has been seen to

•	 Embody useful analysis and design techniques
•	 Revise the traditional software life cycle toward analysis and design, instead of coding, testing, 

and debugging
•	 Encourage software reuse through the development of useful code libraries of related classes
•	 Improve the workability of a system so that it is easier to debug, modify, and extend
•	 Appeal to human instincts in problem solving and description—in particular, to problems that 

model real-world phenomena

That OOP has become the predominant software development paradigm is evidenced by the multitude of 
conferences, journals, texts, and websites devoted to both general and language-specific topics. The two 
most prominent conferences, both of which address a wide range of OOP issues, are the conference on 
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OOP Systems, Languages, and Applications (www.oopsla.org) and the European Conference on OOP 
(www.ecoop.org). The Journal of Object Technology provides contemporary coverage of OOP languages, 
applications, and research (www.jot.fm). Perhaps, the most general of the references listed are Budd 
(2002) and Meyer (2000).

Key Terms

Abstract class: A class that has no direct instances but is used as a base class from which subclasses are 
derived. These subclasses will add to its structure and behavior, typically by providing imple-
mentations for the methods described in the abstract class.

Class: A description of the data and behavior common to a collection of objects. Objects are instances 
of classes.

Constructor: An operation associated with a class that creates and/or initializes new instances of the class.
Dynamic binding: Binding performed at run time. In OOP, this typically refers to the resolution of a 

particular name within the scope of a class, so that the method to be invoked in response to a 
message can be determined by the class to which it belongs at run time.

Inheritance: A relationship among classes, wherein one class shares the structure or behavior defined 
in an is-a hierarchy. Subclasses are said to inherit both the data and methods from one or more 
generalized superclasses. The subclass typically specializes its superclasses by adding to its 
structure and by redefining its behavior.

Instance: A specific example that conforms to a description of a class. An instance of a class is an object.
Interface: A named listing of method headers to be implemented by a class.
Member field: A data item that is associated with (and is local to) each instance of a class.
Message: A means for invoking a subprogram or behavior associated with an object.
Method: A procedure or function that is defined as part of a class and is invoked in a message-passing 

style. Every instance of a class exhibits the behavior described by the methods of the class.
Object: An object is an instance of a class described by its state, behavior, and identity.
Object-oriented programming (OOP): A method of implementation in which a program is described 

as a sequence of messages to cooperating collections of objects, each of which represents an 
instance of some class. Classes can be related through inheritance, and objects can exhibit 
polymorphic behavior.

Override: The action that occurs when a method in a subclass with the same name as a method in a 
superclass takes precedence over the method in the superclass.

Polymorphism (or many shapes): That feature of a variable that can take on values of several different 
types or a feature of a function that can be executed using arguments of a variety of types.

Subclass: A class that inherits data fields and methods from another class (called the superclass).
Virtual function: Most generally, a method of a class that may be overridden by a subclass to the class. 

In languages in which dynamic binding is not the default, this may also mean that a function 
is subject to dynamic binding.
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65.1  Introduction

Logic programming (LP) is a language paradigm based on logic. Its constructs are Boolean implications 
(e.g., q implies p meaning that p is true if q is true), compositions using the Boolean operators and (called 
conjunctions) and or (called disjunctions). LP can also be viewed as a procedural language in which the 
procedures are actually Boolean functions, the result of a program always being either true or false.
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In the case of implications, a major restriction applies: when q implies p, written p:−q, then q can con-
sist of conjunctions, but p has to be a singleton, representing the (sole) Boolean function being defined. 
The Boolean operator not is disallowed, but there is a similar construct that may be used in certain cases.

The Boolean functions in LP may contain parameters, and the parameter matching mechanism is 
called unification. This type of general pattern matching implies, for example, that a variable represent-
ing a formal parameter may be bound to another variable or even to a complex data structure, represent-
ing an actual parameter (and vice versa). When an LP program yields a yes answer, the bindings of the 
variables are displayed, indicating that those bindings make the program logically correct and provide 
a solution to the problem expressed as a logic program.

An important recent extension of LP is constraint logic programming (CLP). In this extension, unifi-
cation can be replaced or complemented by other forms of constraints, depending on the domains of the 
variables involved. For example, in CLP a relationship such as X > Y can be expressed even in the case 
where X and Y are unbound real variables. As in LP, a CLP program yields answers expressing that the 
resulting constraints (e.g., Z < Y + 4) must be satisfied for the program to be logically correct.

This chapter includes sections describing the main aspects of LP and CLP. It includes examples, his-
torical remarks, theoretical foundations, implementation techniques, and metalevel interpretation and 
concludes with the most recent proposed extensions to this language paradigm.

65.2  Introductory Example

Let us consider a simple program written in PROLOG, the main representative among LP languages. 
The program’s objective is to check if a date given by the three parameters, Month (a string), Day, and 
Year (integers), is valid. For example, date (oct, 15, 1996) is valid whereas date (june, 31, 1921) is not. The 
program can be expressed as follows:

date (Month, Day, Year):- member (Month, [jan, march, may, july, aug, oct, dec]),
comprised (Day, 1,31).

date (Month, Day, Year):- member (Month, [april, june, oct, sept, nov]),
comprised (Day, 1,30).

date (feb, Day, Year):- leap (Year), comprised (Day, 1, 29).
date (feb, Day, Year):- comprised (Day, 1, 28).
comprised (Day, Start, End):- Day >=Start, Day =<End.
leap (Year):- (Year/4) × 4 = Year.

The variables in the preceding program start with a capital letter, for example, Month; in this simple 
example, the constants either start with small case letters (strings) or are integers. The symbol:- can be 
read as is defined by, and it separates the procedure heading from its body, which consists of calls to 
other procedures. More precisely, it is convenient to view every procedure as a Boolean function yielding 
true or false. The body of such a function is made up of conjunctions of calls to functions. Therefore, a 
comma separating the calls on the right-hand side correspond to the Boolean operator and.

The following remarks also apply to the program. There are multiple definitions of date, each of which 
tests for the corresponding month and the compatible number of days. Therefore, the program is nonde-
terministic in the sense that several possibilities have to be considered either one at a time or in parallel. 
In many cases there might be several solutions to a given program. Also note that the right-hand side of 
a rule could be empty. In that case, the rule indicates that the left-hand side is always true.

Let us for the time being assume that member (Element, List) is a built-in function testing if an 
Element is a member of a List. The Boolean function leap tests if its parameter is a multiple of 4. One 
could also add a function year (Year), which would test if an integer defined by Year is positive. Notice 
that the ordering of the statements in this particular version of the program is important, since a leap 
year is tested before a nonleap year. Ideally, pure PROLOG programs should be declarative; from a syn-
tactic point of view, that means that the order of the rules and the order of the calls on the right-hand 
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sides should not matter. A new version of the program satisfying this criteria is one in which the Boolean 
function nonleap (Year):- (Year/4) × 4 =/= Year is called in the definition applicable to the month of 
February, in the case of a nonleap year.

The preceding program is used with queries (equivalent to main programs) to test the validity of given 
dates. The answers are either yes or no. Note that in PROLOG one is allowed to have queries containing 
variables. In the present example, the query date (X, 31, 1996) yields as results the successive strings that 
the variable X is bound to for the months that have 31 days. More specifically, the results are as follows:

yes X = jan, More?
yes X = march, More?
…
Yes X = dec, More?
No.

Similarly, the query date (X, 29, 1996) yields all the months in a year. Note that the built-in functions such 
as =< and >= require that their arguments be ground; that is, they cannot contain unbound variables.

This is satisfied by the query date (X, 31, 1996). However, a call date ( feb, Y, 1996) entails a problem 
that provides insight into the desirability of extending PROLOG to handle constraints such as it is done 
in PROLOG IV. The last query fails in standard PROLOG because the variable Y remains unbound. The 
right answer as provided by a CLP processor consists of the two constraints:

Yes Y >= 1, Y =< 29, More?
No.

Similarly, the correct answer to the query date ( feb, Y, Z) submitted to a CLP processor should yield 
two pairs of constraints corresponding to leap and nonleap years represented by Z. These results are 
obtained by keeping lists of satisfiable constraints and triggering a failure when the constraints become 
unsatisfiable. This failure may entail exploring the remaining nondeterministic possibilities.

It is now appropriate to present the recursive Boolean function member. It has two parameters: an 
Element and a List; the function succeeds if the Element appears in the List. Lists are represented using 
the constructor cons as in functional languages. This means that a list [a, b] can be represented by

cons (a, cons (b, nil))

Note that the cons in the preceding representation is simply any user-selected identifier describing a 
data structure (or record) consisting of two fields: (1) a string and (2) a pointer to another such record 
or to nil. In the case of lists there are special built-in features such as [a, b] simplifying their description. 
The program for member consists of two rules:

member (X, cons (X, T)).
member (X, cons (Y, T)):- X /= Y, member (X, T).

The first rule states that if the head of a list contains the element X, then member succeeds. The second 
rule uses recursion to inspect the remaining elements of the list. Note that the query member (X, cons (a, 
cons (b, nil)), equivalent to member (X, [a, b]), provides two solutions, namely, X = a or X = b. It should 
be obvious that member (Y, [a, a]) also yields two (identical) solutions.

Finally, notice that member can search for more complex data structures. For example, member 
(member (a, Y), Z) succeeds if the list Z contains an element such as member (a, U); if so, the variable Y 
is bound to the variable U. The reader should consider the embedded term member as the identifier of a 
record or data structure having two fields. In contrast, the first identifier member represents a Boolean 
function having two parameters. This example illustrates that, in PROLOG, program and data have the 
same form.

An inquisitive reader will remark that member can also be used to place elements in a list if they are 
not already present in that list. A clue in understanding this property is that the query member (a, Z) will 
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bind Z to a record cons (a, W) in which W is a new unbound variable created by the PROLOG processor 
when applying the first rule defining the Boolean function member.

65.3  Features of Logic Programming Languages

Summarized next are some of the features whose combination renders PROLOG unique among languages:

	 1.	 Procedures may contain parameters that are both input and output.
	 2.	 Procedures may return results containing unbound variables.
	 3.	 Backtracking is built-in, therefore allowing the determination of multiple solutions to a given 

problem.
	 4.	 General pattern-matching capabilities operate in conjunction with a goal-seeking search 

mechanism.
	 5.	 Program and data are presented in similar forms.

The preceding listing of the features of PROLOG does not fully convey the subjective advantages of the 
language. There are at least three such advantages:

	 1.	 Having its foundations in logic, PROLOG encourages the programmer to describe problems in a 
logical manner that facilitates checking for correctness and, consequently, reduces the debugging 
effort.

	 2.	 The algorithms needed to interpret PROLOG programs are particularly amenable to parallel 
processing.

	 3.	 The conciseness of PROLOG programs, with the resulting decrease in development time, makes 
it an ideal language for prototyping.

Another important characteristic of PROLOG that deserves extension, and is now being extended, 
is the ability to postpone variable bindings as much as is deemed necessary (lazy evaluation). Failure 
and backtracking are triggered only when the interpreter is confronted with a logically unsatis-
fiable set of constraints. In this respect, PROLOG’s notion of variables approaches that used in 
mathematics.

The price to be paid for the advantages offered by the language amounts to the increasing demands 
for larger memories and faster central processing units (CPUs). The history of programming lan-
guage evolution has demonstrated that, with the consistent trend toward less expensive and faster 
computers with larger memories, this price becomes not only acceptable but also advantageous 
because the savings achieved by program conciseness and by a reduced programming effort largely 
compensate for the space and execution time overheads. Furthermore, the quest for increased effi-
ciency of PROLOG programs encourages new and important research in the areas of optimization 
and parallelism.

65.4  Historical Remarks

The birth of LP can be viewed as the confluence of two different research endeavors: one in artificial or 
natural language processing and the other in automatic theorem proving. These endeavors contributed 
to the genesis of the PROLOG language, the principal representative of LP.

Alain Colmerauer, assisted by Philippe Roussel, is credited as the originator of PROLOG, a 
language that was first developed in the early 1970s and continues to be substantially extended. 
Colmerauer’s contributions stemmed from his interest in language processing using theorem-proving 
techniques. Robert Kowalski was also a major contributor to the development of L.P. Kowalski had 
an interest in logic and theorem proving (Cohen 1988, Bergin 1996). In their collaboration, Kowalski 
and Colmerauer became interested in problem solving and automated reasoning using resolution 
theorem proving.
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Kowalski’s main research was based on the work of Alan Robinson (1965). Robinson had the foresight 
to distinguish the importance of two components in automatic theorem proving: a single inference rule 
called resolution and the testing for equality of trees called unification.

Theorems to be proved using Robinson’s approach are placed in a special form consisting of conjunc-
tions of clauses. Clauses are disjunctions of positive or negated literals; in the case of Boolean algebra 
(propositional calculus), the literals correspond to variables. In the more general case of the predicate 
calculus, literals correspond to a potentially infinite number of Boolean variables, one for each combi-
nation of values that the literal has as parameters. A Horn clause is one containing (at most) one positive 
literal; all of the others (if any) are negated.

According to the informal description in the introductory example, a Horn clause corresponds to 
the definition and body of a Boolean function. The positive literal is the left-hand side of a rule (called 
Head); the negative literals appear on the right-hand side of the rule (called Body). A non-Horn clause is 
one in which (logical) negations can appear qualifying a call in the Body. An example of a Horn clause 
is as follows:

date (feb, Day, Year):- leap (Year), comprised (Day, 1, 29).

because it is equivalent to

leap (Year) and comprised (Day, 1, 29) implies date (feb, Day, Year)

or

date (feb, Day, Year) or not (leap (Year)) or not (comprised (Day, 1, 29))

If one wished to express the clause

date (feb, Day, Year):- not leap (Year), comprisesd (Day, 1, 28).

in which the not is the logical Boolean operation, the preceding example would be logically equivalent to

date (feb, Day, Year) and leap (Year) or comprised (Day, 1, 28)

which is not a Horn clause because it has two (positive) elements in the head (and there is no procedural 
equivalent to it).

Kowalski concentrated his research on reducing the search space in resolution-based theorem prov-
ing. With this purpose, he developed with Kuehner a variant of the linear resolution algorithm called SL 
resolution (for linear resolution with selection function [Kowalski and Kuehner 1970]). Kowalski’s view 
is that, from the automatic theorem-proving perspective, this work paved the way for the development 
of PROLOG. Having this more efficient (but still general) predicate calculus theorem prover available to 
them, the Marseilles and Edinburgh groups started using it to experiment with problem-solving tasks. 
To further increase the efficiency of their prover, the Marseilles group resorted to daring simplifications 
that would be inadmissible to logicians. These audacious attempts turned out to open new vistas for the 
future of LP.

Several formulations for solving a given problem were attempted. Almost invariably, the formulations 
that happened to be written in Horn clause form turned out to be much more natural than those that 
used non-Horn clauses. A case in which the Horn clause formulation was particularly effective occurred 
in parsing strings defined by grammar rules. Recall that context-free grammars have a single nonter-
minal being defined on the left-hand side of each of its rules, therefore establishing a strong similarity 
with Horn clauses.

The SL inference mechanism applicable to a slight variant of Horn clauses led to the present PROLOG 
inference mechanism: selective linear definite (SLD) clause resolution. The word definite refers to Horn 
clauses with exactly one positive literal, whereas general Horn clauses may contain entirely negative 
clauses. (Because the term “Horn clause” is more widely used than definite clause, the former is often 
used to denote the latter.)
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As a final historical note, one should mention that LP gained renewed impetus by its adoption as 
the language paradigm for the Japanese fifth-generation program. PROLOG and, in particular, its CLP 
extensions now count on a significant number of loyal and enthusiastic users.

65.5 R esolution and Unification

Resolution and unification appear in different guises in various algorithms used in computer science. 
This section first describes these two components separately and then their combination as it is used 
in LP. In doing so it is useful to consider first the case of the propositional calculus (Boolean algebra) in 
which unification is immaterial. It is well known that there exist algorithms that can always decide if a 
system of Boolean formulas is satisfiable or not, albeit with exponential complexity.

In terms of the informal example considered in the introduction, one can view resolution as a (non-
deterministic) call of a user-defined Boolean function. Unification is the general operation of match-
ing the formal and actual parameters of a call. Consequently, unification does not occur in the case of 
parameterless Boolean functions.

The predicate calculus includes the quantifiers ∀ and ∃; it can be viewed as a general case of the 
propositional calculus for which each predicate variable (a literal) can represent a potentially infinite 
number of Boolean variables. Unification is only used in this latter context. Theorem-proving algo-
rithms for the predicate calculus are not guaranteed to provide a yes-or-no answer because they may 
not terminate.

65.5.1 R esolution

In the propositional calculus, a simple form of resolution is expressed by the inference rule:

if a → b and b → c then a → c, or
(¬a ∨ b) ∧ (¬b ∨ c) → (¬a ∨ c)

Recall that a implies b is equivalent to not a or b. The final disjunction ¬a ∨ c is called a resolvant. In 
particular, resolving a ∧ ¬a implies the empty clause (i.e., falsity).

To better understand the meaning of the empty clause, consider the implication a → a, which is 
equivalent to (not a) or a. This expression is always true; therefore, its negation not ([not a] or a) equiv-
alent to (a and [not a]) is always false. If a Boolean expression is always true, its negation is always 
false. Resolution theorem proving consists of showing that if the expression is always true, its negation 
results in contradictions of the type (a and [not a]), which is always false. The empty clause is simply the 
resolvant of (a and [not a]).

Observe the similarity between resolution and the elimination of variables in algebra, for example,

	 a b b c a c+ = − + = + =3 and 5 imply 8

Another intriguing example occurs in matching a procedure definition with its call. Consider, for 
example,

procedure b; a
…
call b; c

in which a is the body of b, and c is the code to be executed after the call of b. If one views the definition 
of b and its call as complementary, a (pseudo)resolution yields: a; c in which concatenation is noncom-
mutative, and the resolution corresponds to replacing a procedure call by its body. Actually, the last 
example provides an intuitive procedural view of resolution as used in PROLOG.
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In the case of pure PROLOG programs, only Horn clauses are allowed. For example, if a, b, c, d, and 
f are Boolean variables (literals), then

b ∧ c ∧ d → a and f

are readily transformed in Horn clauses because they correspond, respectively, to

a ∨ ¬b ∨ ¬c ∨ ¬d and f

where the clause f is called unit clause or a fact. The preceding example is written in PROLOG as

a:- b, c, d. and f.

where the symbols:- and “,” correspond to the logical connectors only if and and. They are read as 
follows: a is true only if b and c and d are true. The previous conjunction also requires that f be true; 
equivalently b ∧ c ∧ d → a and f are true.

The resolution mechanism applicable to Horn clauses takes as input a conjunction of Horn clauses 
H = h1 ∧ h2 ∧ ⋯ ∧ hn, and a query Q, which is the negation of a theorem to be proved. Q consists of the 
negation of a conjunction of positive literals or, equivalently, a disjunction of negated literals. Therefore, 
a query is itself in a Horn clause form in which the head is empty.

A theorem is proved by contradiction, namely, the goal is to prove that H ∧ Q is inconsistent, imply-
ing that the result of successive resolutions involving the negated literals of Q inevitably—in the case 
of the propositional calculus—leads to falsity (i.e., the empty clause). In other words, if H implies the 
nonnegated Q is always true, then H and the negated Q are always false.

Consider, for example, the query date (oct, 15, 1996) in our introductory example. Its negation is not 
date (oct, 15, 1996). This resolves with the first rule yielding the bindings Month = oct, Day = 15, Year = 
1996. The resolvant is the disjunction not member (oct, [jan, march, may, july, aug, oct., dec]) or not 
comprised (15, 1, 31).

Although not elaborated here, the reader can easily find out that the successive resolutions using the 
definition of member will fail because oct is a member of the list of months containing 31 days. Similarly, 
day 15 is comprised between 1 and 31. Therefore, the empty (falsity) clause will be reached for both dis-
juncts of the resolvant.

In what follows, the resolution inference mechanism is applied to Horn clauses representing a 
PROLOG program. One concrete syntax for PROLOG rules is given by

<rule>::= <clause>. |<unit clause>.
<clause>::= <head>:- <tail>
<head>::= <literal>
<tail>::= <literal> {, <literal>}
<unit clause>::= <literal>

where the braces { } denote any number of repetitions (including none) of the sequence enclosed by the 
brackets <>. First consider the simplest case, where a literal is a single letter. For example, consider the 
following PROLOG program in which rules are numbered for future reference:

	 1.	 a:- b, c, d.
	 2.	 a:- e, f.
	 3.	 b:- f.
	 4.	 e.
	 5.	 f.
	 6.	 a:- f.

In the first rule, a is the <head>, and b, c, d is the <tail>, also called the body. The fourth and fifth rules 
are unit clauses; that is, the body is empty. A query Q is syntactically equivalent to a <tail>. For example, 
a, e. is a query and it corresponds to the Horn clause ¬a ∨ ¬e. The result of querying the program is one 
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(or multiple) yes or a single no answer indicating the success or failure of the query. In this particular 
example, the query a, e. yields two yes answers. Note that a is defined by three rules; the second and the 
third yield the two solutions; the first fails because c is undefined. The successful sequence of the list of 
goals is as follows:

Solution 1: a, e ⇒ e, f, e ⇒ f, e ⇒ e ⇒ nil;
Solution 2: a, e ⇒ f, e ⇒ e ⇒ nil.

Let us follow in detail the development of the second solution. The negated query not a or not e resolves 
with the sixth rule a or not f, yielding the resolvant not f or not e. Now the last expression is resolved 
with the f in the fifth rule, yielding not e as the resolvant. Finally, not e is resolved with the e in the 
fourth rule, yielding the empty clause, which implies the falsity of the negation of the query, using the 
program rules. The entire search space is shown in Figure 65.1 in the form of a tree. In nondeterministic 
algorithms, that tree is called the tree of choices. Its leaves are nodes representing failures or successes. 
The internal nodes are labeled with the list of goals that remain to be satisfied. Note that if the tree of 
choices is finite, the order of the goals in the list of goals is irrelevant insofar as the presence and number 
of solutions are concerned. Figure 65.2 shows a proof tree for the first solution of the example. The proof 
tree is an and tree depicting how the proof has been achieved.
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There are three ways of interpreting the semantics of PROLOG rules and queries. The first is based on 
logic, in this particular case on Boolean algebra. The literals are Boolean variables, and the rules express 
formulas. The PROLOG program is viewed as the conjunction of formulas it defines. The query Q suc-
ceeds if it can be implied from the program. In a second (called procedural) interpretation of a PROLOG 
rule, it is assumed that a <literal> is a goal to be satisfied. For example, the first rule states that

goal a can be satisfied if goals b, c, and d can be satisfied.

The unit clause states that the defined goal can be satisfied. The program defines a conjunction of goals 
to be satisfied. The query succeeds if the goals can be satisfied using the rules of the program. Finally, a 
third interpretation is based on the similarity between PROLOG rules and context-free grammar rules. 
A PROLOG program is associated with a context-free grammar in which a <literal> is a nonterminal 
and a <rule> corresponds to a grammar rule in which the <head> rewrites into the <tail>; a unit clause 
is viewed as a grammar rule in which a nonterminal rewrites into the empty symbol ε. Under this inter-
pretation, a query succeeds if it can be rewritten into the empty string.

Although the preceding three interpretations are all helpful in explaining the semantics of this sim-
plified version of PROLOG, the logic interpretation is the most widely used among theoreticians, and 
the procedural by language designers and implementors.

The algorithms that test if a query Q can be derived from a Horn clause program P can be classified 
in various manners. An analogy with parsing algorithms is relevant: P corresponds to a grammar G, 
and Q corresponds to the string (of nonterminals) to be parsed (i.e., the sequence of nonterminals that 
may be rewritten into the empty string using G). Backward-chaining theorem provers correspond to 
top-down parsers and are by far the preferred approach presently used in LP. Forward-chaining provers 
correspond to bottom-up parsers. Hybrid algorithms have also been proposed.

In a top-down algorithm, the list of goals in a query is examined from left to right, and the cor-
responding (recursive) procedures are successively called the equivalent of resolution, until the list of 
goals becomes empty. Note that the algorithm is essentially nondeterministic because there are usually 
several choices for the goals (see rules 1 and 2). Another nondeterministic choice occurs when selecting 
the (next) element of the list of goals to be considered after processing a goal.

Notice that if one had a program consisting of the sole rule a:- a. and the query a, the top-down 
approach would not terminate. The program states that either a or ¬a is true. Because the query does not 
specify a, it could be either true or false. A semantically correct interpreter should provide the follow-
ing constraints as answers a = true or a = false. PROLOG programmers have learned to live with these 
unpalatable characteristics of top-down provers.

f
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Proof tree for the query a, e

FIGURE 65.2  Proof tree.
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Contrary to what usually happens in parsing, bottom-up provers can be very inefficient unless the 
algorithm contains selectivity features that prevent the inspection of dead-end paths. In the case of 
database (DB) applications, the bottom-up approach using magic sets has yielded interesting results 
(Minker 1987).

Also note the correspondence between nondeterministic grammars and nondeterministic PROLOG 
programs. In many applications the programs can be made deterministic and therefore more efficient. 
However, ambiguous grammars that correspond to programs having multiple solutions are also useful 
and therefore nondeterminism has its advantages.

65.5.2  Unification

The operation of unification is akin to that of pattern matching. Robinson’s unification algorithm brings 
rigor to the notion of pattern matching, and it has a deep meaning: it replaces a set of fairly intri-
cate predicate calculus axioms specifying the equality of trees by an efficient algorithm, which is easily 
implementable in a computer. As mentioned earlier, unification can be viewed as a very general match-
ing of actual and formal parameters.

From the logic point of view, unification is used in theorem proving to equate terms that usually 
result from the elimination of existential quantifiers when placing a predicate calculus formula in 
clausal form.

For example,

∀ X ∃ Y such that p(X, Y) is always true

is replaced by

∀ X p(X, g(X))

where g(x) is the Skolem function for y (sometimes referred to as an uninterpreted function symbol). 
The role of unification is to test the equality of literals containing Skolem functions and, in so doing, 
bind values to variables.

Consider, for example, the statement “for all positive integer variables X there is always a variable 
Y representing the successor of X.” The predicate p expressing this statement is p(X, s(X)):- integer(X), 
where s(X) is the Skolem function representing Y, the successor of X. This representation is commonly 
used to specify positive integers from a theoretical perspective. (It is called a Peano representation of 
integers (e.g., s(s(0)) represents the integer 2).)

To show the effect of unification, the definition of a literal in the previous subsection on resolution is 
now generalized to encompass labeled tree structures.

<literal>::= <composite>
<composite>::= <functor>(<term>{, <term>}) | <functor>
<functor>::= <lower case identifiers>
<term>::= <constant> | <variable> | <composite>
<constant>::= <integers and lower case identifiers>
<variable>::= <identifiers starting with an upper case letter or_ >

Examples of terms are constant, Var, 319, line(point(X, 3), point (4, 3)). It is usual to refer to a single 
rule in a PROLOG program as a clause. A PROLOG procedure (or predicate) is defined as the set of 
rules whose head has the same <functor> and arity. Unification tests whether two terms T1 and T2 can 
be matched by binding some of the variables in T1 and T2. The simplest algorithm uses the rules sum-
marized in Table 65.1 to match the terms. If both terms are composite and have the same <functor>, it 
recurses on their components. This algorithm only binds variables if it is absolutely necessary, so there 
may be variables that remain unbound. This property is referred to as the most general unifier (mgu).
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One can write a recursive function unify, which, given two terms, tests for the result of unification using 
the contents of Table 65.1. The unification of the two terms f(X, g(Y), T) and f( f(a, b), g( g(a, c), Z)) suc-
ceeds with the following bindings X = f(a, b), Y = g(a, c), and T = Z. Note that if one had g (Y, c) instead 
of g(a, c) in the second term, the binding would have been Y = g(Y, c).

PROLOG interpreters would usually carry out this circular binding but would soon get into dif-
ficulties because most implementations of the described unification algorithm cannot handle circular 
structures (called infinite trees). Manipulating these structures (e.g., printing, copying) would result 
in an infinite loop unless the so-called occur check was incorporated to test for circularity. This is an 
expensive test: unification is linear with the size of the terms unified, and incorporation of the occur 
check renders unification quadratic.

There are versions of the unification algorithm that use a representation called solved form. Essentially, 
new variables are created whenever necessary to define terms, for example, the system

	 X f X g X X X g X X1 2 3 2 5 4 2= =( , ( , )) ( , )

A solved form is immediately known to be satisfiable because X2, X3, and X4 can be bound to any terms 
formed by using the function symbols f and g and again replacing (ad infinitum) their variable argu-
ments by the functions f and g. This is called an element of the Herbrand universe for the given set of 
terms. The solved form version of the unification algorithm is presented by Lassez in Minker (1987).

To further clarify the notion of solved forms, consider the equation in the domain of reals specified 
by the single constraint X + Y = 5. This is equivalent to X = 5 − Y, which is in solved form and satisfiable 
for any real value of Y. Basically a constraint in solved form contains definitions in terms of free vari-
ables, that is, those that are not constrained. This form is very useful when unification is extended to be 
applicable to domains other than trees. For example, linear equations may be expressed in solved form.

65.5.3  Combining Resolution and Unification

Consider now general clauses in which the literals contain arguments that are represented by terms. The 
result of resolving

p(…) ∨ r(…)

with

¬p(…) ∨ s(…)

is

r(…) ∨ s(…)

TABLE 65.1  Summary of Tests for the Unification of Two Terms

Terms 1↓, 2→
<constant>

C2
<variable>

X2
<composite>

T2

<constant> succeed if succeed with fail
C1 C1 = C2 X2 = C1
<variable> succeed with succeed with succeed with
X1 X1 = C2 X1 = X2 X1 = T2
<composite> fail succeed with succeed if
T1 X2 = T1 (1) �T1 and T2 have the same 

functor and arity
(2) �The matching of corresponding 

children succeeds
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if and only if the arguments of p and ¬p are unifiable and the resulting variables are substituted in the 
corresponding arguments of r and s.

Using programming language terminology, the combination of resolution and unification corre-
sponds to a Boolean function call in which a variable in the head of a rule is matched (i.e., unified) with 
its corresponding actual parameter; once this is done, the value to which the variable is bound replaces 
the instances of that variable appearing in the body. Note that a variable can be bound to another vari-
able or to a complex term. Remark also that when unification fails, another head of a rule has to be tried 
and so on. For example, consider the query p(a) and the program

p(b).
p(X): − q(X).
q(a).

The first unification of the query p(a) with p(b) fails. The second attempt binds X to a starting a search 
for q(a) that succeeds. Had the query been p(Y), the two solutions would be Y = b or Y = a. The first solu-
tion is a consequence of the unit clause p(b); the second follows from binding Y to a (new) variable X in 
the second clause. A search is then made for q(X), which succeeds with the last clause, therefore binding 
both Y and X to a.

From a logical point of view, when the result of a resolution is the empty clause (corresponding to 
the head of a rule with an empty body) and no more literals remain to be examined, the list of bindings 
is presented as the answer, that is, the bindings (constraints) that result from proving that the query is 
deductible from the program.

65.6  Procedural Interpretation: Examples

It is worthwhile to first understand the importance of the procedure append as used in symbolic functional 
languages. In PROLOG the word procedure is a commonly used misnomer because it always corresponds 
to a Boolean function, as mentioned in the introductory example; append is often used to concatenate 
two lists. Because one has to avoid destructive assignments, which have very complex semantic meaning, 
append resorts to copying the first list to be appended and making its last element point to the second list. 
This preserves the original first list. It should be kept in mind that the avoidance of a destructive assign-
ment forces one to produce results that are constructed from a given data using a LISP-like cons. Notice 
that LP also avoids destructive assignment by having variables bound only once during unification.

This section first demonstrates the transformation of a functional specification of append into its 
PROLOG counterpart corresponding to the previous clauses. Examples of inventive usage of append are 
then presented to further illustrate the procedural interpretation of logic programs. Consider the LISP-
like function append that concatenates two lists, L1 and L2:

function append(L1, L2: pLIST): pLIST;
if L1 = nil then append: = L2

else append: = cons (head (Ll), append (tail (Ll), L2));

In the preceding display, L1 and L2 are pointers to lists; a list is a record containing the two fields head 
and tail, which themselves contain pointers to other lists or to atoms. The tail must point to a list or to 
the special atom nil. The constructor cons (H, T) creates the list whose head and tail are, respectively, 
H and T. The function append can be rewritten into a procedure having an explicit third parameter L3 
that will contain the desired result. The local variable T is used to store intermediate results:

procedure append (Ll, L2: pLIST: var L3: pLIST);
begin local T: pLIST;
if L1 = nil then L3: = L2

else begin append(tail (Ll), L2, T); L3:= cons(head(Ll), T) end
end
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The former procedure can be transformed into a Boolean function that, in addition to building L3, 
checks if append produces the correct result.

function append(Ll, L2: pLIST: var L3: pLIST): Boolean;
begin local H1, T1, T: pLIST;

if L1 = nil then begin L3:= L2; append:= true end
else if {There exists an H1 and a T1 such that

H1 = head(L1) and T1 = tail(L1)}
then begin append:= append(T1, L2, T); L3:= cons(H1, T) end
else append:= false

end

The Boolean in the conditional surrounded by braces has been presented informally, but it could actu-
ally have been programmed in detail. Note that the assignments in the preceding program are executed 
at most once for each recursive call. The function returns false if L1 is not a list (e.g., if L1 = cons(a, b) for 
some atom b ≠ nil).

One can now transform the last function into a PROLOG-like counterpart in which rules of assignments 
and conditionals are subsumed by unification and specified by the equality sign. The statement E1 = E2 suc-
ceeds if E1 and E2 can be matched. In addition, some of the variables in E1 and E2 may be bound if necessary:

append(L1, L2, L3) is true if L1 = nil and L3 = L2
otherwise

append(L1, L2, L3) is true
if L1 = cons(H1, T1) and append(T1, L2, T) and L3 = cons(H1, T)

otherwise append is false.

The reader can now compare the preceding results with the previous description of the subset of 
PROLOG. This comparison yields the PROLOG program

append(L1, L2, L3):- L1 = nil, L3 = L2.
append(L1, L2, L3):- L1 = cons(H1, T1), append(T1, L2, T), L3 = cons (H1, T).

This version is particularly significative because it clearly separates resolution from unification. In this 
case, the equality sign is the operator that commands a unification between its left and right operands.

This could also be done using the unit clause unify (X, X) and substituting L1 = nil by unify (Ll, nil), 
and so on. Replacing L1 and L3 with their respective values on the right-hand side of a clause, one 
obtains the following:

append(nil, L2, L2).
append(cons(H1, T1), L2, cons(H1, T)):- append (T1, L2, T).

The explicit calls to unify have now been replaced by implicit calls that will be triggered by the PROLOG 
interpreter when it tries to match a goal with the head of a rule. Notice that a <literal> now becomes a 
function name followed by a list of parameters, each of which is syntactically similar to a <literal>. In 
the predicate calculus, the preceding program corresponds to the following:

∀ L2 append (nil, L2, L2).
∀ H1, T1, L2, T append(cons(H1, T1), L2, cons(H1, T)) ∨¬ append(T1, L2, T)

A word of caution about types is in order. The preceding version of append would produce a perhaps 
unwanted result if the list L2 is a term, say g(a). For example, append(nil, g(a), Z) would yield as result 
Z = g(a). To ensure that this result would not be considered valid, one would have to make explicit the 
calls to functions that test if the two lists to be appended are indeed lists, namely,

is–a–list (nil).
is–a–list (cons(H, T)):- is–a–list (T).
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The Edinburgh PROLOG representation of cons(H, T) is [H|T], and nil is [ ]. The Marseilles counter-
parts are H.T and nil. In the Edinburgh dialect, append is presented by

append([ ], L2, L2).
append([H1|T1], L2, [H1|T]):- append(T1, L2, T).

The query applicable to the program that uses the term cons is append (cons(a, cons(b, nil)), cons(c, 
nil), Z), and it yields Z = cons(a, cons(b, cons(c, nil))). In the Edinburgh PROLOG, the preceding query 
is stated as append([a, b], [c], Z), and the result becomes Z = [a, b, c].

A remarkable difference between the original PASCAL-like version and the PROLOG version of 
append is the ability of the latter to determine (unknown) lists that, when appended, yield a given list as 
a result. For example, the query append(X, Y, [a]) yields two solutions: X = [ ] Y = [a] and X = [a] Y = [ ].

The preceding capability is due to the generality of the search and pattern-matching mechanism 
of PROLOG. An often-asked question is: Is the generality useful? The answer is definitely yes! A few 
examples will provide supporting evidence. The first is a procedure for determining a list LLL, which is 
the concatenation of L with L the result itself being again concatenated with L:

triple(L, LLL):- append(L, LL, LLL), append(L, L, LL).

Note that the first append is executed even though LL has not yet been bound. This amounts to copy-
ing the list L and having the variable LL as its last element. After the second append is finished, LL is 
bound, and the list LLL becomes fully known. This property of postponing binding times can be very 
useful. For example, a dictionary may contain entries whose values are unknown. Identical entries will 
have values that are bound among themselves. When a value is actually determined, all communally 
unbound variables are bound to that value.

Another interesting example is sublist(X, Y), which is true when X is a sublist of Y. Let U and W be the 
lists at the left and right of the sublist X. Then the program becomes

sublist(X, Y):- append(Z, W, Y), append(U, X, Z).

where the variables represent the sublists indicated as follows:

	

U X W

Y

Z

An additional role for append is to simulate the behavior of member as used in the introductory example. 
One could state that member(X, L):- append(Start, [X|End], L). in which Start and End are variables rep-
resenting lists, which, when surrounding X, produce L. This approach is expensive because it may use a 
quadratic number of conses.

A final example is a bubblesort program. The specification of two adjacent elements A and B in a list 
L is done by a call:

append(_, [A, B | _], L)

The underscores stand for different variables whose names are irrelevant to the computation, and the 
notation [A, B | C] stands for cons(A, cons(B, C)). The rules to bubblesort then become

bsort(L, S):- append (U, [A, B | X], L), B < A, append (U, [B, A | X], M), bsort(M, S).
bsort(L, L).

The first append generates all pairs of adjacent elements in L. The literal B < A is a built-in predicate that 
tests whether B is lexicographically smaller than A. (Note that both A and B must be bound, otherwise 
a failure occurs! There will be more discussion of this limitation later.) The second append reconstructs 
the modified list, which becomes the argument in a recursive call to bsort. If the first clause is no longer 
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applicable, then all pairs of adjacent elements are in order, and the second clause then provides the 
desired result. This version of bubblesort is space and time inefficient because U, the initial segment of 
the list, is copied twice at each level of recursion. However, the brevity of the program is indicative of the 
savings that can be accrued in programming and debugging. It should be now clear to the reader that 
the translation of a functional program into its PROLOG counterpart is easily done, but the reverse 
translation becomes more difficult because the functional program has to simulate nondeterminism 
and backtracking.

A unique property of some PROLOG programs is their ability to perform inverse computations. For 
example, if p(X, Y) defines a procedure p taking an input X and producing an output Y, it can (in certain 
cases) determine which input X produces Y. Therefore, if p is a differentiation program, it can also per-
form integration. This is easier said than done, because the use of impure features and simplifications 
may result in operations that are not correctly backtrackable.

The inverse computation of parsing is string generation, and parsers are now available to perform 
both operations. A compiler carefully written in PROLOG can also be useful in decompiling. The dif-
ficulties encountered in doing the inverse operations are frequently due to the use of impure features.

65.7  Impure Features

In the previous sections, the so-called pure features of PROLOG were described, namely, those that 
conform with the logic interpretation. A few impure features have been added to the language to make 
its use more practical. (This situation parallels the introduction of setq, rplaca, and other impure LISP 
functions.) However, a word of warning is in order. Some of these impure features vary from one imple-
mentation to another (O’Keefe, 1990 is an excellent reference on extralogical features).

The most prominent of these impure features is the cut, represented by an exclamation point. Its pur-
pose is to let the programmer change the search control mechanism embodied by the procedure solve 
in Figure 65.3. Reconsider the example in Section 65.5. Assuming that a:- b, !, c, d., then in the forward 
mode, b, c, and d would, as before, be placed in the list of goals and matched with heads of clauses in 
the DB. If, however, a goal following the cut fails (e.g., c, or d), then no further matching of clauses defin-
ing a or b would take place. The cut is often used to increase the efficiency of programs and to prevent 
the consideration of alternate solutions. PROLOG purists avoid the use of cuts.

Another useful predicate is fail, which automatically triggers a failure. To implement it, one simply 
forbids its presence in the DB. Other built-in predicates that need to be introduced are the input–output 
commands read and write.

Once cut and fail are available, negation by failure is accomplished by the clauses:

not(X):- X, !, fail.
not(X).

which fails if X succeeds and vice versa. It is important to note that this artifice does not always follow 
the rules of true negation in logic. This version of negation illustrates that a term in the head of a rule can 
appear in the body as a call to a function; therefore, in PROLOG, program and data have the same form.

procedure solve. L: pLIST/;
    begin local i: integer;
   if L ≠ nil
      then
      for i := 1 to n do
         if match(head(Rule[i]), head(L)) then
            solve(append(tail(Rule[i]), tail(L)));
       else write (‘yes’)
    end;

FIGURE 65.3  An initial version of the interpreter.
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The built-in predicates assert and retract are used to add or remove a clause from the DB; they are 
often used to simulate assignments. For example, the unit clause value (Variable, Value). can be asserted 
using bound parameters (e.g., value[Z, 37]); it can be subsequently retracted to change the actual Value, 
and then reasserted with a new value. Another use of assert and retract is associated with the built-in 
function setof that collects the multiple answers of a program and places them in a list.

The assignment is introduced using a built-in binary infix operator such as is. For example, Y is X + 1 
is only valid if X has been bound to a number in which case the right-hand side is evaluated and unified 
with Y; otherwise the is fails. To have a fully backtrackable addition, one would have to use CLP. Note 
that I = I + 1 is invalid in CLP, as it should be. The equality Z = X + Y in CLP is, of course, valid with 
some or all variables unbound.

65.8  Constraint Logic Programming

Major extensions of the unification component of PROLOG became very significant and resulted 
in a new area of LP called constraint logic programming or CLP. It may well have had its roots in 
Colmerauer’s approach in generalizing the unification algorithm by making it capable of determining 
the satisfiability of equalities and disequalities of infinite trees (these are actually graphs containing 
special loops.) However, the notion of backpropagation (Sussman and Steele) dates back to the 1970s. In 
the case of PROLOG, the backtracking mode is triggered only in the case of unsatisfiability of a given 
unification. A logical extension of this approach is to make similar backtracking decisions for other 
(built-in) predicates, say, inequalities (i.e., ≤, ≥,…) in the domain of rationals.

The first CLP example presented here is the classic program for computing Fibonacci series. Before 
presenting the program, it is helpful to consider the program’s PROLOG counterpart (the annotation is 
corresponds to an assignment and it has been discussed in Section 65.7):

fib(0,1).
fib(1,1).
fib(N, R):- N1 is N − 1.

fib(N1, R1),
N2 is N − 2,
fib(N2, R2),
R is R1 + R2.

The is predicate prevents the program from being invertible: the query fib (10, X) succeeds in producing 
X = 89 as a result, but the query fib (Y, 89) yields an error because N is unbound and the assignment to 
N1 is not performed. Note that if we had placed the predicate N1 ≥ 2 prior to the first recursive call, the 
query fib (Y, 89) would also lead to an error, because the value of N is unbound and the test of inequality 
cannot be accomplished by the PROLOG interpreter.

The modified CLP version of the program illustrates the invertibility capabilities of CLP interpreters 
(N ≥ 2 is a constraint):

fib(0,1).
fib(1,1).
fib(N, R1 + R2):- N ≥ 2,

fib(N − 1, R1),
fib(N − 2, R2).

The query ?− fib(10, Fib) yields Fib = 89, and the query ?− fib(N, 89) yields N = 10. The latter result 
is accomplished by solving systems of linear equations and in equations that are generated when an 
explicit or implicit constraint must be satisfied. In this example, the matching of actual and formal 
parameters results in equations. Let us perform an initial determination of those equations. The 
query ?− fib (N, 89) matches only the third clause. New variables R1 and R2 are created as well as the 
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constraint R1 + R2 = 89. The further constraint N >= 2 is added to the list of satisfiable constraints, 
which are now R1 + R2 = 89 and N >= 2.

The recursive calls of fib generate further constraints that are added to the previous ones. These are 
N1 = N − 1, N2 = N − 2, and so forth. Recall that each recursive call is equivalent to a call by value in 
which new variables are created and new constraints are added (see the section on Implementation).

Therefore, unification is replaced by testing the satisfiability of systems of equations and inequa-
tions. A nontrivial implementation problem is how to determine if the constraints are satisfiable, only 
resorting to expensive general methods such as Gaussian elimination and the simplex method as a last 
resource.

The second example presented is a sorting program. For the purposes of this presentation, it is 
unnecessary to provide the code of this procedure (Sterling and Shapiro 1994); qsort(L, S) sorts an 
input list L by constructing the sorted list S. When L is a list of variables, a PROLOG interpreter would 
fail because unbound variables cannot be compared using the relational operator ≤. In CLP, the 
query ?− qsort([X1, X2, X3], S). yields as result S = [X1, X2, X3], X1 ≤ X2, X2 ≤ X3. When requested to 
provide all solutions, the interpreter will generate all of the permutations of L as well as the applicable 
constraints.

Jaffar and Lassez (1987) proved that the theoretical foundations of LP languages (see Section 65.11) 
remain valid for CLP languages. Several CLP languages are now widely used among LP practitioners. 
Among them one should mention PROLOG III and IV designed by the Marseilles group, CLP(R) 
designed in Australia and at IBM, CHIP created by members of the European Research Community, 
and CLP (BNR) designed in Canada at Bell Northern Research.

The subsequent summary describes the main CLP languages and their domains:

PROLOG IV: trees, reals, intervals, linear constraints, rationals, finite domains (including Booleans), 
strings

CLP(R): trees, linear constraints, floating-point arithmetic
CHIP: trees, linear constraints, floating-point arithmetic, finite domains
CLP(BNR): trees, intervals

The languages considering intervals (defined by their lower and upper bounds) deal with numeric non-
linear constraints; symbolic linear constraints are handled by the first three languages. (Additional 
information about interval constraints is provided in Section 65.14.)

65.9 R ecent Developments in CLP (2002)

The single most important development in CLP is its amalgamation with an area of artificial intelligence 
(AI) that has been consistently explored since the late 1970s, namely, constraint satisfaction problems 
or CSPs. This merging has shown to be very fruitful because the two areas CLP and CSP share many 
common goals, such as concise declarative statements of combinatorial problems and efficient search 
strategies. In addition, the new combined areas benefit from research that has been done for decades in 
the field of operations research (OR).

The following subsections summarize the recent developments under the umbrella of the CLP–CSP 
paradigms. Highly recommended material has appeared in the textbook by Marriot and Stuckey (1998) 
and in the survey by Rossi (2000). Research articles have been published in the proceedings of the con-
ferences on principles and practice of constraint programming held in 2002 (Van Hentenryck 2002).

65.9.1  CSP and CLP

Consider a set of constraints C containing a set of variables xi; the xi‘s are defined in their respective 
domains Di. Usually, Di is a finite set of integers. A CSP involves assigning values to the variables so that 
C is satisfied. CSP is known to be an NP-complete problem (see Chapter 5 of this handbook).
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Consider now the cases where the constraints C are (1) unary, that is, they contain a single variable 
(e.g., x > 0), and (2) binary, that is, they contain two variables (e.g., x2 + y = 92) and so forth. It is pos-
sible to specify a set of constraints by an undirected graph whose nodes designate each variable and an 
edge specifies a constraint that is applicable between any two variables. This is often called a constraint 
network. The notions of node consistency, arc consistency, and path consistency follow from the previ-
ous concepts. Furthermore, one can also illustrate the concept of constraint propagation, also called 
narrowing: it amounts to deleting from a given domain the values that do not satisfy the constraints 
being specified. More specifically node consistency consists of considering each node of the constraint 
graph and its associated unary constraints and performing a narrowing: let c(xi) be the unary constraint 
applicable to node xi; then the values satisfying not (c(xi)) are deleted from Di.

Arc consistency consists of considering each edge, the associated binary constraint, and performing 
a narrowing. In the binary case, the constraints are c(xi, xj) and the values satisfying not (c(xi, xj)) are 
deleted from Di and Dj.

The previous text can be generalized to define k-consistency by considering constraints involving k 
variables (the case k = 3 is called path consistency, and k > 3 hyper-arc consistency).

One should view node and arc consistency as preprocessing the domains of a set of variables in an 
attempt to eliminate unfeasible values. How much narrowing can be accomplished depends on the con-
straint problem being considered. However, if after narrowing there remain no feasible values specified 
for one or more variables, then there is obviously no solution to the given set of constraints.

It is straightforward to write a CLP program that, given the unary and binary constraints pertaining 
to a problem, would attempt to reduce the domains of its variables. Then one could check if any of the 
domains becomes empty thus determining that the given constraints are unfeasible. Note that if there is 
a single value remaining in a domain, then one could replace the corresponding variable by its value and 
reattempt narrowing using node and arc consistency in the reduced constraint network. This is a typi-
cal situation that can occur in many constraint domains, including the case of systems of linear equa-
tions and inequations. To further narrow the values of the variables, one could resort to k-consistency. 
However, it can be shown that for k greater or equal to three, the consistency check is itself exponential. 
Therefore, one has to ask the following question: Is it worth to attempt further narrowing, known to be 
computational expensive and possibly fruitless, or should one proceed directly to an exhaustive search 
and determine if a given CSP is satisfiable or not? The answer is, of course, problem dependent.

Another type of narrowing occurs when dealing with interval constraints, those whose variables are 
integers or floating-point numbers defined within lower and upper bounds. Whenever an arithmetic 
expression is evaluated, the variables’ bounds may narrow according to the operations being performed. 
This is called bound consistency, and as in the case of other types of consistencies, it is incomplete: failures 
may be detected (e.g., if the upper bound becomes lower than the lower bound), but bounds may remain 
unchanged. In those cases, splitting the intervals is the only resource in attempting to solve an interval 
constraint problem.

Much of the effort in CSP has been done in pruning the search tree by avoiding backtracking as much 
as possible. The reader is referred to Chapters 63 and 67 for details on how pruning can be accomplished.

65.9.2  Special Constraints

One can distinguish two kinds of special constraints: the first, called global constraints, are very use-
ful in solving OR problems; the second, quadratic constraints, can be viewed as an effort to widen the 
scope of linear constraints without resorting to methods for handling general nonlinear constraints 
(e.g., interval constraints in Section 65.14.3).

Global constraints are essentially consistency constraints involving many variables and are imple-
mented using specific and efficient algorithms. They perform the narrowing to each variable given 
as a  parameter. A typical example is the predicate all_different, having n variables as parameters; 
all_different only succeeds if all its variables are assigned different values within a given domain.
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Another useful global constraint is cumulative. Its parameters specify (1) the possible starting times 
for n tasks; (2) their durations; (3) the resources, machines, or personnel needed to perform each task; 
and (4) the total resources available. This constraint has proven its usefulness in large scheduling 
problems.

Algorithms for solving linear equations and inequations have been thoroughly studied in algebra and 
in OR. The latter field has also evidenced significant interest in quadratic programming, whereby one 
extends the notion of optimality to quadratic objective functions.

A way of handling quadratic constraints is through the use of interval constraints and linearization, 
followed by multiple applications of the simplex method. More specifically, one can attempt to linearize 
quadratic terms by introducing new variables and finding their minimal and maximal values using the 
classic simplex algorithm. This process is repeated until convergence is reached. (See paper by Lebbah 
et al. in Van Hentenryck (2002).) Therefore, quadratic constraints can be viewed as a variant of global 
constraints. An earlier interesting algebraic approach to quadratic constraints is described in Pesant 
and Boyer (1994).

65.9.3  Control Issues

In LP or CLP, one has limited control of control viewed as a component of the pseudo-equations LP = 
logic + control or CLP = constraints + control. In the LP–CLP paradigm, control is achieved through 
(1) ordering of rules, (2) ordering of predicates on the right-hand side of a rule, (3) usage of the cut or spe-
cial predicates like freeze, and (4) metalevel interpretation. Most processors for LP–CLP utilize a rather 
rigid, depth-first, top-down search. (A notable exception is the XSB (Stony Brook) PROLOG processor 
that uses a tabling approach.)

The issues of backtracking and control have been more thoroughly investigated in CSP than in 
LP–CLP. This is not surprising because general LP–CLP processors usually utilize a fixed set of 
strategies. Control in CSP is achieved through (1) ordering of variables, (2) ordering of the values 
to be assigned to each variable, (3) deciding how much backtracking is performed before resuming 
a forward execution, and (4) utilizing information gathered at failure states to avoid them in future 
searches.

In CSP processors, efforts have been made to have language constructs that specify various control 
strategies available to a user. These have been called indexicals and dictate the order in which various 
alternative narrowing methods are applied.

A trend in control strategies is to use stochastic searches: random numbers and probability criteria 
are used to select starting nodes of the search tree; information gathered at failure states is also used 
to redirect searches. Stochastic searches are not complete (i.e., they do not ensure a solution if one 
exists). Therefore, one must specify a limited time for performing random searches; once that time is 
reached, the search can restart using new random numbers and information gathered in previous runs. 
Stochastic searches have proven highly successful in dealing with very large CSP.

Frequently, problems expressed as CSP have multiple successful and unsuccessful situations that are 
symmetric. The goal of symmetry breaking is to bypass searches that, due to the symmetrical nature of a 
problem, are uninteresting to pursue. A typical example is the n-queens problem in which a multitude of 
equivalent symmetrical solutions are found but have to be discarded; the same occurs with unsuccessful 
configurations that have already been proven to yield no solutions.

65.9.4  Optimization

CSP may have a large number of valid solutions. This parallels the situation where LP–CLP processors 
are used to solve combinatorial problems. In those cases, it is important to select one or a few among 
multiple solutions by specifying an objective function that has to be maximized or minimized. In the 
case of finite domains or interval constraints, one may have to resort to exhaustive searches.
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For interval constraints, this amounts to splitting a given interval into two or more subintervals. 
When dealing with small finite domains, one may have to explore each possible value within the domain. 
The reader is referred to Chapters 15 and 63 of this Handbook where searches and combinatorial opti-
mization are covered in greater detail. In particular, the branch-and-bound strategies are often used in 
CSP with objective functions. In the CLP paradigm, it is often up to the user to perform optimization 
searches by developing specific programs.

65.9.5  Soft Constraints

It is not uncommon that, in trying to establish a set of constraints, one is confronted with an overcon-
strained configuration that is unsatisfiable. It is then relevant to attempt to modify certain constraints 
so that the system becomes satisfiable.

There are several criteria for “relaxing” an overconstrained system. In general, those criteria involve 
some sort of optimization; for example, one may choose to violate the least number of individual con-
straints. Another possibility is to assign a weight to each constraint, specifying the tolerated “degree of 
unsatisfaction.” In that case, one minimizes some function combining those specified weights.

Alternatively, one can assign probabilities to the desirability that a given constraint should be satis-
fied and then maximize a function expressing the combined probability for satisfying all the constraints 
(this is referred to as fuzzy constraints).

The usage of “preferences” is another way of loosening overconstrained systems. Consider, for exam-
ple, the case of the n-queens problem: one may wish to allow solutions that accept attacking queens pro-
vided they are far apart. Whenever there are solutions with non-attacking queens, those are preferred 
over the ones having attacking but distant queens. Preferences are specified by an ordering stipulating 
that constraint C1 is preferable to constraint C2 (e.g., C1 > C2).

A work in the area of soft constraints provides a general framework for relaxing overconstrained 
systems (see Bistarelli et al. in Van Hentenryck, 2002). That framework ensures that if certain algebraic 
(semiring) properties are respected, one can define soft constraints expressing most variants of the pre-
viously illustrated constraint relaxation approaches.

65.9.6  Satisfiability Problems

The satisfiability problem can be described as follows: given a Boolean formula B with n variables, are 
there true or false assignments to the variables that render B true? (see Chapters 6 and 66 for further 
details.) It is usual to have B expressed in conjunctive normal form (CNF), consisting of conjunctions of 
disjunctions of variables or their negations.

Boolean formulas in CNF can be further transformed into equivalent ones whose disjunctions contain 
three variables negated or not or the constants true and false. That variant of the satisfiability problem 
is known as 3SAT and enjoys remarkable properties. The class NP-complete (see Chapter 6) congregates 
combinatorial problems that can be reduced to SAT problems in polynomial time. Therefore, 3SAT can 
be viewed as a valid standard for studying the practical complexity of hard problems. Furthermore, it is 
possible to show that 3SAT problems can be transformed into CSP.

Consider a random 3SAT problem with n variables and m clauses. It is intuitive to check that when n is 
large and m is small, the likelihood of satisfiability is high. On the other hand, when m is large and n is small, 
that likelihood is low. The curve expressing the ratio m/n versus the probabilities of satisfaction consists of 
two relatively flat horizontal components indicating high or low probabilities of satisfaction.

It has been empirically determined that in the region around m/n = 4.5, the curve decreases sharply; 
problems in that region have around 50% probability of being satisfiable. These are the computationally 
intensive problems for 3SAT. The problems where m/n is small or large are in general easily solvable.

The implication of this result is that there are “islands of tractability” within very hard problems. From 
a theoretical viewpoint, 2SAT is polynomial and the determination of other tractability islands remains 
of great interest. Unfortunately, the transformation of an NP-complete problem into 3SAT distorts the 
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corresponding values of the m/n ratio. It has become important to find the boundaries of individual NP 
problems that allow their solutions using inexpensive, moderate, or expensive computational means.

The term phase transition establishes an analogy between algorithmic complexity and the physical 
properties of matter where temperatures and pressures are used to distinguish gaseous, liquid, and solid 
forms of states. Finding the boundary values delimiting regions of computational easiness and difficulty 
has become one of the important aims of CSP.

65.9.7  Future Developments

The novel and valuable future developments in CLP–CSP appear to be oriented in melding machine 
learning and data-mining approaches to the existing models. These developments parallel those that 
have occurred in the area of inductive logic programming (ILP) vis-a-vis LP. In ILP, Prolog programs 
are generated from positive and negative examples (Muggleton 1991, Bratko 2001).

In the case of CLP–CSP, the major question becomes: Can constraints be learned or inferred from 
data? If that is the case, then probabilistic or soft constraints are likely to play important roles in provid-
ing answers to that quest.

65.10 A pplications

The main areas in which LP and CLP have proven successful are summed up in the following:

Symbolic manipulation. Although LISP and PROLOG are currently the main languages in this area, it is 
probable that a CLP language may replace PROLOG in the next few years. There is a close relationship 
between the aims of CLP and symbolic languages such as MAPLE, MATHEMATICA, and MACSYMA.

Numerical analysis and OR. The proposed CLP languages allow their users to generate and refine hun-
dreds of equations and inequations having special characteristics (e.g., the generation of linear equa-
tions approximating Laplace’s differential equations). The possibility of expressing inequations in a 
computer language has attracted the interest of specialists in OR. Difficult problems in scheduling have 
been solved using CLP in finite domains.

Combinatorics. Nondeterministic languages such as PROLOG have been successful in the solution 
of combinatorial problems. The availability of constraints extends the scope of problems that can be 
expressed by CLP programs.

Artificial intelligence applications. Boolean constraints have been utilized in the design of expert systems. 
Constraints have also been used in natural language processing and in parsing. The increased potential 
for invertibility makes CLP languages unique in programming certain applications. For example, the 
inverse operation of parsing is string generation.

Deductive databases. These applications have attracted a considerable number of researchers and develop-
ers who are now extending the DB domains to include constraints. The language DATALOG is the main 
representative, and its programs contain only variables or constants (no composite terms are allowed).

Engineering applications. The ease with which CLP can be used for generating and refining large num-
bers of equations and inequations makes it useful in the solution of engineering problems. Ohm’s and 
Kirchhoff’s laws can readily be used to generate equations describing the behavior of electrical circuits.

65.11 T heoretical Foundations

This section provides a summary of the fundamental results applicable to logic programs (Apt 1990, 
Lloyd 1987). It will be shown later that these results remain applicable to a wide class of constraint 
logic programs.
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The semantics of LP and CLP are usually defined using either logic or sets. In the logic approach, one 
establishes that given both (1) a Horn clause program P and (2) a query Q, Q can be shown to be a conse-
quence of P. In other words, ¬P ∨ Q is always true, or equivalently, using contradiction, P ∧ ¬Q is always 
false. This relates the logical and operational meaning of programs; that is, that Q is a consequence of P 
can be proved by a resolution-based breadth-first theorem prover. (This is because a depth-first prover 
could loop in trying to determine a first solution, being therefore incapable of finding other solutions 
that may well exist.)

Logic-based semantics are accomplished in two steps. The first considers that a program yields a 
yes answer. In that case, the results (i.e., the bindings of variables to terms as the result of successive 
unifications) are the constraints that P and Q must satisfy so that Q becomes deducible from P. This is 
accomplished by Horn clause resolutions that render P ∧ ¬Q unsatisfiable.

The second step of the proof is concerned with logic programs that yield a no answer and therefore 
do not specify bindings or constraints. In that case, it becomes important to make a stronger statement 
about the meaning of a clause.

Recall that in the case of yes answers, a Horn clause specifies that the Head is a consequence of the 
Body or equivalently that the Head is true if the Body is true. In the case of a no answer, the so-called 
Clark completion becomes applicable. That means that the Head is true if and only if the Body is true. 
Then the semantics of programs yielding a no answer amount to proving that not Q is a consequence of 
the completion of P. This amounts to considering the implication in Body implies Head in every clause 
of P as being replaced by Body equivalent to Head.

It should be noted that the preceding results are only applicable to queries that do not contain logic 
negation. For example, the query ¬ date (X, Y, Z) in the introductory example is invalid because a nega-
tive query is not in Horn clause form. Therefore, only positive queries are allowed and the behavior of 
the prover satisfies the so-called closed word assumption: only positive queries deducible from the pro-
gram provide yes answers. Recent developments in the so-called nonmonotonic logic extend programs 
to handle negative queries.

The second approach in defining the semantics of LP and CLP uses sets. Consider the set S0 of 
all unit clauses in a program P. This set involves assigning any variables in these unit clauses to 
elements of the Herbrand universe. Consider then the clauses whose bodies contain elements of 
that initial set S0. Obviously the Head of those clauses is now deducible from the program and the 
new set S1 is constructed by taking the union of S0 with the heads of clauses that have been found 
to be true.

This process continues by computing the sets S2, S3, etc. Notice that S(i) always contains S(i − 1). 
Eventually these sets will not change because all the logical information about a finite program P is con-
tained in them. This is called a least fixed point. Then Q is a consequence of P if and only if each conjunct 
in Q is in the least fixed point of P.

Consider, for example, the PROLOG program for adding two positive numbers specified by a succes-
sor function s(X) denoting the successor of X:

add(0, X, X).
add(s(X), Y, s(Z)):- add(X, Y, Z).

First, notice the similarity of the preceding example with append. Adding 0 to a number X yields X (first 
rule). Adding the successor of X to a number Y amounts to adding one to the result Z obtained by add-
ing X to Y.

In this simple example, the Herbrand universe consists of 0, s(0), s(s(0)), and so on, namely, the posi-
tive natural numbers including the constant 0. The so-called Herbrand base considers all of the literals 
(in this case add) for which a binding of a variable to elements of the Herbrand universe satisfies the 
program rules. Using the set approach S0 consists of all natural numbers because any number can be 
added to zero. The fixed point corresponds to the infinite set of bindings of X, Y, and Z to elements of the 
Herbrand universe, which satisfies both rules.
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The meaning of a program P and query Q yielding a no answer can also be specified using set theory. 
In that case, one starts with the set corresponding to the Herbrand universe H0. Then this set is reduced 
to a smaller set by using once the rules in P. Call this new set H1. By applying again the rules in P, one 
obtains H2, and so on. In this case there is not necessarily a fixed point Hn. The property pertaining to 
programs yielding no answers then consists of the following statement: not Q is a logical consequence of 
the completion of Q if and only if some conjunct of Q is not a member of Hn.

In addition to programs yielding yes or no answers, there are those that loop. The halting problem 
tells us that we cannot hope to detect all of the programs that will eventually loop. Let us consider, as an 
example, the program P1:

p(a).
p(b): − p(b).

As expected, the queries Q1: p(a) and Q2: p(c) yield, respectively, yes and no because p(a) is a consequence 
of P1, and ¬p(c) is a consequence of the completion of p1; that is,

p(X) ≡ (X = a) ∨ (X = b ∧ p(b))

However, the interpreter will loop for the query Q3: p(b), or when all solutions of Q4: p(X) are requested. 
As mentioned earlier, the preceding theoretical results can be extended to CLP languages. Jaffar and 
Lassez (1987) established two conditions that a CLP extension to PROLOG must satisfy so that the 
semantic meaning (using logic or sets) is still applicable. The first is that the replacement of unification 
by an algorithm that tests the satisfiability of constraints should always yield a yes or no answer. This 
property is called satisfaction-completeness and it is obviously satisfied by the unification algorithm in 
the domain of trees. Similarly, the property applies to systems of linear equations in the domain of ratio-
nals and even to polynomial equations but with a significantly larger computational cost.

The second of Jaffar and Lassez’s conditions is called solution-compactness. It basically states that 
elements of a domain (say, irrational numbers) can be defined by a potentially infinite number of more 
stringent constraints that bound their actual values by increasingly finer approximations. For example, 
the real numbers satisfy this requirement. For more detail on Jaffar and Lassez’s theory, see Jaffar and 
Maher (1994) and Cohen (1990). Existing CLP languages satisfy the two conditions established by Jaffar 
and Lassez.

The beauty of the Jaffar and Lassez metatheory is that they have established conditions under which 
the basic theorems of LP remain valid, provided that the set of proposed axioms specifying constraints 
satisfy the described properties.

A convenient (although incomplete) taxonomy for CLP languages is to classify them according 
to their domains or combinations thereof. One can have CLP (rationals) or CLP (Booleans, reals). 
PROLOG can be described as CLP (trees) and CLP (R) as CLP (reals, trees). A complete specification 
of CLP language would also have to include the predicates and operations allowed in establishing valid 
constraints.

From the language design perspective, the designer would have to demonstrate the correctness of an 
efficient algorithm implementing the test for constraint satisfiability. This is equivalent to proving the 
satisfiability of the constraints specified by the axioms.

65.12  Metalevel Interpretation

Metalevel interpretation allows the description of interpreters for the languages (such as LISP or 
PROLOG), using the languages themselves. In PROLOG, the metalevel interpreter for pure programs 
consists of a few lines of code. The procedure solve has as a parameter a list of PROLOG goals to be pro-
cessed. The interpreter assumes that the program rules are stored as unit clauses:

clause(Head, Body).
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each corresponding to a rule: Head:- Body., where Head is a literal and Body is a list of literals. Unit 
clauses are stored as clause(Head, [ ]). The interpreter is

solve([ ]).
solve([Goal|Restgoal]):- solve (Goal), solve(Restgoal).
solve(Goal):- clause (Goal, Body), solve(Body).

The first rule states that an empty list of goals is logically correct. (In that case, the interpreter should 
print the latest bindings of the variables.) The second rule states that when processing (i.e., solving) a 
list of goals, the head and then the tail of the list should be processed. The third rule specifies that when 
a single Goal is to be processed, one has to look up the database containing the clauses and process the 
Body of the applicable clause. In the preceding interpreter, metainterpreter unification is implicit. One 
could write metainterpreters in which the built-in unification is replaced by an explicit sequence of 
PROLOG constructs using the impure features.

A very useful extension often incorporated into interpreters is the notion of co-routining or lazy 
evaluation. The built-in procedure freeze(X, P) tests whether the variable X has been bound. If so, P is 
executed; otherwise, the pair (X, P) is placed in a freezer. As soon as X becomes bound, P is placed at the 
head of the list of goals for immediate execution.

The procedure freeze can be easily implemented by expressing it as a variant of solve also written in 
PROLOG. Although this metalevel programming will of course considerably slow down the execu-
tion, this capability can and has been used for fast prototyping extensions to the language (Sterling and 
Shapiro 1994, Cohen 1990).

Another important application of metalevel programming is partial evaluation. Its objective is to 
transform a given program (a set of procedures) into an optimized version in which one of the proce-
dures has one or more parameters that are bound to a known value. An example of partial evaluation 
is the automatic translation of a simple (inefficient) pattern-matching algorithm, which tests if a given 
pattern appears in a text. When the pattern is known, a partial evaluator applied to the simple matching 
algorithm produces the equivalent of the more sophisticated Knuth–Morris–Pratt pattern-matching 
algorithm.

In a metalevel interpreter for a CLP language, a rule is represented by clause (Head, Body, Constraints). 
Corresponding to a rule Head:- Body {Constraints}.

The modified procedure solve contains three parameters: (1) the list of goals to be processed, (2) the 
current set of constraints, and (3) the new set of constraints obtained by updating the previous set. The 
metalevel interpreter for CLP, written in PROLOG becomes

solve([], C, C).
solve([Goal | Restgoal], Previous_C, New_C):-

solve(Goal, Previous_C, Temp_C),
solve(Restgoal, Temp_C, New_C).

solve(Goal, Previous_C, New_C):-
clause(Goal, Body, Current_C),
merge_constraints(Previous_C, Current_C, Temp_C),
solve(Body, Temp_C, New_C).

The heart of the interpreter is the procedure merge_constraints, which merges two sets of constraints: 
(1) the previous constraints, Previous_C, and (2) the constraints introduced by the current clause, 
Current_C. If there is no solution to this new set of constraints, the procedure fails; otherwise, it sim-
plifies the resulting constraints, and it binds any variables that have been constrained to take a unique 
value. For example, the constraints X ≤ 0 ∧ X ≥ 0 simplify to the constraint X = 0, which implies that X 
can now be bound to 0.

The design considerations that influence the implementation of this procedure will be discussed in 
Section 65.13. Note that the controversial unit logical inference steps per second (LIPS), often used to 
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estimate the speed of PROLOG processors, loses its significance in the case of a constraint language. The 
number of LIPS is established by counting how many times per second the procedure clause is activated; 
in the case of CLP, this time to process clause and merge_constraints may vary significantly, depending 
on the constraints being processed.

65.13  Implementation

It is worthwhile to present the basic LP implementation features by describing an interpreter for 
the simplified PROLOG of Section 65.5 written in a Pascal or C-like language. The reader should 
note the similarities between the metalevel interpreter solve of the previous section and the one about to 
be described. The rules will be stored sequentially in a database implemented as a 1D array Rule[l..n] and 
containing pointers to a special type of linear list. Such a list is a record with two fields, the first storing 
a letter and the second being either nil or a pointer to a linear list. Let the (pointer) function cons be the 
constructor of a list element, and assume that its fields are accessible via the (pointer) functions head 
and tail. The first rule is stored in the database by

Rule[1] := cons(‘a ’, cons (‘b’, cons (‘c ’, cons (‘d ’, nil)))).

The fifth rule defining a unit clause is stored as Rule[5] := cons (‘e ’, nil). Similar assignments are used to 
store the remaining rules.

The procedure solve that has as a parameter a pointer to a linear list is capable of determining whether 
or not a query is successful. The query itself is the list with which solve is first called. The procedure uses 
two auxiliary procedures match and append; match (A, B) simply tests if the alphanumeric A equals 
the alphanumeric B; append(L1, L2) produces the list representing the concatenation of L1 with L2 (this 
is equivalent to the familiar append function in LISP: it basically copies L1 and makes its last element 
point to L2).

The procedure solve, written in a Pascal-like language, appears in Figure 65.3. Recall that the variable 
n represents the number of rules stored in the array Rule. The procedure performs a depth-first search of 
the problem space where the local variable is used for continuing the search in case of a failure. The head 
of the list of goals L is matched with the head of each rule. If a match is found, the procedure is called 
recursively with a new list of goals formed by adding (through a call of append) the elements of the tail 
of the matching rule to the goals that remain to be satisfied. When the list of goals is nil, all goals have 
been satisfied and a success message is issued. If the attempts to match fail, the search is continued in the 
previous recursion level until the zeroth level is reached, in which case no more solutions are possible. 
For example, the query a, e. is expressed by solve (cons (‘a’, cons (‘e’, nil))) and yields the two solutions 
presented in Section 65.5 on resolution of Horn clauses.

Note that if the tree of choices is finite, the order of the goals in the list of goals is irrelevant insofar 
as the presence and number of solutions are concerned. Thus, the order of the parameters of append 
in Figure 65.3 could be switched, and the two existing solutions would still be found. Note that if the 
last rule were replaced by a:-f, a., the tree of choices would be infinite and solutions similar to the first 
solution would be found repeatedly. The procedure solve in Figure 65.3 can handle these situations by 
generating an infinite sequence of solutions. However, had the preceding rule appeared as the first one, 
the procedure solve would also loop, but without yielding any solutions. This last example shows how 
important the ordering of the rules is to the outcome of a query. This explains Kowalski’s dictum pro-
gram = logic + control, in which control stands for the ordering and (impure) control features such as 
the cut (Kowalski 1979).

It is not difficult to write a recursive function unify, which, given two terms, tests for the result of 
unification using the contents of Table 65.1 (Section 65.5). For this purpose, one has to select a suitable 
data structure. In a sophisticated version, terms are represented by variable-sized records containing 
pointers to other records, to constants, or to variables. Remark that the extensive updating of linked data 
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structures inevitably leads to unreferenced structures that can be recovered by a garbage collection. It is 
frequently used in most PROLOG and CLP processors.

A simpler data structure uses linked lists and the so-called Cambridge Polish notation. For example, 
the term f(X, g(Y, c)) is represented by (f(var x)(g(var y)(const c))), which can be constructed with conses.

As mentioned in Section 65.5, if the result of unification results in the binding Y:= g(Y, c), then (most) 
PROLOG interpreters would soon get into difficulties because most implementations of the described 
unification algorithm cannot handle circular structures. Manipulating these structures (e.g., printing, 
copying) would result in an infinite loop unless the so-called occur check is incorporated to test for 
circularity.

The additional machinery needed to incorporate unification into the procedure solve of Figure 65.3 is 
described in Cohen (1985). An important remark is in order: when introducing unification, it is neces-
sary to copy the clauses in the program and introduce new variables (which correspond to parameters 
that should be called by value). The frequent copying and updating of lists makes it almost mandatory 
to use garbage collection, which is often incorporated to LP processors.

65.13.1  Warren Abstract Machine

D.H.D. Warren, a pioneer in the compilation of PROLOG programs, proposed in 1983 a set of primitive 
instructions that can be generated by a PROLOG compiler, usually written using PROLOG. (Warren’s 
approach parallels that of P-code used in early Pascal compilers.) The Warren abstract machine (WAM) 
primitives can be efficiently interpreted using specific machines.

The main data structures used by the WAM are (1) the recursion stack, (2) the heap, and (3) the trail. 
The heap is used for storing terms and the trail for backtracking purposes. The WAM uses the copying 
approach mentioned in the beginning of this section. A local garbage collector takes advantage of the 
cut by freeing space in the trail.

The WAM has been used extensively by various groups developing PROLOG compilers. Its primi-
tives are of great efficiency in implementing features such as tail-recursion elimination, indexing of 
the head of the clause to be considered when processing a goal, the cut, and other extralogical features 
of PROLOG. A useful reference in describing the WAM is the one by Ait-Kaci (1991). A reference on 
implementation is by Van Roy (1994).

65.13.2  Parallelism

Whereas for most languages it is fairly difficult to write programs that automatically take advantage of 
operations and instructions that can be executed in parallel, PROLOG offers an abundance of oppor-
tunities for parallelization. There are at least three possibilities for performing PROLOG operations 
in parallel:

	 1.	 Unification. Because this is one of the most frequent operations in running PROLOG programs, 
it would seem worthwhile to search for efficient parallel unification algorithms. Some work has 
already been done in this area (Jaffar et al. 1992). However, the results have not been encouraging.

	 2.	 And parallelism. This consists of simultaneously executing each procedure in the tail of a clause. 
For example, in a(X, Y, U):- b(X, Z), c(X, Y), d(T, U), an attempt is made to continue the execution 
in parallel for the clauses defining b, c, and d. The first two share the common variable X; there-
fore, if unification fails in one but not in the other, or if the unification yields different bindings, 
then some of the labor done in parallel is lost. However, the last clause in the tail can be executed 
independently because it does not share variables with the other two.

	 3.	 Or parallelism. When a given predicate is defined by several rules, it is possible to attempt to apply 
the rules simultaneously. This is the most common type of parallelism used in PROLOG proces-
sors. Kergommeaux and Codognet (1994) is a recommended survey of parallelism in PROLOG.
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65.13.3 � Design and Implementation Issues 
in Constraint Logic Programming

There is an important implementation consideration that appears to be fulfilled in both CLP(R) and 
PROLOG IV: the efficiency of processing PROLOG programs (without constraints) should approach 
that of current PROLOG interpreters; that is, the overhead for recognizing more general constraints 
should be small.

There are three factors that should be considered when selecting algorithms for testing the satisfi-
ability of systems of constraints used in conjunction with CLP processors. They are (1) incremental-
ity, (2) simplification, and (3) canonical forms. The first is a desirable property that allows an increase 
in efficiency of multiple tests of satisfiability (by avoiding recomputations). This can be explained in 
terms of the metalevel interpreter for CLP languages described in Section 65.11: if the current system 
of constraints S is known to be satisfiable, the test of satisfiability should be incremental, minimizing 
the computational effort required to check if the formula remains satisfiable or not. Classic PROLOG 
interpreters have this property because previously performed unifications are not recomputed at each 
inference step. There are modifications of Gaussian methods for solving linear equations that also sat-
isfy this property. This is accomplished by introducing temporary variables and replacing the original 
system of equations by an equivalent solved form (see Section 65.5): variable = linear terms involving 
only the temporary variables.

The simplex method can also be modified to satisfy incrementality. Similarly, the SL resolution 
method for testing the satisfiability of Boolean equations and the Gröbner method for testing the satisfi-
ability of polynomial equations have this property.

In nearly all the domains considered in CLP, it may be possible to replace a set of constraints by a 
simpler set. This simplification can be time-consuming but is sometimes necessary. The implementor of 
CLP languages may have to make a difficult choice as to what level of simplification should occur at each 
step verifying constraint satisfaction. It may turn out that a system of constraints eventually becomes 
unsatisfiable, and all of the work done in simplification is lost. When a final result has to be output, it 
becomes essential to simplify it and present it to the reader in the clearest, most readable form.

An important function of simplification is to detect the assignment of a variable to a single value 
(e.g., from X ≥ 1 and X ≤ 1 one infers X = 1). This property is essential when implementing a modified 
simplex method that detects when a variable is assigned to a single value. Note that this detection is 
necessary when using lazy evaluation.

The incremental algorithms for testing the satisfiability of linear equations and inequations, as well as 
that used in the Gröbner method for polynomial equations, are capable of discarding redundant equa-
tions; therefore, they perform some simplifications (Sato and Aiba 1993).

The canonical (solved) forms referred to earlier in this section can be viewed as (internal) representa-
tions of the constraints, which facilitate both the tests of satisfiability and the ensuing simplifications. 
For example, in the case of the Gröbner method for solving polynomial equations, the input polynomi-
als are internally represented in a normal form, such that variables are lexicographically ordered and the 
terms of the polynomials are ordered according to their degrees. This ordering is essential in performing 
the required computations. Also note that if two seemingly different constraints have the same canoni-
cal form, only one of them needs to be considered. Therefore, the choice of appropriate canonical forms 
deserves an important consideration in the implementation of CLP languages (Jaffar and Maher 1994).

65.13.4  Optimization Using Abstract Interpretation

Abstract interpretation is an enticing area of computer science initially developed by Cousot and Cousot 
(1992); it consists of considering a subdomain of the variables of a program (usually a Boolean variable, 
e.g., one representing the evenness or oddness of the final result). Program operations and constructs 
are performed using only the desired subdomain. Cousot proved that if certain conditions are applicable 
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to the subdomains and the operations acting on their variables, the execution is guaranteed to termi-
nate. Dataflow analyses, partial evaluation, detection of safe parallelism, etc., can be viewed as instances 
of abstract interpretation. The research group at the University of Louvain, Belgium, has been active in 
exploring the capabilities of abstract interpretation in LP and CLP.

65.14 R esearch Issues

It is worthwhile to classify the numerous extensions of PROLOG into three main categories, namely, 
those related to (1) resolution beyond Horn clauses, (2) unification, and (3) others (e.g., concurrency). 
Major extensions of the unification became very significant and resulted in a new area of LP called 
constraint logic programming or CLP that was dealt with in Section 65.8; nevertheless, the more recent 
addition to CLP dealing with the domain of intervals is discussed in this section.

65.14.1 R esolution beyond Horn Clauses

Several researchers have suggested extensions for dealing with more general clauses and for develop-
ing semantics for negation that are more general than that of negation by failure (see Section 65.7). 
Experience has shown that the most general extension, that is, to the general predicate calculus, poses 
difficult combinatorial search problems. Nevertheless, substantial progress has been made in extending 
LP beyond pure Horn clauses. Two such extensions deserve mention: stratified programs and general-
ized predicate calculus formulas in the body part of a clause.

Stratified programs are variants of Horn clause programs that are particularly applicable in deductive 
databases; true negation may appear in the body of clauses, provided that it satisfies certain conditions. 
These stratified programs have clean semantics based on logic and avoid the undesirable features of 
negation by failure (see Minker 1987).

To briefly describe the second extension, it is worthwhile to recall that the procedural interpretation 
of resolution applied to Horn clauses is based on the substitution model: a procedure call consists of 
replacing the call by the body of the procedure in which the formal parameters are substituted by the 
actual parameters via unification. The generalization proposed by Ueda and others can use the substitu-
tion model to deal with the clauses of the type head:- (a general formula in the predicate calculus contain-
ing quantifiers and negation).

65.14.2  Concurrent Logic Programming and Constraint Logic Programming

A significant extension of LP has been pursued by several groups. A premise of their effort can be stated 
as follows: a programming language worth its salt should be expressive enough to allow its users to 
write complex but efficient operating systems software (as is the case of the C language). With that goal 
in mind, they incorporated into LP the concepts of don’t care nondeterminism as advocated by Dijkstra. 
The resulting languages are called concurrent LP languages. The variants proposed by these groups were 
implemented and refined; they have now converged to a common model that is a specialized version of 
the original designs.

Most of these concurrent languages use special punctuation marks “?” and “|”. The question 
mark is a shorthand notation for freezes. For example, the literal p(X ?, Y) can be viewed as a form of 
freeze(X, p(X, Y)). The vertical bar is called commit and usually appears once in the tail of clauses defin-
ing a given procedure. Consider, for example,

a:- b, c | d, e.
a:- p | q.

The literals b, c, and d, e are executed using and parallelism. However, the computation using or paral-
lelism for the two clauses defining a continues only with the clause that first reaches the commit sign. 
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For example, if the computation of b, c proceeds faster than p, then the second clause is abandoned, and 
execution continues with d, e only (see Saraswat 1993).

65.14.3  Interval Constraints

The domain of interval arithmetic has become a very fruitful area of research in CLP. Older has been a 
pioneer in this area (Older and Vellino 1993). This domain specifies reals as being defined between lower 
and upper bounds that can be large integers or rational numbers. The theory of solving most nonlinear 
and trigonometric equations using intervals guarantees that if there is a solution, that solution must lie 
within the computed intervals. Furthermore, it is also guaranteed that no solution exists outside the 
computed interval or unions of intervals.

The computations involve the operation of narrowing that consists of finding new bounds for a quan-
tity denoting the result of an operation (say, +, *, sin, etc.) involving operands, which are also defined by 
their lower and upper bounds. The narrowing operation also involves intersecting intervals obtained by 
various computations defining the same variable. The intersection may well fail (e.g., the equality opera-
tion applying to operands whose intervals are disjoint). The narrowing is guaranteed to either converge 
or fail. This, however, may not be sufficient to find possible solutions of interest. One can nevertheless 
split a given interval into two or more unions of intervals and proceed to find a more precise solution, if 
one exists. This is akin to enumeration of results in CLP.

The process of splitting is a don’t know nondeterministic choice, an existing component of LP. 
The failure of the narrowing operation is analogous to that encountered in CLP when a constraint 
is unsatisfiable and backtracking occurs. Therefore, there is a natural interaction between LP and 
the domain of intervals. Interval arithmetic is known to yield valuable results in computing the 
satisfiability of nonlinear constraints or in the case of finite domains. Its use in linear constraints 
is an active area of research because results indicate a poor convergence of narrowing. In the case 
of polynomials, constraints interval arithmetic may well be a strong competitor to Gröebner base 
techniques.

65.14.4  Constraint Logic Programming Language Design

A current challenge in the design and implementation of CLP is to blend computations in different 
domains in a harmonious and sound manner. For example, the reals can be represented by intervals 
whose bounds are floating-point numbers (these have to be carefully implemented to retain soundness 
due to rounding operations). Actually, floating-point numbers are nothing more than (approximate) 
very large integers or fractions. This set is, of course, a superset of finite domains, which in turn is a 
superset of Booleans. Problems in CLP language design that still remain to be solved include how to 
handle the interaction of these different domains and subdomains. This situation is further complicated 
by efficiency considerations. Linear inequations, equations, and disequations can be efficiently solved 
using rational arithmetic, but research remains to be done in adapting simplex-like methods to deal 
with interval arithmetic.

65.15  Conclusion

As in most sciences, there has always been a valuable symbiosis among the theoretical and experimen-
tal practitioners of computer science, including, of course, those working in LP. Three examples come 
to mind: the elimination of the occur test in unifications, the cut, and the not operator as defined in 
PROLOG. These features were created by practical programmers and are here to stay. They provide a 
vast amount of food for thought for theoreticians. As mentioned earlier, the elimination of the occur 
test was instrumental in the development of algorithms for unification of infinite trees. Although the 
concept of the cut has resisted repeated attempts for a clean semantic definition, its use is unavoidable 
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in increasing the efficiency of programs. Finally, PROLOG’s not operator has played a key role in 
extending logic programs beyond Horn clauses.

CLP is one of the most promising and stimulating new areas in computer science. It amalgamates 
the knowledge and experience gained in areas as varied as numerical analysis, OR, artificial languages, 
symbolic processing, artificial intelligence, logic, and mathematics.

During the past 20 years, LP has followed a creative and productive course. It is not unusual for a 
fundamental scientific endeavor to branch out into many interesting subfields. An interesting aspect 
of these developments is that LP’s original body of knowledge actually branched into subareas, which 
joined previously existing research areas. For example, CLP is being merged with the area of CSPs; 
LP researchers are interested in modal, temporal, intuitionistic, and linear logic; relational database 
research now includes constraints; and OR and CLP have found previously unexplored similarities.

The several subfields of LP now include research on CLP in various domains, typing, nonmonotonic 
reasoning, inductive LP, semantics, concurrency, nonstandard logic, abstract interpretation, partial 
evaluation, and blending with functional and with object-oriented language paradigms. It will not be 
surprising if each of these subfields will become fairly independent from their LP roots, and the various 
specialized groups will organize autonomous journals and conferences. The available literature on LP is 
abundant, and it is likely to be followed by a plentiful number of publications in its autonomous subfields.

Key Terms

Backtracking: A manner to handle (don’t know) nondeterministic situations by considering one choice 
at a time and storing information that is necessary to restore a given state of the computation. 
PROLOG interpreters often use backtracking to implement nondeterministic situations.

Breadth first: A method for traversing trees in which all of the children of a node are considered simul-
taneously. OR parallel PROLOG interpreters use breadth-first traversal.

Clause: A general normal form for expressing predicate calculus formulas. It is a disjunction of literals 
(P1 ∨ P2 ∨…) whose arguments are terms. The terms are usually introduced by eliminating 
existential quantifiers.

Constraint logic programming languages: PROLOG-like languages in which unification is replaced or 
complemented by constraint solving in various domains.

Constraints: Special predicates whose satisfiability can be established for various domains. Unification 
can be viewed as equality constraints in the domain of trees.

Cut: An annotation used in PROLOG programs to bypass certain nondeterministic computations.
Depth first: A method for traversing trees in which the leftmost branches are considered first. Most 

sequential PROLOG interpreters use depth-first traversal.
Don’t care nondeterminism: The arbitrary choice of one among multiple possible continuations for a 

computation.
Don’t know nondeterminism: Situations in which there are equally valid choices in pursuing a 

computation.
Herbrand universe: The set of all terms that can be constructed by combining the terms and constants 

that appear in a logic formula.
Horn clause: A clause containing (at most) one positive literal. The term definite clause is used to denote 

a clause with exactly one positive literal. PROLOG programs can be viewed as a set of definite 
clauses in which the positive literal is the head of the rule and the negative literals constitute 
the body or tail of the rule.

Infinite trees: Trees that can be unified by special unification algorithms, which bypass the occur check. 
These trees constitute a new domain, different from that of usual PROLOG trees.

Metalevel interpreter: An interpreter written in L for the language L.
Occur check: A test performed during unification to ensure that a given variable is not defined in terms 

of itself (e.g., X = f (X) is detected by an occur check, and unification fails).
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Predicate calculus: A calculus for expressing logic statements. Its formulas involve the following:

•	 Atoms: P (T1, T2, …) where P is a predicate symbol and the Ti are terms.
•	 Boolean connectives: Conjunction (∧), disjunction (∨), implication (→), and negation (¬).
•	 Literals: Atoms or their negations.
•	 Quantifiers: For all (∀), there exists (∃).
•	 Terms (also called trees): Constructed from constants, variables, and function symbols.

Resolution: A single inference step used to prove the validity or predicate calculus formulas expressed 
as clauses. In its simplest version: P ∨ Q and ¬P ∨ R imply Q ∨ R, which is called the resolvant.

SLD resolution: Selective linear resolution for definite clauses inference step used in proving the valid-
ity of Horn clauses.

Unification: Matching of terms used in a resolution step. It basically consists of testing the satisfiability 
or the equality of trees whose leaves may contain variables. Unification can also be viewed as a 
general parameter matching mechanism.

Warren abstract machine (WAM): An intermediate (low-level) language that is often used as an object 
language for compiling PROLOG programs. Its objective is to allow the compilation of effi-
cient PROLOG code.

Further Information

There are several journals specializing in LP and CLP. Among them we mention the Journal of Logic 
Programming (North-Holland), New Generation Computing (Springer-Verlag), and Constraint (Kluwer). 
Most of the conference proceedings have been published by MIT Press. Recent proceedings on con-
straints have been published in the Lecture Notes in Computer Science (LNCS) series published by 
Springer-Verlag.

A newsletter is also available (Logic Programming Newsletter, alp@doc.ic.ac.uk). Among the refer-
ences provided, the following relate to CLP languages: PROLOG III (Colmerauer 1990), CLP(R) (Jaffar 
et al. 1992), CHIP (Dincbas et al. 1988), CAL (Sato and Aiba 1993), finite domains (Van Hentenryck 
1989), and intervals (Older and Vellino 1993). The recommended textbooks include Clocksin and 
Mellish (1984) and Sterling and Shapiro (1994). The theoretical aspects of LP are well covered in Apt 
(1990) and Lloyd (1987) and implementation in Ait-Kaci (1991), Kergommeaux and Codognet (1994), 
Van Roy (1994), and Warren (1983).
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66.1  Introduction

High-level programming languages can be classified according to their style of programming, that is, 
the intended techniques to construct programs from basic elements and composing them to larger units. 
This is also called a programming paradigm. For instance, imperative programming is centered around 
named memory cells (variables) whose contents could be modified by assignments, and assignments are 
grouped to larger programs using control structures and procedural abstraction. Functional program-
ming is based on the concept of defining functions in a mathematical sense and composing them to 
more complex functions. Logic and constraint programming focuses on defining relations between enti-
ties and solving goals containing free variables. These are the main programming paradigms.

Other paradigms often occur in combination with these main paradigms. For instance, object-
oriented programming focuses on objects containing data and operations as basic units and inheritance 
to structure them. This method of organization can be combined with each of the main paradigms. For 
instance, Java combines object orientation with imperative programming and OCaml provides object 
orientation in a functional (and imperative) context. Similarly, concurrent programming focuses on 
threads or processes, which can be composed in a concurrent or sequential manner, and methods for 
communication and synchronization. Depending on the style of implementing the behavior of threads 
and processes, concurrent programming is combined with one or more of the main paradigms so that 
there are imperative concurrent (e.g., Java), functional concurrent (e.g., Alice, Erlang, and Concurrent 
Haskell), and logic concurrent (e.g., Oz) languages.

When developing software, one should select a programming language that is most appropriate for 
the specific task to do. If the software system is complex, it is also quite natural to use various program-
ming languages belonging to different paradigms. For instance, database access and manipulation could 
be done by logic-oriented languages, transformational tasks (like XML transformations) are reasonably 
implemented by functional languages, and state-oriented user interaction is implemented in imperative 
(object-oriented) languages. However, the use of different programming languages in one application 
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could be cumbersome since one has to use different programming environments and implement the 
exchange of data between different parts of the programs. Moreover, a textual data exchange between 
different systems is a well-known security risk [22].

In order to improve this situation, multiparadigm languages have been proposed. They offer more 
than one programming paradigm in a single language so that “the well-educated computer program-
mer…should then be able to select a solution technique that best matches the characteristics of the 
problem to be solved” [10]. Ideally, paradigms are amalgamated in an orthogonal manner so that 
the programmer could freely mix the different programming techniques. In practice, however, some 
restrictions, depending on the amalgamated paradigms, are required to keep the advantages of the 
individual paradigms. For instance, in an imperative functional language, one might not freely use 
imperative features inside functional parts, otherwise one looses the freedom to choose optimal 
evaluation strategies for functional computations. Thus, the challenge in designing multiparadigm 
languages is to provide the features of the individual paradigms in a single language without too 
many restrictions.

66.2  Principles of Programming Paradigms

To understand the features of multiparadigm languages, we review in this section the basic ideas and 
features of the main programming paradigms. More details about these paradigms can be found in 
other chapters of this handbook.

66.2.1  Imperative Languages

Imperative programming is based on the mutation of variables in order to compute an intended 
result. Thus, they strongly reflect the computer architecture pioneered by John von Neumann where 
data stored in memory can be updated. In order to abstract from memory addresses, variables have 
names and the current computation environment maps these names to memory cells. The environ-
ment can change in imperative languages with block structures or procedures. The basic operation of 
an imperative language is the assignment statement where the value of a memory cell associated to a 
variable is changed. Collections of memory cells can be composed to data structures and collections 
of assignments can be composed to larger units by control structures. Procedural abstraction is used 
to organize larger programs. A procedure assigns a name and parameters to some computation unit 
so that algorithmic entities can be reused as simple statements. Procedures can also have result values 
(then they are called functions) in order to use them inside expressions. There might be a problem if 
the function has a side effect, that is, if it changes some values of nonlocal variables. In this case, the 
order of evaluating subexpresssions might influence the result of an expression. Since this is difficult 
to comprehend by a programmer and inhibits or invalidates some compiler optimizations, functions 
with side effects are considered as a bad programming style. However, this is not forbidden in typical 
imperative languages.

66.2.2  Functional Languages

Functional programming is based on defining functions and composing them in expressions to more 
complex functions. A functional computation corresponds to the evaluation of a given expression. 
Purely functional languages, such as Haskell [26], do not allow side effects so that they are referentially 
transparent: the value of an expression does only depend on the values of the subexpressions and not 
on the order or time of evaluation. Thus, expressions can be replaced by their values without changing 
the result of an evaluation, and a functional computation consists of replacing equals by equals w.r.t. the 
function definitions.
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We use the syntax of Haskell in concrete examples, that is, variables and names of defined functions 
start with lowercase letters and the names of type and data constructors start with an uppercase letter. 
The application of f to e is denoted by juxtaposition (“ f e”). For instance, consider the function

square x = x*x

This equation expresses that (square 3) is equal to (3*3) so that the expression 5+(square 3) 
can be replaced by 5+(3*3) without changing its value. The replacement of the left-hand side of a 
function’s rule by its right-hand side in an expression, where the rule’s formal parameters (like x) are 
replaced by actual values, is the basic computation step in a functional program and called a reduc-
tion step.

Referential transparency is important to enable powerful compiler optimizations and to use advanced 
evaluation strategies. An evaluation strategy determines the next subexpression to be reduced in order 
to evaluate some expression. For instance, subexpressions can be evaluated in parallel or on demand. As 
an example, consider the function

f x y = if x==0 then f y (f x y) else x

and the main expression (f 0 1), which is reduced to f 1 (f 0 1) (after evaluating the condi-
tional). An eager strategy evaluates all arguments before a function application so that the subexpres-
sion (f 0 1) is reduced next. This leads to an infinite number of computation steps. On the other 
hand, a demand-driven strategy evaluates a subexpression only if its value is demanded (e.g., by a 
conditional or primitive operation) to proceed the computation. Since the value of the subexpres-
sion (f 0 1) is not demanded (since it does not occur in the condition), a demand-driven strategy 
reduces f 1 (f 0 1) to 1 (after evaluating the conditional). Hence, demand-driven (also called 
lazy) strategies are computationally more powerful than eager strategies. Demand-driven strategies 
also support programming with streams and infinite data structures and increase modularity [21]. 
Moreover, they are the basis of optimal strategies that evaluate expressions with a minimum amount 
of reduction steps [20].

Functional languages support the definition of data types by enumerating all constructors. For 
instance, the type of Boolean values is defined in Haskell as

data Bool = False | True

where Bool is the type name and False and True are the constructors of the type Bool. Functions 
operating on such types can elegantly be defined by pattern matching, that is, by several equations, also 
called rules, for different argument values:

and False x = False
and True x	 = x

Thus, if the first argument of a call to and has the value False, only the first rule is applicable so that 
such a call reduces to False (without evaluating the second argument, if the strategy is demand-driven).

Another important feature of functional languages are higher-order functions, that is, functions that 
have functions as arguments or yield functions as results. Thus, functions are first-class objects that can 
be passed as any other data structure. The use of higher-order functions provides better code reuse since 
programming patterns can often be expressed as higher-order functions [21]. To support a safe use of 
functions, advanced type systems have been developed for functional languages. Although languages 
like Standard ML [25] or Haskell [26] are strongly typed, the programmer does not have to specify the 
type of all functions and variables since compilers can infer their types.
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66.2.3  Logic Languages

Logic programming is based on defining relations between entities by clauses, that is, by facts or 
implications. For instance, in the logic programming language Prolog [12], [] denotes the empty list 
and [X|Xs] a nonempty list with a first element X and a tail list Xs. Then we can define the relation 
member(E,Xs) with the intended meaning “E is a member of the list Xs” as follows in Prolog:

member(E,[E|Ys]).
member(E,[Y|Ys]):-member(E,Ys).

Similarly to functional languages, pattern matching is also supported in logic languages. The first clause 
states the fact that E is a member if it is the first element. The second clause expresses that the member-
ship in the tail list Ys implies the membership in the complete list. Logic programming allows to com-
pute with partially known data expressed by free (unbound) variables. For instance, one can compute 
some members of the list [1,2] by solving the query member(E,[1,2]), which yields the two solutions 
(i.e., variable bindings for the free variable E) E=1 and E=2. Hence, logic programming is based on a 
(“don’t know”) nondeterministic computation model where different computation paths are explored 
in order to find solutions. This principle allows to use free variables at arbitrary argument positions. For 
instance, the query member(1,[X,Y]) returns the solutions X=1 and Y=1.

Free variables are also useful inside program clauses. For instance, one can define a predicate that is 
satisfied if two lists have a common element by

overlapping(Xs,Ys):-member(E,Xs),member(E,Ys).

Hence, logic programming supports a more abstract programming style where the programmer is not 
forced to implement all algorithmic details of a problem. For instance, the predicate overlapping is 
implemented without specifying a strategy to find a common element.

In order to compute solutions to a given query, logic language implementations apply program 
clauses to the query, similarly to functional programming, but use unification to equate the query and 
the clause’s left-hand side by binding variables to terms. For instance, the first clause of the definition 
of member can be applied to the query member(1,[X,Y]) if the variables are bound as {E ↦1, 
X ↦1, Ys ↦[Y]}.

66.3  Multiparadigm Languages in Practice

In the following, we discuss a selection of various programming languages that amalgamate different 
programming paradigms. Due to numerous approaches to combine different paradigms, we will only 
discuss a few typical languages in each area.

66.3.1  Imperative Functional Languages

One could consider every modern imperative language as a combination of imperative and functional 
programming since they support the definition of functional abstractions. However, this viewpoint 
changes when advanced functional programming concepts are taken into account. For instance, not 
every imperative language supports higher-order functions, that is, passing defined functions as argu-
ment or result values. Since such higher-order features demand for advanced type systems, they are often 
supported by imperative languages without a static type system. For instance, the languages Smalltalk 
[15] and Ruby* allow to pass code blocks as first-class objects, and many other imperative languages, like 
Python† or JavaScript [14], support expressions to denote functional values.

*	 http://www.ruby-lang.org/.
†	 http://www.python.org/.
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Although the presence of such features appears as a reasonable combination of imperative and func-
tional programming, imperative languages allow the definition of functions with side effects so that the 
order of evaluation becomes relevant. This is in contrast to functional languages where one wants to 
abstract from the order of evaluation, for example, in order to optimize the evaluation of expressions. 
Thus, it is desirable to keep functional evaluation free of side effects, if possible, or to distinguish purely 
functional computations from imperative computations. In many languages combining imperative 
and functional programming styles, however, this distinction is not strictly enforced. For instance, the 
language Scala* extends a typical imperative object-oriented language with functional programming 
features, like type inference, pattern matching, and anonymous and higher-order functions. Scala sup-
ports the separation of imperative and functional programming styles by distinguishing mutable vari-
ables and immutable values. Nevertheless, a defined function might depend on or manipulate mutable 
data so that it is not free of side effects.

Instead of extending imperative languages with functional features, one could also extend functional 
languages with imperative features. For instance, Lisp and its dialect Scheme† support multiparadigm 
programming by an assignment operation that allows the mutation of any parameter or locally declared 
value. The language Standard ML [25] uses the type system to distinguish between mutable values, 
which are pointers to memory cells, and immutable values. Nevertheless, computations with side effects 
can be “hidden” inside functional computations. This is different in the purely functional language 
Haskell [26], which does not allow hiding of side effects. Operations with side effects, also called I/O 
actions, like reading or printing a character, have the result type “IO τ”, where τ is the type of the value 
returned by the side effect of the operation. For instance, the operation getChar, which reads a char-
acter (of type Char) from the keyboard as a side effect, has the type signature

getChar :: IO Char

Similarly, the operation putChar to print a character has the type signature

putChar :: Char → IO ()

that is, it takes a character as argument but the side effect does not return a value, as indicated by the 
void type “()”. There are operators like “>>” to compose I/O actions sequentially. Thus, the expression

putChar ‘a’ >> putChar ‘a’ >> putChar ‘a’

prints three ‘a’s as a side effect. Since I/O actions are first-class citizens as any other operation, one can 
also write operations to compose I/O actions. For instance, an operation to print n times a character c 
can be defined as follows (return is an I/O action that just returns its argument without an additional 
side effect):

putChars c n = if n==0 then return ()
                       else putChar c >> putChars c (n-1)

Thus, the effect of the previous expression can also be obtained by the expression (putChars ‘a’ 3).
It has been shown [28] that typical imperative programming techniques can be implemented using 

this style of composing basic I/O actions to larger units. The important point is that there are no opera-
tions of type IO τ → τ′ where τ′ is not an IO type. Thus, it is not possible to hide an operation with 
side effects inside another operation, in contrast to most other programming languages with impera-
tive features. As a consequence, the type system of Haskell ensures a clear separation between purely 

*	 http://www.scala-lang.org.
†	 http://www.schemers.org/.
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functional parts and program sections with side effects. Any operation having some side effect has 
the result type “IO τ”. Therefore, purely functional expressions can be evaluated in any “good” order. 
Actually, Haskell uses a lazy evaluation strategy for expressions. However, I/O actions have to follow 
the sequential evaluation order as specified by applications of the operator “>>”. More details about this 
kind of integrating imperative features in a purely functional language, also called monadic I/O, can 
be found in [37].

66.3.2  Imperative Logic Languages

The amalgamation of imperative and logic programming paradigms does not seem reasonable due to 
the very different computation models. Thus, there are only few approaches in this direction. On the one 
hand, logic programming languages like Prolog offer primitive predicates with side effects to perform 
I/O or manipulate some global state. Although such impure predicates are often used in application 
programming, this is a rather ad hoc use of imperative features in logic programming. A conceptually 
cleaner integration is present in logic languages that offer also functional features, like Mercury [35] or 
Curry [18], since such languages can use the monadic I/O approach from functional languages sketched 
earlier. This will be discussed later on.

As an alternative, one could also add logic programming features to an imperative language. This 
approach has been explored in the multiparadigm language Leda [10] and later in Alma-0 [8], an imper-
ative language with logic programming features. The language Alma-0 is based on a subset of Modula-2 
and allows Boolean expressions as statements whose computation can succeed or fail depending on 
the truth value of the expression. Furthermore, statements have also truth values depending on their 
successful evaluation, that is, a successful computation has value TRUE and a failing one value FALSE. 
Hence, the following statement sequence returns TRUE if the (integer) array a is smaller than array b 
(where both arrays have n elements) w.r.t. the lexicographic ordering [8]:

NOT FOR i:=1 TO n DO a[i] = b[i] END;
a[i] < b[i]

Since statements, like the FOR loop, have also truth values, they can also be used as arguments to Boolean 
operations like NOT. Operationally, the execution of the FOR loop fails (and terminates) when it reaches 
two different elements a[i] and b[i]. Due to negation (NOT), the execution of the first line yields TRUE 
in this case so that the second line is executed that checks the ordering of the different elements.

In order to support the backtracking search mechanism of Prolog, Alma-0 offers an EITHER-ORELSE 
statement to combine alternative computations to be explored by backtracking. Furthermore, there 
are control structures to commit to one successful alternative or to explore all alternatives (FORALL). 
Imperative features can be used to collect information about all alternatives by mutable variables. For 
instance, the following program fragment uses a mutable variable num to count how many of the vari-
ables a,b,c,d have the value x:

num:=0;
FORALL
  EITHER a=x ORELSE b=x ORELSE c=x ORELSE d=x END
DO
  num:=num+1;
END;

Furthermore, Alma-0 supports a limited form of unification by distinguishing between uninitialized 
and initialized variables. The integrated imperative and logic programming features support a compact 
and comprehensible implementation of typical search problems (e.g., see [8]).
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66.3.3  Functional Logic Languages

Functional and logic programming are the main declarative programming paradigms. Both are based 
on the idea to describe logical relationships of a problem rather than the individual steps to compute 
a solution to a problem. Furthermore, functional as well as logic languages have strong mathematical 
foundations, namely, the lambda calculus and predicate logic. Thus, one might expect that integrating 
these paradigms is easily possible. However, there are many different options so that the integration 
of these paradigms have a long history, starting with the extension of Lisp with logic programming 
features [30]. Detailed surveys about these developments can be found in [16,17].

A lightweight integration of both paradigms can be obtained by small extensions that implement 
some programming features of one paradigm in the other. For instance, one can extend a logic pro-
gramming language by some syntax for functional notations. Since any function can also be considered 
as a relation between the arguments and the result, functional notations can easily be translated into 
logic programming constructs [11]. Alternatively, one can use lists and list comprehensions to imple-
ment search problems in functional languages [36]. However, such approaches do not exploit the poten-
tial offered by the amalgamation of both paradigms. List comprehensions do not offer computation with 
partial information and constraints, as in logic programming, and the translation of functions into 
predicates do not exploit functional dependencies to obtain good or optimal evaluation strategies. The 
main objective of multiparadigm languages is to provide the advantages of the different paradigms in 
a single language. Thus, a functional logic language should combine efficient, demand-driven evalua-
tion strategies from functional programming with nondeterministic search and computing with partial 
information from logic programming. If this is carefully done, one gets additional advantages like a 
demand-driven exploration of the search space. The language Curry [18] is a recent example for such a 
language and, therefore, discussed in the following in more detail.

Similarly to the nonstrict functional language Haskell, the functional logic language Curry* has been 
developed by an international initiative to create a standard functional logic language that can be used 
in research, teaching, and applications of such languages. The syntax of Curry is close to Haskell, as 
introduced in Section 66.2.2. Hence, operations can be defined by pattern matching:

not False = True
not True  = False

As in functional programming, computation or evaluation of an expression consists of replacing subex-
pressions by equal (w.r.t. the rules defining the operations) subexpressions until no more reductions are 
possible. For instance, not (not True) can be evaluated as follows (the subexpression to be replaced 
is underlined):

not (not True) → not False → True

So far, these features are identical to functional programming. Logic programming features are sup-
ported by allowing computations with partially known values. For instance, in Curry it is allowed to 
apply an operation to a free variable (i.e., a variable not bound to any value). In this case, the free variable 
will be bound to some value such that the computation can proceed. Consequently, the result of such 
a computation consists of a binding and a value. For instance, the evaluation of (not x) yields two 
results:

{x = False} True
{x = True} False

*	 http://www.curry-language.org.
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The first result line can be read as “the result of (not x) is True provided that the variable x is bound 
to False.” Similarly to logic programming, an expression might have more than one result.

Free variables can also occur inside data structures. Consider the following definition of an infix 
operator “++” to concatenate two lists (as in Haskell, “[]” denotes the empty list and “x:xs” a nonempty 
list with a first element x and a tail list xs):

[]	 ++ ys = ys
(x:xs) ++ ys = x : (xs++ys)

Then the condition (zs++[3]) =:= [1,2,3], also called an equational constraint, is satisfied if the 
free variable zs is bound to the list [1,2], since the concatenation [1,2]++[3] evaluates to [1,2,3]. 
Several equational constraints can be combined to one constraint by the infix operation “&” (“and”). For 
instance, the only solution to the constraint

(xs++ys) =:= [1,2,1] & ([2]++xs) =:= ys

is {xs = [1], ys = [2,1]}. We can use such conditions in the definition of operations to constrain the 
values to which free variables can be bound. For instance, an operation last to compute the last element 
of a list can be defined as follows (note that free variables must be explicitly declared in program rules):

last xs | (zs++[e]) =:= xs
        = e                 where zs, e free

The equational constraint (zs++[e]) =:= xs is satisfied if e is bound to the last element of the list xs. 
Such a conditional rule can be applied in a computation if the condition is satisfied, for example, by bind-
ing free variables. We will later explain how such bindings can be effectively computed.

Note that logic programming features increases the reuse of code. Instead of defining the operation 
last by some recursive rules, we reused the code of “++” to define last by a condition on its input list. 
This condition states that the actual argument xs must match a result of evaluating (zs++[e]). This 
can be expressed in Curry by the following alternative definition of last:
last (zs++[e]) = e

Purely functional languages, like Haskell, do not allow such rules since the pattern contains a defined 
operation rather than constructors and variables. Such functional patterns [7] are a powerful feature 
to match deeply nested subexpressions. Since the evaluation of (zs++[e]) has infinitely many results 
(e.g., {zs=[]} [e], {zs=[x1]} [x1,e], …), this single rule conceptually abbreviates an infinite num-
ber of rules with ordinary patterns. Nevertheless, the overall demand-driven evaluation strategy ensures 
that the required patterns are evaluated on demand so that a computation space of “last [1,2]” is finite.

This example demonstrates the advantage of combining functional and logic programming. By using 
already defined operations and unknown values, one can define operations as concise specifications. 
Since these specifications are functional logic programs, they are executable (in contrast to formal 
specifications written in some specification language). The challenge in the design of functional lan-
guages is the development of a computation model that avoids an inefficient blind guessing of values for 
unknowns. Before we discuss such strategies, we proceed with an important further feature.

Logic languages support the search for solutions (they are “don’t know nondeterministic”) which sim-
plifies many programming tasks. The same is true for functional logic languages but they offer another 
interesting feature, namely, the definition of nondeterministic operations. Such operations deliver more 
than one result on a given input with the intended meaning that all the results are appropriate. The 
archetype of a nondeterministic operation is the infix operation “?” that returns one of its arguments:

x ? y = x
x ? y = y
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Since any rule can be used to evaluate an expression (in contrast to functional languages where only the 
first matching rule is applied), the expression 0?1 has two results: 0 and 1. Similarly, we can define an 
operation to insert an element into a list at some indeterminate position:

insert x ys 	 = x : ys
insert x (y:ys) = y : insert x ys

Thus, the expression insert 0 [1,2] evaluates to any of the results [0,1,2], [1,0,2], and [1,2,0]. 
One can use this operation to define a permutation of some list by inserting the first element at some 
position of a permutation of the tail list:

perm []	 = []
perm (x:xs) = insert x (perm xs)

Permutations can be used to specify properties of operations. For instance, an operation to sort the ele-
ments of a list in ascending order can be defined as a permutation which is sorted. The latter property 
can be expressed as an identity operation on sorted lists (which fails on lists that are not sorted):

sorted []              = []
sorted [x]             = [x]
sorted (x:y:ys) | x<=y = x : sorted (y:ys)

Hence, the expression sorted (perm xs) evaluates to a sorted version of the input list xs. Clearly, 
the operational behavior of this specification of sorting is inefficient and cannot compete with sophis-
ticated sorting algorithms. However, it should be noted that its behavior is not as bad as it seems at first 
glance, since the demand-driven strategy has the effect that not all permutations are computed. The 
evaluation of the argument (perm xs) is triggered by the demand of the outer operation sorted 
(which demands at most two elements for the first reduction step). If a computed permutation starts 
with the first two elements in a wrong order, as in 2:1:(perm ys), the operation sorted fails on this 
argument so that the remaining part (perm ys) will not be evaluated.

66.3.3.1  Evaluation Strategies

Logic programming frees the programmer from considering the individual computation steps since it is 
based on strong soundness and completeness results w.r.t. the underlying logic: each computed result is 
a logical consequence of the program (soundness) and each logical consequence is covered by some com-
puted result (completeness) [23]. The latter property requires the exploration of all possible computation 
steps (also called search space), in particular, all rules (and not only the first matching one) need to be 
considered to reduce some subgoal. Similarly, functional logic computations require also the consider-
ation of all rules. For instance, in the definition of the operation insert shown above, the second rule 
must also be considered although the first rule is always applicable. Even worse, it is not obvious to select 
a subexpression to start a functional logic computation. Therefore, there are many attempts to develop 
appropriate evaluation strategies for functional logic programming.

In order to enable the evaluation of expressions with free variables, like not x, reduction steps from 
functional programming must be combined with variable instantiation steps used in logic program-
ming. The combination of variable instantiation and reduction is called narrowing. It was originally 
introduced in automated theorem proving [33] and later proposed for using it in programming lan-
guages [29]. To ensure completeness in general, all possible rules must be applied to all subexpressions, 
which results in a huge search space. However, the research in this area has developed much better strat-
egies to restrict the number of possible computation steps without loosing completeness.

Similarly to functional languages, there are strict as well as nonstrict narrowing strategies. Due to the 
additional instantiation of free variables, strict strategies require sophisticated techniques to restrict the 
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search space. Therefore, contemporary functional logic languages are based on nonstrict demand-driven 
narrowing strategies. In contrast to purely functional languages, the selection of a demanded argument 
might be influenced by the instantiation of some free variable. For instance, consider an operation to 
return a prefix of a given length of a list, where we represent the length as a natural number constructed 
by zero (Z) and successor (S):

take Z       xs       = []
take (S n) []     = []
take (S n) (x:xs) = x : take n xs

If we evaluate the expression take x e, where x is a free variable, the demand to evaluate the sub-
expression e depends on the instantiation of x: if x is bound to Z, the value of e is not demanded, but it is 
demanded if x is bound to (S v). Thus, it is reasonable to instantiate free variables before the selection of 
the demanded subexpression. To avoid unnecessary instantiations, free variables are instantiated only 
with those constructors that are necessary to determine the demanded subexpression. For instance, 
the variable x in the expression take x e is either instantiated to Z, which yields the result [], or it 
is instantiated to (S y), where y is a fresh free variable, so that in the next step the subexpression e is 
further evaluated.

This needed narrowing strategy [6] is guided by a hierarchical structure called definitional tree [2]. 
A definitional tree of an operation encodes the decisions to be performed in order to select a demanded 
subexpression. Its structure is determined by the patterns of the rules defining this operation. For 
instance, all rules defining take require the value of the first argument. The value of the second argu-
ment is required only if the first argument is rooted by the constructor S. Hence, the needed narrowing 
strategy evaluates an expression like take e1 e2 by an initial case distinction on e1:

	 1.	 If e1 is Z, the first rule is applied.
	 2.	 If e1 is rooted by S, the second argument e2 is examined (resulting in a similar case distinction).
	 3.	 If e1 is a free variable, it is nondeterministically bound to Z or (S y) so that one can proceed with 

case 1 or 2.
	 4.	 If e1 is a function call, it is evaluated by a needed narrowing step so that we start again with this 

case distinction.

Definitional trees exist for operations defined by case distinctions on data constructors, as in purely 
functional programs. In this case, needed narrowing has very strong properties. As other narrowing 
strategies, it is sound and complete. Moreover, it computes only needed steps, so that each computation 
has minimal length, and it computes only disjoint solutions, that is, no solution is repeated [6]. These 
properties also demonstrate the advantages of combining functional and logic programming since sim-
ilar properties are not known for purely logic programs.

Operations defined by overlapping rules, like insert or “?” earlier, do not have definitional trees in 
this strong sense. However, if we consider the choice operation “?” as primitive, one can transform any 
operation into one with a definitional tree and possible occurrences of “?” in the right-hand side. Such 
programs are also called overlapping inductively sequential [3]. For instance, the definition of insert 
can be transformed into

insert x ys = (x:ys) ? (insertTail x ys)
insertTail x (y:ys) = y : insert x ys

One can easily extend needed narrowing to this class of programs by introducing a nondeterminis-
tic reduction step for the operation “?”. This extended strategy enjoys similar optimality properties as 
needed narrowing [3]. Due to these properties, contemporary implementations of functional logic lan-
guages are based on this strategy. Thus, source programs are transformed into overlapping inductively 
sequential programs that can be implemented by combining functional implementation techniques 
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(pattern matching, graph reduction) with logic implementation techniques (variable bindings, choice 
points). A good survey on evaluation strategies and classes of functional logic programs can be found in [4].

Backtracking is a technique used in the logic programming language Prolog to explore the search 
space. If the nondeterministic choices of a logic computation are organized in a tree-like structure 
(search tree), backtracking corresponds to a depth-first search in the search tree. The backtracking 
strategy is important in Prolog since predicates with side effects require a precisely known evaluation 
order. A disadvantage of backtracking is its incompleteness, that is, a computation might loop without 
reporting any solution although solutions exists from a declarative point of view. Since functional logic 
languages avoid side effects in operations (since they can use the monadic I/O approach from purely 
functional programming), they do not fix a particular strategy for dealing with nondeterministic com-
putations. Although backtracking is used in some implementations, the definition of Curry [18] does 
not enforce it so that there are also implementations of Curry supporting complete search strategies, 
like iterative deepening or breadth-first search. Moreover, functional logic languages also support the 
encapsulation of nondeterministic computations where the programmer can implement his own search 
strategies (see later sections).

66.3.3.2  Extensions

The definition of data types, operations, and expressions that are evaluated by narrowing constitutes the 
kernel of functional logic languages. In order to support features useful for various programming tasks 
and application areas, functional logic languages offer a variety of extensions. The most important ones 
are reviewed in the following.

Constraints are an important extension to logic programming. Constraints are based on a specific 
domain (e.g., truth values, real numbers, or finite sets) and operations and predicates on this domain. 
Although this could also be expressed as a functional logic program, constraints come also with dedi-
cated constraint solvers, that is, specific algorithms for the considered domain. For instance, an equation 
like “3+x =:= 5” can be naively solved by enumerating values for x such that the equation is valid. 
However, one can solve this equation without any guessing by applying Gaussian elimination and trans-
form the equation into “x =:= 5-3,” which further evaluates to “x =:= 2”. Thus, constraints over real 
numbers and linear equations and inequations can be supported by a constraint solver based on Gaussian 
elimination and the simplex algorithm. Hence, the integration of constraints is merely a matter of imple-
menting constraint solvers but does not require an extension of the base language. Similarly to equational 
constraints, further type of constraints can be added. For instance, constraint solvers for finite domains 
usually offer a constraint allDifferent, which has a list of integer values as an argument. It is satisfied 
if all values are pairwise different. This can be used to compute solutions to SuDoku puzzles in a straight-
forward way. If we use some higher-order functions that are standard in functional programming, like 
map (applying an operation to each element of a list) or foldr1 (accumulating a list by applying a binary 
operation to all elements), we can solve SuDoku puzzles by the following constraint, where m is a matrix 
(list of elements) containing digits and free variables for unknown elements (transpose is the standard 
matrix transposition and squaresOfNine computes the list of 3×3 sub-matrices):

foldr1 (&) (map allDifferent m)   &
foldr1 (&) (map allDifferent (transpose m))      &
foldr1 (&) (map allDifferent (squaresOfNine m))

The first line constrains all rows to contain different digits, the second and the third line constrains 
the same for all columns and submatrices, where all individual constraints are combined by the con-
junction operator &. Although the number of potential solutions is quite high, the constraint solver 
allDifferent restricts them so that solutions are found in a few milliseconds. More details about the 
use of finite domain constraints in functional logic languages are discussed in [13], whereas [31] reviews 
the general approaches to integrate constraints into functional logic languages.
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Encapsulated search is a technique to process the different results of a nondeterministic computa-
tion inside a functional logic program. This is often necessary to print all solutions or to select a “best” 
solution according to some ordering. Whereas logic programming languages like Prolog offer built-in 
predicates like findall with a fixed (backtracking) strategy, functional logic languages generalize 
this in order to support the possibility to define arbitrary search strategies. For instance, the primitive 
operation (getSearchTree e) returns the search tree corresponding to the evaluation of e, where a 
search tree is some computed value, a failure, or a choice between two trees:

data SearchTree a = Value a | Fail
                  | Or (SearchTree a) (SearchTree a)

Thus, concrete values can be extracted from this structure by operations implementing standard tree 
traversals. Due to the overall demand-driven strategy, search trees are also constructed on demand so 
that infinitely many values do not cause the nontermination of the operator getSearchTree if one 
selects only a single value. More details about encapsulated search and a review of different approaches 
can be found in [9].

Input/output is often neglected or integrated in an ad hoc manner in logic languages. Due to the func-
tional component, functional logic languages often use the monadic I/O concept from purely functional 
programming (see Section 66.3.1). However, functional logic computations may be nondeterministic so 
that it might be unclear which I/O action should be finally applied. Therefore, it is required that nonde-
terministic computations between I/O actions must be encapsulated. This can be done by the methods 
described above. Using I/O actions, one can access and manipulate global data like databases, networks, 
etc., so that imperative programming features are also available for programming. However, the type 
system ensures, as in Haskell, a strict separation of the imperative and declarative programming fea-
tures, which is essential to support flexible and optimal evaluation strategies.

Concurrency features are available in functional logic languages in various shapes. One approach is 
based on concurrent logic programming [32] where different predicates are concurrently evaluated and 
synchronized on a common constraint store. In Curry, the conjunction operator “&” on constraints is 
actually a concurrent operator: if the evaluation of one argument suspends, the other argument is evalu-
ated. An evaluation might suspend if some information is missing to continue it. For instance, if there is 
some external operation that should be used in a functional logic program, for example, a multiplication 
operation implemented in some foreign language like C or Java, then this external operation might not 
be able to deal with free variables. Instead of raising a run-time failure, one can suspend this computa-
tion until the variable is bound in another part of the program. The principle to delay the evaluation 
of operations applied to free variables is also called residuation. This alternative to narrowing is used 
in some languages integrating functional and logic programming, like Le Fun [1] or Oz [34]. In resid-
uation-based languages, free variables are instantiated only by predicates or disjunctive expressions. 
Although residuation is a high-level method for concurrent evaluation (no side effects, synchronization 
on binding constraints), strong results as for needed narrowing are not known.

Another alternative for concurrency features can be found in concurrent functional programming. For 
instance, Concurrent Haskell [27] uses I/O actions to start concurrent processes. Synchronization and com-
munication is implemented by I/O actions that create, read, and write mutable variables. Since I/O actions 
are also available in functional logic languages, this concept can also be integrated in such languages.

66.3.3.3  Further Languages

Although Curry is the only functional logic language based on strong foundations (e.g., soundness, 
completeness, and optimal evaluation) and used to develop larger applications, there are many other 
languages with similar goals. We briefly discuss some of them and relate them to Curry.

The functional logic language TOY [24] has a different syntax but executes programs also with a 
demand-driven narrowing strategy. In contrast to Curry, it is purely narrowing-based and does not 
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cover residuation or concurrency. Therefore, the connection with external operations is rather ad hoc 
in TOY. The language TOY also supports constraints over finite domains or real numbers but does not 
provide a concept to encapsulate search. In addition to Curry, TOY allows higher-order patterns on the 
left-hand sides of program rules.

The functional logic language Mercury [35] restricts logic programming features in order to provide 
a highly efficient implementation. In particular, predicates and functions must have distinct modes 
so that their arguments are either ground or unbound at call time. This inhibits the application of 
typical logic programming techniques, like computation with partially instantiated structures. This 
restriction is dropped in Ciao [19], which is a Prolog implementation but offers various syntactic exten-
sions, in particular, for functional programming. Since Mercury as well as Ciao provide only func-
tional syntax to a logic kernel language, they do not exploit the strong foundations of functional logic 
programming.

The language Oz [34] is based on a computation model that extends the concurrent constraint 
programming paradigm [32] with features for distributed programming and stateful computations. 
Nondeterministic computations must be explicitly represented as disjunctions so that operations used 
to solve equations require different definitions than operations to rewrite expressions. In contrast to 
Curry, the base semantics is strict so that optimal evaluations are not directly supported.

66.4 R esearch Issues

The integration of paradigms has made much progress from early ad hoc integrations to more sys-
tematic approaches. In particular, the integration of the functional and logic programming paradigms 
resulted in languages with advanced programming concepts that are based on strong theoretical foun-
dations developed in the last years. These developments are ongoing and there are many topics for future 
work. Some of them are exemplified below.

Language concepts: The approaches to combine declarative programming concepts with impera-
tive features ranges from clear separations between both concepts, for example, by type systems 
as in Haskell, to relaxed combinations, for example, as in Standard ML or Scala. The latter might 
cause problems when operations have side effects whose evaluation order is important. For instance, 
languages with functional features allow the implementation of demand-driven or lazy strategies 
using higher-order functions. Since the detailed evaluation order of a demand-driven strategy is 
difficult to grasp, operations with side effects should be avoided. Thus, multiparadigm languages 
with a relaxed combination of declarative and imperative features require techniques to support the 
programmer to control side effects, for instance, by advanced type and effect systems or program 
analysis techniques.

Although we have not considered concurrent programming as an own paradigm, the integration of 
concurrency and distribution features is important for current and future applications. Thus, there are 
many approaches for this in all main paradigms. However, multiparadigm languages might offer new 
concepts for concurrent and distributed programming.

Software techniques: Multiparadigm languages allow new programming techniques so that new 
design patterns need to be developed for such languages. The integration of declarative features allows 
new ways to develop reliable software. One can start with a declarative formulation and improve its effi-
ciency if necessary. Specific program verification and transformation techniques are required to support 
such developments, as well as new refactoring methods.

Implementation: Multiparadigm languages can be implemented using known concepts from the 
individual paradigms, but it might be reasonable to develop new techniques. Sometimes, the support of 
several paradigms could cause an overhead compared to implementations of the individual paradigms. 
Thus, program analysis techniques can help to determine the required run-time support at compile 
time in order to optimize the target programs. New techniques to analyze and optimize multiparadigm 
programs are required for this purpose.
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Debugging: Research in functional programming has shown that traditional trace-oriented debugging 
tools are often not helpful due to the more complex evaluation strategies, for example, demand-driven 
evaluation. This provoked the development of declarative debugging methods that visualize the program 
execution in a different order that is better comprehensible for the programmer. As multiparadigm lan-
guages combine features from different paradigms, debugging techniques from different paradigms need 
to be combined, for example, declarative debugging, trace-oriented debugging, or run-time assertions.

66.5  Summary

This chapter has discussed the main programming paradigms and the approaches to amalgamate them 
in a single programming language. In principle, all combinations are possible but some combinations 
do not preserve the properties of the individual paradigms. For instance, the combination of imperative 
and functional programming can lead to functions with side effects so that referential transparency is 
destroyed, but there are also approaches to keep the functional parts free of side effects. The most advanced 
and strongest combination of paradigms are functional logic languages which is due to the fact that both 
paradigms are based on strong formal foundations. Nevertheless, sophisticated evaluation strategies are 
necessary in order to combine the efficiency of functional evaluation with the flexibility of logic evalua-
tion in an optimal manner. This combination does not only help to use the nice programming concepts 
of functional and logic programming in a single language, but it is also useful to improve logic program-
ming by avoiding its impure features (like “cut”, arithmetic, I/O) since they can be replaced by functional 
concepts. Since purely functional languages like Haskell provide clean approaches to deal with imperative 
computations, they can also be used in functional logic languages leading to a combination of all three 
main paradigms. The programming language Curry is an example to demonstrate this in practice.

The combination of paradigms is not only useful to provide a variety of programming styles, but they 
are also helpful to support a smooth software development. For instance, logic programming styles are 
appropriate to avoid fixing algorithmic details at an early stage of the development. The examples for 
computing the last element of a list or to sort a list have shown that it is easier to specify what an opera-
tion should compute rather than developing an algorithm for it. In a functional logic language, such 
specifications are executable so that one can test them in order to become confident that they capture the 
intent. If they are too inefficient, one can use some algorithmic knowledge to improve the implementa-
tion, for example, by sophisticated data structures. In this case, the initial specification is valuable since it 
can be used as an oracle to test the new implementation or to check its execution via run-time assertions.

Finally, side effects cause many complications when parallelizing programs so that they must be 
carefully analyzed or mainly avoided for parallel programming. Thus, declarative programs have a big 
potential for parallelization in order to exploit the computational power available by current and future 
computer hardware. The implementation of these ideas is one of the challenges for the future.

Key Terms

Constraints: Relations on specific domains (real numbers, finite sets) together with specialized con-
straint solvers for these relations.

Declarative language: A language where the logical relationships of a problem are described rather than 
the individual steps to compute a solution. Functional and logic languages are the main classes 
of declarative languages. Declarative languages also occur in dedicated applications, like SQL 
in database programming.

Demand-driven evaluation: An evaluation strategy that reduces a subexpression only if it is strictly 
demanded to compute an overall result, also called lazy evaluation when subexpressions are 
evaluated at most once.

Encapsulated search: Collect the results of a nondeterministic computation in some data structure so 
that they can be processed inside a program.
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Evaluation strategy: A technique to determine the next subexpression to be reduced in order to evalu-
ate some expression.

Functional language: A language that is based on the definition of functions without side effects, that 
is, no mutable variables.

Imperative language: A language that is based on mutable variables and variable assignments as its 
basic operation.

Logic language: A language that is based on the definition of relations between entities and supports 
nondeterministic solving of goals containing unknown values.

Multiparadigm language: A programming language that supports more than one of the basic pro-
gramming paradigms.

Narrowing: The combination of unification and reduction to evaluate expressions containing unknown 
values.

Pattern matching: The definition of operations by rules having data constructors as formal parameters. 
A programming style useful to provide specific definitions for the different cases of applying 
an operation.

Programming paradigm: Style to construct programs from basic elements and composing them to larger 
units. The basic paradigms are the imperative, functional, and logic programming paradigms.

Reduction: A computation step where the left-hand side of a defining rule is replaced by the correspond-
ing right-hand side after instantiating formal parameters by appropriate expressions.

Referential transparency: A property stating that expressions can be replaced by their values without 
changing the result of the program. A language allowing functions with side effects is not 
referentially transparent.

Residuation: Delaying functions calls until all values are known in order to perform a reduction step.
Side effect: A change in the value of some variable when an expression is evaluated, for example, due to 

assignments in function calls of the expression.
Unification: A method to replace free variables in two expressions so that they become equal.

Further Information

An introduction into multi-paradigm programming together with many programming examples for 
the language Leda can be found in [10]. A survey on early developments and implementations of func-
tional logic languages can be found in [16]. Later developments are reviewed in [17]. Evaluation strat-
egies for functional logic programs are surveyed in [4]. Reference [5] contains an introduction into 
functional logic programming techniques.

Research papers on recent developments in the area of multi-paradigm languages can be found 
in various journals and conferences related to programming languages, in particular, those that are 
specialized in functional or logic programming, like the Journal of Functional Programming, Theory 
and Practice of Logic Programming, the International Conference on Functional Programming, or the 
International Conference on Logic Programming. There are also conference series which covers func-
tional and logic programming research, like the International Symposium on Principles and Practice of 
Declarative Programming, the International Symposium on Functional and Logic Programming, or the 
International Symposium on Practical Aspects of Declarative Languages.
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67.1  Introduction

According to WebMonkey [15]:

A scripting language is a simple programming language used to write an executable list of com-
mands, called a script. A scripting language is a high-level command language that is interpreted 
rather than compiled, and is translated on the fly rather than first translated entirely. JavaScript, 
Perl, VBscript, and AppleScript are scripting languages rather than general-purpose program-
ming languages.

A major characteristic of scripting languages is that they can serve as glue for connecting existing com-
ponents or applications together. Scripting languages usually have powerful string processing opera-
tions since text strings are a fairly universal communication medium.

67.2  History

Scripting languages originated in the early 1960s. At that time, they were used as a device for defining 
the control sequence for running a series of programs one after the other. Such a series was often known 
as batch processing, and it was the predominant means for accomplishing computing tasks in commer-
cial data processing environments at that time.

67.2.1  Shell Languages

The earliest scripting languages were the job control languages of the 1960s. Their primary use was to 
instruct the operating system on the sequence of steps required to run a job.
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For example, a job to develop a summary sales report for the past month might have the following steps:

	 1.	 A program to select all sales records for the previous month from a larger file and copy them to a 
temporary file

	 2.	 A program to sort the temporary file into sequence by sales district, usually using a general-
purpose utility

	 3.	 A program to calculate subtotals and present the information in a way that is easy for the end-
users to read

	 4.	 A program to format and display selected pages of the end-user information on a printer or terminal.

However, these languages lacked almost all of the features you might expect, including variables, if 
and loop statements, expression evaluation, etc. The first true job control languages capable of scripting 
appeared with the emergence of Unix in the 1970s. The command interpreter in Unix was known as a 
command shell; a file of such shell commands was termed a shell script.

The earliest shell was known as the Bourne shell, named after its creator, Steve Bourne. Although 
later shells, such as the C shell created by Bill Joy, became more popular as a command interpreter, the 
Bourne shell maintained its popularity for writing shell scripts.

Figure 67.1 shows a typical grading script. This application assumes that all the files needed to grade a 
class assignment have been collected into a single directory. Each student has his/her own subdirectory. 
The files in the directory include input test data files, various log files, various shell scripts, etc.

The purpose of the script is to compile each student’s program files, and, if successful, execute the 
resulting program on all of the test cases, producing an output file for each input test case.

Assuming the name of the script was testem.sh, it would be invoked as

testem.sh Freecell *

The first command line argument is the name of the file that contains the main program, minus its suffix.

 1 #! /bin/sh
  2 if [$# −lt 2]; then
  3     echo Usage: testem. sh mainprog dir1 …
  4     exit
  5 fi
  6
  7 main=$1; shift
  8 # for each student
  9 for d in $*; do
 10     if [ −d $d −a ! −f $d/DONE. log ]; then
 11          cd $d
 12          echo $d
 13
 14          if [ ! − f $main.class ]; then
 15               cp ../*.java .
 16              echo “compiling $d”
 17              javac $main.java &> compile.log
 18     fi
 19          touch DONE.log
 20     cp ../*. $data.
 21     for f in ../*. $data; do
 22              java $main $f < $f & > $f.log
 23         done
 24         cd ..
 25     fi
26 done

FIGURE 67.1  A student test script.
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When the script is invoked, it determines whether it has fewer than two arguments: the first is the file-
name of the file containing the main program. The script must also be invoked with at least one student 
subdirectory name. If the test fails, the script prints a usage message and then quits.

Otherwise, the first command argument is stored in the variable $main, and then deleted from the 
command line. A for loop is then executed on the remaining command line arguments.

Since each student corresponds to a subdirectory, line 10 tests to see if the argument is a directory and 
if it is not done. If both conditions are met, then the argument represents an untested student. The next 
two lines change directories into the student’s directory (note the cd back to the parent on line??) and 
echos the student id to the screen.

The script next checks if a class file exists for the java source; if not, it copies any instructor 
supplied code into the student directory and compiles the result with output diverted to the file 
compile.log.

Next we record the fact that this student has been tested by creating the file DONE.log in the student 
directory. The next four lines test the student program on a set of test data supplied by the instructor, 
with the output diverted to a separate file for each input test case.

For many class assignments, this is the only script we need to test the student-written programs. It 
handles a wide variety of cases, including the following:

•	 Assignments that consist of a single source file, as well as those that include both student 
and instructor written source code. No assumption is made about who supplied the main 
program file.

•	 The student program can obtain the command line argument and then open and read that file. 
Alternatively, the program can read its input from the keyboard.

Note the use of variables in the script representing the current student and the current test.

67.2.2 T ext Processing Languages

As part of the development of Unix, a number of text processing utilities were developed, as well as the 
troff word processor for writing documentation. The next step in the evolution of scripting languages 
was the development of specialized languages for processing text, specifically, grep, sed, and awk. The 
latter was an acronym made up of the first letters of the languages developers: Aho, Weinberger, and 
Kernighan. awk appeared around 1978.

In this section, we present two awk scripts: the first is a very small, typical script, while the sec-
ond is considerably more complex. The first is so small and useful that such scripts are still common 
today. Scripts like the second served as the impetus for the development of general purpose scripting 
languages.

The first script was written back in the late 1980s when one of the authors was the systems manager 
for a network of Unix computers. In the fall semester of each academic year, there were many new 
students and a few new professors who needed computer accounts. At that time, creating a new user 
account was a multistep, manual process carried out by student help.

One fall day a new student came to see me because they were unable to login to their new Unix 
account. My investigation quickly revealed that their record in the user table had one too few fields. It 
was a simple matter to edit the user table and add the missing field. This quick resolution made the user 
happy, but not I.

One solution to prevent this problem from recurring was to create a written procedure with a check-
list to create a new user account. Although this approach had a certain appeal. I decided to take the extra 
step of implementing the procedure as a combination of a Makefile, a few shell scripts, and a few simple 
awk scripts.
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Since editing the user table was a manual process, I decide to implement the checks on this step as 
a sequence of (largely awk scripts). The first of these was to check that each line had the same number 
of fields:

#! /usr/bin/awk -f
NR == 1 { ct = NF }
NF != ct { print NR, $0 }

An awk program consists of a guard followed by a block of statements, repeated as many times as desired; 
the first line is a pseudo comment used in Unix/Linux computers that identifies the interpreter to use. 
The awk processing cycle consists of reading an input line, then testing each guard in the program. For 
any guard that is true, its corresponding block is executed, after which the testing of guards resumes. 
Only after all the guards have been tested and their blocks executed, if applicable, is the next input line 
read and processed.

Based on a field separator (the default is whitespace), the input line is broken up into fields. The awk 
variable NR is the current line (record) number and NF the number of fields on the current input line. 
The variables $1, $2, … hold the contents of each field, whereas the variable $0 refers to the entire line.

So the aforementioned program a consists of two guarded blocks. The first guard is true only for the 
first line read; its block stores the number of fields on the first input line into the variable ct. The last 
guarded block prints any lines whose number of fields disagrees with ct.

Although the author is no longer a systems manager, this first awk script still finds occasional use 
even today.

The second script is considerably more complex. It was developed to solve the following problem. The 
authors were writing a text book. In addition to the text, a number of nontrivial programs were devel-
oped. The authors needed to include portions of these programs as examples. Most importantly, they 
wanted the code in the textbook to be identical to the code used in the programs.

So they used a Makefile and a set of text filters for extracting the code of interest into a file, which 
was then automatically included in the book. The awk script presented here was given the task of extract-
ing a single function or method in Java. A typical script parameter was the return type and name of the 
method, which made the starting point easy to find. Having located the starting point, the end point was 
determined by basically counting braces, based on the authors’ coding style:

#! /bin/sh
awk “BEGIN { ct = 0; prt = 0 }
/$1/ { prt = 1 }
prt > 0 { print \$0 }
prt > 0 && /{/ { ct++ }
prt > 0 && /}/ { ct–– }
prt >0 && ct == 0 { prt = 0 }
”

Before the first input line is read, the script sets a prt switch to off (0). It then searches through the 
input file until it finds the function it is looking for, namely, the second guard, whose block turns the 
switch on. The third guard prints the input line if the prt switch is on. The next two statements incre-
ment/decrement the brace count whenever the prt switch is on and they detect a left/right brace. The 
final guarded block turns the switch off when the brace count goes to zero.

There is a very subtle point in this script. The observant reader will have noted that, unlike the previ-
ous script, this one is a shell script which then invokes the awk interpreter. The parameter to the script is 
substituted into the second guarded block, while in the statement of the third guarded block, the dollar 
sign is escaped so that to the awk interpreter the statement appears as

print $0
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Quirks like this, together with the limited processing ability of text processing languages, led to the 
development of more general purpose scripting languages, which are discussed in the next section.

67.2.3  Glue Languages

Larry Wall … created Perl when he was trying to produce some reports from a Usenet-news-like 
hierarchy of files for a bug-reporting system, and awk ran out of steam. Larry, being the lazy pro-
grammer that he is, decided to over-kill the problem with a general purpose tool that he could use 
in at least one other place. The result was the first version of Perl. [12]

In the 1980s, scripting languages began to move away from simple text processing to more complex 
tasks with the development of the languages Perl and Tcl/Tk. A hallmark of a glue language is its abil-
ity to take data output from one application and reformat it so that it could be input to another appli-
cation. Initiallly, scripting languages were considered much too slow and inefficient to implement an 
entire application. With the development of faster interpreters and faster computers, this assumption 
disappeared.

Although Perl and Tcl/Tk had their roots as a Unix scripting languages, all major scripting languages 
are now available for all major platforms including Unix, Linux, Macintosh, and Windows. These lan-
guages include Perl, Tcl/Tk, Python, and Ruby.

For example, the first author has used these scripting languages for the following tasks:

•	 Systems administration tasks on a network of computers including: setting up new user accounts, 
running backups, reconfiguring servers, and installing software.

•	 Class management, including converting electronic class rolls from one form to another, manag-
ing email for each course, grading support, and an interactive, GUI-based grading system.

•	 A textbook support system, which consisted primarily of scripts for including source code in a 
book.

•	 Newer versions of programs previously written in conventional programming languages such as 
C++ and Java. Such programs fall into a variety of subject domains including simple utility pro-
grams, computer science research, etc.

To illustrate the robustness of scripting languages, let us consider the academic task of maintaining 
a grade book of numeric grades earned by students in a class for their assignments, quizzes, tests, and 
exams. Each grade may have a different weight; for example, an exam may be more heavily weighted 
than a quiz. The script presented here provides a secure way to deliver grades to students.*

A spreadsheet is used to do the grade management itself, one spreadsheet per class. An example 
spreadsheet is given in Figure 67.2. In this example, column one is used for student names and column 
two is used for email addresses. The rightmost two columns used are weighted totals and averages. The 
intervening columns are used for grades on assignments and tests; at any point in time, any number of 
grade columns may be blank (empty).

Also, note that the first row is a descriptive title for each grade, and the second row for the maximum 
points possible for each grade. The last row is used for the average for each assignment or test. The inter-
vening rows contain the students records, one row per student.

The scripting problem here is to move the grade values from the spreadsheet to the email system. This 
process consists of exporting the data in textual form from the spreadsheet and then using a Python 
script to generate the email. The spreadsheet output used is comma-separated-values. We have found 
over the years that each spreadsheet application has its own, often unique definition of the format of 

*	 Specialized web software developed for education, such as Blackboard and WebCt, provide equivalent functionality to 
instructors through secure login to a dedicated Web server. However, the system described here was developed long 
before such software became available; it relied on the use of email for conveying grades back to students.
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comma-separated-values. Fortunately, Python provides a module (or library) which deals with that. For 
our current spreadsheet the third row would appear as

“Snoopy”,“snoopy@wm.edu”,24,90,,,114,91.2

In the remainder of this section, we describe the Python script given in Figure 67.3 as a means of 
examining some of the features of glue languages in general, and Python in particular.

As noted in the previous section, line 1 of the script is a pseudo comment that gives the full path name 
of the language interpreter. Line 2 imports any needed modules (or libraries).

In lines 4–6, we set any global constants that are likely to change. For this script, these are kept in an 
dictionary or associative array as a key-value pair. This allows each grade spreadsheet to have its own set 
of values, which can be read from a file, overriding the defaults. These parameters include the column 
number of the student’s name, his/her email address, etc. For the sake of simplicity, the routine for read-
ing (and checking) these parameters (amounting to 11 lines of code) is omitted here.

The main logic of the program is shown in lines 8–10. First, the CSV input file is read and stored in an 
array of students. All the student entries must be read because the averages (which are included in each 
mail message) are last. Then an email is constructed and sent to each student:

All that remains is to examine the functions readGrades and emailGrades. The first function 
is passed the name of the file to be read as the first command line argument; a simple GUI alternative 
would use a dialog box to ask for the file name. The first line of the function sets the variable stu-
dent to be an empty, indexed array. The filename is opened and passed to a reader which deals with 
comma-separated format files. The for loop reads one row per iteration, which is appended to the end 
of the student array.

The function named emailGrades is passed the student array. Next, leading nonstudent entries 
are copied and trailing ones removed. Then a simple for loop that generates an email message per 
student entry.

Basically, this function iterates over the students, generating a string that contains the student’s 
grades and then mailing them. It counts the lines as it goes so that it can skip the initial lines which 
contain header information. On a row containing an actual student, the function formats the student’s 
grades in a manner familiar to any programmer, storing the message in the string outline.

The function emailGrades then creates a subprocess that executes a system command; the mailx 
command works here if you have a static IP address, otherwise it is somewhat more complicated. Note 
that the subprocess’s file stdin is set to be a pipe, which is then filled by the proc.communicate 
method call. The function then waits for the subprocess to finish. One essential feature of a glue lan-
guage is the ability to execute system commands (like mailx) and send them input or read their output 
or both.

FIGURE 67.2  A spreadsheet gradebook.



67-7Scripting Languages

The function formatGrades (not shown here) generates a multiline email message; it amounts to 
11 lines of code.

Python has some interesting features that are worth noting here. First, it uses the plus symbol as the 
string concatenation operator. Second, it provides no automatic conversion from a number to a string, 
even in string concatenation. Third, the percent operator with a string as the left operand and a tuple as 
the right operand is basically the sprintf function of C; the left operand serves as a formatting code 
for each operand in the tuple. After setting up some column headers, the for loop generates one grade 
per output line, each containing a grade name, a maximum grade, and the grade earned by the student.

As presented here, the entire program has fewer than 40 lines of code. It was written and debugged in 
less than a day to replace a similar, cryptic, less flexible Perl script. The script accommodates spreadsheet 
output generated by Excel, OpenOffice Calc, and GoogleDocs using a variety of conventions used by the 
author and his graders. It has proven to be a very valuable glue script, since it is used about 10 times per 
semester per class.

This typical Python glue script linking two disparate applications exposes many commonly used 
features of glue languages such as Python:

•	 Scripting languages do not require declaration of variables and supports dynamic typing.
•	 Scripting languages support a wide variety of string operations, including pattern matching.

 1 #! /usr/bin/python
  2 import sys, csv, process
  3
  4 param = {“name”:0, “email”:1, “gradecol”:2, “studentrow”:2,
  5         “titles”:0, “maxgrade”:1}
  6 readPrefs(“ugrades.pref”)
  7
  8 student = readGrades(sys.argv[1])
  9 ct = emailGrades(student)
 10 print ct, “messages sent”
 11
 12 def readGrades(filename):
 13     student = [ ]
 14     for row in csv.reader(open(filename, “rU”)):
 15         student.append(row)
 16     return student
 17
 18 def emailGrades(student):
 19     titles = student[prefs[“titles”]]
 20     maxgrade = student[prefs[“email”]]
 21     ave = student.pop()
 22     ct = 0
 23     for s in student:
 24         ct += 1
 25         if ct <= prefs[“studentrow”]:
 26             continue
 27         outline = formatGrades(s, titles, maxgrade, ave[s])
 28         proc = subprocess.Popen(“mailx –sgrades %s@cs.wm.edu”
 29                 %(student[prefs[“name”]],
 30                 student[prefs[“email”]]),
 31                 shell=True, stdin=subprocess.PIPE)
 32         out = proc.communicate(outline)
 33         proc.wait( )
34     return len(student) – prefs[“studentrow”]

FIGURE 67.3  A glue script for emailing grades.
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•	 Scripting languages provide both dynamic arrays (lists) and dictionaries (also known as associa-
tive arrays or hash tables).

•	 Scripting languages provide a means of executing system commands with the ability to supply 
input to those commands or to read their output.

•	 Unlike many languages, Python has a simple syntax. A compound statement such as a function 
definition (def), a for, or an if end with a colon. The statements forming the loop body (for 
example) being indented. In Python if a statement looks like it is part of a function definition, loop 
body, or a then/else body, then it is interpreted as one.

•	 Python supports a large number of modules, which are very useful language extensions. In this 
program, we used the sys module to access command line arguments, the csv module to sim-
plify reading CSV format files, and the subprocess module to create a subprocess capable of 
executing system commands and communicating with its parent.

Finally, we note that many universities now teach Python in their CS1 courses (the first course in a 
computer science major). One reason for this is that the course is rapidly becoming a service course, 
taken primarily by physical science and social science majors. Its popularity is partly due to its simple 
syntax and partly because of this value as a tool for solving computing problems in other fields of study.

67.2.4  Web Languages

According to its developer, Rasmus Lerdorf, the motivation for developing PHP [4] was the following:

As the Web caught on, the number of non-coders creating Web content grew exponentially. … But 
soon they were asked to add dynamic content to their sites. … This is where PHP found its niche. 
… I had written all sorts of CGI [Common Gateway Interface] programs in C, and found that I was 
writing the same code over and over. What I needed was a simple wrapper that would enable me 
to separate the HTML portion of my CGI scripts from my C code … This concept became PHP.

Lerdorf initially developed PHP in 1994, but because its usage quickly grew beyond the abilities of 
a single developer, it became an open-source product. PHP is a server-side scripting language whose 
scripts can be directly embedded within the HTML code that defines the page layout. In this way, PHP 
is ideal for use with Web pages that have dynamic content, including forms processing and database 
access.

A major advance in the development of PHP was the release of PHP 5 in 2004, which added the fol-
lowing major features:

•	 A new OOP model
•	 Improved database support for MySQL and SQLite
•	 A host of new functions to simplify coding of common features, such as date and array handling

These features, along with its basic syntactic similarity with Java, C, and C++, tend to obscure the dis-
tinction between PHP and other general purpose languages. They also make PHP easier to learn for 
programmers who have prior experience with these other languages.

At many sites, PHP is installed on the main Web server. It is often installed together with MySQL, 
an open source database management language. A popular package used across many server varieties 
is known as xAMP, which combines PHP, MySQL, and an Apache server in an easily installed server 
configuration that can be run either locally or remotely.*

*	 The Windows variety is called WAMP, the Mac OS variety is called MAMP, and the Linux variety is called LAMP, 
appropriately. All three varieties of xAMP are open source and so can be freely downloaded and used by any software 
developers.
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Typical examples of PHP usage on a Web page include

•	 Dynamic content such as today’s date or a news item of the day
•	 Forms processing, including forms validation
•	 Database access

The PHP processor takes a document file as input and produces HTML as output. Like JavaScript, the 
input file consists of a mixture of HTML and PHP, which are marked by special HTML-like tags. The 
major difference from JavaScript is that a PHP script is executed on the server, not on the client. This 
provides a level of security that is unachievable with JavaScript, since the PHP script is never down-
loaded to the client’s Web browser.

The PHP processor has two modes of operation. It begins in copy mode in which HTML tags and text 
are copied directly to the output. When it encounters the special tags:

<?php
// one or more lines of PHP code
?>

the PHP processor switches to script mode and interprets the script on the fly. The output from the 
script, whatever is written to stdout, is inserted directly into the HTML page. The double slashes (//) 
denote a PHP comment, which continues until the end of the line.

Figure 67.4 contains a simple example that illustrates some of the features of PHP. Familiarity with 
both HTML tags and C programming is presumed. In this example, we use a PHP script in conjunction 
with a database to produce department directories, one each for the faculty, the staff, and the graduate 
teaching assistants. The directory desired is specified as a parameter in the URL; for example, http://
www.cs.wm.edu/people/index.php?id=Faculty will list the faculty directory.

 1 <?php
  2 $title = $_GET[‘id’];
  3 include “header.inc”;
  4 if (! eregi(“:Faculty:Staff:GradTA:”, “:$title:”)
  5     errorPage($title);
  6 include “dbaccess.inc”;
  7 $result = mysql_query (“select * from $title”);
  8 print ‘<center> <table cellspacing=5 cellpadding=5 border=2>
  9     <tr align=left><th>Name</th><th>Office</th>
 10     <th>Phone</th><th>Email</th></tr>
 11 ’;
 12 while (list($name, $url, $office, $phone, $email) =
 13                 mysql_fetch_array ($result)) {
 14     print “<tr align=left>\n”;
 15     $lname = $name;
 16     if ($url !=“”)
 17         $lname = “<a href=$url>$name</a>”;
 18     print “<td>$lname</td>\n”;
 19     print “<td>$office</td>\n”;
 20     print “<td>$phone</td>\n”;
 21     print “<td><a href=mailto:$email>email</a></td>\n”;
 22     print “</tr>\n”;
 23 }
 24 print ‘</table> </center> ’;
 25 include “trailer.inc”;
26 ? >

FIGURE 67.4  A PHP script for a directory listing.
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With this parameter, the script accesses the appropriate database table, in this case the faculty table, 
and generates the appropriate HTML output. Because these directories are fairly static, it is fair to ask 
the question: Why not maintain the information as static HTML pages? Here are three reasons:

	 1.	 The staff people who maintain this information need only interact with a form that interfaces with 
the database—they do not need to learn HTML.

	 2.	 Using PHP allows the webmaster to more easily maintain a consistent look and feel to the web 
pages.

	 3.	 The information can be accessed from other portions of the web site.

A PHP page begins in HTML mode; this would be used to set up the page in a site-specific stan-
dard format, including the title, background color, navigation buttons, etc. Because HTML lacks an 
include facility, a common use of PHP is to set up the page via parameterized header (line 3) and trailer 
(line 25) files.

The global $_GET is an associative array of variable-value pairs that are passed to the script via the 
URL parameters. In this case, the parameter id, whose value is the string Faculty, is passed to the 
PHP variable $title. The header.inc script expects the title variable to be set.

Before we begin setting up the body of the page, we want to check to see that the id parameter has a 
valid value. Because this value is used to access a database table, a malicious user could attempt to attack 
the database by providing an unexpected value. In this case, we test the value supplied for the id param-
eter using a pattern match against the three legal values. If the pattern match fails, an error routine is 
called, which generates an error page and exits with no further processing.

Otherwise, database access code is included, which sets the name of the database along with security 
information such as userid and password. The select SQL statement is shown, which in this example 
accesses the faculty table in the database. At the current time, each of the three tables contains the fol-
lowing information for each person:

•	 The person’s name
•	 A URL, if they have a homepage
•	 Their office address
•	 Their phone number
•	 Their email address

The information is to be generated as an HTML table with one row per person. Each column should have 
an appropriate heading (lines 7–10).

Next comes the main logic of the script. A while loop (line 11 ff.) is used to fetch the rows of the result 
of the SQL query one person at a time. That result is returned as an array, so the list function is used to 
assign the array values to conveniently named variables. The body of the loop consists mostly of print 
statements to write the appropriate columns: As with Perl, variable references may be freely embedded 
in double-quoted strings. The name field is made into a link if the person has a non-empty URL field.

All that remains is to close the table and center HTML tags and invoke the standard web site trailer:
This script is a typical example of server-side scripting and exposes some of the commonly used fea-

tures of PHP:

PHP scripts freely alternate between pure HTML and PHP.
PHP does not require the declaration of variables and supports dynamic typing. The same value 

can be treated both as a string and as a number (provided it can be interpreted as a valid 
number).

PHP supports a wide variety of string operations. It also supports pattern matching as found in 
the Unix utilities grep and sed.

PHP provides both dynamically sized arrays and associative arrays (hashtables).
PHP directly supports accessing information from a database.
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Besides PHP, all of the glue scripting languages can be used for dynamic web programming, includ-
ing Perl, Python, and Ruby.

67.2.5  Embedded Languages

Embedded languages provide functionality that can be activated by the user by the user to perform 
specific tasks, like text editing. One of the earliest examples of an embedded language is GNU Emacs, 
developed in the 1980s.

Like other versions of Emacs available at the time, GNU Emacs had an embedded Lisp interpreter. 
Everything from setting startup options to the development of modes was done in Lisp. This made Gnu 
Emacs customizable by the end user. Most of the customizations themselves were developed by end 
users writing in Lisp.

For example, a typical customization of Emacs was developed for editing Python programs. This 
customization automatically indents the program as it is typed, colorizes reserved words, identifiers, 
strings and other literals, etc. By selecting a region, the user can comment it out, indent it left or right, 
wrap lines as needed, etc.

The development of computer games, whether on a dedicated console or on a personal computer, has 
rekindled interest in embedded languages. Many books on writing game programs discuss the use of an 
embedded scripting language. The choice of language can vary from Lisp/Scheme to Lua to languages 
similar to Javascript. Factors that are considered in choosing an embedded scripting language include 
its suitability to the task, familiarity of the development team with the language, and the size and speed 
of the interpreter for the language.

Tasks performed by the embedded language may include loading options and configuration files at 
startup, saving and reloading state information, implementing and interpreting finite-state machines, 
moving objects in the game, etc.

An important consideration in choosing an embedded scripting language is the size and speed of the 
interpreter. Consider Lua as an example. Compared to Python, Lua has a paucity of data structures and 
types. Python offers both infinite precision integers, as well as floating point numbers, while Lua offers 
only the latter.

67.3  Principles

Until recently, scripting languages were designed primarily for programming in the small, as opposed to 
application programming languages, which were designed for programming in the large. The languages 
used dynamic typing and were interpreted rather than compiled. The primary application for scripting 
languages was to glue existing applications and utilities together to make a new application.

The advent of languages like Java and C# began to muddy these waters. Like scripting languages, they 
were compiled to byte code for a virtual machine and then interpreted. Other than the fact that they 
used static rather than dynamic typing, there seems little to distinguish them from scripting languages 
such as Perl and Python.

Entire applications, such as content management systems for web applications, are now being written 
in scripting languages. Indeed, except for embedded languages, such as Lua, the distinction between 
scripting languages and application programming languages may soon disappear. In such a case, script-
ing languages should be held to the same principles as application programming languages. Such prin-
ciples include

	 1.	 A well-defined syntax, expressible in a content-free grammar
	 2.	 A clear, well-defined semantics, which is expressible in an efficient implementation
	 3.	 A well-defined type system
	 4.	 The syntax, semantics and type systems should work together to minimize programming errors



67-12 Programming Languages

	 5.	 The language should support its intended application area with a rich set of constructs that 
encompass needed functions and idioms

	 6.	 The language should be as simple as possible, both to learn and to use
	 7.	 The language should support future extensions while maintaining backward compatibility

In the remainder of this section, we will consider each of these in turn. In cases where principles are 
in conflict with one another, the language designer must make appropriate tradeoffs to achieve a work-
able implementation for the language.

Further complicating the issue is that, with the exception of Ruby and Lua, most scripting languages 
began as imperative languages, to which object-oriented features were later added. In some cases this 
addition resulted in breaking earlier features.

67.3.1  Syntax

A well-designed language starts with a simple syntax that is expressible by a grammar. Most application 
language definitions present their syntax as a context-free grammar; the size and complexity can vary 
among languages. For example, see Table 67.1 [13], which shows the number of pages of text required to 
present the complete grammar for each of four prominent programming languages.

From this table, it can be inferred that the languages Pascal and C are syntactically simpler than Java 
and C++.

However, a review of the websites for Perl, for example, reveals that Perl may not have a syntactic 
grammar in the traditional sense.

Moreover, its informal syntactic definition reveals that Perl distinguishes between constant strings 
using either single or double quotes [14]:

Besides the backslash escapes listed above, double-quoted strings are subject to variable interpola-
tion of scalar and list values. … Variable interpolation may only be done for scalar variables, entire 
arrays (but not hashes), single elements from an array or hash, or slices (multiple subscripts) of an 
array or hash.

But “variable interpolation” as described earlier is never given a precise syntax, so beginners often avoid 
its use altogether.

Secondly, in order to distinguish among scalar variables, arrays, and hashes, Perl requires that each 
of these start with a unique character. Omitting this character leads to the so-called bare word compile 
error, which (in our experience) is the most common error in Perl. Languages that have copied this con-
vention, namely, PHP and Ruby, inherit the same weakness.

Since Python does not support variable interpretation of arbitrary strings, variables are not 
required to start with a special character. This supports Python’s reputation as a simpler language 
than Perl.

Since these languages support the sprintf function of C, as well as string concatenation, variable 
interpretation of double quoted strings leads to more problems than it solves.

TABLE 67.1  Grammars for Various 
Languages

Language Approximate Pages

Pascal 5
C 6
C++ 22
Java 14
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67.3.2  Semantics

Languages should have a well-defined semantics based on a formal semantic definition to the extent 
possible. However, if formal semantic definitions of scripting languages exist, we could not find them. 
A formal semantic definition allows alternative implementations of language, since it can be proved that 
the abstract models of various implementations are equivalent. These formal definitions can be based on 
either operational semantics or denotational semantics.

Again using Perl as an example, the implied subject of most operations is the special variable $_. 
A common error in Perl is to assume that each function has its own copy of this variable but, in fact, 
there is only a single copy in the entire program. One implication of this rule is that modules or library 
functions that a programmer develops must avoid using the same special variable.

67.3.3 T ype System

Scripting languages are all dynamically typed. A language is defined to be dynamically typed if 
types are associated with values rather than variables; thus, a variable can have a different type at 
any time during program execution, depending on the value currently assigned to the variable at 
that time.

Since scripting languages were originally intended for programming in the small, it was felt that a 
script with only a screenful of code (or two) did not need the extra complexity of having to declare all 
its variables.

The question then becomes what do you do if one or more operands of an operator has the wrong 
type. With respect to automatic coercion from one type to another, a permissive language attempts to 
convert a value from one type to another. A language is more strict with respect to automatic coercions 
if it allows only those which are guaranteed to be safe.

Permissive languages such as Perl and PHP try to keep the program running if possible. Because of 
this they tend to allow automatic coercions of values, even when such conversions are more likely to be 
incorrect rather than correct. In the case of PHP, this attitude eliminates many error messages being 
written to the browser window. Such a practice can be defended on security grounds.

Because of this permissiveness, scripting languages try to avoid overloading operators based on 
the types of their operands. Perl and PHP use the dot to denote string concatenation, whereas Python 
overloads the plus operator for concatenation. Perl even has unique operators for string comparisons, 
instead of using the mathematical operators already used for numeric types.

Strict languages such as Python do not permit automatic coercions unless they are safe. For example, 
converting an integer to a string is guaranteed to work, although Python does not permit an automatic 
conversion. Converting a string to a number would be disallowed, since the string may contain arbitrary 
text not representing a number. For a glue language, reporting errors tends to be preferable to generating 
incorrect output.

67.3.4  Other Properties

A good scripting language should support the needed functions, data structures, and idioms of its 
intended applications. We have seen how PHP supports an HTML mode, which is quite useful in web 
applications.

Most of the languages we have examined support unbounded indexed lists and dictionaries. They 
also support iterators for traversing these structures. Whether these features lead to dramatically sim-
pler applications is a subject of debate.

The one area where all of these languages have had problems is in maintaining backward compat-
ibility. As the size and number of scripts written in these languages continues to grow, breaking existing 
scripts is likely to cause programmers to seek a more stable language.



67-14 Programming Languages

Consider the language Python as an example. Through versions 1 and 2, Python remained largely 
backward compatible. However, the design goals for version 3 was that “there should be one—and pref-
erably only one—obvious way to do it.” The backward-compatibility problems relative to earlier ver-
sions are as follows:

•	 The print statement became a function, necessitating parentheses surrounding the arguments. 
This broke almost all scripts written for earlier versions of Python.

•	 The division operator was redefined to always produce a floating point number. A new operator 
was introduced which produced an integer when one integer was divided by another.

•	 Removing previous backward-compatibility features, including old-style classes, integer-truncating 
division, string exceptions, and implicit relative imports.

•	 Many changes were made to key libraries. For example, the glue script in Figure 67.3 will not run 
under version 3 due to changes in the process module. Many user libraries would not work 
under version 3.

Although Python version 3 came out in December 2008, only in late 2011 and early 2012 have Python 
textbooks started to appear in large numbers.

To summarize, as the distinction between traditional application programming languages and 
scripting languages continues to shrink, the principles and qualities of traditional languages should be 
applied more carefully to scripting languages as well.

67.4  Conclusions

Scripting languages began in the 1960s as a simple device for connecting individual tasks in a sequence 
of programs that ran in batches.

Throughout the 1970s and 1980s, especially with the rapid emergence of Unix and time sharing 
systems, scripting languages grew in richness and versatility to accommodate the needs of these 
systems.

With the widespread emergence of the Internet in the 1990s and recent years, newer scripting lan-
guages embodied still more features and functionality to support web-based programming requirements.

In fact, scripting languages of today, like PHP and Python, are not easily distinguishable from other 
modern programming languages like Java and C++. For that reason, it appears that tomorrow’s script-
ing languages will need to adhere to a more rigorous definitional standard, in order that they maintain 
such important characteristics as backward compatibility, interoperability, and type safety.
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68.1  Introduction

Compilers and interpreters are language translators that have many functions in common, in that both 
must read and analyze source code. A compiler, however, produces a program equivalent to the source 
program in a target language, usually in object or assembly code but also sometimes abstract machine 
code such as Java virtual machine (JVM) code or even C code, whereas an interpreter directly executes 
the source program. Any programming language may be either compiled or interpreted, but languages 
with significant static properties (e.g., FORTRAN, Ada, and C++) are almost always compiled, whereas 
languages that are more dynamic in nature (e.g., LISP and Smalltalk) are more likely to be interpreted. 
Languages that differ substantially from the standard von Neumann model of most architectures 
(e.g., PROLOG) may also be interpreted rather than compiled. A performance penalty is incurred by 
interpretation over compilation, so in cases where speed is critical, compilation is to be preferred. By 
mixing compilation and interpretation, this performance penalty can be reduced, usually to well within 
an order of magnitude. The advantage to interpretation is that the compilation step is avoided (useful 
during program development), and an interpreter offers greater control over the execution environment 
(useful for complex run-time environments) and greater flexibility in adapting to different architectures.

The first translators were developed in the 1950s. Prior to the development of high-level languages, 
a  compiler was essentially what is known as a linker today: it “compiled” a collection of machine-
language routines from a library to form a single program. A team at IBM under the direction of John 
Backus is generally credited with developing the first commercial compiler for a high-level language, 
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during the period 1954–1957 (Backus et al., 1957). The language translated by this first compiler was 
FORTRAN, which was designed simultaneously with the compiler (and is also credited with being the 
first high-level language). Modern translation techniques were first used in Algol60 compilers a few years 
later (see, e.g., Randell and Russell, 1964), when the relationship of language translation to the theory of 
finite automata and context-free grammars became better understood. The study of these subjects was 
further stimulated by this relationship, and by the early 1970s, many of the standard techniques in use 
today were known. Since then, general improvements in translators have come in the following areas:

•	 The automation of a significant portion of the construction of a translator
•	 Improvements in the speed of the target code, due to the increased application of code-improving 

(or optimizing) algorithms

A greater ability for compilers to be relatively easily retargeted, or rewritten for a new target machine 
language, due in part to automation and in part to a better understanding of the required compiler 
structure.

Improvements have also come in the implementation of special language features, such as exception han-
dling, generics (parametric polymorphism), object-oriented features (such as dynamic binding), and paral-
lelization, due to increasing understanding of these mechanisms. One area in which significant theoretical 
advances have taken place in the past few decades is in the translation of functional languages, with new 
algorithms for type checking, type classes, and interpretation by tree reduction (see, e.g., Peyton Jones, 1987). 
So far, however, these techniques have remained outside of the mainstream of languages and translators.

An important aspect of the technology of translators is its strong interaction with language design. For 
example, the introduction of block structure in the Algol language family gave impetus to the development 
of stack-based translation algorithms. In turn, the stack-based algorithms influenced the development of 
language semantics specifically designed to take advantage of the algorithms, such as the lexical scope 
rule and the principle of syntax-directed translation, in which the semantics of a program (i.e., its execu-
tion behavior) is directly reflected in its syntax, or structure, so that translation can be guided by this 
structure. (This rule could equally well have been formulated as semantics-based syntax.) Because of its 
early appearance, FORTRAN was not designed with these principles in mind, and it remains a somewhat 
more difficult language to translate with the standard techniques than later languages of the Algol family.

Another aspect to the development of language translators has been the tendency of the comput-
ing community to constantly rediscover or recreate translation techniques (other than the basic, well-
known ones outlined in many texts). Primarily, this is due to the lack of detailed documentation of 
specific translators in the computer science literature. This, in turn, is largely due to the commercial 
and/or proprietary nature of most translators. Two translators that historically were reasonably well 
documented and exerted a corresponding influence on subsequent translator construction were the 
portable C compiler (Johnson, 1978) and the PASCAL P-compiler (Wirth, 1971; Nori et al., 1981). Lately, 
the availability of public-domain software from the Internet has greatly improved the opportunity to 
study existing translators. Particularly well-documented and of high quality are the compilers distrib-
uted as part of the GNU software project of the Free Software Foundation (http://gcc.gnu.org).

Common to almost all modern compilers is a conceptual structure in which the tasks performed are 
divided into phases, or logically complete processing steps. The standard phase structure is shown in 
outline in Figure 68.1.

The first phase, called the scanner or lexical analyzer, is the only phase directly involved in reading 
the source program. It converts the characters of the source program into tokens, sequences of char-
acters that represent the basic units of program structure. Typical tokens are keywords such as while, 
numeric literals such as 3.14159, and identifiers.

The second phase in a compiler is the parser, or syntactic analyzer, which collects sequences of tokens 
into complete units, such as expressions, statements, and declarations. The output of the parser (either 
explicitly or implicitly) is a tree or other equivalent data structure representing the structure of the pro-
gramming unit just recognized. This tree is called the syntax tree.
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The third phase in a compiler is the semantic analyzer, which computes attributes, or properties of 
each programming construct, as well as its effect on the attributes of other constructs. Typical attributes 
include data types of expressions and identifiers, memory sizes, and actual or potential memory loca-
tions. The semantic analyzer also determines if the construct makes sense according to these attributes. 
That is, it performs consistency checks, such as type checking or range checking. The output of the 
semantic analyzer can be represented by an attributed tree representing the original tree modified by 
the computed attributes. The fourth phase in a compiler is called the optimizer in Figure 68.1. This phase 
usually generates some form of linear code, called intermediate code, from the representation passed to 
it by the semantic analyzer. It also applies some forms of code-improving algorithms, either before or 
after generating intermediate code (or both). This phase of compilation is the most variable in different 
compilers; it may even be absent altogether.

The fifth and final compiler phase shown in Figure 68.1 is the code generator. This phase generates the 
final target code and may also perform some additional improvements to the code.

All of the phases of a compiler interact with various tables and handlers within the compiler. Figure 
68.1 shows three important examples of these other components: the symbol table, the literal table, and 
the error handler. The figure indicates their interaction with the phases by a large double-headed arrow. 
The symbol table maintains the names defined by the program under translation, as well as possible 
predefined names in the language, and associates the names with their attributes, which may include 
scope, memory location, data type, and memory size. The symbol table may be monolithic, or it may be 
separated into a tree or graph of smaller tables, representing different scopes in the program. A similar 
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table is needed for literal values that appear in the program, such as strings and numeric literals. The 
third component, shown in Figure 68.1, is the error handler, whose job is to generate different kinds 
of error messages but, more importantly, to provide error recovery, so that translation may continue 
(at least as far as is practical) in the presence of errors.

It must be emphasized that the compiler phases are logical units only and may not correspond to 
any actual grouping of operations within the compiler itself, or to any temporal sequencing of these 
operations. Indeed, it is customary for scanning, parsing, and some semantic analysis to be com-
pletely integrated in a single pass over the source code. A compiler may even be one-pass, in that all 
phases, including code generation, are performed simultaneously (assuming that the language itself 
permits it). More likely is that there are separate passes for parsing (including scanning), optimiza-
tion, and code generation (with later passes using the intermediate code generated by the first pass). If 
the language does not require names to be declared before use, then a pass is also necessary to resolve 
name references.

A useful division of the tasks performed by a compiler is into an analysis part and a synthesis part, 
sometimes also referred to as the front end and back end. The analysis part is concerned with analyzing 
the source program, whereas the synthesis part is concerned with generating the target program. The 
analysis part depends primarily on the source language, whereas the synthesis part depends primarily 
on the target language or target machine. Scanning, parsing, and semantic analysis are part of the front 
end, whereas code generation is part of the back end. Optimization and the generation of intermediate 
code usually require information about both the source and the target; these are more difficult to divide 
into a front-end component and a back-end component. The more successfully this is done, the easier 
it is to retarget the compiler. In the best case, a group of compilers can share front ends and back ends 
interchangeably. A popular and effective design for an interpreter consists of a compiler front end and 
a back end that is an interpreter for the intermediate code produced by the front end. This results in a 
reasonably efficient interpreter that is also easily retargetable.

68.2  Underlying Principles

Algorithms used in translators are based heavily on computation theory and, to a lesser extent, on 
formal semantics. Scanners are direct implementations of finite automata that solve string recognition 
problems through nonrecursive pattern matching. Parsers depend on the theory of context-free gram-
mars and pushdown automata, which solve recursive recognition problems through stack-based pattern 
matching. Semantic analysis depends on solving sets of tree equations called attribute grammars. Code 
generation and interpretation can also be seen as applications of attribute grammars. It is possible to 
use even more formal semantic specifications, particularly denotational specifications, of the source 
and target languages to construct semantic analyzers and code generators (see, e.g., Polak, 1981 and Lee, 
1989). The advantage to doing so is that the compiler can be proved correct (i.e., the semantics of the 
source and target programs are guaranteed to be the same). However, these techniques have not become 
popular, and we do not discuss them further. In the remainder of this section, we will discuss each of the 
areas mentioned in a little greater detail.

68.2.1  Finite Automata

A finite automaton is an abstract computational machine consisting of a finite number of states and 
transitions between states based on input symbols. The machine runs by beginning in the starting state 
and consuming input symbols while entering new states via corresponding transitions, until either an 
error state or an accepting state is reached. At that point, it may declare success or failure, or possibly 
continue executing. Each state represents stored knowledge about the computation up to that point. A 
finite automaton can handle arbitrary repetition by a fixed, finite set of input symbols, but it cannot 
handle recursive processes, because that would involve an unpredictable number of states.
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Finite automata are the basis for the recognition of tokens within a scanner. Based on the well-known 
correspondence from computation theory between finite automata and regular expressions, tokens are 
usually given initially by regular expressions, which are specifications for the string patterns, or lexemes, 
that a token represents. The mathematical theory of regular expressions limits itself to the consideration 
of three matching operations: the choice between two alternatives, indicated by the vertical bar | (similar 
to the logical OR operation); the concatenation or sequencing of two strings (with no operator symbol); 
and the repetition of a pattern, indicated by a postfix asterisk* (sometimes called the closure or Kleene 
closure operation). Parentheses are also used to group subexpressions together. As an example of the 
use of regular expressions to represent tokens, the following regular expression for a token represents 
simple, unsigned numbers consisting of a sequence of one or more decimal digits:

(0|1|2|3|4|5|6|7|8|9) (0|1|2|3|4|5|6|7|8|9)*

Such a regular expression can be converted into a finite automaton by one of several standard algorithms. The 
basic method is to use Thompson’s construction (Aho et al., 2007, p. 159) to derive a nondeterministic autom-
aton (i.e., one with an unpredictable next state) from the regular expression, and then to use the subset con-
struction (Aho et al., 2007, p. 153) to derive an equivalent deterministic automaton from the nondeterministic 
one. Other algorithms exist that perform this conversion in one step and also construct an automaton with 
a minimal number of states. Although these algorithms can sometimes be useful for the design of scanners, 
their primary use is in the construction of scanner generators such as Lex (discussed in Section 68.3.2).

68.2.2  Context-Free Grammars

The theory of context-free grammars extends the ideas of finite automata and regular expressions 
to  recursive situations. A context-free grammar is a collection of named recursive rules of the form 
A → α1 |… |αn, where A is the name of the rule and the α are strings of tokens and names (including 
possibly A itself) representing the different possible choices for the structure of A. The names are called 
nonterminals and the tokens are called terminals, for technical reasons explained shortly. Grammar 
rules are also sometimes referred to in the theory as productions. Each such rule represents the fact that 
a structure represented by A may become any one of the structures represented by an α. The absence of 
context for these potential replacements of A is what makes these grammars context free. It is possible 
to define grammars that are more general than context-free grammars; these can be arranged according 
to increasing generality in what is known as the Chomsky hierarchy. However, context-free grammars 
are the most useful within the computational constraints of language translation.

Every nonterminal in a context-free grammar defines a set of token strings: the strings of tokens 
that can be legally parsed by the grammar rule for that nonterminal (and associated rules). The most 
general structure that is defined by the grammar is usually singled out as the structure representing the 
entire language, and its associated nonterminal is called the start symbol. A legal parse is represented 
by a sequence of replacements of nonterminals by choices of right-hand sides of their associated gram-
mar rules. This sequence of replacements is called a derivation. In a derivation, every nonterminal must 
eventually be eliminated by replacing it with another string, whereas a terminal, once it appears, is never 
replaced; this may be seen as a justification for the names terminal and nonterminal. In general, there are 
many possible derivations for the same string, which can be constructed by varying the order in which 
the replacements are made. Two kinds of derivations that are important for parsing use fixed orders 
for the replacements. In the first, called a leftmost derivation, the leftmost nonterminal in the current 
string is always the one to be replaced at the next step.

Although derivations are useful for expressing exactly which steps are taken in a parse, they do not 
express the structure of the parsed string very well. A more useful representation of this structure is the 
parse tree, which represents each terminal and nonterminal by labeled nodes, and each replacement step 
in a derivation by the construction of a set of children of the node label being replaced. In a parse tree, 
each leaf node is labeled by a terminal, and each interior node is labeled by a nonterminal. Even parse 
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trees have more detail than is actually needed to determine the meaning of a structure; and a condensed 
form of a parse tree, called a syntax tree, is the most useful data structure for translation. In a syntax 
tree, nodes may have a more diverse structure than in a parse tree: they may have more than one label, 
and both terminals and nonterminals may be used as labels of interior nodes.

As a brief example of the grammar concepts we have summarized, consider the grammar

	 expr expr  → +num num|

which has one nonterminal expr, two terminals + and num, and a single production with two choices. 
(Here, num represents a number token with lexemes such as 42 or 7.) An example of a legal string for this 
grammar is 3 + 4 + 5. A leftmost derivation is

	 expr expr expr+num +num+num num +num+num

(Note that, because there is only one nonterminal to be replaced at each step, this is also a rightmost 
derivation.) A parse tree for the same string is given in Figure 68.2. A syntax tree is given in Figure 68.3.

68.2.3  Parsing Algorithms

Algorithms designed to match an input string of tokens based on a grammar and, either implicitly 
or explicitly, to construct a parse or syntax tree, are called parsing algorithms. Parsing algorithms 
come in two general varieties: top-down and bottom-up. Top-down algorithms construct a parse 
tree from the root to the leaves by guessing which structures are about to appear, based on the next 
part of the input string and the structure expected to be seen. Bottom-up algorithms construct a 
parse tree from the leaves to the root by consuming the input and forming a set of subtrees until 
the next structural element can be guessed from the structures seen so far and the next part of the 
input string. Because of the recursive nature of context-free grammars, both kinds of algorithms 
must use a stack, either explicitly or implicitly, to hold partial results. When it is constructed explic-
itly, this stack is referred to as the parsing stack, and it will possibly contain terminals, nontermi-
nals, or other symbols representing the state of the parser. Because of the nature of their operation, 

expr

num

num

+

+
expr

expr

num

FIGURE 68.2  A parse tree for the string 3 + 4 + 5.

FIGURE 68.3  A syntax tree for the string 3 + 4 + 5.
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top-down parsers trace out the steps of a leftmost derivation, and bottom-up parsers trace out in 
reverse the steps of a rightmost derivation.

There are algorithms of both varieties that will parse any context-free grammar. Early’s algorithm 
(Early, 1970) is the most well-known bottom-up algorithm. A general top-down algorithm may be found 
in (Graham et al., 1980). General algorithms may run in significantly slower than linear time (Early’s 
algorithm requires cubic time in general), so they are rarely used in practice. Standard algorithms for 
top-down parsing are the LL(k) algorithms (parsing the input from left to right, giving a leftmost deriva-
tion, using k symbols of lookahead) and the LR(k) algorithms for bottom-up parsing (parsing the input 
from left to right, giving a rightmost derivation, using k symbols of lookahead). Both kinds of algorithms 
require that a grammar satisfy extra conditions to be parsable. The LL(k) algorithms, in particular, are 
quite restrictive, although easy to use. The LR(k) algorithms, although less restrictive, are more complex. 
One top-down parsing method that is more flexible than the LL(k) methods is called recursive-descent. 
A bottom-up algorithm that is simpler than the LR(k) algorithms is called LookAhead LR(1) (LALR(1)) 
(DeRemer, 1971; DeRemer and Pennello, 1982) and is normally restricted to one symbol of lookahead. 
Because these algorithms have proved themselves to be the most effective and easiest to use in practice, 
we discuss them in a little more detail.

In recursive-descent parsing, the grammar rules are viewed as prescriptions for the code of a set of 
mutually recursive procedures, one for each nonterminal. Recursive-descent, although suffering from 
some of the same problems as LL(k) parsing, is more flexible and can use simple ad hoc techniques to 
solve many of the problems of LL(k) parsing (Wirth, 1976). For instance, simple left recursion, which 
cannot be handled directly by an LL(k) parser, can be handled in recursive-descent by noting that a 
left-recursive rule A → Aα | β is equivalent to a parsing procedure that first recognizes β and then a 
sequence of zero or more α’s (because the grammar rule generates strings of the form βαα…). Thus, 
a recursive-descent procedure for the grammar expr → expr + num | num can be written using a while 
loop, as follows:

void expr(void)
{ match(NUM);
  while (nextToken == PLUS)
    { match(PLUS);
      match(NUM);
    }
}

An LALR(1) parser uses an explicit parsing stack instead of recursion. The state of a parse can be expressed 
by a finite automaton whose states consist of sets of so-called items, each item consisting of a production 
choice, a distinguished position indicated by a period (representing the point of progress in recognizing 
the rule), and an associated set of lookahead tokens legal at that point in the parse. (In the following dis-
cussion, we will use the so-called LR(0) items that lack a lookahead component; although LALR(1) items 
are more complex, the basics of the LALR(1) algorithm can be understood using these simpler items.)

Consider, for instance, the grammar expr → expr + num | num, which we will write for convenience 
in the form E → E + n | n. There are six LR(0) items: E → .E + n, E → E.+ n, E → E +.n, E → E + n., 
E → .n, and E → n.. The start of a parse is indicated by beginning in a state represented by a new rule 
representing a start symbol that cannot appear elsewhere, and which we will write as E΄ → E in the 
example. The corresponding initial item is E΄ → .E. Because this rule represents the fact that we may be 
about to recognize an E, we must also include the items E → .E + n and E → .n in this state. Transitions 
to new states are then given by moving the period past the symbols that follow it. For instance, there is a 
transition on the symbol E from the start state to the state containing the item E → E.+ n, and a transi-
tion on the symbol n from the start state to the state containing the item E → n.. The complete finite 
automaton of items is given in Figure 68.4.
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This finite automaton has no accepting states and is only used to keep track of the state of the parser. 
It is used in conjunction with a parser stack that holds the state numbers that the parser has passed 
through while parsing the input. It is used as follows. First, the initial state is pushed onto the stack. 
Then, the next input token is consulted. If there is a transition on this token from the current state 
(on top of the stack), then the token is removed from the input and the new state is pushed onto the 
stack; this is called a shift operation. If, however, there is an item in the current state of the form A → α 
(a so-called final item), then this indicates that the string a has already been recognized, and it can be 
replaced by A; this is called a reduce operation.

A reduce operation is performed as follows. The states on the stack corresponding to α are popped 
from the stack (one state for each symbol in α). The state remaining at the top of the stack must have a 
transition on A, which is then taken, and the new state is pushed onto the stack.

As an example of this process, consider the automaton of Figure 68.4 and suppose that the input 
string is n + n. We depict the initial state of the parse as follows:

Parsing Stack Input
$0 n + n$

The $ in this representation is used to indicate both the bottom of the stack and the end of the input. 
The first step in the parse is a shift on n from state 0 to state 2. Then a reduction by E → n takes place, 
and the parser moves to state 1. At that point, the + and n are shifted, and the parser is in state 4. Then a 
reduction by E → E + n is made, popping states 4, 3, and 1, revealing again state 0. Again, the E transition 
is followed into state 1. At this point, the end of the input is encountered, and a reduction by E′ → E is 
made, which corresponds to accepting the input.

The complete set of actions of the parser is given in Table 68.1, in which shift actions also include the 
new state number. Table 68.2 shows the LALR(1) parsing table for this simple grammar, which is used by 
the parser to select the actions indicated in Table 68.1. This table is two-dimensional, indexed by state, 
and lookahead token. Each table entry contains an action; shift entries are indicated by an s and the new 
state number; reduce entries are indicated by an r and the rule to be reduced; empty entries are errors. 
While this table is closely related to the automaton of Figure 68.4, the exact entries can only be inferred 
from a lookahead component, which we did not compute here.

.E E.

.E+n E.+n
E΄ E΄
E

E n.

+

E .n
E

E

E
n

E+n.

n

0
1

2 3 4
E+.nE

FIGURE 68.4  A DFA of sets of LR(0) items.

TABLE 68.1  Actions of an LALR(1) Parser

Parsing Stack Input Action

$0 n + n$ Shift 2
$02 +n$ Reduce E → n
$01 +n$ Shift 3
$013 n$ Shift 4
$0134 $ Reduce E → E + n
$01 $ Accept
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An additional area in Table 68.2 is called the goto area. In this area are the transitions on nontermi-
nals that are performed during reductions. These are essentially the same as shift operations, except 
that no input is consumed. A parser may also choose to condense this table by the use of default entries. 
For example, because state 2 only has reduce entries by the same rule, this could be made the default, 
in which case even on input token n, the parser will perform the given reduction. This has the effect of 
postponing the declaration of error, but it cannot result in an incorrect parse. A similar default can be 
used for state 4.

68.2.4 A ttribute Grammars

Although context-free grammars are generally accepted as the standard way to describe the syntax of 
a programming language, there is no equivalently accepted method for describing semantics. Formal 
methods for describing semantics, such as operational semantics or denotational semantics, have not 
met with universal acceptance, and though translators can be derived from such specifications, this is 
rarely done. Instead, various ad hoc mechanisms are used in translators to perform semantic analysis 
and code generation or interpretation.

One method that has proven useful for the translator writer is to use a so-called attribute grammar 
to describe the semantics of a programming language (Knuth, 1968). An attribute grammar associ-
ates to each grammar rule a set of equations describing the computational relationships among a set of 
attributes attached to the symbols in the rule. These attributes can be anything from the data type of a 
variable to the value of an expression; even the target code generated by a compiler can be represented as 
a string attribute in an attribute grammar. Most often, attributes are used to represent the static, rather 
than the dynamic properties of programs, and they are viewed as being fixed values attached to the 
nodes of a syntax tree. Indeed, attribute values are usually written using a dot notation similar to that 
of record fields, so that X.a means the value of attribute a of symbol X. Attributes may in fact be imple-
mented as fields in syntax tree nodes, or they may be stored in the symbol table or other data structures 
elsewhere in the translator.

Given a set of attributes a1,…, ak and a grammar rule choice X0 → X1 X2… Xn, the jth attribute at the 
ith symbol is given in an attribute grammar by an equation of the general form

	 X a f X a X a X a X a X a X ai j ij k k n n k. ( . , , . , . , , . , , . , , .= … … … …0 01 1 1 1 1    )) 	 (68.1)

where fij is a mathematical function. An attribute grammar is thus written in purely functional style 
without side effects.

As an example, consider the grammar expr → expr + num | num, which we may assume expresses the 
summation of a series of numbers. An attribute grammar for the numeric value of an expression defined 
by this grammar is given in Table 68.3. Note that the two instances of the nonterminal expr in the first 
grammar rule must be distinguished by subscripting, and that the terminal num is assumed to have its 
numeric value (called lexval in Table 68.3) precomputed, possibly by the scanner.

Of particular importance to the translator writer are the kinds of dependencies that the attribute 
equations create among the attributes of different symbols in a parse tree, because these dependencies 

TABLE 68.2  LALR(1) Parsing Table

State Input Goto

n + $ E

0 s2 1
1 s3 Accept
2 r (E → n) r (E → n)
3 s4
4 r (E → E + n) r (E → E + n)
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determine when and how—or even if—the attributes can be computed during translation. A primary 
requirement is that the attribute grammar does not have any circular dependencies. In practical sit-
uations, this requirement is virtually guaranteed unless an error has been made. Attributes whose 
dependencies flow from right to left in the grammar rules (i.e., those whose Equation 68.1 all have only 
the symbol X0 on the left) are called synthesized attributes; any other attributes are called inherited. 
Synthesized attributes can be computed bottom-up during a parse, or by postorder traversal of the syn-
tax tree, while inherited attributes require a more complex computation scheme. Indeed, as the name 
implies, inherited attributes are often passed down the syntax tree from parent to child, or from sibling 
to sibling, and so can be computed by some form of modified preorder traversal of the syntax tree.

A great deal of effort can be expended to ensure that all attribute values are computable during the 
parsing phase to avoid having to construct the entire syntax tree and to avoid having to make addi-
tional passes over the input. The requirements that this places on the attribute grammar vary, depending 
on the parsing method employed. First, because virtually all parsers read the input from left to right, 
the attributes must be computable from left to right, and this means that all inherited attributes must 
depend only on the attribute values of their left siblings. In terms of the Equation 68.1, this means that 
each equation for an inherited attribute (Xi.aj is on the left and i > 0) must have the form

	 X a f X a X a X a X a X ai j ij k k i. ( . , , . , . , , . , . . ., . ,= … … …−0 01 1 1 1 1 1      ,, . )X ai k−1 	 (68.2)

An attribute grammar in which all equations for inherited attributes are of this form is called L-attributed.
A further requirement for attribute evaluation during parsing is a form of strong noncircularity, in 

which an order for attribute evaluation can be fixed in advance without incurring any cycles (naturally 
occurring attribute grammars satisfy this non-circularity requirement, too).

The particulars of the parsing algorithm can also have a significant effect on which attributes are com-
putable during parsing. Recursive-descent parsers are the most flexible; in the recursive routines, inher-
ited attributes can be implemented as passed parameters, while synthesized attributes become returned 
values (Katayama, 1984). Bottom-up parsers most naturally compute synthesized attributes. They do 
this by maintaining a stack of attribute values in parallel with the parsing stack. New synthesized attri-
butes are computed on this stack at each reduction step. It is also possible to evaluate certain inherited 
attributes during a bottom-up parse, but this often requires that the grammar be rewritten, so that the 
attribute equations can be converted to a manageable form. Indeed, it is theoretically possible to rewrite a 
grammar so that all attributes become synthesized (Knuth, 1968). However, the grammar thus produced 
bears little resemblance to the original. Thus, in difficult situations, it may be preferable to delay an attri-
bute computation until after the parse and avoid rewriting the grammar into an unrecognizable form.

68.3  Best Practices

The theory of scanning, parsing, and attribute analysis implies that, in principle, a compiler or inter-
preter can be generated automatically from descriptions of the source language, attributes, and target 
machine. While a number of compilers have been generated in this way (Farrow, 1984), it is not com-
mon. This is partially because the necessary tools (particularly for optimization and code generation) 
are complex and have not become standard, and partially because of the need for efficiency, both in 
translation and in terms of the generated code, which is more difficult to achieve using general tools. 
At this writing, it is common to automate only the construction of the front end (i.e., the scanner, parser, 

TABLE 68.3  Attribute Grammar for a Simple 
Expression Grammar

Grammar Rule Attribute Equations

expr1 → expr2 + num expr1.val = expr2.val + num.lexval
expr → num expr.val = num.lexval
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and semantic analyzer), although at least partial automation of code generation has become more com-
mon with the increasing importance of retargetability.

Although a large number of scanner and parser generators have been written, only a few have gained 
broad acceptance. We describe here two sets of tools that have been used in many compilers: the Unix 
tools, Lex and yet another compiler–compiler (Yacc), and their more modern public domain ver-
sions, Flex and Bison, and the Java tool, JavaCC. Yacc produces an LALR(1) parser in the C language, 
whereas Bison can produce a parser using more general algorithms (Denny and Malloy, 2010). JavaCC 
(Kodaganallur, 2004) produces a recursive-descent parser in the Java language that can be extended 
to multisymbol lookahead. Another popular tool not discussed here is ANother Tool for Language 
Recognition (http://www.antlr.org/), which also produces more general recursive-descent parsers (Parr 
and Fisher, 2011) and can generate source code in a number of different languages. It should be noted 
that many commercial compilers and interpreters have been written by hand without the use of any 
tools at all; in such cases, the parsers are usually written using recursive-descent.

68.3.1  Specifying Syntax Using Regular Expressions and Grammars

In order to automate the task of generating a scanner and a parser, the first step is to specify the tokens 
using regular expressions and the syntax using context-free grammar rules. Although it is essential to 
understand the mathematical theory of both of these mechanisms, the theory ignores extensions and 
features of practical importance. We mention a few of these here.

The theory of regular expression relies on only three operations: concatenation, choice, and repetition. 
While these are enough to match any string recognizable by a finite automaton, most pattern matching 
systems extend this set of operators in many ways. As a typical example, consider the regular expression

	 [0-9]+(\.[0-9]+)?

which is written using standard conventions for the Unix tools Lex and Grep. This expression specifies 
a pattern for a simple floating point constant without exponential part: the expression (0–9) refers to a 
choice from the range of characters 0 to 9 (i.e., a digit), the + indicates a repetition of one or more (a+ is 
equivalent to aa*), the backslash in front of the period escapes the metacharacter meaning of the period 
(otherwise, it would match any character), and the question mark indicates an optional component.

Even with these extensions, it is sometimes difficult to write regular expressions for certain patterns, 
even when such patterns do exist, and one may choose to apply an ad hoc recognition process instead 
of using a regular expression. A notorious case in point is that of C comments, which can be loosely 
described as /* (not */) */. The trouble is expressing (not */) as a regular expression. More generally, the 
non-existence of sequences of more than one character in a string is a difficult property to express as a 
regular expression. Fortunately, these situations do not occur very often in real languages.

It is also necessary to be aware that the theory of regular expressions can be easily extended to cover 
simple non-regular situations. For instance, nested comments require recursion, and so cannot be 
directly expressed as a regular expression. Nevertheless, adding a simple counter variable to a scanner 
permits it to recognize potentially nested comments.

Similar considerations arise in defining syntax using context-free grammars. Consider the following 
grammar that specifies a simple four-function floating-point calculator program with a single memory:

session → asgn nl session | nl
asgn → = expr | expr
expr → expr addop term | term
addop → + | -
term → term mulop factor | factor
mulop → * | /
factor → - factor | ( expr )| NUMBER | m
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A session consists of a sequence of assignments (asgn) followed by newlines (indicated in the gram-
mar by nl), or just a newline (this is used to end the session). The arithmetic operations have their usual 
meanings. The optional = sign at the beginning of an asgn indicates assignment of the value of the fol-
lowing expression to the memory. The single letter m in a factor fetches the value of this memory. The 
token NUMBER is the only token with more than one possible lexeme, and it is assumed to be given by 
the regular expression given earlier in this section.

A sample session with an interpreter for this grammar might look as follows:

= 3.14 - 2
        1.14
= m*3.14 + 3
        6.5796
m*3.14 - 4
        16.6599

This represents a computation of the value of the polynomial x3 − 2x2 + 3x − 4 at the point x = 3.14 using 
Horner’s Rule (x3 − 2x2 + 3x − 4 = ((x − 2)x + 3)x − 4).

This grammar is written in a style called Backus Normal Form or Backus-Naur Form (BNF). In it, the 
only metasymbols are the arrow and the vertical bar (sometimes::= or: or = is used instead of the arrow, 
and sometimes nonterminals are distinguished more directly from terminals by surrounding them with 
angle brackets <…>). Repetition is expressed by recursion, and optional features are expressed by writing 
separate choices. This grammar also expresses the associativity and precedences of the operators: a left-
recursive grammar rule such as expr → expr addop term indicates left associativity, and the different 
precedence levels expr, term, and factor, cause the operators at each level to be given precedences in 
ascending order (lowest precedence first). When recursion is used only to express repetition, it can be written 
on the right or the left: the rule for a session is written right-recursively for more or less arbitrary reasons.

An alternative to this grammar would be to condense it to the following grammar (still in BNF):

session → asgn nl session | nl
asgn → = expr | expr
expr → expr op expr
          | - expr
          | ( expr )
          | NUMBER
          | m
op → + | - | * | /

This grammar is ambiguous, however, in that the order in which the operations are applied is not specified, 
and a legal string may have many different parse trees. This grammar can still be used as the basis for the 
calculator, as long as separate disambiguating rules are stated giving the associativities and precedences of 
the operators. The advantage to this is that the grammar itself becomes shorter and easier to understand.

A different variety of context-free grammar is obtained by adding metasymbols representing optional 
and repeated constructs. One standard version of this is called extended BNF (EBNF), which uses square 
brackets […] to surround optional constructs and braces {…} to surround repeated constructs (one could 
just as well use parentheses, ?, and * as in regular expressions). The calculator grammar in EBNF becomes

session → { asgn nl } nl
asgn → [=] expr
expr → term { addop term }
addop → + | -
term → factor { mulop factor }
mulop → * | /
factor → - factor | ( expr ) | NUMBER | m
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In such a grammar, the associativity of the operators is now suppressed in favor of showing the repetition 
directly. A standard convention is to assume left associativity of operators in any rule using the braces 
(since a session has no operators, the associativity of its rule is of no consequence).

68.3.2  Lex/Flex and Yacc/Bison

Lex (Lesk, 1975) and Yacc (Johnson, 1975) are scanner and parser generators that are a part of most 
Unix distributions. Both have modern public domain versions, Flex (Fast Lex; Paxson, 1990, http://flex.
sourceforge.net/, based on ideas of Jacobson, 1987) and Bison (http://www.gnu.org/software/bison/) 
that run under a variety of operating systems. Each of these programs reads a definition file and pro-
duces as output a C source code file containing a scanning/parsing procedure. The definition file for 
each has the same basic format:

{definitions}
%%
{rules}
%%
{auxiliary routines}

We discuss the contents of the definition files first for Flex and then for Bison, using our running exam-
ple of a simple calculator program whose tokens and grammar were described previously.

The Flex definition file for the calculator scanner is given in Table 68.4. In this example, the defi-
nitions section contains an #include directive inside the brackets %{and %}, and the definitions 
of the three tokens digit, number, and whitespace, using regular expressions written with 
previously described metasymbols (e.g., whitespace is defined to be a sequence of one or more 
blanks or tabs, or “return” characters). All code inside the special brackets is inserted directly at the 
beginning of the C output file, thus allowing the user to provide declarations/definitions that may be 
used by the rest of the C code. In this case, the only insertion is to indicate the inclusion of the file 
calc.tab.h. This file can be generated by Bison, and it contains the definitions of tokens and other 
globals that permit communication between the Flex-generated scanner and the Bison-generated 

TABLE 68.4  Flex Definition File
/*************************************************************

  CALC.L
*************************************************************/
%{
#include “calc.tab.h”
%}
digit      [0-9]
number     {digit}+(\.{digit}+)?
whitespace [ \t\r]+
%%

{whitespace} { /* skip */ }
{number}     { sscanf(yytext,“%lf”,&yylval);

                                      return NUMBER; }
\n           { return ‘\n’; }
.            { return yytext[0]; }
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parser. In our example (and for one particular version of Bison), the essential features contained in 
this file are as follows:

/* file calc.tab.h */
enum yytokentype {
    NUMBER = 258,
    UNARY = 259
  };
extern YYSTYPE yylval;

The subsequent Flex code uses only the definition of NUMBER and yylval from this file.
The rules section specifies the actions that the Flex scanner is to take when each token is recognized. 

These actions are placed inside a C block and are inserted directly at the appropriate places in the scan-
ner. In Table 68.4, the specified actions are as follows. All whitespace is skipped (empty action). 
A number causes the scanner to compute the floating point value from the yytext string and place 
it in yylval, and then return the NUMBER token. (The yytext string contains the lexeme matched 
from the input.) The newline character \n is singled out for special handling, because it is not placed in 
the yytext string; it is returned directly. Finally, the period indicates a default action (it matches any 
character), and this causes the character value itself to be returned (yytext[0]).

This concludes the description of the calculator Flex file in Table 68.4. Note that this file contains no 
auxiliary routines section, and the %% symbol separating this section from the previous rules section is 
also omitted.

We turn now to a description of the Bison definition file, which is in Table 68.5. The definitions sec-
tion contains four lines of C code to be inserted in the output file. The first two are library inclusion 
commands that include standard I/O and library function definitions for use in the code (printf and 
exit are respective examples). The third line of code defines YYSTYPE to be double; this is the type 
used to define the Bison value stack, which needs to be double, because expressions compute floating 
point values. The fourth line defines a static variable mem, which is to be used as the actual memory 
location for the single calculator memory. The definitions section also contains the token definitions, 
indicated by the %token directive. In this example, only the NUMBER token need be defined; other 
tokens are single-character and may be referred to directly. Finally, the definitions section contains 
a description of the associativity and precedence of the arithmetic operators; these are necessary dis-
ambiguating rules, because the rules section uses the ambiguous form of the calculator grammar. The 
order in which the operators are listed determines their precedence (with lowest precedence listed first). 
The %left directive indicates that an operator is left associative. Finally, the UNARY token is implicitly 
defined by the last definition as having the highest precedence. It will be used to give unary minus a 
higher precedence than any of the binary operators.

The rules section of the Bison specification contains the grammar in a modified BNF format, with 
actions contained in braces. Since Bison is a bottom-up parser generator, it is easiest to use to compute 
synthesized attributes. In the calculator grammar, the value attribute is synthesized, and it is this attri-
bute that we use Bison’s value stack to compute. The stored memory value, which has an inherited compo-
nent, is handled directly by using the defined mem variable. The action code refers to the attribute values 
on the value stack by using symbols beginning with $. The symbol $$ refers to the (synthesized) value to 
be computed for the nonterminal defined by the rule. Each of the symbols $1, $2, etc., refers to the attri-
bute value computed for each symbol on the right-hand side of the grammar rule. Thus, $$ = $1 + $3 
in the rule expr: expr + expr indicates that the value of the first and third symbols (the right hand 
expressions) are to be added to get the value of the result expression. This convention allows Bison rules 
to be written in a style very close to the synthesized rules of an attribute grammar.

A few changes have been made to the grammar to make it more usable with Bison. One is that the 
operators are written directly into the expressions, instead of being listed separately; this eliminates the 
need for a separate character attribute for an operator rule. Two additional changes have been made to 
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the grammar rule for a session. First, the rule is written in left recursive instead of right recursive 
form. A right recursive rule causes the parsing stack to grow without limit; this means that a very long 
session might cause a stack overflow (a similar situation is caused by tail recursive procedure calls). 
Thus, all right recursive rules that do not reflect an associativity requirement should be rewritten in left 
recursive form. The remaining change is the addition of the rule

session : session error ‘\n’ {yyerrok;}

to the choices for a session. This is an error-handling production. It matches any line that is not a 
legal assignment to the internally defined Bison nonterminal error, and the action yyerrok resets 
the parser to accept more input. Bison also automatically calls a yyerror procedure that can print an 
error message or perform some other action.

TABLE 68.5  A Bison Definition File

/*************************************************************

     CALC.Y
*************************************************************/
%{
#include <stdio.h>
#include <stdlib.h>
#define YYSTYPE double
static double mem;
%}
%token NUMBER
%left ‘+’ ‘-’
%left ‘*’ ‘/’
%left UNARY
%%

session : /* empty */
                     | session ‘\n’ { exit(0); }
                     | session asgn ‘\n’ {printf(“\t%g\n”,$2);}
                     | session error ‘\n’ {yyerrok;}
                     ;
asgn    : ‘=’ expr { mem = $2; $$ = $2;}

                     | expr { $$ = $1; }
                     ;
expr    : expr ‘+’ expr { $$ = $1 + $3; }

                     | expr ‘-’ expr { $$ = $1 - $3; }
                     | expr ‘*’ expr { $$ = $1   *   $3; }
                     | expr ‘/’ expr { $$ = $1 / $3; }
                     | ‘-’ expr %prec UNARY { $$ = - $2; }
                     | ‘(‘ expr ’)’ { $$ = $2; }
                     | NUMBER { $$ = $1; }
                     | ‘m’ { $$ = mem; }
                     ;
%%
int main()
{yyparse(); return 0;}

int yyerror( char* t)
{ fprintf(stderr,“%s\n”,t);

      return 0;}
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Finally, the auxiliary routines section of Table 68.5 contains a main procedure that just calls the pars-
ing procedure yyparse which is generated by Bison. (The scanning procedure generated by Flex is called 
yylex and is automatically called at the appropriate times by yyparse.) The yyerror procedure 
is also defined in this section; it simply prints an error message (supplied by Bison, typically syntax 
error).

Assuming that the Flex definition for the calculator is in the file calc.l, and the Bison definition 
is in the file calc.y, then a running calculator program can be built in a Unix-like system with the 
commands

flex -I calc.l
bison -d calc.y
gcc calc.tab.c lex.yy.c -lfl -ly

The file calc.tab.c is the output file produced by Bison, and the file lex.yy.c is the output file 
produced by Flex. The option -I causes flex to produce an interactive scanner (i.e., one with lazy loo-
kahead), the option -d causes Bison to produce the file calc.tab.h automatically, and the options 
-lfl and -ly cause the C compiler (in this case the GNU C compiler gcc) to consult the Flex and Bison 
(or Yacc) libraries when linking (if necessary).

One additional Bison feature is the verbose option -v. If we give the command
bison -v calc.y
then a file calc.output is produced that contains a description of the parsing table used by the Bison-
generated parser, similar to Table 68.2. This can be useful in tracking down exactly the behavior of the parser.

68.3.3  JavaCC

JavaCC (http://javacc.java.net/) is a tool for automatically generating scanners and recursive-descent pars-
ers in Java. While these parsers suffer from some of the same restrictions as other top-down parsers, 
JavaCC offers some advantages over Flex and Bison. First, the parser and scanner generators are more 
fully integrated, so that only one definition file needs to be created, and this file contains both the token 
and grammar definitions. Second, the number of lookahead symbols can be increased and can even vary 
within a JavaCC-generated parser. (Bison can also handle lookahead problems, but does so by employing 
multiple parsers, which can substantially decrease execution speeds.) Finally, there are additional tools 
available for use with JavaCC, such as JJTree, which can assist with the automatic building of syntax trees.

As with Bison and Flex, we give a description of a JavaCC definition file using the calculator gram-
mar as an example. The only file needed for JavaCC is shown in Table 68.6. The general form for this file 
(in EBNF) is

javacc_input → javacc_options
                 PARSER_BEGIN ( ID ) java_compilation_unit
                 PARSER_END ( ID ) { production } EOF

The javacc_options section allows for the user to change default properties used by JavaCC to 
produce the parser, such as lookahead, debug information, and error reporting. The calculator example 
of Table 68.6 omits this section to accept all defaults; the reader is referred to the JavaCC documenta-
tion for further information. The java_compilation_unit contains standard Java code to create 
a runnable program. Note that this code allows the programmer an arbitrary choice of the nonterminal 
to use as the start symbol (in Table 68.6, it is a session). This code also includes the definition of the 
static variable mem to use as the memory for the calculator.

After the definition of the parser code, the file contains definitions of zero or more production ele-
ments. Each of these can be one of four kinds: grammar rules (with embedded Java code), regular 
expressions defining tokens, Java code separate from other rules, and special declarations to include in 
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TABLE 68.6  JavaCC Definition File

/*************************************************************

  Calc.jj
*************************************************************/
PARSER_BEGIN(Calc)
public class Calc
{

            static double mem;
            public static void main(String args[]) throws ParseException
           {
                      Calc parser = new Calc(System.in);
                       parser.session();
            }
}
PARSER_END(Calc)
SKIP: { “ ” | “\t” | “\r” }
TOKEN:
{

        < NUMBER: (<DIGIT>)+ ( “.” (<DIGIT>)+ )? >
   | < DIGIT: [“0”-“9”] >
}
void session(): { double a; }
{

                  (
                          a=asgn() “\n” { System.out.println(a); }
                   )*
                   “\n”
}
double asgn(): { double a; }
{

          “=” a = expr() { mem = a; return a; }
     | a = expr() { return a; }
}
double expr(): { double a; double b; }
{

          a=term()
         (
                   “+” b=term()  { a += b; }
          |     “-” b=term()  { a -= b; }
          )*
                                                      { return a; }
}
double term(): { double a; double b; }
{

         a=factor()
         (
                   “*” b=factor() { a *= b; }
         |      “/” b=factor() { a /= b; }
         )*

(continued)
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the scanner. Table 68.6 has examples only of the first two kinds: grammar rules and token definitions. 
Typically, token definitions are introduced by the keyword TOKEN and a colon. Table 68.6 contains a 
separate special token definition using the keyword SKIP, which defines tokes that are not passed on to 
the parser (white space characters in the example).

Finally, the grammar rules are given in a modified EBNF form using regular expression-like symbols; 
for example, in Table 68.6 the notation (…)* indicates a repetition of 0 or more times. Non-terminal 
matches are also represented as function calls, with the associated Java code to be executed after the call 
given in braces immediately afterward, similar to Bison. Unlike Bison, however, there are no automatic 
variables representing returned values as in Bison. Instead, such variables must be declared and explic-
itly assigned. Furthermore, in JavaCC these variables must be declared in a separate section surrounded 
by braces before the production choices are given, and these choices must also be surrounded by braces.

JavaCC, in keeping with Java conventions, requires that the file for the calculator example be named 
Calc.jj. A calculator program can be built and executed using the following command-line commands:

javacc Calc.jj
javac *.java
java Calc

The first line calls javacc, which creates a number of Java code files in the current directory, including 
a parser in Calc.java and a scanner in CalcTokenManager.java. The second line compiles these 
together with the additional Java code files to produce a Calc.class file that is executable with the 
JVM, which is what the last line above performs. The result is an execution similar but not identical to 
that of the Bison calculator (since different compilers and runtime systems are involved).

It should be noted that no attempt has been made to perform error recovery with this version of the 
calculator. Indeed, the following execution shows that parse errors end the execution of the calculator 
with an uncaught Java exception:

> java Calc
2 -
Exception in thread “main” ParseException: Encountered “ ”\n“ ”\n “” at line 
1, column 5.
Was expecting one of:
    <NUMBER> …
    “-” …
    “(” …
    “m” …
        at Calc.generateParseException(Calc.java:338)
        at Calc.jj_consume_token(Calc.java:276)
        at Calc.factor(Calc.java:153)
        at Calc.term(Calc.java:95)
        at Calc.expr(Calc.java:79)

TABLE 68.6 (continued)  JavaCC Definition File
                                                                   { return a; }
}
double factor(): { Token t; double a; }
{

           “-” a = factor()      { return -a; }
    |     t=<NUMBER>           { return Double.parseDouble(t.image); }
    |    “(” a=expr() “)”      { return a; }
    |    “m”                   { return mem; }
}
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        at Calc.asgn(Calc.java:45)
        at Calc.session(Calc.java:26)
        at Calc.main(Calc.java:7)

Because of Java’s built-in extensive exception handling mechanisms, which JavaCC uses in essential 
ways, it is possible to perform rigorous error recovery, but doing so involves techniques that are beyond 
the scope of this chapter.

68.3.4  Dealing with Ambiguity

Although the expectation is that a language grammar should be unambiguous, in that each legal input 
string will correspond to exactly one syntax tree, there are many practical situations in which it is dif-
ficult or impossible to write a grammar unambiguously. In such cases, disambiguating rules must be 
stated and built into the parser in some way. We have already seen how Yacc/Bison can accommodate 
precedence and associativity disambiguating rules for operators. We give three additional examples of 
the use of disambiguating rules.

The dangling-else ambiguity is typical in languages such as C and Java, which allow both simple 
and compound statements in control structures. In C, the dangling-else ambiguity appears in state-
ments like

if(e) if(f) {/*then-part*/} else {/*else-part*/}

The question is: should the else-part be executed when f is false, or when e is false? The standard answer 
is that it should be executed when f is false (and when e is true). This is called the most closely nested 
disambiguating rule for the if statement, because it implies that the else-part structure is to be associ-
ated in the parse tree with the closest previous if statement that does not have an else-part. This also 
corresponds to always preferring the second choice in the BNF rule

if_statement → if ( expression ) statement
              | if ( expression ) statement else statement

This disambiguating rule could actually be incorporated directly into the BNF, but it is slightly com-
plicated (and not very illuminating), and the rule as stated is easily implemented in a parser. It is worth 
noting that languages in which the if statement has a closing keyword (such as end or endif) do not 
have the dangling-else ambiguity; Ada is an example of such a language.

A second kind of ambiguity is represented by the availability in C++ of function-style casts, where 
one can write int(x) to mean the same thing as the C cast (int)x. Now consider the code fragment

typedef int (*F)();
void **x;
void p(void)
{ F (*x)();
  …
}

Is the first code line inside p a cast of global *x to type F, after which this function value is called, or is 
it a declaration of a local variable x of type “pointer to function returning a value of type F?” The C++ 
standard says it is the latter: any statement that may be interpreted as a declaration is a declaration. This 
means that all grammar rules for declarations are to be preferred to all other grammar rules. Note that 
this is an ambiguity between nonterminals, rather than an ambiguity within a single nonterminal, as with 
the dangling-else ambiguity. It is also impossible to remove this ambiguity directly within the grammar, 
because the order of rules in a BNF description is immaterial to the language defined.
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The final example of an ambiguity that we present here is also one that arises with casts, but this time 
in C. Consider the C statement

(t)-x

If t is a type name declared in a typedef, then this is a cast of the value -x to type t. On the other 
hand, if t is a variable, then this is the value obtained by subtracting x from t. In order to parse this 
correctly, it is necessary to consult the symbol table to see whether t is defined as a type. Thus, the 
symbol table (or at least the typedef part of it) must be built as parsing proceeds. Unlike the previous 
examples of ambiguity, this is a context ambiguity that cannot be resolved by purely syntactic means.

In an LR parser, these ambiguities, or parsing conflicts, can be of two different kinds. The first, more 
common, situation, is when both a shift and a reduction by a grammar rule choice are called for on 
the same input token; this is a shift-reduce conflict. The other case is when reductions by two different 
rules are called for on the same input token; this is a reduce–reduce conflict. Shift-reduce conflicts are 
usually resolved by selecting the shift over the reduce. This ensures that the longest possible string will 
be matched by each rule. The typical example is the dangling-else ambiguity, where preferring the shift 
corresponds exactly to the most closely nested disambiguating rule. Reduce-reduce conflicts, on the 
other hand, have no natural disambiguating rule. Parsers generally adopt an ad hoc rule, in which the 
reduction by the lowest-numbered rule is preferred (where the rules are number in the order they are 
considered by the parser). The C++ ambiguity between cast expressions and declarations (also described 
previously) can be resolved in this way in favor of the declarations (as the C++ definition requires) by 
listing the declaration rules before the expression rules. Yacc/Bison adopts both of these disambiguating 
rules as stated. Unfortunately, the third ambiguity mentioned previously, a cast vs. an arithmetic expres-
sion in C, cannot be resolved by either of these means. Typically, this is handled by having the scanner 
consult the symbol table when recognizing an identifier and returning a different token for a type name 
than for a variable. Both Flex and JavaCC have mechanisms for introducing code to achieve this into 
their scanner specifications.

An alternative to these disambiguating rules is to build manual disambiguation mechanisms directly 
into the parser generator. Indeed, in a top-down parser like that generated by JavaCC, such a capability 
is a necessity, because ambiguities such as preferring declarations over expressions in C++ cannot be 
handled by reordering the grammar rules: a top-down parser would simply commit to the first rule pos-
sible and never consider a subsequent rule, generating a parse error instead (there are no shift-reduce or 
reduce-reduce conflicts in LL parsers, only shift–shift conflicts).

In JavaCC, the primary disambiguation mechanism is that of extending the lookahead tests locally 
to possibly arbitrary lengths, essentially causing backtracking if a grammar rule choice should fail. For 
example, in order to prefer a C++ declaration over an expression, one might use code such as the follow-
ing in a JavaCC specification:

void statement(): {}
{
     LOOKAHEAD(declaration()) declaration()
  |     expression()
}

Since this kind of lookahead can be expensive in terms of execution speed, it is also possible in JavaCC 
to put a bound on the number of tokens to consider, as well as to add tests for specific tokens that would 
provide clear decision points. For example, writing LOOKAHEAD(10,declaration()) in the afore-
mentioned code would limit lookahead/backtracking to 10 tokens.

Finally, the LOOKAHEAD construct in JavaCC will also accept user-defined Boolean tests (called 
semantic predicates, as opposed to the syntactic tests of previous examples). Details can be found in the 
JavaCC LOOKAHEAD MiniTutorial at http://javacc.java.net/doc/lookahead.html.
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68.3.5 A ttribute Analysis

Yacc/Bison and JavaCC restrict the kinds of attributes that can be reasonably computed during a parse, 
because of the requirements of their parsing algorithms. In cases of difficult attribute computations, 
these limitations are overcome by either providing ad hoc solutions using external data structures, or 
by constructing an intermediate representation such as a syntax tree during the parse, and then writ-
ing specialized procedures that perform semantic analysis by traversing the intermediate form in one 
or more passes. Tools for automating the computation of general attributes (other than syntax tree 
construction) have not been widely used, partially due to the many different varieties of intermediate 
representations and partially due to the variety and complexity of the semantic attributes of different 
languages. Some notable systems that do permit the automation of this step include Eli (Gray et al., 1992) 
(see also http://eli-project.sourceforge.net), JastAdd (Hedin and Magnusson, 2003), and Gentle (Schröer, 
1997) (see also http://gentle.compilertools.net). Code generation is a special case of this problem, and 
special methods for automating the code generation step have been developed, which we describe next.

68.3.6  Intermediate Representations and Code Generation

The abstract syntax tree is a convenient way to represent the source program within a translator, par-
ticularly for semantic attribute analysis. However, it is less suited for code generation. Although target 
code can be generated as a form of attribute analysis, either during parsing or by traversal of the syntax 
tree, the quality of this code is usually poor, and further processing must be done before an acceptable 
level of target code is produced. Typically, this is achieved by generating some form of intermediate code 
that is closer to the code of the target machine but still abstract enough that the compiler can perform 
code improving transformations on it. Many choices have been used for this intermediate code. Some of 
the more common are sequences of expression trees, sequences of postfix expressions, an abstract lin-
earized form of syntax tree called three-address code, and actual code for a hypothetical target machine, 
such as P-code for the stack-based P-machine of many Pascal-related compilers (Nori et al., 1981). An 
example of three-address code corresponding to the source code line =3.1+m/2 for the calculator lan-
guage described previously is

t1 := m/2
t2 := 3.1 + t1
m := t2

Here, the identifiers t1 and t2 are temporaries introduced by the compiler that can be thought of as 
pseudo-registers, and later assigned either to actual registers or to temporary locations in memory.
The equivalent (annotated) P-code for this same source code is as follows:

ldo r,m	 ; load real value onto stack from static location m
ldc r,2.0  ; load constant real value 2.0 onto stack
dvr        ; divide two reals on top of stack, push result
ldc r,3.1  ; load constant real value 3.1 onto stack
adr        ; add two reals on top of stack, push result
sro r,m    ; store real from stack to static location m, pop stack

The use of the code of a precisely defined, simple machine, such as the P-machine as the intermediate 
target language, has several benefits. First, the compiler can be run in interpreter mode, in which the 
P-code functions as the target code, and a P-machine simulator is used to execute the P-code on the 
actual target machine. The target code is then kept as P-code, which is generally much more compact 
than actual executable machine code. Furthermore, in order to retarget the compiler to a new machine, 
it is only necessary to rewrite the P-machine simulator. Second, in order to obtain a native-code com-
piler from the P-code compiler, one need only write a translator from P-code to the native code of the 
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target machine. This is usually done by writing individual procedures for each P-code instruction that 
perform something like a macro expansion of each P-code instruction into target code. By itself, this 
process will produce very poor code, but it can be combined with a static simulation of the P-machine 
itself, whose stack can be used to discover opportunities for optimization. An improvement on P-code 
that adds significant attributes for tracking address calculations and optimizing transformations is 
U-code (Perkins and Sites, 1979).

An intermediate language that is compact, capable of efficient interpretation, and easily retargeted to 
different architectures is of special interest for heterogeneous networks, where the platform on which 
the intermediate code is to be executed or compiled to native code may not be known in advance. If the 
intermediate code is given a numeric machine code-like encoding (called bytecode), and techniques to 
improve interpretation performance are used (such as on-the-fly compilation or threaded code interpre-
tation [Bell, 1973]), then good performance on a variety of machines across a network can be achieved. 
This is, for example, the basis for Java implementations (Gosling, 1995). Although one might think that 
the use of bytecode interpreters in Java implementations should incur a performance penalty, dynamic 
(just-in-time [JIT]) compilation techniques, together with runtime (hotspot) monitoring, frequently 
achieves execution speeds that are the same or even better than those of programs compiled to native 
code; see Section 68.5 and Lewis and Neumann (2003).

A similar process of macro expansion works for three-address code and its variants, although in 
this case the underlying abstract machine and its state is not made explicit (as it is for P-code), and 
the accumulated information during code generation must be stored as attributes in data structures 
associated with the intermediate code. Typically, these include address descriptors, which record the 
locations at which named quantities (such as variables) can be found, and register descriptors, which 
record information about the values that can be statically predicted to be in registers at particular points 
in the target code. Address descriptors can be kept in the symbol table, while register descriptors can be 
maintained in an array indexed by the register numbers.

Unfortunately, both of these code generation schemes spread the information about the target 
machine throughout the code generator. This means that retargeting the compiler is more costly than 
if the target machine information were collected compactly in one place. Several approaches have been 
taken towards achieving this.

The first method for improving the retargetability of the code generator involves writing a syntac-
tic description of the macro expansion process for the intermediate code together with code-emitting 
actions, much as a Yacc/Bison or JavaCC description associates semantic actions with syntactic rules 
(Glanville and Graham, 1978). This method permits the automatic generation of the code generator 
from this description, using a tool similar to a parser generator. This method has been expanded in 
(Ganapathi and Fischer, 1985) to include semantic predicates. As an example, consider generating code 
for the three-address instruction

t1 := m/2

A rule that would handle this instruction for a VAX-like architecture might appear as

reg(n) → adr(a)/const(i) dead?(n) float?(a) #emit(“divd3 #i.,a,rn”)

This rule establishes that emitting the VAX instruction divd3 #i.,a,rn allows the expression con-
sisting of an address a divided by a constant i to be reduced to a register n, provided n is dead (i.e., 
contains a value that is no longer needed), and provided that a is the address of a real-valued quantity. 
Matching this rule to the previous three-address instruction causes t1 to be identified with reg(n), m 
to be identified with adr(a) (thus computing a as the address of m), and identifying 2 with const(i) 
(thus setting i to 2). The resulting line of VAX code generated is

divd3 #2.,m,r1



68-23Compilers and Interpreters

In the absence of predicates, such a set of rules describing the target machine could be written as a 
Yacc/Bison input. The difference between this kind of grammar and a grammar describing the syntax of 
the source language is that the target machine grammar usually comprises thousands rather than hun-
dreds of rules, and the grammar is highly ambiguous, because there are usually many ways to generate 
target code to achieve a specific effect. Parser generators such as Yacc/Bison are inefficient and cumber-
some when dealing with such grammars, and a code generator specifically tuned to this situation is 
more appropriately used (Henry, 1984).

The second variety of retargeting mechanism we discuss is that used in the portable C compiler 
(Johnson, 1978). In this mechanism, a special template language is used to describe the process of 
matching intermediate code to target code. The code generator then consults a table of these templates 
during code generation in an attempt to find the optimal match.

The third variety of retargeting mechanism is similar to the second, except that both the intermediate 
code and the target code templates are written in the template language, and the matching routine runs 
statically, usually during the installation of the compiler, and selects a match between certain sequences 
of intermediate code and target code, which is then fixed once and for all. This method was used in the 
Production-Quality Compiler–Compiler project (Cattell, 1980; Leverett et al., 1980). A related method 
has also been used in the GNU compiler suite (GCC, 2010), based on ideas of Davidson and Fraser 
(1984). In the GNU compiler, the template language is called the register transfer language, or RTL. This 
language is written in LISP-like prefix form. An example of an instruction template is as follows:

(define_insn “divdf3”
    [(set (match_operand:DF 0 “register_operand” “=f”)
          (over:DF (match_operand:DF 1 “register_operand” “f”)
                   (match_operand:DF 2 “register_operand” “f”)))]
    “! TARGET_SOFT_FLOAT”
    “divd3 %1,%2,%0”
    [(set_attr “type” “arith”)]
)

Instruction templates are introduced using the define_insn operator. This operator is followed by a 
symbolic name for the instruction template, a pattern with predicates (such as register_operand), 
constraints (such as f, indicating the register may be used for floating point values), and extra conditions 
(such as !TARGET_SOFT_FLOAT, indicating that there must be a hardware floating point arithme-
tic unit available in the processor). Following this, there is a pattern for the instruction to be gener-
ated, with numbers referring to the operands of the pattern (in this example, it is the VAX instruction 
divd3%1,%2,%0). Finally, there is a specification of attributes for the template.

Such instruction templates are used to generate actual target code in RTL format directly from C 
code during a parse. Optimizing steps are then applied directly to the RTL intermediate code, and then 
templates are again used to generate assembly output. Specialized RTL attribute descriptions are also 
used to guide the code generation process.

One possibility for a compiler writer is to avoid the issue of code generation for a target machine alto-
gether and instead generate code in the C language or other language capable of expressing lower-level 
code, and then use a widely available C compiler such as the GNU C compiler GCC to generate target 
code. This represents an elegant and simple solution, but has a number of drawbacks. First, the available 
C compiler must of course be capable of producing target code for the desired target. Second, it forces 
the compiler writer to rely on the optimizing capabilities of the C compiler, since many optimizations 
are not able to be expressed directly in the generated C code. Furthermore, because of its relative lack of 
constraints, C can be a difficult language to optimize for critical performance. One approach to these 
difficulties is to define a language similar to C that has better capabilities to be used as an intermediate 
target language for compilers; this is, for example, the goal of the C-Minus-Minus development effort 
(see http://www.cminusminus.org).
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A different approach has been taken by the LLVM project (see http://llvm.org; LLVM is now a proper 
name but earlier was an acronym for low-level virtual machine). LLVM consists of a core intermediate 
language as well as a compiler infrastructure consisting of many loosely coupled modules that can be 
easily manipulated with low coding overhead to achieve desired effects. The core intermediate language 
itself is an abstract reduced instruction set computer (RISC)-like assembly language, but with calling 
conventions and register use left unspecified. LLVM has proven to be extremely versatile in reducing 
coding effort and code size while maintaining high levels of optimization and is the foundation for most 
of the translation tools in Apple products.

68.3.7  Compiler Output

In general, compilers process source files as input and generate object code files as output. Depending 
on various compiler directives or command-line options, compilers can also generate metadata about 
the source program that program development utilities such as debuggers and profilers can use. (See, 
e.g., http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html for Gnu gcc, http://docs.oracle.com/
javase/7/docs/technotes/tools/windows/javac.html#options for Java, and http://msdn.microsoft.com/
en-US/library/19z1t1wy%28v=vs.80%29.aspx for Microsoft C++.) Compilers can embed this metadata 
into the object files or they can output the metadata as separate files.

Symbolic, or source-level, debuggers allow developers to interact with their application programs at 
run time and use identifiers (names of constants, variables, functions, etc.) that appear in the source 
code and refer to the source program statements by their line numbers. Such symbol table and cross-
reference information is often lost by the time a compiler outputs the object files. Compiler directives or 
command-line options can specify that this information be kept by embedding it into the object code 
or outputting it as separate files.

Profilers monitor the execution of application programs. Upon completion of the program, the pro-
filer generates a report containing such statistics as how many times each source statement was exe-
cuted, how many times each variable was accessed and modified, and how much time was spent in each 
function. Gathering these statistics while an application program is running requires similar metadata 
to those that debuggers require. Again, compiler directives or command-line options can specify that 
this information be embedded into the object code or output as separate files.

Another type of output file that some C and C++ compilers can generate is precompiled headers. 
(See e.g., http://gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html for Gnu gcc and http://msdn.
microsoft.com/en-us/library/szfdksca%28v=vs.71%29.aspx for Microsoft C++.) A so-called header file 
(typically named with a.h suffix) contains constant and macro definitions that multiple source files 
include at the beginning of each file. To save the time of rescanning and reparsing a header file each 
time it is included, the compiler can precompile a header file the first time it is included and save it in an 
intermediate form as a precompiled header file. Then each subsequent time the header file is included, 
the compiler uses the precompiled header file instead. Compiler directives or command-line options 
specify whether or not to generate and use precompiled headers.

68.3.8  Code Optimization

A code generator that naively expands intermediate code into target code will produce code that is 
extremely inefficient, both in terms of execution speed and target code size. A production-quality com-
piler must include processing steps that improve its ability to generate good target code, so that it more 
nearly resembles the code that would be produced by an assembly language programmer. Such process-
ing steps are usually referred to as optimization, though they almost never produce truly optimal code. 
Indeed, the production of mathematically optimal code, except in the very simplest cases, is known 
to be computationally intractable (NP-complete), so to attempt this would result in unacceptably slow 
compilation speed.
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Optimization steps can be built into almost all the phases of a compiler, from parsing to final target 
code generation. If an optimization pass is performed separately, it usually occurs after intermediate 
code generation, but before target code generation. Such optimizations are generally source-level in that 
they do not depend heavily on the details of the target machine. Some optimizations, however, are tar-
get-level, and require that the details of the target code be known. Such optimizations are referred to as 
peephole optimizations, because they were originally (and are sometimes still) performed by examining 
small sequences of target code and replacing them with more efficient code. This term can be mislead-
ing, however, because modern compilers sometimes perform considerably more sophisticated analysis 
of the target code than the name might imply (an example is the GNU C++ compiler). One complex 
aspect of the scheduling of optimizations during compilation is that some optimizations may uncover 
opportunities for other optimizations and vice versa (this is sometimes called the phase problem). 
This leads some compilers to repeat certain optimizations in an attempt to catch such cascaded situa-
tions. More adaptable optimizers should in principle be able to solve this problem more effectively in 
the future, and indeed the versatile LLVM compiler infrastructure (see Section 68.3.6) has been used 
together with genetic algorithms to achieve better optimization results than hand-chosen sequences 
(see http://donsbot.wordpress.com/2010/03/01/evolving-faster-haskell-programs-now-with-llvm/).

Optimizations are classified according to the region of the program about which information is gathered 
in order to perform the code improvement. Local optimizations consider only straight-line segments of 
code, that is, those not involving jumps or calls. Global optimizations consider the code of a single pro-
cedure. Interprocedural optimizations consider the entire program or compilation unit. Most compilers 
perform some kinds of local optimizations. A more heavily optimizing compiler will perform global opti-
mizations, typically using an information-collection method called dataflow analysis, which passes infor-
mation around a flow graph representing the flow of control through a procedure. It is a rare compiler that 
performs interprocedural optimization, and for a very good reason: such optimizations are largely ineffec-
tive unless they are postponed to link time, because many procedures will not be available in a single com-
pilation unit. This means that the linker must be closely coupled with the compiler; in particular, the system 
linker cannot be used. This raises the level of complexity of the compilation environment considerably.

In the remainder of this brief discussion of optimizations, we list the principal sources of code 
improvement over a naive code-generation strategy. While the focus of this list is on speed optimiza-
tions, one needs to be aware that there are other possible goals for optimization steps, such as reducing 
code size, reducing memory or disk usage, or reducing communication bottlenecks. An important opti-
mization for modern portable devices, such as cell phones, is aimed at reducing power consumption; see 
the Further Information section for a reference. See also the chapter on Scheduling.

Register allocation: This is the most important and pervasive issue in the generation of quality code. 
Keeping temporaries in registers is indispensable, especially for RISC architectures. In order to extend 
register allocation to include local variables, parameters, and global variables, a compiler may perma-
nently allocate certain registers to heavily used quantities. An alternative is to build an interference graph 
and assign registers by graph coloring, permitting noninterfering variables to share the same register. 
Good global register allocation also requires some form of dataflow analysis in order to identify values 
that have no further uses in subsequent code and that can be safely overwritten if they are in registers.

Common subexpression elimination: This refers to the identification of expression values that are recom-
puted one or more times in a program and the avoidance of such recomputation by suitable storing and 
reuse of the computed value. While one might naively think that a good programmer should not write 
code that contains common subexpressions, in fact, most common subexpressions are due to address 
computations of array and record references that cannot be expressed adequately in source code and 
that therefore require elimination by an optimizer. Common subexpressions are relatively easy to iden-
tify in straight line code; the principal difficulty in the general case is to determine what subexpressions 
may have changed between two computations of the same expression. Thus, a compiler may choose to 
perform only local common subexpression elimination.
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Copy propagation: This optimization tracks code regions in which two or more variables have the same 
value. After an assignment x = y (in C syntax), x and y have the same value in subsequent expressions 
until one of them acquires a new value; in this region, any use of x can be replaced by a use of y, which 
can lead to better code if, for example, y is already in a register. As with common subexpressions, copy 
statements may exist in the intermediate code even when they are not written by the programmer. A 
special case of copy propagation is constant propagation: after an assignment such as x = 2, uses of 
x can be replaced by the constant 2. As with common subexpressions, copy propagation may be done 
either as a local or global optimization.

Reduction in strength: This refers to the replacement of arithmetic expressions by equivalent expressions 
that execute faster. A typical example is the replacement of multiplication or division by a power of 2 with 
a shift operation. Another example occurs in loop optimization, where a linear combination calculation is 
replaced by a simple addition (see the subsequent paragraph on loop optimization).

Jump optimization: Opportunities for improving jump code occur when a sequence of jumps can be 
replaced by a single jump, or when a jump can be eliminated by rearranging the code. For instance, the 
code sequence

    goto lab1
    …
lab1:	 if x = y goto lab2
lab3:	 …

can be replaced by the more efficient
     if x = y goto lab2
     goto lab3
     …
lab3:	        …

Algebraic laws: An optimizer can look for special cases in expressions such as x * 1 and x + 0 (replac-
ing these with x). Sometimes, it is also worthwhile to replace a computation x + y or x * y with its 
commutative equivalent y + x or y * x. More difficult is to discover opportunities to use distributive 
laws, such as replacing x * y + z * y with the more efficient (x + z)*y.

Loop optimization: Loops are traditionally an area where a great deal of attention has been paid to 
making code as efficient as possible, because programs tend to spend a lot of time in loops. In programs 
with goto statements, it is a non-trivial operation to even discover loops, and this usually must be done 
by building the flow graph. Fortunately, in modern languages, it is reasonable to depend on syntax 
(such as keywords while and do) to locate loops. Typical loop optimizations include attempting to 
discover invariant computations inside loops (i.e., those that always yield the same value, regardless of 
the loop iteration) and moving their computation to just before the loop entry. Another optimization 
seeks to discover so-called induction variables, which are linear combinations a * i + b, where i is the 
loop control variable. Since such an expression is incremented by a fixed amount with each iteration, 
its computation can be reduced in strength to a simple addition. Finally, loop unrolling can be applied: 
this seeks to reduce the delays (and possible cache misses) caused by the backward jumps in loop itera-
tions by dividing the loop bounds by fixed amounts and inserting the missing iterations as linear code.

Constant folding: This optimization seeks to replace constant expressions (e.g., 3 + 5) by their resulting 
values (e.g., 8). Such an optimization could, in theory, replace all computations whose results are pre-
dictable at compile time by their results alone. In practice, this would involve repeated applications of 
constant propagation and folding, so this optimal result is rarely achieved.

Dead code elimination: This optimization seeks to skip code generation for those statements that are 
either never reached during execution or whose actions have no effect on the results of the program. 
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The first case happens when compile-time constants are set to select certain actions over others (e.g., to 
suppress the collection of run-time statistics). The second occurs if common subexpression elimination 
or copy propagation makes a computation or assignment unnecessary.

68.3.9  Error Recovery

An important practical problem in the design of a translator is its response to errors in the input pro-
gram. Although many translators have been constructed so that they stop at the first error encountered, 
it is generally considered better to attempt to discover as many errors as possible in the input before 
halting. Thus, the response to errors includes error recovery, so that translation may continue, as well as 
the generation of informative error messages. A further step in an error handler may also be error repair, 
where the translator attempts to correct at least some of the errors. Because it is difficult to infer from an 
erroneous program what the actual intended program was, error repair is usually not attempted, except 
in special cases, such as missing punctuation.

Errors may be classified into lexical, syntactic, semantic, and run-time errors. An interpreter must 
have a reasonable response to runtime errors that involves at least generating an error message and 
exiting gracefully. A compiler needs only to recover from static errors, although it may need to generate 
code to report run-time errors. Semantic errors are relatively easy to recover from, because the syntax 
tree can still be used to guide the remainder of translation. Lexical errors can be simply passed to the 
parser by the scanner as error tokens. Thus, the principal difficulty in building an error handler occurs 
in dealing with parsing errors, where the structure of the input is disturbed, and there may be no obvi-
ous way to restart the parser.

Several criteria apply to any method for recovery from parse errors. First, it is useful to try to detect 
errors as early as possible, because continuing to process the input can make it more difficult to deter-
mine where the error occurred and to generate an appropriate error message. Second, the translator 
should attempt to discard as little input as possible when recovering from an error, because discarding 
input can lead to other errors, as well as mislead the programmer. Third, the translator should avoid 
generating large numbers of error messages caused by a single error. In particular, a translator must 
never get into an infinite loop when recovering from an error. This usually requires that at least some 
input be discarded during error recovery.

A standard technique for error recovery is called panic mode, in which tokens are simply discarded, 
and the parsing stack accordingly adjusted until the parse can resume. This method can be made sophis-
ticated enough so that it becomes better than its name implies. It can be used either as the standard 
error recovery technique or as a fall-back technique for a more complex method. The important feature 
of panic mode is the proper computation of a synchronizing set of tokens, which are used to determine 
when the parser should stop discarding the input and attempt to resume the parse. Panic mode in 
recursive-descent parsing is discussed in Wirth (1976 [Section 5.9]). A slightly different method is used 
by Yacc/Bison, in which an error pseudotoken is made available, with which important error recovery 
locations can be marked in so-called error productions in the input grammar. For example, in the Bison 
definition file of Table 68.5, the error production

session : session error ‘\n’ {yyerrok;}

was included in the specification. Yacc/Bison’s behavior on encountering an error is as follows. First, 
it sets a flag to enter an error phase, and then it begins popping the parsing stack until a state is found 
where the error pseudotoken can be successfully shifted. Then input tokens are discarded until three 
consecutive tokens can be shifted successfully, whence the error phase is canceled and normal parsing 
is resumed. The error phase can also be canceled manually by calling the Yacc/Bison procedure yyer-
rok. For example, the previous error production for a calculator session causes Bison to discard all 
tokens until a newline is reached, and then to resume the parse. The result is that any incorrect line of 
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input is deleted. (Yacc/Bison also automatically calls yyerror whenever the error phase is entered, 
which can perform other actions and print an error message.)

Other error recovery and repair mechanisms are discussed in Graham (1979), Roehrich (1980), Dion (1982).

68.4  Incremental Compilation

Not only must compilers generate high-quality code they also must do it in a reasonable amount of time. 
Historically, the speed of compilation was often inversely proportional to the quality of the generated 
code, with the compilation of a large program under full optimization sometimes taking hours or even 
days. With modern processors, compilation speed has become less of an issue, but strong optimiza-
tion still requires significant amounts of processor time. For this reason, compilers usually offer an 
unoptimized mode that not only avoids code improvements but is also tuned to the speediest possible 
generation of runnable code; such an option can be very useful for development or instructional work. 
Even so, large programs can require significant amounts of time to recompile if all of the code must be 
retranslated during each compilation step. A significant improvement in compiler technology is there-
fore the ability of a compiler to operate incrementally, that is, to avoid recompilation of code that has not 
changed since the previous compilation step. Alternatively, compilers that are linked to an editor as part 
of an interactive development environment (IDE) can compile program text in the background as it is 
entered by the programmer. Either of these mechanisms is called incremental compilation.

One of the original motivations for separate compilation and linking was to allow a form of incre-
mental compilation, where only files that had changed needed to be recompiled, and the results of this 
recompilation would be combined with previously compiled files by a linker. Of course, this approach 
is subject to error, because the linker usually has no knowledge of the source language and cannot find 
incompatibilities between the recompiled code and the unchanged code. Additionally, the programmer 
has to keep track manually of which files have changed and which have not.

The first major advance over this situation was the Unix make utility (Feldman, 1979), varieties of 
which are part of virtually every IDE today (usually called build or make project). Make itself is still 
heavily in use in command-line development environments. Make keeps track automatically of file 
changes by using file system time stamps: a later time stamp on a source code file over its corresponding 
object code file indicates the need for recompilation. Additionally, make can keep track of dependencies 
in a set of source code files (made necessary by the convention of using file inclusion to check incom-
patibilities in C), although such dependencies must still be maintained manually by a programmer 
(in a so-called makefile). The makelike features that are built into IDEs usually automate the process of 
maintaining dependencies even further, particularly in languages with strong interface requirements 
like Ada and Java (but unlike C or C++).

It is possible, and often even desirable, to go beyond the capabilities of an automated make utility in 
either or both of the two different approaches to incremental compilation mentioned previously. First, a 
compiler could implement a finer-grained incremental approach than the file-level increments of make, 
such as statement-level or declaration-level increments (i.e., recompiling only those statements or func-
tion definitions within a file that have changed, rather than the entire file). Such a mechanism requires 
much more retained information about code structure than just object files and time stamps, however, 
and can lead to a significant increase in the amount of storage space required for a program or project. 
Second, the compiler could run in the background behind an editor, recompiling code as it is edited, 
rather than waiting for a compile command from the user. (Obviously, this approach makes the most 
sense if finer-grained incremental compilation is also implemented.) However, this approach can also 
mean more compiler interference in the process of editing or creating code, where an editor may refuse 
to accept program text that the compiler cannot understand. This can easily create programmer resis-
tance to the use of such systems.

Examples of compilers that offer incremental compilation are the VisualAge Java compiler 
from IBM (now part of the Java Development Tool Core of the Eclipse Development Environment; 
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http://www.eclipse.org/jdt/core/) and the Visual Studio C# Compiler from Microsoft. These com-
pilers also provide a contrast in how they mix the two approaches to incremental compilation 
described in the previous paragraph. The VisualAge compiler is invoked automatically by the IDE 
whenever a file save operation is performed (or when a file is added or imported into a project). It 
performs only file-level incremental compilation. However, it immediately reports any compilation 
problems to the user and will even prevent the completion of a file save operation if syntax errors 
occur in significant places. In contrast, the C# compiler will perform method-level (function-
level) incremental compilation, but only at the direction of the user during a requested build.

68.5  Just-in-Time Compilation

68.5.1  Introduction to Just-in-Time Compilation

Traditionally, application programs were either interpreted or compiled. Interpreters have the advantage of 
fast start-up; source programs are quickly processed to the point of being executable. This enables highly 
desired rapid turnaround during program development. However, interpreted code can execute orders of 
magnitude slower than compiled code. Compilers provide the advantage of fast application program execu-
tion by generating native object code that can run at full speed on the target machines. Compilers can also 
perform optimizations generally not done by interpreters, further improving the execution performance of 
the application program. But code generation takes time, especially if code optimizations are performed. 
The generated object code usually requires further processing, such as linking and loading. Therefore, it 
takes longer for an application program to become executable with a compiler than with an interpreter.

Many compilers for modern programming languages, such as for Java and for Microsoft’s .NET fam-
ily of languages, generate bytecode instead of native code. Bytecode is the “machine language” that 
implements the instruction set of a virtual machine whose architecture is ideal for the features of a given 
set of source languages. The virtual machine is simply an interpreter for the bytecode. To execute an 
application program that has been compiled into bytecode, the virtual machine interprets the bytecode.

The use of bytecode promotes portability. An application program’s bytecode can run on any actual 
machine that implements the virtual machine. A popular example of a virtual machine is the JVM. 
Once a Java application program has been compiled into bytecode (stored as.class files), any actual 
machine that implements the JVM can execute that program.

Besides interpreting bytecode, it is also possible to translate bytecode into the native object code of 
an actual machine. This translation can be done much more rapidly than it would take to translate the 
original source code to native code, since all of the work of scanning and parsing the source code has 
already been done in order to generate the bytecode.

A JIT compiler translates a source application program into bytecode that is interpreted by the virtual 
machine. While the application is being interpreted, the compiler can step in to dynamically translate 
blocks of bytecode “on the fly” into native machine code. Such dynamic translation is JIT because a 
block of bytecode (such as for a function or a method) can be translated into native code just as that code 
is about to be executed. Then whenever that block of code is executed again, the native code will run at 
full machine speed. In contrast, a traditional compiler does ahead-of-time (AOT) or static translation.

68.5.2 A dvantages of Just-in-Time Compilers

A JIT compiler offers the best of both worlds for the application program developer: fast turnaround 
by an interpreter and fast program execution by the native code. Since the virtual machine architec-
ture and the bytecode are ideally designed for the source language, a bytecode compiler can translate 
an application program into bytecode rapidly, and then the virtual machine can execute the bytecode 
immediately via interpretation. At application run time, the JIT compiler can rapidly translate blocks of 
bytecode into native machine code that executes at full machine speed.



68-30 Programming Languages

While dynamic translation from bytecode to native code can be very rapid, it does take time, espe-
cially if code optimization is involved. Such a translation, if done serially with the virtual machine, 
would cause a pause in the interpretation of the application program. Therefore, some JIT compilers 
perform a runtime analysis of the application program. A block of bytecode is dynamically translated 
into native machine code only if it is advantageous to do so, such as if that block is executed more than 
once. Some JIT compilers provide command-line options that allow the developer to specify how many 
times a block of bytecode must execute before it is translated into native code.

A JIT compiler may be able to perform code optimizations that are not possible by a traditional AOT 
compiler. Because dynamic translation occurs during the application program’s run time, it has the 
added context of the current state of the underlying actual machine, plus any runtime analysis of the 
application program. For example, it can generate native code optimized for the how many cores are 
currently available. Runtime analysis can determine that the native code for a function should be inlined 
rather than invoked. (See e.g., http://java.sun.com/developer/onlineTraining/Programming/JDCBook/
perf2.html for the JVM and http://blogs.msdn.com/b/davidnotario/archive/2004/10/28/248953.aspx for 
Microsoft.NET.)

To be effective, a JIT compiler must make the tradeoff between time lost by the interpreter to dynamic 
translation and time gained by faster execution of native code. An application program that does not 
contain many loops or function calls may not benefit much from a JIT compiler (Li, 2004).

68.6  Compilation for Parallel Execution

An important aspect of modern compiler design is to ensure that the code generated by a compiler 
makes good use of opportunities provided by hardware for parallel execution. This has become 
even more important with the recent advent of so-called multicore architectures (see the chapter on 
Multicore Architectures), where two or more functionally distinct processors are built into the same 
chip. Virtually all personal computers sold today contain such chips, with the expectation that most 
programs running on these machines will actually use the hardware to improve execution speeds. Note, 
however, that the responsibility for assigning execution tasks to different processors is shared between 
the operating system and the compiler; an operating system can already assign independently running 
programs to different processors without any compiler intervention. Additionally, the operating system 
must provide an appropriate set of primitives to the compiler for it to be able to schedule parallel execu-
tion effectively. In this section, we will only briefly survey the issues and the current state of the art of 
compiling for parallel execution.

First, we should note that compiler writers have struggled to find ways for compilers to automati-
cally discover opportunities for parallel execution of code within programs. Reasons for this include 
the unpredictable interaction of program features with data paths within the hardware, such as bus 
and cache operations, as well as the difficulty in predicting data dependencies within a program in 
the presence of control flow and aliasing. As a result, compilers do not usually generate code for mul-
tiple processors without programmer intervention, in that the programmer must write source code 
that explicitly states what code should be executed in parallel and how that code will communicate 
with the rest of the program. Thus, compilers must not only rely on the operating system to provide 
adequate mechanisms for parallelism but also the compiler must also rely on the programmer to 
provide source-level instructions on how to use the operating system mechanisms in a particular 
program. Further complicating this issue is the fact that many popular programming languages 
such as C/C++ do not include parallel mechanisms in their standard definitions; Java is a major 
exception, having included parallel mechanisms in the form of threads (see subsequent section) 
since its inception. This situation has been partially ameliorated by several widely accepted paral-
lel interface standards, such as POSIX Pthreads (http://www.opengroup.org/onlinepubs/007904975/
basedefs/pthread.h.html) and OpenMP (http://openmp.org, supported by GNU, Microsoft, and 
Intel C/C++ compilers).
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One area of parallel execution where compilers play a role without user intervention is in the schedul-
ing of consecutive machine instructions to take advantage of parallel execution within a single proces-
sor. Most modern processors have several ways of executing instructions in parallel. Usually, this is 
expressed as an instruction pipeline that splits the processing of a computer instruction into a series of 
independent steps. A standard pipeline (called the classic RISC pipeline) consists of five stages: fetch, 
decode, execute, store, and register writeback; each stage is executed in a single clock cycle, and new 
instructions are fed at each cycle into the pipeline, so that while one instruction is decoded, the next 
instruction is simultaneously fetched. In the ideal case, this can result in throughput of one instruction 
per cycle, even though a typical instruction takes several cycles to complete. Dependencies between 
successive instructions can inhibit this ideal situation from being achieved, as can jumps, interrupts, 
and cache misses, which may all stall the pipeline, causing the processor to wait one or more cycles 
for an action to complete. By constructing a dependency graph, typically during code optimization, a 
compiler can rearrange target code to substantially reduce pipeline stalls. An additional situation occurs 
in some architectures (e.g., RISC and SPARC computers) where an explicit delay slot is required in the 
code immediately after a jump that must either be filled by a nop (no operation) or a legal instruction 
(thus avoiding a pipeline stall caused by a jump). This can cause control flow in a target program to 
become very counterintuitive (and can lead to debugging and interrupt problems). For example, the 
simple C function

int absdiff(int x, int y)
{ if (x > y) return x - y;
  else return y - x;
}

is translated by the GNU C compiler on a SPARC machine as follows:

            mov %o0, %g1
            cmp %g1, %o1
            bg     .LL1
            sub %o0, %o1, %o0
            sub %o1, %g1, %o0
.LL1:
            retl
            nop

In this code, the first subtraction (in the delay slot after the conditional branch) will always be per-
formed, whether or not the jump is taken, and the second subtraction will overwrite the first only if the 
jump is not taken. (Note also the nop after the return; there is no available instruction to fill this delay 
slot.) Pipelining and instruction scheduling are discussed in more detail in the Chapter 22 (Performance 
Enhancements).

A further important situation where parallel execution is frequently scheduled by the compiler (with 
hints from the programmer) is that of loop optimizations (see Section 68.3.7). Computationally inten-
sive programs, such as those involving matrices, typically spend a lot of execution time within loops, 
often nested two or three deep. Executing loop iterations in parallel can result in significant speedups. 
Most Fortran compilers therefore have special instructions for the programmer to mark loops for par-
allel execution: a DOALL Fortran statement indicates that each iteration of a loop is independent of 
the others, so that each iteration can be executed in parallel with the others. In situations where there 
are dependencies across iterations, the programmer can still mark a loop for parallel execution with 
a DOACROSS statement, but for this to be useful a compiler must be able to determine how to group 
successive iterations in ways that admit effective parallel execution. Often, this is combined with loop 
unrolling operations to achieve speedups.
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In order to schedule more general program segments to run concurrently, possibly on multiple cores, 
the most common mechanism used at present is the thread: a program section encapsulated for concur-
rent execution that does not run as an independent process but shares resources, particularly memory, 
with the program as a whole. Most modern operating systems, including the latest versions of Linux 
and Windows, guarantee that code written using thread packages provided by the operating system will 
use available cores or other parallel hardware when executing a program. In this regard, the Java pro-
gramming language has a significant advantage, since Java has included threads in its definition from 
the start. Indeed, a Java compiler transparently generates code that can make use of the latest multicore 
technology, since a JVM that executes the bytecode programs generated by the compiler encapsulates 
the required operating system calls, and all modern JVM implementations have been updated to use 
multicore facilities.

68.7 R esearch Issues and Summary

Language translators can be decomposed into the phases of scanning (lexical analysis), parsing 
(syntactic analysis), semantic analysis, optimization, and code generation. A scanner breaks the input 
program into tokens using the theory of regular expressions and finite automata. A parser constructs, 
implicitly or explicitly, a representation for the syntactic structure of the program, using the theory of 
context-free grammars. The construction of both a scanner and a parser can be easily automated, using 
tools such as Lex/Flex and Yacc/Bison or JavaCC. Yacc/Bison constructs a LALR(1) bottom-up parser; 
JavaCC constructs a recursive-descent top-down parser. Bottom-up parsers are generally too complex 
to construct by hand, but recursive-descent can be used to hand-construct a parser. Implementations of 
scanners as finite automata are also relatively easy to construct by hand.

The semantic analysis and code generation steps of a compiler can be modeled theoretically by an 
attribute grammar, which expresses in equational form the relationships among the various attributes of 
language entities. In fact, attribute grammars can be used as a basis for automating the construction of 
an entire compiler, but this has not become common, possibly because of the complexity of representing 
the entire semantics of a language as an attribute grammar, and possibly because of the difficulty of pro-
ducing optimized target code. It may be that other semantic definition mechanisms, such as denotational 
semantics, will result in better automation techniques, but this remains for future study. Current meth-
ods typically construct hand-generated semantic analyzers, which operate during parsing using auxiliary 
data structures, such as the symbol table, or analyzers that perform recursive traversals of a syntax tree.

Some success has been achieved in automating the code-generation step, with easy retargeting as the 
primary goal. These methods include the syntax-based approach of Glanville and Graham (1978) and 
the semantic approach of Ganapathi and Fischer (1985). An alternative is to use a symbolic machine 
description language to describe the target machine, which is then used by the code generator to pro-
duce target code. Effective use of this method has been made in the widely retargeted GNU compiler 
collection.

An important aspect of the automation and retargetability of a compiler is the choice of an appropri-
ate intermediate code representation for the source code. The best choice appears to be a symbolic code 
for a hypothetical abstract machine. One may then choose either to interpret the intermediate code 
using a simulator or to perform code generation based on a static simulation of this machine. The pri-
mary requirements of such an intermediate code are flexibility, security, and the availability of enough 
information to provide good optimization over a wide variety of target architectures. A significant chal-
lenge for future translator technology is to develop a standard intermediate code that can be generated 
by many different language front ends, and which can also be efficiently and safely interpreted and 
compiled on many different architectures under many different operating systems. Optimized versions 
of the JVM, such as the Jikes research virtual machine (http://jikesrvm.org), hold the promise that this 
may happen in the not-too-distant future.
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Key Terms

Attribute grammar: A set of equations associated to the grammar rules of a context-free grammar that 
define a collection of attributes associated to the terminals and nonterminals of the grammar. 
Attribute equations are written in purely functional form (i.e., without side effects) and may 
be “solved” for the actual attribute values by different kinds of traversals of the parse or syntax 
tree. Alternatively, attribute values may be computed by replacing the attribute equations with 
equivalent side effect-generating code using separate data structures such as the symbol table.

Back end: The part of a compiler that depends only on the target language and is independent of the 
source language. The back-end receives the intermediate code produced by the front end and 
translates it into the target language.

BNF: Backus normal form or Backus–Naur form. A notation for context-free grammar rules rst 
used  in  the Algol60 report to describe syntax. It comprises only two metasymbols, usually 
written → or ::= and |.

Bottom-up: A parsing algorithm that constructs the parse tree from the leaves to the root. Bottom-up 
algorithms include LR and LALR parsers, such as those produced by Yacc/Bison.

Bytecode: Numerically encoded intermediate code generated by a compiler that can be executed by an 
easily retargeted virtual machine.

Disambiguating rule: A rule stated separately from the rules of a context-free grammar, which specifies 
the correct choice of syntax tree structure when more than one structure is possible.

EBNF: Extended BNF. Adds bracketing metasymbols […] and {…} to BNF to indicate optional and 
repeated structures, respectively. (These can also be written as (…)? and (…)* to remain 
consistent with standard regular expression notation.)

Front end: The part of a compiler that depends only on the source language and is independent of the 
target language. The front end translates and analyzes the source program.

Incremental compilation: Compilation or recompilation that occurs in small steps based on incremen-
tal changes made during the editing of a program and which encompasses only those parts of 
the program affected by the changes.

Inherited attribute: An attribute whose value depends on attribute values at syntax tree nodes, which 
are not descendants. A nonsynthesized attribute.

Intermediate code or representation: An internal data structure or sequence of abstract instructions 
representing a program as produced by the parser or other phase inside a compiler.

Item: A grammar rule choice with a distinguished position (often indicated by a period), indicating that 
a parse has reached that position in attempting to recognize the rule. Sets of items are used by 
a bottom-up parser to record a state reached during a parse. Items may have 0 or more tokens 
of lookahead attached to them. LR(0) items contain no lookahead, whereas LR(1) items contain 
one token of lookahead.

Just-in-time (JIT) compiler: A compiler that dynamically translates blocks of bytecode “on the fly” 
into native machine code during execution in a virtual machine, usually just before the virtual 
machine would execute the code.

L-attributed grammar: An attribute grammar whose attributes may be computed by a left-to-right 
traversal of the source program. An attribute grammar must be L-attributed for the attributes 
to be computable during a parse that processes the input from left to right (as most parsers do). 
Synthesized attributes are always L-attributed.

LALR(1): The lookahead LR(1) algorithm invented by DeRemer (1971). The algorithm is used in many 
bottom-up parser generators, including Yacc/Bison. A language is also called LALR(1) if it can 
be parsed unambiguously by the LALR(1) algorithm.

Lexeme: The actual character string read from the input when recognizing a token. The lexeme of an 
identifier token is the identifier name.
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LL(k): A top-down parsing algorithm that processes the input from left to right, producing a leftmost 
derivation using k tokens of lookahead. The term can also be applied to a language that can be 
unambiguously parsed using this algorithm.

LR(k): A bottom-up parsing algorithm that processes the input from left to right, producing a rightmost 
derivation (in reverse) using k tokens of lookahead. The term can also be applied to a language 
that can be unambiguously parsed using this algorithm.

Nonterminal: A name for a structure defined by a context-free grammar rule. Interior nodes of parse 
trees are labeled by nonterminals.

Phase: A logical unit of a compiler. Typical phases include scanning, parsing, semantic analysis, and 
code generation. Phases are distinct from passes, which comprise a complete sequential pro-
cessing of the input program. Phases may or may not correspond to physical code units within 
the compiler.

Production: Another term for a context-free grammar rule or grammar rule choice.
Recursive-descent: A top-down parsing algorithm that translates context-free grammar rules into a 

set of mutually recursive procedures, with each procedure corresponding to a nonterminal. 
Recursive-descent parsing is usually the method of choice when writing a parser by hand.

Reduce-reduce conflict: In bottom-up parsers, a property of a state in which a parser has a choice of two 
productions that can be used to reduce the parsing stack, and both are legal for the amount of 
lookahead allowed. Reduce–reduce conflicts have no natural disambiguating rule.

Retargeting: The process of changing a compiler to produce target code (assembly or machine code) for 
a different machine. This may involve rewriting the compiler back end or creating a machine 
definition file for the new machine.

Shift-reduce conflict: In bottom-up parsers, a property of a state in which a parser has a choice of either 
reducing the parsing stack using a production or shifting a token from the input, and both are 
legal for the amount of lookahead allowed. A natural disambiguating rule is to prefer the shift, 
thus allowing the parser to match the longest possible input string at each point.

Synthesized attribute: An attribute whose value depends only on the attribute values of descendants 
in the parse or syntax tree. Synthesized attributes are the easiest to compute during a parse, 
requiring no special data structures or techniques. The syntax tree itself is the most important 
example of a synthesized attribute.

Terminal: Another term for a token in a context-free grammar. Leaf nodes of parse trees are labeled by 
terminals.

Thread: A program section encapsulated for concurrent execution that does not run as an independent 
process but shares resources, particularly memory, with the program as a whole.

Top-down: A parsing algorithm that constructs the parse tree from the root to the leaves. Top-down 
algorithms include LL parsers and recursive-descent parsers, such as those produced by JavaCC.

Virtual machine: An interpreter for intermediate code, such as the Java virtual machine, which exe-
cutes Java bytecode. A virtual machine provides transparent cross-platform retargetability for 
compilers and other software.

Further Information

The standard advanced text in compiler design is Compilers: Principles, Techniques, and Tools, 
2nd edn. by A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman (Pearson Addison-Wesley, London, 
U.K., 2007). Introductory texts include Writing Compilers and Interpreters: A Software Engineering 
Approach, 3rd edn. by R. Mak (Wiley, New York, 2009) and Compiler Construction: Principles and 
Practice by K. C. Louden (Cengage Learning, Stamford, CT, 1997). Somewhat more comprehensive 
treatment of advanced implementation issues can be found in Modern Compiler Implementation 
in Java, 2nd edn. by A. W. Appel and J. Palsberg (Cambridge University Press, Cambridge, U.K., 
2002), which treats object-oriented issues in some detail, for both the implementation language and 
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the target language. For a more detailed study of optimization, see Advanced Compiler Design and 
Implementation by S. S. Muchnick (Morgan Kaufmann, Burlington, MA, 1997). A detailed treatment 
of parsing algorithms and techniques can be found in Parsing Techniques: A Practical Guide, 2nd 
edn., by D. Grune and C. J. H. Jacobs (Springer, New York, 2008). A book that discusses compiler 
optimizations for power consumption is Power Aware Computing by R. Graybill and R. Melhem, Eds. 
(Springer, New York, 2002). A book that treats instruction scheduling and parallelization techniques 
in detail is Optimizing Compilers for Modern Architectures: A Dependence-Based Approach by R. Allen 
and K. Kennedy (Morgan Kaufmann, Burlington, MA, 2002). For those interested in functional lan-
guages, Modern Compiler Implementation in ML by Andrew W. Appel (Cambridge University Press, 
Cambridge, U.K., 2004) may be of interest. A book that presents a full C compiler in complete detail 
is A Retargetable C Compiler: Design and Implementation by C. W. Fraser and D. Hanson (Addison-
Wesley, Boston, MA, 1995).

Aside from these and many other texts, the best place to locate the latest information on compiler 
design is the comp.compilers newsgroup on the Internet.

Research papers on language translation can be found in publications by the IEEE and the ACM, 
particularly the conference proceedings published as part of the ACM SIGPLAN notices (especially the 
annual Programming Languages Design and Implementation [PLDI] conference), the ACM Annual 
POPL Conference proceedings, and the ACM TOPLAS journal. For information, contact the ACM 
via its web site, http://www.acm.org (or by e-mail at acmhelp@acm.org) and the IEEE via its web site 
http://www.ieee.org.

A brief but useful introduction to the use of Lex and Yacc can be found in The Unix Programming 
Environment by B. W. Kernighan and R. Pike (Prentice Hall, Englewood Cliffs, NJ, 1984). A more 
detailed study of Flex and Bison is contained in Flex & Bison: Text Processing Tools by J. Levine 
(O’Reilly Media, Sebastopol, CA, 2009). Manuals for the GNU versions Flex and Bison can be found at 
http://www.gnu.org/manual/manual.html. More detail about the Java parser generator JavaCC is con-
tained in Generating Parsers with JavaCC, 2nd edn. by T. Copeland (Centennial Books, Portland, OR, 
2012). More information about JavaCC can also be found at http://javacc.java.net. Information about 
Antlr can be found at http://www.antlr.org.
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69.1  Introduction

A programming language possesses syntax and semantics. Syntax refers to the spelling of the language’s 
programs, and semantics refers to the meanings of the programs. A language’s syntax is formalized by a 
grammar or syntax chart; such formalizations are found in the back of language manuals. A language’s 
semantics should be formalized, too, and this is the topic of this chapter.

Before we begin, we might ask, “What do we gain by formalizing the semantics of a programming 
language?” Consider the related question, “What was gained when language syntax was formalized 
with BNF?”

•	 A language’s syntax definition standardizes the official syntax. This is crucial to users, who require 
a guide to writing syntactically correct programs, and to implementors, who must write a correct 
parser for the language’s compiler.

•	 The syntax definition permits a formal analysis of its properties, such as whether the definition is 
LL(k), LR(k), or ambiguous.

•	 The syntax definition can be used as input to a compiler front-end generating tool, such as YACC; 
it becomes, in effect, the implementation.
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We derive similar benefits from a formal semantics definition:

•	 The semantics definition standardizes the official semantics of the language. This is crucial to 
users, who require a guide to understanding the programs that they write, and to implementors, 
who must write a correct code generator for the language’s compiler.

•	 The semantics definition permits a formal analysis of its properties, such as whether the defini-
tion is strongly typed, block structured, uses single-threaded data structures, is parallelizable, etc.

•	 The semantics definition can be used as input to a compiler back-end generating tool [26,31]; it 
becomes, in effect, the implementation.

Programming-language syntax was studied intensively in the 1960s and 1970s, and programming 
language semantics is undergoing similar intensive study. Unlike the acceptance of BNF as the stan-
dard for syntax definition, it is unlikely that a single definition method will take hold for semantics—
semantics is harder to formalize than syntax, and it has a wider variety of applications.

Semantics-definition methods fall roughly into three groups:

•	 Operational: The meaning of a well-formed program is the trace of computation steps that results 
from processing the program’s input. Operational semantics is also called intensional semantics, 
because the sequence of internal computation steps (the “intension”) is most important. For example, 
two differently coded programs that both compute factorial have different operational semantics.

•	 Denotational: The meaning of a well-formed program is a mathematical function from input data 
to output data. The steps taken to calculate the output are unimportant; it is the relation of input 
to output that matters. Denotational semantics is also called extensional semantics, because only 
the “extension”—the visible relation between input and output—matters. Thus, two differently 
coded versions of factorial have the same denotational semantics.

•	 Axiomatic: A meaning of a well-formed program is a logical proposition (a “specification”) that 
states some property about the input and output. For example, the proposition ∀x . x ≥ 0 ⊃ ∃y . y = x! 
is an axiomatic semantics of a factorial program.

69.2  Underlying Principles of Semantics Methods

We survey the three semantic methods by applying each in turn to the world’s oldest and simplest pro-
gramming language, arithmetic. The syntax of our arithmetic language is

	 E  ::=  N | E +E1 2

where N stands for the set of numerals {0, 1, 2, …}. Although this language has no notion of input and 
output, it is computational.

69.2.1  Operational Semantics

There are several versions of operational semantics for arithmetic. The one that you learned as a child is 
called a term rewriting system [6,25]. It uses rule schemes that generate computation steps. There is just 
one rule scheme for arithmetic:

	 N +N N  where N  is the sum of the numerals N  and N1 2 1 2⇒ ′ ′

The rule scheme states that adding two numerals is a computation step, for example, 1 + 2 ⇒ 3 is one 
computation step. An operational semantics of a program is a sequence of such computation steps. For 
example, an operational semantics of (1 + 2) + (4 + 5) goes as follows:

	 (1+2)+(4+5) 3+(4+5) 3+9 12
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Three computation steps led to the answer, 12. An intermediate expression like 3 + (4 + 5) is a “state,” so 
this operational semantics traces the states of the computation.

Another semantics for the example is (1 + 2) + (4 + 5) ⇒ (1 + 2) + 9 ⇒ 3 + 9 ⇒ 12. The outcome is the 
same, and a set of rules that has this property is called confluent [25].

A structural operational semantics is a term-rewriting system plus a set of inference rules that state 
precisely the context in which a computation step can be undertaken. (A structural operational seman-
tics is sometimes called a “small-step semantics,” because each computation step is a small step towards 
the final answer.) Say that we demand left-to-right computation of arithmetic expressions. This is 
encoded as follows:

	 N +N N  where N  is the sum of N  and N1 2 1 2⇒ ′ ′

	

E E

E E E E
 

E E

N E N E
1

1 2 2

2

2

⇒ ′
+ ⇒ ′ +

⇒ ′
+ ⇒ + ′

1

1

2

2

The first rule goes as before; the second rule states, if the left operand of an addition expression can be 
rewritten, then do this. The third rule is the crucial one: if the right operand of an addition expression 
can be rewritten and the left operand is already a numeral (completely evaluated), then rewrite the right 
operand. Working together, the three rules force left-to-right evaluation.

Each computation step must be deduced by the rules. For (1 + 2)+(4 + 5), we deduce this initial com-
putation step:

	

1 2 3

1 2 4 5 3 4 5

+ ⇒
+ + + ⇒ + +( ) ( ) ( )

Thus, the first step is (1 + 2) + (4 + 5) ⇒ 3 + (4 + 5); note that we cannot deduce that (1 + 2) + (4 + 5) ⇒ 
(1 + 2) + 9. The next computation step is justified by this deduction:

	

4 5 9

3 4 5 3 9

+ ⇒
+ + ⇒ +( )

The last deduction is simply 3 + 9 ⇒ 12, and we are finished. The example shows why the semantics is 
“structural”: each computation step is explicitly embedded into the structure of the overall program.

Operational semantics is often used to expose implementation concepts, like instruction counters, 
storage vectors, and stacks. For example, say our semantics of arithmetic must show how a stack holds 
intermediate results. We use a state of form 〈s, c〉, where s is the stack and c is the arithmetic expression 
to evaluate. A stack containing n items is written v1 :: v2 :: … :: vn :: nil, where v1 is the topmost item and 
nil marks the bottom of the stack. The c component will be written as a stack as well. The initial state for 
an arithmetic expression, p, is written 〈nil, p :: nil〉, and computation proceeds until the state appears as 
〈v :: nil, nil〉; we say that the result is v.

The semantics uses three rewriting rules:

	

〈 〉 ⇒ 〈 〉

〈 + 〉 ⇒ 〈 〉

〈

s c s c

s c s add c

s

, :: :: ,

, :: , :: :: ::

:: ::

N N

E E E E

N N

1 2 1 2

2 1 ,, :: :: ,add c s c〉 ⇒ 〈 ′ 〉 ′N where N  is the sum of N  and N1 2
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The first rule says that a numeral is evaluated by pushing it on the top of the stack. The second rule 
decomposes an addition into its operands and operator, which must be computed individually. The third 
rule removes the top two items from the stack and adds them. Here is the previous example, repeated:

	

〈 + + + 〉

⇒ 〈 + + 〉

⇒ 〈

nil nil

nil add nil

nil

, (1 2) (4 5)

, 1 2 4 5

, 1

::

:: :: ::

::: :: :: :: ::

:: :: :: :: ::

2 4 5

1 , 2 4 5

add add nil

nil add add nil

+ 〉

⇒ 〈 + 〉

⇒ 〈22 1 , 4 5

3 , 4 5

:: :: :: :: ::

:: : :: :: ..

nil add add nil

nil add nil

+ 〉

⇒ 〈 + 〉 ⇒ .. :: ,⇒ 〈 〉12 nil nil

This form of operational semantics is sometimes called a state-transition semantics because each 
rewriting rule operates upon the entire state. A state-transition semantics has no need for structural 
operational-semantics rules.

The formulations presented here are typical of operational semantics. When one wishes to prove prop-
erties of an operational-semantics definition, the standard proof technique is induction on the length of 
the computation. That is, to prove that a property, P, holds for an operational semantics, one must show 
that P holds for all possible computation sequences that can be generated from the rewriting rules. For 
an arbitrary computation sequence, it suffices to show that P holds no matter how long the computa-
tion runs. Therefore, one shows (1) P holds after zero computation steps, that is, at the outset, and (2) if 
P holds after n computation steps, it holds after n + 1 steps. See Nielson and Nielson [34] for examples.

Operational semantics lies close to implementation, and early forms of operational semantics were 
definitional interpreters—implementations that generated the state-transition steps [13,44]. Figure 69.1 
displays a Python-coded definitional interpreter that generates the computation steps of the stack-based 
arithmetic semantics, modeling the stack with a list argument and modeling subexpression evaluation 
with recursive-function calls. (As an exercise, you should prove the interpreter prints a sequence of 
stacks that matches the one computed by the state-transition rules.) A definitional interpreter is a pow-
erful, practical tool for language definition and prototyping.

def eval (t, stack):
    “““eval computes the meaning of t using stack.
       parameters: t - an arithmetic term, parsed into a nested list of form:
                    term ::= N | [“+”, term, term], where N is a string of digits
          stack - a list of integers
       returns: stack with the integer meaning of t pushed on its top.
    ”””
    print “Evaluate”, t, “with stack =”, stack
    if isinstance(t, str) and t.isdigit(): # is t a string of digits?
       newstack = [int(t)] + stack # push the int onto the stack
    else: # t is a list, [“+”, t1, t2]
       stack1 = eval(t[1], stack)
       stack2 = eval(t[2], stack1)
       answer = stack2[1] + stack2[0] # add top two stack values
       newstack = [answer] + stack2[2:] # push answer onto popped stack
    print “Evaluated”, t, “Updated stack =”, newstack
    return newstack

FIGURE 69.1  Definitional interpreter in Python for stack-semantics of arithmetic.
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69.2.2  Denotational Semantics

Operational semantics emphasizes internal state transitions. For the arithmetic language, we were 
distracted by questions about order of evaluation of subphrases, even though this issue is not at all 
important to arithmetic. Further, the key property that the meaning of an expression is built from the 
meanings of its subexpressions was obscured.

We use denotational semantics to establish that a program has an underlying mathematical meaning 
that is independent of the computation strategy used to compute it. In the case of arithmetic, an expres-
sion like (1 + 2) + (4 + 5) has the meaning, 12. The implementation that computes the 12 is a separate 
issue, perhaps addressed by an operational semantics.

The assignment of meaning to programs is performed compositionally: the meaning of a phrase is built 
from the meanings of its subphrases. We now see this in the denotational semantics of the arithmetic lan-
guage. First, we assert that meanings of arithmetic expressions must be taken from the domain (“set”) of 
natural numbers, Nat = {0, 1, 2,…}, and there is a binary, mathematical function, plus : Nat × Nat → Nat, 
which maps a pair of natural numbers to their sum.

The denotational semantics definition of arithmetic is simple and elegant:

	

E

E

E E E

:

;

Expression Nat

plus

→

=

+ = ( )
N N

E E E E1 2 1 2

� 


� 
 � 
 � 


The first line states that E  is the name of the function that maps arithmetic expressions to their 
meanings. Since there are two BNF constructions for expressions, E  is completely defined by the two 
equational clauses. (This is a Tarksi-style interpretation, as used in symbolic logic to give meaning to 
logical propositions [49].) The interesting clause is the one for E1 + E2; it says that the meanings of E1 and 
E2 are combined compositionally by plus. Here is the denotational semantics of our example program:
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= ( ) = =(1 2) (4 5) (3 9) 12

Read the aforementioned equation as follows: the meaning of (1 + 2) + (4 + 5) equals the meanings of 
1 + 2 and 4 + 5 added together. Since the meaning of 1 + 2 is 3, and the meaning of 4 + 5 is 9, the mean-
ing of the overall expression is 12. This reading says nothing about order of evaluation or run-time data 
structures—it states only mathematical meaning.

Here is an alternative way of understanding the semantics; write a set of simultaneous equations 
based on the denotational definition:
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= 5

Now, solve the equation set to discover that E (1 2) (4 5)+ + +� 
 is 12.
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Since denotational semantics states the meaning of a phrase in terms of the meanings of its subphrases, 
its associated proof technique is structural induction. That is, to prove that a property, P, holds for all 
programs in the language, one must show that the meaning of each construction in the language has 
property P. Therefore, one must show that each equational clause in the semantic definition produces a 
meaning with property P. In the case that a clause refers to subphrases (e.g., E E E1 + 2� 
), one may assume 
that the meanings of the subphrases have property P. Again, see Nielson and Nielson [34] for examples.

69.2.3  Natural Semantics

A semantics method has been proposed that is halfway between operational semantics and denotational 
semantics; it is called natural semantics. Like structural operational semantics, natural semantics shows 
the context in which a computation step occurs, and like denotational semantics, natural semantics 
emphasizes that the computation of a phrase is built from the computations of its subphrases.

A natural semantics is a set of inference rules, and a complete computation in natural semantics is a 
single, large derivation. The natural semantics rules for the arithmetic language are

	 N N

	

E E

E E
where  is the sum of  and 1 1 2 2

1 2
1 2

⇒ ⇒
+ ⇒
n n

m
m n n

Read a configuration of the form E ⇒ n as “E evaluates to n.” The rules resemble a denotational seman-
tics written in inference rule form; this is no accident—natural semantics can be viewed as a denota-
tional-semantics variant where the internal calculations of meaning are made explicit and the domains 
are left implicit. The internal calculations are seen in the natural semantics of our example expression:

	

1 1 2 2

(1 2) 3

 4 4 5 5

(4 5) 9
(1 2) (4 5) 12

⇒ ⇒
+ ⇒

⇒ ⇒
+ ⇒

+ + + ⇒

Unlike denotational semantics, natural semantics does not claim that the meaning of a program is nec-
essarily “mathematical.” And unlike structural operational semantics, where a configuration e ⇒ e′ says 
that e transits to an intermediate state, e′, in natural semantics e ⇒ v asserts that the final answer for e is v. 
For this reason, a natural semantics is sometimes called a “big-step semantics.” An interesting drawback 
of natural semantics is that semantics derivations can be drawn only for terminating programs.

The usual proof technique for proving properties of a natural semantics definition is induction on the 
height of the derivation trees that are generated from the semantics. Once again, see Nielson and Nielson [34].

69.2.4 A xiomatic Semantics

An axiomatic semantics produces properties of programs rather than meanings. The derivation of these 
properties is done by an inference rule set that looks somewhat like a natural semantics.

As an example, say that we wish to prove even-odd properties of programs in arithmetic and our set 
of properties is simply {is_even, is_odd}. For example, 2 : is_even and (2 + 3) : is_odd both hold true. We 
can define an axiomatic semantics to do this:

	 N N N N:  if  2 :  if  2 1is_even mod is_odd mod= =0

	

E E

E E
1 1 2 2

1 2 3
3

1 2: :

:
where 

 if 

 otherwi

p p

p
p

is_even p p

is_odd+
=

=

sse






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The derivation of the even-odd property of our example program is

	

1 2

1 2

4 5

4 5
1 2

: _ : _

: _

: _ : _

: _
(

is odd is even

is odd

is even is odd

is odd+ +
+ )) ( ) : _+ +4 5 is even

In the usual case, the properties to be proved of programs are expressed in the language of predicate 
logic; see Section 69.3.7. Also, axiomatic semantics has strong ties to the abstract interpretation of deno-
tational and natural semantics definitions; see Section 69.4.

69.3  Semantical Principles of Programming Languages

The semantics methods shine when they are applied to programming languages—primary features of a 
language are made prominent, and subtle features receive proper mention. Ambiguities and anomalies 
stand out like the proverbial sore thumb. In this section, we use a classic block-structured impera-
tive language to demonstrate. Denotational semantics will be emphasized, but excerpts from the other 
semantics formalisms will be provided for comparison.

69.3.1  Language Syntax and Informal Semantics

The syntax of the programming language is presented in Figure 69.2. As stated in the figure, there are 
four “levels” of syntax constructions in the language, and the topmost level, Program, is the primary 
one. The language is a while-loop language with local, nonrecursive procedure definitions. For simplic-
ity, variables are predeclared and there are just three of them—X, Y, and Z. A program, C., operates as 
follows: an input number is read and assigned to X’s location. Then the body, C, of the program is evalu-
ated, and upon completion, the storage vector holds the results. For example, this program computes n2 
for a positive input n; the result is found in Z’s location:

begin proc INCR = Z:= Z+X; Y:= Y+1
  in Y:= 0; Z:= 0; while Y not= X do call INCR od end.

It is possible to write nonsense programs in the language; an example is: A:=0; call B. Such pro-
grams have no meaning, and we will not attempt to give semantics to them.

69.3.2  Domains for Denotational Semantics

To give a denotational semantics to the sample language, we must state the sets of meanings, 
called domains, that we use. Our imperative, block-structured language has two primary domains: 

P ∈ Program	 I ∈ Identifier = alphabetic strings
D ∈ Declaration	 V ∈ Variable = {X, Y, Z} ⊆ Identifier
C ∈ Command	 N ∈ Numeral = {0, 1, 2, …}
E ∈ Expression

	 P ::= C.
	 D ::= proc I=C
	 C ::= V:=E | C1; C2 | begin D in C end | call I | while E do C od
	 E ::= N | E1 + E2 | E1 not=E2 | V

FIGURE 69.2  Language syntax rules.
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(1)  the  domain of storage vectors, called Store, and (2) the domain of symbol tables, called 
Environment. There are also secondary domains of booleans and natural numbers. The primary 
domains and their operations are displayed in Figure 69.3.

The domains and operations deserve study. First, the Store domain states that a storage vector is a triple. 
(Recall that programs have exactly three variables.) The operation lookup extracts a value from the store, 
for example, lookup(2,〈1, 3, 5〉) = 3, and update updates the store, for example, update(2, 6, 〈1, 3, 5〉) = 
〈1, 6, 5〉. Operation init_store creates a starting store. We examine check momentarily.

The environment domain states that a symbol table is a list of identifier-value pairs. For example, if 
variable X is the name of location 1, and P is the name of a procedure that is a “no-op,” then the envi-
ronment that holds this information would appear (X, 1)::(P, id)::nil, where id(s)=s. (Procedures will be 
discussed momentarily.) Operation find locates the binding for an identifier in the environment, for 
example, find(X, :(X, 1)::(P, id)::nil)=1, and bind adds a new binding, e.g., bind(Y, 2, :(X, 1)::(P, id)::nil) = 
(Y, 2)::(X, 1)::(P, id)::nil. Operation init_env creates an environment to start the program.

In the next section, we will see that the job of a command, for example, an assignment, is to update 
the store—the meaning of a command is a function that maps the current store to the updated one. 
(That’s why a “no-op” command is the identity function, id(s) = s, where s ∈ Store.) But sometimes 
commands “loop,” and no updated store appears. We use the symbol, ⊥, read “bottom,” to stand for a 
looping store, and we use Store⊥ = Store ∪ {⊥} as the possible outputs from commands. Therefore, the 
meaning of a command is a function of form Store → Store⊥.

It is impossible to recover from looping, so if there is a command sequence, C1; C2, and C1 is looping, 
then C2 cannot proceed. The check operation is used to watch for this situation.

Finally, here are two commonly used notations. First, functions like id(s) = s are often reformatted to 
read id = λs.s; in general, for f(a) = e, we write f  =  λa.e, that is, we write the argument to the function 
to the right of the equals sign. This is called lambda notation, and stems from the lambda calculus, an 
elegant formal system for functions [4]. The notation f = λa.e emphasizes that (1) the function λa.e is a 
value in its own right, and (2) the function’s name is f.

Store = {〈n1, n2, n3〉 | ni ∈ Nat, i ∈ 1..3}

         lookup : {1, 2, 3} × Store → Nat
             lookup(i, 〈n1, n2, n3〉) = ni

         update : {1, 2, 3} × Nat × Store → Store
             update(1, n, 〈n1, n2, n3〉) = 〈n1, n2, n3〉
             update(2, n, 〈n1, n2, n3〉) = 〈n1, n, n3〉
             update(3, n, 〈n1, n2, n3〉) = 〈n1, n2, n〉
         init_store : Nat → Store
             init_store(n) = 〈n, 0, 0〉
         check : (Store → Store⊥) × Store⊥ → Store⊥ where Store⊥ = Store ∪ {⊥}
             check(c, a) = if (a = ⊥) then ⊥ else c(a)

Environment = (Identifier × Denotable)*
where A* is a list of A-elements, a1 :: a2 :: … :: an :: nil, n ≥ 0
and Denotable = {1, 2, 3} ∪ (Store → Store⊥)

                   find : Identifier × Environment → Denotable
                       find(i, nil) = 0
                       find(i, (i′, d) :: rest) = if (i = i′) then d else find(i, rest)
                 bind : Identifier × Denotable × Environment → Environment
                      bind(i, d, e) = (i, d) :: e
                 init_env: Environment
                      init_env = (X, 1) :: (Y, 2) :: (Z, 3) :: nil

FIGURE 69.3  Semantic domains.
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Second, it is common to revise a function that takes multiple arguments, for example, f(a,b) = e, so 
that it takes the arguments one at a time: f = λa.λb.e. So, if the arity of f was A × B → C, its new arity is 
A → (B → C). This reformatting trick is named currying, after Haskell Curry, one of the developers of 
the lambda calculus.

69.3.3  Denotational Semantics of Programs

Figure 69.4 gives the denotational semantics of the programming language. Since the syntax of the lan-
guage has four levels, the semantics is organized into four levels of meaning. For each level, we define 
a valuation function, which produces the meanings of constructions at that level. For example, at the 
Expression level, the constructions are mapped to their meanings by E .

What is the meaning of the expression, say, X + 5? This would be E X+5� 
, and the meaning depends 
on which location is named by X and what number is stored in that location. Therefore, the meaning is 
dependent on the current value of the environment and the current value of the store. So, if the current 
environment is e0 = (P, λs.s) :: (X, 1) :: (Y, 2) :: (Z, 3) :: nil and the current store is s0 = 〈2, 0, 0〉, then the 
meaning of X + 5 is 7:

	

E E EX+5 X 5

X

� 
 � 
 � 
e s plus e s e s

plus lookup find e

0 0 0 0 0 0

0

= ( )
=

,

( ( ( , ), ss

plus lookup s plus

0

0

),

( ( , ), ( ,

5)

1 5) 2 5) 7= = =

As this simple derivation shows, data structures like the symbol table and storage vector are modelled by 
the environment and store arguments. This pattern is used throughout the semantics definition.

P : Program Nat Nat→ → ⊥

P CC. C ( )� 
 � 
= λn. init_env init_store n

D : Declaration Environment Environment→ →
D CProc I = C ( , C )� 
 � 
= λe.bind I e,e

C : Command Environment Store Store→ → → ⊥

C EV := E ( ( ) E )� 
 � 
= λ λe. s.update find V,e e s, s,

C C CC ; C C , C1 2 2 1� 
 � 
 � 
= ( )λ λe. s.check e e s

C C Dbegin in endD C� 
 � 
 � 
= λ λe s e s. . C ( D )

C call I . (I )� 
= λe find e,

C while do odE . 0C� 
 ∪= ≥λe wi i

where 
w s

w s e s check w e s else si i

0

1

.

.if E then , C )

= ⊥

=+

λ

λ E C� 
 � 
(

E : Expression Environment Store Nat Bool→ → → ( )∪

E N . .� 
= λ λe s N

E E EE E . . ( E , E )1 2 1 2+ =� 
 � 
 � 
λ λe s plus e s e s

E E EE not E . . ( E , E )1 2 1 2= =� 
 � 
 � 
λ λe s notequals e s e s
E V . . ( ( ) )� 
= λ λe s lookup find V,e ,s

FIGURE 69.4  Denotational semantics.
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As noted in the previous section, a command updates the store. Precisely stated, the valuation func-
tion for commands is: C:Command Environment Store Store→ → → ⊥. For example, for e0 and s0 given 
above, we see that

	 C EZ:=X+5 Z X+5� 
 � 
e s update find e e s s update0 0 0 0 0 0 3 7= =( ( , ), , ) ( , , ss0 2 0 7) , ,=

But a crucial point about the meaning of the assignment is that it is a function upon stores. That is, if we 
are uncertain of the current value of store, but we know that the environment for the assignment is e0, 
then we can conclude

	 C Z:=X+5� 
e s update plus lookup s s0 3 1 5= λ . ( , ( ( , ), ), )

That is, the assignment with environment e0 is a function that updates a store at location 3.
Next, consider this example of a command sequence:

	

C C CZ:X+5; callP call P Z:X+5� 
 � 
 � 
e s check e e s

check f

0 0 = ( )
=

0 0 0,

( iind e check s s

s.s

( , ), , , ) ( . , , , )

( , , ,

P 0 0 0 0

0 7

〈 〉 = 〈 〉

= 〈 〉 = 〈

2 7 2 7

) 2 2

λ

λ 00, 7〉

As noted in the earlier section, the check operation verifies that the first command in the sequence pro-
duces a proper output store; if so, the store is handed to the second command in the sequence. Also, we 
see that the meaning of call P is the store updating function bound to P in the environment.

Procedures are placed in the environment by declarations, as we see in this example: let e1 denote 
(X, 1)::(Y, 2)::(Z, 3)::nil:

	

C

C

begin proc P = Y:=Y in Z:=X+5, call P end

Z:=X+5, 

� 
e s1 0

= ccall P proc P = Y:=Y

Z:=X+5, call P P

� 
 � 


� 


D

C

 

( (

1e s

bind

( )
=

0

,CC

C

Y:=Y

Z:=X+5, call P P

� 


� 


e e s

bind s.update loo

1 1))

( 2

,

( , ( ,

0

= λ kkup s s e s

id e s

i

( , ), ), ))

, ) ::

2

(( )

where 

1

1

0

0= C Z:=X+5, call P P� 


dd s.update lookup s s s.s

e s

= =

=

λ λ( , ( , , ) (*)2 2 )

C Z:=X+5, call P� 
 0 00 0= 〈 〉2 7, ,

The equality marked by (*) is significant; we can assert that the function λs.update(2, lookup(2, s),s) 
is identical to λs.s by appealing to the extensionality law of mathematics: if two functions map 
identical arguments to identical answers, then the functions are themselves identical. The exten-
sionality law can be used here because in denotational semantics the meanings of program phrases 
are mathematical—functions. In contrast, the extensionality law cannot be used in operational 
semantics calculations.
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Finally, we can combine our series of little examples into the semantics of a complete program:

	

P

C

begin proc P=Y:=Y in Z:=X+5;  call P end.

begin proc 

� 
2

= PP=Y:=Y in Z:=X+5; call P end

begi

� 
init env init store_ ( _ )2

= C nn proc P=Y:=Y in Z:=X+5; call P end� 
e s1 0

2 0 7= , ,

69.3.4  Semantics of the While Loop

The most difficult clause in the semantics definition is the one for the while-loop. Here is some intuition: 
to produce an output store, the loop while E do C od must terminate after some finite number of itera-
tions. To measure this behavior, let whilei E do C od be a loop that can iterate at most i times—if the 
loop runs more than i iterations, it becomes exhausted, and its output is ⊥. For example, for input store 
〈4, 0, 0〉, the loop whilek Y not= X do Y:=Y + 1 od can produce the output store 〈4, 4, 0〉 only when 
k is greater than 4. (Otherwise, the output is ⊥.)

It is easy to conclude that the family, whilei E do C od, for i ≥ 0, can be written equivalently as

	

while do od

while

0 E C that is its meaningis = ⊥" "( , . )exhausted sλ

i++1 do od if E then C; while E do od else skip fiE C C= i

When we refer back to Figure 69.3, we draw these conclusions:

	

C

C

while do od

while do od

0 E C

E C1 1

� 


� 


e w

e wi i

=

=+ +

0

Since the behavior of a while loop must be the “union” of the behaviors of the whilei-loops, we conclude 
that C while do odE C� 
 ∪e wi i= ≥0 . The semantic union operation is well defined because each wi is a 
function from the set Store → Store⊥, and a function can be represented as a set of argument-answer 
pairs. (This is called the graph of the function.) So, ∪ i iw≥0  is the union of the graphs of the wi functions*.

The definition of C while do od E  C � 
 is succinct, but it is awkward to use in practice. An intuitive 
way of defining the semantics is

	

C

E C

while do od E  C 

where if E  then C

� 


� 
 �

e w

w s e s check w

=

= λ . ( , 

e s s) else 

The problem here is that the definition of w is circular, and circular definitions can be malformed. Fortunately, 
this definition of w can be claimed to denote the function ∪ i iw≥0  because the following equality holds:

	
w s e s check w e s si i

ii

=










≥≥

λ . ,if E then C  elseE C� 
 � 
∪∪
00

So, ∪ i iw≥0  is a solution—a fixed point—of the circular definition, and in fact it is the smallest function 
that makes the equality hold. Therefore, it is the least fixed point.

*	 Several important technical details have been glossed over. First, pairs of the form (s,⊥) are ignored when the union of 
the graphs is performed. Second, for all i ≥ 0, the graph of wi is a subset of the graph of wi+1; this ensures the union of the 
graphs is a function.
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Typically, the denotational semantics of the while-loop is presented by the circular definition, and the 
claim is then made that the circular definition stands for the least fixed point. This is called fixed-point 
semantics. We have omitted many technical details regarding fixed-point semantics; these are available 
in several texts [15,45,47,51].

69.3.5  Natural Semantics of the Language

We can compare the denotational semantics of the imperative language with a natural semantics formu-
lation. The semantics of several constructions appear in Figure 69.5.

A command configuration has the form e, s ⊢ C ⇒ s′, where e and s are the “inputs” to command C 
and s′ is the “output.” To understand the inference rules, read them “bottom up.” For example, the rule 
for I:=E says, given the inputs e and s, one must first find the location, l, bound to I and then calculate 
the output, n, for E. Finally, l and n are used to update s, producing the output.

The rules are denotational-like, but differences arise in several key constructions. First, the seman-
tics of a procedure declaration binds I not to a function but to an environment-command pair called 
a closure. When procedure I is called, the closure is disassembled, and its text and environment are 
executed. Since a natural semantics does not use function arguments, it is called a first-order semantics. 
(Denotational semantics is sometimes called a higher-order semantics.)

Second, the while-loop rules are circular. The second rule states, in order to derive a while-loop com-
putation that terminates in sʺ, one must derive (1) the test, E is true, (2) the body, C, outputs s′, and (3) 
using e and s′, one can derive a terminating while-loop computation that outputs s .̋ The rule makes one 
feel that the while-loop is “running backwards” from its termination to its starting point, but a complete 
derivation, like the one shown in Figure 69.6, shows that the iterations of the loop can be read from the 
root to the leaves of the derivation tree.

e bind e e
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FIGURE 69.5  Natural semantics.

let e0 = (X, 1) :: (Y, 2) :: (Z, 3) :: nil
s0 = 〈2, 0, 0〉,    s1 = 〈2, 1, 0〉
E0 = Y not=1,    C0 = Y: = Y + 1
C00 = while E0 do C0 od

e s true
find e e s

e s s
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FIGURE 69.6  Natural semantics derivation.
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One important aspect of the natural semantics definition is that derivations can be drawn only for 
terminating computations. A nonterminating computation is equated with no computation at all.

69.3.6  Operational Semantics of the Language

A fragment of the structural operational semantics of the imperative language is presented in Figure 69.7. 
For expressions, a computation step takes the form e ⊢ 〈E, s〉 ⇒ E′, where e is the environment, E is the 
expression that is evaluated, s is the current store, and E′ is E rewritten. In the case of a command, C, a 
step appears e ⊢ 〈C, s〉 ⇒ 〈C′, s′〉, because computation on C might also update the store. If the computa-
tion step on C “uses up” the command, the step appears e ⊢ 〈C, s〉 ⇒ s′.

The rules in the figure are more tedious than those for a natural semantics, because the individ-
ual computation steps must be defined, and the order in which the steps are undertaken must also be 
defined. This complicates the rules for command composition, for example. On the other hand, the 
rewriting rule for the while-loop merely decodes the loop as a conditional command.

The rules for procedure call are awkward; as with the natural semantics, a procedure, I, is represented 
as a closure of the form (e′, C′). Since C′ must execute with environment, e′, which is different from the 
environment that exists where procedure I is called, the rewriting step for call I must retain two envi-
ronments; a new construct, use e′ in C′, remembers that C′ must use e′ (and not e). A similar trick is 
used in begin D in C end.

Unlike a natural semantics definition, a computation can be written for a nonterminating program; 
the computation is a state sequence of countably infinite length.

69.3.7 A xiomatic Semantics of the Language

An axiomatic semantics computes upon properties of stores because programs are understood as 
“knowledge transformers.” For example, the property X = 3 ∧ Y > X asserts knowledge about the values 
of X and Y (namely, the store holds 3 at X’s location and a number in Y’s location that is even larger). 
The meaning of a command, C, is stated in terms of configurations of form, {P} C {Q}, stating that, if 
predicate (knowledge) P holds true then C generates knowledge Q upon termination (if C does indeed 
terminate). For example, all of these configurations are true assertions of the command, X:=X+1: (1) 
{X > 2} X:=X + 1 {X > 3}; (2) {Y > X} X:=X + 1 {Y > X − 1}; (3) {X = 3 ∧ Y > X} X:=X + 1 {X = 4 ∧ Y > X − 1}.

Figure 69.8 displays the rules for the primary command constructions. The rule for I: = E states that 
an assignment transforms knowledge about E into knowledge about E’s “new name,” I. (To understand 
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this, recall that [E/I]P stands for the substitution of E for all free occurrences of I in P. For example, 
[Y + 1/X](X > 3) is Y + 1 > 3.) We can use the rule to prove that X:=X + 1 transforms X + 1 > 3 into X > 3, 
that is, {X + 1 > 3} X:=X + 1 {X > 3}. Again, I:=E transforms knowledge about E into knowledge about E’s 
“new name,” I.

The second rule in the figure uses logical implication to deduce new knowledge; we deduce that 
{X >  2} X: = X + 1 {X > 3}, because X + 1 > 3 implies X > 2. The properties of command 
composition are defined by the third rule: knowlege generated by command C1 passes to command C2.

The fourth rule, for the if-command, shows how to make a property hold upon termination regard-
less of which arm of the conditional is evaluated. For example, the rule proves {X ≠ 0} if X < 0 then 
Y:= − X else Y:=X: fi {Y > 0}, because knowledge from the test, X < 0, lets us prove both {X < 0 ∧ 
X ≠ 0} Y:= − X {Y > 0} and also {¬(X < 0) ∧ X ≠ 0} Y:=X {Y > 0}.

The most fascinating rule is the last one, for while E do C od. The loop’s body, C, is “repeatable 
code,” which means whatever knowledge, I, is required to use C must be regenerated to reuse C — {E ∧ I} 
C {I}! I is called an invariant because it remains true for all the repetitions of the loop. We conclude that 
I holds true if and when the loop terminates.

Another viewpoint is that a loop is kind of “game” played in rounds. If C lists the moves taken in one 
round, then the invariant, I, is the strategy one uses to “keep the lead” and eventually win. The game 
ends when the loop’s test, E, goes false.

Here is an example: We play a pebble game, where pebbles can be moved only one at a time. There 
are two boxes of pebbles, named X and Y. To win the game, all the pebbles must be moved into Y’s box 
without losing any. Here is how we might play one round of the game: X:= X - 1; Y:= Y + 1. Our 
strategy is encoded by the invariant, TOTAL = X + Y, which says that we do not lose any pebbles when 
we move them:

	 {TOTAL = X + Y}X := X 1; Y := Y +1 {TOTAL = X + Y}−

The completed game is this loop program, while X not= 0 do X:= X − 1; Y:= Y + 1 od, and the 
proof that the loop generates a victory is listed in Figure 69.9, which shows at the end that TOTAL = Y, 
that is, all the pebbles rest in Y’s box. The derivation is difficult to read, but when reformatted vertically, 
as seen in the right half of the figure, it shows clearly how the input knowledge, TOTAL = X +  Y, is 
transformed into the output knowledge, TOTAL = Y.

The key to building the proof is determining a loop invariant. Since the goal was to prove TOTAL = Y, 
this made TOTAL = X + Y useful, because X:= X − 1 eventually lowers X to zero.* With the invari-
ant in hand, it is easy to work backwards, from the end of the loop body, to the top, to calculate that the 
loop body is indeed “repeatable code”: The rule for assignment proves both {TOTAL = X + (Y + 1)} Y: = 
Y + 1 {TOTAL = X +  Y}, and also {TOTAL = (X − 1) + (Y + 1)} X: = X - 1 {TOTAL = X + (Y + 1)}. 
Finally, TOTAL = (X − 1) + (Y + 1) implies TOTAL = X + Y.

*	 The loop terminates only if X’s value begins as a nonnegative. The laws in Figure 69.8 do not guarantee termination. This 
requires additional logical machinery.
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FIGURE 69.8  Axiomatic semantics inference rules.
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There are three ways of stating the semantics of a command in an axiomatic semantics:

	 1.	 Relational semantics: The meaning of C is the set of P, Q pairs for which {P} C {Q} holds. 
Termination is not demanded of C. (This is called “partial correctness.”)

	 2.	 Postcondition semantics: The meaning of C is a function from an input predicate to an output predicate. 
We write slp(P, C)=Q; this means that {P} C {Q} holds, and for all Q′ such that {P} C {Q′} holds, it is the 
case that Q implies Q′. This is also called strongest liberal postcondition semantics. When termination 
(“total correctness”) is demanded also of C, the name becomes strongest postcondition semantics.

	 3.	 Precondition semantics: The meaning of C is a function from an output predicate to an input 
predicate. We write wlp(C, Q)=P; this means that {P} C {Q} holds, and for all P′ such that {P′} C 
{Q} holds, it is the case that P′ implies P. This is also called weakest liberal precondition semantics. 
When termination is demanded also of C, the name becomes weakest precondition semantics.

69.4  Practical Impact

Research on programming-language semantics showed how a language can be defined precisely, its cor-
rectness properties proved, and its implementation realized. Indeed, the area of formal methods (cf. Chapter 
116) is an adaptation of the semantics methods from computer languages to computer programs—how a 
program can be specified precisely, its correctness properties proved, and its specification implemented.

Operational semantics, having the longest life of the semantic approaches, is most entrenched within 
software development. From operational semantics came virtual machines to which languages can be 
translated. Definitional interpreters are now the norm for prototyping new languages, especially ”little” 
or “domain-specific” languages, which are designed for problem solving in a limited application domain, 
for example, file-linking (Make), web-page layout (HTML), spreadsheet layout (Excel), or linear algebra 
(MATLAB). Scripting languages (see Chapter 110) are also implemented in definitional-interpreter style.

Axiomatic semantics has undergone a significant revival, not only as the starting point for specifica-
tion writing and verification in formal-methods work, but as the language for description and analysis 
of secure and safety-critical software systems, where correctness properties, above all, must be stated so 
that there can validation or justification, whether by testing, monitoring, or theorem proving. Indeed, 
the object control language (OCL) used in the Unified Modelling Language for software blueprinting is 
a derivative of the classic axiomatic semantics notation. (See Volume 2 of this handbook.) A wide variety 
of proof assistants and logical frameworks are available for helping a designer state and validate crucial 
properties of software, for example, ACL2 [24], PVS [38], Isabelle/HOL [35], and Coq [41].

let P0 be TOTAL = X + Y
P1 be TOTAL = X + (Y + 1), P2 be TOTAL = (X − 1) + (Y + 1)
E0 = X not = 0, C0 = X:= X − 1; Y:=Y + 1
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assert {TOTAL = X + Y}
while X not= 0 do

invariant {TOTAL = X +Y }
X:= X − 1
assert {TOTAL = X+(Y + 1)}
Y:= Y + 1
assert {TOTAL = X + Y}

od
assert {TOTAL = X + Y and
       not (X not= 0)}
implies {TOTAL = Y}

FIGURE 69.9  Axiomatic semantics derivation.
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The primary impact of denotational semantics has been to the design of modern programmming 
languages. The modelling of programming constructions as functions that operate on storage moti-
vated many designers to add such functions as primitive constructions to the programming language 
itself—the results are (1) higher-order constructions, such as the anonymous functions in ML and Java; 
(2) generic and polymorphic constructions, such as class templates in C++ and Scala; and (3) reflective 
constructions, like that found in JavaBeans and 3-Lisp. The importance of polymorphic constructions to 
modern-day software assembly has stimulated extensions of denotational semantics into “higher-order” 
formats that are expressed within type theory [39,36].

Within the subarea of programming-languages research, the semantics methods play a central role. 
Language designers use semantics definitions to formalize their creations, as was done during the devel-
opment of Ada [10] and after development for Scheme [43] and Standard ML [27]. Software tools are 
readily available to prototype a syntax-plus-semantics definition into an implementation [5,8,26,31].

A major success of formal semantics is the analysis and synthesis of data-flow analysis and type-
inference algorithms from semantics definitions. This subject area, called abstract interpretation 
[3,7,33], uses algebra techniques to map semantic definitions from their “concrete” (execution) defi-
nition to their “abstract” (homomorphic property) definition. The technique can be used to extract 
properties from the definitions, generate data flow and type inference, and prove program correct-
ness or code-improvement transformations. Most automated methods for program validation use 
abstract interpretation.

69.5 R esearch Issues

The techniques in this chapter have proved successful for defining, improving, and implementing 
sequential programming languages. But new language and software paradigms present new challenges 
to the semantics methods.

Challenging issues arise in the object-oriented programming paradigm. Not only can objects be argu-
ments (“messages”) to other objects’ procedures (“methods”), but coercion laws based on inheritance 
allow controlled mismatches between arguments and parameters. For example, an object argument 
that contains methods for addition, subtraction, and multiplication is bound to a method’s parameter 
that expects an object with just addition and subtraction methods. Carelessly defined coercions lead to 
unsound programs, so semantics definitions must be extended with inheritance hierarchies [16,40]. See 
Chapter 107 for details.

Yet another challenging topic is defining communication as it arises in distributed programming, 
where multiple processes (threads of execution) synchronize through communication. Structural oper-
ational semantics has been adapted to formalize such systems. More importantly, the protocol used 
by a system lies at the center of the system’s semantics; semantics approaches based on process algebra 
[12,20,28] have been developed that express a protocol as a family of simultaneous algebra equations 
that must be “solved” to yield a convergent solution. See Chapter 12.

A current challenge is applying semantics methods to define and explain programs that exploit the 
architecture of multicore processors, where subcomputations and their storage requirements must be 
allocated to processor cores and their associated cache hierarchy [18]. See Chapter 34 for background.

Finally, a longstanding crucial topic is the relationship between different forms of semantic defi-
nitions: If one has, say, both a denotational semantics and an axiomatic semantics for the same pro-
gramming language, in what sense do the semantics agree? Agreement is crucial, since a programmer 
might  use the axiomatic semantics to reason about the properties of programs, whereas a compiler 
writer might use the denotational semantics to implement the language. This question generalizes to 
the problem of refinement of software specifications—see Chapter 116. In mathematical logic, one uses 
the concepts of soundness and completeness to relate a logic’s proof system to its interpretation, and 
in semantics there are similar notions of soundness and adequacy to relate one semantics to another 
[15,37]. Important as these properties are, they are quite difficult to realize in practice [1].
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Key Terms

Axiomatic semantics: The meaning of a program as a property or specification in logic.
Denotational semantics: The meaning of a program as a compositional definition of a mathematical 

function from the program’s input data to its output data.
Fixed-point semantics: A denotational semantics where the meaning of a repetitive structure, like a 

loop or recursive procedure, is expressed as the smallest mathematical function that satisfies a 
recursively defined equation.

Loop invariant: In axiomatic semantics, a logical property of a while-loop that holds true no matter 
how many iterations the loop executes.

Natural semantics: A hybrid of operational and denotational semantics that shows computation steps 
performed in a compositional manner. Also known as a “big-step semantics.”

Operational semantics: The meaning of a program as calculation of a trace of its computation steps on 
input data.

Strongest postcondition semantics: A variant of axiomatic semantics where a program and an input 
property are mapped to the strongest proposition that holds true of the program’s output.

Structural operational semantics: A variant of operational semantics where computation steps are 
performed only within prespecified contexts. Also known as a “small-step semantics.”

Weakest precondition semantics: A variant of axiomatic semantics where a program and an output 
property are mapped to the weakest proposition that is necessary of the program’s input to 
make the output property hold true.

Further Information

The best starting point for further reading is the comparative semantics text of Nielson and Nielson [34], 
which thoroughly develops the topics in this chapter. See also the texts by Slonneger and Kurtz [46] and 
Watt [50].

Operational semantics has a long history; modern introductions are Hennessey’s text [17] and 
Plotkin’s report on structural operational semantics [42]. The principles of natural semantics are docu-
mented by Kahn [23]. A good example of the interpreter-based approach to semantics is the text by 
Friedman et al. [13].

Mosses’s paper [32] is a useful introduction to denotational semantics; textbook-length treatments 
include those by Schmidt [45], Stoy [47], Tennent [48], and Winskel [51]. Gunter’s text [15] uses deno-
tational-semantics-based mathematics to compare several of the semantics approaches. Pierce [39] and 
Mitchell [29] provide foundational supporting material.

Of the many textbooks on axiomatic semantics, one might start with books by Dromey [11] or Gries 
[14]; both emphasize precondition semantics, which is most effective at deriving correct code. Apt’s 
paper [2] is an excellent description of the formal properties of relational semantics, and Dikstra’s text 
[9] is the standard reference on precondition semantics. Hoare’s landmark papers on relational seman-
tics [19,21] are worth reading as well. Many texts have been written on the application of axiomatic 
semantics to systems development; two samples are by Jones [22] and Morgan [30].

You are also urged to read the other chapters in Section 9 of this Volume.
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70.1  Introduction

Many modern programming languages come equipped with type systems, which ensure that programs 
are free from certain classes of execution errors. For example, type systems prevent buffer overruns, 
invalid code execution, and memory accesses to protected data. In general, type systems describe invari-
ants that all programs must satisfy. They are a valuable component for program development, assisting 
in the creation of correct, secure, and robust systems.

In this chapter, we introduce research in the design of safe programming languages with static type 
systems. In such languages, a tool known as a type checker verifies that a program type checks before 
it may be compiled or interpreted. Languages are safe when they ensure that no untrapped errors are 
possible at runtime. Safety is guaranteed in statically typed languages by a type soundness theorem that 
ensures that all well-typed programs do not “go wrong.” Languages can be statically typed but unsafe 
when this theorem does not hold, that is, when the process of type checking does not provide firm 
guarantees about execution. Languages can be safe but dynamically typed when they rule out errors by 
runtime monitoring instead of compiletime type checking.

The development of safe, statically typed languages is an area of active research. There are many 
different ways to type programs. The analysis required to claim type soundness requires precision and 
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close attention to detail. Language designers must balance the expressiveness of the type system (which 
allows it to certify more safe programs) with the complexity of the type soundness proof (any flaw in 
which could invalidate the entire enterprise).

This chapter provides an overview of that field and examines the following questions: Why do 
languages check types during compilation? What are the components of a type system? How do 
language researchers describe and formalize type systems? What are their important properties? 
What are the limitations of static type checking? What are some of the current areas of type systems 
research?

This chapter is intended for students and researchers as an entry point to the study of type sys-
tems. Because of the richness of this field and the variety in the design of languages, the goal of this 
chapter is breadth, not depth. As a result, only the most basic type systems receive the most rigorous 
mathematical treatment—many topics are covered at an overview level, leaving full discussion to 
referenced sources.

This chapter is also aimed at programmers and language designers. Type systems are powerful tools 
for software development, providing assistance in the challenging task of developing and maintaining 
correct systems. A secondary goal of this chapter is an appreciation of this power and an understanding 
of how it may be put to use.

Because the mathematical models that we present here are most similar to the type systems of func-
tional programming languages, this chapter assumes basic experience with languages such as Haskell 
and ML and draws on examples from those languages. Furthermore, it requires some background in 
mathematical reasoning, including the knowledge of functions, sets and relations, bound and free vari-
ables, the presentation of programming language abstract syntax, and the principle of mathematical 
induction.

The remainder of this section introduces static type systems by motivating their inclusion in the 
definitions of programming languages. It is followed by a discussion of what makes a good static type 
system through a listing of evaluation properties for their design. This description of the concepts and 
ideas behind static typing is deliberately kept at an informal level.

Section 70.2 introduces the formal notation and mathematical concepts necessary for working 
with and analyzing type systems. The key components of a type system definition are judgments, 
which assert relationships such as “this program has that type,” derivations, which provide evidence 
for the truth of those assertions, and typing rules, which are the building blocks of derivations. We 
introduce the components of modern type systems gradually, building up the vocabulary of struc-
tures and relationships piece-by-piece. Section 70.3 uses a core type system, called System F, to dem-
onstrate mathematical reasoning about type systems. This section walks through the type soundness 
theorem and also discusses the principle of parametricity. Section 70.4 concludes the technical dis-
cussion with an overview of type inference, the problem of determining whether a program should 
type check given limited type annotations. Section 70.5 concludes with references for future study 
and a list of defining terms.

70.1.1  What Are Type Systems Good For?

A safe language is one that does not admit untrapped errors. For example, a buffer overrun in C might 
not be detected at runtime. If one occurs, the behavior of the program is unspecified. Untrapped errors 
are an insidious form of execution error because they go unnoticed. As a result, they are a significant 
source of security vulnerabilities in computer systems. In contrast, trapped errors are permitted in safe 
languages. For example, most safe languages check that array accesses are in bounds at run time and 
stop the current computation immediately if the check fails.

A dynamically typed language is one that uses only runtime checks to ensure safety. These languages 
are safe even though they do not have a type system or employ a type checker. The advantage of these 



70-3Type Systems

languages is simplicity and expressiveness. They have a gentle learning curve because there is no type 
system that new programmers must learn. Furthermore, they allow some programming patterns that 
statically typed languages reject because static type checking must approximate program execution and 
sometimes rules out code that does not trigger run-time failures.

There has been much debate over whether languages should be safe, and if they are, whether they 
should be dynamically or statically typed. Ultimately, these debates balance trade-offs between expres-
siveness, performance, development time, maintenance time, and security. Although the choice of 
implementation language is often determined by economic and social factors, the technical arguments 
in favor of statically typed languages include the following points.

•	 Eliminating bugs and execution errors at compile time
	 The primary purpose of static type systems is compile-time certified safety. Type systems rule out 

unsafe code by assigning a type to every form of data value and operation in the language, and 
then ensuring that operations are only applied to the right types of values. In this sense, types 
are interfaces. They specify the capabilities of data values, and restrict their use to compatible 
operations.

For example, boolean values should not be the arguments to numeric operations. A program 
containing the expression true + 3 is sure to be buggy. Furthermore, this bug may not be detected 
at runtime if after compilation boolean and numeric values have the same machine representa-
tion. A sound, static type system can ensure that only numbers are ever added together during the 
course of execution and detect such bugs when the program is compiled.

•	 Making distinctions between values
	 The distinction between boolean and numeric values given earlier is part of the language defini-

tion. However, experienced programmers use static type systems to make application-specific 
data distinctions. For example, a programmer may use integer values as error codes to indicate 
run-time failures in a system.

0 SUCCESS
1 INVALID_FUNCTION
2 FILE_NOT_FOUND
3 PATH_NOT_FOUND
4 TOO_MANY_OPEN_FILES

	 However, not all integer values may have an associated error code. What does error code-41 
mean?* What does it mean to add error codes together? When a function or method returns an 
integer, when should that integer be interpreted as an error code?

	 Languages that support enumerations or algebraic datatypes permit users to define new types 
containing only specified values. That way the type system can prevent error codes from being the 
argument to arithmetic operations. Functions that return error codes have different types from 
those that return integers, maintaining this distinction.

•	 Information hiding and modularity
	 Static types also provide information hiding through type abstraction. Because types specify the 

interfaces of data structures, they govern how client code must interact with that data. If that 
interface includes an abstract type, library implementors are free to make changes in the repre-
sentation of a data structure as long as the interface is still satisfied.

*	 See http://xkcd.com/1024/.
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	 For example, a data structure library might export an abstract type of sets of integers, as well as 
operations to construct and manipulate values of that type. In the OCaml language, this interface 
could be defined as follows:

module type SET =
   type set
   val empty : set
   val insert : int -> int set -> int set
   val contains : int set -> boolean
end

	 This interface does not specify how sets are represented. As a result, the library implementor 
is free to choose ordered lists, balanced trees, or any other implementation. Furthermore, this 
implementation can be replaced without invalidating code that uses this interface.

	 This interface also allows modular reasoning about the correctness of the implementation. 
Because the type of sets is abstract, the implementor knows that any set that is passed to the 
contains function must have been created by this module. Therefore, preserving invariants 
about the set implementation requires reasoning only about a single module, not the entire 
program.

•	 Expressive code reuse
	 Although code in dynamically typed languages is often naturally applicable to many situations, 

polymorphism provides a strong mechanism for statically typed languages to create and mark 
reusable code. A polymorphic function or method is one that works on many different types of 
arguments—this behavior is safe because the function is required to use those arguments only in 
ways that do not violate the capabilities specified by their types.

For example, subtype polymorphism allows functions to specify minimum requirements about 
the capabilities of their arguments. Any argument that provides at least the required functionality 
may be passed to such a function. Subtyping is common in object-oriented languages, where one 
object type is a subtype of another if it supports at least the same methods. For example, an object 
that has both a reset and a move method may be passed to a function that only calls the move 
method of its argument.

Similarly, parametric polymorphism (also called generics) allows the interfaces to functions to 
include type parameters. For example, the filter function, which preserves only the elements of a 
list that satisfy a given predicate, can be given a parametric type:

val filter : (‘a -> bool) -> ‘a list -> ‘a list

	 This type indicates that the function can be used with any type of list—the parameter ‘a can be 
instantiated with any type. However, this type must be instantiated consistently, the supplied 
predicate must be compatible with the input list, and the type of the resulting list must be same as 
the input.

Finally, ad hoc polymorphism or type-directed programming uses types as metadata to define 
reusable code. This feature is a form of reflection where execution is determined by type informa-
tion. A simple, powerful form of type-directed programming is overloading—where the types 
of the arguments to a function determine how the function executes. For example, the Haskell 
language supports overloading through the use of type classes, providing uniform access to opera-
tions for serialization, equality, and traversals, as well as algebraic structures such as monoids, 
functors and monads. Furthermore, Haskell also supports many flavors of datatype-generic pro-
gramming [24], which automates the creation of these overloaded functions by analyzing the 
structure of datatypes.
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•	 Code documentation and maintenance
	 Types and interfaces provide documentation for software artifacts. As opposed to comments, they 

are mechanically checked for correctness, so they can never become out-of-date. Furthermore, 
in languages that support type inference, this documentation can automatically be generated for 
each program fragment. As such, it is documentation that does not need to be maintained or writ-
ten, but is available on demand.

Furthermore, static types assist with code maintenance and refactoring. For example, when 
programmers change the representation of some data structure, the type system identifies all 
parts of the program that must be updated with respect to this modification. The programmer 
need not search by hand nor worry about missing modification sites. Each site will produce a type 
error when the structure of the data does not match what was provided. Tools such as IDEs can 
take advantage of type information to support code development and refactoring.

70.1.2  What Are Good Type Systems?

How can we ensure that static type systems live up to their promises? To ensure that type systems 
provide the benefits discussed earlier, researchers evaluate the quality of type system designs using the 
following criteria. The following list includes a brief description of each desirable property as well as 
forward references to discussion of how it may be formally evaluated.

	 1.	 Type systems should eliminate program errors by ruling out executions that are not consistent 
with the semantics of the programming language. Formally, the type soundness theorem (Section 
70.3.2) provides this assurance.

	 2.	 Type systems should be expressive, capable of statically describing common data structures and the 
relationships between program values. Programmers should have a rich vocabulary with which to 
express the invariants of their code. Type systems should have minimal reliance on runtime checks 
to ensure safety. Section 70.2 provides an overview of the components of expressive type systems.

	 3.	 Type systems should be modular. The definitions of values should be checkable independent of 
their uses and types should provide precise interfaces that govern interaction between differ-
ent parts of the program. Modular type checking is primitively enabled through the use of typ-
ing environments, introduced in Section 70.2.2. Type abstraction, described in Section 70.2.6 
enhances this interface by hiding implementation details.

	 4.	 Type systems should be informative about the semantics of programs. The type soundness prop-
erty gives some of this information—an expression of type τ evaluates to a value of the same 
type τ. Going further, Section 70.3.3 uses types as the basis for an equivalence relation between 
programs, especially in the presence of type abstraction.

	 5.	 Type systems should be effectively checkable and predictable. There should be an algorithm that deter-
mines whether a program type checks. Developers should be able to understand why their programs 
type check and know what program transformations preserve typability. Section 70.2.3 describes the 
design of annotations that derive simple type checking algorithms. Section 70.4 discusses more sophis-
ticated algorithms that use constraint solving to infer type information that is not explicitly present.

Although we have discussed these properties informally, we can evaluate them rigorously. Such treat-
ment requires a mathematical model of programming languages and their type systems. In the next 
section, we introduces the notation and tools that are commonly used for this analysis.

70.2  Formal Type Systems

Programming languages are large, complicated artifacts, so it is difficult to design and analyze 
their type systems wholesale. As a result, programming language researchers have developed trac-
table mathematical models of languages, and it is the type systems of these formal models that is the 
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topic of study. By defining a model that captures the essence of computation, we can carefully under-
stand its semantics and evaluate its properties.

The language of the formal model of type systems derives from formal proof systems. A proof system 
is a system of inference rules that can be used to show that a program has a specific type by constructing 
a typing derivation for a particular typing judgment. Learning to understand this language means that 
type systems can be understood as mathematical specifications, without the need to read the source 
code of a particular compiler.

Additionally, many type systems specified in this manner are declarative, in that they define valid 
programs without determining a particular type checking algorithm. Having a declarative specification 
means that formal type systems are part of the language definition: they state what good programs are, 
in the simplest terms possible, leaving compilers the freedom to implement these specifications in the 
most appropriate manner.

Furthermore, these formal models provide the basis for the metatheory of a programming 
language—the properties that can be mathematically proven about the language and all its programs. 
Section 70.3 discusses a few of these properties in detail and describes the mathematical techniques that 
researchers use for these proofs.

However, the rest of this section discusses what type systems are before going into depth about 
their mathematical properties. It starts with the simplest of languages—arithmetic expressions only—
and then introduces new features and type system capabilities incrementally. Understanding these indi-
vidual features provides insight into their semantics as they occur in the context of full languages.

70.2.1 A rithmetic Expressions

We introduce this mathematical language of type systems with an extremely simple example, that of 
arithmetic expressions. An arithmetic expression is either a natural number value, such as 0, 1 or 2, a 
boolean value true or false, or a binary operator applied to two arguments. For further simplicity, this 
language only includes operators for addition, subtraction, and equality. Yet, even in this simple lan-
guage there are expressions, such as 1 + true, that the type system should rule out.

The abstract syntax of this language can be described by the following table, presented in Backus-
Naur Form (BNF). We use the metavariable n for numeric values, b for boolean values, op for operators, 
and e for expressions.* We use metavariables consistently—the variable n always stands for a number 
and e always stands for an expression. If we need to refer to more than one expression at a time, we use 
primes (e′ or e″) and subscripts (e1 or e2) to indicate different metavariables.

Numeric values include all natural numbers (not shown in the table but indicated by …). Boolean 
values only for equality testing include true and false. The operator symbols include + for addition − for 
subtraction and ≡ for equality testing. Finally, we combine these in expressions, which are literal values, 
an infix operator applied to two arguments, or an if expression:

	

n

b

op

e n b e op e e

∈

=

= + − ≡

=

{ , , ,...}

:: |

:: | |

:: | | |

0 1 2

1 2 1

false true

if theen elsee e2 3

Note that this grammar does not specify how to parse arithmetic expressions, only how to represent 
them. In particular, the abstract syntax does not include parentheses, but we often use them in examples 
for disambiguation. For example, (1 + 2) ≡ 3 is an expression of this language.

*	 Expressions are also called terms.
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The syntax of types is defined similarly, again using BNF. All valid expressions in this language have 
one of two types—they are either numbers or booleans:

	 τ :: |= nat bool

We can capture the relationship between expressions and their types by defining a logical judgement, 
which asserts that “expression e has type τ.” This judgment has the following form, starting with a typing 
context Γ and a turnstile* and then putting a colon between the expression and its type:

	 Γ � e : τ

Typing contexts, also called typing environments, contain assumptions that can be used for type 
checking. In this simple language, the typing environment plays no role. We include it here to prepare 
for future extensions (see Section 70.2.2). For now, the syntax of typing contexts includes only the empty 
context:

	 Γ ::= ε

In general, typing judgments often have the form Γ � J, where Γ is a typing environment and J is an 
assertion like “e:τ.”

Like propositions in logic, particular judgments can be valid or invalid. For example the judgment Γ 
⊢ 1 + true:bool is invalid. The expression 1 + true does not evaluate to a boolean value, so it should not 
have this (or any other) type. To tell whether a judgment is valid, type systems include rules that can be 
used to derive only valid judgments. When a judgment Γ � J is valid, we say that Γ entails J. The deriva-
tion is the justification or proof of the validity of the judgment (and implies the validity of the typing 
context Γ).

The type system of the arithmetic language includes six inference rules, as shown in Figure 70.1. The 
rules E_nv and E_bv assign the types nat and bool to natural number and boolean values, respectively. 
For operator expressions, the rules E_op and E_eq require that the two arguments have the appropriate 

*	 The “turnstile” symbol (⊢) typically marks a typing judgment and is taken from formal logic. This symbol is derived 
from notation developed by Frege [14] for formal proofs.
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FIGURE 70.1  Type system for arithmetic language.
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types for the operator. The rule E_if requires the argument of an if-expression to be a boolean expres-
sion and the two branches to have equal types.

The last rule of the figure, rule C_emp, is for an auxiliary judgment that determines only that the 
typing context itself is well formed. Because typing contexts are trivial in this language, this single rule 
merely states that the empty context is valid. As we extend the type system, we will extend this and other 
judgments with additional rules.

In general, an inference rule contains two parts divided by a horizontal line. To the right of the rule is 
its name, for easy reference. Often, a naming convention indicates the form of the judgment in the conclu-
sion of the rule (below the line). For example, four rules in Figure 70.1 start with E_ to indicate that they 
derive judgments about the types of expressions, whereas the single rule for typing contexts starts with C_.

The premises of a typing rule appear above the line. These judgments must hold before the rule can be 
applied. A typing rule can have zero, one or many premises. All must be valid for the rule to apply. The 
premises of a rule need not have the same form as in the conclusion of the rule. For example, the rules 
E_nv and E_bv include premises for the judgment Γ ⊢ ⋄ even though they derive the types of expres-
sions. Other premises may be simple logical facts, such as the rule E_op that explicitly declares the set 
of valid operators for that rule with the premise op ∈ {+, −}.

Rules are schematic templates that can be put together to form typing derivations, evidence that a 
particular program type checks. A derivation is a tree of judgments, where the root of the tree (at the 
bottom) is the final conclusion of the derivation. Each step of the derivation must be an instance of one 
of the typing rules, where the metavariables of the rule have been replaced with concrete types, expres-
sions, operators, and contexts.

For example, we can construct the derivation that, using an empty typing context ε, the expression 
(1 + 2) ≡ 3 has type bool. We write this judgment as ε ⊢ (1 + 2) ≡ 3 : bool. The last step of the derivation con-
cludes this judgment using the rule E_eq by satisfying all of the premises of that rule. Each of those prem-
ises also satisfy their premises and so on, until in each case reaching the rule C_emp, which has no premises:
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This derivation is complete because the rule used at the leaves (at the top of the tree) has no premises. 
Rules with no premises are called axioms. Each line in the tree corresponds to the usage of a rule. Note 
that the rules constrain how the derivation can be formed. The rule E_op requires that the types of the 
subexpressions both be nat. Likewise, rule E_eq requires that both subexpressions have the same type, 
but it does not fix what that type must be.

A type system is the entire set of rules necessary for creating derivations. In the arithmetic language, 
it includes all of the rules that conclude Γ ⊢ e:τ as well as all of those for Γ ⊢ ⋄.

Programs that have typing derivations are considered typeable, or well formed. Those that do not are 
untypeable. There may be multiple derivations that assign a type to an expression and an expression 
may be typeable with more than one type. The rules of a syntax-directed type system directly specify an 
algorithm for determining whether an expression should type check (see Section 70.2.3). In such a type 
system, each expression has at most one typing derivation.

70.2.2 A ssumptions and Functions

The language above does not include many of the most important features of programming languages. 
In this and the next few subsections, we gradually extend our vocabulary of type systems to develop a 
more convincing model of computation.
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The syntax of the language of this subsection is the same as before, extended with three new expres-
sion forms. These forms are variables x, anonymous functions λx.e, and applications e1 e2. These three 
forms are listed in the last line of the following syntax table:

	

n

b

op

e n b e op e e

:: , , ,...

:: |

:: | |

:: | | |

=

=

= + − ≡

=

0 1 2

1 2 1

false true

if theen elsee e

x x e e e

2 3

1 2| | . |λ

These new additions are taken from the λ-calculus, a simple model of computation developed by the 
logician Alonzo Church in the 1930s to investigate the foundations of mathematics. Because of its foun-
dational nature, researchers often use it for the basis of formal study of programming languages. Here 
we study a typed version of the λ-calculus, called the simply-typed lambda calculus or STLC.

The definition of STLC relies on a number of standard definitions from the theory of the λ-calculus, 
which appear in many textbooks on programming languages and logic [2]. These definitions include 
the definition of free and bound variables, the definition of capture-avoiding substitution (where [e′/x]e 
stands for the replacement of the free variable x with the expression e′ in the expression e) and the defi-
nition of α-equivalence (where functions are identified up to renaming of their parameters, so that λx.x 
and λy.y are considered to be the same expressions).

To define a type system for the λ-calculus, we must add a type for functions to the syntax of types.

	 τ τ τ:: | |= →nat bool 1 2

The type τ1 → τ2 classifies a function with argument of type τ1 and result of type τ2. Using curry-
ing, we can define functions that take multiple arguments. The → operator associates to the right, so 
nat→bool→nat means nat→(bool→nat).

The STLC type system uses typing contexts to record assertions about the types of free variables. 
Therefore, we extend the syntax of typing contexts with assumptions.

	 Γ Γ:: | ,= ε τx :

Typing contexts can be viewed as ordered lists. If a context is nonempty, we often omit parentheses and 
elide the ε at the beginning, writing a context such as (ε, x:nat), y:nat more simply as x:nat, y:nat.

An important condition for typing contexts is uniqueness, which means that there is at most one 
assumption about the type of a particular variable. For example,

	 x y: :nat nat,

is a valid context but the following are not*:

	 x x x x: : : :nat bool nat nat, ,

*	 Although it is possible in some situations to allow later bindings to shadow earlier ones, shadowing does not make sense 
in every type system.
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When this uniqueness condition holds, we can treat typing contexts as finite maps. In particular, it is 
straightforward to define a number of operations and predicates on these structures, such as calculating 
all of the variables with typing assumptions in the context (written dom (Γ)), stating whether a particu-
lar assumption is in the context, written (x:τ) ∈ Γ, and appending the assumptions in one context after 
those in another, written Γ1, Γ2.

We ensure uniqueness with a new rule for well formed contexts. An assumption can only be added 
when the variable does not already appear in the typing context:

	

Γ Γ Γ
Γ

� �
�

�◊ ∉
◊

x dom

x

( ) :

, :

τ
τ

C_EVAR

This rule includes a premise for yet another auxiliary judgment, Γ ⊢ τ : ⋆, which asserts that the type τ is 
a valid type. (The notation “: ⋆” can be read as “is a type.”) The rules that derive this judgment appear in 
Figure 70.2. In this system, the judgment is trivial, as all syntactically well formed types are valid. Again, 
we introduce this judgment now to prepare for future extension (see Section 70.2.6).

To type check the new expression forms, we need three new rules as shown in Figure 70.3. The 
first states that variables have the types that the context assumes for them. Next, functions introduce 
assumptions about the types of their parameters to the typing context when their bodies are checked. 
There is an implicit requirement that the name of the variable not appear already in the domain of the 
context. This requirement is enforced when the context is checked for well formedness. The last rule, for 
function applications, constrains the type of e1 to be a function type and the type of its argument e2 to 
match the domain of the function.

Typing contexts serve several purposes in formal type systems besides typing functions. First, they 
provide a simple way to add new primitive operations. For example, we can add a primitive boolean 
negation operation, not, to the type system merely by adding an assumption not:bool → bool to the 
initial typing context.

Furthermore, the ability to type check in the presence of assumptions means that type checking 
is modular and is scalable to large programs. Instead of typing an entire program at once, a program 
can be broken into smaller parts that can be checked individually. The definitions in a module define 
an interface that can be described by a typing context. Other modules that use the definitions can be 
checked using that context. Therefore we do not need to recheck the entire program after each modifi-
cation, as long as the interfaces are unchanged.
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70.2.3  Syntax-Directed Type Systems

For any type system, it is important that there is an algorithm that decides whether any program 
type checks. Some type systems are syntax directed, meaning that an algorithm can be derived 
directly from the typing rules. This algorithm works by structural recursion over the form of 
expressions.

For example, the typing rules of the simple arithmetic language of Section 70.2.1 are syntax directed. 
For any expression in this language, there is a straightforward algorithm to determine its type. We 
define this algorithm using the partial function Type(Γ, e) shown in Figure 70.4, which is taken almost 
directly by “reading” the typing rules from bottom to top. The arguments to this function are the typ-
ing context Γ and an expression e. If this function returns a type τ, then we know that there is some 
derivation of the judgment Γ ⊢ e : τ. The definition of this function pattern matches the syntax of its 
argument. It then calls itself recursively on any subexpressions of that argument. If the type of any 
subexpression is undefined, then there is no such typing derivation and the whole expression does not 
type check. In the base cases, this function uses the auxiliary function Wf(Γ) to ensure that the context 
is well formed.

We can see that this function terminates by noting that each recursive call is to a subterm—a smaller 
expression. Therefore, this function is partial only when the conditions fail, such as when the types of 
the arguments to the equality operation do not match. Therefore, for any expression in the arithmetic 
language, we can use this partial function to either determine its type or determine that it does not 
type check.

In contrast, STLC is not syntax directed. Although we can extend these partial functions to infer the 
types of variables and function applications and check the well formedness of contexts with assumptions
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we run into trouble with anonymous functions. What should the type of λx.e be?

	 ( ) ( , . ) ?E_ABS Type x eΓ λ =

The problem is that the syntax of functions does not indicate what type should be added to the 
context when checking the body of the function. Even worse, some functions have many types. For 
example, λx.x can be typed with nat → nat and bool → bool (and many more). In other words, 
STLC does not have the uniqueness of types property, where each expression can be typed with 
exactly one type.

One way to make this language syntax directed is to annotate functions with the types of their 
arguments. In other words, we replace λx.e with λx:τ.e and replace the typing rule E_abs with one for 
annotated functions:

	

Γ
Γ

, :

: . :

x e

x e
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λ τ τ τ
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After these modifications, we can finish the last line of the type checking function as follows:
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Type checking could fail if the variable x already appears in the domain of the typing context. However, 
the type checking function is allowed to rename the bound variable in the expression to ensure 
uniqueness.

Note that this algorithm is not the most efficient way to determine whether an expression is typeable. 
In particular, it checks that the context is well formed many times. We could replace this algorithm with 
a more efficient version that checks assumptions as they enter the typing context. This version of the 
type system is convenient for reasoning about the type system, but even though it derives an algorithm 
for type checking, it does not derive the best algorithm.

In general, the simply-typed λ-calculus without annotations on functions is called a Curry-style type 
system. The system with annotated functions is known as a Church-style system [3]. We will also use 
the words implicitly typed and explicitly typed to distinguish between the two versions. Even though 
the Curry-style type system is not syntax directed, there is still an algorithm for type checking it. That 
algorithm is just not directly determined by the syntax (see Section 70.4).

Many forms besides functions have implicitly-typed and explicitly-typed versions. In the sections 
that follow, we introduce each new form in its implicit version and then discuss how typing annota-
tions may be added to it afterwards. We order the discussion in this manner to simplify the syntax of 
each form, draw connections to existing programming languages that often feature these forms without 
annotation, and focus attention to the important parts of the semantics.

70.2.4  Structured Types

In this section, we extend STLC with unit, product and sum types. These new forms are only the first of 
many additions that make formal type systems closer to that of actual programming languages such as 
Haskell and ML.

For each new type construction, we introduce the necessary syntax for the addition and describe 
the associated rules. In each case, the set of rules follows a basic pattern. These rules declare when the 
type is well formed, how to introduce elements of the type and how to eliminate elements of that type. 
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For example, in STLC we extended the grammar with variables, functions, and applications. The rule 
E_arrow defines when function types are well formed, the introduction rule is T_abs, and the elimina-
tion rule is T_app.

The unit type (Figure 70.5) is a trivial type for an uninteresting value. It is called void in some lan-
guages. There are no primitive operations available for the single value of this type, written (), so there 
are only two rules: one for checking that the type is well formed and an introduction rule for showing 
that the unit value has the unit type.

Product types (Figure 70.6) are the types of composite values. These values contain two components 
which may be of differing types. The pair expression ⟨e1, e2⟩ introduces a product; they are eliminated 
with fst e and snd e, which extract the first and second components of e, respectively.

Sum types (Figure 70.7), also called disjoint union types, represent alternatives. A value of type τ1 + τ2, 
could either be a value of type τ1 or a value of type τ2. In either case, the value is tagged so that its type 
can be determined. The expressions inl e and inr e introduce sum types tagged as either the left or the 
right type of the sum. The elimination form for sum types is case analysis (a simplified form of pattern 
matching found in functional programming languages). This construct evaluates one of two branches, 
depending on the tag of the scrutinee, the argument of case analysis. Inside each branch, the value that 
was tagged is available with either the left or the right type depending on the branch.

Note that the inclusion of unit and sum types makes the bool type unnecessary. We could replace all 
uses of bool with the type unit + unit, representing true as inl () and false as inr (). An if-expression, 
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which eliminates the boolean type, can be implemented with case analysis, ignoring the unit values car-
ried by the tags. We formalize this encoding with the following table:

	

bool unit unit

true inl

false inr

if then else case

�
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�

�
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()

()

e e e e1 2 3 1 oof inl inr{ ; }
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y e y e

y fv e fv e

→ →
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2 3

2 3where

The additions of this section are intended to give an idea of composite type structure—complex types 
can be formed from simple components. Programming languages typically generalize products and 
sums to more convenient versions. For example, n-ary tuple types τ1 × τ2 × … τn, generalize products 
from two components to n components for any n ≥ 2.

Another generalization is to identify tuple components by name instead of by number—this produces 
record types, written {l1:τ1, … ln:τn}, where each component of the aggregate data structure is named by 
some label l. The components of record types can often be accessed using dot notation, e.l accesses the 
component named l in the record e. Likewise, sums can be generalized from two options to more, and 
from numbered options to labels. Labelled n-ary sums are called variant types.

Although a typing algorithm for unit and product types can be read directly from the rules, the intro-
duction rules for sum types are not syntax directed. To make this language explicitly typed, we replace 
inl e with inlτ e and inr e with inrτ e, where the annotation τ indicates the type of the other alternative:
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70.2.5 R ecursive Types

Recursive data structures, such as lists and trees, can be typed by recursive types, written μα : ⋆.τ. 
Similar to a λ term, a μ type binds the type variable α in the type τ. We use greek letters from the begin-
ning of the alphabet for type variables. As with terms, we can calculate the free type variables that 
appear in a type with the syntax fv(τ), substitute types for free type variables (while avoiding capture) 
with the syntax [τ/α]τ′, and identify types up to renaming of bound variables. For example, the types 
μα : ⋆.α → α and μβ:⋆.β → β are considered equal.

The new syntax and typing rules are in Figure 70.8. Not only do we add the new forms for variables 
and recursive type definitions, but we also extend the syntax for typing contexts. Assumptions of the 
form α:⋆ record the type variables that may appear in types. As with term variables, type variable 
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assumptions in the context must be unique. The rule C_tvar restricts type variables from occurring 
multiple times. Rule T_var makes the judgment form Γ ⊢ τ:⋆ nontrivial. It says that type variables are 
valid only when they are declared in the context. The formation rule for recursive types (T_mu) adds the 
bound type variable to the context when it checks the body of the recursive type.

Because the context now contains both type and term variables, the order of assumptions in a typing 
context matters. Rule C_EVar (from Section 70.2.2) ensures that the types of assumed term variables 
are well formed using the prior context. If the context is reordered, these types may no longer be valid.

The last two rules implicitly introduce and eliminate recursive types. In a recursive type μα : ⋆.τ, 
the type variable α stands for the whole type. Therefore these rules equate recursive types μα : ⋆.τ with 
their unrolling [μα : ⋆.τ/α]τ, allowing terms to have either type as necessary. These type conversions are 
implicit, so this type system is not syntax directed.

To define a syntax-directed system, we explicitly mark the locations where the type should be “rolled” 
and “unrolled” in expressions, using the constructs in Figure 70.9. The forms roll and unroll are explicit 
coercions between values of type μα : ⋆.τ and [μα : ⋆.τ/α]τ. These forms are witnesses to an isomorphism 
between a recursive type and its unfolding. Recursive types with implicit conversions are called equire-
cursive; those with roll and unroll are called isorecursive types.

Regular algebraic datatypes, as found in ML and Haskell, can be encoded by recursive types. For 
example, in Haskell, one might define a tree structure as follows:

data Tree = Empty | Node Tree Tree

This structure declares the existence of a new data type, called Tree and two data constructors for the 
datatype. The data constructor Empty constructs a leaf with no children and the data constructor Node 
constructs a tree with left and right children. Recursive functions that work over datatypes use pattern 
matching, such the case expression in the following function definition:

height :: Tree -> Int
height = \ x -> case x of
  Empty -> 0
  Node x y -> 1 + height x + height y

We can encode trees with products, sums, unit, and recursive types. The tree type is a recursive 
type, which is either unit (for the empty tree) or a product of two occurrences of the recursive vari-
able. The constructors Empty and Node construct values of this type, using the introduction forms 
for unit, sums, products and (iso)recursion. Finally, case analysis on Trees is implemented with the 
corresponding elimination forms:
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Furthermore, type-level recursion can be used to add value-level recursion to typed languages. 
Recursive definitions, such as the height function above, are possible in the λ-calculus with the 
Y-combinator. The Y-combinator computes the fixed point of its argument, allowing the defini-
tion of recursive, anonymous functions. For example, the height function is defined using the 
Y-combinator as
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For call-by-name languages, the Y-combinator is defined as follows:

	 Y f x f x x x f x x� λ λ λ. . ( ) . ( )( ) ( )

The Y-combinator can be type checked using recursive types. Below, we give the definition of Y in the 
explicitly-typed language, marking where coercions to and from the recursive type must occur:
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The implicitly-typed language with equirecursive types can type the definition of Y directly. However, 
the Y-combinator, like any potentially nonterminating expression, cannot be type checked in STLC [52]. 
The addition of recursive types is enough to make this language Turing complete.

70.2.6  Parametric Polymorphism

Parametric polymorphism, or type abstraction, enables programs to be generic in the types of data that 
they work with. This feature increases the flexibility of statically typed languages such as ML, Haskell, 
Java and Scala. Parametric polymorphism was first studied (independently) by the logician Jean-Yves 
Girard [17] and the computer scientist John Reynolds [48].

In this subsection, we extend our small language with two different forms of type abstraction: univer-
sally quantified types, written ∀α : ⋆.τ and existentially quantified types, written ∃α : ⋆.τ. In both cases, 
the type variable α is bound within the body of the type τ. This type variable α stands for an abstract 
type, one that is unknown when the term is compiled. Type systems that include quantified types are 
called second-order.

70.2.6.1  Universal Polymorphism

We add universally quantified types to the language with the three rules in Figure 70.10. The introduc-
tion form generalizes the type of an expression. If we can type check an expression while treating one 
part of its type abstractly (i.e., while knowing nothing but its name α), then we can generalize that part 
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of the type. For example, generalization shows that the identity function λx.x can be given type ∀α : ⋆.
α→α because the type of the argument is unconstrained:
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The elimination form allows us to use an expression with a polymorphic type at any instance. Any 
well formed type can be substituted for the variable. For example, we can apply the identity function to 
itself by instantiating it with its own type. Part of this derivation is shown as follows:
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Languages with parametric polymorphism distinguish between predicative and impredicative vari-
ants. The rules in Figure 70.10 are impredicative. The difference between the two is the meaning of the 
quantifier. In a type such as ∀α : ⋆.α → α, can the type variable α really be instantiated by itself as shown 
in the derivation above? This behavior causes difficulty—if we think of these types as the set of all of 
their instances, then the meaning of impredicative quantification is circular.

Predicative type systems stratify quantification to escape this circularity. Instantiation is only allowed 
by “smaller” types. One way to enforce predicativity is to mark each type by a level and allow quantifiers 
to range only over types from a lower level.

Type systems with predicative polymorphism can be easier to reason about and model semantically 
because of this stratification. However, impredicative polymorphism is more expressive. It can encode a 
number of other type forms such as products, sums, existentials (see next section), and some recursive 
types [5]. Thus, someone studying the semantics of a language with impredicative polymorphism need 
not include these type forms in the model—they are already available.

Once again, the rules presented in Figure 70.10 are not syntax directed. Explicit universal polymor-
phism (shown in Figure 70.15) marks the introduction of polymorphic types with the type abstraction 
form Λα : ⋆.e and the elimination with a type application form e⟨τ⟩.

70.2.6.2  Existential Polymorphism

Existentially quantified types, written ∃α : ⋆.τ, model abstract data types (ADT). An ADT is a type 
that is defined solely by its interface—how it may be used—without revealing its representation. 
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FIGURE 70.10  Universally quantified types (implicit rules).
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Abstract  data types are important because they provide encapsulation, localization of change, and 
flexibility to programmers.

Figure 70.11 contains the necessary definitions and rules for this form of type. Because these types 
rarely appear in implicitly-typed systems, we describe only the explicitly-typed version. The introduc-
tion form pack ⟨τ, e⟩ as ∃α : ⋆.τ′ creates an “existential package” that hides part of the structure of a type. 
The elimination form let ⟨α, x⟩ = e in e′ provides access to this value but requires that the hidden type 
be used abstractly.

For example, we can implement a stack of numbers using an encoding of lists as a recursive sum of 
products. The empty stack is just an empty list. The push operation adds a new number to the top of the 
stack. The peek operation returns either unit, when the stack is empty, or the top value on the stack. 
Finally, the pop operation returns the stack without its top value:
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Putting these four operations together in a record allows the implementation of the stack type to be 
hidden. In other words, we can use pack to give a record of these operations the following type, where 
the type stack has been hidden by the variable α:
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Clients of the stack module use the elimination form for existential types, let ⟨α, x⟩ = e1 in e2. This 
form introduces the type variable α and expression variable x with type that mentions α into the context. 
Clients cannot know the actual type that was used for α when the module was constructed. Instead, they 
must use this type abstractly, according to the interface specified by the type of x.
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For example, once the stack module has been unpacked, the stack operations can be accessed from 
the record and used with each other. If y is a variable with type as given earlier, then it can be used 
as follows:

	 Γ, : , . ( . . ) :y stk x y x peek x push x emptymod � let in unit nat〈 〉α = + 1

The third premise of the typing rule for the elimination form for existentials implies that the result 
type τ′ cannot contain the abstract variable α. Because of this premise, the type variable α cannot escape 
the scope of the let-expression.

70.2.7  Parameterized Types and Higher-Order Polymorphism

Parameterized types are those that abstract part of their structure. For example, in Haskell we can 
define a type of polymorphic lists that can be used with many different types of elements:

data List a = Nil | Cons a (List a)

This single definition can conveniently be used to construct both lists of integers and lists of boolean 
values.

x :: List Int
x = Cons 1 (Cons 2 (Cons 3 Nil))

y :: List Bool
y = Cons True (Cons False (Cons True Nil))

These lists are not heterogeneous; a single list can contain either integers or booleans, but not both. 
Yet the power of type parameterization means that we can write polymorphic functions that work for all 
lists, no matter what type of elements they contain. For example, the map function applies its argument 
to each element in a list in turn, constructing a new list from the results:

map :: forall a b. (a -> b) -> List a -> List b
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

What exactly is List in these definitions? We call it a parameterized type. By itself, it does not make 
sense as a type—it needs a type argument like Int and Bool to be complete. List must be applied to 
another type to become a type.

Formally, we model parameterized types by adding type application, written τ1 τ2, to the syntax of 
types as shown in Figure 70.12. That way we can express the application of type constants like List to 
their parameters.

However, with this addition, we must worry about ill-formed types of the form nat nat, or list list. 
These types are syntactically correct but meaningless. Allowing them in the type system does not jeop-
ardize type soundness, but they could lead to buggy interfaces as they do not contain any values. We rule 
such types out using kinds, that is, a “type of types.” Kind checking ensures that parameterized types are 
applied to the correct arguments.

There are two forms of kinds. The first, ⋆ is the kind of normal types such as nat, bool, and 
unit + unit. Only types of this kind contain values. Arrow kinds, written κ1 → κ2, describe param-
eterized types. For example, List, has kind ⋆ → ⋆ because it requires one type argument to be a 
complete type.



70-20 Programming Languages

We also generalize the judgment we have been using to check that types are well formed so that it 
also tracks their kinds. The form of the judgment is now Γ ⊢ τ : κ. All previous rules are still valid. For 
a type application, the rule T_app ensures that the parameterized type can be applied to its argument.

Higher-order polymorphism means that polymorphic functions can quantify over parameterized 
types. The Haskell programming language includes this feature [25], often using it for generic code that 
works for arbitrary functors, monads, arrows and idioms. We can add higher-order polymorphism to 
our formalism by relaxing the rules that introduce and use type variables in the context so that they 
apply to variables of any kind.

70.2.8 T ype-Level Computation

The process of type checking a program is based on comparing types for equivalence. For example, 
when checking that function applications are well typed, a compiler must compare the type of the argu-
ment with the expected type of the formal parameter.

To this point, type equivalence has been unremarkable. In the preceding sections, types are equal only 
when they are α-equivalent, that is, syntactically equal up to renaming of bound variables. However, 
some type systems define a richer equality for types and allow them to be compared up to this equiva-
lence. This subsection describes one example of a rich type equality, based on type-level computation.

Type-level computation turns the language of types τ into a programming language. However, “pro-
grams” in this language are never run, they are only compared for equivalence during type checking.

The simplest example of type-level computation is the addition of λ-calculus functions to the lan-
guage of higher-order polymorphism:

	 τ :: =… | : .λα κ τ

Such type-level functions have function kinds:
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This type system, which combines type-level abstractions with type variables, type application, and 
kinds (i.e., a simple “type system” for types), is called System Fω [17].

Languages that include type-level computation define what it means for types to be equivalent with 
the judgment form Γ ⊢ τ1 ≃ τ2 : κ, as shown in Figure 70.13. Derivations of this judgment prove that the 
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type τ1 is equal to the type τ2. The rules of this judgment capture equivalences derived from computa-
tion. For example, the β-equivalence rule (TE_beta) identifies types such as (λα : ⋆.α × α) nat and nat × 
nat. Type-level functions can also be identified using η-equivalence (TE_eta). Other rules of the judg-
ment assert that the relation is an equivalence relation (i.e., that it is reflexive, symmetric, and transitive) 
and that it is compatible with the structure of types.

Once type equality has been defined, it can be used with the conversion rule:

	

Γ Γ
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e
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E_CONV

This rule permits the type of any expression to be replaced with any equivalent type at any point of a 
typing derivation. This rule is not syntax directed; it could apply at any point in a typing derivation to 
convert a type into an equivalent form.

Furthermore, the type equivalence relation Γ ⊢ τ1 ≃ τ2 : κ is itself not syntax directed because of rules 
like transitivity. There are several algorithms for determining whether types are equal. If type equiva-
lence does not include η-equivalence, then it is possible to β-reduce both expressions to normal form 
and compare the results. Crary [8] describes a kind-directed algorithm for η-equivalence.

70.2.9  Subtyping

Subtype polymorphism also increases the expressiveness of type systems. If we view types as collections 
of values, then there is a natural relationship between them. If all values of a type τ1 are also contained in 
the type τ2, then we consider τ1 a subtype of τ2, and conversely that τ2 is a supertype of τ1. This means that 
any interface that expects an argument of type τ2 may be supplied a value of type τ1. Subtyping means 
that function interfaces can be flexible, specifying only the minimal requirements of their arguments, 
without fixing a particular representation.
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Adding subtyping to a type system involves expressing the relationship between two types as a judg-
ment form:

	 Γ � τ τ1 2<:

that states that “in context Γ, the type τ1 is a subtype of the type τ2.”
The type system uses this judgment in a single typing rule, called subsumption, that enables subtyping.
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This rule states that an expression of one type can also be assigned any supertype. Note that this rule 
is also not syntax directed. It could appear anywhere in a typing derivation to change the type of an 
expression.

The rules defining the subtyping relation appear in Figure 70.14. The first two rules declare that the 
subtyping relation is reflexive and transitive. The other rules of the judgment are specific to the indi-
vidual type forms.

Subtyping is prevalent in object-oriented languages. In such languages, there often is a maximal type that 
contains all values. For example, the type Object is maximal in the Java language and is the supertype 
of all reference types. Here we extend the syntax of types with a new type top as the maximal supertype,

	 τ :: |=… top

and declare that all types are subtypes of it with the rule S_top.
Products and sums are in the subtype relation when their components are, as in rules S_prod and 

S_sum. These rules are sometimes called depth subtyping as they allow subtyping to work deeply within 
the type. Languages that include records and variants, also permit width subtyping in their subtyping 
rules. With width subtyping, a record type with more components is a subtype of a type with fewer 
(but compatible) components and a variant type with fewer options is a subtype of one with more cases. 
For example, a point with a position and mass works in a context that only needs to query the position. 
Alternatively, a function that has cases for points, lines, and circles can be applied to a value that is 
known to be either a point or a line.

Function types provide the most confusion in reasoning about subtyping. Note that the rule S_arrow 
declares τ1 → τ2 a subtype of ′ → ′τ τ1 2 when ′τ1 is a subtype of τ1 and τ2 is a subtype of ′τ2. For the domains, 
the relationship is inverted with respect to the whole relation: we call this property contravariance. 
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When the inclusion goes in the same direction, it is called covariance. In general, a type variable appears 
contravariantly within another type if it always occurs on the left of an odd number of arrows and 
covariantly if it always appears on right. If neither situation is true, then the variable appears invariantly. 
For example, α is covariant in the types unit → α and (α → unit)→α and contravariant in the types 
α → unit and (unit → α) → unit. Finally, α is invariant in the type α → α.

We can extend the notion of subtyping in many ways. Some languages include a minimal subtype, 
called bottom, as an analogue to the maximal supertype top. Bounded polymorphism combines sub-
typing with parametric polymorphism. In such systems, type variables are inserted into the typing 
context with supertype or subtype bounds that reveal partial information about the abstract type. The 
rules for subtyping quantified types differ in the treatment of these bounds. The combination of subtyp-
ing and parameterized types requires reasoning about variance.

Relationships like subtyping show up in many contexts, not just in the typing of objects. For example, 
in Haskell, type class constraints can be satisfied by any subclass [59]. In ML, modules can be given a 
variety of signatures in a subsignature relationship [31]. The Hindley–Milner type system (see later) 
orders polymorphic types by a “more-general” relation [10]. Languages with predicativity levels allow 
types of lower levels to be automatically promoted higher in the hierarchy [29].

As with the conversion rule of the previous section, the subsumption rule in this section is not syntax 
directed. Furthermore, the presence of a transitivity rule in the subtyping relation also makes it nonal-
gorithmic. Pierce [41] defines algorithms for subtyping and shows that they are equivalent to these rules.

70.2.10  Other Forms of Types and Type Systems

The preceding sections describe only a few of the many, many features of type systems that have been 
devised by language researchers. Next, we briefly give pointers to further reading.

Class and object types describe the essential features of object-oriented languages. A starting point 
is Featherweight Java [23], an essential formalization of classes, objects, methods, and subtyping.

Low-level types describe the structure of machines, including registers, heaps, stacks, and assem-
bly language instructions. Morrisett [32,33] overviews this work.

Dependent types allow types to depend on values. A gentle introduction to dependent types in the 
context of the Agda programming language is by Bove and Dybjer [6]. Additional information 
is found in Aspinall and Hofmann [1].

Linear, affine, and relevant types do not support all of the structural properties (see Section 70.3) 
found by most type systems. They are used to model resources that cannot be forged or forgot-
ten. Walker gives an overview of this area [60].

Session types describe the protocols that govern how channels must be used in distributed systems 
[53]. Dezani-Ciancaglini and de’Liguoro [11] provide an introduction.

Security types track the flow of information and the integrity of data values through the execution 
of programs. These types include capabilities for various principals, and ensure, for example, 
that high-security data is not read by low-security principals [50].

Effect types talk about the properties of computations. Basic variants distinguish between pure 
and impure code; more precise systems can track memory usage, resource usage, potentially 
thrown exceptions, and running time. Henglein et al. [21] give an overview.

70.3 R easoning about Type Systems

The preceding section individually describes the components of formal type systems piecemeal. After 
these pieces are assembled, it is natural to ask what properties are true of the system as a whole. Now 
that we have made the semantics of the type system formal, we can return to the properties discussed in 
Section 70.1.2 and examine them more rigorously.
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The exact statement of these properties varies from system to system. Therefore, for concreteness, 
this section states and proves theorems about System F, the explicitly-typed polymorphic language with 
boolean values listed in Figure 70.15. Working with an explicitly-typed language simplifies some of the 
metatheory that follows. We discuss type inference, the process of producing explicit type annotations, 
in Section 70.4.

70.3.1  Structural Properties of Judgments

First, the typing judgments of System F satisfy a number of structural properties regarding the treat-
ment of assumptions in the typing context. These properties are not that interesting in their own regard, 
but they provide the foundation for more significant theorems.

The first property, called weakening, states that irrelevant assumptions do not invalidate typing judg-
ments. (Recall that the notation Γ, Γ′ refers to the concatenation of two typing contexts.)
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FIGURE 70.15  System F with boolean values.
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Lemma 70.1  (Weakening for typing)

If Γ, Γ′ ⊢ e : τ and x ∉ dom(Γ, Γ′) and Γ ⊢ τ′ : ⋆, then Γ, x:τ′, Γ′ ⊢ e : τ.

The proof of this theorem, and all of the others in this subsection, is a simple induction on the typing 
derivation. We do not give the details here but refer readers to other sources [41].

In fact, there are several weakening lemmas that hold for this type system. Type variables may also 
be added to the context.

Lemma 70.2  (Type variable weakening for typing)

If Γ, Γ′⊢ e : τ and α ∉ dom(Γ, Γ′), then Γ, α:⋆, Γ′ ⊢ e : τ.

Furthermore, weakening of both type and term variables holds for the other two judgments of the type 
system, type formation Γ ⊢ τ:⋆ and context formation Γ ⊢ ⋄. We can concisely cover all cases at once, 
including the two lemmas given earlier, by stating a general form of weakening for all judgments.

Lemma 70.3  (Weakening)

	 1.	 If Γ, ′Γ � J and α ∉ dom(Γ, Γ′) then Γ, α :⋆, ′Γ � J

	 2.	 If Γ, ′Γ � J and x ∉ dom(Γ, Γ′) and Γ ⊢ τ : ⋆ then Γ, x:τ, ′Γ � J

The inverse of weakening is strengthening, the ability to remove irrelevant assumptions from the con-
text. Variables are irrelevant if they do not appear freely in contexts, expressions, or types. Strengthening 
is true for all judgments, for both type and term variables. The notation fv(Γ) and fv(J) calculates the 
set of free variables appearing in the range of typing contexts Γ and in the components of assertions J, 
respectively.

Lemma 70.4  (Strengthening)

	 1.	 If Γ, α:⋆, Γ′ ⊢ τ : ⋆ and α∉ ′fv fv( ) ( )Γ ∪ J , then Γ, ′Γ � J.
	 2.	 If Γ, x:τ, ′Γ � J and x fv( )J , then Γ, Γ � J.

The next structural property, exchange, states that the order of assumptions does not matter. Again, 
this property holds for all orderings of term and type variables, in all judgments. There is one caveat: 
term variable assumptions can only move in front of type variable assumptions when the latter does not 
appear in the type of the former.

Lemma 70.5  (Exchange)

	 1.	 If Γ Γ, : , : ,x yτ τ1 2 ′� J then Γ Γ, : , : ,y xτ τ2 1 ′� J.
	 2.	 If Γ Γ, : , : ,α β� � �′ J then Γ Γ, : , : ,β α� � �′ J.
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	 3.	 If Γ Γ, : , : ,x τ α1 � �′ J then Γ Γ, : , ,α τ� �x : 1 ′ J.
	 4.	 If Γ Γ, : , :α τ� �y 2, J′  and Γ ⊢ τ2 : ⋆ then Γ Γ, : : ,y τ α2, J� �′ .

The substitution lemmas justify assumptions. Types can be substituted for type variables in any judgment.

Lemma 70.6  (Type variable substitution)

Γ Γ, : ,α � �′ J and Γ ⊢ τ : ⋆ then Γ Γ, [ ] [ ]τ α τ α/ /′� J .

Furthermore, term variables can be replaced with a term of the same type in the typing judgment. (Term 
variables do not appear freely in types or contexts so there is no need for a general substitution lemma.)

Lemma 70.7  (Term variable substitution)

If Γ, x:τ, Γ′ ⊢ e : τ′ and Γ ⊢ e′ : τ, then Γ, Γ′ ⊢ [e′/x]e : τ′.

The final structural rule encodes an invariant that we maintain about the type system—all parts of 
a judgment are well formed. For example, if a term type checks, then the context and its type are also 
well formed.

Lemma 70.8  (Regularity/generation)

	 1.	 If Γ ⊢ τ : ⋆ then Γ ⊢ ⋄.
	 2.	 If Γ ⊢ e : τ then Γ ⊢ ⋄ and Γ ⊢ τ : ⋆.

70.3.2  Syntactic Type Soundness

The most fundamental property of a type system is that of type soundness. This property captures the 
slogan (due to Milner [30]) that “well-typed programs don’t go wrong.” Said another way, a type system 
can be used to distinguish terms that have well-defined semantics from those that are syntactically cor-
rect but meaningless.

There are many ways to give a semantics to the expressions of a programming language. With opera-
tional semantics, the meaning of a program is given by its computational behavior or operation. A small 
step operational semantics (Figure 70.16) describes the meaning of an expression as a potentially infinite 
sequence of rewriting steps of the form e → e′. The rules of this semantics come in two flavors: they 
either directly eliminate various data structures (rules beta, tbeta, iftrue, and iffalse) or search 
through the term looking for a primitive reduction (rules ifcong, appcong, and tcong). This seman-
tics is deterministic; any expression can step to at most one result. The reflexive transitive closure of this 
relation, written e →⋆ e′, models any number of steps of evaluation. We say that an expression e cannot 
step if there is no e′ such that e → e′.

There are two sorts of expressions that cannot step. The first sort are the values, v, the desired results of a suc-
cessfully concluded computation. In System F, values include boolean values, functions and type abstraction.

	 v x e e:: | : . | : .= +ture false λ τ α κΛ
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All other expressions that cannot step are called stuck terms. For example, true (λx:bool.x) is stuck 
because no rule in Figure 70.16 applies.

The type soundness theorem asserts that well typed expressions must either diverge (i.e., reduce for-
ever) or eventually produce values. This theorem is also called “Type Safety” [62]. They cannot get stuck. 
By ruling out stuck terms, this theorem asserts that well-typed expressions evaluate using only the 
behaviors described by the operational semantics.*

We can formally state this property with the following theorem:

Theorem 70.1  (Type soundness)

If ε ⊢ e : τ, then either e diverges or there exists some v such that e →⋆ v.

The proof of type soundness derives from two separate results, preservation and progress [62]. 
Suppose the expression e does not diverge, but steps to some e′ which cannot make any more steps. 
Preservation states that rewriting an expression does not change its type, so we know that e′ is also well 
typed. Progress states that well typed expressions are either values or can step. However, we assumed 
that e′ cannot make any more transitions, so it must be a value.

Theorem 70.2  (Preservation)

If Γ ⊢ e : τ and e → e′ then Γ ⊢ e′ : τ

The proof of the preservation theorem is by induction on the typing derivation using the substitution 
and weakening lemmas. This theorem is sometimes called Subject Reduction after a similar result in 
proof theory.

Theorem 70.3  (Progress)

If ε ⊢ e : τ then either e is a value, or there exists some e′ such that e → e′.

The proof of the progress theorem relies on the following canonical forms lemma. This lemma tells us 
that the type of a value is all we need to know to discern its form.

*	 There are no divergent terms in System F. However, this version of the type soundness theorem cannot derive that 
fact. Consequently, the same proof technique can be used for languages with nontermination.
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Lemma 70.9  (Canonical forms)

	 1.	 If ε ⊢ v : bool then v is true or false.
	 2.	 If ε ⊢ v : τ1 → τ2 then v is some function λx:τ.e.
	 3.	 If ε ⊢ v : ∀α:⋆.τ then v is some type abstraction Λα:⋆.e.

In System F, the proof of the canonical forms lemma is by mere inspection of the typing rules. For each 
appropriate form of value, there is only one type that it can be assigned. However, the proof of this 
lemma is not as straightforward in the presence of nontrivial type equality (Section 70.2.8) or subtyping 
(Section 70.2.9).

The appeal of small-step semantics is extensibility. The language can be extended with many sorts of 
structure, yet the proof of type soundness is still elementary. In particular, the techniques listed earlier 
are amenable to constructs such as tuples, disjoint unions, recursive functions, and data structures 
and objects. Furthermore, mutable state and exceptions require small revisions to the statements of the 
lemmas and theorems given earlier (e.g., allowing programs to throw exceptions as well as diverge or 
terminate with values). The reference Types and Programming Languages [41] gives the details of these 
extensions.

70.3.3  Equivalence and Parametricity

An important notion in the semantics of programming language is the definition of program equiva-
lence. This relation is a prerequisite for arguing about the correctness of a compiler optimization, or 
even trying to prove that a program behaves as expected. But what does it mean for two λ-calculus terms 
to be equal? What about terms from System F?

The operational semantics presented in the last section gives a starting point for a definition of equiv-
alence but it is not satisfactory. Consider the following naïve version of equivalence: two expressions 
are equal exactly when they both evaluate to the same value or when they both diverge. This definition 
makes sense for expressions of type nat or bool, but it fails to identify some “obviously equal” expres-
sions. For example, λx:nat.x + 1 and λx:nat.1 + x are not equal with this definition.

What is a better definition of equivalence? The gold standard is contextual equivalence, which 
identifies the most terms that can be done so in a manner consistent with the operational semantics. 
Informally, two expressions of type τ are contextually equal, written e ≃τ e′, if there is no program 
context that can distinguish them. For base types such as booleans, contextual equivalence coincides 
with the naïve equivalence defined above—a program context can only observe whether the result of 
the computation is true, false or divergence. But for functions, contextual equivalence is much coarser. 
There is no program context that can distinguish between λx:nat.x + 1 and λx:nat.1 + x. Furthermore, 
abstract types can restrict the ability of the context to make distinctions. For example, the terms pack 
⟨bool, true⟩ as ∃α : ⋆.α and pack ⟨bool, false⟩ as ∃α : ⋆.α are contextually equivalent because any con-
text must use these terms with type ∃α : ⋆.α.

However, showing that two programs are contextually equivalent can be difficult. Given two expres-
sions, how can we rigorously argue that there is no context that can tell them apart?

Fortunately, we can use types as the basis for a definition of equivalence for System F, written 
e1 ∼τ e2 [η]. We define this relation by recursion on the structure of the type τ.

This relation takes an argument η as part of its definition. This argument is a finite map from 
type variables to binary relations R. The empty map is written ε, and the notation η, α ↦ R extends 
a map η with a new association from the type variable α to some relation R:τ1 ⇔ τ2 between closed 
expressions of types τ1 and τ2. The notation η(α) looks up the binary relation associated with the type 
variable α.
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Definition 70.1  (Logical equivalence)

Define the relation between closed expressions e ∼τ e′ [η] by induction on the structure of τ as follows:*
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For expressions of type bool, this relation coincides with contextual (and naïve) equivalence. Two 
expressions of type bool are related when they both evaluate to true, both evaluate to false, or both 
diverge. Expressions with function type are related logically: they are related when they take related 
arguments to related results. Therefore, we call this relation a logical relation.

The last two cases of the definition, for type variables and quantified types, involve the finite map η. 
This map directly specifies the relation that is used when the type is a variable. Finally, the relation for 
polymorphic types includes all expressions that, when given any pair of closed types and any admissible 
relation between those types, produces related results. A relation R is admissible if it is one that respects 
contextual equivalence (i.e., if two terms are related, then all terms contextually equivalent to the first 
are related to all terms contextually equivalent to the second).

For this relation to make sense as a definition of equivalence, it must be an equivalence relation. 
Symmetry and transitivity are easy to show by induction on the structure of τ. However, to show that 
the relation is reflexive, we must extend this definition to open terms—two open terms are equivalent if 
a closing substitution of related terms produces related results. We can then show reflexivity of the open 
logical equivalence for all well-typed expressions.

In fact, not only is logical equivalence an equivalence relation, but it is the same relation as contextual 
equivalence. Therefore, to show that two terms are contextually equivalence, we need only show that 
they are logically equivalent.

For System F, the reflexivity property also goes by the name parametricity and is valuable for reason-
ing about parametric polymorphism. For example, by looking at the definition of logical equivalence, 
we can derive that the behavior of a program is not affected by the types that are used to instantiate 
polymorphic functions. If there were such a dependence, then the definition would not be free to choose 
any pair of types in the last line. This property justifies the type erasure step in the compilation of ML 
and Haskell programs. Types cannot influence computation so they are not needed at run time.

Furthermore, if we extend the aforementioned definition to include existential types, parametricity 
means that we can reason about type abstraction. If the type of a data structure is hidden, then it could 
be anything. Abstract data structures provide representation independence—they can be arbitrarily 
replaced by any other implementation, as long as there is some relation between them.

Another consequence of parametricity is the derivation of “free theorems,” properties that can be 
concluded about polymorphic functions merely by looking at their types [58]. For example, we can use 
parametricity to show that there is only one expression of type ∀α : ⋆.α → α up to contextual equiva-
lence. All expressions of this type must behave like the polymorphic identity function Λα : ⋆.λx:α.x.

The structure of the parametricity theorem is similar to Girard’s proof that all well-typed System F 
expressions terminate [17]. In particular, the flexibility of quantifying over all admissible relations in the 
last case of the definition resembles “Girard’s trick” of quantifying over all “reducibility candidates” [15].

*	 This definition of logical equivalence is adapted from Practical Foundations for Programming Languages [19].
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However, despite this similarity, parametricity is not limited to terminating languages. Techniques 
such as syntactic minimal invariance [4,9], top-top closure [45], and step-indexing [12], can be used to 
extend parametricity results to languages with features such as recursive functions, recursive types, and 
mutable state.

70.3.4  Machine Assistance for Formal Reasoning

Type systems for real languages are large and the proofs of their fundamental properties, such as pres-
ervation and progress, can be tedious. These proofs are not difficult. They often follow similar patterns 
and use similar lemmas in their development. What is difficult is managing the details to make sure 
that all interactions between various features are accounted for. Subtle flaws can lead to security holes, 
especially when type soundness guarantees are used to justify the security of software systems.

Fortunately, a number of reasoning tools exist to help language designers and type system researchers 
in their work.

One way to find bugs in type system designs is to test them. Tools such as the Twelf System [39] or 
PLT/Redex [13] assist in the creation of simple reference implementations. Automatic test case genera-
tion can help language designers find counterexamples to preservation or progress. The presence of an 
implementation also assists in the exploration of the expressiveness of the language—demonstrating 
that desirable programs actually do type check.

Some researchers use logical frameworks and proof assistants to develop and check their formal 
proofs. There are many suitable tools for this purpose; we mention only a few here. More information 
on this topic is available from the results of the POPLmark challenge [55]. The Twelf System [20,39] 
supports syntactic reasoning. Through using higher-order abstract syntax and hypothetical judgments, 
many structural rules of the type system, such as substitution and weakening, are automatic. Nominal 
Isabelle [56] provides a first-order treatment of bound variables, allowing expressive binding patterns in 
the context of a general purpose logic. Although the Coq proof assistant [54] is a general purpose tool 
for formal mathematics and does not provide specific support for type system representation, many 
researchers have used it for this purpose [40,43].

The Ott tool [51] provides assistance for type setting the syntax of programming languages and judg-
ments. It was used to produce this text. The same definitions can also be used to produce input for 
systems such as OCaml, Twelf, Coq, and Isabelle/HOL so that the paper, reference implementation, and 
formal system can be synchronized.

70.4 T ype Inference

In Section 70.2, we used local annotations to ensure that that it is always possible to type check pro-
grams. For several constructs of the language, we introduced both implicit and explicit forms, pointing 
out sufficient information that ensures that type checking is syntax directed. Of course, the proposed 
annotations are not the only solution—there are many similar strategies that take advantage of local 
information during type checking [44].

However, type annotations are not the only way to define an algorithm for type checking. Sometimes 
ambiguities in the typing process can be resolved through static analysis. This process is called type 
reconstruction or type inference. The task is, when given an implicitly-typed program e and a typing 
environment Γ, to find an explicitly-typed program e′ and type such that Γ ⊢ e:τ if and only if Γ ⊢ e′:τ.

70.4.1  Constraint-Based Type Inference

Constraint-based type inference breaks the problem of type reconstruction into two steps. First, traverse 
the program collecting constraints that must be satisfied in order for the program to type check. Next, 
determine if those constraints are indeed satisfiable.
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Type reconstruction for implicitly-typed STLC requires the following simple system of con-
straints. Here, a constraint is an equality between types, the trivial constraint, or a conjunction of 
constraints:

	 C C C:: | |= ={ }τ τ1 2 1 2true ∪

A constraint is satisfiable if there is some substitution for the type variables such that every equality is 
between syntactically equal types.

For example, given an expression λx.x 1, we can elaborate it to an expression λx:α.x 1, with type α → β 
under the constraint {α = nat → β}. We can satisfy the constraint with a substitution that maps α to 
nat → β, so we know that λx.x 1 type checks with type (nat → β) → β.

On the other hand, the expression λx.x x produces the constraint {α = α → β}. This constraint is not 
satisfiable by any substitution, so λx.x x does not type check.

For STLC (the language of Section 70.2.2), we can informally define constraint generation with the 
rules in Figure 70.17. These rules are syntax directed and specify an algorithm that, given a context Γ 
and expression e, produces a type τ and constraint C. If this constraint is satisfiable, then there is some 
valid typing derivation for the program e.

The rules in the figure are informal because they include “freshness assumptions,” written α fresh. 
This precondition asserts that the type variable α is freshly generated by the algorithm and distinct from 
all other variables. This new variable may appear in the output types and constraints. This informal-
ity can be resolved via bookkeeping, for example, threading a supply of fresh variables through the 
judgment.

The rules define a total algorithm by structural recursion over the input expression. For variables, 
this algorithm emits the type specified in the context and a trivial constraint. For functions, constraint 
generation for the body of the function uses a freshly generated type variable as the type of the argu-
ment. The generated constraints may constrain this variable depending on how that argument is used.

Constraint generation for application expressions uses a fresh type variable as the result type of the 
application. It determines the type of the function and arguments and then constrains the type of the 
function to have domain equal to the argument type. Likewise, for if expressions, the result constrains 
the type of the scrutinee of the if expression to be a boolean and constrains the two branches to have 
equal types.
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For example, we can use these rules to calculate the constraint for the expression λx.x 1. The produced 
type is α → β under the constraint true ∪ true ∪ {α = nat → β}.

	

ε α α ε α β
ε α β
, : : , , : : ,

, : : , {
x x x

x x
� �
� ∪ ∪

true nat true fresh
true true

1
1 αα β α

ε λ α β α β
= →

→ = →
nat fresh

true true nat

}

. : , { }� ∪ ∪x x 1

If the constraint is satisfiable, unification [49] can rewrite it into a “solved form,” θ. A constraint is in 
solved form if it can be viewed as a substitution. In other words, the constraint is solved when it is either 
true or a sequence of the form {α1 = τ1} ∪ … ∪ {αi = τi}, where the variables α1…αi are distinct and do 
not appear in τ1…τi.

Constraint generation is a total operation, but unification only succeeds if the constraint is satisfiable.
Type inference for STLC is sound and complete with respect to the Curry-style type system. Any 

program that produces a satisfiable constraint type checks without annotations. Likewise, all well-typed 
programs produce satisfiable constraints.

Theorem 70.4  (Soundness)

If Γ ↦ e : τ, C and Unify(C) = θ then θ(Γ) ⊢ e:θ(τ)

Theorem 70.5  (Completeness)

If Γ ⊢ e : τ and Γ ↦ e : τ1, C, then there is some θ such that Unify(C) = θ and θ(τ1) = τ

70.4.2 T he Hindley–Milner Type System

The constraint generation process of the previous section directly extends to tuples, records, sums, and 
variants. We can also adapt the procedure to include recursive types. However, it does not extend to the 
polymorphic language in Section 70.2.6. In fact, type reconstruction for implicitly-typed System F is 
known to be undecidable [38,61].

How do languages like Haskell and ML accommodate polymorphism with type inference? The answer 
is that they restrict the uses of polymorphism to a tractable subset. This subset, called the Hindley–
Milner (HM) (or Damas–Hindley–Milner) type system [10,22] restricts polymorphic types to prenex 
quantification. Instead of allowing quantification to appear anywhere in types, it must occur only at the 
top level.

The HM type system divides types into two sorts: polytypes that contain top-level quantification and 
monotypes that do not. Next we use σ for types that may start with a universal quantifier, and τ for types 
that contain no quantifiers whatsoever:

	

polytypes

monotypes

σ α σ τ

τ α τ τ

:: : . |

:: | | |

= ∀

= →

�

nat bool

Monotypes are a subset of the polytypes and a polytype may or may not start with quantification. In 
other descriptions of this type system, monotypes are called “types” and polytypes are called “type 
schemes,” indicating that polytypes can be thought of as a family of types, parameterized by type 
variables.
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A polytype σ generalizes a monotype τ, written σ ≼ τ, when τ is a substitution instance of the quan-
tified variables of σ. This relation is defined at the top of Figure 70.18. Equivalently, if σ is of the form 
∀α1 : ⋆.…∀αi : ⋆.τ′ then τ must be equal to [τ1/α1]…[τi/αi]τ′. If this relation holds, then conversely, we say 
that τ is an instance or specialization of σ.

For example, the polytype ∀α : ⋆.α → α generalizes the monotypes nat → nat and bool → bool.
We can extend this relation to a judgment between polytypes. We say that σ1 is more general than σ2 

when the judgment σ1 ≼ σ2 is derivable using the last rule in Figure 70.18. If σ1 is more general than σ2, 
then any instance of σ2 is also an instance of σ1. For example, the polytype ∀α : ⋆.α → α is more general 
than the polytype ∀α : ⋆.∀β : ⋆.(α → β) → (α → β) and the monotype (nat → bool) → (nat → bool) is an 
instance of both polytypes.

The HM type system uses the distinction between monotypes and polytypes to restrict the typing 
rules of an implicit, polymorphic λ-calculus, as shown in Figure 70.19. The restrictions show up in two 
places: functions must take monotypes as arguments (rules HM_abs and HM_app) and polymorphism 
can only be instantiated with monotypes (rule HM_inst).

A nonessential difference between this system and the implicit system of Section 70.2.6 is that type 
variables are not recorded in the typing context. This bookkeeping is unnecessary because all polymor-
phism in this system is first order (i.e., all variables have kind ⋆). As a result, all types are well formed 
and there is no need for the Γ ⊢ τ : ⋆ judgment. This system ensures that generalized type variables in 
rule HM_gen are unique and unconstrained by ensuring that they do not appear free in the typing 
environment.

If a program type checks using a derivation produced by these rules, then the Damas–Milner 
type inference algorithm will be able to infer its type. As in the previous section, this algorithm 
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generates constraints by traversing an expression and solves them via unification to determine 
whether the expression is typeable.

Although the HM type system allows polytypes to be instantiated and generalized anywhere in the 
typing derivation, the algorithm uses instantiation and generalization only at specific points in the 
expression. Instantiation occurs only at the uses of variables—if a variable has a polymorphic type in 
the context, then all of its type arguments are immediately instantiated with fresh unification variables. 
Furthermore, generalization only occurs at let-binding. All free type variables in the type of the right-
hand-side of a let-expression are generalized by the algorithm.

Even though the rules in Figure 70.19 do not have the uniqueness of types property, the Damas–
Milner algorithm is able to type check the same programs as the rules. For example, according to the 
rules, the expression λx.x can be given the types nat → nat and ∀α:⋆.α → α. The algorithm produces the 
type ∀α:⋆.α → α for this expression because that is the more general type according to the ≼ relation. 
In fact, for any typeable expression, there is exactly one most general type for that expression, called the 
principal type. The algorithm works by always inferring this type.

Theorem 70.6  (Principal types)

If e is typeable, then there is some type σ, such that for all other types σ′ that e could be typed with in 
the same context, σ ≼ σ′.

The principal type theorem was first shown for a simple type system without let-expressions by 
Hindley [22] and was then extended to let polymorphism by Damas and Milner [10]. A modern treat-
ment of this result and thorough discussion appears in Pottier and Rémy [46].

HM polymorphism is a “sweet spot” for implicitly-typed functional languages. It has been difficult to 
extend this type system with greater expressivity while retaining full type inference. One exception is 
rank two polymorphism, where functions may take polymorphic functions as arguments but restricts 
quantifiers from appearing to the left of two or more arrows [26].

However, by relaxing the requirement of complete inference, modern functional languages incorpo-
rate many extensions of HM polymorphism. Polymorphic recursion [34], higher-rank polymorphism 
[16,36], and existential types [27] can be adapted using annotations. Annotations also allow the MLF 
type system [28] to include first-class polymorphism as in System F. The HM(X) type system [37] for-
malizes an extension with quantification over arbitrary constraints drawn from arbitrary constraint 
systems. The OCaml compiler uses constraints for subtyping and row types [47], whereas the GHC 
compiler uses constraints for type classes, GADTs and type-level functions [57].

70.5  Conclusion

This chapter is intended as an entry point to the field of type systems research. It provides a foundation 
for the mathematical modeling of type systems, defining the prevalent notation, terminology and struc-
tures. The type systems featured in recent research papers use the same tools and methods that we have 
presented here and sometimes use similar notation. In particular, these papers employ inference rules 
and judgments for the definitions of the type system, base their model of computation on the λ-calculus, 
and prove preservation and progress theorems.

The study of type systems themselves frame a modern approach to programming language research. 
The precision that the study of type systems requires extends to a general study of programming language 
semantics. The formalisms that are the basis of type systems research give benefits to related endeavors, 
including language design, compiler construction, tool development, language learning, and program 
understanding. Furthermore, type systems provide several layers of understanding—computation can 
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be modeled not just in terms of what it does at run time, but also what can be known about it at compile 
time. Finally, type systems maintain the connection between programming languages and logic, con-
tinuing a long tradition of cross-fertilization.

Acknowledgments

This work was partially supported by the National Science Foundation under Grant Nos. 0910500 and 
1116620. Thanks to Richard Eisenberg for careful reading and feedback.

Key Terms

Abstract type: A type whose representation is hidden, so that the only interactions that it supports are 
declared by its interface.

α-equivalence: An equivalence relation that identifies terms up to systematic renaming of bound variables.
Axiom: An inference rule with no premises.
Capture-avoiding substitution: The substitution of a term e1 for a free variable in another term e2, 

where the bound variables of e2 are renamed to avoid capturing the free variables in e1.
Church-style: An explicitly-typed language.
Compositional type checking: When the type of a compound construct is derived from the types of its 

subexpressions.
Contravariant: A component of a type where subtyping is defined inversely with respect to the entire 

type. The primary example is the domain of function types.
Covariant: A component of a type where subtyping is defined analogously with respect to the entire type.
Currying: Transforming a function that takes a tuple of arguments so that it can be partially applied to 

each argument in turn. For example, currying converts a function of type (τ1 × τ2) → τ into a 
function of type τ1 → τ2 → τ.

Curry–Howard Isomorphism: A relationship between type systems and constructive logic, where 
types correspond to propositions and programs correspond to proofs.

Curry-style: An implicitly-typed language.
Derivation: A tree of judgments obtained by applying the rules of a type system.
First-order type system: A type system that does not include quantified types.
Ill-typed: An expression that cannot be assigned a type using any derivation of a given type system.
Impredicative polymorphism: Polymorphic types, such as ∀α : ⋆.τ or ∃α : ⋆.τ, where the type variable 

ranges over polymorphic types, including themselves.
Inference rule: A schematic for a typing derivation, declaring the judgment that can be derived (below 

the line) from premises (the judgments above the line).
Judgment: A proposition about the relationship between the entities of a programming language, 

including typing context, terms, and types. A derivation is a proof of the validity of a judgment.
Lambda calculus: A foundational model of computation based on functions.
Metatheory: Logical properties that are proven about a type system or programming language.
Predicative polymorphism: Polymorphic types, such as ∀α : ⋆.τ or ∃α : ⋆.τ, where the type variable does not 

range over all types, but only over some “smaller” collection of types that does not include the types 
themselves.

Second-order type system: A type system that includes quantified types, either universal or existential.
Static type system: A type system that supports type checking, an algorithm that determines whether a 

given program is well-typed just by looking at the text of the program at compile time.
Subsumption: A fundamental property of languages with subtyping: any expression of type τ may also 

be given any supertype of τ.
Subtype and supertype: In a valid judgment Γ ⊢ σ <: τ, σ is a subtype of τ and τ is a supertype of σ. Any 

context that requires a value of type τ can be safely provided with a value of type σ.
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Syntax-directed type system: A set of typing rules that describe a simple algorithm that determines 
whether an expression is well typed by using the syntactic form of the expression.

Typeable expression: An expression that appears in a derivable typing judgment.
Type checker: The part of the compiler or interpreter that performs type checking.
Type checking: The process of checking a program to make sure that it complies with a given type system.
Type inference: The process of determining the type of a program when it is not directly specified.
Type rule: A component of a type system.
Type system: The collection of rules that describes the types of programs.
Typing environment or typing context: A list of assumptions about the types of variables.
Uniqueness of derivations: For any judgment Γ ⊢ e:τ, there is at most one derivation.
Uniqueness of types: For any expression e and typing context Γ, there is at most one type τ such that the 

judgment Γ ⊢ e:τ, is derivable.
Valid judgment: A judgment that can be derived by a given type system.
Value: A desired result of computation.
Well-typed: An expression that can be assigned a type and appears in a valid typing judgment.

Further Information

Further information about the study of type systems of programming languages is available from sev-
eral recent textbooks. Pierce’s textbook [41], Types and Programming Languages is a standard reference 
and provides an extensive introduction to type systems research and reference for many topics includ-
ing subtyping, recursive types, and first-order and higher-order polymorphism. The sequel, Advanced 
Topics in Types and Programming Languages, edited by Pierce [42], contains in-depth articles about logi-
cal relations, type inference, and many other topics. Robert Harper’s recent book, Practical Foundations 
for Programming Languages [19], provides a modern exposition on the technical issues in this chapter. 
Cardelli’s article [7] in The Computer Science and Engineering Handbook is an inspiration for this work 
and provides additional introductory material.

Many ideas that find their way into programming languages have their roots in Type Theory, a foun-
dational logic grounded in computation. Barendregt’s article, “Lambda Calculi with Types” [3], dis-
cusses Curry and Church-style type systems as well as their relation to logics via the Curry–Howard 
isomorphism. Nordstrom, Petersson and Smith [35] summarizes Martin-Löf ’s work, which introduced 
the notation for judgments and typing rules. Girard, Lafont and Taylor [18] describe the connections 
between System F and computation.

The latest research papers about type systems appear in the ACM SIGPLAN conferences Principles 
of Programming Languages (POPL), International Conference on Functional Programming (ICFP), and 
Object-Oriented Programming Languages, Systems and Applications (OOPSLA).
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71.1  Introduction

Computers do not make mistakes, or so we are told. However, computer software is written by, and 
hardware systems are designed and assembled by, humans, who certainly do make mistakes.

Errors in a computer system may be as a result of misunderstood or contradictory requirements, 
unfamiliarity with the problem, or simply human error during design or coding of the system. 
Alarmingly, the costs of maintaining software—the costs of rectifying errors and adapting the system 
to meet changing requirements or changes in the environment of the system—greatly exceed the origi-
nal implementation costs.

As computer systems are being used increasingly in safety-critical applications—that is, systems 
where a failure could result in the loss of human life, mass destruction of property, or significant finan-
cial loss—both the media and various regulatory bodies involved with standards, especially covering 
safety-critical applications (Bowen and Stavridou 1993, Gnesi and Margaria 2012) and security applica-
tions (Grumberg et al. 2008) have considered formal methods and their role in the specification and 
design phases of system development and software engineering for many years (Bjørner 2000).

71.2  Underlying Principles

There can be some confusion over what is meant by a “specification” and a “model.” David Parnas has 
differentiated between specification and descriptions or models as follows (Parnas 1995):

•	 A description is a statement of some of the actual attributes of a product, or a set of products.
•	 A specification is a statement of properties required of a product, or a set of products.
•	 A model is a product, neither a description nor a specification. Often it is a product that has some, 

but not all, of the properties of some “real product.”
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Others use the terms specification and model more loosely; a model may sometimes be used as a speci-
fication. The process of developing a specification into a final product is one in which a model may be 
used along the way or even as a starting point.

71.2.1  Formal Methods

Over the last 50 years, computer systems have increased rapidly in terms of both size and complexity. 
As a result, it is both naive and dangerous to expect a development team to undertake a project without 
stating clearly and precisely what is required of the system. This is done as part of the requirements speci-
fication phase of the software life cycle, the aim of which is to describe what the system is to do, rather 
than how it will do it.

The use of natural language for the specification of system requirements tends to result in ambigu-
ity and requirements that may be mutually exclusive. Formal methods have evolved as an attempt to 
overcome such problems by employing discrete mathematics to describe the function and architecture 
of a hardware or software system, and various forms of logic to reason about requirements, their interac-
tions, and validity.

The term formal methods is itself misleading; it originates from formal logic but is now used in com-
puting to refer to a plethora of mathematically based activities. For our purposes, a formal method 
consists of notations and tools with a mathematical basis that are used to unambiguously specify the 
requirements of a computer system and that support the proof of properties of this specification and 
proofs of correctness of an eventual implementation with respect to the specification.

Indeed, it is true to say that so-called formal methods are not so much methods as formal systems. 
Although the popular formal methods provide a formal notation, or formal specification language, 
they do not adequately incorporate many of the methodological aspects of traditional development 
methods.

Even the term formal specification is open to misinterpretation by different groups of people. Two 
alternative definitions for “formal specification” are given in a glossary issued by the IEEE (IEEE 
1991):

	 1.	 A specification written and approved in accordance with established standards
	 2.	 A specification written in a formal notation, often for use in proof of correctness

In this chapter, we adopt the latter definition, which is the meaning assumed by most formal method 
users.

The notation employed as part of a formal method is “formal” in that it has a mathematical seman-
tics so that it can be used to express specifications in a clear and unambiguous manner and allow us to 
abstract from actual implementations to consider only the salient issues. This is something that many 
programmers find difficult to do because they are used to thinking about implementation issues in a 
very concrete manner.

While programming languages are formal languages, they are generally not used in formal speci-
fication, as most languages do not have a full formal semantics, and they force us to address imple-
mentation issues before we have a clear description of what we want the system to do. Instead, we use 
the language of mathematics, which is universally understood, well established in notation, and most 
importantly enables the generalization of a problem so that it can apply to an unlimited number of dif-
ferent cases. Here we have the key to the success of formal specification—one must abstract away from 
the details of the implementation and consider only the essential relationships of the data, and we can 
model even the most complex systems using simple mathematical objects: for example, sets, relations, 
functions, etc.

At the specification phase, the emphasis is on clarity and precision, rather than efficiency. Eventually, 
however, one must consider how a system can be implemented in a programming language that, 
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in general, will not support abstract mathematical objects (functional programming languages are an 
exception) and will be efficient enough to meet agreed requirements and concrete enough to run on the 
available hardware configuration.

As in structured design methods, the formal specification must be translated to a design—a clear plan 
for implementation of the system specification—and eventually into its equivalent in a programming 
language. This approach is known as refinement (Back and von Wright 1998).

The process of data refinement involves the transition from abstract data types such as sets, sequences, 
and mappings to more concrete data types such as arrays, pointers, and record structures, and the sub-
sequent verification that the concrete representation can adequately capture all of the data in the formal 
specification. Then, in a process known as operation refinement, each operation must be translated so 
that it operates on the concrete data types. In addition, a number of proof obligations must be satisfied, 
demonstrating that each concrete operation is indeed a “refinement” of the abstract operation—that is, 
performing at least the same functions as the abstract equivalent, but more concretely, more efficiently, 
involving less nondeterminism, etc.

Many specification languages have relatively simple underlying mathematical concepts involved. For 
example, the Z (pronounced “zed”) notation (Spivey 2001, ISO 2002) is based on (typed) set theory and 
first-order predicate logic, both of which could be taught at school level. The problem is that many soft-
ware developers do not currently have the necessary education and training to understand these basic 
principles, although there have been attempts to integrate suitable courses into university curricula 
(Bowen and Reeves 2011).

It is important for students who intend to become software developers to learn how to abstract away 
from implementation detail when producing a system specification. Many find this process of abstrac-
tion a difficult skill to master. It can be useful for reverse engineering as part of the software main-
tenance process, to produce a specification of an existing system that requires restructuring. Equally 
important is the skill of refining an abstract specification toward a concrete implementation, in the form 
of a program for development purposes (Morgan 1998).

The process of refinement is often carried out informally because of the potentially high cost of fully 
formal refinement. Given an implementation, it is theoretically possible, although often intractable, to 
verify that it is correct with respect to a specification, if both are mathematically defined. More use-
fully, it is possible to validate a formal specification by formulating required or expected properties and 
formally proving, or at least informally demonstrating, that these hold. This can reveal omissions or 
unexpected consequences of a specification. Verification and validation are complementary techniques, 
both of which can expose errors.

71.3  Best Practices

Technology transfer (e.g., see Ball et al. 2004) has always been an issue with formal methods, largely 
because of the significant training and expertise that is necessary for their use. Most engineering dis-
ciplines accept mathematics as the underpinning foundations, to allow calculation of design param-
eters before the implementation of a product. However, software engineers have been somewhat slow 
to accept such principles in practice, despite the very mathematical nature of all software. This is partly 
because it is still possible to produce remarkably reliable systems without using formal methods. In any 
case, the use of mathematics for software engineering is a matter of continuing debate (Tremblay 2000, 
Hinchey et al. 2008, Parnas 2010).

There are well-documented and well-established industrial examples in which a formal approach has 
been taken to develop significant systems in a beneficial manner that are easily accessible by profession-
als (e.g., see Hinchey and Bowen 1999, Ball et al. 2004). Formal methods, including formal specification 
and modeling, should be considered as one of the possible techniques to improve software quality, where 
it can be demonstrated to do this cost-effectively.
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In fact, just using formal specification within the software development process has been shown to 
have benefits in reducing the overall development cost (Bowen and Stavridou 1993). Costs tend to be 
increased early in the life cycle, but reduced later on at the programming, testing, and maintenance 
stages, where correction of errors is far more expensive. A formal specification can be especially useful 
in generating test cases rigorously and cost-effectively (Hierons et al. 2009).

An early and widely publicized successful example of the use of formal methods in industry was the 
IBM CICS (Customer Information Control System) project, where Z was used to specify a portion of 
this large transaction processing system with an estimated 9% reduction in development costs. There 
were approximately half the usual number of errors discovered in the software, leading to increased 
software quality.

Writing a good specification is something that comes only with practice, despite the existence of 
guidelines. However, there are some good reasons why a mathematical approach may be beneficial in 
producing a specification:
Precision: Natural language and diagrams can be very ambiguous. A mathematical notation allows the 
specifier to be very exact about what is specified. It also allows the reader of a specification to identify 
properties, problems, etc., which may not be obvious otherwise.
Conciseness: A formal specification, although precise, is also very concise compared with an equiva-
lent high-level language program, which is often the first formalization of a system produced if formal 
methods are not used. Such a specification can be an order of magnitude smaller than the program that 
implements it, and hence is that much easier to comprehend.
Abstraction: It is all too easy to become mired in detail when producing a specification, making it very 
confusing and obscure to the reader. A formal notation allows the writer to concentrate on the essential 
features of a system, ignoring those that are implementation details. However, this is perhaps one of the 
most difficult skills in producing a specification.
Reasoning: Once a formal specification is available, mathematical reasoning is possible to aid in its vali-
dation. This is also useful for discussion implications of features, especially within a team of designers.
A design team that understands a particular formal specification notation can benefit from the above 
improvements in the specification process. It should be noted that much of the benefit of a formal speci-
fication derives from the process of producing the specification, as well as the existence of the formal 
specification after this (Hall 1990).

71.3.1  Specification Languages

The choice of specification language is likely to be influenced by many factors: previous experience, 
availability of tools, standards imposed by various regulatory bodies, and the particular aspects that 
must be addressed by the system in question. Another consideration is the degree to which a speci-
fication language is executable. This is the subject of some dispute, and the reader is directed else-
where for a discussion of this topic (Hayes and Jones 1989, Fuchs 1992, Bowen and Hinchey 1999). 
Indeed, the development of any complex system is likely to require the use of multiple notations at 
different stages in the process and to describe different aspects of a system at various levels of abstrac-
tion. As a result, over the last several decades, the vast majority of the mainstream formal methods 
have been extended and re-interpreted to address issues of concurrency (Milner 1999, Abdallah et al. 
2005), real-time behavior (Zhou and Hansen 2003), and object orientation (Duke and Rose 2000, 
Smith 2000).

There is always, necessarily, a certain degree of trade-off between the expressiveness of a specifica-
tion language and the levels of abstraction that it supports. While certain languages may have wider 
“vocabularies” and constructs to support the particular situations that need to be handled, they are 
likely to force us toward particular implementations; while they will shorten a specification, they will 
make it less abstract and more difficult for reasoning (Bowen and Hinchey, 1995a).
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Formal specification languages can be divided into essentially three classes:

Model-oriented approaches as exemplified by ASM (Abstract State Machines) (Börger and Stärk 
2003), B-Method (Schneider 2001), Event-B (Abrial 2010), RAISE (Rigorous Approach to 
Industrial Software Engineering) (Dang Van et al. 2002), VDM (Vienna Development Method) 
(ISO 1996), and the Z notation (Spivey 2001, ISO 2002). These approaches involve the deriva-
tion of an explicit model of the system’s desired behavior in terms of abstract mathematical 
objects.

Property-oriented approaches using axiomatic semantics (such as Larch Guttag 1993), which 
use first-order predicate logic to express preconditions and postconditions of operations over 
abstract data types, and algebraic semantics (such as the OBJ family of languages including 
CafeOBJ [Futatsugi et al. 2000]), which are based on multisorted algebras and relate properties 
of the system in question to equations over the entities of the system.

Process algebras such as CSP (Communicating Sequential Processes) (Abdallah et al. 2005) and 
the π-calculus (Milner 1999), which have evolved to meet the needs of concurrent, distributed, 
and real-time systems, and which describe the behavior of such systems by describing their 
algebras of communicating processes.

It is not always possible to classify a formal specification language in just one of the categories above. 
LOTOS (Language Of Temporal Ordering Specifications) (ISO 1989, Turner 1993), for example, is a 
combination of ACT ONE and CCS (Calculus of Communicating Systems); while it can be classified as 
an algebraic approach, it exhibits many properties of a process algebra too. Similarly, the RAISE devel-
opment method is based on extending a model-based specification language (specifically, VDM-SL) 
with concurrent and temporal aspects.

As well as the basic mathematics, a specification language should also include facilities for struc-
turing large specifications. Mathematics alone is all very well in the small, but if a specification is a 
thousand pages long (and formal specifications of this length exist), there must be aids to organize the 
inevitable complexity. Z provides the schema notation for this purpose, which packages up the math-
ematics so that it can be reused subsequently in the specification. A number of schema operators, many 
matching logical connectives, allow recombination in a flexible manner.

A formal specification should also include an informal explanation to put the mathematical 
description into context and help the reader understand the mathematics. Ideally, the natural language 
description should be understandable on its own, although the formal text is the final arbiter as to the 
meaning of the specification. As a rough guide, the formal and informal descriptions should normally 
be of approximately the same length. The use of mathematical terms should be minimized, unless expla-
nations are being included for didactic purposes.

Formal methods have proved useful in embedded systems and control systems (e.g., see Tretmans 
et  al. 2001, Tiwari et al. 2003, Kordon and Lemoine 2010). Synchronous languages, such as Esterel, 
Lustre and Signal, have also been developed for reactive systems requiring continuous interaction with 
their environment (Benveniste et al. 2003). Specialist and combined languages may be needed for some 
systems. Hybrid systems (Jones et al. 2007) extend the concept of real-time systems. In the latter, time 
must be considered, possibly as a continuous variable. In hybrid systems, the number of continuous 
variables may be increased. This is useful in control systems where a digital computer is responding to 
real-world analog signals.

More visual formalisms, such as the well-established Statecharts approach, are available and are 
appealing for industrial use, with the associated STATEMENT tool support (Harel and Politi 1998) that 
has been incorporated into the widely used Unified Modeling Language (UML). However, the reason-
ing aspects and the exact semantics are less well defined. Some specification languages, such as SDL 
(Specification and Design Language) (Turner 1993), have provided particularly good commercial tool 
support, which is very important for industrial use.
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There have been many attempts to improve the formality of the various structural design notations 
in widespread use (Bowen and Hinchey 1999). UML includes the Object Constraint Language (OCL) 
(Warmer and Kleppe 2003) developed by IBM, an expression language that allows constraints to be 
formalized, but this part of UML is under-utilized with a lack of tool support and is only a small part 
of UML in any case.

Object orientation is an important development in programming languages that has also been 
reflected in specification languages. For example, Object-Z is an object-oriented version of the Z nota-
tion that has gained some acceptance (Duke and Rose 2000, Smith 2000, Derrick and Boiten 2001). The 
Perfect Developer tool has been developed by Escher Technologies to refine formal specifications to 
object-oriented programming languages such as Java.

71.3.2  Modeling Systems

As previously discussed, the difference between specification and modeling is open to some debate. 
Different specification languages emphasize and allow modeling to different extents. Algebraic specifi-
cation eschews the modeling approach, but other specification languages such as Z and VDM actively 
encourage it.

Some styles of modeling have been formulated for specific purposes. For example, Petri nets may be 
applied in the modeling of concurrent systems using a specific diagrammatic notation that is quite easily 
formalizable. The approach is appealing, but the complexity can become overwhelming. Features such 
as deadlock are detectable, but full analysis can be intractable in practice, since the problem of scaling 
is not well addressed.

Mathematical modeling allows reasoning about (some parts of) a system of interest. Here, aspects of 
the system are defined mathematically, allowing the behavior of the system to be predicted. If the pre-
diction is correct this reinforces confidence in the model. This approach is familiar to many scientists 
and engineers.

Executable models allow rapid prototyping of systems (Fuchs 1992). A very high-level program-
ming language such as a functional program or a logic program (which have mathematical foun-
dations) may be used to check the behavior of the system. Rapid prototyping can be useful in 
demonstrating a system to a customer before the expensive business of building the actual sys-
tem is undertaken. Again, scientists and engineers are used to carrying out experiments by using 
such models.

A branch of formal methods known as model checking allows systems to be tested exhaustively 
(Grumberg et al. 2000, Bérard et al. 2001). Most computer-based systems are far too complicated to test 
completely because the number of ways the system could be used is far too large. However, a number of 
techniques, Binary Decision Diagrams (BDDs) for example, allow relatively efficient checking of signifi-
cant systems, especially for hardware (Kropf 2000). An extension of this technique, known as symbolic 
model checking, allows even more generality to be introduced.

Mechanical tools exist to handle BDDs and other model-checking approaches efficiently. SPIN is one 
of the leading general model-checking tools that is widely used (Holzmann 2003). A more specialist 
tool based on CSP (Abdallah et al. 2005) known as FDR (Failure Divergence Refinement) allows model 
checking to be applied to concurrent systems that can be specified in CSP.

71.3.3  Conclusion

Driving forces for best practice include standards, education, training, tools, available staff, certi-
fication, accreditation, legal issues, etc. A full discussion of these is out of the scope of this chapter. 
Aspects of best practice for specification and modeling depend significantly on the selected speci-
fication notation. One of the more popular formal notations that has been used in industry is Z. To 
illustrate the way in which this notation is typically used, a case study using Z is presented in the 
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next section. This demonstrates both some of the underlying principles, and best practice, when 
employing Z for specification and modeling.

71.4  Case Study

The Z notation (Spivey 2001, ISO 2002) is one of the most widely used formal specification languages 
and is normally used in a modeling style. An abstract state is first formulated, and then operations on 
that state are specified. In this section, we present a case study using Z to illustrate this style of specifica-
tion. The example does not exhaustively present the features of Z, but gives a flavor of the style of pre-
sentation of a typical Z specification, with extra informal explanation on the notation and conventions 
where required. Z constructs are introduced as the example is presented and a glossary of Z notation is 
provided at the end of the chapter for the convenience of the reader. A basic understanding of set theory 
and logic will help in understanding the specification.

Window management systems are used extensively for user interfaces to computer systems. The spec-
ification given here is of a (fictitious) window system. For more realistic examples of some implemented 
windows systems presented in Z (see Bowen 2003).

71.4.1  Basic Types

Z is a typed language, which allows a certain amount of consistency checking by a mechanical type-
checker. However, the only predefined type is the set of integers, denoted Z. Further types must be 
defined for a particular specification. These basic types (also known as given sets) may be introduced as 
follows:

	 [ , ]Position Value

This provides a set of pixel (picture element) positions (e.g., coordinates on a screen), together with pos-
sible pixel values (e.g., colors). Note that we are no more specific than this in the specification presented 
here. It is important not to introduce irrelevant implementation details into a specification, since this 
restricts the eventual implementer of the system and clutters the specification with information that is 
not required at a high level of abstraction.

71.4.2 A bbreviation Definitions

It is often useful to include definitions in a specification for commonly used concepts. This helps to 
reduce the size of the specification and introduces important concepts to the reader in one place, allow-
ing them to be used later within the specification. Pixel maps, relating pixels to their associated values, 
are an integral part of most window systems. In fact, each pixel has at most one value (assuming it is 
defined), so we can model a pixel map as a partial function from pixel positions to their values:

	 →Pixmap == Position   Value|

71.4.3  Generic Definitions

Z has its own library of “tool-kit” operators, formally defined in terms of more basic mathematical con-
cepts, as presented in Spivey (2001). Sometimes it is helpful to extend this library with further generic 
definitions which may be used to define a family of generic constants, applicable to a variety of basic 
types. Such definitions may be useful for other specifications as well as the one being constructed, allow-
ing reuse of specification components.
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For example, a sequence of pixel maps may be overlaid in the order given by the sequence to produce a 
new pixel map. An operator to do this could equally well apply to other partial functions as well as pixel 
maps, so we can define it generically, using a “distributed overriding” operator:

	

[P, V]
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Here, the base cases for the empty sequence 〈〉 and a singleton sequence 〈p〉 are considered, followed by 
the more general case of two arbitrary sequences concatenated together s⁀t. Distributed overriding is 
particularly useful for the specification presented here in specifying the view on a screen of a display, 
given a sequence of possibly overlapping pixel maps.

Z tool-kit operators normally have a number of laws associated with them, which are helpful in reason-
ing about specifications. For example, the following law applies for the distributed overriding operator:

	 p p Pixmap p p p p1 2 1 2 1 2, : , =�⊕ 〈 〉 ⊕/

Such laws must be proved from the original definition. For example, in this case:
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If the windows in a sequence overlap, it is useful to be able to move selected windows so that their con-
tents may be viewed (or hidden). This is analogous to stuffing a pile of sheets of paper (windows) on a 
desk (screen). Note that the sheets of paper may be of different sizes and in different positions on the desk.

For example, the following function may be used to move a selected window number in the sequence 
(if it exists) to the top of the pile (i.e., the end of the sequence). This can also be defined generically:

	

[W]

top

top n s if n dom s then squash s) else  ss (n)

:

: :; s

seq W

seq W

seq W

n

A

({n}

If the window number n is in the sequence of windows s then it is removed from the sequence (by elimi-
nating that element and squashing the resulting function back into a sequence). This element is then 
concatenated to the end of the sequence. If the window number is not valid, the sequence of windows is 
unaffected. The exact technical details require some knowledge of Z, but the above example illustrates 
the fact that important concepts can be captured formally using relatively short definitions.

In this simple example, we shall ignore the complication of window identifiers. We simply use the 
position of the window in the sequence to identify it, assuming that the user of the system keeps track 
of which window is which.
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71.4.4 A bstract System State

The window display may be modeled as a sequence of windows against a background “window” which 
is the size of the display screen itself. The order of the sequence defines which windows are on top in the 
case of overlapping windows, in ascending order. Only parts of windows that are contained within the 
background area are displayed.

	

SYS

windows : seq Pixmap

screen, background : Pixmap

backgroundscreen (dom background /windows)

In the specification of the abstract state earlier, the components windows (a sequence of pixel maps), 
screen (as displayed to the user), and background (the display if no windows are present), are packaged 
together in a schema box called SYS. The declarations with their associated type information are above 
the line and predicates defining constraints between these components are (optionally) included below 
the line. Here, what appears on the display screen is defined in terms of the background pixel map over-
ridden by the sequence of windows in the system, constrained to the background area as defined by its 
domain of pixel positions.

The screen area is the same as the background area. This can be formalized as follows:

	 SYS screen background  dom = dom�

It is useful to prove such properties correct, either informally, even just mentally, or formally, in order 
to validate that the specification behaves as expected. Discovering that an expected property does not 
hold may expose an error in a specification, perhaps in the form of an extra constraint that is required 
but has been omitted.

Note that the user can see only the display screen. We can specify this view formally by hiding (exis-
tentially quantifying) other components in the SYS schema to produce a new View schema, defined 
horizontally:

	 View SYS windows background=� \( , )

Initially there are no windows in the system:

	 InitSYS SYS windows  [  |  = ]= ′ ′ 〈〉�

It is important to define the initial state and also to ensure that it exists. (Otherwise the system can-
not start to operate.) The state at initialization normally consists of the abstract state for the system 
with some extra constraints. By including SYS′ in the definition above, all the components in SYS 
are defined, with the extra decoration ′ added to each component name. The prime (or dash) ′ is used 
by convention in Z to indicate the state after an operation. Here we are interested in the state after 
initialization. Again, we can formulate a property to check that our intuition about the specification 
is correct:

	 InitSYS screen background� ′ = ′

That is, the screen display at initialization should consist of just the background.
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Next we can define general properties about the change of state for operations on the system. By con-
vention in Z, ∆ (“delta”) is used to indicate a change of state where both an unprimed before state SYS 
(for example) and a primed after state (e.g., SYS′) are defined:

	 ∆SYS SYS SYS background background= ′ ′ =�[ ; | ]

Here we have added the extra constraint that the background never changes for any operation. This 
means that we do not have to consider and define this for each individual operation that uses ∆SYS 
subsequently, since the predicate background′ = background is automatically included (conjoined) with 
any other predicates that are defined.

Note that if the before and after states are not related in an operation scheme, then the after state 
can take on any value. This is the opposite of most programming languages, where unreferenced 
variables retain their values by default. However, this style is useful in specifications since it allows 
nondeterminism to be included easily, where more than one outcome of an operation is allowed. 
Eventually, of course, the implementer will have to choose a particular outcome, but if the choice is 
not important at the specification level then leaving the options open gives the implementer a greater 
choice, possibly allowing different optimization strategies in different implementations of the same 
specification.

Some operations may leave the state of the system unchanged, for example, during a status operation 
or if an error in the input is detected. Here the Ξ (“xi”) convention is used in Z:

	 Ξ ∆SYS SYS SYS SYS= ′ =� [ | ]θ θ

The predicate θSYS′ = θSYS is a shorthand way of ensuring that the tuple formed from all the SYS com-
ponents is the same as that formed from all the primed SYS′ components.

71.4.5  Operations

In order to use the system, we must have the ability to create windows. These are created on top of all the 
existing windows. We specify that they must fit within the display background.

	

AddWindow0

window? : Pixmap

dom window?

windows windows window ?

dom background

SYS

In the aforementioned definition, the ∆SYS component automatically includes all the SYS and SYS′ 
unprimed before and primed after state components, together with the constraint that the background 
remains unchanged. The window? component is an input (as indicated by the Z convention of the 
added “?”). A precondition for the operation is that the window area must be contained within (i.e., be 
a subset of) the background area. If this is so, then the sequence of windows after the operation has the 
required window concatenated to it. This means that the window appears on top of any other windows 
already in the system. Note that by default, predicates on separate lines in a schema are conjoined by 
using “∧.”

The ability to update windows is very useful. This may involve changing the size of the window 
or its contents or moving it about the screen. Again, the updated window must still fit within the 
display area.
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Update Window0

window ?

SYS

which ? :

which ?

: Pixmap

dom windows

{which ? window?}

dom window ? dom background

windows windows

Here two inputs are provided, both which window number is to be updated and the new value for the 
window. The window to be updated must already be in the system and, as for the AddWindow 0 schema, 
the new window must be within the background for the update to be successful. The sequence of win-
dows is overridden with a new entry for the selected window.

It is desirable to be able to uncover a window that may be partially or even totally obscured by other 
windows. This can be done by moving the window to the end of the sequence of displayed windows:

	

ExposeWindow0

SYS

which ? :

which ? dom windows

top which ? windowswindows

Sometimes it is useful to simply rotate the order of the displayed windows, one at a time, moving the 
bottommost window to the top.

	

RotateWindows0

windows

SYS

top 1 windowswindows

Note that sequences are numbered from one updates in Z.
We also wish to be able to delete windows. For instance, we could delete the topmost window (the last 

window in the sequence):

	

SYS

windows

windows front windows

RemoveTop 0

Alternatively, we may wish to specify which window is to be removed:

	

RemoveWindow0

SYS

windows

which ? :

which ? dom windows

windows)squash({which ?}
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The aforementioned schema definitions give a f lavor of the way operations are typically pre-
sented in a Z specification. They are intended to illustrate that a number of different operations 
on a system may be specified succinctly by using Z, providing a suitable abstract state has been 
formulated.

71.4.6  Error Conditions

The operations covered so far detail what should happen in the event of no errors. Normally operations 
can also handle error conditions in some controlled manner. It is useful to report the status of an opera-
tion. For example, the following reports could be issued:

Report ::= “OK”
     | “Not a window”
     | “No windows”
     | “Invalid window”

Here a free type definition defines Report to be a set with four possible unique values.
It is helpful to report the fact that the operation was successful if this is the case:

Success

rep !

rep !

Report

“OK”

:

By convention in Z, “!” indicates an output from an operation.
If errors do occur, then these need to be reported. For example, an invalid window may be specified:

	
rep !

rep ! Report

NotAWindow

which?

which? dom windows

“Not a window”

:

:

SYS

In this case, no change of state occurs, as specified by ΞSYS given earlier. As a precondition, a check is 
made on whether the window number supplied as an input is not a valid existing window in the system, 
and if this is so an appropriate report is issued as an output.

It is possible that there are no windows displayed when one is required:

	

NoWindows

windows

“No windows”

SYS

rep !

rep !

Report:
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A specified window may not be within the background area:

	

BadWindow

window?

SYS

: Pixmap

: Report

“Invalid window”

rep !

rep !

(dom window ? dom background )

We may include these errors with the previously defined operations that ignored error conditions to 
produce total operations:

	

AddWindow AddWindow Success BadWindow

UpdateWindow

1 0

1
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(UUpdateWindow Success BadWindow NotAWindow

ExposeWindow

0

1
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ExposeWindow Success NotAWindow

RotateWindows Rotat

0

1

∧ ∨

= eeWindows Success NoWindows

RemoveTop RemoveTop Succe

0

1 0

∧ ∨

= ∧

)

(� sss NoWindows

RemoveWindow RemoveWindow Success NotAW

)

( )

∨

= ∧ ∨1 0� iindow

Here the schema operators of conjunction (∧) and disjunction (∨) are used to combine schemas. For 
both operators, components are merged. If components have the same name, then they must be type-
compatible or the specification becomes meaningless. Using schema conjunction, predicates in each 
schema are logically conjoined. Similarly, if schema disjunction is used, then the predicates in the two 
schemas are combined using logical disjunction.

The operations are total in that their preconditions are true. This can be checked by calculation, 
which is a useful way of ensuring that all error conditions have been handled. This is something 
that is very easily overlooked if only informal specification using natural language and/or diagrams 
is used.

71.4.7  Status Operations

The contents of an existing window may be of interest:

	

GetWindow 0

SYS

: Pixmap

:

window !

window !

which ?

which ?

dom windows

windows which ?
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By using ΞSYS, the state of the system does not change during this operation. Status operations normally have 
one or more outputs returning some aspect of the state of the system. Here a particular window is returned.

We can make this operation total as well:

	 GetWindow GetWindow Success NotAWindow= ∧� (  0 )  ∨

71.4.8  Conclusion

Given the abstract state, initial state, and operation schemas defined in this section, the operation of 
the system consists of starting in the initial state, followed by an arbitrary sequence of the specified 
operations on the state, as allowed by the preconditions of the operations. If the preconditions of all the 
operations are true, then any order of operations is allowed.

This section has presented the use of the Z notation (Spivey 2001, ISO 2002) in a modeling style, as it 
is widely used for specifying systems. It should be remembered that Z is a general-purpose specification 
language and can be used in other styles if desired. However, the use of an abstract state and operations 
on that state has been found to be a style that is easy to understand (once the notation and conventions 
have been learned), and this is the approach that is often adopted in practice.

For those wishing to learn Z, there are many well-established textbooks available (e.g., see Jacky 
1997, Lightfoot 2001). An international standard for Z is available (ISO 2002) and an earlier de facto 
standard for Z, with a matching type-checker called fuzz by the same author, is also widely used 
(Spivey 2001).

71.5 T echnology Transfer and Research Issues

Claims that formal methods can guarantee correct hardware and software, eliminate the need for 
testing, etc., have previously led some to believe that formal methods are something almost magical 
(Hall 1990). More significantly, beliefs that formal methods are difficult to use, delay the develop-
ment process, and raise development costs (Bowen and Hinchey 1995b) have led many to believe that 
formal methods offer few advantages over traditional development methods. Formal methods are not 
a panacea; they are just one of a range of techniques that, when correctly applied, have proven them-
selves to result in systems of the highest integrity in the long term (Bowen and Hinchey 1995a, Bowen 
and Hinchey 2012).

In the past, the uptake of formal methods has been hindered, at least in part, by a lack of tools. Many 
of the successful projects discussed in Hinchey and Bowen (1999) required significant investment in 
tool support. Just as the advent of compiler technology was necessary for the uptake of high-level pro-
gramming languages, and CASE (Computer Aided Software Engineering) technology provided the 
impetus for the emergence of structural design methodologies in the 1970s, a significant investment in 
formal methods tools is required for formal methods to be practical at the level of industrial applica-
tion. The RODIN tool that supports Event-B (Abrial 2009) is a good example of a robust tool that is 
now available.

Method integration is one approach that may aid in the acceptance of formal methods and may 
help in the technology transfer from academic theory to industrial practice. This has the advantage 
of providing multiple views of a system, for example incorporating a graphical representation that is 
likely to be more acceptable to nonspecialists, while retaining the ability to propose and prove sys-
tem properties and to demonstrate that requirements are not contradictory before rather than after 
implementation.

The Unified Modeling Language (UML) provides a popular software development framework which 
could benefit from a formal methods approach. For example, amid concerns over the lack of formality 
(or even uniform interpretation) in UML, the OMG (Object Management Group) issued a request for 
proposals on re-architecting UML version 2.0.
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Cleanroom is a method that provides a middle road between correctness proofs and informal devel-
opment by stipulating significant checking of programs before they are first run (Prowell et al. 1999). 
The testing phase then becomes more like a certification phase since the number of errors should 
be much reduced. Static analysis involved rigorous checking of programs without actually execut-
ing them. Spark Ada (Barnes 2003) is a restricted version of the Ada programming language that 
includes additional comments that facilitate formal tool-assisted analysis, especially worthwhile in 
high-integrity system development. Such approaches may be more cost-effective than full formal 
development using refinement techniques.

In any case, formal development is typically not appropriate in all software systems. However, many 
systems could benefit from selected use of formal methods at some level (perhaps just specification) in 
their most critical parts (sometimes called “lightweight” formal methods). In particular, many errors 
are introduced at the requirements stage and some formality at this level could have very beneficial 
results because the system description is still relatively simple.

Formal methods are complementary to testing in that they aim to avoid the introduction of errors 
whereas testing aims to remove errors that have been introduced during development. The best balance 
of effort between these two approaches is a matter for debate (King et al. 2000). In any case, the existence 
of a formal specification can benefit the testing process by providing an objective and exact description of the 
system against which to perform subsequent program testing. It can also guide the engineer in deciding 
which tests are worthwhile (e.g., by considering disjunctive preconditions in operations and ensuring 
that there is full test coverage of these).

The use of formal methods can and should be used in combination with other software engineering 
approaches. It is often complementary to many techniques. For example, formal methods could be com-
bined with an agile approach to software development (Black et al. 2009).

In practical industrial use, formal methods have proved to have a niche in high integrity systems 
such as safety-critical applications where standards may encourage or mandate their use in software at 
the highest levels of criticality. Formal methods are also being successfully used in security applications 
such as smart cards where the technology is simple enough to allow fully formal development. They are 
also useful in discovering errors during cryptographic protocol analysis (Meadows 2003).

Formal methods have largely been used for software development, but they are arguably even more 
successful in hardware design where engineers may be more open to the use of rigorous approaches 
because of their background and training. Formal methods can been used for the design of micro-
processors where errors can be costly because of the large numbers involved and also because of there 
possible use in critical applications (Jones et al. 2001). Fully formal verification of significant hardware 
systems is possible even within the limits of existing proof technology.

Full formal refinement is the ideal but is expensive and can sometimes be impossible to achieve in prac-
tice. Retrenchment (Banach and Poppleton 1999) is a suggested liberalization of refinement designed for 
formal description of applications too demanding for true refinement. Examples are the use of infinite or 
continuous types or models from classical physics and applications including inconsistent requirements. 
In retrenchment, the abstraction relation between the models is weakened in the operation postcondi-
tion by a concession predicate. This weakened relationship allows approximating, inconsistent, or excep-
tional behaviors to be described in which a false concession denotes a refinement.

There are many different formal methods for different purposes, including specification (e.g., the Z 
notation) and refinement (e.g., the B-Method). There have been moves to develop the B-Method. The 
simpler Event-B approach has good tool support using RODIN (Abrial 2009). The Alloy tool has been 
influenced by the Z-style of specification (Jackson 2012). There have also been moves to related different 
semantic theories like algebraic, denotational and operational semantics using a Unified Theories of 
Programming (UTP) approach (Hoare and He 1998). A promising approach is that of separation logic, 
an extension of Hoare logic that allows improved modular reasoning about programs that use dynami-
cally allocated pointers (Reynolds 2002). In any case, there continue to be research and technology 
transfer challenges in the field of formal methods.
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Key Terms

Formal methods: Techniques, notations, and tools with a mathematical basis, used for specification and 
reasoning in software or hardware system development.

Formal notation: A language with a mathematical semantics, used for formal specification, reasoning, 
and proof.

Logic: A scheme for reasoning, proof, inference, etc. Two common schemes are propositional logic and 
predicate logic, which is propositional logic generalized with quantifiers. Other logics, such modal 
logics, including temporal logics which handle time are also available. Examples include TLA 
(Temporal Logic of Actions), ITL (Interval Temporal Logic), and Duration Calculus. Schemes may 
use first-order logic or higher-order logic. In the former, functions are not allowed on predicates, 
simplifying matters somewhat, but in the latter they are, providing greater power. Logic includes a 
calculus which allows reasoning in the logic.

Operation: The performance of some desired action. This may involve the change of state of a system, 
together with inputs to the operation and outputs resulting from the operation. To specify such 
an operation, the before state (and inputs) and the after state (and outputs) must be related with 
constraining predicates.

Precondition: The predicate which must hold before an operation for it to be successful. Compare post-
condition, which is the predicate which must hold after an operation.

Predicate: A constraint between a number of variables which produces a truth value (e.g., true of false).
Proof: A series of mathematical steps forming an argument of the correctness of a mathematical state-

ment or theorem. For example, the validation of a desirable property for a formal specification 
could be undertaken by proving it correct. Proof may also be used to perform a formal verifi-
cation that an implementation meets a specification. A less formal style of reasoning is rigor-
ous argument, where a proof outline is sketched informally, which may be done if the effort of 
undertaking a fully formal proof is not considered cost-effective.

Refinement: The stepwise transformation of a specification towards an implementation (e.g., as a 
program). Compare abstraction, where unnecessary implementation detail is ignored in a 
specification.

Relation: A connection or mapping between elements in a number of sets. Often two sets (a domain 
and a range) are related in a binary relation. A special case of a relation is a function where 
individual elements in the domain can only be mapped to at most one element in the range 
of the function. Functions may be further categorized. For example, a partial function may 
not map all possible elements that could be in the domain of the function, whereas a total 
function maps all such elements.

Set: A collection of distinct objects or elements, which are also known as members of the set. In a typed 
language, types may consist of maximal sets, as in the Z notation.

Specification: A description of what a system is intended to do, as opposed to how it does it. A specifica-
tion may be formal (mathematical) or informal (natural language, diagrams, etc.). Compare an 
implementation of a specification, such as a program, which actually performs and executes 
the actions required by a specification.

State: A representation of the possible values which a system may have. In an abstract specification, 
this may be modeled as a number of sets. By contrast, in a concrete program implementation, 
the state typically consists of a number of data structures, such as arrays, files, etc. When 
modeling sequential systems, each operation may include a before state and an after state 
which are related by some constraining predicates. The system will also have an initial state, 
normally with some additional constraints, from which the system starts at initialization.

A glossary of the Z mathematical and schema notation is included here for the reader’s con-
venience. For more information on the Z notation, see the Z Reference Manual (Spivey 2001) 
and the ISO international standard (ISO 2002).
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Glossary of Z Notation

Names
a, b	 Identifiers
d, e	 Declarations (e.g., a : A; b,…: B…)
f, g	 Functions
m, n	 Numbers
p, q	 Predicates
s, t	 Sequences
x, y	 Expressions
A, B	 Sets
C, D	 Bags
Q, R	 Relations
S, T	 Schemas
X	 Schema text (e.g., d, d|p or S)

Definitions
a == x	 Abbreviated definition
a ::= b|…	 Free type definition (or a ::= b〈〈x〉〉|…)
[a]	 Introduction of a given set (or [a,…])
a−	 Prefix operator
−a	 Postfix operator
−a−	 Infix operator

Logic
true	 Logical true constant
false	 Logical false constant
¬p	 Logical negation
p ∧ q	 Logical conjunction
p ∨ q	 Logical disjunction
p ⇒ q	 Logical implication (¬p ∨ q)
p ⇔ q	 Logical equivalence (p ⇒ q ∧ q ⇒ p)
∀ X • q	 Universal quantification
∃ X • q	 Existential quantification
∃1 X • q	 Unique existential quantification
let a == x; … • p	 Local definition

Sets and expressions
x = y	 Equality of expressions
x ≠ y	 Inequality (¬(x = y))
x ∈ A	 Set membership
x ∉ A	 Nonmembership (¬(x ∈ A))
∅	 Empty set
A ⊆ B	 Set inclusion
A ⊂ B	 Strict set inclusion (A ⊆ B ∧ A ≠ B)
{x, y,…}	 Set of elements
{X • x}	 Set comprehension
λX • x	 Lambda-expression—function
μX • x	 Mu-expression—unique value
let a == x;… • y	 Local definition
if p then x else y	 Conditional expression
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(x, y,…)	 Ordered tuple
A × B × …	 Cartesian product
PA	 Power set (set of subsets)
P1A	 Nonempty power set
FA	 Set of finite subsets
F1A	 Nonempty set of finite subsets
A ∩ B	 Set intersection
A ∪ B	 Set union
A\B	 Set difference
⋃A	 Generalized union of a set of sets
⋂A	 Generalized intersection of a set of sets
first x	 First element of an ordered pair
second x	 Second element of an ordered pair
#A	 Size of a finite set

Relations
A ↔ B	 Relation ( ( ))P A B×
a ↦ b	 Maplet ((a, b))
domR	 Domain of a relation
ranR	 Range of a relation
idA	 Identity relation
Q ; R	 Forward relational composition
Q ∘ R	 Backward relational composition (R ; Q)
A ◃ R	 Domain restriction
A R�- 	 Domain anti-restriction
A ▹ R	 Range restriction
A R�-  	 Range anti-restriction
R(|A|)	 Relational image
iter n R	 Relation composed n times
Rn	 Same as iter n R
R∼	 Inverse of relation (R−1)
R*	 Reflexive-transitive closure
R+	 Irreflexive-transitive closure
Q ⊕ R	 Relational overriding (( ) )dom -R Q R� ∪
a R b	 Infix relation

Functions
A ⇸ B	 Partial functions
A → B	 Total functions
A ⤔ B	 Partial injections
A ↣ B	 Total injections
A ⤅ B	 Partial surjections
A ↠ B	 Total surjections
A ⤖ B	 Bijective functions
A ⇻ B	 Finite partial functions
A ⤘ B	 Finite partial injections
fx	 Function application (or f(x))

Numbers
�	 Set of integers
�	 Set of natural numbers {0,1,2,…}
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�1	 Set of nonzero natural numbers ( { })�\ 0
m + n	 Addition
m − n	 Subtraction
m * n	 Multiplication
m div n	 Division
m mod n	 Modulo arithmetic
m ≤ n	 Less than or equal
m < n	 Less than
m ≥ n	 Greater than or equal
m > n	 Greater than
succ n	 Successor function {0 ↦ 1, 1 ↦ 2, …}
m . . n	 Number range
min A	 Minimum of a set of numbers
max A	 Maximum of a set of numbers

Sequences
seq A	 Set of finite sequences
seq1 A	 Set of nonempty finite sequences
iseq A	 Set of finite injective sequences
〈〉	 Empty sequence
〈x, y,…〉	 Sequence {1 ↦ x, 2 ↦ y, …}
s t� 	 Sequence concatenation
�/s	 Distributed sequence concatenation
head s	 First element of sequence (s(1))
tail s	 All but the head element of a sequence
last s	 Last element of sequence (s(#s))
front s	 All but the last element of a sequence
rev s	 Reverse a sequence
squash f	 Compact a function to a sequence
A s� 	 Sequence extraction (squash (A ◃ s))
s A� 	 Sequence filtering (squash (s ▹ A))
s prefix t	 Sequence prefix relation ( )s v t� =
s suffix t	 Sequence suffix relation ( )u s t� =
s in t	 Sequence segment relation ( )u s v t� � =
disjoint A	 Disjointness of an indexed family of sets
A partition B	 Partition an indexed family of sets

Bags
bag A	 Set of bags or multisets →A( | )1�
� 
	 Empty bag
x y, ,…� 
	 Bag {x ↦ 1, y ↦ 1, …}

count C x	 Multiplicity of an element in a bag
C # x	 Same as count C x
n ⊗ C	 Bag scaling of multiplicity
x ⋿ C	 Bag membership
C ⊑ D	 Subbag relation
C ⊎ D	 Bag union
C ⩁ D	 Bag difference
items s	 Bag of elements in a sequence
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Schema notation
Vertical Schema

	

.S

d

p

New lines denote “;” and “∧.” The schema name and predicate part are optional. The schema may 
subsequently be referenced by name in the document.

Axiomatic definition

	

d

p

The definitions may be nonunique. The predicate part is optional. The definitions apply globally in 
the document.

Generic definition

	

[a, . . .]

d

p

The generic parameters are optional. The definitions must be unique. The definitions apply globally 
in the document.

s X=�[ ]	 Horizontal schema
[T;…|…]	 Schema inclusion
z . a	 Component selection (given z : S)
θS	 Tuple of components
¬S	 Schema negation
pre S	 Schema precondition
S ∧ T	 Schema conjunction
S ∨ T	 Schema disjunction
S ⇒ T	 Schema implication
S ⇔ T	 Schema equivalence
S\(a,…)	 Hiding of component(s)
S T� 	 Projection of components
S ; T	 Schema composition (S then T)
S ≫ T	 Schema piping (S outputs to T inputs)
S[a/b,…]	 Schema component renaming (b becomes a, etc.)
∀X • S	 Schema universal quantification
∃X • S	 Schema existential quantification
∃1X • S	 Schema unique existential quantification

Conventions
a?	 Input to an operation
a!	 Output from an operation
a	 State component before an operation
a′	 State component after an operation
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S	 State schema before an operation
S′	 State schema after an operation
∆S	 Change of state (normally S ∧ S′)
ΞS	 No change of state (normally [S ∧ S′ | θS = θS′])
d ⊢ p	 Theorem

Further Information

A number of organizations have been established to meet the needs of formal methods practitioners; 
for example:

•	 Formal Methods Europe (FME) organizes a regular Formal Methods (FM) conference, formerly 
the VDM symposia and the leading international conference in the field, as well as other activities 
for users of various formal methods.

•	 The British Computer Society Specialist Group on Formal Aspects of Computing Science 
(BCS-FACS) organizes regular talks and periodic workshops on various aspects of formal meth-
ods, including being associated with a series of Refinement Workshops.

•	 The Z User Group (ZUG) has organized a regular international conference, historically known as 
the Z User Meeting (ZUM), for users of the Z notation. The International B Conference Steering 
Committee (Association de Pilotage des Conférences B, APCB) organized a similar International 
B Conference series. Since 2000, these have combined as a single conference that more recently 
has also covered Abstract State Machines (ASM), Alloy, and VDM, becoming known as the ABZ 
conference.

There are a number of journals devoted specifically to formal methods. These include Formal Methods 
in System Design and Formal Aspects of Computing (FAC). The FAC journal is published by Springer 
in association with BCS-FACS. Other European-based journals, such as The Computer Journal, IET 
Software (formerly IEE Proceedings—Software and the Software Engineering Journal) and Information 
and Software Technology, publish articles on, or closely related to, formal methods, and they have run 
special issues on the subject.

While there are no US-based journals that deal specifically with formal methods, they regularly are 
featured in popular periodicals such as IEEE Computer, IEEE Software, and the Communications of 
the ACM, as well as in journals such as the Annals of Software Engineering IEEE Transactions on Software 
Engineering ACM Transactions on Software Engineering and Methodology (TOSEM), the Journal of the 
ACM, and Innovations in Systems and Software Engineering: A NASA Journal (published by Springer). 
Survey papers on the state of the art and practice in formal methods have also appeared in the ACM 
Computing Surveys (e.g., see Woodcock et al. 2009).

In addition to the conferences mentioned earlier, The International Conference on Formal Engineering 
Methods series (ICFEM) and the Software Engineering and Formal Methods (SEFM) conference 
(Hinchey et al. 2008) also cover formal methods. A number of more specialist conferences have been 
established. For example, the Integrated Formal Methods (IFM) International Conference concentrates 
on the use of formal methods with other approaches or in combination. The International Workshop 
on Formal Methods for Industrial Critical Systems (FMICS) focuses on industrial applications, espe-
cially using tools. The IFIP (International Federation of Information Processing) FORTE international 
conference has concentrated on Formal Description Techniques (FDTs). The IFIP WG 6.1 International 
Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS) has also been 
established and more recently combined with FORTE.

Some more wide-ranging conferences give particular attention to formal methods; primary among 
these are the ICSE (International Conference on Software Engineering) and ICECCS (International 
Conference on Engineering of Complex Computer Systems) series of conferences. Other specialist con-
ferences in the safety-critical sector, such as SAFECOMP (the International Conference on Computer 
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Safety, Reliability and Security), and SSS (the Safety-critical Systems Symposium) regularly cover formal 
methods. The long-established Software Engineering Workshop (SEW) also features formal methods 
papers.

There have been some collections of case studies on formal methods with various aims and themes. 
For some industrial applications and approaches, see Hinchey and Bowen (1999), Boulanger (2012), 
Gnesi and Margaria (2012). The book (Frappier and Habrias 2006) collected together a number of for-
mal specification methods applied to an invoicing case study where the presentations concentrate on 
the process of producing a formal description, including the questions raised along the way. For some 
research directions in formal methods, see Boca et al. (2010).

The following electronic mailing lists are available, among others:
fm-announcements@lists.nasa.gov	 Formal methods announcements (NASA)
fmnet-request@jiscmail.ac.uk	 Formal Methods Network (FMnet)
procos-request@jiscmail.ac.uk	 Provably Correct Systems (ProCoS)
bforum-request@matrix.inrets.fr	 B-Method
zforum-request@jiscmail.ac.uk	 Z notation

In addition, some electronic forums are available as Google groups:
comp.specification.misc	 Formal specification
comp.specification.z	 Z notation

For on-line information on formal methods in general, readers are directed to the following World Wide 
Web URL (Uniform Resource Locator) that provides formal methods links:

http://formalmethods.wika.com/
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A handbook is “a book of information, guidance, or information, as for an occupation, travel, or 
reference,”* a definition that fits this volume and section very well. A “discipline” is “a branch of instruc-
tion or learning; behavior in accord with rules of conduct.”† More established subjects such as physics 
and chemistry or disciplines such as the practice of architecture have handbooks that are a compendium 
of facts, organized for ready reference (such as the specific heat of materials or the standard width of an 
aisle in an office building) or procedures (such as safety practices).

Software engineering is not yet a fully mature discipline, and it is certainly not a set of facts! Nor are 
there widely accepted software engineering handbooks.

It is tempting to say that as software engineering matures, it is becoming an engineering discipline. 
Today, however, software engineering is not widely considered an engineering discipline, at least not in 
the traditional sense. We will say more about this in the subsequent sections.

*	 Random House Dictionary of the English Language, 1968, New York.
†	 Op. cit.
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It is, however, a branch of instruction and learning that has been around for almost 50 years and 
about which a good deal is known.* The story of software engineering to date is the story of the devel-
opment of a practical discipline in response to the demands of the marketplace and the inherent and 
ever-increasing complexity of software.

The papers in this section of the Computing Handbook Set are intended to provide you self-contained 
descriptions of what is known in specific areas of the discipline. The purpose of this chapter is to provide 
you a framework and the context in which software engineering has evolved so far, a brief survey of 
educational efforts, an overview of its elements, and a sketch of how software engineering is practiced.

72.1  Origins of Software Engineering

Why has this meeting been scheduled? Why have we agreed to participate?
I believe it is because we recognize that a practical problem of considerable difficulty and impor-
tance has arisen: The successful design, production and maintenance of useful software systems. 
The importance is obvious and the more so since we see only greater growth in demands and 
requirements in the future. The consequences of poor performance, poor design, instability and 
mismatching of promise and performance are not going to be limited to the computing fraternity, 
or even their nearest neighbors, but will affect considerable sections of our society whose ability to 
forgive is inversely proportional to their ignorance of the difficulties we face. The source of diffi-
culty is distributed through the whole problem, easy to identify, and yet its cure is hard to pinpoint 
so that systematic improvement can be gotten.

—Keynote speech by A.J. Perlis.†

The aforementioned quote from the opening speech at a meeting in 1968, generally cited as the start 
of software engineering, provides the motivation at that time—and it is still true today! Software for 
general-purpose computers has been created since the earliest days of computers (generally, late 1940s) 
and the term “software engineering” was used privately by some before 1968.‡ In the mid-1960s, there 
was an awakening to the fact that creating large, complex software on time, within budget, and that 
performed as imagined it would by the customers for the software was becoming a huge problem. The 
dimensions of the problem were multiple, involving not only technical and economic concerns, but also 
extremely serious military defense concerns—hence, the involvement of the NATO Science Committee.

It was the height of the Cold War during which the Western Democracies felt seriously threatened by 
the Soviet Union and their allies—and vice versa. Computers were already an integral part of defense 
systems and as their necessary functional complexity grew so did the size and complexity of the soft-
ware needed. This drove not only the development of military defense systems on both sides of the Iron 
Curtain but also in the West the commercial development of large, comprehensive operating systems 
and applications systems.

As intellectually interesting as it may be, our purpose here is not to fully explore the origins and growth 
of software engineering from its beginnings to today but to give a brief recounting of that history§,¶ in the 

*	 Software engineering was introduced in the early 1970s as a specialization of computer science, and since the mid-1980s, 
it has been accepted as a formal field of study in academia.

†	 Naur and Randell (1969), NATO 1968 conference, pp. 135-ff; available at http:/homepages.cs.ncl.ac.uk/brian.randell/NATO/
‡	 See http://www.legacy.com/obituaries/bostonglobe/obituary.aspx?n=douglas-t-ross&pid=86341586#fbLoggedOut, accessed 

on October 6, 2013; also personal communication with Freeman.
§	 This should not be read as a definitive history of software engineering, nor should the periods defined by dates be taken 

as absolutes. There are no histories of software engineering currently, but Freeman (1975) and Zelkowitz (1979), both 
give overviews of the field at that time and provide multiple references to a variety of papers and books.

¶	 Where possible and appropriate, we have used early references to provide entré to the historical literature. These may not 
be the best for tutorial or modern reference, but may be useful to researchers. Most references, especially to papers, are 
available in either the ACM Digital Library or IEEE Xplore Digital Library.
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belief that it will provide you some necessary context for the effective use of this Handbook section. There 
is a lot to learn from that history and the efforts to create a software engineering discipline; we encourage 
you to delve into it. There is no comprehensive history of software engineering, but Wikipedia* and 
some textbooks will have additional references beyond what are given in the subsequent sections.

72.1.1  Early Efforts to Create a Discipline (1960s)

In the 1960s, the general view in industry was that creating software was purely an adjunct to design-
ing the hardware and the overall system of people, procedures, computers, and other hardware such 
as sensors and actuators. This view prevailed within the computing community (both industrial and 
academic) itself, although not as strongly. In addition, creating software was considered, in practice, to 
be largely a matter of creating the necessary algorithms and then programming them.

Very little attention was paid by anyone to topics such as requirements analysis, specification, design, 
testing, and maintenance as they pertained to software. (In fairness, all of these issues were mentioned 
at the NATO meetings.) It is notable that starting in the 1960s and continuing through the 1970s, large 
programming efforts were usually referred to as “systems programming,” hinting at the fact that one 
was engaged in more than just programming an algorithm.

Thus, it is not surprising that the early efforts at improving the development of software focused on the 
activity of programming. The small size of available memory and the speed of computers (compared to 
today) emphasized this concentration of effort. Indeed, it was—and to a somewhat lesser extent, still is—
important to make sure that the software that is controlling the hardware is efficient and easy to create. 
In the academic research community, the creation of languages and the development of mathematically 
based techniques are better defined problems than the topics of requirements elicitation, design, and 
maintenance—and they fit better into the mold of what was (is) considered legitimate academic research. 
In short, a bottom-up approach to what is inherently a system-level problem was largely followed, starting 
with what people knew and were comfortable with—the programming activity. This phenomenon is still 
seen today, and new paradigms and ideas often commence at the programming level and then move up to 
higher levels of abstraction in the development “process,” for example, after structured programming, we 
saw the advent of structured design and structure analysis and design; same for object-oriented program-
ming, design, and analysis and design, and so on; the latest fad is aspect-oriented programming, etc., and 
feature-oriented software development (Apel and Kästner, 2009) is seeing the light.

72.1.2  Programming Methods (∼1968 to 1975 and Beyond)

In software engineering, we speak of a programming method as a set of rules, guidelines, steps, or other 
ways of organizing the process of creating a program at the programming language level. This is distinct 
from the use of “method” in object-oriented programming (itself a “method” in the software engineer-
ing sense) where “method” denotes a subroutine associated with a class (Bruegge et al., 2000). In at least 
one programming method, the so-called Booch method (Booch, 1993), the two meanings merge to 
the extent that the Booch method is based on the use of methods and other devices in object-oriented 
languages.

The most widely known and influential technique at the time was one pioneered by E.W. Dijkstra 
called “structured programming” (Dijkstra, 1968). It was described, dissected, and analyzed (not always 
accurately†) in dozens of books and thousands of papers. It was promoted by some as the answer to the 

*	 http://en.wikipedia.org/wiki/History_of_software_engineering, accessed January 17, 2013.
†	 A review of Dijkstra’s papers in (Freeman, 1975, pp. 487ff) points out that he was fundamentally advancing the idea of 

“constructive programming” (creating programs that are probably correct because of the manner in which they are cre-
ated) and a set of techniques and program structures (not a hard and fast algorithm nor a set of inviolable structures). 
The core of his approach was largely ignored at the time and even more so today.
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“software problem.” Many practitioners in search of a quick fix to their development problem rushed to 
adopt it. Development of structured programming techniques and tools predominated in many discus-
sions and improvement activities in the late 1960s and much of the 1970s.

Other programming methods you many encounter include iterative programming, functional pro-
gramming, parallel programming, genetic programming, object-oriented programming, extreme 
programming, generative programming, and a plethora of X-programming methods, where X = the 
name of a programming language (e.g., C++ programming method). Almost all of these came about 
after it was realized that structured programming alone could not solve all software development prob-
lems, but that improvements could be made in the way software is created. The technical aspects of some 
of these are discussed in Section I (Computer Science) programming languages part.

While it turned out to not be a “silver bullet”—a term that Fred Brooks popularized in his 1986 paper 
(Brooks, 1995)—that so many sought, attention to structured programming did result in some worth-
while improvements. A fundamental result was the realization that the types of language structures that 
one employed and the way in which one structured the organization of a program could have signifi-
cant effects on the resulting programs along the dimensions of efficiency and ease of construction and 
maintenance. A similar, very positive result was the design or redesign of many programming languages 
and techniques to incorporate some or most of the underlying concepts of structured programming 
(Wirth, 1971). By the end of the twentieth-century, most of the techniques and structures of structured 
programming were widely accepted and in use.

Perhaps the most fundamental result was the planting of the seeds necessary for improving the entire 
method of developing software and the beginning of a focus on modularity (Parnas, 1972) and design 
methods (Freeman and Wasserman, 1975). Both these topics were discussed at the first NATO confer-
ence in 1968, reflecting the fact that the importance and some aspects of both were already known and 
recognized.

A general definition of a “module” is a “separable component, frequently one that is interchangeable 
with others, for assembly in units of differing size, complexity, or function,*” with “modularity” and 
“modularization” being the associated adjective and verb. It is a concept that has long been used in many 
contexts, including engineering, and when applied to software has the same meaning as elsewhere. The 
value of modularity in software is not hard to see, but achieving it is much harder and that led to a large 
amount of attention being paid to it beginning in the 1970s. The seminal paper in this area is the famous 
one (Parnas, 1972).†

While many of the efforts centered, appropriately, on the mechanisms in programming languages 
(Wirth, 1974) to enable and encourage modularity some soon became embedded in design methods 
intended to proceed the writing of the code necessary to implement a design. Like the tenets of struc-
tured programming, the ideal of modularizing code is now common throughout software development. 
A particular form or aspect of modularization is the idea of reusable software exemplified by the notion 
of separately compiled units, packages, and generics in the Ada programming language (Ada, 2012).

72.1.3  Software Design Methods (∼1972 to 1985 and Beyond)

As the limits of programming methods, including modularization, by themselves to “solve” the soft-
ware problem became evident, the search for the next possibility quickly turned to design techniques 
and methodologies. By analogy, a design method (or technique) can be considered to be the same sort 
of construct (i.e., rules, guidelines, steps, etc.) as a programming method, only applied to the prob-
lem of creating a design for software that is expressed in something other than executable code (or, its 

*	 Random House Dictionary, op. cit.
†	 A review of Parnas’ papers highlights the fact that “Dave Parnas identified the information hiding principle and showed 

how to use it to construct workable, reusable modular structures that are stable over time.” (Hoffman and Weiss, 2001, 
preface).
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equivalent, a higher-level language)—that is, it is at a higher level of abstraction. A design methodology 
(or, often, a development methodology) is an organized system of methods and rules of application to 
guide the overall development of a software-intensive system.

Note that the distinction between programming methods, design methods, and design methodolo-
gies is often weak and for the most part unimportant—unless one is trying to compare alternatives. 
The important factors are the scope of application and the focus of the item under consideration. A pro-
gramming method based on a specific language may well not be applicable to work in a different lan-
guage (a scope of application issue). Similarly, any method focused on the specifics of programming 
will probably not be of any use in organizing the overall workflow of a large development project 
(a methodology issue).

The origin of many of the concepts of a software design method, especially those employing struc-
ture, organized levels of abstraction, and a notation other than a programming language can be traced 
back to the work of Doug Ross at MIT in the 1960s on numerically controlled machine tools and the 
techniques for programming them more or less automatically that resulted in the APT language (Ross, 
1978). This work led to the development of structured analysis and design technique (SADT) (Marca 
and MacGowan, 1988) that received significant use in the design of some of the most complicated and 
sophisticated software-intensive systems in the 1970s and 1980s. There were also attempts to import 
concepts from other design fields such as engineering design and architecture into the design of soft-
ware; except at a high level, many of these attempts have not been notably successful in directly chang-
ing the practice of software design.

A popular and useful technique for software that is similar to SADT in some respects, structured 
design, was developed and promoted in the 1970s (Yourdon and Constantine, 1979). A number of other 
design techniques were developed and used during this period to a varying degree of success. As the 
importance of data started to grow, along with the realization that collections of data (databases) needed 
to be designed as well as the programs that accessed them, data design methods—in some cases as dis-
tinct from software design methods that tend to focus on the process aspect of software—focused on 
database design started to appear (Brown, 1975; Chen, 1976).

In the 1980s, as more languages of various sorts appeared (and some older ones such as Cobol started 
to fade away) as well as new application areas and hardware types, we saw the appearance of design 
(and programming) methods oriented toward specific language, applications, or hardware. This trend 
continues today, with many papers and books discussing specific approaches for program or software 
system or overall system design utilizing specific languages, focused on specific hardware types, or 
application areas.

The popularity of structured design and other design techniques employing structuring concepts 
led naturally to the development of structured analysis techniques for use in the stage preceding 
design (DeMarco, 1979, and others). Some of these bear some resemblance to SADT and did gain 
a good bit of usage, but in general were not as popular in practice as structured design. At the 
same time, less technically oriented methods were being developed in the business data processing 
and information systems communities focused more on the early stages of the development of an 
overall system.

72.1.4  Software Development Methodologies (∼1975 to 1985 and Beyond)

These developments led, in turn, to the creation of more holistic or complete development methodolo-
gies intended to provide guidance throughout the lifecycle of a software-intensive system from the time 
a customer first expresses a need that can be fulfilled by such a system, through complete development, 
and then on into usage, modification, and de-commissioning phases. These more comprehensive meth-
odologies were generally aimed at and most useful in large organizations dealing with large and com-
plex systems whose lifetimes needed to extend over decades and involve perhaps thousands of people 
developing and modifying various aspects of the systems.
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The largest such organization—and most influential in the early development of software 
engineering—was the United States Department of Defense (DoD). The Ada programming language 
was designed specifically to address software engineering issues and was mandated for use by defense 
contractors once the language was well defined and implemented. The process to define the language 
was unique in that it went through a series of public iterations on which anyone could offer comments 
a “straw man proposal.” A similar effort was started by the DoD to define a development methodol-
ogy to accompany the use of Ada, but the effort stalled out after an initial iteration (Freeman and 
Wasserman, 1982).

Other organizations, however, were more successful in creating and adopting “standard” develop-
ment methodologies, including the major equipment manufacturers (IBM, Hewlett-Packard, etc.), 
defense contractors (TRW, Northrup Grumann, Lockheed, etc.), commercial consultancies (Arthur 
Anderson—now Accenture, Price-Waterhouse, etc.), and large user organizations (banks, transporta-
tion companies, manufacturers, etc.). A representative review of the situation as of the early 1980s can 
be found in (Freeman and Wasserman 1983).

72.1.5  Development Lifecycles (∼1980 to 1995 and Beyond)

A project is an organized activity with a beginning, end, schedule, budget, and related factors and con-
straints; project management is the discipline of planning, organizing, and controlling a project; all 
projects typically go through a similar set of stages (time periods), depending on the type of project, 
characterized by the dominant activity in that period; and the organization of the stages is called a 
project lifecycle. These terms have been used in engineering and construction projects for well over a 
hundred years, but came into much wider use during and after World War II because of the many large 
projects undertaken in the course of the war.

As the activity of software development became more complex and involved more people over longer 
time spans, and as it became clear that many of the large systems would be in use and undergo “mainte-
nance” over many years (as of 2012, parts of some software systems have been in use close to 50 years), 
the concepts and terminology of project management were adapted to software and software-intensive 
systems. This began in the 1960s in large organizations, but it was not until the mid-1970s or later that 
much discussion and research attention was focused on the steps involved.

Initially, the “standard” organization of activities was the waterfall model, a linear sequence of steps 
usually defined as requirements analysis and specification, software design, implementation, installa-
tion, usage, and maintenance (Royce, 1987). The steps were usually depicted as a set of boxes connected 
by one-way arrows and arranged in a “waterfall.” Many organizations adopted this model as a way of 
putting structure on the often-chaotic software development process and of controlling it. Adoption and 
usage of the model, quickly illustrated the simplicity and naiveté of the model, leading to the develop-
ment (and eventual adoption) of more realistic models. Chief among these was the spiral model (Boehm, 
1988) that goes through successive iterations of a basic set of steps. An early comparison of several mod-
els can be found in Kerola and Freeman (1981).

As software development has expanded beyond large organizations or one-person, one-off efforts 
and technical developments including personal computers and the Internet have occurred—to say 
nothing of the range of applications and the demands of the marketplace—a number of other lifecycle 
models have been developed and employed. Reviews of the situation today can be found in Part XI, and 
in the appropriate sections of good software engineering textbooks.

72.1.6 T ool Support for Software Development (1968–1995 and Beyond)

Programs to assist in the writing of other programs (e.g., language syntax checkers) and systems of pro-
grams (e.g., linkers, loaders, assemblers, and compilers) have existed almost as long as programs. With 
the widespread interest in the Unix operating system (which came with a number of tools useful to the 
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programmer) in the late 1960s (e.g., Keringhan and Plauger, 1976), the search for other tools became 
more prominent. Initially, most tools were focused on programs but as design methods and methodolo-
gies were introduced, experimentation with the types of tools broadened. They included drawing tools 
for graphical representations of design (Díaz-Herrera and Flude, 1980), consistency checkers for speci-
fications and designs, and version control tools.

Testing tools have been in use at least since the 1960s. For example, Pullen and Shuttee (1968) describe 
“MUSE, a tool for testing and debugging a multi-terminal programming system” became popular.

Work on automated or semi-automated software development dates back at least to the early 1950s 
(e.g., Carr, 1952) when the term “automatic programming” was used; it usually referred to efforts to 
automate the translation of higher-level languages into executable code, although the concept of using 
artificial intelligence in the programming process* was already known (Perlis, 1959). In the early to 
mid-1960s, research on “compiler compilers” (programs used to generate compilers for higher level lan-
guages) was a favorite topic, for example, (Cheatham and Standish, 1970); this work laid the foundation 
for many of the language tools in common use today.

Using computers to assist or automate parts of the software development process (typically called 
computer-aided software engineering—CASE) became a hot topic in the 1980s and is still a common 
topic in software engineering today. Integrated development environments (IDEs) brought together a 
number of technical and managerial tools to work together in a coordinated way (ECMA, 1993).

72.1.7  Process Maturity Modeling (1989–2000 and Beyond)

The final major component of modern software engineering came into prominence with the publica-
tion of (Humphrey, 1989).† This book, and several that followed it along with extensive implementation, 
training, and standard-setting activities, takes an organizational point of view on the overall activity of 
creating software (generally understood to be large, complex software systems, although some attempts 
have been made to apply the concepts to individual work as well).

The fundamental idea is that organizations differ in their ability to create software in predict-
able, repeatable ways. The “software process,” as Humphrey calls it, consists of the set of tools, meth-
ods, and practices used to produce a software product and the view is that these are, or should be, 
actively managed by the organization. He defines five increasing levels of software process maturity 
(initial, repeatable, defined, managed, and optimizing) and ways of “measuring” an organization’s 
place on the attendant scale. Much of his work then focuses on how organizations can improve their 
performance.

Government organizations (primarily the US Defense Department, the world’s largest buyer of soft-
ware), some large industrial organizations, and some standards setting bodies (notably the ISO stan-
dards process) have adopted in whole or in part this concept.

ISO 9000-3 is a subset of guidelines for applying ISO 9001 to the development, supply, and mainte-
nance of software. ISO 9001 is intended to be used when conformance to specified requirements is to 
be assured by the supplier during several stages, which may include design, development, production, 
installation, and servicing.

The ISO/IEC 15504 or Software Process Improvement and Capability Determination (SPICE) is a 
set of standards for the software development process and related business management functions, ini-
tially derived from process lifecycle standard ISO/IEC 12207 and from maturity models like Bootstrap, 
Trillium, and the Sw-CMM.

*	 Research efforts at applying artificial intelligence concepts and techniques to creating software also started in the 1960s; 
see Freeman (1974) for an early review.

†	 Watts Humphrey was awarded the 2003 U.S. National Medal of Technology by President George W. Bush for the impact 
of his work—the highest award that any software engineering expert has been awarded as of 2012.
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These process improvement concepts do not specify anything about the technical details of the 
methods, tools, and procedures that are used in an organization, only how they should be managed. 
Some see this as a major failing, but on the whole, application of the concepts has helped organizations 
improve their ability to create software in predictable, repeatable ways and in so doing they usually 
adopt one or more development methodologies.

72.1.8  Education and Training (1974–2004 and Beyond)

Education and training are often the drivers in defining the content of a discipline because of their influence 
on future behavior rather than being a formalization of current and past activity. This was and still is the 
case in software engineering since, at least in the United States, research is tied to education at the best uni-
versities and much of the training in organizations follows their current research directions. Because leaders 
in the computer science field were prominent among the attendees at the two NATO conferences mentioned 
earlier and because they carried the message back to their colleagues and students, the importance of find-
ing better approaches to developing software quickly became a major theme in computer science research 
and hence in the educational efforts of the researchers.* At the second NATO meeting on software engi-
neering (Buxton and Randell, 1969), a session was devoted to discussion of software engineering education.

The first known meeting devoted entirely to software engineering education was an internal IBM 
meeting in Toronto, Canada, in 1974 that was organized by the late Harlan Mills.† The first broad meet-
ing was organized at the University of California, Irvine, in early 1976 (Freeman et al., 1976) and brought 
together practitioners and software researchers, as well as representatives of research funding agencies. 
This meeting served as a baseline of needs expressed by practitioners and served to introduce a number 
of people with similar interests to each other. This resulted in a number of formative activities over the 
next few years (Budgem et al., 2003; Ford, 1994).

One of these outcomes was a collaboration that resulted in the first published foundation for software 
engineering education (Freeman and Wasserman, 1978). For better or worse, the paper served as the 
basis for essentially all academic programs in software engineering education for the next 10 years or 
more. As the need for software engineering intensified in industry, especially in defense contracting 
firms and large computing equipment manufacturers, a number of efforts to define better and support a 
discipline were undertaken and a number of courses and a few degree programs were designed.

The Software Engineering Institute (SEI) at Carnegie Mellon University founded in 1984, championed 
educational efforts as one of their main, early activities. A series of conferences on software engineering 
education and training was started in 1987 and continues annually today. Most universities and colleges 
today have at least a few courses in software engineering (usually in computer science departments) and 
an increasing, but not large, number have degree programs (usually at the Master’s level). In many basic 
courses in software engineering and information systems, software engineering concepts are embed-
ded in more general courses on programming and other basic courses (although they are often not 
identified specifically as software engineering topics). Software engineering training is also a popular 
topic at community and for-profit colleges, while corporate in-house training programs are perhaps less 
popular today because of the availability of courses elsewhere—and, also sometimes because companies 
have turned their attention away from training more generally and in some instances from software 
engineering in particular.

*	 One of the authors of this chapter, Freeman, was a graduate student at Carnegie Mellon University in 1968. The week 
after the first NATO meeting, Alan Perlis who keynoted that meeting and was chairman of the department, met with 
a group of us to reprise the meeting’s discussions and later gave us each a copy of the proceedings (my copy long since 
purloined). The author was already engaged in research focused on improving software development and that early 
exposure encouraged him to continue in that pursuit and to develop software engineering courses in the early 1970s and 
to integrate some of the ideas into other courses as well.

†	 Harlan Mills was also the chair of the First National Conference on Software Engineering. September 11–12, 1975. 
Mayflower Hotel, Washington, DC.
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A variety of efforts have tried to produce comprehensive “bodies of knowledge” for software engi-
neering, standards for practice, and even certification exams. While useful, these have been of use for 
a limited time because of the rapid change in technology, the market, and some aspects of the field—to 
say nothing of the lack of people to develop these artifacts.

Much of the curriculum design for current BS programs was based on the EC2000 accreditation cri-
teria from Accreditation Board for Engineering and Technology (ABET) and the joint IEEE/ACM task 
force draft accreditation criteria for software engineering (Engel, 1999),* and the curriculum guidelines 
were approved in 2004 (Lethbridge et al., 2006). “The program must include approximately equal seg-
ments in software engineering, in computer science and engineering, in appropriate supporting areas, 
and in advanced materials. This material should cover about three-quarters of the overall academic 
program, with the remainder to include institutional requirements and electives.”†

The software engineering portion of the program should cover processes and techniques for develop-
ing and maintaining software systems. Substantial software design and software architecture work must 
be included. Engineering responsibility and practice must also be stressed, including ethical, social, 
legal, economic, and safety issues.

In the supporting areas, we have communications and mathematics. Oral and written communica-
tions, including the ability to work in teams, are covered. The mathematics contents focus primarily on 
discrete mathematics, and probability and statistics (this is particularly useful in process improvement 
analyses).

The scientific basis for software engineering is primarily computer science, similarly as the natural 
sciences are for other engineering disciplines.‡ The computer science and engineering portion of a BS 
program would include foundational topics such as algorithms and data structures, computer architec-
ture, databases, programming languages, operating systems, and networking.

The advanced portion of the program provides depth in one or more areas of study in software engi-
neering and in one or more significant application domains.

The curriculum should also emphasize software practice and development process and these aspects 
are given a strong hands-on component using the software engineering laboratory. There should be a 
substantial senior design project (or SwE practicum) component, where a major project is performed 
in teams. For an earlier historical review of software engineering education refer to (Tomayko, 1999).

72.2  Engineering and Software Engineering

When the term software engineering was introduced 40 years ago at the NATO 1968 conference, it “was 
deliberately chosen as being provocative, in implying the needs for software manufacture to be based 
on the types of theoretical foundation and practical disciplines, that are traditional in the established 
branches of engineering.” The term is now widely used in industry, government, and academia: thou-
sands of IT professionals go by the title software engineer; numerous publications, groups and organiza-
tions, and professional conferences use the term in their names, as do many educational programs, both 
at the undergraduate and graduate level (including the Ph.D.).

Is software engineering likely to become a mature engineering discipline in the traditional sense of 
the word? Could there be a basis for understanding the complexity of software such that we can “engi-
neer” it to have predictable quality and behavior?

As a practical matter, definitions of software engineering in abstract terms are often not overly 
useful in practice because they are existential in nature and there are wide variations in the impor-
tance of specific topics in different situations. In software engineering research endeavors, however, 

*	 G. Engel, “Accreditation criteria for software engineering,” IEEE Software, 31–34, 1999.
†	 The majority of these concepts were captured in the design of the curriculum guidelines for software engineering as part 

of the ACM/IEEE computing curricula effort. One of the authors, Diaz-Herrera, was the co-editor of Volume IV.
‡	 Some still consider Computer Science a branch of mathematics.
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they are somewhat more useful. Consequently, a general understanding of what software engineer-
ing is will be helpful in your use of this handbook.

72.2.1  What Is Engineering?

A dictionary definition is an instructive place to start:

	 1.	 The art or science of making practical application of the knowledge of pure sciences…
	 2.	 The action, work, or profession of an engineer.
	 3.	 Skillful or artful contrivance; maneuvering.*

The first definition is probably what you understand informally and is the most general definition. The focus is 
on “practical,” as it should be, especially to satisfy the imperatives placed on the field of software engineering.

The second definition sounds circular, but is also useful in the case of software engineering. As the 
field expands to new application areas and new elements, practice—that is, what software engineers 
do—often is ahead of any educational programs or more formal definitions. As an example, software 
engineers were dealing with human–computer interfaces before that topic was routinely included in 
software engineering courses.

The third definition is most often found in discussions of non-technical matters—for example, “The 
customer engineered the procurement so that his company would not be dependent on any one sup-
plier.” Of course, it also applies to technical work as well—for example, when a software engineer is faced 
with a problem for which there is not a straightforward solution.

The second definition in the preceding text begs the question: Who is an engineer?

According to the Model Law (NCEES, 2013) prepared by the National Council of Engineering Examiners, 
an “engineer” is an

individual who is qualified to practice engineering by reason of special knowledge and use of the 
mathematical, physical, and engineering sciences and the principles and methods of engineering 
analysis and design, acquired by engineering education and engineering experience.

In the same act, the term “practice of engineering means”

any service or creative work, the adequate performance of which requires engineering education, 
training, and experience in the application of special knowledge of the mathematical, physical, and 
engineering sciences to such services and creative work as consultation, investigation, evaluation, 
planning and design of engineering works and systems, planning the use of land and water, teaching…

The question is whether we can substitute “software engineering” for “engineering” and still have valid 
statements. For this to work, we would need to replace physical sciences by computer science.

72.2.2  What Is Software Engineering?

The curriculum volume for software engineering (ACM, 2004) listed the following definitions:

	 1.	 The establishment and use of sound engineering principles (methods) in order to obtain economi-
cally software that is reliable and works on real machines (Bauer, 1972).

	 2.	 … the application of a systematic, disciplined, quantifiable approach to the design, development, 
operation, and maintenance of software, and the study of these approaches; that is, the application 
of engineering to software. (Wikipedia, retrieved March 1, 2013)

*	 Random House Dictionary, op.cit.
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	 3.	 … concerned with developing and maintaining software systems that behave reliably and effi-
ciently, are affordable to develop and maintain, and satisfy all the requirements that customers 
have defined for them. (http://computingcareers.acm.org/, retrieved March 1, 2013)

	 4.	 Software engineering is that form of engineering that applies the principles of computer science and 
mathematics to achieving cost-effective solutions to software problems. (CMU/SEI-90-TR-003)

	 5.	 … the technological and managerial discipline concerned with systematic production and main-
tenance of software products that are developed and modified on time and within cost estimates. 
(Fairley, 1985)

	 6.	 The application of a systematic, disciplined, quantifiable approach to the development, operation, 
and maintenance of software. (IEEE, 1990)

The SE 2004 volume adopted the following definition:

Software Engineering is about creating high-quality software in a systematic, controlled, and effi-
cient manner. As such, there are important emphases on analysis and evaluation, specification, 
design, implementation and evolution of software. In addition, there are issues related to manage-
ment and quality, to novelty and creativity, to individual skills, and to teamwork and professional 
practice that play a vital role in software engineering.

A definition that one of us has used for many years captures the broad sweep of software engineering:

Software engineering is the systematic application of methods, tools, and knowledge to achieve 
stated technical, economic, and human objectives for a software-intensive system.

This definition is purposely general because the specific methods, tools, etc. may vary with the appli-
cation, the organization, and over time. Note the use of “software-intensive” to signify that in general 
software engineering is dealing with hardware and human systems as well as software, either directly 
in the absence of a larger systems methodology or, at least, in conjunction with such an encompassing 
methodology.

Denning proposes the merging of human-centered design and software engineering process into 
a profession of software architects, the central practice of which “unites system-oriented engineering 
and customer-oriented designers” (Denning, 1996). This proposal also focuses on standard practices 
in a domain of expertise. We should take this recommendation seriously. But, because of its possible 
misinterpretation with today’s use of the term software architecture, the term software systems archi-
tecture may be more suitable to describe such a discipline (see also Rechtin, 1997). This definition also 
risks ignoring the very important implementation, versus architecting, activities that practical software 
engineering must encompass.

Ian Sommerville (Sommerville, 1999) also concurs with the notion that software engineering is 
something else, and introduced the idea that at best it is a “soft” systems engineering discipline, “In 
essence, the type of systems which we are interested in are socio-technical software-intensive systems…” 
Furthermore, Sommerville claims that “there is no technical solution to software complexity.”

Andriole and Freeman (1993) also propose a new discipline of “software systems engineering” 
that aims to integrate the two disciplines that often operate fairly disconnected from each other. The 
still developing nature of software engineering as a discipline is underscored by the variety of these 
definitions.

72.2.3 � How Does Software Engineering Differ from Traditional Engineering?

If the set of activities associated with the creation of software is to be considered engineering, we 
must establish appropriate relationships, in terms of similarities and differences, with conventional 
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engineering disciplines. Software is different from the object of much engineering because of its intan-
gibility and plasticity, of course. There are also important differences between software engineering and 
traditional engineering (Díaz-Herrera, 2009; Shaw, 1990).

Some specific differences between software engineering and traditional engineering include the 
following:

•	 Software engineering builds on a different basis or foundation, because the product it designs 
and creates is an abstract or logical artifact instead of a concrete or a physically realizable entity.

•	 Software engineering foundations are primarily in computer science, not in the natural sciences.
•	 Underpinning all successful engineering is the notion of measurement. This is absolutely funda-

mental to the engineering process and engineered products, and it is probably the part of software 
engineering that differs the most from traditional engineering. Measurement as practiced in other 
engineering disciplines is impossible for software engineering, as DeMarco recently put it (DeMarco, 
2009), “Software development is inherently different from a natural science such as physics, and its 
metrics are accordingly much less precise in capturing the things they set out to describe.”

The three primary things one can measure in software are size, development time, and defects 
(Humphrey, 1995). These measurements, however, do not address predictability of behavior—
a critical aspect of engineered products. There are no universal relationships between software 
quality and what we can measure in software and, in particular, with predictable behavior 
(Sommerville, 1999).

•	 Although some software engineering techniques are based on discrete mathematics, rather than 
on continuous state systems, there is no software engineering mathematics despite the long quest 
for a successful axiomatic approach to programming (Shustek, 2009).

•	 Even if we succeed in finding ways to prove programs correct, software engineering deals with 
systems that are too complex to be treated by mathematical analysis alone.

In terms of engineering practice, software engineering is a different kind of “engineering.” The difference 
that most people think of first is that software is not tangible and is infinitely malleable; most engineer-
ing disciplines, in practice, deal with tangible objects (e.g., bridges, mechanical devices, chemicals, and 
circuits). A major exception is industrial engineering,* which is largely mathematical or abstract, but 
measurable. Electrical (or electronic) engineering would also appear to be an exception since it deals 
with physical effects that are not visible—but they can be measured and their effect often seen or other-
wise detected—and they are realized in physical circuits.

Another major difference is obvious in the first aforementioned definition; there is no “pure science” 
on which software engineering is based. This is a major issue in practice and theory that we briefly 
address in the following text.

There are more practical differences as well—the lack of common standards, a deficiency of case 
studies and handbooks (which this volume addresses to some extent), the rapidly changing nature of 
what software engineers do, the lack of much effort spent on developing the structures and artifacts of a 
traditional engineering discipline, and so on. Many of these are common to any new field as it develops 
and, especially, when the activities of its practitioners and researchers are so much in demand, leaving 
little time or motive for most people to devote time to what appear to be long-term, even irrelevant, 
activities. Over time, this will change.

Fundamentally, however, software engineering will always differ from traditional engineering in its 
technical details because of the invisibility and malleability of the object of its efforts. It shares this dif-
ferentiation with computer science as discussed in the subsequent section.

*	 Agresti grouped the collection of Industrial Engineering techniques and tools that appear to offer some prospect for 
software (Agresti, 1981).
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72.2.4  How Does Software Engineering Differ from Computer Science?

Software engineering is more than and less than computer science—put more properly, they share a lot 
in common, but each addresses issues that the other discipline does not address. This viewpoint was 
discussed as early as the NATO Conferences (Buxton and Randell, 1969, p. 46).

Chemical engineering, for example, is largely based on chemistry; civil engineering is largely based 
on mechanical properties known from physics; electrical engineering is largely based on electromag-
netic properties known from physics; and so on. While all may have management issues in practice, 
these tend to be common across many areas of traditional engineering and none in their basic formula-
tion are concerned with human interactions with the systems with which they deal.

Software engineering does not have a well-established science on which most of its tenets can be 
based. Computer science is also still a developing discipline, although more mature than software engi-
neering, thus making the definition of a software engineering discipline even more difficult.

The major commonality that software engineering and computer science share is, of course, software. 
Software (programs and systems of programs) is one of two major topics that computer science deals 
with—the other being the mechanisms (processors) that can execute programs. Software engineering 
was started by including in the definition of computer science the study of the processes used to create 
software (the essence of software engineering) but as software engineering has paid more attention to 
topics such as management, some argue that it needs to be a discipline separate from computer science. 
Whether or not it should be a separate discipline is an argument that will not be settled any time soon, 
but is largely an issue of organizational politics and is not terribly relevant to the practical conduct of 
software engineering.

Differentiating factors include the importance of management, the processes of creating software, 
technical issues like human–computer interfaces, and so on. This can be explained by noting that com-
puter science, like traditional sciences, is fundamentally focused on understanding something, while 
software engineering, like traditional engineering, is focused on creating something. At the same time, 
the non-traditional nature of computer science blurs this distinction somewhat.

The gap currently is wide between the software engineering knowledge that has been codified, veri-
fied, and organized into repeatable, teachable courses and curricula on the one hand and what the prac-
ticing software engineer must employ to be successful in many situations on the other (Díaz-Herrera 
et al., 2007). The objective of software engineering research is to organize and narrow this gap so that 
future generations can learn how to do software engineering in some way besides making large and 
costly mistakes!

72.3  Software Engineering Research

Research in software engineering refers mostly to applied research, and a more rigorous, scientific approach 
is needed (see evidence-based software engineering later in this section of the handbook). We can analyze, 
in our academic laboratories, existing and proposed software methods and techniques in the light of new 
software engineering principles. It is a fact that, since the introduction of the term software engineering 
in 1968, there have been many proposals being put forward to alleviate the software crisis. Rarely, if ever, 
have these proposals been backed by hard data as evidence of effectiveness. The arrival of Ph.D. programs 
in software engineering will accelerate the scientific understanding of software.

We need to examine project failures to discover why they fail. Just like ordinary engineering failures 
(such as a bridge collapsing), major software disasters must be investigated, causes analyzed, principles 
discovered, and solutions reported and disseminated. This kind of software practice research is difficult 
to do in a traditional academic setting (Shaw, 2002).

Someday, we may have completely automated ways of producing complex software. While some 
progress has been made, we are still a long way from reaching that goal. Research aimed at that goal 
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(sometimes called “automatic programming”) has been around for longer than software engineering 
and has taken various forms ranging from artificial intelligence approaches to algorithmic processes. 
The latter approach has been successful at the level of code generation and program generation for well-
structured situations (e.g., I/O drivers for hardware), but progress at higher and broader levels of system 
generation has not made much progress in unstructured and/or new areas.

72.4  Elements of Software Engineering

The rapidly developing and diverse nature of software engineering, as illustrated earlier, mean that any 
list of the primary elements in a software engineering curriculum or the primary activities of software 
engineering will be incomplete and/or soon out of date. Focusing on software, the elements of soft-
ware engineering typically include methods for the various development activities as summarized in 
Table 72.1 as well as and corresponding verification and validation activities, and tools to support and/or 
automate each of these, including IDEs, plus skills and knowledge of software engineering, computer sci-
ence, engineering management, human perception and behavior, and one or more application domains 
(see also Díaz-Herrera, 2001).

Notice two characteristics of this set of categories: First, it is focused on methods that are for the most 
part carried out by human beings and only secondarily (if at all) on the nature of software (in the same 
way that chemical engineering is influenced by chemical properties of materials). Second, the categori-
zation is still very general.

The great majority of software produced today is still developed following ad-hoc methods and it 
remains true that “software engineers have not been able to put together a coherent engineering design 
method for the systematic production of software, specifically for large, complex, ill-defined systems” 
(Denning, 1996).

The reasons for these problems are many-fold (ACM, 2004):

	 1.	 Software products are some of the most complex of man-made systems, and software by its very 
nature, has intrinsic difficulties (e.g., complexity, visibility, and changeability) that are not easily 
overcome (Brooks, 1995).

	 2.	 Programming techniques and processes that worked effectively in the 1950s and early 1960s, to 
develop modest-sized programs by an individual or a small team, did not scale-up well to the 
development of large, complex systems (systems with millions of lines of code, requiring years of 
work, by hundreds of engineers).

	 3.	 The pace of change in computer and communications technology drives the demand for new and 
evolved software products. Our successes in this area have created customer expectations and 
competitive forces that stress the quality of software and their development schedules.

The thought of treating software engineering as an engineering discipline is, of course, not new. For 
several years now, people both in academia and in industry and government have fostered this very idea. 

TABLE 72.1  Software Development Activities
Requirements elicitation and analysis
Specification
System or architectural design
Program design
Testing of program modules and subsystems
Integration of system parts into a complete system
Management of software artifacts
Process management
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What is new today is the widespread impetus from many fronts to consider software development as 
engineering. To wit consider the following major milestones:

•	 A code of ethics for software approved by the ACM and the IEEE-CS (Gotterbarn, 1999)
•	 The processes for outlining the body of knowledge for software engineering has resulted in two 

widely contributed and distributed versions (Bourque and Dupuis, 2001). SWEBOK V2 (2004 
Version) also known as Technical Report ISO/IEC TR 19759 is currently under review to produce 
V3 under the direction of Dick Fairley.

•	 Accreditation criteria for educational programs in software engineering (see IEEE Spectrum, 
1997) accepted by ABET in 1999 (Engel, 1999).

•	 Texas legislature has being licensing professionals in software engineering since July 1999.
•	 Pioneering undergraduate programs in the United States at Rochester Institute of Technology* in 

New York, Monmouth University† in New Jersey and Milwaukee School of Engineering‡ led the 
way to the development of several such programs in the United States and in the European and 
Australian universities.

•	 In 1997, we discussed the possibility of creating Ph.D. programs in software engineering (Díaz-
Herrera, 1997). Two such programs have been put in place, the first at the Naval Postgraduate 
School§ and the other at Carnegie Mellon University.¶,**

•	 In 1999, the IEEE-CS started a professional certification initiative and the certification exam 
began in 2001.††

The best way to define the elements of software engineering is by extension. The aforementioned his-
torical material is one example. A good text is another. The content of the curriculum in software engi-
neering from a highly regarded school is a third type of definition. Ultimately, however, the elements 
of software engineering, at the present state of understanding, are defined by what practicing software 
engineers need and do in their daily work.

72.5  What Is Used in Practice?

It is impossible to answer the question “What is actually used in practice?” nor is that the purpose of this 
handbook. We would note that there is no comprehensive, objective survey data on the subject (however, see 
Lethbridge, 2000). One can find surveys from time to time in the trade press, typically focused on a specific 
language, tool, or methodology; often times these are little more than promotion pieces by a vendor. We point 
the reader to later parts of this section discussing empirical and evidence-based software engineering.

Amount of use of  “software engineering” or “software engineer” is equally unknown. In some juris-
dictions, use of the term “engineer” is illegal unless the jobholder is certified as an engineer in that 
jurisdiction, for example.

Some engineering based companies that employ engineers of many kinds classify some employees as 
software engineers while other, similar companies specifically do not unless the employee has a degree 
in software engineering while yet others have no policy, leaving it to the employee to use whatever title 
they want. Perhaps the largest usage of “software engineer” is basically as a substitute for and synony-
mous with “programmer” in terms of what the employee does.

*	 http://www.rit.edu/∼932www/UGrad/UGradCat/colleges/cast/softeng.html
†	 http://www.monmouth.edu/se/
‡	 http://www.msoe.edu/eecs/se/
§	 http://www.cs.nps.navy.mil/∼se/phd.html
¶	 http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/education/doctoral_isri.html
**	 Graduates have been earning the PhD with software engineering research since the 1970s, usually in CS programs.
††	 http://computer.org/certification
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72.6  Where Does One Need Software Engineering?

Software engineering originated from difficulties with large, complex software-intensive systems; has 
been developed with heavy support from industry and government organizations that are usually those 
that are developing, or contracting for, such systems; and is most often found today in large organiza-
tions and/or projects. To some extent, this is because it is perceived (not necessarily accurately) that 
utilizing software engineering is more expensive, cumbersome, or overly bureaucratic than many orga-
nizations feel they can afford. While sometimes true, this need not be the case and often is not when one 
computes the total lifecycle cost of developing software.

At least until fairly recently and perhaps still today, there are organizations that do not utilize software 
engineering even though they are building large systems. This tends to be more the case in commer-
cial organizations that are not engineering-oriented overall; in fact, sometimes software engineering is 
rejected by such organizations precisely because of the term “engineering,” that they mistakenly believe 
refers to something very technical that does not apply to them.

So, does this mean that only large organizations should use software engineering? Absolutely not!
There is nothing inherent in the concepts and elements of software engineering that prevents it 

from being used in organizations of any size and on projects of any size. It can be used by one person 
developing a single program, a small team in an organization small or large, teams of any size devel-
oping large systems, development spread over geographically distributed groups, and so on. What is 
needed is to choose carefully the specific elements to be used and the overall process framework to 
guide the work.

The principles and elements of software engineering are often the embodiment of good, common-
sense practice that are just as useful for an individual working alone as they are for a team of thousands 
in a large organization. Obvious examples are the programming methods that are often part of a soft-
ware engineering environment—types of language used, structuring principles, review techniques, and 
so on. These are techniques that are applied by individuals even when they are working in a large group 
and are just as valuable when they are working alone. Even program review techniques that may call for 
code reading by another person embody the principle of careful review of work, that is, formal inspec-
tions; while it may be more valuable when the review is conducted by someone other than the author of 
the code, the fundamental principle of review still applies.

Similarly, the concept of following a defined lifecycle with definite stages, explicit entry and exit cri-
teria from each stage, and so on is a concept that is important in small organizations and/or on small 
projects down to the level of individuals. If one is writing a program alone, it is important to understand 
the requirements before beginning to program, design the structure of the program if it is more than the 
simple coding of a straightforward algorithm, then test the program, document it, etc. The depth and 
formality of most of these steps will certainly be less than if working in a team and/or on a large system, 
but the structuring of one’s activity (workflow) can be beneficial.

Watts Humphrey (1995, 1997) in the two books referenced developed the idea that software engineer-
ing is not just a large team, large organization activity.

72.7  Summary

Software is complex and the software industry is large, global, and growing. The increasingly public 
importance of software-intensive systems in our daily lives, for our safety and security, and for national 
and global economies makes it imperative to be able to deliver high quality software. We need to 
find effective ways of evaluating innovative concepts, methods, and tools for developing high quality 
software.

Over the past 50 years, the act of creating the software that is necessary to implement our visions of 
automation using a computer has come to be understood as extremely difficult to carry out and, thus, it 
has been recognized that a discipline akin to more established engineering disciplines might make the 
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task less difficult. The quest outlined earlier has certainly made possible many aspects of modern software 
systems, but it is not yet a full discipline either in the intellectual or practical sense of the term “discipline.”

One overriding theme of the development of software engineering over the past 45 years has been the 
successive broadening of scope of what must be included in the discipline—from programs to designs 
to systems to methodologies and beyond. A second theme has been the inclusion of topics such as man-
agement and human behavior that are not found in traditional engineering disciplines (civil, chemical, 
mechanical, and electrical), or are considered separate from the main body of the discipline. A third 
theme has been the rapid expansion in scope to creating software for countless new applications and 
situations, usually under increasing pressure to produce the product more rapidly and with less effort.

The practical definition of the discipline has certainly taken shape in the form of a fair number of 
standards and compilations of knowledge (including this volume). Yet, the still rapidly changing land-
scape of knowledge and demands keeps the definition fluid, at best. As so often happens, what seems 
clear in theory is less clear in practice. Perhaps, the most important driver of the disciplinary definition 
remains the courses and curricula that exist, although at the same time far too many of those do not 
address the real needs of practice.

As a research discipline, we are probably even further away from a consistent disciplinary definition. 
Indeed, some would argue that the engineering and management approach will never be completely 
successful and that the way to address the “software problem” is to automate as much of the software 
creation process as possible. Even within the engineering paradigm, there are important differences in 
researcher’s beliefs of what the important research questions are and how to attack them—two charac-
teristics that define a discipline of research.

Could there be a basis for understanding the complexity of software such that we can engineer it to 
have predictable quality and behavior?

The answer to this fundamental question is unknown—that is the objective of some software engi-
neering research. Thus, at present, software engineering usually has to address the challenges of archi-
tecting complex software-intensive systems, of the kind described earlier, by more heuristic and less 
analytical methods. As DeMarco (2009) says, “software development is and always will be somewhat 
experimental.” In this way, software development is a different kind of engineering, the kind of engi-
neering associated with computing.

Whatever your point of view and interest in the discipline of software engineering, the history of the 
past 45 years can be illuminating and helpful to put into context the information that you will find in 
this handbook. The origins of that history as outlined here will provide you a basis for further explora-
tion of that history in areas that pertain to your needs.

There may be a problem with trying to retrofit this fundamentally computing sub-discipline with the 
traditional “engineering” paradigm; maybe, what we should be doing is exploring how it can be molded 
into that paradigm within computing. Computer science is on the way to accomplishing this; it became 
not a “science” discipline, but rather the “science of computing,” and the same can be said of IT—the 
technology of computing.

We implemented the vision of computing as a distinct branch of knowledge, a discipline in its own 
right, that culminated with the creation of the computing college—“standing alone, headed by its own dean, 
with the same stature as traditional colleges,” as (Denning, 1998) put it. In addition, here is where soft-
ware engineering rightfully belongs as the “engineering of computing.”
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73.1  What Is a Profession?

The term “profession” is used informally to refer to a very wide range of occupations. However, most 
writers reserve the term for occupations that share a number of characteristics: an explicit body of 
knowledge, some sort of entrance control, a code of ethics, and a recognized need for continuing educa-
tion (see, e.g., Davis 2009). Professions are generally governed by collaborations between professional 
organizations and governmental agencies. Professional credentials may be internationally portable. 
Occupations that impact individuals’ physical and/or financial well-being are most likely to have 
evolved into professions. Examples include law, health (medicine, dentistry, and nursing), architecture, 
and accounting. In the United States, each of the aforementioned examples has a body of knowledge that 
is embedded in a set of entrance examinations. Entrance control is enforced by specialized educational 
prerequisites for the examinations. All of these professions have explicit codes of ethics. In the United 
States, members of these professions are required to have government-sanctioned licenses, and continu-
ing education is a requirement for retaining a valid license.

73.2  Engineering as a Profession

Until a few centuries ago, “engineers” were primarily those involved with the design and construction of 
fortifications and weaponry. However, in the eighteenth century, the occupation “engineer” began to be 
extended to cover those who designed and built the technological elements (mines, steam engines, canals, 
bridges, tunnels, locomotives, etc.) that were at the heart of the changes in manufacturing and transporta-
tion generally referred to as the Industrial Revolution (Armytage 1961). During this period, the term “civil 
engineer” was coined to contrast with the more traditional military uses of engineering. This usage is still 
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found in some countries (e.g., Chile). At the same time, the practice of engineering gradually acquired the 
characteristics described in the preceding section. These characteristics were acquired slowly over time, 
and the rate and process of acquisition was quite variable across countries. For example, while entrance 
to the profession was initially achieved by apprenticeship to a practicing engineer, the nineteenth cen-
tury saw the creation of specialized schools dedicated to the training of engineers. In France, the last 
decades of the eighteenth century saw the establishment of the École Polytechnique and École des Mines. 
The first engineering school in the United States was Rensselaer Polytechnic Institute (Troy, New York), 
established in 1824 “for the application of science to the common purposes of life.” During the course of 
the nineteenth century, other countries followed the example of France and the United States and estab-
lished engineering schools. In the United Kingdom, this effort began with the establishment of the London 
Mechanics’ Institute in 1823 (Armytage 1961: 144). Engineering entered the UK academic world a bit later; 
the first courses in civil and mechanical engineering began in 1838, and the first chairs in engineering 
were created at University College in 1841; both institutions were part of the University of London. In most 
countries, control of university engineering programs and guaranteeing their quality was the responsibil-
ity of ministries of education. This was not possible in the United States, with its federal structure and 
public/private university system. The gap was eventually filled by the Engineers’ Council for Professional 
Development (now called ABET) established in 1932 as a confederation of professional societies (including 
the American Institute of Electrical Engineers, a predecessor of the Institute of Electrical and Electronics 
Engineers [IEEE]). ABET is responsible for the accreditation of US programs in engineering and comput-
ing; it also accredits many programs in other countries. ABET accreditation requires that a program in 
a given engineering discipline meet discipline-specific requirements that are derived from an explicit or 
implicit body of knowledge for that discipline. Graduates must also recognize the need for lifelong learning 
in their discipline. Finally, students graduating from an accredited program must have an understanding 
of professional and ethical responsibility. Corresponding to this requirement, professional societies in the 
engineering disciplines have developed discipline-specific codes of ethics. Codes of ethics have also been 
developed by organizations representing engineering more broadly. For example, the US-based National 
Society for Professional Engineers (NSPE) has developed a code of ethics (NSPE 2007). Governmental 
regulation of engineering generally involves some sort of collaboration between an arm of government, 
the organization accrediting engineering education, and one or more professional organizations. In the 
United States, professional licensure of engineers is regulated by the states, but the requirements and the 
examinations required for licensure are administered by a professional organization, the National Council 
of Examiners for Engineering and Surveying (NCEES). Aspiring professional engineers must pass the 
examinations and have appropriate education and experience; the number of years of experience required 
is less for those who have completed an ABET-accredited undergraduate degree. Similar structures exist 
in Canada and Australia; more unitary approaches are used in other countries. It is important to note that 
(at least in the United States) professional engineers may have their state-issued licenses revoked if they 
violate the NSPE code of ethics.

73.3  Emergence of Software Engineering

The phrase “software engineering” first saw widespread use in North Atlantic Treaty Organization 
(NATO) conferences held in 1968 (Naur and Randell 1969) and 1969 (Randell and Buxton 1970). These 
conferences were a response to a generally perceived “software crisis” that had arisen from experience 
with the problems associated with designing, developing, and maintaining reliable large-scale soft-
ware. At the 1968 conference, Friedrich Bauer defined software engineering as “establishment and 
use of sound engineering principles to obtain economically software that is reliable and works on real 
machines efficiently” (Naur and Randell 1969). The idea was that just as engineering principles were 
needed to design and build complex artifacts in the physical domain, they would also be necessary 
for doing the same in the software domain. During the ensuing decades, the phrase “software engi-
neering” has seen increasingly widespread use. Many scholarly journals, magazines, and research and 
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practitioner conferences have been established to disseminate research and current practice in software 
engineering and its subdisciplines (see the other chapters). Software engineering research programs are 
found in universities (most usually in departments of computer science) and in industrial and govern-
ment laboratories. Courses or modules in software engineering and its subdisciplines are offered by 
most universities. Many computer science departments offer entire degree programs at undergraduate 
or Master’s level. Some universities have established independent departments of software engineering, 
usually contained within colleges of engineering. Software engineering clearly has roots and affilia-
tions in computer science, but its name and the associated rhetoric suggest an affiliation with engineer-
ing. These alternative affiliations have had an impact on the emergence of the profession of software 
engineering.

73.4  Software Engineering as a Profession

More than 40 years after the NATO conferences that gave birth to “software engineering” as a concept, 
the discipline has attained recognition from universities and research funding agencies. At the same 
time, “software engineer” sees wide use as a job category in industry. While the acceptance of software 
engineering in academia and industry demonstrates the extent of the change since 1968, it is not so clear 
whether we can reasonably talk about a profession of software engineering. The following sections will 
look at this issue.

73.4.1  Body of Knowledge

In late 1998, the Association for Computing Machinery (ACM) and the IEEE Computer Society 
(IEEE-CS) began a joint effort to develop a body of knowledge for software engineering.* The even-
tual outcome of this effort was the Software Engineering Body of Knowledge (SWEBOK), first released 
in 2004 (IEEE-CS 2004b). SWEBOK became an international standard (ISO/IEC TR 19759) in 2005. 
SWEBOK is built around 10 knowledge areas: requirements, design, construction, testing, main-
tenance, configuration management, software management, process, tools and methods, and qual-
ity. Furthermore, as the discipline of software engineering is subject to rapid change, the SWEBOK 
project includes an ongoing revision process, described in Appendix B of the SWEBOK document. At 
about the same time, the two leading professional societies in the general area of computing (ACM and 
IEEE-CS) began an effort to develop curriculum recommendations for undergraduate programs in soft-
ware engineering. This effort produced the SE2004 curriculum recommendations (IEEE-CS 2004a). The 
list of topics included in the curriculum was heavily influenced by the SWEBOK document (IEEE-CS 
2004a: 12). More recently, curriculum guidelines for professional Master’s programs in software engi-
neering have also been proposed (ISSEC 2009). This Master’s curriculum is also based on an explicit 
body of knowledge; the “core body of knowledge” was derived from the SWEBOK by making relatively 
minor changes to some of the SWEBOK knowledge areas.

73.4.2 A ccreditation

The path to the accreditation of software engineering programs varies by country. Accreditation of US 
engineering programs by a federation of professional societies (now called ABET) began 80 years ago.† 
Computing programs are far more recent, and accreditation efforts date back only to the establishment 

*	 Note that ACM withdrew from this effort in 2000. At this time, ACM had taken a strong position opposing licensure of 
software engineers, and development of a body of knowledge was seen as a step toward licensure. These developments 
will be discussed further in the subsequent sections.

†	 Note that ABET now accredits programs outside the United States. These accreditations include software engineering 
programs.
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of the Computer Science Accreditation Board (CSAB) in the 1980s. This entity worked alongside ABET 
and adopted many of its principles and processes. In the late 1990s, CSAB moved closer to ABET, even-
tually merging into the larger organization in 2000 when CSAB became an ABET member society. 
As a result of this merger, ABET now accredits computing programs (computer science, information 
systems, and information technology) as well as programs in computer engineering and software engi-
neering. ABET accreditation of software engineering programs was first proposed in 1997, and software 
engineering accreditation criteria were approved in 1998. To understand how all of this works, it is 
necessary to know a bit more about ABET’s organizational structure. ABET is organized into four com-
missions: the two relevant to this discussion are the Engineering Accreditation Commission (EAC) and 
the Computing Accreditation Commission (CAC). As might be expected, EAC and CAC are responsible 
for engineering and computing programs, respectively. The accreditation criteria for a program are set 
by one or more “sponsoring” societies and must be approved by the relevant commission. For example, 
electrical engineering criteria are set by IEEE and approved by EAC, while computer science criteria are 
set by CSAB and approved by CAC. Since software engineering shares aspects of computing and engi-
neering, its criteria are written by CSAB and approved by EAC. The inclusion of CSAB within ABET is 
one approach to resolving the potential conflict created by software engineering’s competing (engineer-
ing and computing) affiliations.

Other countries have taken different paths toward resolving the question of who is to accredit software 
engineering programs. In the United Kingdom, the British Computer Society (BCS) is a chartered engi-
neering organization that is a member of Engineers UK, a federation of professional engineering societies. 
Since Engineers UK is responsible for accrediting engineering programs in the United Kingdom, BCS 
can accredit computing programs (including software engineering) within the Engineers UK mandate. 
In Australia, the Australian Computing Society and Engineers Australia make joint accreditation vis-
its to software engineering programs. However, some countries have found it more difficult to achieve 
shared responsibility for software engineering accreditation. The Canadian situation is a case in point. 
Computing programs in Canada are accredited by the Canadian Information Processing Society (CIPS), 
while engineering programs are accredited by Engineers Canada through the Canadian Engineers 
Accreditation Board. The situation is exacerbated by the fact that Engineers Canada has trademarked the 
words “engineer” and “engineering” in Canada and aggressively defends the rights associated with the 
trademark (Adams 2004). For example, when the computer science department at Memorial University 
(Newfoundland) attempted to offer a software engineering degree, the university was sued by Engineers 
Canada. In response, Memorial has trademarked the phrase “software engineering.” The CIPS perspective 
can be found at CIPS (undated). This conflict has never been definitively resolved. It is also worth noting 
that different countries have different cultural and legal contexts for program accreditation. In the United 
States, accreditation of engineering programs is part of the culture of engineering, especially because of its 
link to professional licensure. Accreditation is therefore the norm for US engineering programs. However, 
the decision to accredit a US computing program involves several factors, including institutional char-
acteristics, academic organization, and local and regional competition. By contrast, other countries (e.g., 
Germany) have legal requirements for the accreditation of university programs.

73.4.3  Code of Ethics

Most engineering disciplines have developed their own codes of ethics; similar codes have also been 
developed by national organizations representing engineering more broadly, such as NSPE or Engineers 
Canada. At the same time, some national computing societies have developed codes of ethics for com-
puting professionals. For example, each of the British, Australian, and Canadian professional societies 
has a code of ethics (CIPS 2005, BCS 2011, ACS 2012). However, these codes are not specific to software 
engineering. In the 1990s, ACM and IEEE-CS addressed this need (see Davis [2009], for a detailed his-
tory of this effort) by jointly developing a code of ethics for software engineers (ACM 1999); the code was 
approved by both societies in 1998.
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73.5 � Professional Qualifications for Software 
Engineering: Licensure versus Certification

There are two general approaches to providing generally recognized qualifications for a practicing pro-
fessional. The first approach confers a legal status that carries rights, privileges, and obligations. In the 
United States, this status is called a “license to practice a profession,” and it will be referred to here as 
“licensure.” An alternative approach is for a professional to acquire certificates that demonstrate pro-
ficiency in a particular body of knowledge; this general approach will be referred to as “certification.” 
Note that by contrast with licensure, certification is always voluntary and has no legal implications.

73.5.1  Licensure

Many professions require practitioners to hold government-sanctioned licenses or equivalent des-
ignations (e.g., “chartered status” in the United Kingdom and Australia). Government supervision of 
such qualifications is almost always shared with professional societies. It is clear that governments will 
enforce the regulation of professions that have significant impact on health and safety. The same is true 
for professions that impact the financial and legal status of individuals and corporations, such as law 
and accountancy. The situation for engineering is less clear, and there is much cultural variation both 
within engineering and across countries. In the United States, for example, civil engineers generally hold 
licenses, but electrical or industrial engineers generally do not. One reason for this difference is that the 
individual with ultimate responsibility for the design of a project affecting public safety (e.g., a nuclear 
power plant or oil refinery) must be a licensed engineer; such responsibilities are much more likely for 
civil engineers than for electrical or industrial engineers. In some Latin American and European coun-
tries, the acquisition of professional status as an engineer has social benefits. An engineer with officially 
recognized professional status is entitled to use the personal title “engineer.” Such individuals have higher 
status in society; they frequently use the title in telephone directory listings and similar places. In these 
countries, virtually all individuals who are entitled to call themselves “engineer” make use of the title.

What is the situation for software engineering? In countries using the “chartered engineer” licensing 
model (Canada, Australia, and United Kingdom), the opportunity to attain chartered status has rela-
tively easily been extended to software engineers. In the United States, where the question of licensing 
or certifying software engineers has been an active topic of discussion for many years, the situation is 
far less clear. For example, in 1991, the lower house of the New Jersey legislature passed a bill to license 
“software designers,” although the bill eventually died in the upper house (Davis 2009). Shortly there-
after (in early 1993), the IEEE-CS created a Steering Committee for the establishment of software engi-
neering as a profession. At that time, the ACM also expressed interest in assessing professionalism in 
software engineering. This interest led to collaboration with IEEE-CS, and eventually (in early 1994) to 
the creation of a joint ACM/IEEE-CS steering committee to deal with this general topic. This commit-
tee set up task forces dealing with several aspects of professionalism: code of ethics, body of knowledge, 
program accreditation, and curriculum recommendations. The question of licensing software engineers 
frequently arose during these discussions. For example, some software engineering professionals felt 
that the adoption of a software engineering code of ethics could be seen as one step along the path to 
licensure (Davis 2009: 211). Furthermore, 1996 saw a forum on the licensing of software profession-
als; many of the participants were also part of the joint steering committee. The forum attendees were 
strongly divided on the issue of licensing software professionals. In 1997, the Licensing Committee of 
the Texas Board of Professional Engineers formally requested ACM and IEEE-CS to work on defining a 
body of knowledge on which software engineering licensing examinations could be based (Davis 2009: 321). 
In late 1998, the two societies created a Software Engineering Coordinating Committee (SWECC) to 
oversee all of these efforts. They agreed to work with the Texas Board of Professional Engineers to “iden-
tify a technical basis for recognizing competency in software engineering and [enact] rules that recog-
nized software engineering as a distinct engineering discipline” (Davis 2009: 356). At the same time, 
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the National Council of Examiners for Engineering and Surveying passed a resolution in support of 
“licensing software engineering throughout the nation.” However, the position of the ACM representa-
tives on SWECC was not universal within the ACM software engineering community. This is illustrated 
by the ACM’s creation in 1999 of an Advisory Panel on Professional Licensing in Software Engineering 
“to assess the current role of ACM as part of a joint effort with IEEE-CS to oversee and actively partici-
pate in the development of professional and licensing guidelines through SWECC” (Davis 2009: 359). 
After receiving a report from this advisory panel, the ACM Council “firmly decided [in May 1999] that 
it would not endorse licensing software engineers at this time, and that ACM would withdraw from 
any activity that gave the appearance of condoning the licensing of software engineers” (Allen et al. 
2000). However, the question of licensing software engineers was debated in the flagship magazines of 
the two societies (De Marco 1999, El-Kadi 1999, Frailey 1999a,b); these position papers present strongly 
opposing views of the suitability of licensure. This situation has persisted over the past decade: IEEE-CS 
supports professional licensure for software engineers, and ACM continues to oppose it.

At about the same time (in 1999), Texas became the first state to institute professional licensure for 
software engineers. Since then, several other states have announced their intention to do the same. 
However, the path to engineering licensure in all US states requires that an applicant take two examina-
tions administered by NCEES: the Fundamentals of Engineering (FE) and Principles and Practice of 
Engineering (PE) examinations. The FE examination consists of a morning part that is the same for all 
applicants; it includes mathematics (calculus, differential equations, and linear algebra), basic sciences 
(chemistry and physics), and engineering sciences (statics, materials, and thermodynamics). For some 
engineering disciplines (chemical, civil, electrical, environmental, industrial, and mechanical), the FE 
afternoon examination is discipline-specific; for all others, it deals with additional general engineering 
topics. The PE exam is specific to each of 24 engineering specialties. For civil, electrical, and mechani-
cal engineers, PE exams are offered for multiple specialties. Since no PE examination was available for 
software engineering in 1998, Texas allowed practitioners with 12 years of experience and an ABET-
accredited degree (or 16 years of experience for those with a related degree) to be licensed (Bagert 2004). 
In response to requests from engineering licensing boards in 10 states, NCEES announced in August 
2009 that it had approved the development of a new PE examination for software engineers. IEEE-USA 
(an IEEE entity devoted to the career and public policy interests of IEEE’s US members) is co-sponsoring 
the examination development effort, assisted by IEEE-CS, NSPE, and the Texas Society of Professional 
Engineers. The first step is to conduct a professional activities and knowledge study, which will survey 
a diverse sample of software engineering professionals to determine the topics to be covered in the 
exam. However, the creation of a PE examination in software engineering will not do much to increase 
the number of licensed software engineers, since the FE examination is not a good fit to undergraduate 
software engineering curricula, and even less so to other computing curricula.

73.5.2  Certification

As stated earlier, certification and licensure are distinct approaches to professional qualifications 
that  carry different implications. While licensure is always associated with legal restrictions and con-
straints, certification is voluntary and has no legal implications. It is important to distinguish between 
product-based certifications and broad-based professional certification schemes (Seidman 2009: 354). 
Product-based certifications are administered by companies (e.g., Microsoft, IBM, and Cisco). A 
corporate product-based certification requires passing an examination linked closely to products or 
sets of products produced by or associated with the company offering the examination. For example, 
Microsoft offers a range of product-based certifications (see, e.g., Microsoft [2012]). According to this 
site, “The Microsoft Certified Systems Engineer (MCSE) certification helps enable IT professionals to 
demonstrate their ability to design and implement an infrastructure solution with Windows Server 
2003-based business solutions.” Note that this is the only Microsoft certification that uses the word 
“engineer.” Interestingly, the appearance of “engineer” in this certification gave rise to legal action in 
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Canada. In an out-of-court settlement, Microsoft agreed that Canadian holders of this certificate would 
refer to themselves only by the acronym MCSE. The MCSE certification has now been superseded by a 
“Microsoft Certified IT Professional” certification. Both Cisco and IBM avoid using the word “engineer” 
in their certification programs.

By contrast, broad-based certification schemes are intended to recognize professional competence in a 
recognized body of knowledge. They are offered by societies that represent communities of professionals. 
Examples include Project Management Professional, Certified Financial Planner, and board certifications 
for medical professionals. The IEEE-CS’s effort to develop a certification scheme for software engineer-
ing professionals began in the late 1990s (Seidman 2009: 354–356). The IEEE-CS began by surveying the 
community and conducting discussions with industry representatives and potential certificate holders. 
The examination development process followed: lists of task and knowledge statements were created and 
validated by the community; these materials were used to develop test specifications, which in turn were 
used to construct test questions. After several rounds of evaluation, the Certified Software Development 
Professional (CSDP) examination was released in 2002. The original idea had been for the phrase “soft-
ware engineering” to appear in the name of the designation, but this was dropped in the face of opposition 
from NSPE and IEEE-USA. Since 2002, nearly 1000 individuals have earned the CSDP designation; more 
than 460 of these certificates are still valid (Dzerzhinskiy 2012). Over time, the CSDP body of knowledge 
has been revised to keep it in concordance with the ongoing revisions of SWEBOK. Candidates for CSDP 
certification must meet the following requirements before they can take the examination; licensed soft-
ware engineers and senior members of IEEE are automatically eligible. Otherwise, candidates must sat-
isfy the following criteria: (a) hold a bachelor’s degree, hold a Certified Software Development Associate 
(CSDA) certificate (see subsequent sections), be a university-level educator, or be a full member of IEEE 
and (b) have an advanced degree in software engineering and at least 2 years (about 3500 h) of experi-
ence in software engineering/development, or have at least 4 years (about 7000 h) of experience in soft-
ware engineering/development. The IEEE-CS soon realized that these requirements are too onerous for 
most candidates from developing countries. This led to the development of an entry-level certification 
program, the CSDA. While the CSDA program has no formal eligibility requirements, recommended 
guidelines for candidates indicate that candidates should be recent software or computer engineering 
graduates, undergraduates in the final year of a bachelor’s degree program in software or computer engi-
neering, or non-degree professionals with more than 2 years of programming experience.

Certification of software engineering professionals is also offered by the International Software 
Quality Institute (iSQI), an independent nonprofit organization in Germany. iSQI offers certification 
examinations in software architecture, software testing, and project management. The testing examina-
tion is also offered at an advanced level.

There is now an international standard (ISO/IEC 24773:2008) for certification schemes for soft-
ware engineering. This standard was developed by a working group within a joint technical commit-
tee of the International Organization for Standardization (ISO), and the International Electrotechnical 
Commission (IEC). In order to conform to this standard, a certification scheme must demonstrate that it 
incorporates the certification processes described in a previous international standard ISO/IEC 17024 for 
certification processes, and that the body of knowledge used by the scheme can be mapped to SWEBOK.

73.6  Conclusions

It has been more than 40 years since the phrase “software engineering” was first used to describe the pro-
cesses associated with developing and maintaining large-scale software systems. During this period, soft-
ware engineering has acquired some of the characteristics of a profession. It has a reasonably well-accepted 
body of knowledge and code of ethics. The pace of change in the computing industry (and in software 
engineering research) entails the need for ongoing continuing education. However, entrance control is 
somewhat variable; while there are many university courses of study in software engineering whose qual-
ity is governed by governmental or private accreditation agencies, employers far too frequently hire and 
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designate employees as software engineers who lack any formal professional credentials. Furthermore, the 
terms “software engineer” and “software developer” tend to be conflated. The often careless usage of “soft-
ware engineer” to designate a software developer tends to weaken the emerging professionalism of the 
discipline. This situation is exacerbated by the fact that major professional societies (ACM and IEEE-CS) 
have come to different conclusions as to the pace at which the profession of software engineering is emerg-
ing. At the same time, there is increasing pressure to bring software engineering into the professional-
credentials sector occupied by the broader community of engineers. As we have seen, this is quite variable 
by country; the variability has more to do with professional-society politics than with substance. In some 
countries (the United Kingdom and Australia), it has been relatively easy to do so. In others, (Canada 
and the United States), the pace has been slower. In all cases, though, the direction of movement has 
been toward government-sanctioned credentials (licensing or chartered status). The recent introduction 
of broad-based society-sponsored professional certification examinations has opened another way for 
software engineers to obtain professional credentials. However, the uptake of these credentials has so far 
been slow driven almost exclusively by practitioner interest; there have been few if any signs of employer 
interest or involvement. It seems clear that the future of software engineering professionalism will be 
driven by industry and government. Software quality increasingly impacts public health and safety as 
well as corporate profits. If either of these drivers leads to an increased emphasis on the competence and 
professionalism of the software engineers developing the products of the future, we can expect to see a 
similarly increased emphasis on the professional credentials held by these software engineers.

Key Terms

Accreditation: A defined process to determine whether a university academic program meets specified 
quality standards.

Body of knowledge: A description of the definition and concepts underlying a discipline. It is usually 
accompanied by an annotated bibliography.

Certification: A process to determine whether a practitioner has mastered a given body of knowledge.
Chartered engineer: An individual recognized as a professional engineer in certain countries, includ-

ing the United Kingdom, Australia, and New Zealand.
Code of ethics: A list of ethical expectations for professionals in a specific profession.
CSDA: An entry-level certification examination for software engineering professionals developed by 

the IEEE Computer Society.
CSDP: A certification examination for experienced software engineering professionals developed by the 

IEEE Computer Society.
Entrance control: A means of restricting access to a profession, most usually by requiring graduation 

from an accredited university program.
Licensing: A means of restricting the practice of a profession to those who meet specific requirements, 

including education, experience, and possibly an examination.
Profession: An occupation characterized by an explicit body of knowledge, entrance control, code of 

ethics, and a recognized need for continuing education.
Professional: An individual who has received government (and often professional-society) approval to 

practice a specific profession.

Further Information

Information about professional status for engineers is country-specific. For the United States, the best 
source is the licensure page of the National Society for Professional Engineers (http://www.nspe.org/
Licensure/index.html). The appropriate source for Canada is the Engineers Canada licensure page 
(http://www.peng.ca). For the United Kingdom, the best source is the Engineering Council’s Chartered 
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Engineer page (http://www.engc.org.uk/professional-qualifications/chartered-engineer/about-chartered-
engineer). A relatively recent working paper (Adams 2004) contrasts the development of software engi-
neering as a profession in the United States, the United Kingdom, and Canada.

Curriculum recommendations for computing programs, including software engineering, can be 
found at http://www.acm.org/education/curricula-recommendations. Additional information can be 
obtained from the ACM and IEEE-CS computing education pages; see http://www.acm.org/education 
and http://www.computer.org/portal/web/education.

The ACM/IEEE-CS software engineering code of ethics can be found at http://www.acm.org/about/
se-code. A recent monograph (Davis 2009) presents an in-depth discussion of the development of 
this code.

Accreditation of software engineering programs is also country-specific. ABET accreditation of engi-
neering programs, including software engineering, is described at http://www.abet.org/engineering-
criteria-2012-2013. The British Computer Society’s accreditation program is described at http://www.bcs.
org/category/5844. A good introduction to the German approach to accreditation of engineering and 
computing programs can be found at http://www.asiin-ev.de/pages/en/asiin-e.-v.php

The best source for the IEEE Computer Society’s certification effort is the IEEE-CS certification page: 
http://www.computer.org/portal/web/getcertified
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74.1  Introduction

In late 1999, the Association for Computing Machinery and the IEEE-Computer Society approved the 
Software Engineering Code of Ethics and Professional Practice 5.2 (hereafter, the Code). The Code was 
later translated into Arabic, Croatian, French, German, Hebrew, Italian, Japanese, Mandarin, and Spanish 
by other computing societies and individuals for their use. The Code encourages software engineers 
to undertake positive actions and to resist pressures to act unethically. Several major companies have 
adopted the Code, and its principles have been incorporated into their standards of practice. The Code 
has also been included as part of employment contracts, which are signed at the time of employment.

The Code describes the ethical and professional obligations against which peers, the public, and legal 
bodies can measure a software developer’s behavior. The development of large complex and safety criti-
cal systems is a difficult process. Software development and software developers have not been acclaimed 
for their successes or professional reputation. There is a long history of highly publicized software fail-
ures accompanied by frequent efforts to sidestep the responsibility for those failures by blaming them 
on “bugs,” which somehow creep into the software.

The United States Navy has developed “smart ships” where shipboard applications are being run by 
software so that fewer sailors are needed to control key ship functions. The smart ships computer system 
reduced the crew size by 10% and saved more than 2.8 million a year. However, in September of 1997, the 
software suffered a systems failure, and the propulsion system failed leaving the ship dead in the water. 
It had to be towed into port (DiGiorgio, 1998).
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The failure on the USS Yorktown was described as “a software glitch” implying that the problem was a 
minor error of little significance. A military ship used to protect populations, a ship, which is vulnerable 
to attack by opposing forces, was left dead in the water.

A closer look at this “software glitch” illustrates the problem of minimizing responsibility for the 
final quality of the software. It is common knowledge among computer professionals that computers 
cannot divide by zero. Most computer systems, including calculators in cell phones, have a basic error 
check routine, which protects against the results of attempting to divide by zero. The software on the 
Aegis missile cruiser USS Yorktown was not designed to tolerate such a simple failure. The absence of 
computer code to protect against a zero divide was considered “a software glitch.” This was a failure to 
include a basic principle of software design. In other professions, similar small professional failures—a 
physician leaving a small instrument inside a patient after open heart surgery or an engineer “slightly” 
underestimating the amount of concrete necessary for a dam to hold back a wall of water—would result 
in legal charges of malpractice or negligence.

This tendency to minimize and shift the responsibility for these events are not acceptable to the prac-
ticing professional. It misleads the public about the professional commitment of software engineers and 
misleads those seeking to enter the profession about their broad responsibilities.

Besides affecting “trust,” this tendency to minimize descriptions of software errors is very dangerous 
because of the impact of computers. This minimizing of “bugs” and “glitches” lends a degree of “nor-
malcy” to software failures. This sense of “normal errors” only re-enforces the lack of ethical sensitivity 
and professionalism among software developers. Software engineer’s complex development issues of 
coordinating human requirements with computing technical issues are made more difficult by devel-
oper’s missing the professional and ethical responsibilities involved of their work.

As the impact of the behavior of a group of specialists assumes wider significance, two pressures 
develop, one from society at large interested in assuring that the behavior of the specialists will not cause 
any (more) harm to society. This societal concern is manifested in attempts to regulate the specialists 
by legislation. The other pressure that develops comes from within the ranks of the specialists, in this 
case software engineers, to organize as a group with a well-defined discipline including a commitment 
to high-quality practice concerned with the well-being of society at large.

The common elements in all of these efforts are the definition of a domain of practice, which is accom-
plished in part by circumscribing a body of knowledge and supporting curricula, mandating a level of 
practical experience (sometimes working with an accepted member of the profession), and a commit-
ment to a level of quality practice generally defined in a code of ethics and professional practice. Many 
codes of ethics try to educate and inspire the members of the professional group that adopts the code. 
Codes also inform the public about the responsibilities that are important to a profession.

The Software Engineering Code of Ethics and Professional Conduct 5.2 is the result of one such effort 
to professionalize software engineering. The Code “instructs practitioners about the standards that 
society expects them to meet, and what their peers strive for and expect of each other” (Code5.2, 1999). 
Software engineers need to anticipate unintended consequences, including negative impacts on society, 
individuals, and the environment. Even developers with the best of intentions can walk into ethical 
traps. The Code is designed to help software engineers reduce unintended negative professional and 
ethical consequences of their work.

Additionally, codes are not meant to encourage litigation, and they are not legislation but they do 
offer practical advice about issues that matter to professionals and their clients, and they do inform 
policy makers. These concepts have been adopted in the development of this Code.

74.1.1  Brief History and Purpose

The Board of Governors of the IEEE Computer Society established a steering committee in May 1993 
for evaluating, planning, and coordinating actions related to establishing software engineering as 
a profession. In that same year, the ACM Council endorsed the establishment of a Commission on 
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Software  Engineering. By January 1994, both societies formed a joint steering committee “to estab-
lish the appropriate set(s) of standards for professional practice of software engineering upon which 
industrial decisions, professional certification, and educational curricula can be based.” To accomplish 
these tasks, they recommended adopting standard definitions; defining a required body of knowledge 
and recommended practices; defining ethical standards; and defining educational curricula for under-
graduate, graduate, and continuing education. The joint steering committee established a series of task 
forces to achieve these goals. The initial task forces included: software engineering body of knowledge 
and recommended practices, software engineering ethics and professional practices (SEEPP), and soft-
ware engineering curriculum.

Most computing societies already have their own Codes of Ethics; why was there a need for yet 
another code? Codes of ethics state high-level principles, which cut across all professions; but individual 
professions need to address those elements, which are unique to a specific profession; thus, a software 
engineering Code needs to address requirements elicitation and software maintenance—subjects that 
are not addressed in a chemical engineers code of ethics. Software engineering professionals under-
stand the significance of their work and their ethical obligations to their products’ stakeholders. As the 
Preamble to the full version of the Code states, “Because of their roles in developing software systems, 
software engineers have significant opportunities to do good or cause harm, to enable others to do good 
or cause harm, or to influence others to do good or cause harm” (Code5.2, 1999). There was near una-
nimity that software engineers must behave proactively when they are aware of potential difficulties in 
a system. Several clauses in the Code require preemptive reporting of potentially dangerous situations 
and even outline a procedure for whistle blowing.

Software engineers generally agree about their obligations. In reviews, the Code received a consis-
tently high level of agreement about the behavior expected of a professional software engineer. However, 
various forces pressure software engineers to not always fulfill these obligations and there is something 
needed to address these pressures.

The development of this Code was unique in that it was designed as a code for a profession with global 
impact. Ideally “the code instructs practitioners about the standards that society expects them to meet, 
and what their peers strive for and expect of each other” (Code5.2, 1999). The purpose of the SEEPP task 
force is to document the ethical and professional responsibilities and obligations of software engineers 
(Code3.0, 1997).

74.1.1.1 R ole of Professional Organizations

The Code addresses both the responsibilities of the practicing professional and of the profession.
Unlike other codes, this Code is not designed to be self-serving to the profession. It requires software 

engineering professionals to be ethically responsible to all of those who are affected by their products. 
Several authors (Bayles, 1981; Johnson, 2001) have specified hallmarks of a professional; generally they 
include: having a code of ethics expressing ideals of service, licensing procedures, and a representa-
tive professional association. A profession also requires a monopolistic knowledge that circumscribes 
a clearly defined territory. The traditional model of a profession is based on the interaction between an 
individual professional and a recipient of the benefit of the professional’s skill. The recipient may be an 
individual, organization, or the public at large.

The professionalization of any discipline involves the realization that being a professional involves 
more than the rigid application of formal principles to the artifacts of that discipline (Davis, 1987). 
The practice of medicine is more than the application of drugs to the human body. Physicians are con-
cerned with the well-being of their patients. In the professionalization of a discipline, there is a realiza-
tion of the impact on society of the application of the special skills and knowledge of the practitioner of 
that profession. There is also an acceptance of the responsibility that comes with the privilege of being 
allowed to apply those principles. The professional’s unique understanding of professional situations 
and how to deal with them places an extra set of ethical obligations on the professional. These obliga-
tions are sometimes referred to as professional ethics.
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A code of ethics is like a Swiss Army knife, serving many important and useful functions. It is a state-
ment to members about the ethical stand of an organization and profession, a conscience of the profes-
sion, an announcement to non-members what the profession stands for (although most often stated in 
terms of the actions of individuals), and it imposes responsibilities on the professional organizations.

It is not so much that the Code lays down strict rules for the profession to follow, rather that they 
reflect the maturity of the social contract into which the profession has developed where justice and 
rights become accepted into the profession. One element that separates professionals (in the philosophi-
cal sense) is that they pledge themselves to certain moral responsibilities and a higher order of care. The 
code leads to that kind of pledge. It is a necessary step to establish a profession.

Professional computing organizations such as the IEEE have been involved in the development stan-
dards. Professional organizations have codes of ethics and codes of practice, which require the comput-
ing professional to consider a broader range of stakeholders, to consider a range of stakeholders, which 
includes all those whose lives are affected by the software project and the way it was implemented.

74.2  Code

74.2.1  Purpose and Principles

As Software Engineering developed as a discipline it had considered its primary goal as the “competent 
creation” of software artifacts, but it has gone beyond that minimalist position to move toward profes-
sionalism. The Code goes beyond mere competent creation. Although creation is an important part of 
software engineering, it is not the primary goal. As an engineering profession, the public good is the pri-
mary goal. Although the Code refers to the importance of competence, the Code advocates the primacy 
of responsibility for public well-being more than others. It reflects the importance of responsibilities to 
the public that go far beyond competent creation.

The goal of software engineering, as described in the preamble to the Code, is much broader.

Computers now have a central and growing role in commerce, industry, government, medicine, 
education, entertainment, social affairs, and ordinary life. Those who contribute, by direct partici-
pation or by teaching, to the design and development of software systems have significant oppor-
tunities both to do good and to cause harm and to influence and enable others to do good or 
cause harm. To ensure, as much as possible, that this power will be used for good, software engi-
neers must commit themselves to making the design and development of software a beneficial and 
respected profession. In accordance with that commitment, software engineers shall adhere to the 
following code of ethics. (Code5.2, 1999)

As the Code developed from version 3.0 to version 5.2, a shortened version of the Code, including only a 
brief preamble and the eight principles, was appended to the longer version of the Code containing clauses 
describing how the principle applies to software engineering, under each principle (Gotterbarn et al. 1997).

The Code contains eight keyword principles related to the behavior of and decisions made by profes-
sional software engineers, be they practitioners, educators, managers and supervisors, or policy mak-
ers, as well as trainees and students of the profession. The principles identify the various relationships 
in which individuals, groups, and organizations participate and the primary obligations within these 
relationships (Preamble, The Code3.0, 1997).

74.2.1.1  Software Engineering Code of Ethics and Professional Practice (Short Version)

The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that 
are included in the full version give examples and details of how these aspirations change the way we 
act as software engineering professionals. Without the aspirations, the details can become legalistic and 
tedious; without the details, the aspirations can become high sounding but empty; together, the aspira-
tions and the details form a cohesive code.
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Software engineers shall commit themselves to making the analysis, specification, design, develop-
ment, testing, and maintenance of software a beneficial and respected profession. In accordance with 
their commitment to the health, safety, and welfare of the public, software engineers shall adhere to the 
following eight principles:

	 1.	 PUBLIC—Software engineers shall act consistently with the public interest.
	 2.	 CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the best interests 

of their client and employer consistent with the public interest.
	 3.	 PRODUCT—Software engineers shall ensure that their products and related modifications meet 

the highest professional standards possible.
	 4.	 JUDGMENT—Software engineers shall maintain integrity and independence in their profes-

sional judgment.
	 5.	 MANAGEMENT—Software engineering managers and leaders shall subscribe to and promote 

an ethical approach to the management of software development and maintenance.
	 6.	 PROFESSION—Software engineers shall advance the integrity and reputation of the profession 

consistent with the public interest.
	 7.	 COLLEAGUES—Software engineers shall be fair to and supportive of their colleagues.
	 8.	 SELF—Software engineers shall participate in lifelong learning regarding the practice of their 

profession and shall promote an ethical approach to the practice of the profession.

74.2.2  Full Version: Principles and Illustrative Clauses

The eight principles reflect the order in which software professionals should consider their ethical obli-
gations: The first principle is concerned with the public good. The primacy of well-being and quality of 
life of the public in all decisions related to software engineering is emphasized throughout the code. This 
obligation to the public is the final arbiter in all decisions:

In all these judgments concern for the health, safety and welfare of the public is primary; that is, 
the ‘Public Interest’ is central to this Code. (Code5.2, 1999)

These eight general principles have specific clauses describing the goals of good software engineer-
ing practice. There has been a transition away from regulatory codes designed to penalize divergent 
behavior and internal dissent, toward codes which are more normative, giving general guidance 
(Gotterbarn, 1999a). The intent of the Code was not to impose sanctions on those who violate it but to 
act as a guide in the relationship between software engineering practice and ethics. It is a declaration of 
the professional responsibility of those practitioners—licensed or not—who perform the activity, man-
age, or teach software development. Its statements can be used to help professionals carefully examine 
alternative actions when they recognize ethically charged situations. Consider the following situations 
in which software engineers may find themselves (Gotterbarn and Miller, 2004).

74.2.2.1  Good Practice

Long before system testing is complete, scheduled time and money for such testing has run out. 
The engineer responsible for testing is advised that the company will “let the users do the rest of 
the testing.”

Principle 3 speaks against such an approach and clause 3.10. “Ensure adequate testing, debugging, 
and review of software and related documents on which they work.” asserts the importance of system 
testing before release.

74.2.2.2  Maintenance

Version 4 of the code added specific language about the importance of ethical behavior during 
the maintenance phase of software development. The text reflects the amount of time a computer 
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professional spends modifying and improving existing software and also makes clear that we need 
to treat maintenance with the same professionalism as new development. The quality of mainte-
nance depends upon the professionalism of the software engineer, because maintenance is more 
likely to be scrutinized only locally, whereas new development is generally reviewed at a broader 
corporate level.

Knowing that the firm developing a large piece of software for a government agency is unlikely to be 
awarded the contract to maintain the system after delivery, the company decides to spend less effort on 
both internal and external documentation. The money saved by this decision is used to pay for addi-
tional coders and testers, so that the system can be delivered on time.

This approach violates obligations to the Public in Principle 1 Clause 1.03. “Approve software only 
if they have a well-founded belief that it is safe, meets specifications, passes appropriate tests, and does 
not diminish quality of life, diminish privacy or harm the environment. The ultimate effect of the work 
should be to the public good.” and Principle 3.01. “Strive for high quality, acceptable cost, and a reason-
able schedule, ensuring significant tradeoffs are clear to and accepted by the employer and the client, 
and are available for consideration by the user and the public” (Code5.2, 1999).

74.2.2.3  Public Is Paramount

A computer company is working on an experimental fighter. A quality control software engineer sus-
pects that the flight control software is not sufficiently tested, although it has (finally) passed all its 
contracted test suites. She is being pressured by her employers to sign off on the software. Her employers 
say they will go out of business if they do not deliver the software on time. She signs off (adapted from 
McFarland, 1990).

This case is in violation of the product clause “1.03 Approve software only if they have a well-founded 
belief that it is safe, meets specifications, passes appropriate tests, and does not diminish quality of life, 
diminish privacy or harm the environment. The ultimate effect of the work should be to the public 
good.” Although Principle 2 seems to say the interests of the employer are relevant, that interest is miti-
gated by the interest of the public, in this case the pilot and those in her flight path. Principle 2 CLIENT 
AND EMPLOYER—Software engineers shall act in a manner that is in the best interests of their client 
and employer, consistent with the public interest.

Most situations faced by software engineers are more complex than these simple examples. This 
shortened version of the Code is not intended to be a stand-alone abbreviated code. The details of the full 
version are necessary to provide clear guidance for the practical application of these ethical principles. 
The software engineering code of ethics and professional practice is significant in that it constitutes 
the software developer’s response to the previously tolerated “misadventures” of software developers as 
illustrated in the Yorkton example in the preceding text.

74.2.3  Support for Version 5.2

The drafts of the Code, written by volunteers from places like Australia, Canada, Egypt, India, Ireland, 
the Philippines, the United Kingdom, and the United States, went through several revisions drafts sub-
ject to international review by professional societies, large multinational corporations, and small devel-
opment firms, including the IEEE formal technical standard review process. Because of the way the 
Code was developed, it is not unreasonable to say that this Code represents a movement toward an 
international consensus of what software engineers believe to be their professional ethical obligations.

The weight of all the software engineers who reviewed the Code and the support of the profes-
sional societies that approved it make it easier to defend whistle blowing, refusal to certify inferior 
or unsafe software, and support other acts consistent with the moral and professional standards of 
software engineers. A Code that has been reviewed, voted on, and adopted by professional societies 
provides ethical direction for new software engineers and gives support to the ethical decisions of 
other software engineers.
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74.2.4  Functions of the Code

Codes can serve many different functions. The choice of function determines the content and style of a 
code of ethics. It might be designed to be inspirational either for positive stimulus for ethical conduct by 
the practitioner (Martin et al. 1989) or to inspire confidence of the customer or user in the computing 
artifact and confidence in its creator (Anderson, 1995). Unfortunately, inspirational language tends to 
be vague, limiting the code’s ability to help guide professional behavior.

Historically, there has been a transition away from regulatory codes, designed to penalize divergent 
behavior and internal dissent, toward more normative codes, which give general guidance. Although 
a professional can use a normative Code to examine alternative actions, such codes are only a partial 
representation of a profession’s ethical standards (Gotterbarn, 1999b). Because the use of normative 
codes requires moral judgment on the part of the professional, they should not be considered a complete 
procedure for deciding what is right or wrong (see Section 74.3.3).

•	 Codes also serve to educate both prospective and existing software engineers about their shared 
commitment to undertake a certain level of quality in their work and their responsibility for the 
well-being of the customer and user of the developed product.

•	 Codes also serve to educate managers (see Principle 5 Code5.2, 1999) of software engineers, and 
to educate those who make rules and laws related to the profession, about expected behavior. 
Managers’ and legislators’ expectations will affect what is asked of software engineers and what 
laws are passed relating to software engineering, respectively. Directly and indirectly, codes 
also educate management about their responsibility for the effects and impacts of the products 
developed.

•	 Codes also indirectly educate the public at large about what professionals consider to be a mini-
mally acceptable ethical practice in that field, even as practiced by nonprofessionals.

•	 Codes provide a level of support for the professional who decides to take positive action. An appeal 
to the imperatives of a code can be used as counter pressure against others’ urging to act in ways 
inconsistent with the Code.

•	 Codes can be a means of deterrence and discipline. They can serve as a formal basis for action 
against a professional; for example, some organizations use codes to revoke membership or sus-
pend licenses to practice. Because codes usually define in detail the minimal behavior for all prac-
titioners, the failure to meet this expectation can be used as a reasonable foundation for litigation.

•	 Codes have been used to enhance a profession’s public image. They prohibit public criticism of fel-
low professionals, even if they violate some ethical standard.

The specific functions selected for a code affect its potential impact. This Code, designed for software 
engineering, emphasizes education, guidance, support, and inspiration. The Code does not specifically 
address deterrence and discipline or include standards for prohibiting someone from practicing soft-
ware engineering.

74.2.5 R esponse to the Code after Approval

The adoption by several computing societies, its translation into multiple languages, and its use by 
industry as a standard of practice indicate that the international committee that developed the Code 
captured the ethical ideas of software engineering.

The Code is a hybrid in several ways. Some confusion about codes of ethics arises from a failure 
to distinguish between closely related concepts about codes, which direct the behavior of practicing 
professions. Moving from less restrictive to more restrictive codes, there are codes of ethics that are 
primarily aspirational giving a mission statement for the profession. There are also codes of conduct 
that describe professional attitudes and some professional behavior. Codes of practice are very specific 
and tied closely to the practice of the profession. They are the easiest to use as a basis for legal action. 
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Because practicing professionals deal with human affairs, the underlying ethical principles are the same 
across professions. Studies have shown that most codes are a hybrid of these three types of code (Berleur 
and d’Udekem-Gevers, 1994).

The Code is a hybrid focused on software engineering. The Code shows the relation between high 
level aspirations and the particular practices of software engineering. The international committee 
made sure the Code focused on what was common to the profession. Even though cultures may differ on 
the ethics of having 1 wife or having 12 wives, the practice of software engineering is globally consistent 
in the view that safety critical systems should be tested before they are deployed.

74.3  Foundations and Functions of the Code

The Code is unique in several significant ways. It is the Code for a profession; it is a hybrid of a code 
of ethics, a code of conduct and a code of practice; its imperatives cross all three levels of ethical 
obligation—obligations to humanity in general, obligations to professionalism, and obligations to a spe-
cific discipline. It is designed to mitigate some philosophical objections to codes of ethics and includes 
suggestions on how to use the Code in decision making and resolve situations where principles of the 
Code seem to conflict (see Section 74.2.2).

The Code is organized into a short and a long version; each with its own preamble. The preamble of the 
short version summarizes aspirations at a high level of abstraction while the specific clause under each 
principle in the long version ground these aspirations in specific software engineering practices. The Code 
asserts that “Without the aspirations, the details can become legalistic and tedious; without the details, 
the aspirations can become high sounding but empty; together, the aspirations and the details form a 
cohesive code.” The clauses under the eight core principles that are included in the full version give exam-
ples and details of how these aspirations change the way we act as software engineering professionals.

74.3.1  Levels of Professional Obligation

Many codes are written at a high level of abstraction and only talk about some easily agreed upon 
human values like “honesty” and “competence” or they are detailed lists of discipline specific practices. 
Codes that are only out a high level of abstract do not help the individual professional make decisions 
and codes consisting of detailed practices are not flexible enough to address the rapidly changing com-
puting environment. The detailed list will also be incomplete.

Each principle of this code addresses three levels of ethical obligations owed by professional software 
engineers. The first level identified is a set of ethical values, which professional software engineers share 
with all other human beings by virtue of their humanity. The second level obliges software engineering 
professionals to more challenging obligations than those required at Level one. Level two obligations are 
required because professionals owe special care to people who may be affected by their work. The third 
and deeper level comprises several obligations that derive directly from elements unique to the profes-
sional practice of software engineering. The clauses of each principle are illustrations of the various 
levels of obligation included in that principle.

Level one: Aspire (to be human). Statements of aspiration provide vision and objectives and are intended 
to direct professional behavior. These directives require significant ethical judgment.

Level two: Expect (to be professional). Statements of expectation express the obligations of all profession-
als and professional attitudes. Again, they do not describe the specific behavior details, but they clearly 
indicate professional responsibilities in computing.

Level three: Demand (to use good practices). Statements of demand assert more specific behavioral 
responsibilities within software engineering, which are more closely related to the current state of the 
art. The range of statements is from the more general aspirational statement to specific measurable 
requirements.
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Although the description of these levels was removed from the Preamble after version 3 of the Code, it 
is still a philosophical foundation of the Code and underlies the content of the code. The idea is that a 
complete Code needs to address all three levels. In general, the Code address level one statements in the 
preambles (see Section 74.2.2), level two issues of professionalism in the eight principles, and software 
engineering discipline specific issues in the clauses under each principle.

74.3.2  Decision Making

There are several positive elements to this Code, which distinguish it from many other codes of profes-
sional ethics. One of the major functions of the Code is to help the software engineer make critical deci-
sions and alert them to potential problems with their work.

Most codes of ethics have some problems. First, they only provide a finite list of principles that are 
often presented as a complete list; readers might presume that only the things listed should be of ethical 
concern to the professional. These principles are treated as either rules, which must be followed or as 
normative guidelines.

Second, many codes provide little (if any) guidance for situations where rules having equal priority 
appear to conflict. There is not guidance as to which principles should have higher priority. This ambi-
guity of priority leaves the ethical decision maker confused. The Software Engineering Code addresses 
both of these limitations.

The Code addresses the first problem in the preceding text. It explicitly rejects the concept of com-
pleteness. The problem with an incomplete Code is that it can leave a practitioner without guidance in 
new situations. To meet this potential difficulty, the software engineering code provides general guid-
ance for ethical decision making, especially in those areas not explicitly mentioned in the Code.

It is not intended that the individual parts of the Code be used in isolation to justify errors of omis-
sion or commission. The list of Principles and Clauses is not exhaustive. The Clauses should not 
be read as separating the acceptable from the unacceptable in professional conduct in all practical 
situations. (Code5.2, 1999)

The question of the equal priority of all of the principles and clauses is addressed by stating that in all 
decisions, the public interest is the primary concern.

Unlike most engineering codes, the Code addresses the second problem about how to make decisions. 
The Preamble of the Code suggests ways to make decisions when two of its imperatives such as “Honor 
Contracts” and “Work for the Enhancement of Human Welfare” are in conflict. The Code addresses the 
problem of choosing between conflicting principles by having a hierarchy of principles, with the health, 
safety, and welfare of the public primary in all ethical judgments. The Code requires whistle blowing and 
6.12, 6.13 suggest a procedure to follow in whistle blowing. This Code advocates a stakeholder analysis 
that goes beyond the limited concerns of safety, schedule, and budget. The National Society of Professional 
Engineers’ Code requires that an engineer report to a client, “ if in the engineer’s judgment, a project is 
likely to fail,” whereas this Code requires that a software engineer report “…if in their judgment a project 
is likely to fail, to prove too expensive, to violate intellectual property law, or otherwise be problematic.”

To facilitate decision making the eight principles were reordered to reflect the order in which software 
professionals should consider their ethical obligations: Version 3.0’s first principle concerned the Product, 
while version 5.2 begins with the Public. The primacy of well-being and quality of life of the public in all 
decisions related to software engineering is emphasized throughout the code. This obligation is the final 
arbiter in all decisions: “In all these judgments concern for the health, safety, and welfare of the public is pri-
mary; that is, the ‘Public Interest’ is central to this Code.” To reinforce the clear priority of public concern, 
in several places the code asserts the priority of concern for the public over loyalty to employer or profes-
sion. It is a professional obligation to take positive action to address violations of the Code. A sequence of 
reporting is included in the structure of the Code. Clause 6.12 says that you should first address talk to the 
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person doing the violation. Clause 6.13 says that if following 6.12 does not resolve the matter, carry your 
concern to the appropriate authorities. Unlike other codes that mandate that one does not criticize fellow 
professionals, this Code requires that you do criticize those who are not following the Code.

74.3.3  Judgment

An ordered list of principles does not provide an in depth ethical analysis of a complex situation. 
“The Code is not a simple ethical algorithm that generates ethical decisions. In some situations stan-
dards may be in tension with each other or with standards from other sources. These situations require 
the software engineer to use ethical judgment to act in a manner which is most consistent with the spirit 
of the Code of Ethics and Professional Practice, given the circumstances” (Code5.2, 1999).

The Code does not leave the reader without support about how to make ethical decisions.
In most cases, using the Code to make decisions will require professional judgment to resolve the 

ethical tensions.

“Ethical tensions can best be addressed by thoughtful consideration of fundamental principles, … 
These Principles should influence software engineers to consider broadly who is affected by their 
work; to examine if they and their colleagues are treating other human beings with due respect; to 
consider how the public, if reasonably well informed, would view their decisions; to analyze how 
the least empowered will be affected by their decisions; and to consider whether their acts would 
be judged worthy of the ideal professional working as a software engineer. In all these judgments 
concern for the health, safety and welfare of the public is primary; that is, the ‘Public Interest’ is 
central to this Code” (Code5.2, 1999 full preamble).

The first principle—consider who is affected—helps us refocus and the stakeholders beyond the devel-
oper and the customer. The second principle—due respect—requires a protection of human values. The 
third principle points to consideration of extended stakeholders in, those impacted by, our work. The 
fourth requires the best professional practice, working toward an ideal.

The Code provides specific details about software practitioners’ obligations, and if they ignore those 
obligations, they are not acting in good faith as professionals.

When working on a project, the Code says we must do adequate testing but does not quantify how 
much testing is adequate. The software engineer should not be working on a system if they lack suf-
ficient judgment to use the various ways in the Code to help make that judgment, including talking to 
other developers competent in that domain. Judgment is required to extend the principles in the Code 
to new domain.

74.4 R esearch

In the following text are a few topics for research related to the development and content of codes 
of ethics.

74.4.1  How to Handle Enforcement

Many people think that enforcement and deterrence mechanism are necessary elements of a Code of 
Ethics. Codes of Ethics are generally adopted by organizations and it is up to the organization to establish 
mechanism to encourage people to follow the adopted Code and deter them from breaking it. In some 
monopolistic professions, licensing serves both as a credentialing mechanism and a means of deterrence 
from breaking a code of ethics. In most places, access to working as a software engineer is not controlled 
by licensing. The global nature of the development and impact of software development means that there 
would be jurisdictional issues in trying to turn ethical imperatives into laws. Two common problems for 
codes in computing are that they need to be able to address a rapidly changing environment and there 
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are difficulties in enforcing them. Turning a code into law makes it static and eliminates some of the 
other important functions of codes of ethics.

Within organizations, there is generally limited enforcement of a code of ethics. Codes get some 
teeth when they are used by a professional organization to make decisions. Codes of ethics do not define 
the procedures and sanctions for violating the Code. Codes are not self-referential. Organizations have 
bylaws, and the Code is a bylaw. The due process and sanctions for violating the code are defined outside 
the Code. Codes are the mind and conscience of a profession. The profession is what gives the rules 
nurture and enforcement.

74.4.2  Developing an Ethics Code for a Dynamic Profession

Including a detailed level of software engineering standards in a code would have been a mistake. 
Specific software engineering standards, which have been proposed by reviewers, such as requiring 
mutation testing for all mission critical software, are controversial and in flux. Any list of standards 
included in the Code would freeze the standard, and any list of standards would be incomplete.

The Code, as written does encourage us to exploit standards—but it should not name them. When 
the profession settles on standards, then we can incorporate them into an ethics code. Codes have dif-
ferent purposes, among them guidance, inspiration, and education. The Code can help lead us to serious 
discussions about the details of standards; the Code cannot prematurely set those standards.

74.4.3 A pproaches to Ethics

Surprisingly, the major tension centered not around technical issues but rather on two distinct 
approaches to ethics: virtue ethics and rights/obligations ethics (Edgar, 1997). Virtue ethics holds the 
optimistic view that if people are simply pointed in the right direction, their moral character will guide 
them through ethical problems. Reviewers from this camp wanted a Code that was mostly inspirational, 
with minimum detail. They put a heavy emphasis on the autonomy of a professional’s judgment. The 
other position—rights/obligations theory—consists of spelling out precisely one’s rights and respon-
sibilities. Believers in this theory wanted a very detailed Code. For example, one reviewer wanted the 
Code to include a standard of measurement for each imperative—to state exactly how many tests need 
to be done to ensure adequate testing. The rights/obligations folks used a legalistic model to evaluate 
each imperative. The problem was that any imperative acceptable to one group was not acceptable to the 
other. The Code addresses this significant tension in a number of ways.

To address the problem of insufficient guidance for decision making, the Code incorporates some 
directions for ethical decision making in the preamble and an acknowledgment that the Code’s nor-
mative premises should not be read as complete descriptions or legalistic statements. It is still an open 
research question about testing the adequacy of this approach.

The Code addresses the rights—virtue tension in another way: through its structure. The Code 
is organized around eight broadly based themes. Under each theme or principle is a series of 
clauses giving examples of how that theme applies to software engineering practice. Thus, under 
“Principle 1, PUBLIC, Software engineers shall act consistently with the public interest” is the illus-
trative clause 1.04, “Disclose to appropriate persons or authorities any actual or potential danger 
to the user, the public, or the environment, that they reasonably believe to be associated with the 
software or related documents.”

74.5  Summary

“The Software Engineering Code of Ethics and Professional Practice is a useful tool. It educates 
and inspires software engineers. The Code instructs practitioners about the standards that society 
expects them to meet and what their peers strive for and expect of each other. The Code offers 
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practical advice about issues that matter to professionals and their clients, and it serves to inform 
policy makers about ethical constraints imposed on software engineers.

The Code encourages the professional to do positive actions. The Code also encourages the 
professional to resist pressures to act unethically. The professional can appeal to the imperatives of 
the Code to indicate ethically accepted practice.

The Code indirectly educates the public at large about the responsibilities that are important 
to and accepted by the profession—what software engineers consider to be minimally acceptable 
practice—even when a nonprofessional practices it. Thus the code can be a catalyst to simultane-
ously raising the internal expectations of a profession and the expectations of the society at large.

The Code is a dynamic document, a method for education, inspiration, and continued study and 
debate. It provokes serious discussion about the software engineering discipline, its responsibilities, 
and its future. The Code directs us to be a part of that future as we improve our profession and 
ourselves” (Gotterbarn and Miller, 2009).
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75.1  Introduction

You are without doubt in the software business, no matter what business you seem to be in. IT and 
software make the world go round, at ever increasing speeds. Computer-based, software-driven systems 
are pervasive in today’s society. From the software in avionics flight control to the ubiquitous comput-
ers in smart phones, automotive, and consumer electronics, software provides features and functions 
in daily use. Increasingly, the entire system functionality is implemented in software. Where we used to 
split hardware from software, we see flexible boundaries entirely driven by business cases to determine 
what is the best package at which level in which component, be it software or silicon. For example, in 
1960, only 8% of the functionality of the F-4 fighter aircraft was implemented in software; by 2000, 
80% of the F-22’s features were provided by software. The same is true for consumer and communication 
systems. A TV set in the 1970s had no software, while today its competitive advantages are software-
driven [1,2].

Software and IT move on a fast pace. When looking in the rear mirror, we see many companies 
and endeavors, which failed due to overemphasizing technology and not sufficiently implementing a 
sound business strategy [3]. Take, for example, Netscape. For many of us, it was the first experience 
of the Internet. In 1995, it had a market share of 80%—more than enough to stay in the pole position 
forever, as companies such as Google or Amazon show. But already in 1997 it slowed down, lost mar-
ket share, and in 2003 went into bankruptcy. What went wrong? One of the managers put it in simple 
words: “We had no product management; it was just a collection of features.” [4] More recently and in 
another domain, a previous Nokia senior manager claimed that the lack of product management and 
business insight is the primary reason for their loss of market shares in the past years [5]. On the other 
hand, we all know companies such as Apple and Microsoft and their excelling business management. 
So, what means software business understanding? We will in this article briefly introduce software 
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business and economics and show success factors toward improving software business understand-
ing. Examples from very different environments (big vs. small and planned vs. agile) will show how we 
have introduced and improved software business understanding, and what was achieved.

The software business has manifold challenges. They range from the creation process and its inherent 
risks to direct balance sheet impacts. Many studies reveal that we focus too much on technology and 
features in the software business and not enough on value and products. Only 52% of the originally 
allocated requirements appear in the final product release [1]. This is primarily the consequence of this 
process not having a clear corporate owner with assigned accountability for its success. In a similar 
study looking at new product development from a broader scope, Cooper et al. [6] found in 105 busi-
ness units from various industries that the top 20% of enterprises deliver 79% of their new products in 
time, while the average delivers only 51% in time. The Standish Group’s Chaos Report annually surveys 
information technology and software projects* [1]. They found that only 32% of the projects finished on 
time and within budget, a staggering 24% were cancelled before delivery, and of the remaining projects, 
which finished late or over budget, they only delivered a fraction of the planned functionality. Late 
introduction of a product to market loses market share; cancellation of a product before it ever reaches 
the market is an even greater loss. Not only is software increasing in size, complexity, and percentage of 
functionality, it is also increasing in contribution to balance sheet and profit and loss (P&L) statements. 
The challenge in many IT and software companies lies in better connecting sales and marketing with 
strategy and product development.

Sounds familiar? Products are pushed to the extreme to be ever more efficient and done at low cost, 
but when they hit the market, they would not sell as expected. Or customers demand many changes, 
thus reducing margins dramatically from initial targets. As engineers, we often tend to overhear the 
voice of the customer. Technology matters, the schedule needs to be kept, features are lined up like a 
washing list. Poor business management causes insufficient project planning, continuous changes in the 
requirements and project scope, configuration problems, and defects. The obvious—yet late—symptoms 
are more delays and overall customer dissatisfaction due to not keeping commitments or not getting the 
product they expect. Being late with a product in its market has immediate and tremendous business 
impacts [3,6,7]. In contract business, this often means penalties, and in practically all markets it reduces 
customer loyalty and the overall returns from sales.

Product development, such as for IT infrastructure, software components, or embedded electronics, 
traditionally concentrates on the project perspective looking to execute in budget and time. In software, 
IT, and systems engineering, project execution can be rather easily improved by means of capability 
maturity model integration (CMMI) and agile principles. Project execution can be improved by means 
of the project management body of knowledge. Today, there is a lot of exciting results from optimizing 
projects in terms of cost and cycle time [1,8–10].

Successful product development, though, is more than executing in time and budget. It means to 
deliver the right products at the right time for the right markets. Naturally the success of a product 
depends on many factors and stakeholders. However, we realize that it makes a big difference whether 
many cooks somewhat steer the soup or whether one person is empowered to lead all activities for the 
product from inception to market and evolution—and hold accountable for the results. This is the prod-
uct manager.

In many companies and organizations and also in most literature software business, relationships 
to software development and engineering remain vague. We often see product definition, road-
mapping, and marketing decoupled from the engineering project-related processes, which creates 
deficiencies and overheads, such as heavy changes in requirements and missed market opportu-
nities. While the general principles of business management are known, not much specific guid-
ance is available for software business understanding. With this handbook entry we will provide 

*	 www.standishgroup.com
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an introduction and tutorial on software business understanding and provide some concrete experi-
ences, so you as the reader can directly benefit.

From our experiences with many clients in different industries, success comes from anticipating and 
meeting the relevant customer needs together with being in time and budget. Technical product devel-
opment, such as for defense systems, automotive components, communication solutions, or IT infra-
structure, traditionally focuses on the project perspective and operationally executing a set of given 
constraints within the triangle of content, budget, and time. Often too late it becomes clear that needs 
were different from what is built.

This chapter describes software business understanding. It addresses the major activities and pro-
vides examples. The target audience is both interested newcomers who wish to get insight into what 
software business understanding actually means and what techniques are used, and students and indus-
try experts who want to get a fully up-to-date yet concise summary of software business techniques, 
experiences, and trends.

We will start with the necessary foundations looking into terminology and how the discipline of 
software business (subsequently abbreviated as SPM) breaks down into different activities. The next 
section will explain why SPM is necessary. We will then get practical and hands-on and will show how 
SPM is implemented in the product life cycle. Introducing SPM in an organization is a big challenge for 
many companies. So we will highlight our experiences from introducing SPM to companies around the 
world and also provide an overview of SPM-related competencies. Finally, we summarize the article and 
provide an outlook on trends that impact SPM as a discipline. We conclude with a summary of relevant 
Internet resources and also a brief overview on good introductory literature.

75.2  Foundations

Software business and economics are about making software-related decisions in a business context. It 
means aligning software technical decisions with the business goals of the organization. Decisions like 
“Should we use a specific component?” may look easy from a mere technical perspective but can have 
serious implications on the business viability of the project and the resulting product.

75.2.1 � Finance

Finance is a branch of economics that deals with resource allocation and management, acquisition, and 
investment. The field of finance deals with the concepts of time, money, and risk and how they are inter-
related. It also deals with how money is spent and budgeted. Corporate finance is the task of providing 
the funds for a company’s activities. It generally involves balancing risk and profitability, while attempt-
ing to maximize an entity’s wealth and the value of its stock. To do this, a company must

•	 Identify and implement relevant business objectives and constraints, such as organizational or 
individual goals, time horizon, risk mitigation, and tax considerations

•	 Identify and implement the appropriate business strategy, such as which portfolio and investment 
decisions to take, how to manage cash flow, and where to get the funding from

•	 Measure the financial performance, such as cash flow and return on investment (ROI), and take 
corrective actions in case of deviation from objectives

75.2.2 �A ccounting

Accounting is related to finance. It allows people whose money is being used to run the company to 
know the results of their investment: Did they get the profit they were expecting or not? The primary 
role of accounting is to measure the company’s actual financial performance. Its purpose thus is to 
communicate financial information about a business entity to users such as shareholders and managers. 
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The communication is generally in the form of financial statements that show in money terms the eco-
nomic resources under the control of management; the art lies in selecting the information that is rele-
vant to the user and is reliable. Accounting systems are also a rich source of historical data for estimating.

75.2.3 � Controlling

Controlling is part of finance and accounting. Controlling is the measurement and correction of 
performance in order to make sure that enterprise objectives and the plans devised to attain them are 
accomplished. Cost controlling is a specialized branch of controlling that is used to detect variances of 
the actual costs from the planned costs.

75.2.4 � Cash Flow

To make a meaningful business decision about any specific proposal, that proposal will need to be 
evaluated from a business perspective. The concepts of cash flow instances and cash flow streams are 
used to describe the business perspective of a proposal. A cash flow instance is a specific amount of 
money flowing into or out of the organization at a specific time as a direct result of some proposal.

In a proposal to develop and launch product X, the payment for new development computers, if new 
hardware is needed, could be an example of an outgoing cash flow instance. Money would need to be 
spent to carry out that proposal. The sales income from product X in the 11th month after market launch 
could be an example of an incoming cash flow instance. Money would be coming in because of carrying 
out the proposal.

The term cash flow stream refers to the set of cash flow instances, over time, which would be caused by 
carrying out some given proposal. The cash flow stream is, in effect, the complete financial picture of that 
proposal. How much money goes out? When does it go out? How much money comes in? When does it 
come in? Simply, if the cash flow stream for Proposal A is more desirable than the cash flow stream for 
Proposal B then—all other things being equal—the organization would be better off carrying out Proposal 
A than Proposal B. Thus, the cash flow stream is an important input for investment decision-making.

A cash flow diagram is a picture of a cash flow stream. In the same sense that a picture is worth a 
thousand words, the cash flow diagram gives the reader a very quick overview of the financial picture of 
that subject. Figure 75.1 shows an example cash flow diagram for a proposal.

Repetitive income from sales

–1000 (maintenance)
Time

(equal periods,
e.g., quarters)

–10,000 (initial investment)

Cash flow
(currency,

e.g., US$ or €)

FIGURE 75.1  A cash flow diagram.
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A cash flow diagram shows the cash flow stream in two dimensions, time runs from left to right and 
amounts of money run up and down. Each cash flow instance is drawn on the diagram at a left to right posi-
tion relative to the timing of that cash flow after the start of the proposal. The horizontal axis is divided into 
units of time that represent either years, months, weeks, etc. as appropriate for the proposal being studied.

75.2.5 � Decision-Making Process

If we assume that candidate solutions solve a given technical problem equally well, why should the 
business care which one is chosen? The answer is that there is usually a large difference in the costs and 
incomes from the different solutions. A commercial off the shelf compliant CORBA (object request bro-
ker architecture) product might cost a few thousand dollars, but the effort to develop a homegrown ser-
vice that gave the same functionality could easily cost several hundred times. If the candidate solutions 
all adequately solve the problem from a technical perspective, then the one that maximizes the return on 
the organization’s investment is the one that should be chosen. To do this, the technical person should 
follow a systematic process for making decisions. That systematic process is shown in Figure  75.2. 
It starts with a business challenge at hand and describes the steps to identify alternative solutions, evalu-
ate these solutions, implement one selected solution, and monitor performance of this solution.

Figure 75.2 shows the process as mostly stepwise and serial. The real process is more fluid. Sometimes, 
the steps can be done in a different order and often several of the steps can be done in parallel. The 
important thing is to be sure that none of the steps are skipped or shortcut. It is also important to under-
stand that this same process applies at all levels of decision: from a decision as big as should a software 
project be done at all down to a decision on an algorithm or data structure to use in a software module. 
The difference is how financially significant the decision is and, therefore, how much effort should be 
invested in making that decision. The project-level decision is financially significant and probably war-
rants a relatively high level of effort to make the decision. Selecting an algorithm is much less financially 
significant and warrants a much lower level of effort to make the decision, even though the same basic 
decision-making process is being used.

More often than not an organization could carry out more than one proposal if it wanted to. 
Furthermore, usually there are important relationships between proposals. Maybe Proposal Y can only 
be carried out if Proposal X is also carried out. Or, maybe Proposal P cannot be carried out if Proposal 
Q is carried out, nor could Q be carried out if P were. Choices are much easier to make when there are 
mutually exclusive paths, either A, B, or C, or whatever is chosen. In preparing decisions, it is recom-
mended to turn any given set of proposals, along with their various interrelationships, into a set of 
mutually exclusive alternatives. The choice can then be made among these alternatives.

Define the 
selection criteria

Understand the 
real problem

Identify all 
reasonable 

technically feasible 
solutions

Evaluate each 
proposal against
selection criteria

Select the
preferred proposal

Monitor the 
performance of the 

selected proposal

FIGURE 75.2  The basic business decision-making process.
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75.2.6 � Valuation

In an abstract sense, the decision-making process—be it a financial decision or not—is about max-
imizing value. The alternative that maximizes total value should always be chosen. A basis for compari-
son based on value is comparing two or more cash flows. It is a way of using equivalence to meaningfully 
compare proposals. Several bases of comparison are available, including

•	 Present worth
•	 Future worth
•	 Annual equivalent
•	 Internal rate of return
•	 (Discounted) Payback period

Due to the time value of money, two or more cash flows are equivalent only when they equal the same 
amount of money at a common point in time. Comparing cash flows only makes sense when they are 
expressed in the same time frame.

Note that value cannot always be expressed in terms of money. For example, whether an item is a 
brand name or not can significantly affect its perceived value. Relevant values that cannot be expressed 
in terms of money still need to be expressed in other terms, so that they can be made measurable.

75.2.7 � Inflation

Inflation describes long-term trends in prices. Inflation means that the same things cost more than they 
did before. If the planning horizon of a business decision is longer than a few years, or if the inflation 
rate is over a couple of percent annually, it can cause noticeable changes in the value of a proposal.

75.2.8 � Depreciation

Depreciation addresses how investments in capital assets are charged off against income over several 
years. Depreciation is an important part of after-tax cash flows, which is critical to accurately address-
ing income taxes. Software itself typically is not depreciated, but if you are working on proposals with a 
planning horizon longer than 1 year, the proposals involve capital assets (like buildings and equipment), 
and you need to accurately reflect the effects of income taxes in the decision analysis, then depreciation 
will be an important factor to include in the analysis. Another reason to understand depreciation is that 
your software project proposals will probably be compared against nonsoftware proposals so you should 
understand how the nonsoftware proposals are being evaluated.

75.2.9 �T axation

Government charge taxes in order to finance expenses the society needs, but no single organization would 
invest in. Companies have to pay income taxes, which can take between 20% and 50% of a corporation’s 
gross profit. A decision analysis that does not account for income taxes can lead to the wrong choice. 
A proposal with a high pre-tax profit would not look nearly as profitable in post-tax terms. Not account-
ing for income taxes can also lead to unrealistically high expectations about how profitable a proposal is.

75.2.10 �T ime Value of Money

One of the most fundamental concepts in business—and therefore, in business decisions—is that money 
has time value; its value changes over time. A specific amount of money right now almost always has 
a different value than having the same amount of money at some other time. This concept has been 
around since the earliest recorded human history and is commonly known as “interest.” Anyone mak-
ing a business decision needs to understand interest and how it affects that decision.
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75.2.11 � Earned Value Management

Earned value management is a project management technique for measuring project progress based 
on created value. At a given moment, the results achieved to date in a project are compared with the 
projected budget and the planned schedule progress for that date. Progress relates already consumed 
resources and achieved results at a given point in time with the respective planned values for the same 
date. It helps to identify possible performance problems at an early stage.

75.2.12 � Efficiency

Economic efficiency is the relationship between the result achieved (see Effectiveness) and the resources 
used to achieve this result. Efficiency means “doing things right.” An efficient behavior, like an effective 
behavior, delivers results but keeps the necessary effort to a minimum.

75.2.13 � Effectiveness

Effectiveness is about having impact. It is the relationship between achieved objectives to defined objec-
tives. Effectiveness means “doing the right things.” Effectiveness looks only if defined objectives are 
reached and not how they are reached.

75.2.14 � Productivity

Productivity is the ratio of output over input from an economic perspective. Output is the value 
delivered. Input covers all resources (e.g., effort) spent to generate the output, the influence of environ-
mental factors (e.g., complexity, quality, time, process capability, team distribution, interrupts, feature 
churn, tools, and language). Productivity combines efficiency and effectiveness from a value-oriented 
perspective: Productivity is about generating value with lowest resource consumption.

75.2.15 � Life-Cycle Economics

75.2.15.1 � Product

A product is an economic good (or output), which is created in a process that transforms product factors 
(or inputs) to an output. When sold, it is characterized by attributes which mean a value to its users. It 
is a deliverable that creates a value and an experience to its users. A product can be a combination of 
systems, solutions, materials, and services delivered internally (e.g., inhouse IT solution) or externally 
(e.g., SW application) as is or as a component for another product (e.g., intellectual property [IP] stack).

75.2.15.2 � Project

A project is a temporary endeavor undertaken to create with people a unique product or service. In 
software engineering, we distinguish different project types (e.g., product development, IT infrastruc-
ture, outsourcing, software maintenance, service creation, and so on).

75.2.15.3 � Program

A program is a set of related projects. Programs are often used to identify and manage different deliveries 
to a single customer or market over a time horizon of several years.

75.2.15.4 � Portfolio

A portfolio is the sum of all assets and their relationship to the enterprise strategy and its market position. 
Portfolios are used to group and then manage simultaneously all assets within a business line or com-
pany. Looking to an entire portfolio makes sure that impacts of decisions are considered, such as resource 
allocation to a specific project—which means that the same resources are not available for other projects.
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75.2.15.5 � Product Life Cycle

The sum of all activities needed to define, develop, implement, build, operate, service, and phase out 
a product or solution and its related variants. It is subdivided into phases that are separated by dedi-
cated milestones, called decision gates. With the focus on disciplined gate reviews, the product life-cycle 
(PLC) fosters risk management and providing auditable decision-making information (e.g., complying 
with product liability needs or Sarbanes-Oxley Act section 404).

75.2.15.6 � Project Life Cycle

The set of sequential project phases determined by the control needs of the organizations involved in the 
project. Typically, the project life cycle can be broken down into at least four phases, namely, initiation, 
concept/planning, execution, and closure. The project life cycle and the product life cycle are interdepen-
dent, that is, a product life cycle can consist of several projects and a project can comprise several products.

75.2.15.7 � Proposals

Making a business decision begins with the notion of a proposal. Proposals relate to implementing 
a business objective, either on project, or product, or portfolio level. A proposal is a single, separate 
option that is being considered, like carrying out a particular software development project or not. 
Another proposal could be to enhance an existing program and still another might be to redevelop 
that same software from scratch. Each proposal represents a unit of choice—either you can choose to 
carry out that proposal or you can choose not to. The whole purpose of business decision-making is to 
figure out, given the current business circumstances, which proposals should be carried out and which 
ones should not.

75.2.15.8 � Investment Decisions

Investment decisions are made by investors in order to spend money and resources on achieving a 
target. Investors are either inside (e.g., finance and board) or outside (e.g., banks) the company. The tar-
get relates to some economic criteria, such as achieving a high return on the investment, strengthening 
the capabilities of the company, or improving the value of the company.

75.2.15.9 � Planning Horizon

When an organization chooses to invest in a particular proposal, money gets tied up in that proposal—
so called “frozen assets.” The economic impact of frozen assets (“capital recover with return”) tends to 
start high and decreases over time. On the other hand, operating and maintenance costs of elements 
associated with the proposal tend to start low but increase over time. The total cost of owning and oper-
ating a proposal is the sum of those two costs. Early in time, frozen asset costs dominate and later in 
time the operating and maintenance costs dominate. There is a point in time where the sum of the costs 
is minimized or minimum cost lifetime.
To properly compare a proposal with a 4 year life span to a proposal with a 6 year life span, the economic 
effects of either of the following need to be addressed:

•	 Cutting the 6 year proposal by 2 years
•	 Investing the profits from the 4 year proposal for another 2 years

The planning horizon, sometimes known as the study period, is the consistent time frame over which 
proposals are considered. Effects such as economic life and the time frame over which reasonable esti-
mates can be made will need to be factored into establishing a planning horizon. Once the planning 
horizon is established, several techniques are available for putting proposals with different life spans 
into that planning horizon.
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75.2.15.10 � Price and Pricing

A price is what is paid for in exchange for a good or service. A price is a fundamental aspect of 
financial modeling and is one of the four Ps of the marketing mix. The other three aspects are product, 
promotion, and place. Price is the only revenue-generating element amongst the four Ps, the rest being 
cost centers.

Pricing is part of finance and marketing. It is the process of determining what a company will receive 
in exchange for its products. Pricing factors are manufacturing cost, market place, competition, market 
condition, and quality of product. Pricing applies prices to purchase and sales orders, based on factors 
such as: a fixed amount, quantity break, promotion or sales campaign, specific vendor quote, price pre-
vailing on entry, shipment or invoice date, combination of multiple orders or lines, and many others. 
The needs of the consumer can be converted into demand only if the consumer has the willingness and 
capacity to buy the product. Thus pricing is very important in marketing.

75.2.15.11 � Cost and Costing

A cost is the value of money that has been used up to produce something, and hence is not available for 
use anymore. In economics, a cost is an alternative that is given up as a result of a decision. A sunk cost is 
the expenses before a certain time, typically used to abstract decisions from expenses in the past, which 
can cause emotional hurdles in forward looking. From a traditional economics point of few, sunk costs 
should not be considered in decision making.

Costing is part of finance and business management. It is the process to determine the cost based on 
expenses (e.g., production, software engineering, distribution, and rework) and based on the target cost 
to be competitive and successful on a market. The target cost can be below the actual estimated cost. 
Therefore, costing always includes cost management.

75.2.15.12 � Performance Measurement

Performance measurement is the process where an organization establishes the parameters within 
which programs, investments, and acquisitions are measured to control whether they are reaching the 
desired results. It means to evaluate whether performance objectives are actually achieved, to control 
budgets, resources, progress and decisions, and to learn and improve performance.

75.2.15.13 �T ermination Decisions

Termination means to end a project or product. Termination can be planned for a long-time (e.g., when 
foreseeing that a product will reach its life-time) or can come rather spontaneously (e.g., when perfor-
mance targets are not achieved). In both cases, the decision must be carefully prepared, considering 
always the alternatives of continuing versus terminating. Cost of different alternatives must be esti-
mated, covering topics such as replacement, information, suppliers, alternatives, assets, and utilizing 
resources for other opportunities. Sunk cost must not be considered in such decision-making because 
they have been spent and will not reappear as a value.

75.2.15.14 �R eplacement and Retirement Decisions

A replacement decision is a special case of for-profit decision analysis that happens when an organiza-
tion already has a particular asset and they are considering replacing it with something else, like decid-
ing between keeping a legacy software system and redeveloping it from the ground up. Replacement 
decisions use the same business decision process as described earlier but there are additional chal-
lenges: sunk cost and salvage value. Retirement decisions are about getting out of an activity altogether, 
such as when a software company considers not selling a software product any more, or a hardware 
manufacturer thinks about not building and selling a particular model of computer any longer.
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75.2.15.15 � Friction-Free Economy

Economic friction is everything that keeps markets from having perfect competition. It means distance, 
cost of delivery, restrictive regulations, or imperfect information. In high-friction markets, customers 
do not have many suppliers to choose among. Having been in a business for a while or owning a store 
in a good location determines the economic position. It is hard for new competitors to start business 
and compete. The marketplace moves slowly and predictably. Friction-free markets are just the reverse. 
New competitors crop up all over, and customers are quick to respond. The marketplace is anything 
but predictable. Software and IT clearly are friction-free. New companies can easily create products 
and often do that at much lower cost than the established companies due to not considering all lega-
cies. Marketing and sales can be done via the Internet that offers with social networks and basically 
free distribution mechanisms all to ramp up a global business. Software engineering economics aims at 
providing mechanisms to evaluate different concepts for starting, growing and safe-guarding a software 
business in such a friction-free economy.

75.2.15.16 � Ecosystems

An ecosystem is an environment consisting of all the mutually dependent stakeholders, business units, 
and companies working in a particular area. In a typical ecosystem, there are producers and consumers, 
where the consumers add value to the consumed resources. A software ecosystem is, for instance, a sup-
plier of an application working with companies doing the installation and support in different regions. 
Neither one could exist without the other. Ecosystems can be permanent or temporary. Software engi-
neering economics provides the mechanisms to evaluate alternatives in establishing or extending an 
ecosystem, for instance assessing whether to work with a specific distributor or have the distribution 
done by a company doing service in an area.

75.2.15.17 � Offshoring and Outsourcing

Offshoring means executing a business activity beyond sales and marketing outside the home country 
of an enterprise. Enterprises typically either have their offshoring branches in low-cost countries or 
they ask specialized companies abroad to execute the respective activity. Offshoring should therefore 
not be confused with outsourcing. Offshoring within the own company is called captive offshoring. 
Outsourcing is the result-oriented relationship with a supplier, who executes business activities for an 
enterprise, which traditionally were executed inside the enterprise. Outsourcing is site-independent. 
The supplier can reside in direct neighborhood of the enterprise or offshore, which is outsourced off-
shoring. Software engineering economics provides the basic criteria and business tools to evaluate dif-
ferent sourcing mechanisms and control their performance.

75.2.16 �R isk and Uncertainty Management

75.2.16.1 � Goals, Estimates, and Plans

A goal in software economics is mostly a business goal (or business objective). It is external to the specific 
software or IT project and sets constraints which a plan has to consider. It relates business needs, such 
as increasing profitability, to investing resources, such as starting a project or launching a product with 
a given budget, contents, and timing. Goals are for instance to reach a certain milestone at a given date 
or to extend testing by some time to achieve a desired quality level.

An estimate is the well-founded evaluation of how much resources and time would be necessary 
to achieve a stated goal. Estimates are typically internally generated and not necessarily externally 
visible. They should not be driven by the goals, because this could make the estimate overly optimis-
tic. Of course, the underlying solutions which drive the estimates should be aligned with the goals. 
Estimates are generated by experts familiar with the product or project. In software projects, this could 
be the effort necessary to deliver at a given milestone.
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A plan is the break-down of a goal to activities and milestones in order to reach this goal. The plan 
should be in line with the goal and the estimate, which is not necessarily easy and obvious, such as when 
a software project with given requirements would take longer than the target date foreseen by the client. 
In such cases, plans demand a review of initial goals as well as estimates and the underlying uncertain-
ties and inaccuracies. Creative solutions with the underlying rationale of achieving a win–win position 
are applied to resolve conflicts. The plan needs to achieve commitment with impacted stakeholders to 
be useful (Figure 75.3).

75.2.16.2 � Estimation Techniques

Estimations are used to analyze and forecast the necessary resources or time to implement require-
ments. Four families of estimation techniques exist:

•	 Expert judgment
•	 Analogy
•	 Decomposition
•	 Statistical (or parametric) methods

75.2.16.3 �A ddressing Uncertainty

Estimates are inherently uncertain and that uncertainty should be addressed in business decisions. 
Techniques for addressing uncertainty include

•	 Consider ranges of estimates
•	 Sensitivity analysis
•	 Delay final decisions

75.2.16.4 � Prioritization

Prioritization means to compare alternatives based on different criteria and then rank those alterna-
tives to deliver the best possible value. In software projects, often requirements are prioritized in order 
to deliver most value to the client or to allow for building increments where a first delivery ensures that 
the client sees a value.

Business needs
Examples:
Requirements and
target cost

Estimates
Internal
Constrained by 
dependencies and
uncertainties
Examples:
E�ort and duration

Plan
Breakdown of a goal to activities 
and milestones in order to reach 
this goal
Relates goals and estimates to 
best possibly reach the goals
Approach: Win–win

Understand,
adapt, and

commit

Goals
External

Needs clear commitments of all 
impacted stakeholders

FIGURE 75.3  Relating goals, estimates, and plans.
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75.2.16.5 � Decisions under Risk

Decisions under risk techniques are used when the decision maker can assign probabilities to the 
different possible outcomes. The specific techniques include

•	 Expected value decision-making
•	 Expectation variance and decision-making
•	 Monte Carlo analysis
•	 Decision trees
•	 Expected value of perfect information

75.2.16.6 � Decisions under Uncertainty

Decisions under uncertainty techniques are used when the decision maker cannot assign probabilities 
to the different possible outcomes. The specific techniques include

•	 Laplace rule
•	 Maximin rule
•	 Maximax rule
•	 Hurwicz rule
•	 Minimax regret rule

75.2.17 � Economic Analysis Methods

75.2.17.1 � For-Profit Decision Analysis

Figure 75.4 describes the process for identifying the best alternative from a set of mutually exclusive 
alternatives. Decision criteria depend on the business objectives and typically include ROI or return on 
capital employed (ROCE).

The for-profit decision techniques do not apply when the organization’s goal is not profit—which is 
the case in government and in non-profit organizations. In these situations, the organization has a dif-
ferent goal, which means that a different set of decision techniques are needed, such as cost–benefit or 
cost-effectiveness analysis.

75.2.17.2 � Cost–Benefit Analysis

Cost–benefit analysis is one of the most widely used methods for evaluating individual proposals. Any 
proposal with a benefit–cost ratio of less than 1.0 can usually be rejected without any further analysis 
because it would cost more than it would benefit. Proposals with a higher ratio need to consider the asso-
ciated risk of an investment and compare the benefits with the option taking the same money to the bank.

75.2.17.3 � Cost-Effectiveness Analysis

Cost-effectiveness analysis shares a lot of the same philosophy and methodology with benefit–cost analysis. 
There are two versions of cost-effectiveness analysis. The fixed-cost version maximizes the benefit given 
some upper bound on cost. The fixed-effectiveness version minimizes the cost needed to achieve a fixed goal.

75.2.17.4 � Break-Even Analysis

Given functions describing the costs of two or more proposals, break-even analysis helps in choosing 
between them by identifying points where the costs are equal. Below a break-even point, one proposal is 
preferred and above that point the other is preferred.

75.2.17.5 � Business Case

The business case is the consolidated information summarizing and explaining a business proposal 
from different perspectives (cost, benefit, risk, and so on) for a decision maker, often used for assess-
ing the value of a product or requirements of a project, which can be used as a basis in the investment 
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decision-making process. As opposed to a mere profit-loss calculation, the business case is a “case,” 
which is owned by the product manager and used to support achieving the objectives.

75.2.17.6 �R OI

Generally speaking, it would not be smart to invest in an activity with a return of 8% when there’s 
another activity that’s known to return 16%. An organization’s minimum attractive rate of return 
(MARR) is the lowest internal rate of return the organization would consider to be a good invest-
ment. The MARR is a statement that an organization is confident it can achieve at least that rate 
of return.

Another way of looking at the MARR is that it represents the organization’s opportunity cost for 
investments. By choosing to invest in some activity, the organization is explicitly deciding to not invest 
that same money somewhere else. If the organization is already confident, it can get some known rate of 
return, other alternatives should be chosen only if their rate of return is at least that high. A simple way 
to account for that opportunity cost is to use the MARR as the interest rate in business decisions. An 
alternative’s present worth evaluated at the MARR shows how much more or less (in present day cash 
terms) that alternative is worth than investing at the MARR.

Start

Yes

Arrange the alternatives 
in order of increasing

initial investment

Assume first alternative 
is the current best

Compare next candidate
to the current best

Is the next
candidate strictly

better than the
current best ?

Make that next candidate
the new current best

�e current best is
the best overall

Are there
more alternatives 

to compare ? 

Stop

No

Yes

No

FIGURE 75.4  The for-profit decision-making process.
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75.2.17.7 �R OCE

The ROCE is a measurement of the profitability of a company or business unit. It is defined as the ratio 
of a gross profit before taxes and interest and the average total assets minus short-term debt minus cash. 
It describes the return on the used capital.

75.2.17.8 � Cost of Quality

The cost of software is determined by many factors. Generally speaking, some cost relate to generating 
value (e.g., designing a piece of software), while others do not increase value (e.g., rework and errors). 
The cost of quality is the cost to deliver a certain level of quality, covering the content (e.g., functional 
requirements), and the related quality attributes (e.g., security and reliability). It contrasts with the cost 
of non-quality (e.g., the cost for defect correction or redesigning requirements that have been wrongly 
interpreted). There is not a clear line between these two basic cost factors in software engineering and IT. 
For example, some testing is necessary to deliver the right quality, while excessive testing means a waste 
of resources. Software engineering economics strives for making such cost transparent and providing 
the mechanisms to optimize this balance.

75.2.17.9 �T he Good-Enough Principle

Often, it is in software projects and products not obvious what precise targets should be achieved. 
Requirements are stated, but the marginal value of adding a bit more functionality cannot be measured. 
The result could be a late delivery or too high cost. The good-enough principle relates marginal value 
to marginal cost and provides guidance to determine criteria when a deliverable is good enough to be 
delivered. These criteria depend on business objectives and on a prioritization of different alternatives, 
such as ranking requirements, or relating schedule to content and cost. Software engineering economics 
provides the mechanisms to define and measure criteria for “good-enough.”

75.2.17.10 � Multiple Attribute Evaluation

The topics discussed so far are used to make decisions based on a single decision criterion, money. 
The alternative with the best present worth, the best incremental IRR, the best incremental benefit–
cost ratio, etc. is the one selected. Aside from technical feasibility, money is almost always the most 
important decision criterion, but it is certainly not always the only one. Quite often there are other 
criteria, other “attributes,” that need to be considered and those attributes cannot be cast in terms of 
money. Multiple attribute decision techniques allow other, non-financial criteria to be factored into 
the decision.

There are two families of multiple attribute decision techniques that differ in how they use the attri-
butes in the decision. One family is the “compensatory,” or single-dimensioned, techniques. This family 
collapses all of the attributes onto a single figure of merit. The family is called compensatory because, 
for any given alternative, a lower score in one attribute can be compensated by—or traded off against—a 
higher score in other attributes. The compensatory techniques include

•	 Nondimensional scaling
•	 Additive weighting
•	 Analytic hierarchy process

In contrast, the other family is the “non-compensatory,” or fully dimensioned, techniques. This family 
does not allow trade-offs among the attributes. Each attribute is treated as a separate entity in the deci-
sion process. The non-compensatory techniques include

•	 Dominance
•	 Satisficing
•	 Lexicography
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75.2.17.11 � Optimization Analysis

The typical use of optimization analysis is to study a cost function over a range of values to find the point 
where overall performance is best. Software’s classic space-time trade-off is an example of optimization; 
an algorithm that runs faster will often use more memory. Optimization balances the value of the faster 
run time against the cost of the additional memory.

75.3 � Practice

Leadership and teamwork: Install an effective core team. Often, different stakeholders have unaligned 
agendas, which make the project late and cause lots of overheads and rework. First thing is to formally cre-
ate a core team with the product, marketing, project, and operations managers for each product (release) 
and make it fully accountable for the success of a product. These persons represent not only the major 
internal stakeholders in product or solution development but also sufficiently represent different external 
perspectives. The core team leads the product development in all its different dimensions. They typically 
meet once a week to go through all open issues, risks, and relevant aspects of the product. Decisions are 
taken and implemented by the respective function. We suggest announcing and making this core team 
operational as early as possible in the product life cycle but certainly when the product or release is defined. 
The success factor is to give this core team a clear mandate to “own” the project. We see most need for 
active support in building an effective core team that agrees that they together have to steer the course. Too 
often, we face silo organizations in marketing, business management, and engineering that do not work 
together. This means in many cases, not only to build teams, to train, and to coach but also to adjust annual 
targets and performance management. As we often realize: Culture changes when targets are adjusted.

Managing risks and uncertainty: Enforce the product life cycle. Like the core teams, we urge to make a 
standardized product life cycle mandatory for all product releases, that is, all engineering projects. Most 
companies today have such life cycle defined but rarely use it as the pivotal tool to derive and implement 
decisions. Too often, requirements changes are agreed in sales meetings without checking feasibility, 
and technical decisions are made without considering business case and downstream impacts. A useful 
product life cycle has to acknowledge that requirements may never be complete and may indeed be in a 
“continuum” state. The product life cycle should guide with clear criteria, that is, determining what is 
good enough or stable enough. This implies that it is sufficiently flexible to handle different types of proj-
ects and constraints. This is achieved with basic tailoring techniques and guidance, which elements are 
mandatory and which should be adjusted to the specific environment. To foster discipline and visibility, 
the mandatory elements of gate reviews, such as checklists or minutes, must be explicit and auditable. To 
avoid reporting overheads, we recommend using online workflow support to instrument such product 
life cycle. Aside ease of execution, such automation facilitates reuse, data quality, and consistency. Today 
you can find lots of workflow management systems. We suggest to practically evaluating potential solu-
tions versus your own needs, as it otherwise can become a burden.

Mastering stakeholder needs: Evaluate needs and requirements. Requirements must be understood 
and evaluated by the entire core team to ensure that different perspectives are considered. Each single 
requirement must be justified to support the business case and to allow managing changes and priori-
ties. We often found requirements simply being “collected” yielding lots of unnecessary features that add 
to complexity but not to customer perceived value. In fact, almost 50% of all delivered features are rarely 
used and do not provide any payback [1,8,11]. If a product is developed on such an unjustified basis, it is in 
trouble because its requirements will continuously change. A product (release) must address a need and 
must have a strong business vision. This vision (i.e., what will be different with the release of the product) 
must be coined into a story. The story then translates to business objectives and major requirements. 
Good business management first understands the customer’s needs and business case and then develops 
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necessary features. Requirements are a contract mechanism for the project internally and often for a 
client externally. They must be documented in a structured and disciplined way, allowing both technical 
as well as market and business judgment. Their evaluation should specifically look to completeness, con-
sistency, and understandability. Ask a tester to write a test case before processing the requirement. Ask 
the marketer in the team to check whether he can sell the feature as described. This avoids discussing in 
the clouds. Requirements should not be perfect or we risk paralysis by analysis. Determine what is good 
enough and ensure that any further insight is adequately considered. After evaluation, requirements are 
approved by the core team. Only thereafter they are formally allocated to the project and engineering 
effort is spent. Requirements and business objectives must be managed (planned, prioritized, agreed, 
and monitored) throughout the life cycle to assure focus [3,11–14]. We suggest having a project plan that 
is directly linked with requirements. Work packages within this project plan should show the value they 
contribute with such links to requirements. This allows not only to focus on what matters but also to 
also monitor the earned value of the project from begin to end—and to proactively manage risks, such 
as effort being burned without creating value. Note that your change management needs to be equally 
formal and disciplined because most issues we face in troubled projects result from creeping require-
ments and insufficient impact analysis. To ease change management, we suggest installing traceability 
from requirements upwards to the business case and downwards to test cases.

Business objectives and accountability: Assure a dependable portfolio. Managing release roadmaps and 
the own portfolio as a mix of resources, projects, and services must be the focus of each product man-
ager. Often, roadmaps are not worth the paper they are printed due to continuous changes and thus 
lack of buy-in from sales, operations, and service. Projects are started ad-hoc, while necessary reviews 
and clean-ups in portfolios never happen. With moving targets, sales has no guidance how to influence 
clients, and engineering will decide on its own which technologies to implement with what resources. 
When it comes to his own portfolio, the product manager has to show leadership and ensure dependable 
plans and decisions that are effectively executed. Dependable means that agreed milestones, contents, 
or quality targets are maintained as committed—unless a change is agreed and documented. Be aware 
as a product manager, that each ad-hoc content or release change will create the perception that your 
portfolio is not managed well. Apply adequate risk management techniques to make your portfolio and 
commitments dependable. Projects may need more resources, suppliers could deliver late or technology 
would not work as expected. For instance, platform components used by several products might use 
resource buffers, while application development applies time boxing. If there is a change to committed 
milestones or contents within your portfolio, they must be approved first by the core team and where 
necessary by respective steering boards, and then documented and communicated with rationales.

75.4 � Business Value

Do aforementioned practices mean better business performance? We performed root cause analyses of 
hundreds of products that underperformed and found similar causes reappearing. Root causes included 
business cases that were never re-evaluated, unbalanced portfolios that strangulate new products, insuf-
ficient management of new releases and service efforts, and the lack of vision that caused requirements 
to continuously change. This is underlined by observations such as Cooper’s studies indicating that 
the top 20% of enterprises deliver 79% of new products in time, while the average delivers only 51% of 
projects in time [6]. The same holds for productivity and performance. Looking, for instance, to how 
productivity is impacted by good business planning, we found that with a requirements change rate 
beyond 20% in a project, productivity falls and as such business performance [1,8].

We have been working with hundreds of business managers and achieved reduction of delays 
of 20% per year [3]. Explanatory factors for this positive impact of business management include 
leadership and teamwork, managing risks and uncertainty, mastering stakeholder needs, and 
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accountability toward agreed business objectives and accountability—managed by one empowered 
person across the product life cycle.

Improved product and business management has a profound positive impact on the overall business. 
For better understanding and knowledge transfer from this handbook entry to your work, we will pres-
ent a case study from introducing software business understanding in a global information and commu-
nication technology  (ICT) company with strong focus on corporate consistency. It showed success after 
ca. 12–18 months of working in the new scheme. This is what should be considered a normal learning 
curve when strengthening business management and introducing product management.

Strengthening the business focus as sketched earlier, at a major ICT supplier showed that duration 
(time to market), schedule adherence, and deliverable quality all sustainably improved while introduc-
ing and improving business management. The data are drawn from a single business unit over 3 years 
to allow comparability. The business unit that we selected was amongst the first to introduce consistent 
business management in a defined way. It operates in North America, Europe, and Asia, thus assuring 
representative results independent of geography. The products of that business unit are components 
used in communication networks. Examples of usage include voice over IP and video solutions. They 
comprise platform products that are developed typically every few years and then customized for con-
tract projects. The approach behind is product-line driven, so that platform products would have the 
basic functionality and customer products are enhancements (or changes) to those platforms. There are 
also network management systems included, which help to configure and operate these products.

In order to achieve business success, the product manager has several objectives: Creating a winning 
product and business case and delivering value to customers. As a control variable, we took the degree of 
implementation of the product manager role. Naturally, there was a product manager role available since 
long; however, the responsibilities, competencies, and operational behaviors were very heterogeneous. 
Only with an orchestrated approach toward defining a competence profile for product managers, align-
ing their roles and responsibilities versus other roles in the same organization (e.g., marketing manager, 
project manager, and regional sales) triggered more consistent and effective behaviors. We mapped the 
implementation degree of the product manager role to three phases [3]:

•	 Phase 1: Establish foundations. A sense of urgency was created with some critical stakeholders 
in the organization to strengthen the role of product manager. Leading product managers were 
brought together and assessed success factors and the elements of the role. We aligned the new 
role elements to other related roles, such as marketing manager or project manager, on the one 
hand, and we benchmarked with other companies to formally establishing the role.

•	 Phase 2: Prepare and pilot. The standard product life cycle was enriched with more templates, self-
assessment tools, training materials, and hands-on success stories. Training modules were piloted 
for key functional competences, such as the writing of a customer business case.

•	 Phase 3: Deploy. The longest phase dealing with deployment was performed using progress mea-
surements for monitoring and deficiency identification. Incumbent product managers and the 
newly trained community provided continuous feedback helping in identifying further improve-
ment needs.

The impact of each of these three phases could be deducted from our history database by means of map-
ping product releases (projects) to dates and organizations. We looked to an overall total of 178 projects 
without any filtering (Figure 75.5). Each phase has a representative set of projects. As a rule of thumb, 
one would need at least 10 projects per dependent variable being analyzed. Size is represented from very 
small projects (few person weeks) up to several hundred person years. The dependent variables of our 
study are average duration, average delay as percentage of schedule overrun compared to originally com-
mitted release dates and quality level in terms of defect detection percentage after handover. We achieved 
within 3 years of strengthening systematic business and product management in phase 3 (deployment) 
an improvement of 36% in average duration, 85% in delays, and 82% in quality (Figure 75.6).
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75.3.1 � Outlook: Where Is the Software Business Heading?

We will finally look at trends in software business. These trends indicate close collaboration between 
industrial needs and research at both universities and enterprises. Business trends naturally are influ-
enced and determined by external trends that impact our society and therefore buyer behaviors as well 
as individual needs. Such external trends are characterized by: Demand for value, everything is fashion, 
individualism, ever-changing expectations, demand for ubiquitous services, global competition, eco-
nomic and ecologic behaviors, and the need for security and stability. From these trends, we can look to 
what this means for software business.
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FIGURE 75.5  The results of insufficient business management.

Delays vs. deployment phases

Deployment phase
1 2 3

300%

200%

100%

0%

Duration vs. deployment phases Defects vs. deployment phases

100% 100%

200% 200%

300% 300%

0% 0%
1 12 23 3

Deployment phase Deployment phase

Delays (% of duration) Duration (baseline = 100%) Defects (baseline = 100%)

Prod. Mgmt. 
Introduction Phase

# Pro-
jects

Min Size 
(PY)

Max Size 
(PY)

Average 
Delay

Average 
Duration

Average 
Defects

1
2
3

47
55
76

0.1
0.1
0.1

346
84
91

100%
25%
15%

100%
87%
64%

100%
30%
18%

FIGURE 75.6  ICT case study results with 178 projects over 3 years. (Data from 178 industry projects from telecom-
munication industry over a period of 3 years throughout which the project management role and competency was 
defined, deployed, and improved. Note that the graphs show regression lines based upon least squares and not averages.)
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	 1.	 Innovation with market and solution focus rather than technology-driven. Product needs and solutions 
go far beyond those of the software itself. They include service, evolution, integration of business pro-
cesses, and the like. It is about speed to needs. Software business has to cope with this need and not 
get cornered by only looking toward what are mere software features. In the end, the customer is not 
interested in features, but in his needs and how they are best satisfied by products and services.

	 2.	 Value creation with customers. Value-oriented engineering will grow rapidly, that is, improving 
the evaluation of requirements within a business case from a portfolio management perspective. 
Customers are part of the value creation. This implies dynamic segmentation down to the single-
buyer segment. Questions include: What is the customer business case behind the requirements? 
Is the own business case valid and in line with the customer or user business case? What is the 
contribution of requirements to this business case?

	 3.	 Innovative market rules and business models. Software has such low entry levels that a new com-
petitor is simply a mouse-click away. Friction-free deliveries further add to this competitive trap. 
It is therefore important to develop customer and user needs continuously from scratch and 
innovate how their current and prospective customers can further improve their own business. 
Examples include community source with networks of stakeholders developing and maintaining 
software, wikinomics with a global and open access to information and resources, and blue ocean 
approaches to create new value for customers rather than fighting on price alone.

	 4.	 Quality focus. Quality starts at the start of a product concept and a project. Quality needs are 
manifold and can contradict each other. Software business has to deal with these constraints and 
must offer win–win solutions. Furthermore, it has to develop a quality perspective in the product 
development, covering for instance the usage of commercial components, including a variety of 
partners or suppliers, managing the quality delivered by such external partners, and adapting 
systems quality features as business needs change.

	 5.	 Supplier networks and eco-systems. Aside from the classic competitive schemes, customers today 
want to have sustainable networks of suppliers. The traditional concept of supply-chain will be 
replaced by adaptive supply networks. Suppliers are even more than ever subject to continuous 
evaluation and replacement where necessary. The success of a supplier depends on how well he is 
able to create communities and business models together with customers and other suppliers.

	 6.	 Agility to manage uncertainties. It is increasingly important to predict changes to products and 
customer or market needs on an individual level. Which requirements are most volatile and at 
same time exposing the project to highest risk? How can they be addressed by sufficiently flexible 
solution architecture?

	 7.	 Effective knowledge management. Knowledge management techniques becomes more and more 
necessary for capturing the wide-spread knowledge on customers, markets, products, technolo-
gies and especially stakeholders, in order to be less people-dependent, and to mature products and 
business management in an ever more changing environment.

Whether your customer is internal to your company or a traditional external client-user of your prod-
uct, whether your product is shrink-wrapped and shipped or it is a service or embedded system, creating 
and addressing customer needs is the primary driver for good business and for good software.

Further Reading

Ebert, C. Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing. Wiley, 
New York, 2011. Description: Based on the author’s first-hand experience and expertise, this book 
offers a proven framework for global software engineering. Readers will learn best practices for man-
aging a variety of software projects, coordinating the activities of several locations across the globe 
while accounting for cultural differences. Most importantly, readers will learn how to engineer a first-
rate software product as efficiently as possible by fully leveraging global personnel and resources.
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Ebert, C. and R. Dumke. Software Measurement: Establish, Extract, Evaluate, Execute, Springer, New York, 2007. 
Description: People who design and develop software like to call themselves software “engineers.” Yet few 
organizations have really institutionalized measurement of their products and processes. This book is 
bang up-to-date in both fields and packed with practical advice. For every software engineer and manager.

Reifer, D.J. Making the Software Business Case: Improvement by the Numbers, Addison Wesley Professional, 
Boston, MA, September 2001. Description: This practical handbook shows you how to build an 
effective business case when you need to justify—and persuade management to accept—software 
change or improvement. Based on real-world scenarios, the book covers the most common situa-
tions in which business case analyses are required and explains specific techniques that have proved 
successful in practice. The book provides examples of successful business cases; along the way, tables, 
tools, facts, figures, and metrics guide you through the entire analytic process. An excellent book to 
learn how to prepare and implement a business case and thus make software a successful business.

McGrath, M.E. Next Generation Product Development. McGraw-Hill, London, U.K., 2004. Description: 
A hands-on manager’s guide to making the most of today’s product development breakthroughs. 
In-depth explanation of the ways in which companies are able to achieve substantially higher levels 
of development productivity, while better aligning product development with strategy through new 
practices and systems.

Condon, D. Software Product Management: Managing Software Development from Idea to Product to 
Marketing to Sales, Aspatore Books, San Francisco, CA, 2002. Description: The book decodes the 
software product management process with an emphasis on coordinating the needs of stakeholders 
ranging from engineering, sales, and product support to technical writing and marketing. Based on 
real-world experience in managing the development of enterprise software, this book details how 
a team can work together smoothly to achieve their goal of releasing a superior software product 
on time. While it is not primarily about setting up a business, the book explains hands-on what is 
necessary in daily operational fights to succeed.
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76.1  Introduction

Open source software is software available in source code form that allows users to view, modify, extend, 
and, in many cases, further distribute subject to the terms of the applicable license. Use of open source 
software offers many advantages, including its ready availability and no royalty or license fees. In addi-
tion, many open source software applications and modules are continuously being improved, debugged, 
tested, and updated by a community of users and, therefore, may represent the best solution available 
from both a quality and cost standpoint.

Open source software rarely comes without some restrictions and conditions. Depending on the 
license, these restrictions and conditions range from fairly minor to very significant, and may be incom-
patible with a company’s planned use of the open source software.

76.2  Underlying Principles

The availability of open source software at no readily apparent cost to programmers creates much 
confusion regarding the ownership of rights in the software and what restrictions the owner can 
impose on use and modification of the code.
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Even though open source software may appear to be “free,” open source software reflects the dis-
tinction between the definition of “free” as meaning “for zero price” (gratis) versus “with little or no 
restriction” (libre), with open source software being truly “free” only in the second sense of the word. 
As the father of the open source movement, Richard Stallman stated, “Think free as in speech, not free 
beer.”

76.2.1  Copyright Law

Like all software (or novels or paintings), open source software is only “free” to the extent that the 
copyright holders make the software “free.”

When distinguishing between, on the one hand, software that a company owns and, on the other 
hand, open source software that a company obtained from another source, lawyers and business people 
will often refer to software that a company owns as “proprietary” software. While this distinction is 
valid from the perspective of the company (i.e., the company does not own the open source software that 
it downloaded from a website), it is a mistake to infer from this that open source software is not owned 
by anyone or that it is in the public domain.

The developers of the open source software or their assignees own title to the copyright in the soft-
ware automatically from its fixation in a tangible medium (e.g., a computer file). While such owners 
of the open source software may make the open source software available for anyone to use under the 
terms of the open source license that they have chosen, their ownership of the underlying copyright is 
what allows them to require that anyone using the software do so in accordance with the license.

76.2.2  Open Source License Terms

Generally speaking, open source software licenses fall into one of three categories: restrictive (also called 
“copyleft”), moderately restrictive (also called “copycenter”), and permissive. In theory, the number of 
possible licenses is unlimited because authors of open source software may select any license or create 
their own. However, the top 10 most common open source software licenses are used by probably the 
majority of all open source software modules and applications available. With the notable exception of 
the Affero variant of the GNU General Public License (the “GPL”), in most cases, these restrictions are 
only applicable or relevant if copies of the software will be provided to third parties and are not applica-
ble or relevant when the software is only being used internally, which includes hosting the software in a 
software as a service (SaaS) arrangement for customers or using it to operate a customer-facing website. 
However, these definitions of “distribution” across different versions of the GPL are potentially subject 
to varying interpretations in different jurisdictions as will be discussed in the subsequent sections.

76.2.2.1 R estrictive

Certain open source software licenses, such as the GNU GPL, are considered “viral” licenses, because 
they generally require that proprietary software that is distributed with open source software be licensed 
under terms consistent with the open source software license (hence, like a virus, the license terms are 
passed on to other software).

Proprietary code distributed with or alongside GPL-licensed code as part of a larger program or 
application may in many cases be deemed a “covered work” along with the GPL-licensed code, such 
that the entire covered work (i.e., proprietary code and open source software) may only be distributed 
on terms compatible with the GPL license, including on the condition that the source code to the entire 
combined program (including developer’s proprietary code) be made available to recipients under the 
GPL-license terms. Unlike under the GNU Lesser General Public License (“LGPL”) and other mod-
erately restrictive licenses discussed in the subsequent sections, maintaining the GPL-licensed code 
in separate source code and executable files (such as dynamically linked libraries [DLLs]) that only 
dynamically link to the proprietary code at run time does not necessarily prevent the proprietary code 
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distributed alongside GPL-licensed software from becoming a “covered work” under the GPL that may 
only be distributed subject to the terms of the GPL license.

An exception does exist for a compilation (called an “aggregate”) of the open source with other sepa-
rate and independent works, which are not by their nature extensions of the covered work, and that are 
not combined with it such as to form a larger program, in or on a volume of a storage or distribution 
medium, if the compilation and its resulting copyright are not used to limit the access or legal rights of 
the compilation’s users beyond what the individual works permit. Inclusion of a covered work in such 
an aggregate does not require the license terms to the other parts (such as the company proprietary 
parts) of the aggregate be also licensed under the GPL. The GPL does not provide much clarity as to 
the distinction between when multiple components are deemed to be an aggregate (compilation) that is 
not a covered work and when deemed to be one larger program with multiple parts.* Many companies 
will not risk including GPL software in distributions of their software products unless the distribution 
clearly fits into the compilation exception (e.g., where the operating system software is licensed under 
the GPL and the application running on top of the operating system is commercially licensed).

76.2.2.2  Moderately Restrictive

Moderately restrictive licenses, such as GNU LGPL, may also have a viral effect on proprietary code 
depending upon the manner and form in which the open source software is used with the propri-
etary code. For example, if open source software licensed under the LGPL is statically linked into a 
proprietary software program (e.g., forming an .exe file out of both the LGPL and proprietary code), 
which is then distributed to customers or third parties, then compliance with the LGPL license would 
require that the entire executable (including the proprietary code) also be covered by terms compat-
ible with the LGPL license and that, among other things, the source code to the proprietary software 
be made available to customers (in order to allow the customer to modify the LGPL source code and 
recompile the executable). On the other hand, distribution of the same LGPL-licensed software with 
proprietary software where the LGPL software is distributed as a standalone DLL file that is then 
dynamically linked to by the executable at run time is possible under the terms of the LGPL without 
requiring the proprietary executable file to be made available in source code form under terms com-
patible with the LGPL.

76.2.2.3  Permissive

Permissive licenses impose few if any restrictions. The restrictions (if any) are generally not considered 
to be burdensome (such as a requirement that certain copyright ownership and attribution notices be 
included with the distributed files), and the licenses are not “viral” as described earlier. Examples of 
permissive software licenses include the MIT license, the Apache license, and the Berkley Software 
Distribution license.

*	 The Free Software Foundation (the author of the GPL license) offers only:
	 “Where’s the line between two separate programs, and one program with two parts? This is a legal question, which ulti-

mately judges will decide. We believe that a proper criterion depends both on the mechanism of communication (exec, 
pipes, rpc, function calls within a shared address space, etc.) and the semantics of the communication (what kinds of 
information are interchanged).”

	 “If the modules are included in the same executable file, they are definitely combined in one program. If modules are 
designed to run linked together in a shared address space, that almost surely means combining them into one program.”

	 “By contrast, pipes, sockets and command-line arguments are communication mechanisms normally used between two 
separate programs. So when they are used for communication, the modules normally are separate programs. But if the 
semantics of the communication are intimate enough, exchanging complex internal data structures, that too could be a 
basis to consider the two parts as combined into a larger program.”

	 “However, the exception would apply, for example, to a CD containing a collection of games where each game was a 
standalone game that did not rely on the inclusion of any other game to operate and did not link or pass data in any way 
to the other games. In this example, the CD could contain a mixture of GPL licensed and proprietary licensed games.”
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76.2.3  Enforcement of Open Source Licenses

Copying, modifying, creating derivative works of, and distributing a work (such as software) that is 
protected under copyright requires either ownership of the copyright or a valid license from the owner 
or licensing agent of the copyright. Therefore, if a company distributes software that includes or is 
derived from open source software, and does not comply with the terms of the applicable license under 
which such open source software was made available, then such company is infringing the copyright in 
such software, breaching the terms of the license agreement, or both.

Most open source software modules are available for download and accessible without requiring the 
recipient to expressly assent to the license terms. For example, usually the recipient is not required by 
installation software to affirmatively click “I agree” to the terms before the relevant software is installed. 
However, but for a valid license, the recipient would likely be infringing the software’s copyright; there-
fore, taking the position that the recipient did not agree to the license terms will not usually be a viable 
option for a recipient.

76.2.3.1  Who Can Enforce an Alleged Open Source Violation?

Authors of open source software, often assisted by organizations formed to advance the enforcement 
of open source software licensing terms, have been increasingly active in enforcing such licenses. 
In other cases, commercial software companies that also make a less functional or older version of their 
proprietary software available under open source licenses, actively seek to enforce the terms of the open 
source license to ensure that users purchase commercial licenses when appropriate. It is important to 
note that only the owners of the open source software and their agents acting on their behalf have the 
right to assert a claim against a user of the open source software for violating the terms of the license or 
infringing the copyright.

76.2.3.2 A re Open Source Licenses Enforceable?

There is no longer any question that open source licenses are enforceable. The US Court of Appeals for 
the Federal Circuit, in a rare decision on a copyright matter,* ruled in 2008 in the Jacobsen v. Katzer and 
Kamind Industries case that the terms of the open source “Artistic License” are enforceable. The license 
covered software used to control model trains. Jacobsen claimed that Katzer/Kamind downloaded the 
open source software from Jacobsen’s website and incorporated it into another product without follow-
ing the terms of the Artistic license.

Katzer/Kamind admitted that they copied, modified, and distributed the Jacobsen software. The issue 
for the court was whether these actions were within the scope of the Artistic license. If the actions were 
outside the scope, then Jacobsen could sue for copyright infringement. Otherwise, the lawsuit would be 
based on breach of contract.

The court concluded that the terms of the Artistic license that required a copyright notice and track-
ing of changes to the software were conditions to the license. That is, Katzer/Kamind were required to 
comply with these conditions to be granted the license to the software. Katzer/Kamind conceded that 
they did not comply with these conditions.

The court noted that on the facts of the case, Jacobsen made out a prima facie case of copyright 
infringement. More importantly, however, is that the court acknowledged that the terms of an open 
source license were enforceable. Therefore, it is likely that noncompliance with a properly drafted 
open source license, with terms construed as conditions to that license, would result in liability for 
copyright infringement.

*	 In the United States, the Court of Appeals for the Federal Circuit has jurisdiction over appeals concerning patent law, 
while the regional Courts of Appeal typically have jurisdiction over appeals concerning copyright law. The Jacobsen case 
included both copyright and patent law issues, so the Court of Appeals for the Federal Circuit had jurisdiction over the 
entire case.
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76.2.3.3 A vailable Damages

In the case where, for example, a company distributes a program combining its proprietary software and 
GPL software and the company does not provide to its customers the source code to its proprietary software 
(or for that matter license it under the GPL), legal action taken against the company could take the form of a 
breach of contract claim and/or copyright infringement claim, with the most likely remedies being

•	 An injunction to prohibit further sale or license of the combined software and require cessation of 
use of the software by the company and its customers (until the open source software is removed)

•	 Impoundment and destruction of the combined software
•	 Monetary damages in the form of direct damages (often measured as copyright holder’s lost prof-

its or the price that someone would have been willing to pay) and, if the copyright of the open 
source software was registered, statutory damages

•	 Possibly attorney’s fees if the copyright to the open source work was registered and the infringe-
ment is determined to have been willful

However, a court order forcing the company to “open source” its commercial software to comply with the 
terms of the GPL is not a realistic outcome or liability in this example (or any readily imaginable example). 
A court order for specific performance of this type is generally not available, especially when other rem-
edies, such as monetary damages and court orders enjoining future distribution, afford an adequate equi-
table remedy.

76.2.4  Interactions between Open Source Licenses and Patent Law

Certain open source software licenses incorporate a provision that purports to cause any person modifying 
or contributing to the open source software to grant a non-exclusive patent license to recipients of the open 
source software with respect to any contributions made by such contributor to such open source software. 
In addition, some of the open source software licenses provide that if a user of the open source software 
brings a patent infringement claim against another user of the open source software, then the patent license 
(and, in some cases, also the copyright license) such party had to such open source software terminates. 
In case of the Mozilla Public License (MPL), a patent infringement claim against a contributor to the MPL 
licensed software, regardless whether the patent infringement claim has anything to do with use of such MPL 
licensed software, can result in retroactive loss of the MPL license. Because a user of open source software 
could lose rights to continue using certain open source software modules if it seeks to enforce its patent 
rights, and because licenses to its patents may be granted if it makes contributions, use of certain open 
source software licenses may need to be coordinated with decisions on patent strategy.

76.2.5  Commercial Off-the-Shelf

Commercial off-the-Shelf (“COTS”) software is generally considered to be software that is widely sold 
to the general public. In other words, it is software that is not developed in connection with a specific 
contract or customer. Some advantages of using COTS software as part of a larger software package 
include decreased overall development time and potentially lower development cost. The reduced time 
usually means that the software package is delivered to the customer more quickly compared to software 
packages that consist entirely of custom code.

Although using COTS software may seem attractive, it is important to recognize that significant inte-
gration issues may arise, effectively erasing any projected reductions in development cost. Furthermore, 
the COTS software user has little or no control over the COTS software itself. That is, the manufacturer 
of the COTS software usually has absolute control over changes and other updates to it. If the changed 
COTS software is incorporated into the larger software package, it could render the latter inoperable 
without significant recoding of the package. In an extreme but not uncommon case, the COTS software 
manufacturer could discontinue the COTS software. In that instance, the COTS software user will likely 
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have no recourse other than to look for an alternative to the obsolete software, which may entail the 
creation of a custom piece of software as a replacement, retroactively eliminating a primary advantage 
of using the COTS software.

If a company is evaluating whether to incorporate COTS software into one or more of its released 
products, it is advisable to consider the inclusion of certain contractual provisions in its purchase orders 
for the COTS software. Such provisions would operate to protect the company in the event of altera-
tions or obsolescence of the COTS software. For example, the company could require extended notice of 
planned changes to the COTS software or its availability. This would allow the company to plan effec-
tively for such disruptions and minimize impact to its business and its customers.

76.3  Best Practices

76.3.1 A dopting an Open Source Policy

Having an open source policy that is adhered to is critical. Without such a policy, a company, for 
example, could find that it lacks the expected ownership and control over software that it just released 
because the software included certain open source code. The open source code may have been included 
inadvertently during development. It may have been a remnant of code included only for internal, 
debugging purposes and unknowingly left in the final, released version of the software. In either case, a 
company finding itself in such a situation will have significant problem on its hands that it might have 
avoided if it had a preexisting policy for dealing with open source software.

An open source policy should, at a minimum, include directives on the internal and external use 
(i.e., redistribution) of open source code, procedures for acquiring open source licenses and monitoring 
compliance with them, and a formal mechanism that tracks requests to use open source software. The 
policy should prohibit all use of open source software for which a request to use has not been made or 
approved.

76.3.1.1  General Philosophy on Open Source

Companies can follow one of two broad paths when setting a policy on the use of open source software. 
The first path involves an absolute prohibition on the use of open source software. The second path 
permits the use of open source software, at least to some extent (e.g., for internal use only and/or use in 
distributed software). Path number one can be easy to manage but will likely add to software developers’ 
workloads and lengthen development time. Path number two may facilitate software development but 
will require attention to the various open source licenses to ensure compliance.

Irrespective of the path chosen, policing is required. In other words, a company must ensure that it 
has a complete understanding of its exposure to and use of open source software. Given that software 
can find its way into a company through unofficial routes, effective policing is necessary even if the 
company has chosen the first path and prohibited the use of open source material.

76.3.1.2  What Licenses Will the Company Accept?

There are many open source licenses that have been drafted over time and have achieved varying degrees 
of use by open source developers. As described earlier, these licenses can generally be categorized as 
restrictive, moderately restrictive, or permissive. One resource that maintains a catalog of these licenses 
is the open source initiative (opensource.org).

A company’s decision as to which open source licenses to accept in connection with using open 
source software depends on the expected scope of that use. For example, if the expected scope is limited 
to internal use by the company, only those licenses (if any) that regulate such internal use should be 
evaluated. On the other hand, if the company intends to couple open source with its proprietary code, 
then the company needs to consider whether it will agree to license its proprietary code under the same 
terms as the open source software or seek an alternative license to avoid this requirement.
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In view of the significant number of open source licenses in use, albeit in varying degrees, a company 
should approach a decision on which licenses to accept by first setting a policy regarding its proprietary 
software. That policy should include a position on the extent to which the company will license that pro-
prietary software. That position will act as a filter and cause the company to reject certain open source 
licenses that are incompatible with its policy. Consequently, this would foreclose the use of any open 
source software that is subject to the rejected licenses.

76.3.1.3  Employee Education

An understanding of the benefits and risks of using open source software likely varies widely from 
employee to employee. Many experienced software developers will understand the relevant issues, while 
less experienced employees or those having jobs that do not involve coding may be largely unaware of 
these issues. The solution for dealing with this is having a comprehensive employee education program 
that covers the open source software landscape.

If a company has already decided to adopt a policy that prohibits the use of all open source software, 
the education program can focus on how to identify the open source and the risks associated with using 
it. This should provide the employees with a solid basis for the company’s policy. If the employees fully 
understand that basis, it is more likely that they will follow the policy with minimal resistance.

If the company does not prohibit the use of open source software, it is important that employees be 
instructed to follow a procedure that ensures they formally request to use the open source. This allows 
the company to track the use of open source software and evaluate whether the applicable license terms 
are acceptable so as to authorize the use of the open source. Employees must be educated such that they 
follow this request-evaluate-approval process without fail.

Irrespective of the choice a company makes about using open source software, it is imperative that 
employees be able to recognize when they are using open source. This is necessary to guard against the 
inadvertent use of open source that, if left unchecked, could result in large-scale disruption of the busi-
ness. If employees are sensitized to recognize open source, they can they take the necessary actions to 
purge the software or file a formal request to authorize its use.

76.3.1.4  Software Monitoring Tools

Tracking the use of open source software is a critical first step toward ensuring that one does not run 
afoul of the terms of an open source license. Open source that has worked its way into a company’s 
released software package without the company’s knowledge and approval can create major problems, 
including delaying the release of a software package until the open source is removed or its license 
terms agreed to.

In view of the complexity of large software engineering projects, it is typically impossible for the 
developers and their managers to ensure accurate tracking of the use of open source on an individual 
basis. Accordingly, tools have evolved that monitor the software development process and identify the 
existence of open source software. These tools are usually largely automated and can include additional 
features, such as tracking requests to use open source and the decisions made on those requests.

A company should consider the expected complexity of the software that it is developing and the 
number of developers that it will use and can reasonably monitor in connection with a decision on using 
an automated tool to police its use of open source.

76.3.2 � Deciding Whether to Distribute Software 
under an Open Source License

76.3.2.1  Balancing Permissiveness with Competitive Concerns

A company that develops its own software for sale to customers should consider whether it will designate 
that software as open source. In other words, a company should evaluate whether to make its software 
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freely available to customers subject to the appropriate open source license. This contrasts with the 
company maintaining ownership and control over its software and granting licenses to its customers on 
terms that it sets.

The trade-off between maintaining software as proprietary versus releasing it as open source is clear: 
keeping the software proprietary allows a company to preserve the secrecy of its code. Customers who 
receive and use the software will generally be unable to determine the inner workings of the distributed 
software, and the company could include license terms that prohibit any type of reverse engineering of 
the software. In this scenario, the company’s competitors will likely be unable to ascertain how the soft-
ware works. This may be the proper approach when a company decides that it is imperative to protect its 
technology to the greatest extent possible.

On the other hand, by designating its software as open source, a company can potentially obtain a 
much larger base of users and customers, many of whom are drawn to the software initially because it 
would be freely available. Many of the users might exploit the open source nature by creating enhance-
ments and other extensions to the software that could make it more attractive to use. Indeed, a com-
munity of user-developers could emerge from the customer base that propels the software toward wider 
adoption. An important point to keep in mind, however, is that a decision to designate software as open 
source should be accompanied by a plan to get revenue through alternative means. A different business 
model is needed because the distribution of the software will no longer generate the expected revenue. 
This is discussed in the following text.

76.3.2.2  Open Source Business Models

A business model for open source software needs to address how to generate revenue from software 
that is, by its very nature, distributed freely. Accordingly, business models must incorporate some value 
added aspect to justify a cost.

Providing proprietary software plugins to open source software is a common way to add value. 
Companies can offer these plugins, along with subscriptions for training and technical support, for a fee. 
Another alternative is to offer a stripped-down open source version of a software package for free and at 
the same time offer an enhanced commercial version for a fee. The theory behind this approach is that 
customers who are attracted initially to the free version would later want enhanced functionality and 
would purchase the commercial version.

A key to a successful business model is to identify a service relating to, or other proprietary element 
of, the product that end users consider sufficiently desirable or valuable such that they are willing to pay 
a reasonable fee to have access to it. Coming up with that service or other proprietary element is a func-
tion of the seller’s creativity and knowledge of the marketplace.

76.4  Open Issues

76.4.1  What Constitutes Distribution in the Cloud Computing Environment?

Many websites, and providers of SaaS (where the software is centrally hosted by the provider or in the 
cloud and not distributed to the customer), make extensive use of open source software. This includes 
software licensed under the GPL in combination with their own proprietary software. In many cases, if 
copies of these combinations of open source and proprietary software solutions were distributed to end 
users as opposed to their functionality being made available under a SaaS model, then under the terms of 
the GPL or other similar restrictive open source licenses, the party distributing such software would have 
been required to make available the source code to both the proprietary software and the open source soft-
ware (including any modifications). However, because the GPL-licensed open source software is hosted 
by the SaaS provider or website provider (on their own servers or in the cloud) and actual copies are not 
distributed to customers, the SaaS providers and websites are not required to make available the source 
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code to their own proprietary software or to their modifications to the GPL-licensed open source software 
(unless Affero GPL-licensed software is used as discussed in the next paragraph).*

The use of GPL-licensed open source software in this manner, without being required to disclose 
the source code of the modified open source software (and possibly the proprietary software too), was 
viewed by some to be an unintended or undesirable “loophole” in the GPL, the original versions of 
which were drafted before the wide adoption of SaaS and cloud computing (though not prior to previous 
incarnations of such business model, such as application service providers or ASPs). Therefore, in March 
2002, the Free Software Foundation (the author of the GPL) published an Affero General Public License 
(“AGPL”), version 1, as an alternative to the then GPL, version 2. Subsequently, it published the AGPL, 
version 3, in November 2007, shortly after the publication of GPL, version 3. The AGPL redefines what a 
distribution is—with express wording that states that interaction over a computer network amounts to 
a distribution. The use of AGPL-licensed software with proprietary software is generally not compatible 
with a traditional SaaS model and will likely trigger an obligation to disclose source code. To date, the 
AGPL has had limited adoption in comparison to the GPL.

76.5  Summary

Open source software is a great resource and option for many companies desiring to supplement and 
extend the capabilities of their existing software and/or hardware products, allowing companies to 
focus internal development work on core proprietary functionality. However, as with any third party 
software that a company desires to embed or include with its own proprietary software, the applicable 
license terms must first be understood and carefully considered by the company.

The wide availability of open source code presents both great opportunities and risks to software 
developers. Companies should anticipate that programmers will have access to open source code and be 
proactive in creating and, more importantly, communicating, and implementing an open source policy 
so that decisions regarding use of open source software can be quickly made during software develop-
ment instead of after the fact.

The following is a list of selected open source licenses by category—Permissive, Moderately Restrictive, 
and Restrictive—as described in Sections 76.2.2.1 through 76.2.2.3:

*	 GPL, version 3, states that mere interaction with a user through a computer network, with no transfer of a copy, is not a 
distribution.

“Permissive” open source software licenses

•	 MIT license
•	 Berkeley Software Distribution (BSD) license
•	 Apache license

“Moderately restrictive” open source software licenses

•	 Common Development and Distribution license (CDDL)
•	 Common Public License (CPL) & Eclipse Public License (EPL)
•	 Mozilla Public License (MPL)
•	 Lesser General Public License (LGPL)

“Restrictive” open source software licenses

•	 General Public License (GPL)
•	 Affero General Public License (AGPL)
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Key Terms

•	 “Copyright” is a property right in an original work of authorship fixed in a tangible medium 
of expression that gives the copyright holder the exclusive right to reproduce, adapt, distribute, 
perform, and display the work. Black’s Law Dictionary 337 (7th edn., 1999). In the United States, 
copyrights are registered through the US Copyright Office (www.copyright.gov) and can be 
enforced through suit in the federal courts.

•	 A “license” is a permission to commit some act (e.g., reproducing, adapting, or distributing 
software code) that would be otherwise unlawful (e.g., due to a valid copyright). Black’s Law 
Dictionary 931 (7th edn., 1999).

•	 A “patent” is the exclusive right granted by a government to exclude others from taking certain 
actions such as making, using, or selling an invention. Patents differ from copyrights in several 
respects including the potential to protect the basic idea of the invention (as defined the claims 
of the patent), whereas copyright protection is limited to the particular expression of an idea 
(e.g., the particular source code used by the programmer). In the United States, patents are granted 
after examination by the US Patent and Trademark Office (www.uspto.gov) and are enforceable 
through suit in the federal courts.

Further Information

International free and open source software law review (www.ifosslr.org).
The international free and open source software law book (www.ifosslawbook.org).
Meeker, H.J. The Open Source Alternative: Understanding Risks and Leveraging Opportunities (2008).
Open source initiative (www.opensource.org).
Open source resource center (www.osrc.blackducksoftware.com).
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77.1  Introduction

In this chapter, we first introduce the evidence-based paradigm, discuss its origins and use in a variety 
of disciplines, and consider how it can be used in software engineering. We then describe how a second-
ary study in the form of a systematic literature review (SLR) can be performed in software engineering. 
After that, we examine the profile of existing secondary studies and what they can tell us, as well as 
discussing some “gaps” that need to be addressed. Finally, we consider how the use of evidence-based 
studies might form the basis for evidence-informed software engineering practices.

77.1.1  Evidence-Based Paradigm

For centuries, the “traditional” view of knowledge in the sciences has been that this should be based on 
systematic observation and that such experiments should be repeatable by other scientists. Observations 
have led scientists to theorize and produce “models” (such as of gravitational attraction) that have then 
been tested against further observation. For sciences such as physics where it is usually possible to sepa-
rate the observer from the experiment, as well as to isolate the key factors, this approach has been highly 
successful in developing understanding.
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Where human beings become participants in the experimental situation, rather than simply observers, 
then issues of repeatability become both more difficult and also more important. Sometimes, the results 
have been powerfully evident (such as James Lind’s demonstration that vitamin C could prevent scurvy or 
the work of Louis Pasteur), at least to scientists. However, for many studies, the effects have been less pro-
nounced, and because they could be masked by other factors, experiments using humans have not always 
been repeatable, to the extent that attempts at replication have sometimes produced conflicting results.

Until the last few decades, it was not unheard of for different groups of medical practitioners to advo-
cate quite different treatments for a given problem, each appealing to empirical studies that supported 
that particular view. In particular, in reviewing existing studies an expert would be likely to “cherry-pick” 
the data by including only those studies that agreed with their ideas. It was this situation that spurred the 
noted epidemiologist Archie Cochrane to issue a challenge to clinical medicine that treatment should be 
based upon the best available evidence—and by implication, how was that evidence to be determined?

The approach that emerged has become known as evidence-based medicine (EBM) and with it the use 
of secondary studies, organized largely through the not-for-profit Cochrane Collaboration.* A secondary 
study does not involve conducting any form of “experiment”; instead, it aims to aggregate the outcomes 
of many primary studies in an objective and unbiased manner. The process by which this is performed 
is known as a systematic review, although in software engineering we generally use the term systematic 
literature review (SLR) to distinguish it from inspection-style code reviews.

77.1.2  EBM to EBSE

We do not have space here to explore the impact of EBM (an informal but penetrating analysis is pro-
vided in [14]). However, the concept rapidly spread from clinical medicine to various other branches of 
healthcare, through to education and social science. En route there were some adaptations, in particular 
for the processes used to synthesize the outcomes from different studies. Most clinical studies, where 
the participants are recipients of a treatment, are organized as randomized controlled trials (RCTs), and 
the outcomes from these can be combined using powerful statistical techniques such as meta-analysis, 
enabling the secondary study to resolve potentially small effects with greater certainty. Education and 
other branches of healthcare have to deal with more complex forms of treatment and interaction of these 
with the participants and so have to use other forms for aggregating the outcomes of their studies.

The idea of employing this paradigm in software engineering was advocated by Kitchenham, Dybå, 
and Jørgensen in 2004 [26]. They suggested that with some adaptation to fit the nature of software 
engineering studies, this could be a valuable way of consolidating our empirical knowledge about what 
works, when, and where. From that point, evidence-based software engineering (EBSE) has evolved 
strongly, to the point where by the end of 2011, we could identify around 150 published secondary 
studies. We will discuss some of these later, but first we examine exactly how an SLR is performed.

77.2  Performing a Systematic Literature Review

We first examine some different reasons for conducting systematic reviews and then the form that an 
SLR takes in software engineering.

77.2.1  Why Conduct an SLR?

As indicated previously, we are likely to be motivated to undertake an SLR on a software engineering topic 
if we want to draw together the available knowledge about some phenomenon in some way. This might be 
to answer a specific research question about a technique, to identify the trends in research on a particular 
topic, or to find out what primary studies are available that investigate some particular model or technique. 

*	 http://www.cochrane.org
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We usually term the last of these a mapping study, equating this to the scoping review described by Petticrew 
and Roberts [34]. However, we might usefully note that Booth et al. [5] do distinguish between these, char-
acterizing a scoping review as one that identifies what primary studies are available, while a mapping study 
also categorizes them. Mapping studies can identify if there is scope to perform a fuller SLR or where new 
primary studies would be particularly useful [32].

The evidence-based paradigm, through the medium of the secondary study, therefore plays quite an 
important role in empirical research, as illustrated in Figure 77.1. There is the interaction with primary 
studies, by which a secondary study both draws upon the data from these and also identifies where new 
ones are needed (and how reporting standards can be improved). There is also interaction with practice 
and research, by providing recommendations for practice, for company policies, and for standards bodies. 
Finally, by identifying research trends (and dead ends), secondary studies may help with identifying where 
funding for new research might best be directed. Note too that for software engineering, we are potentially 
interested in a range of forms for primary studies (for simplicity, we have identified two here)—where 
there is a shortage of useful experiments, we might triangulate their findings with those from other forms 
of study such as case studies and observational studies [40].

77.2.2  Conducting and Reporting an SLR

In describing how evidence-based practice could be adapted for software engineering, Kitchenham 
et al. identified the following five steps:

	 1.	 Convert the need for information into an answerable question.
	 2.	 Find the best evidence with which to answer the question.
	 3.	 Critically appraise the evidence for its validity (how close it comes to the truth), its impact (the 

“size” of the effects observed), and its applicability (how useful it is likely to be).
	 4.	 Integrate the critical appraisal with software engineering expertise and stakeholders’ values.
	 5.	 Evaluate the effectiveness and efficiency in the previous steps 1 through 4, and seek ways to 

improve them.
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FIGURE 77.1  The role of secondary studies.
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Steps 1 through 3 are effectively the role of the SLR, for which the subsequent technical report by 
Kitchenham and Charters provides a set of guidelines as to how they can be performed in software 
engineering [30].

The guidelines (as we will refer to them in the rest of this chapter) describe a three-phase process for 
conducting a review.

Plan review. There are three steps involved in this:

	 1.	 Specify the research question: This is actually harder than it sounds, since this needs to be expressed 
in such a way as to form the basis for the search process and so may go through a number of 
refinement steps. Indeed, as indicated previously, it may only be practical to formulate this after 
conducting a wide-scope mapping study.

	 2.	 Develop the review protocol: We discuss the roles of protocols in Chapter 79. The protocol provides 
the plan that will be followed when conducting the study.

	 3.	 Validate the review protocol: This may be done by asking one or two experienced researchers to 
review it, as well as undertaking some prototyping activities for items such as the search strings, 
to ensure that these can find some known primary studies.

Conduct the review. This involves five major activities:

	 1.	 Identify relevant research: Searching for relevant papers using the search strings determined in the 
plan, with the literature sources also identified in the plan. While many SLRs are conducted using 
electronic searches of digital libraries, there are arguments for conducting manual searches [22]. 
These may be particularly appropriate where it has proved difficult to determine a sound set of 
search strings, perhaps because of wide variation in the vocabulary being used by researchers.

	 2.	 Select primary studies: This is quite a labor-intensive task that involves filtering the returns from the 
search for relevance, and it is common to perform this using two analysts working independently 
and then reporting and resolving differences, in order to help improve reliability. Common practice 
is to perform an initial sift based on the titles of the papers found, then on the abstracts, and finally 
on the full text of the remaining papers. Decisions are based upon the inclusion/exclusion criteria 
that form a key element in the protocol. The SLR on agile methods by Dybå and Dingsøyr provides 
an excellent description of this process [12].

	 3.	 Assess study quality: This involves assessing how well the primary study was conducted and 
reported using a “quality instrument” such as a questionnaire. This is usually conducted with 
varying degrees of rigor, depending on need—mapping studies often omit this step.

	 4.	 Extract required data: One of the elements of the research protocol should be a data extraction form 
identifying what should be extracted from a primary study and, where appropriate, how this should 
be coded or parameterized. As with selection, it is normal to use two analysts for this task, compar-
ing results and resolving differences. This is because primary studies do use very varied reporting 
styles—and since EBSE is a relatively recent development, few authors of primary studies organize 
their supporting data with the expectation that anyone will want to extract details from it, although 
there are indications that this is beginning to change. Again, for a mapping study, this will usually 
be a rather simpler task, depending chiefly upon how the studies are to be categorized.

	 5.	 Synthesize the data: This is a potentially challenging task. While in practice there is a range of 
possible forms for this, software engineers have so far tended to be rather conservative and limit 
themselves to tabulation and vote counting. Some useful guidance is available from [9].

Document the review. The writing of the methodological element of the final report can be largely based 
upon the research protocol. However, describing the outcomes, including any recommendations based 
upon the evidence, should also follow a systematic process.

As a final note on this, we should observe that an SLR might extend an earlier SLR. This may involve 
repeating the activities described in the protocol for a subsequent period and then synthesizing the 
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augmented set of primary studies. Or it could involve using extended search strings to widen the scope 
of the original study. An SLR does not necessarily have to begin with an empty sheet.

77.2.3 R ealization

We have described some of our early experiences with performing SLRs in [6], and many of the obser-
vations made there are still relevant, with many later SLRs identifying very similar issues. So, what 
challenges do our environment and culture provide?

Specifying the research question is a significant issue. This forms the basis for the searching activ-
ity and, in particular, for determining the search strings to use. There should be a clear link between 
research question(s) and search strings, and an iterative process of refinement of these through proto-
typing of the search process may well be necessary.

Linked to this is the need to write a clear and full protocol for the study. SLRs usually involve a 
team of researchers, not least because we need two analysts for many elements. It is absolutely essen-
tial that everyone involved has a shared understanding of the goals of the study and of the criteria 
that are to be used for the various activities. Developing and discussing the protocol is an essential 
step in this process.

Another major issue is that of conducting the search for papers. Although various search engines are 
available, most notably the digital libraries from IEEE and ACM, as well as those such as Web of Science 
and Science Direct, together with indexing services such as Scopus, none have interfaces that are really 
optimized for our task. In addition, they tend to be organized differently, so that having identified a specific 
search string, the systematic reviewer then needs to interpret this for the forms used by each search engine.

An additional aspect to note about the searching activity is that electronic searches are rarely able 
to find all papers. However good our search strings, authors do not always use titles, or even keywords, 
that are “standard,” and so some relevant papers may well get missed. A technique commonly used to 
alleviate that is termed snowballing. This consists of going through the references of the studies found 
and selected from electronic searches, to identify any potentially relevant papers that they cite. The 
rule of thumb for this is that snowballing may well find up to around 10% of the final set of papers.

The task of inclusion/exclusion likewise offers many challenges, especially for the less experienced 
researcher. (We should note here that while our experiences suggest that mapping studies often provide 
a useful starting point for a research student [32], conducting a full SLR is a much more demanding 
exercise.) Ideally, performing as much as possible of this activity using the title and abstract of papers 
is far less time-consuming than reading full papers. However, the quality of abstracts in software engi-
neering is often poor (we should observe that we are firm advocates of the use of structured abstracts 
as a means of alleviating this problem [8]), and so decisions have to be deferred. It is not uncommon to 
begin with 500–2000 “hits” from the searching process, so the scale of this task is also quite substantial.

Both data extraction and synthesis provide some domain-specific issues, and again it is essential to 
appreciate that some experience of the domain is really necessary. Indeed, this is one reason why we advo-
cate the use of mapping studies rather than SLRs as a suitable form for postgraduate study.

Fortunately, although all of these are challenging, they can be overcome, and in the following sections, 
we examine some of the resulting outcomes.

77.3  What SLRs Do We Have?

In this rest of this chapter, we look at the activities that have been undertaken to catalogue the SLRs that 
address topics within the software engineering domain. We show the growth in numbers over the years 
since 2004 and summarize the topics that form the focus of studies to date. There are some indications 
that the cataloguing process has not resulted in the identification and indexing of all of the published 
studies in software engineering. We discuss the issue of completeness later.
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77.3.1  Cataloguing SLRs

As indicated in Section 77.2, the SLR process can be used to map out the research in a particular area of 
interest. As well as mapping the research undertaken by primary studies, a mapping study can alterna-
tively focus on secondary studies and be used to map out the SLRs undertaken across the whole software 
engineering domain (or across subareas of the domain). Such tertiary studies can provide a thorough 
overview of the breadth and quality of SLRs and form valuable resources for a range of stakeholders 
(such as educators, researchers, and practitioners). To date, three broad tertiary studies in software engi-
neering have been published, which we refer to in the rest of this section, as TS1, TS2, and TS3, respec-
tively [10,29,31]. Tertiary studies can also have a narrower focus. For example, a tertiary study of SLRs 
relating to global software development (GSD) has also been undertaken [39].

TS1, TS2, and TS3 addressed research questions across the broad software engineering domain in 
order to

•	 Identify SLR activities over a specific period
•	 Assess the quality of those studies located
•	 Identify the individuals and organizations most active in SLR- based research
•	 Determine the topics covered by the SLRs
•	 Map the topics covered to the Software Engineering 2004 Curriculum Guidelines for 

Undergraduate Degree Programs* and the Software Engineering Body of Knowledge (SWEBOK)† 
(TS2 and TS3 only)

The initial broad tertiary study, TS1, employed a manual search of 10 journals and 4 conference pro-
ceedings published between January 2004 and June 2007 (inclusive). From a total of 2506 papers, a set 
of 18 unique, relevant studies were selected. A further two studies were identified by asking researchers 
about current work [4] and by searching the Simula Research Laboratory website [21].

The second broad tertiary study, TS2, covered the period between January 2004 and June 2008 (inclu-
sive) and used an automated search of four digital libraries and two indexing services: IEEE Computer 
Society Digital Library, ACM digital library, CiteSeer, SpringerLink, Web of Science, and Scopus. TS2 
identified a further 14 studies in the period covered by TS1 and 19 studies published between July 2007 
and June 2008 (inclusive).

The third broad tertiary study, TS3, used, as closely as possible, the protocol that was used for TS2 
although it did incorporate manual as well as automated searches. TS3 covered the period July 2008 to 
December 2009 (inclusive) and identified a total of 67 unique relevant SLRs.

The more focused tertiary study of SLRs in GSD addressed a similar set of questions to those addressed 
by the three broad tertiary studies although the SLRs located were mapped against Abdullah and Verner’s 
outsourcing risk framework [1] and the ISO 12207 framework [37] rather than the SE curriculum and the 
SWEBOK [39]. It used an automated search of seven digital libraries/indexing services, a manual search 
of selected conference proceedings plus snowballing. The study identified 24 SLRs addressing topics 
relating to GSD and published between 2005 and October 2011. Of these, three were published in the 
period covered by the broad tertiary studies but were not found by them, and 11 were published outside 
of the period covered by the broad tertiary studies (i.e., after December 2009).

77.3.2 R esults from the Broad Tertiary Studies

Together, the three broad tertiary studies reported 120 SLRs on software engineering topics. The distri-
bution of these reviews across the years from 2004 to 2009 is shown in Figure 77.2 that clearly indicates 
a growing number of studies through this period.

*	 http://sites.computer.org/ccse/SE2004Volume.pdf
†	 http://www.computer.org/portal/web/swebok
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The topics covered by the studies are shown in Table 77.1, which maps the studies to the SWEBOK chapters.
In TS3, da Silva et al. [10] also reviewed the variation in quality of the SLRs over time and found a 

steady increase in the mean quality scores in every year except 2007. Over the 6 year period between 
2004 and 2009, the increase in quality was 12.5%.

77.3.3  SLRs Not Indexed by the Broad Tertiary Reviews

Not surprisingly, given the year on year increase in published SLRs in software engineering, a substan-
tial number of studies have been published since December 2009. We are not aware of any exhaustive 
systematic cataloguing of these; however, a manual search of the index pages of five major software 
engineering journals identified 24 SLRs between January 2010 and mid-2011 [7].

As noted at the beginning of this section, there are some indications that broad mapping studies may not 
be complete [28]. A study was undertaken to assess the completeness and reliability of a mapping study of 
research to compare the effectiveness of approaches to unit testing and regression testing [28]. The results 
indicate that the set of primary studies found by the search undertaken for the (broad) mapping study were 
less complete than other more focused studies. For example, Ali et al. [2,3] carried out an SLR on search-
based test case generation and found 31 papers for the period covered by the mapping study. The mapping 
study identified only 4 of these papers, although it did find a further 6 papers that were missed by Ali et al. 
Similarly, in a focused SLR on regression testing, EngstrÖm et al. [13] found 24 papers for the period 
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FIGURE 77.2  SLRs published by year. (Data is taken from Table 4 in F.Q.B. da Silva, A.L.M. Santos, S. Soares, 
A.C .́C. FranÖca, C.V.F. Monteiro, and F.F. Maciel. Six years of systematic literature reviews in software engineer-
ing: An updated tertiary study. Information and Software Technology, 53(9):899–913, 2011.)

TABLE 77.1  SLRs Mapped to SWEBOK Chapters

SWEBOK Chapter Number of Studies Reported in TS1, TS2, and TS3

Software requirements 7
Software design 11
Software construction 2
Software testing 6
Software maintenance 6
Software configuration management 0
Software engineering management 14
Software engineering process 9
Software engineering tools and methods 2
Software quality 0

Source:	 Data is taken from Table 6 in F.Q.B. da Silva, A.L.M. Santos, S. Soares, A.C΄.C. FranÖca, 
C.V.F. Monteiro, and F.F. Maciel. Six years of systematic literature reviews in software engineering: 
An updated tertiary study. Information and Software Technology, 53(9):899–913, 2011.
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covered by the mapping study; however, the broad mapping study found only 20 of these papers (although 
it did find a further five papers not found by EngstrÖm et al.). Having compared a broad mapping study 
with 6 more focused studies, Kitchenham et al. [28] conclude that relatively high-level automated search 
strings will almost certainly miss important papers that more focused searches are likely to find. The mes-
sage, therefore, to researchers, practitioners, and teachers seeking relevant SLRs, is that although high-level 
mapping studies such as the broad tertiary studies TS1, TS2, and TS3 provide valuable catalogues of SLRs 
in the periods they cover, they will inevitably be incomplete. As the number of SLRs increases, we can 
expect the number of more focused tertiary studies (such as [39]) to increase too, and these will provide an 
additional source of pointers to relevant SLRs.

77.4  What Do SLRs Tell Us?

In this section, we look at what some of the key stakeholders can learn from existing SLRs. We look par-
ticularly at studies that make recommendations to software engineering educators and to practitioners.

77.4.1  Informing Educators

In a study to examine where the outcomes of SLRs can provide support for and inform SE teaching 
activities, 43 out of 143 candidate SLRs were classified as providing potentially useful teaching mate-
rial [7]. The study classified the outcomes according to the body of knowledge that is appropriate for an 
undergraduate program in software engineering (SE2004). The knowledge is designated as the Software 
Engineering Education Knowledge (SEEK). The study is able to demonstrate that material is available to 
support all of the major knowledge areas (KAs) within the SEEK.

For the professional practice KA, there is evidence about the major challenges facing teams in the col-
laborative creation of graphical models of systems and also about why IT professionals change their jobs.

In the software modeling and analysis KA, evidence relates to the following topics:

•	 The use of cross-company and within-company data to build and apply management models
•	 Model-driven software engineering
•	 The technology acceptance model as a predictor of actual use of a technology
•	 The use of tools in domain analysis
•	 Requirements elicitation
•	 Use of SE models for creating textual requirements specifications

In the software design KA, only one study was identified as providing useful material for educators. 
This provides material about the strengths and weaknesses of aspect-oriented programming compared 
to other approaches.

Within the software verification and validation area, evidence was found across three of the subareas: 
review, testing, and problem analysis and reporting. Most of the evidence relates to testing and covers 
the following:

•	 The selection of unit testing techniques
•	 Automated acceptance testing
•	 Use of meta-heuristic search techniques to generate software tests
•	 Regression test selection

Two of the studies identified covered software evolution activities. These look at whether duplica-
tion of code affects system characteristics and how changes at the architecture level map to lower-level 
system characteristics.

Five studies were found that provide useful material relating to process implementations (falling 
within the software process KA). They focus on the Rational Unified Process, software reuse, pair pro-
gramming, the use of scrum in GSD, and the challenges facing distributed development teams.
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In the software quality KA, six studies provide material on topics relating to the following:

•	 The values of and motivation for adopting CMM for software process improvement (SPI)
•	 The use of SPI in small organizations
•	 Analysis of the causes of defects in code to aid product-based process improvement
•	 Use of coupling metrics as predictors of maintainability for aspect-oriented programming
•	 Techniques and models for predicting the maintainability of software

The largest proportion of studies (13 out of 43) provides material on topics within the software man-
agement KA. These cover project planning, project personnel, and organization and project control. 
For project planning, material was strongly focused on cost estimation and also covered project dura-
tion and quality, as well as risks and best practice in global/distributed software projects. For the other 
subtopics, studies provide material on what motivates and de-motivates developers, the reasons why 
software productivity varies across different contexts, and the effectiveness of different approaches to 
measuring and predicting productivity.

77.4.2 R ecommendations for Practitioners

Although many of the results from SLRs will be relevant to software developers, projects managers, and 
other IT decision makers, many reviewers do not make specific recommendations for practitioners. 
The three broad tertiary studies do indicate which SLRs are or may be useful for practitioners or which 
specifically include practitioner guidelines. Based on the SLRs identified by the broad tertiary studies 
(TS1, TS2, and TS3) as potentially providing advice to practitioners, we summarize the recommenda-
tions and provide references to publications where more detailed information is available. We note, also, 
that many other SLRs may provide sufficient evidence from which recommendations for practitioners 
could be formulated.

From the 33 SLRs identified by TS1, TS2, and TS3 as potentially providing recommendations for 
practitioners, we were able to extract specific recommendations from 15 studies. The topics covered by 
these SLRs are shown in Table 77.2.

77.4.2.1  Cost Estimation

Two papers included in TS1 [15,21] use papers selected from a repository that was initially compiled 
by a mapping study of cost estimation studies [22]. In [15], the following guidelines for practitioners, 
researchers, and authors of textbooks are provided:

	 1.	 Do not mix estimation of most likely effort with planning, budgeting, or pricing.
	 2.	 When assessing estimation accuracy, make sure that the estimated and the actual effort are 

comparable.

Grimstad et al. [15] discuss the implications of these guidelines and indicate that they are based on their 
own experience as well as the textbook and papers included in the review.

TABLE 77.2  Topics Covered by SLRs That Provide 
Recommendations for Practitioners

Topic No. of SLRs

Cost estimation 4
Distributed software development 4
Requirements engineering and elicitation 2
Agile development 2
Software process improvement 2
Testing 1
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Jørgensen [21], who compares the use of expert judgement and formal models, provides the following 
advice to practitioners:

“The use of models, either alone or in combination with expert judgement, may be particularly useful 
when:

	 1.	 there are situational biases that are believed to lead to a strong bias towards over optimism;
	 2.	 the amount of contextual information possessed by the experts is low; and
	 3.	 the models are calibrated to the organization using them.”

Overall, the study concludes that models fail to systematically perform better than the experts when 
estimating the effort required to complete software development tasks. This is particularly the case 
when “models are not calibrated to the organization using them” and “experts possess important con-
textual information not included in the formal models and apply it efficiently”.

In an earlier study, Jørgensen [19] presents an evaluation of 12 best practice guidelines for expert 
cost estimation. He finds that “there is evidence supporting all these principles and, consequently, that 
software organizations should apply them.”

In another study, cost predictions from cross-company models are compared with predictions from 
within-company models [27]. Ten papers were included in the study and of these, seven present inde-
pendent results, three of which found no significant difference, and four found cross-company models 
were significantly worse than within-company models Companies are advised that they should consider 
how similar project data in the cross-company data set are to the projects undertaken within their own 
company and should consider the characteristics of their own company.

The focus of a further study on cost estimation is on how to improve the assessment of cost uncertainty 
of software projects [20]. The reviewer identifies a set of seven guidelines relating to cost uncertainly. 
Those considered as having the greatest level of supporting evidence are the following:

Do not apply solely unaided, intuition-based processes.
Apply structured and explicit judgement-based processes.

77.4.2.2  Distributed Software Development

The four studies on this topic focus on outsourcing [24,25], the use of Scrum [17], and mechanisms for 
improving distributed software development (DSD) processes [18].

The studies by Khan et al. [24,25] provide a number of suggestions about the following:

•	 The problems that outsourcing vendor organizations need to address in order to improve their 
capabilities

•	 The factors that influence outsourcing clients in their selection of vendor organizations

The study by Hossain et al. [17] focuses on identifying the challenges of using Scrum in GSD and 
the strategies used for dealing with those challenges. Hossain et al. provide a set of recommendations 
but also state that it is difficult to offer specific advice to practitioners based solely on their review and 
indicate that “the strength of evidence found in the literature about the identified strategies is very low.”

The remaining study relating to DSD aimed to identify procedures, models, and strategies for 
improving DSD processes [18]. Advice is presented as a set of success factors. The reviewers indicate 
that the evaluation of the results obtained from the proposed improvements is often based on studies 
in a single organization and sometimes only take into account the developers’ subjective perception. 
Supporting evidence for the recommendations is therefore limited.

77.4.2.3 R equirements Engineering and Elicitation

Guidelines for practitioners on techniques for requirements elicitation are provided by the study 
reported in [11]. The reviewers include 26 publications reporting 30 empirical studies that compare elici-
tation techniques. Studies are aggregated according to the techniques that are compared. This results in 
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a set of 35 ‘aggregations’, of the form techniques A are better than techniques B or techniques A are similar 
to techniques B, 17 of which are supported by several pieces of evidence. These 17 ‘conclusive’ aggrega-
tions can be considered as guidelines or advice for practitioners. The aggregations supported by more 
than one study and having no studies that contradict them are (taken from Table 8 in [11]):

•	 Structured interviews are better than unstructured interviews for eliciting customer needs
•	 Unstructured interviews are better than sorting techniques for eliciting information
•	 Hierarchical structuring techniques are better than sorting techniques for eliciting information
•	 Unstructured interviews are better than sorting technique regarding elicitation time
•	 Sorting techniques are better than hierarchical structuring techniques regarding total time
•	 Unstructured interviews are better than introspection and observation regarding completeness
•	 Introspection and observation are worse than sorting techniques regarding completeness
•	 Introspection and observation are worse than hierarchical structuring techniques regarding 

completeness

The reviewers point out that the evidence relates specifically to experienced elicitors and respondents and 
that for less experienced respondents a number of the techniques are equally effective. They also present 
a set of more complex guidelines developed through a process of combining the conclusive aggregations.

Also relating to requirements, the study by Nicolás and Toval [33] is concerned with the generation 
of textual requirements specifications from models. The advice given is embodied in a proposal for a 
general purpose tool that integrates graphical and textual models of a system.

77.4.2.4 A gile Development

Two studies addressing agile methods provide recommendations for practitioners. One takes a broad 
perspective with the aims of identifying what is currently known about the benefits and limitations 
of agile software development and determining the implications of the studies found for the software 
industry and the research communities [12]; the other focuses more narrowly on pair programming [16].

Dybå & Dingsøyr [12] are concerned with the benefits and limitations of agile methods and discuss 
the implications of the results of their review for both research and practice. The strongest evidence 
for practice is the need to focus on human and social factors and in particular on balancing individual 
autonomy with team autonomy and corporate responsibility. They also highlight the importance of 
practitioner confidence, good interpersonal skills and trust. Evidence suggests that traditional project 
management principles, such as state-gate project management models, should be combined with agile 
project management and that agile methods are not necessarily the best choice for large projects. The 
reviewers suggest that practitioners “carefully study their projects’ characteristics and compare them 
with the relevant agile methods’ required characteristics”. However, the reviewers consider that the 
strength of evidence is very low, making it difficult to offer specific advice to industry. Consequently, 
they advise practitioners to use the article as a map, to find and investigate relevant studies further and 
compare the settings in the studies to their own situation.

The study by Hannay et al. [16] offers the following advice about pair programming:

If you do not know the seniority or skill levels of your programmers, but do have a feeling for task 
complexity, then employ pair programming either when task complexity is low and time is of the 
essence, or when task complexity is high and correctness is important.

However, the reviewers note that pair programming is not universally beneficial or effective, inter-study 
variance is high, and publication bias may be an issue.

77.4.2.5  Software Process Improvement

The two studies on software process improvement (SPI) look at the approaches to SPI that have been 
applied to small- and medium-sized enterprises [35] and at establishing the state of the art in defect 
causal analysis (which is a means of product focused SPI) [23]. Pino et al [35] extracted practical advice 



77-12 Software Quality and Measurement

(success factors) from the primary studies that were included in their review. The factors were analysed 
and synthesised to provide a set of 11 guidelines however there is no indication of the strength of evi-
dence relating to each guideline.

Kalinowski et al. [23] provide guidance to practitioners in the form of answers to the following seven 
questions:

	 1.	 Is my organization ready for defect causal analysis?
	 2.	 What approach should be followed?
	 3.	 What metrics should be collected?
	 4.	 How should defect causal analysis be integrated with statistical process control?
	 5.	 How should defects be categorized?
	 6.	 How should cause be categorized?
	 7.	 What are the expected costs and results of implementing defect causal analysis?

77.4.2.6 T esting

The study on testing focuses on defect detection, in particular looking at studies that compare testing 
and inspection techniques [36]. The authors suggest that there are no clear-cut answers about which 
defect detection method to choose; however, results suggest the following:

•	 “For requirements defects, no empirical evidence exists at all, but the fact that costs for require-
ments inspections are low compared to implementing incorrect requirements indicates that 
reviewers should look for requirements defects through inspection

•	 For design specification defects, the case studies and one experiment indicate that inspections are 
both more efficient and more effective than functional testing

•	 For code, functional or structural testing is ranked more effective or efficient than inspection in 
most studies. Some studies conclude that testing and inspection find different kinds of defects, so 
they’re complementary. Results differ when studying fault isolation and not just defect detection

•	 Verification’s effectiveness is low; reviewers find only 25%–50% of an artifact’s defects using 
inspection, and testers find 30%–60% using testing. This makes secondary defect detection impor-
tant. The efficiency is in the magnitude of 1–2.5 defects per hour spent on inspection or testing.”

77.5  Conclusion

As we have demonstrated, research based upon EBSE is beginning to provide a better understanding 
of “what works, when, and where.” however, we offer a final word of caution. Employing empirical evi-
dence needs this to be interpreted within a specific context, an activity termed Knowledge Translation 
(KT), and the outcomes of SLRs are rarely definitive. Hence, for use in teaching and practice, we prefer 
to use the term evidence-informed [7], to emphasize this.
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78.1  Introduction and History

This chapter provides an overview of how the ideas and practices associated with empirical software 
engineering have evolved and also aims to supply some pointers toward the ideas that constitute current 
“best practice.” In doing so, we hope to aid the “would-be” empiricist to identify the most suitable form 
of study for a particular need and to provide enough background for software engineers in general to 
appreciate the strengths and limitations of empirical knowledge and practice.

78.1.1  Early History

The act of “measurement” is a key element of any empirical study and actually goes back quite a long way 
in software engineering. Measurement seeks to provide quantitative values for a particular attribute of 
some entity, while a metric provides a set of rules for generating those values. Much of the early work 
in software metrics, stimulated by developments such as Halstead’s Software Science [9] and McCabe’s 
ideas about control flow through his metric of cyclomatic complexity [17], addressed questions of how to 
measure both the attributes of software itself (usually at the level of code) and also those of the develop-
ment processes (where prediction was, and is, an important need).

As a result, early empirical work in software engineering, particularly in the period 1970–2000, was 
concerned with gathering data about attributes related to code and to development practices and study-
ing the effectiveness of these. Research into the extent to which the lines of code (LoC) and cyclomatic 
complexity metrics are correlated provided early examples of empirical studies that looked at actual 
code artifacts, comparing measures with expert assessments where necessary. (The book by Fenton and 
Pfleeger provides an authoritative review of how ideas about metrics have evolved [6].)
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One of the consequences of these activities was the development of a wider realization that the values 
of these attributes, particularly those related to code, arose at least in part from the processes that led 
to their creation—and that experimentation was one way of exploring the cause–effect relationships 
implied by this. This in turn led to attempts to assess the effectiveness of development practices (encom-
passing the whole spectrum of software development), so that by the mid-1980s, ideas about experimen-
tation (in the broader sense) began to emerge.

78.1.2  Experimentation

Initial thinking about empirical studies in software engineering was very much wedded to the 
“traditional” notion of the experiment—a controlled investigation of the relationship between two mea-
sures [3]. This domination of the controlled experiment was to continue until the end of the century 
[24,26]. This is not to say that other forms were completely neglected, particularly the use of surveys, 
although these were only used to a limited extent—but sometimes very effectively, particularly for 
process-related aspects [21]. Post-2000, other forms such as the case study [27] have come into greater 
use, as software engineers have realized the need to address deeper issues, especially “in the field,” as well 
as the systematic literature review, used to draw together the outcomes of many “primary” studies [13].

One reason for this broadening of the range of empirical forms used in software engineering has been 
that greater exposure to empirical thinking has made researchers aware of what was happening in other 
domains. Another influence has been the realization that our heavy dependence upon experiments that 
use human participants inevitably introduces new factors into our experiments and ones that cannot 
easily be controlled (or always measured). Indeed, even technology-based experiments have such factors 
too, such as the choice of software objects used in such studies. Underpinning this has been the nagging 
question as to how far a controlled experiment investigating the effectiveness of some “treatment” in a 
laboratory setting can really be a useful indication of its likely value to practice in everyday situations.

In the rest of this chapter, we first discuss a (simplified) model of empirical studies and the role of 
different forms in exploring questions in an experimental manner. We then go on to examine some of 
the main empirical forms currently employed in software engineering, offering some suggestions as to 
when each should be adopted and some examples of successful use. Finally, we suggest some practices 
that help ensure that these can be managed and used to best effect.

78.2  Scope of Empirical Knowledge

While basing decisions upon empirically based knowledge can confer greater authority upon our 
choices and actions, we also need to recognize that such knowledge is rarely definitive. In this section, 
we examine how such “knowledge” may evolve and what influences might limit its scope.

78.2.1  Models of Empirical Knowledge

Figure 78.1 provides a rather simplified description of how we gain knowledge through different forms 
of empirical interaction with the “real world” (well, simplified by the standards of philosophy).

So, how does this model imply that we gain knowledge about the elements of software engineering 
practice?

	 1.	 The first step is one of informal observation that some form of relationship seems to exist between 
the adoption of some systematic way of doing things and the qualities of the resulting software. 
As an example, this might be to note (say) that the practice of reading through our code or design 
with someone else seems to help find the faults more rapidly than working on our own.

	 2.	 This raises the question as to whether this might be a useful practice to adopt, so we might then 
perform some more systematic observation, probably involving some informal data collection for 
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a number of instances. If we conclude that this does seem to be useful, we can interpret this as 
meaning that this is a potentially useful practice for others too, and we now also have an informal 
model of how we can debug our code more effectively.

	 3.	 To test this model more rigorously, we can then use it to help formulate a hypothesis (“code 
inspection is more effective at finding errors than solo debugging”) and then perform a controlled 
laboratory experiment to test this hypothesis. If we conclude that the outcomes reliably support 
the hypothesis, then we now have a more formal model of how code might be debugged.

	 4.	 To give greater confidence in our results, we should repeat our experiment in a number of loca-
tions, perhaps involving programmers with different levels of experience, and by aggregating the 
outcomes, we begin to create some genuine knowledge about how well the technique works and 
what might limit its effectiveness. Even better, we might arrange that some of the studies we con-
duct are “field trials” to see if the same effects are still observed when undertaken as part of every-
day working practice.

We should note that we have included the possibility that the experiments we perform do not support 
the hypothesis and that we might go back and revise our informal model. And there are of course many 
other issues that will confound our studies, obscuring the outcomes, since few issues in software engi-
neering are simple cause–effect linkages.

Our purpose in using this rather simple model is to provide some context for discussion of some of 
the techniques that we will examine in the following sections, rather than to provide a comprehensive 
explanation of how knowledge is acquired.

78.2.2 T hreats to Validity

While often associated with controlled experiments and quasi-experiments [22], perhaps because these 
lend themselves more to generalization than other forms, the concept of a threat to validity is an impor-
tant issue for all empirical studies. A threat is basically a factor that could influence the outcomes of a 
study in some way. Reporting on the possible threats to validity affecting a study is now a fairly standard 
element of any empirical paper. Its particular value lies in that it provides an element of reflection from 
the people who are closest to the study and hence best able to assess the limitations of that study.
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FIGURE 78.1  A simple model of knowledge acquisition.
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While threats to validity can take a number of forms, we describe the three most common ones 
(as those are the ones usually reported):

Construct validity. This is related to the questions as to how far the design of the study proved 
to be appropriate for answering the research question and whether the measures were valid 
measures of the construct that we are interested in. Assessment of this is concerned with such 
aspects as the tasks performed by participants in an experiment or with whether the “right” 
data were collected (e.g., quality measured by the number of defects found).

Internal validity. This is related to the actual conduct of the study and how far any problems with 
this (such as allocation of participants to groups and dropouts) might reduce confidence in the 
reliability of the outcomes.

External validity. More strongly related to experiments than other forms of study, this consists 
of an assessment of how far the outcomes generalize to a wider population. As an example, a 
study of design comprehension conducted using students might be well organized, so that we 
have confidence that the outcomes are reliable as regards that particular cohort of students, but 
we might have less confidence that they represent the outcomes that would result if using more 
experienced developers as the participants.

A realistic assessment of the threats to validity is an important contribution. It indicates possible 
limitations applying to any findings and helps future researchers with designing their studies. The com-
plex nature of software engineering activities also means that these will always be present, and so they 
do need to be discussed.

78.3  Four Forms of Primary Study

In this section, we examine four of the major forms of primary study that we use in software engineering. 
(Anyone needing a rather wider review of empirical practices should note that the book by Oates [19] 
examines a much wider range of forms in a computing context.)

We should also explain what is meant by a “primary” study in this context. Basically, a primary study 
is one that directly collects data about the topic of interest, as opposed to a “secondary” study that does 
not directly collect data, but instead aggregates the data from multiple primary studies. We will examine 
secondary studies briefly in the next section, and they also form the topic of a separate chapter.

For each form described, we provide the following information:

•	 A basic description of how it is organized and key references
•	 A simple outline of the standard process where appropriate or a checklist of key activities
•	 A brief review of its limitations when used in software engineering
•	 A discussion of some common pitfalls to be avoided
•	 Pointers to some good examples of its use

78.3.1  Observational Studies

Sometimes labeled as “experience” or (mislabeled as) “case study” when reported in the literature, an 
observational study is one where the researcher performs little or no control of any processes, while 
recording their process in a systematic manner. Indeed, the value of such a study is likely to be pro-
portionate to the degree to which records have been kept systematically, in order to ensure that the 
outcomes do not simply represent an unsubstantiated degree of “expert opinion.” An observational 
study may well be opportunistic rather than planned, created by the realization that what is being done 
merits the keeping of records so that others can learn from it. It may be conducted rigorously (such as 
in an ethnographical study) where the observer keeps firmly “outside” of the situation being observed, 
avoiding any form of intervention or, more informally, where the observer may be part of the situation.
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An observational study may also use “historic” data, employing data mining techniques to analyze 
large repositories of information related to software. (A good example is the analysis of the records avail-
able for open-source software projects.)

Obviously there is no well-defined process for conducting such a study, but there are some key activi-
ties that relate to the way that the observations are made and recorded. In particular,

	 1.	 Be as objective as possible. As an example, if observing the progress of a project within an organi-
zation that is the first to use a new tool or technique, the observations are rendered more valuable 
if the observer can try to avoid being partisan about its success or otherwise.

	 2.	 Collect data systematically (e.g., at regular time intervals, or when particular events occur) and 
record as much as possible, bearing in mind that there is always scope to identify significant fac-
tors that were not initially recognized.

	 3.	 Wherever possible, collect data that are quantitative (number of faults uncovered, number of 
classes unchanged, etc.) since this makes it easier to detect trends. Obviously the data have to 
be relevant to the issue of interest (Basili’s goal–question–metric (GQM) approach [1,2] may be 
useful here).

	 4.	 Try to provide clear cause–effect linkages, in the sense of (say) recording the reasons why the 
development team believes that using some aspect of a technique might have led to a good (or 
poor) structure. Simply recording the views/outcomes is not enough without the rationale for 
these—something that is valuable, but easily forgotten if not recorded at the time.

Many of the limitations of this approach are self-evident. It depends upon someone realizing that it 
would be useful to keep a record of the process of interest and doing so in a systematic manner. The lack 
of advance planning means that there is a risk that the data itself may be of poor quality and its inter-
pretation may also be open to bias.

The pitfalls are linked closely to the limitations. Any study of “experience” papers in the literature 
quickly reveals how few really provide adequate reasoning to link observations with conclusions. 
An observational study can easily degenerate into an “opinion piece.” Similarly, using historical data 
carries the risk that the larger the amount of data extracted that is related to an entity, the greater the 
risk of finding spurious relationships [4].

That said, there is real value in a well-conducted observational study, since it offers the oppor-
tunity to study actual practice in a manner that is rarely encountered. An excellent example of 
systematic and thoughtful reporting is provided in Peter Wendorff’s report of his experiences with 
maintaining software created with design patterns [25], not least because where problems were 
encountered, he probed more deeply to identify why particular patterns had been included in the 
original system.

78.3.2  Case Studies

A case study can also be considered as a form of observational study, at least inasmuch as it is also 
noninterventionist, but with the crucial difference that it is planned, sets out to answer a defined research 
question, and aims to collect data that are pertinent to that question in a systematic manner.

While case study research is a well-established practice in other research disciplines (including 
information systems), we should recognize that there are different views about its use. One camp 
views it from an interpretivist standpoint, whereby the outcomes from a case study can only be con-
sidered to be valid within that specific context and that there are multiple realities accessed through 
social constructs such as language. In contrast, there is also a positivist approach to interpretation, 
based upon the view that the phenomena being studied are subject to some general rules. Scientists 
and engineers are of course overwhelmingly positivists, so it perhaps not surprising that in embrac-
ing case studies, software engineers have tended to adopt this view, usually in the form as described 
by Robert Yin [27].
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According to Yin, a case study is an empirical enquiry that

•	 Investigates a contemporary phenomenon within its real-life context (as we will see, an experi-
ment removes it from its context into a controlled situation)

•	 Is particularly appropriate when the boundaries between the phenomenon of interest and its con-
text are not clearly evident (as is often the case in software engineering)

He also observes that a case study

•	 Copes with the technically distinctive situation where there will be more variables of interest 
than data points (again, an experiment constrains the set of variables and seeks to measure their 
relationship across many values)

•	 Relies upon the use of multiple sources of evidence, seeking to achieve convergence through 
a process of triangulation (whereby we examine the different forms to see where they provide 
mutual support for a particular interpretation)

•	 Benefits from the prior development of theoretical propositions to guide the processes of data 
collection and analysis (where a proposition is usually a description of some form of relationship 
between variables that is less specific than a hypothesis)

As such, case studies are appropriate for situations where we cannot easily separate the object being stud-
ied from its context, usually because the interconnection of factors is an important element (again, experi-
ments assume that the relationships between pairs of factors can be studied separately). A case study allows 
for study of a phenomenon in depth, and possibly over a long period of time—but one consequence of this 
is that it might be hard to generalize from case studies. For example, a case study examining why some 
development practice is particularly effective will be concerned with looking at the organizational context, 
the individual software developers, the systems developed with this practice, etc. Any conclusions will be 
based upon that context and not necessarily be easily translated into the context of a different organization.

Case studies can be used for different purposes. Yin suggests that there are three primary roles: 
explanatory studies (examining how some practice works and why it works successfully), descriptive 
studies providing a “rich and detailed analysis of a phenomenon and its context” but with less inter-
pretation, and exploratory studies that help define the questions or scope for a subsequent study. There 
are also different forms of organization. For this, the primary distinction is between a single-case form 
(maybe involving a representative or extreme case) and a multiple-case form, replicating the study across 
different cases and comparing the outcomes in some way.

Yin identifies five major steps for conducting a case study:

	 1.	 Determine the study questions. These are the high-level concerns that motivate the study. For 
example, “investigate changes to the development process that arise from adopting the Scrum 
method in a given organisation.”

	 2.	 Identify any propositions. Examples here might be that “use of the Scrum method will reduce 
development time” or “use of the Scrum method will increase customer satisfaction.”

	 3.	 Select the units of analysis. This involves determining exactly what will constitute a case, such as a 
“typical” project and also what the unit of study will be (a group, division, etc.).

	 4.	 Determine the logic that links the data to the propositions. Essentially, this involves identifying the data 
that can be used to evaluate the propositions. An example might be the use of a semistructured inter-
view with customers to assess “satisfaction” (and identification of what that will be considered to be).

	 5.	 Define the criteria to be used for interpreting the findings. Essentially, this is concerned with how 
we determine whether or not there is support for the proposition in the absence of being able to 
employ standard statistical tests. The criteria should be sufficient for the researcher to be able 
to reject other possible explanations of the outcomes.

A useful checklist approach for using case studies in software engineering is provided in [10].
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Perhaps the main limitation of case study research is that it is difficult to generalize from one case 
study to other situations. Indeed, for single-case studies, it may even be difficult to generalize to other 
situations within the same organization.

What of the pitfalls? Perhaps the biggest risk is the relative lack of a well-defined structure, requiring 
some expertise upon the part of the researcher. Case study research can easily degenerate into some-
thing no better than a poorly conducted observational study if not approached in a systematic manner 
(we discuss the use of research protocols to help overcome this in a later section).

That said, there are a number of examples of the effective use of case study research in the software 
engineering literature. We suggest two contrasting examples here: The first, by Moe et al., examines 
the use of an agile development method within an organization, demonstrating the benefits of using 
a case study to study a phenomenon in its context [18]. The second is a study of our own, where we 
used case study research as an “envelope” to enable us to examine a research process, and hence dem-
onstrates a rather different role for case study research [15].

78.3.3  Surveys

Surveys can also be regarded as a form of observational study. However, whereas a case study aims to 
probe deeply into a topic, using a small number of cases, a survey aims to do the opposite, probing to 
only a modest depth (in most cases), but using a large number of respondents. For a survey, the issue 
of external validity (how widely the conclusions can be applied) is particularly important. Essentially, 
a survey collects information from a sample of the relevant population and then seeks to identify pat-
terns that can be generalized to the wider population.

Like observational studies, surveys can appear deceptively simple to conduct, while concealing some 
quite difficult design challenges. Perhaps more than the other forms discussed here, they are also dif-
ficult to repeat if things go wrong and so depend heavily upon careful planning.

Three common reasons for performing a survey are as follows:

•	 To use collective experiences in order to describe some phenomenon and its attributes. Here 
the questions being answered tend to be what its profile is and what the distribution of the 
particular attributes is. For example, we might conduct a survey of developers to find out their 
preferences from a defined list of programming languages, producing a ranking in terms of 
popularity.

•	 To make explanations about some phenomenon (the question then being why it has the form it 
has). For the example of preferences for programming languages, such a survey might probe into 
the question of why particular programming languages are preferred.

•	 To explore some issue, perhaps before conducting some other form of investigation (such as 
a case study), in order to identify the important factors and ensure that these are included in 
some way.

In software engineering, we tend to make only limited use of surveys. When we do so, it is apt be in 
a rather focused manner, perhaps because it can be hard to identify and sample from larger groupings 
(populations) such as “all Java programmers” or “all users of the Observer design pattern” in any reliable 
manner. That said, surveys are used for both technical aspects and also organizational ones, although 
probably more for the latter (such as investigating the attitude of large software users to the use of open-
source components).

A key issue when conducting a survey is to determine how the data will be collected. Within software 
engineering, we tend to make use of questionnaires, administered either on paper or online. However, 
a survey conducted through interviews is sometimes a more appropriate strategy to adopt (especially 
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for organizational issues where the presence of the interviewer can help with interpretation). Having 
decided on the format, some key decisions that need to be made are as follows:

•	 Organization of data generation in a form most suited to answering the research question. Issues 
to address will include the use of open or closed questions, whether to use “rating” questions 
(selecting a value from a list of options) or “ranking” questions (ordering a set of options or iden-
tifying the most/least important ones). This is a big decision and it is well beyond the scope of this 
chapter to discuss it in any detail.

•	 Identifying the sampling frame—the “population of interest” for our question. This might be the 
users of some software development tool, all Java programmers, managers of agile projects, etc.

•	 Determining the sampling technique by which we seek to obtain a representative sample from the 
sampling frame. Where possible, we seek to employ a probabilistic form for this to aid with later 
generalization, but sometimes we may not have the necessary control of how we sample and may 
have to settle for a non-probabilistic form (e.g., when we post our questionnaire on the web and 
invite responses).

•	 Organizing the actual survey process, including ensuring that we obtain an adequate sample size, 
usually by seeking to obtain a good response rate, perhaps by following up our original request for 
those who do not respond.

The general wisdom is that surveys often have quite low response rates (10% is generally regarded as the 
norm, although some surveys do achieve considerably better rates). As a rule of thumb, a survey needs 
at least 30 responses to enable reasonable analysis.

There is considerable expertise about the design and conduct of surveys in domains such as social 
science and psychology. A good reference work is the multivolume Survey Kit, edited by Arlene Fink, 
although for many purposes the first volume may be enough to guide initial design of a survey [7]. For 
use with software engineering issues, see [14].

When considering the limitations for software engineering, we have already previously mentioned a 
key one, which is that of access to an appropriate sample. For example, a sampling frame consisting of 
(say) developers who are design pattern users can be difficult to define and almost impossible to sample 
in a probabilistic manner. In addition, developers and others tend to be multiskilled, so that (to pick 
another example) the set of Java programmers will intersect with the set of C programmers, the set of 
Ada programmers, etc. Neither of these examples rules out the use of surveys, but they do have implica-
tions for their design and the degree to which are likely to accept the outcomes.

Perhaps the main pitfall to beware of with software engineering surveys lies in the sampling process 
mentioned previously. Many communities of interest may be difficult to identify or to access on a reli-
able basis, requiring considerable effort on the part of the researcher.

However, there are some good examples where surveys help to map out issues of importance. One of 
these is the survey of project managers to assess different risk factors for software development projects 
by Ropponen and Lyytinen [21]. This is discussed in the series of columns by Kitchenham and Pfleeger, 
published in ACM Software Engineering Notes, starting with [20] and ending with [16]. A good example 
of using a survey for exploratory purposes is that by Johnson and Hardgrave that examined which 
object-oriented design methods were actually being used by developers [11].

78.3.4  Experiments and Quasi-Experiments

For most branches of scientific study, the experiment is seen as the most authoritative form of empirical 
study, as indeed, we indicate in the knowledge acquisition model shown in Figure 78.1. However, one 
reason why we address this form last is because for a discipline such as software engineering, where the 
skills and knowledge of the individual play a major role, experiments can rarely be definitive in the way 
that they are for subjects such as physics. Indeed, building up understanding for software engineering 
may well need a potpourri of empirical forms.
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To address the human element, we usually turn to the use of randomization in order to minimize 
bias, using this to help with such activities as allocating which participants in a study perform particular 
tasks and the order in which they do them. Where key elements of a study cannot be randomized, perhaps 
because their specific skills require some people to be allocated to particular groups or tasks or because of 
constraints in the availability of experimental material, then the experiment becomes a quasi-experiment 
and it becomes necessary to use further techniques to reduce bias [22]. Indeed, a study by Sjøberg et al. 
of reports of software engineering experiments conducted over a ten-year period suggests that many 
software engineering studies, despite being labeled as experiments, are actually quasi-experiments [23].

Designing and conducting an experiment is quite a complex task, so in this section, we can only 
discuss a few key aspects—for fuller discussion of empirical forms, we suggest consulting the book by 
Shadish et al. [22] and for software engineering issues, the book by Wohlin et al. [26].

Any experiment should set out to answer a research question. Based upon this, the plan for an experi-
ment (more correctly referred to as the protocol—an aspect of study design that we will return to) should 
address at least the following:

A hypothesis: This is a testable assertion that is related to the research question and refers to the 
effect that the treatment, or the experimental condition, should have. A simple example might 
be that “the use of code inspection will find more faults than will be found by unit testing.” 
Accompanying this is a null hypothesis that effectively states the opposite (that in this case, 
there is no difference in the number of faults found, or even that unit testing would find more). 
Here the “treatment” being tested is the use of code inspection.

One problem with software engineering hypotheses is that they are often imprecise about both the 
treatment and the effect. Here, we might need to clarify the form of code inspection, as well as of unit 
testing involved, and also what we mean by “more faults.” There is also a statistical implication here that 
any improvement is significant enough to be distinguished from possible random fluctuations.

The independent and dependent variables: The independent variables are generally associated with 
the cause element of an experiment (X has the effect of causing Y to occur) and are under the 
control of the experimenter. While ideally we would only have one independent variable, it is not 
uncommon to have several. In the previous example, one independent variable is the treatment, 
that is, whether the participants will use code inspection or unit testing. In this case, where we 
might want to seed errors in the code to be tested, the forms of error seeded can also be a variable.

The dependent variable(s) corresponds to the effect element. While again we would like to have one 
variable, there may actually be several. Here, we might wish to measure the number of errors found 
within a fixed time (and we might also be interested to know which were found by each form).

The materials: Essentially these are the software objects that are used to test the cause and effect. 
In the example we are using, this would include the programs to be tested. Ideally these should 
be as “representative” as possible.

The experimental form: Two widely used ways to organize an experiment are as a between-subjects 
study or one that has a within-subjects form.

For a between-subjects study, participants take part in only one treatment. So for our example, 
they would be assigned to a group that used unit testing or code inspection, but not both. Where 
one of the treatments is what we might regard as “normal” practice, then we regard that group as a 
control group whose results can be compared with those arising from the treatment being used with 
the treatment group.

For a within-subjects study, participants take part in both treatments (or more than two). Since this 
may involve learning effects (performing one treatment first might influence the way that the second is 
performed), one way to organize this is as a crossover experiment. We divide the participants into two 
groups, A and B, and group A performs treatment 1 followed by treatment 2, while group B performs 
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treatment 2 followed by treatment 1. Since this often requires the use of two separate study objects 
(programs in this case), these also have to be permuted, so that we actually use four groups and orderings.

The allocation of participants to groups is related to this. The aim is to minimize the effect of any 
factors that might influence the dependent variable (the confounding factors), usually by using random 
allocation to “blocks” in order to avoid or limit any bias arising from having unequal experience or 
expertise in different groups. (Obviously this may not always be possible in quasi-experiments.)

Measurement plan: This addresses the question of how the dependent variable is to be measured. 
It may also involve taking measurement before and after the study (pretest and posttest) 
and address such issues as how time is to be measured, how the number of defects is to be 
assessed.

Recruitment of participants: Again, this can form a potential source of bias. The participants in a 
software engineering study are a group of individuals who each bring their own unique past 
experiences and expertise with them. Some form of pre-study testing may well help assess key 
aspects of this and assist with such issues as training provision and assignment to groups.

As shown by this (not quite complete) list, conducting an experiment is a complicated exercise. To 
help assess how well we have planned an experiment, it is also wise to conduct a dry run in advance, 
using one or two “representative” participants in order to check out such aspects as participant training, 
the tasks allocated, adequacy of time allowed.

A major limitation of the controlled experiment is that isolating a relationship (cause–effect) so 
that we can study it then means that relationship loses its natural context that may well be important. 
Indeed, a weakness of experiments is that they do not readily allow us to study a phenomenon in truly 
realistic conditions.

Inevitably for so complex a study form, there are numerous possible pitfalls that can render the results 
of little value. One that should really be avoided is over-complication. A simple study design may well be 
more worthwhile than a complex one requiring advanced statistical analysis.

What are some good examples of well-conducted and well-reported experiments? We suggest two 
examples that provide particularly clear reporting of what was done and why. The first by Dzidek et al. is 
a controlled experiment that uses professional developers as participants and studies use of the UML in 
software maintenance [5]. The second by Güleşir et al. is part of a larger study, but again is particularly 
well reported in sections 9 through 12 [8]. These two papers provide both well-structured experiments 
and also excellent examples of how to report an experiment.

78.4  Secondary Studies

Since secondary studies have their own chapter, we will only touch briefly on them here, mainly to 
discuss their purpose and their role.

Secondary studies are widely used for what is termed evidence-based research, an approach pioneered 
in clinical medicine, but also subsequently adopted in many other disciplines such as education, various 
other branches of health and social care, and, more recently, software engineering.

A secondary study seeks to answer a research question by systematically locating all of the available 
primary studies that have relevant data and then aggregating that data in some form. While easily stated 
in this way, there are a number of challenges in performing such a study, not least ensuring that all 
relevant studies are included and that the analysis is objective. The key tool of evidence-based software 
engineering (EBSE) is the systematic literature review that provides the procedures for conducting an 
unbiased and objective secondary study [13].

Why have such studies become increasingly important? Well, one reason is that they provide a 
means of reducing the bias that might come from using expert judgment to select the primary studies. 
Aggregation also allows us to reduce the effect from local influences upon studies—a confounding fac-
tor may have a large influence on one study because of some local issues, but if it is not present in others, 
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then its overall effect will be small. Where statistical forms of aggregation can be used (meta-analysis), 
then it is also possible to detect smaller effects than can be recognized through a single study.

So why do we mention these studies in this chapter? Well, the reason is mainly because their existence 
(and effectiveness) depends upon the availability of a number of primary studies addressing relevant 
issues and also upon the quality of reporting of those studies. Prior to the development of evidence-
based practices, each primary study was largely conducted and reported as an isolated item of research. 
However, this is no longer so, and so when we report our primary studies, we now need to consider how 
they might contribute to a much wider context.

78.5  Organizing Empirical Studies

For this last section, we examine two important elements for any empirical study: the first is linked to 
what happens before the study is undertaken, while the second is concerned with what we do with the 
results after performing the study.

78.5.1  Experimental Protocol

We have mentioned the protocol at various points in this chapter. The role of the protocol is to provide a 
plan for conducting the study by determining beforehand how all of the key activities will be performed. 
There is good reason for having a plan, particularly because it avoids the risk that we end up conducting 
a study that “fishes” for results by adapting the procedures in response to (apparent) observed outcomes. 
So, before we begin our study, we should have drawn up a complete protocol, which should then have 
been reviewed by experienced researchers to help identify any oversights (which happen to all of us) or 
flaws in the design (which unfortunately also tend to happen to all of us).

Studies that make use of human participants should also be subject to ethical approval. The form and 
procedures for this will vary according to where the study is being undertaken. For software engineer-
ing studies, obtaining ethical approval should not form too great a hurdle, since most of our studies 
involve the participants in performing fairly everyday tasks. They do not usually involve any form of 
risk nor involve any deceptions, but, particularly when using between-subject forms of study, there is 
always some possibility that one group will gain extra skills or knowledge simply from being allocated 
to that group. So, our plan should ensure that all participants should receive equal benefit from having 
taken part in our study.

Assuming that we have drafted a protocol, had it reviewed, updated it, and had it approved, what 
comes next? Well, basically the protocol then acts as a guide for conducting the study—and if we have 
to make changes while conducting the study, we should make careful note of these so that they can be 
reported as deviations from the plan. Finally, the protocol provides a useful starting point for report-
ing the study since it contains much of the detail about the study design that needs to form part of the 
final report [12].

The website www.ebse.org.uk provides a number of outline protocols for different forms of primary 
and secondary study that can be used and adapted by researchers.

78.5.2 A nalysis

The analysis of empirical studies can take a wide range of forms, and the details of this are beyond the 
scope of this chapter. Indeed, this is one aspect where it is often useful to seek expert advice, particularly 
as regards appropriate statistical forms to employ. However, we do provide a short and simple overview 
here to indicate what might be appropriate in particular situations.

For any study, it is usually possible to provide some form of descriptive statistics. These often use famil-
iar forms such as the mean, median, and standard deviation to describe the “shape” of the resulting data. 
Visually, data might be presented as a scatter plot (to see if any trends are recognizable) or as box plots 
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(to see how distorted the distribution is). Equally, we might provide counts for different categories in our 
results—for example, a survey might report how many of the respondents were in particular age brackets.

The descriptive statistics provide an opportunity to see if we can observe patterns (surveys and obser-
vational studies in general) or confirm relationships (case studies and experiments). In some cases, they 
may well be sufficient to enable us to answer our research question.

Where we do seem to observe patterns or trends, then we need to employ inferential statistics to 
confirm that these are truly so and not simply groupings or associations that could easily have occurred 
by chance. Inferential statistics enable us to answer the original research question with a much greater 
degree of confidence and are often required in order to decide between the hypothesis and null 
hypothesis.

78.6  Conclusions

This chapter has addressed a large and complex topic within software engineering and one that draws 
from many other reference disciplines. Indeed, if we are to make software engineering an “engineering” 
discipline, then its practices do need to be informed by evidence and that evidence needs to come from 
well-conducted empirical studies. Inevitably we have only been able to skim over many important issues 
in the space available. However, we hope that the material in this chapter will provide a useful starting 
point for anyone wanting to find out how empirical studies can be employed within software engineer-
ing or to understand their import.
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79.1  Introduction

Software users have been suffering from quality problems for decades (Whittaker and Voas 2002). 
Quality is more and more often seen as a critical software attribute and a determinant of business 
success, which is as equally as important as the technology used in software products (Prahalad and 
Krishnan 1999). The absence of quality in software products and services results in dissatisfied users and 
financial loss, and may even endanger our lives (Peterson 1996).

Software process improvement (SPI) is a process-oriented approach to solve quality problems. SPI 
methodologies and concepts are inspired from the heritage of quality movements, such as total quality 
management (TQM), which have led to significant quality and productivity achievements in other engi-
neering disciplines (Kemp 2006). A large body of software process knowledge has been made available 
to software organizations via process models and associated methods, such as Software Engineering 
Institute (SEI) Capability Maturity Model Integrated (CMMI) and ISO/IEC 15504. These have been 
used by software organizations for assessing and improving their processes systematically.

The basic premise of SPI is that quality of a software product or service is highly dependent on the quality 
of the process used to develop it. Therefore, an understanding of the concepts of quality, process, and their 
relationship is fundamental for understanding model-based SPI and evaluating their use. In this chapter, 
we aim to give an insight into the relation between software quality and model-based SPI. In Section 79.2, 
we first discuss the definitions for quality and address several characteristics of software products that 
are important while defining quality for software. Then, we overview the evolution of process-oriented 
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Barış Özkan
Middle East Technical 
University

Özlem Albayrak
Bilkent University

Onur Demirörs
Middle East Technical 
University



79-2 Software Quality and Measurement

quality improvement paradigm (QIP) and interpret it for software development. We close the section with 
an analysis of the costs of software quality and relevant models, which are essential tools in managing pro-
cess improvement programs and evaluating their results. In Section 79.3, we summarize CMMI and ISO/
IEC 15504 models for SPI and review the results of their implementations. In the final section, we discuss 
several challenges in model-based SPI and address relevant future research prospects.

79.2  Underlying Principles

79.2.1  Quality

Quality has always been a difficult concept to define and agree, particularly much more difficult for 
software quality. As markets, customers and technology, and management paradigms change, the per-
ception of software quality is getting more fluid, complex, and diverse.

Quality experts have brought different definitions of quality, which needs to be reconsidered while 
using them for software quality. Crosby (1979) defines quality as the “conformance to requirements.” 
The definition is based on the idea that requirements are testable. This brings several questions in mind: 
“Are software requirements complete and correct? Who determines the requirements?” “Can’t they ever 
change?” According to Juran et al. (1974) “Quality is the fitness for the intended use.” This definition 
accommodates the fact that software requirements may not be fully defined; however, it still needs the 
determination of who will decide whether it fits or not. Different users may have different definitions 
for fitness, for example, an expert user may desire a control of fine details on particular software where 
ease of use will be fit better to a novice user’s needs. Table 79.1 gives examples of different meanings of 
software quality for different stakeholders.

Weinberg (1991) “value to some person” definition of quality emphasizes the relativity of quality 
from an economic point of view. Weinberg argues that “the definition of quality is always political and 
emotional, because it always involves a series of decisions about whose opinions count, and how much 
they count relative to one another.”

In light of different definitions that emphasize certain aspects of quality, we can state that quality 
embodies numerous and various expectations. Garvin (1984) addresses this complexity and gives five 
approaches to defining quality as perceived from philosophy, economics, marketing, and operations 
management disciplines. These five perspectives can be outlined as follows:

Transcendental approach: The transcendent definition of quality implies an innate excellence or superi-
ority. Quality cannot be defined precisely nor measured. It is an ideal to be strived for, but never can be 
completed perfectly, and we can only learn to recognize it through experience. It is this approach when 
we get the enigmatic answer “I know it when I see” and resort to prototyping to get customer feedback at 

TABLE 79.1  Different Viewpoints of Software Quality

Quality Definition End User
Marketing 

Department
Project 

Manager
Software 

Developers
SW 

Architect
IT 

Operations

User friendly ×
Compatible with 

competitor
× ×

Extensible × × ×
High performance × × × ×
Zero defects × × × ×
Rapid development × × ×
Low development cost × ×
High modularity × ×
Secure × × ×
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the early stages of development and understand the desired qualities of the software. Pirsig (1974) states 
that “Quality is neither mind nor matter, but a third entity independent of the two, even though Quality 
cannot be defined, you know what it is”. This philosophical definition is not found useful for modern 
business management since it is unanalyzable.

Product approach: The product-based definition presupposes that product quality is proportional to the 
quantity of internal attributes the product possesses and that the internal attributes are measurable. 
Therefore quality is precise, and the quality level of products is explained by quantifying the attributes 
and the products can thus be ranked objectively with respect to quality. As an example, consider a polar 
winter jacket. The grams per square meters of the polar cloth used is directly proportional to the degree 
of cold resistance the jacket provides. If it is 400 g/m2, then it will keep us warmer in comparison to a 
100 g/m2 jacket. ISO 9126 software quality standard (ISO/IEC 2001) also supports this view, assuming 
a positive correlation between internal, external, and in-use attributes, for example, higher the degree 
of modularity, makes software testable and maintainable, and maintainability increases extensibility. 
However, there are considerable difficulties of software product measurement in regard to maturity of 
software measures and measurement models (Pfleeger et al. 1997). This approach has been found mostly 
useful for economic analysis purposes.

User approach: This approach assumes a highly personalized definition of quality. That is, an individual 
will call a good or service as high quality if it satisfies the person’s needs and preferences. Quality is per-
ceived as highly subjective and in a manufacturing sense, it is “the fitness for use.” This definition is sub-
ject to open questions challenges when attempting to define quality for a particular market; for example, 
how should the subset of usability properties of a software product be selected in order to maximize sat-
isfaction in an environment with customers having widely varying preferences and expectations? Uses 
of this approach have been observed mostly in marketing, economics, and operations management.

Manufacturing approach: Manufacturing perspective looks into the conformance of the products to 
stated requirements and industrial standard for assessing quality. The focus of quality is the manufac-
turing and engineering (design and supply) side in contrast to user view where the focus is the consum-
prion (demand). Any deviation from the specifications is seen as reducing the quality of the product. 
The concept of process has a key role in the manufacturing view of quality. The approach assumes that 
organizations have imperfect processes and advocates the improvement of quality by improving pro-
cesses. A focus on the processes and knowing how to do it, quality improvements are believed to result 
in prevention of non-conformities (defects) and reductions in rework, scrap, and total manufacturing 
costs. TQM, zero-defects, six-sigma are the noteworthy quality movements that follow this approach 
and they have the mantra of “do it right the first time” to express their focus on the processes. This view 
is found useful in contractual situations and is dominant in standards such as ISO 9000 series and mod-
els pertinent to software domain such as CMMI and ISO/IEC 15504. In the following sections, we will 
mostly refer to quality view of the manufacturing approach.

Value-based approach: This approach is based on the observation that the perception of quality change 
in relation to the price. That is, a product which is found to be excellent will not have an economical 
meaning if it is very expensive; it depends on how much a customer is willing to pay for a certain level 
of excellence. Therefore, the proposal is the definition of quality in terms of costs and prices. A quality 
product is one that provides a certain degree of performance at an acceptable price or a level of confor-
mance at an acceptable cost.

From the endeavor for defining quality, we can infer that quality is a multifaceted term and it encom-
passes multiple attributes including value, conformance, fitness, and others. Defining quality is contro-
versial, and it may be exceptionally difficult doing it for software, being an intangible, malleable, and 
pervasive product.

Recognizing the challenge of defining software quality, ISO published ISO/IEC 9126 (ISO/IEC 2001) 
series to help organizations define, communicate, and manage quality with respect to their needs. 
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The series include characteristics for software quality and a related taxonomy. The standard was inspired 
by similar software quality models (McCall et al. 1977, Boehm et al. 1979, Dromey 1995) and functional-
ity, usability, reliability, performance, and supportability (Grady and Caswell 1987). The standard has 
four parts, which address a quality model, external quality metrics, internal quality metrics, and quality 
in use metrics. Quality model defines characteristics and sub-characteristics common for both external 
and internal quality aspects. Internal metrics are derived from static properties of the software, which 
do not rely on software execution. External metrics are derived from the behavior of running software 
and represent dynamic properties of the product. Quality in-use metrics is available when the final 
product is in use in a specific context. ISO/IEC 14598 (ISO/IEC 1999) Product evaluation standard series 
were published to be used in conjunction with ISO 9126 and to provide organizations with methods for 
measurement, assessment, and evaluation of software product quality.

Starting from 2005, ISO has begun publishing as Software Product Quality Requirements and 
Evaluation (SQuaRE) series as the next generation software quality standards (ISO/IEC 2005). The 
motivation for SQuaRE is to extend the scope to three complementary quality processes: requirements 
specification, measurement, and evaluation (Figure 79.1). Figure 79.2 shows the quality characteristics 
and their decomposition into sub-characteristics as defined in SQuaRE.

At the end of this section, we can conclude that each software product is unique in its definition of 
quality. Quality should be properly defined in such a way that it can be managed before, during, and 
after its development. Only with a good, usable, and communicated definition of quality we will be able 
to define our strategies, check whether it is built into a product, measure how much of it we have, and 
predict how much we will have.

79.2.2  Process and Quality

In its simplest sense, a process is what we do to create value for our stakeholders, such as our customers. 
We deliver value as software products and services. Quality is distinguished through an evaluation of 
the deliverables and is enjoyed by using them. More formal definitions of processes are as follows:

A series of actions or operations conducing to an end (Merriam-Webster online 2012).
A set of partially ordered steps intended to reach a goal (Feiler and Humphrey 1993).

Quality
requirements

division
2503n

Quality model
division
2501n

Quality management
division
2500n

Quality measurement
division
2502n

Extension division 25050–25099

Quality
evaluation

division
2504n

FIGURE 79.1  Organization of the SQuaRE Series. (Adapted from ISO/IEC, ISO/IEC 25000:2005 Software 
Engineering—Software Product Quality Requirements and Evaluation (SQuaRE)—Guide to SQuaRE, International 
Standards Organization & International Electrotechnical Commission, 2005. With permission.)
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A process is a set of tools, methods and practices used to produce a product (Humphrey 1989).
The set of activities, methods and transformations that people use to Develop and Maintain 
Software and the Associated Products, for example: product plans, design documents, code, test 
cases and user manuals (SEI 2010).

The concept of process has been widely appreciated as the proper ground for improving product quality 
and productivity. The applications of the approach dates back to late nineteenth century and the most 
influential works on “process focus” are attributed to F.W. Taylor and F.B. Gilbreth. Taylor’s approach 
was the application of scientific principles to improve the quality of tools and work processes in order to 
improve productivity and product quality. Following this principle, he made use of systematic observa-
tions, measurements, and experiments in standardizing and improving work processes and engineering 
practices. F.W. Taylor published his work in the book “The Principles of Scientific Management” in 1911 
(Taylor 1911). Despite their criticisms on people factors of Taylorism, Gilbreth and his wife were advo-
cates of scientific management, and they are known for their time motion studies where they sought 
for one the best ways to perform tasks by standardized hand motions (Gilbreth 1911). Gilbreths’ works 
included teaching managers with the need to continually question the workplace in order to improve. 
The works of F.W. Taylor and Gilbreths were later considered the genesis of the discipline of industrial 
engineering and making them known as pioneers of the discipline. Taylor’s and Gilbreths’ principles 
and approaches provided a foundation for the well-known quality approaches and related practices.

The process focus emphasizes that it is how the products are built that should be in question for 
improving quality; the investment and efforts for quality should not be driven by the motivation in get-
ting the product out the door. Deming says “Quality comes not from inspection, but from improvement 
of the process” and he adds: “The old way: Inspect bad quality out. The new way: Build good quality in” 
(Walton 1986). Although there have been significant attempts to explain and promote the role of adher-
ing to processes as a means of improving quality, the approach was not well respected, and the benefits 
were not recognized and realized before World War II (WW2). Convincing results were obtained later, 
leading to “quality movements” followed by organizations from various industries all around the world.

Before 1950s, the common practice for managing quality was “Quality Control.” The purpose of qual-
ity control (QC) was preventing unacceptable products from being delivered to the customer similar to 
the purpose of system or end-user testing we perform on our software products. The focus was on the 
finding the product defects by comparing product properties to a standard or by asking an experienced 
worker and scrapping the pieces with defects or fixing them later.

The practice was tightly coupled with a culture and management approach typical to mass produc-
tion at the time. In a mass production environment with change resistant processes, no worker was 
appreciated nor allowed to stop the assembly line when she sees a quality problem. Solving quality 
problems were not rewarded. Workers were seen as the primary source of quality problems where they 
were controlled and forced not to repeat mistakes. Productivity and quality purposes were always seen 
conflicting targets and any initiative for the first have always won.

In 1930s, W. Shewhart have developed statistical process control (SPC) as a disciplined scientific man-
agement approach to improving product quality by focusing on the processes (Shewhart 1931). The 
premise of SPC was that when standard products are produced using standard processes and the pro-
cesses are repeated, unusual process variations can be controlled using inspection data on work prod-
ucts and applying statistical techniques. As a result, the process performance can be monitored and 
quality problems can be detected and improvements can be measured. Today, SPC have evolved into a 
mature discipline and is also used for software processes (Florac and Carleton 1999).

Shewhart knew that without an understanding of the root causes of quality problems and fostering 
change, the information from process control would not be useful. Once a quality problem is identi-
fied, it should be analyzed, resolved, and the solutions should be built into the processes in order to 
prevent the process suffering from the problem again. In order to emphasize this essence of the tak-
ing actions to quality problems systematically, Shewhart developed an improvement approach called 
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plan–do–check–act (PDCA). PDCA cycle has been refined and applied successfully by Deming, Juran, 
Crosby, and many other quality experts after WW2. PDCA improvement cycles have constituted the 
basis for continuous process improvement in various quality methods and standards including ISO 
9000 series. The description of PDCA cycle from ISO 9000 standard is as follows:

•	 Plan. Establish the objectives and processes necessary to deliver results in accordance with cus-
tomer requirements and the organization’s policies.

•	 Do. Implement the processes.
•	 Check. Monitor and measure processes and product against policies, objectives, and require-

ments for the product and report the results.
•	 Act. Take actions to continually improve process performance.

SEI IDEAL process improvement program model (McFeeley 1996) and QIP (Basili 1985) are examples 
that adapt continuous improvement approach to the software engineering domain and provide an out-
line of the steps necessary to establish a successful improvement program.

During WW2, the concentration on the processes critically increased with an aim to produce stan-
dard weapons and equipment without defects. Techniques relying on statistics and operations research 
were developed and used as the prevailing means of process control and optimizations for production 
and quality. After WW2, in the western world, the quality related practices have begun evolving from 
“Quality Control” to “Quality Assurance”. Quality assurance (QA) has become a disciplined approach to 
quality extending quality practices from controlling the final products to the entire production process. 
QA primary function was ensuring compliance to organizational process and design standards and 
improving them. Doing so, defects can be prevented, detected and fixed earlier in the whole process. 
Although QA includes cross-departmental communication about quality, communication with ven-
dors, it is usually established as an independent organizational function performed by a QA depart-
ment. It has the potential for adversarial relationships and “Don’t tell me my job” hassle between QA 
teams and employees, for example, between software testers and developers, which create inconsisten-
cies and interruptions in the motivation to improve processes.
TQM was the first quality movement where the business value of improving quality through process 
improvement was appreciated and continuous improvement was achieved (Kemp 2006). The principles 
of the approach were established and successfully launched by Deming, Juran, Feigenbaum, Ishikawa, 
and other quality pioneers, see Hoyer and Hoyer (2001) in postwar Japan. TQM includes elements of 
improved SPC techniques, extension of quality practices organization-wide, and establishing quality as 
a continuous function.

The key factor of successful applications of TQM philosophy was managing the cultural change and 
the achievement of organizational and continuous motivation for quality (Kemp 2006). TQM did not 
distinguish managers, engineers, and workers; all people working for an organization were empowered 
with taking initiatives for improving processes and quality. Quality control and improvement was not 
seen as an isolated and independent function driven by a separate department. Instead, quality improve-
ment was seen a shared responsibility and a cross-functional collaborative work with high involvement 
from top management. Stopping the assembly line and gathering others to understand the root cause 
of the problem was truly a desired action when a worker encounters a quality problem. TQM inspired 
many other quality movements such as Six-Sigma, zero-defects, and ISO 9000 quality standards and SEI 
CMMI. Today, the accumulated knowledge from the evolution in quality improvement is being studied 
under “Quality Engineering” (QE) discipline (Borror 2008). Quality engineering combines quality con-
trol and assurance techniques and practices whilst maintaining an emphasis on the cultural dimension 
of process change and continuous improvement. QE have gained good acceptance in software engineer-
ing, and “Software Quality Engineering” is now an emerging discipline.

Quality paradigms with a process focus have been effective in manufacturing domains such 
as automotive and electronics with proven pragmatic methods. They have been inf luential on 
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software engineering methods and many researchers and organizations have created models and 
methods that adopt TQM principles. Humphrey, one of the pioneers in SPI, points out “Dr. W.E. 
Deming, in his work with the Japanese after World War II applied the concepts of statistical process 
control to many of their industries. While there are important differences these concepts are just 
as applicable to software as they are to automobiles, cameras, wristwatches and steel” (Humphrey 
1988). However, there exist peculiarities of software products and development that should be con-
sidered while adapting the methods, techniques, and tools of successful quality paradigms to the 
software domain.

Software products are intellectual artifacts. Software development is mostly analysis, design, and 
coding and it requires the integration of knowledge work. This makes software people the most valu-
able resource and the highest cost item. In contrast to traditional products, the manufacturing step, for 
example, copying it to CDs, creates an ignorable value. Once you design and implement it, you can cre-
ate instances of it over and over again almost with no cost, in no time, and without defects. This is also 
different from large construction projects like stadiums, where you will need large amount of money 
and years to build every instance of the same design. Another feature that distinguishes software is that 
it does not deteriorate. It would not be exceptional if our laptop computers start overheating or its screen 
starts flickering after 3 years of use. However, once the software meets the requirements and defects 
are removed, an increased use will not cause any faults, and it would be operational as long as require-
ments do not change. Software products are malleable. When the malleability is exploited by following 
a disciplined approach, for example, automated regression testing after a change, it is very beneficial and 
desired since a critical bug can be fixed in hours. It also is the Achilles heel of software since rapid and 
frequent changes increase control risks and create challenges in avoiding code and fix development hab-
its. The simplicity of software manufacturing increases utilization of software malleability in contrast 
to physical products. Another distinguishing characteristic of software products is that they change the 
expectations. Once software is operational, before long, the users start seeing further opportunities, for 
example, automations to jump to the next level of cost minimization, which can be realized through an 
enhanced version of the software or an entirely new design.

Adherence to “conformance to requirements” definition may have limitations for software quality. 
First, software requirements are usually hardly complete and correct and you will not be able to “do it 
right the first time” if you do not know the requirements. The acquirers and users also make mistakes 
in their requirements. Second, the requirements are usually considered as a means to an end, and the 
quality of the eventual product is also evaluated on the basis of how well software helps the users do their 
work. Although all stated requirements are fulfilled, there can still be a room to increase customer satis-
faction and attain their loyalty by delighting them with software features that they did not anticipate but 
adds significant value to their business. A zero-defect aim can be realistic in a production process where 
use of automation, robotics, can be quite effective on producing physical products; however, this is not 
realistic for software, in particular, for the creative parts of software development such as requirements 
analysis, elicitation, and of software architecture design. A “good enough” software can be considered 
the optimal for all stakeholders (Yourdon 1996).

79.2.3  Cost of Quality

Customer value is determined by product quality, cost, and cycle time, which are the competitive fac-
tors of making business. From a traditional management view, their improvements are seen as conflict-
ing objectives, that is, an improvement in any of them is only possible at the expense of others. For 
instance, if the objective is to develop software in shorter times, either we will need to work in larger 
teams of developers or do overtime work or we will deliver fewer features and skip some tests at a risk 
of low reliability.

From a continuous quality improvement point of view, it is possible to improve them simultane-
ously through changing processes and organizational culture. This view is based on the fact that not all 
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tasks we perform and time and effort we expend in order to develop software generates value for our 
stakeholders. The premise of continuous improvement is that an improved quality will decrease costs, 
improve productivity, and shorten delivery times, and in the long term any investment on quality will 
pay in terms of increased profits and competency.

Total costs of software production can be broken down as shown in Table 79.2. In a strict and 
ideal sense, the value-added tasks should change the product in some way, make the product more 
desirable to the stakeholders, and must be done right the first time. These criteria help us identify the 
proper targets for process improvement, that is, anything that is not value added is a suitable target 
for removal or improvement. Value streams analysis is also one of the indispensable tools of lean 
thinking quality approach that originated from Toyota production system and which attracts atten-
tion from agile software community (Poppendieck and Poppendieck 2003). Crosby (1979) points out 
“Quality is free. It’s not a gift, but it is free. What costs money are the unquality things—all the actions 
that involve not doing jobs right the first time.” Since our software processes are not perfect with 
respect to the value-added criteria, every process includes some essential non-value-added parts; they 
are necessary regarding the current methods of software product development, engineering domain 
knowledge, and in relation to the peculiarities of software. Non-value-added activities, software veri-
fication activities are of this type, that is, if the software design and implementation processes are 
perfect, verification tasks will not be needed. Quality improvement is also a non-value-added task; 
nevertheless, we need to invest in improving quality since we benefit from reducing total non-value-
added cost.

Any investment decision on improving quality needs an understanding of the cost associated with 
achieving quality and the economic trade-offs involved in delivering good-quality software. A change to 
improve processes is justified roughly comparing the returns to the costs of the change. This challenging 
task involves the analysis, baselining, measurement, and prediction of all internal and external effects 
of the changes on business of the organization including repercussions on all interacting processes. It is 
best if the improvement can be represented in monetary units since it is the management language. Cost 
of Quality (CoQ) analysis and techniques have been developed in order to meet such requirements and 
have been in use for more than 50 years (Schiffauerova and Thomson 2006). Crosby’s CoQ model is one 
of the popular models in SPI literature. In line with the “conformance to requirements” definition of 
Crosby, total CoQ is divided into conformance and non-conformance costs (Figure 79.3). The former 
includes the costs of effort and resources we consume for improving quality (good quality) and the lat-
ter includes the costs we pay due to failing to achieve quality (bad quality). Prevention and appraisal 
costs are incurred to prevent and detect poor quality. Failure costs are further divided into external or 
internal costs with respect to occurrence of failure before or after product delivery.

Cost of software quality (CoSQ) techniques are the effective tools in feasibility analysis of SPI 
programs and the measurement and the evaluation of the program performance (Karg et  al. 2010, 
Unterkalmsteiner et al. 2012). They are essential tools in convincing managers and technical staff that 
poor quality costs more than high quality in the long run, quality problems are serious, hence, it is 
worth fixing them.

TABLE 79.2  Breakdown of Software Development Costs

Total Costs

Value Added

Non–Value Added

Essential Nonessential

Requirements elicitation Unit testing Bug fixes
Design Stress testing Unwanted features
Development Training Missing features
Documentation Peer reviews Bottlenecks
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Both theory and experience advise investing on prevention and appraisal to get the highest 
returns from the decreased costs of appraisal and failure. If we can prevent a requirements defect 
from happening, the defect will not cost us. If we detect the defect before design, it may only cost 
us some effort to update the specification document, but nothing more. If the defect is discovered 
from the analysis of a failure of the product in use, then a rework of the whole process may be 
needed. This view is addressed by two dominant views of CoQ theory (Schiffauerova and Thomson 
2006). The advocates of the first theorize that there is an economics of quality, and there exists an 
optimal point where the costs of maintaining a quality above that point will exceed the benefits, 
where the others challenge the economics of quality and proposes the optimum is the perfect qual-
ity-zero defects (Figure 79.4). No matter where the optimum is, this relation is critical for software 
managers and drives the continuous improvement up-to the optimal, and CoQ analysis helps us 
decide which non-value-added costs to focus on and where to add non-value-added tasks (cost of 
conformance) to reduce net costs.

Quality costs

Costs of
conformance

Prevention Appraisal

Internal External

Failure

Costs of
 Nonconformance

Requirement defects
Regression tests

Problem tracking

Hot fixes
Agreement penalties

Expediting fixes

Training
Tools and methods
Standards, policies

Consulting
Quality planning

Prototyping
Root cause analysis

Process audits
Unit tests

Code inspection
Beta tests

Process measurement

FIGURE 79.3  Costs of software quality.
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79.3  Best Practices

In the previous sections, we have discussed software quality, the relation between process improvement 
and quality, and explained how value and costs of quality analysis guide us in directing and evaluating 
our quality improvement efforts.

Today, SPI is being recognized as the core solution behind software development problems. Model-
based improvement is a SPI methodology by which the performance of the software development organi-
zation’s processes is improved on the basis of capability profiles provided by external process assessment 
models. A number of process models have been developed by people from research and industry that 
combine theoretical knowledge with practical experience (von Wangenheim et al. 2010). Process models 
are assumed as the most significant means for transferring process knowledge into process improve-
ment. SPI models contain a set of goals, indicators, and associated best practices that adhere to processes 
and organized in a maturity context. The term “process quality” is sometimes used for addressing how 
well a process meets the defined goals that are measured in terms of indicators defined in the models.

In this section, we first discuss patterns of behavior that give us insights into the perception of quality 
and process by different organizational cultures. We explain how SPI models associate these patterns 
to the performance of individual processes and the whole process system in a maturity scale. Next, 
we briefly explain two most wide-spread assessment models used in model-based SPI and discuss the 
results of their implementations.

79.3.1  Software Process Maturity

During his quality studies in the organizations, Crosby (1979) observed quality management patterns, 
given as stages of maturity (uncertainty, awakening, enlightenment, wisdom, and certainty) in his qual-
ity management maturity grid (QMMG). The QMMG is based on the observation that the attitudes to 
quality imply certain cohesive characteristics of the elements of an organization. That is, the combina-
tion of certain types of product quality, processes, costs of quality, and the problems associated to these 
types of elements usually do not occur at random. Once the pattern that matches an organization is 
identified, then the practices, the quality of the products, and rates of CoQ can be predicted in that 
organization. Furthermore, the direction for improving quality would be the next maturity stage and 
referring to the target stage in the grid, the actions need to be taken for improvement can be understood. 
The maturity grid was first adapted to software development by Radice at IBM under the direction of 
Humphrey (Radice et al. 1985). In their work, they identified 12 software process stages (e.g., require-
ments, product-level design, and code) and rated them on a five-point ordinal scale. The scale consists of 
traditional, awareness, knowledge, skill and wisdom, and integrated management system points. Later, 
Humphrey et al. at SEI expanded the concept to provide the U.S. government with a method for assess-
ing the capability of their software contractors (Humphrey 1988). In his model, Humphrey defined 
initial, repeatable, defined, managed, and optimized stages of software process maturity at the organi-
zational level with a concentration on types of processes used in software development.

According to the model, at the initial level, the software processes are ad hoc, and occasionally 
chaotic. There is no or few understanding of the concept of process. Quality problems are repeated, 
deferred, or even forgotten rather than solved. As a consequence to poor planning, problems are dis-
covered late and are usually solved by firefighting (Repenning 2001). The root causes of all problems 
are in poor management and success depends on individual efforts and heroics. At the repeatable level, 
earlier success on projects can be repeated with similar practices. The process concept is not embodied 
into engineering but project management practices. The scope, cost, and schedule of the projects are 
tracked. At the defined level, the management and engineering activities are represented as a set of 
standard software processes for the organization. All processes are documented, standardized, and 
integrated. The emphasis is on spreading and learning process definition and improvement to the whole 
organization. At the managed level, the emphasis is on measuring the processes, software artifacts, 
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and products. They are quantitatively understood and controlled, hence making quantitative manage-
ment and prediction possible. At the optimized level, improvement is internalized and process perfor-
mance improves incrementally and continually. The focus is on the overall organizational performance. 
The level was renamed to the optimizing level to correct the misperception that at level optimized, an 
organization has perfect processes and to emphasize the need that for continuous process improve-
ment. These five progressive stages has constituted the structure of the formalized SEI-Software CMM 
model, published in 1991, with detailed descriptions of engineering and management practices (Paulk 
et al. 1991). The use of maturity models and levels has been popularized in software engineering models 
through SEI CMM.

In response to staged representation of patterns by Crosby and Humphrey, Weinberg gave patterns of 
subculture with an emphasis on the congruence between what people say and what they do in different 
parts of a software organization (Weinberg 1991). Although his subculture patterns largely overlap with 
observations of Crosby and Humphrey, Weinberg avoids the use of word “maturity” and explains that 
any subculture is not superior to another, thus, any pattern can be successful depending on the circum-
stances such as right product and customer.

While CMM was gaining popularity in the United States, in 1993, ISO has started an European ini-
tiative called Software Process Improvement and Capability dEtermination (SPICE), which has started 
working on the development of an assessment framework (later formalized as ISO/IEC 15504) and 
defined six capability levels for software processes. A table that roughly matches the patterns and the 
levels is given in Table 79.3.

It is also possible to roughly map the organizational competence to progressive patterns using the four 
stages of competence learning model used in psychology. In the model, the states involved in the process 
of progressing are expressed in terms of awareness and consciousness. Briefly, at the lowest stage, the 
organizations are incompetent and they are not aware of that situation. At middle stages, although they 
are not still considered competitive, the management awareness increases and the management realizes 
more and more for the need to improve to be competent in the business. As the organization progresses 
upper stages, the organization is competitive and is aware of it. At the highest stage, despite being com-
petent, the organization gradually loses awareness on its competency since improvement is internalized 
as a continuous organizational function.

Today, the concept of maturity models and levels is implemented in popular models for SPI (von 
Wangenheim et  al. 2010) and it has been adapted by a number of organizations including interna-
tional research organizations such as ISO and professional framework governing bodies such as 
Project Management Institute and Information Systems Audit and Control Association (Grant and 
Pennypacker 2006).

79.3.2  Models for SPI

Among the models, CMMI and ISO/IEC 15504 framework models are prevalent and have been accepted 
worldwide (Pino et al. 2008; von Wangenheim et al. 2010). The essence of implementing CMMI and 
ISO/IEC 15504 models is the adherence to processes and achieving predefined goals set by the models 
in order to improve business in terms of quality, cost, and schedule. Both models consider quantitative 

TABLE 79.3  Comparison Table for Patterns of Software

Maturity 
Framework

— Initial Repeating Defined Managed Optimized

Crosby — Uncertainty Awakening Enlightenment Wisdom Certainty
Weinberg Oblivious Variable Routine Steering Anticipating Congruent
ISO/IEC 15504 Incomplete Performed Managed Established Predictable Optimizing
Organizational Incompetent/ Incompetent/ Competent/ Competent/
Competence Unaware Aware Aware Unaware
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process management and continuous process improvement as the key factors of success in any realm 
of software business. Since their introduction, the models have evolved in response to theoretical and 
practical problems and suggestions from software community and emerging needs of the software busi-
ness. Moreover, the models have influenced each other mutually. The similarities, differences, and com-
patibility between CMMI and ISO/IEC 15504 are among interesting topics of SPI research (Paulk 1999; 
Pino et al. 2010; Pardo et al. 2011).

Among many others, important models are BOOTSTRAP, software development capability evalua-
tion (SDCE), and Trillium (von Wangenheim et al. 2010). BOOTSTRAP was developed under European 
Union (EU) information technologies program (Kuvaja 1999). Initially, it extended SEI Software 
Capability Maturity Model (SW-CMM) taking ISO 9000 and European Space Agency process standards 
into account. Later, it was updated to align with ISO 12207 and ISO/IEC 15504. Trillium is a telecom-
munications extension of SEI SW-CMM that combines it with ISO 9000 and relevant Malcolm Baldrige 
criteria (Coallier 1995). It was developed by Bell Canadian telecom companies. SDCE is a method for 
assessing an organization’s ability to develop software for mission critical software-intensive systems 
development. It was developed by the U.S. Air Force to be used in system acquisitions (Babel 1997).

In this section, CMMI and ISO/IEC 15504 frameworks and software process models are summa-
rized. Before proceeding, we would like to draw readers’ attention to the following points to clarify 
possible sources of confusion. CMMI and ISO/IEC 15504 models are not models of software engineer-
ing domain knowledge. The models are not intended to define processes, procedures, or work practices 
for any given activity of an adopting organization. For example, when the software testing process is 
concerned in ISO/IEC 15504-5 model, defining a model compliant test process will not help if the tester 
does not know software testing. Having discussed the underlying concepts around process-oriented 
quality improvement in the preceding sections, we assume that reader has an understanding that the 
processes are not for the sake of processes. CMMI and ISO/IEC 15504 prescribe norms that processes 
should possess and a standardized system for measuring their capability. The practices included in the 
models are intended for improving the existing work practices of an organization.

79.3.2.1  CMMI

SEI published the original SW-CMM model in 1991 and later adapted the model to different domains 
such as systems engineering, software acquisition, and integrated product development (Paulk 2009). 
Starting from 2000, SEI combined maturity models into a single CMMI integration framework. CMMI 
for development (CMMI-DEV), CMMI for acquisition, and CMMI for services are the three flavors of 
the framework, called as “constellations,” developed for the domains of software development, acquisi-
tion, and service, respectively.

CMMI-DEV model combines best practices and goals that help software development organizations 
improve their processes. The model has a process focus for improvement and follows the principle that 
“the quality of a system or product is highly influenced by the quality of the process used to develop 
and maintain it” (SEI 2010). The model defines processes as the concept that glues people, procedures 
and methods, and tools and equipment dimensions of developing software and constitutes the essential 
means to achieve the organizations business objectives. The conception and development of the capabil-
ity maturity model was influenced by TQM principles and SPC (Paulk 2009). Humphrey (1988) points 
that “a truly effective process should be predictable” and explains that process control ensures the same 
results if we work the same way and when a process is under statistical control, it is possible to anticipate 
quality cost and schedule within their limits. CMMI model suggests that successive attainment of the 
goals and the institutionalization of the addressed practices across the software processes will improve 
software quality, schedule, and costs whilst decreasing costs of software quality. Figure 79.5 illustrates 
Knox’s theoretical model for CoSQ where total CoQ gradually decreases as maturity increases.

CMMI-DEV model consists of process areas where each area encompasses goals and a cohesive 
set of practices to be fulfilled by organization’s processes in order to make improvements in that area 
(Table 79.4, Figure 79.6). A set of goals, called “generic,” apply to multiple process areas and they describe 



79-14 Software Quality and Measurement

the characteristics that must be exhibited for institutionalizing the processes that implement a process 
area. The goals and related practices that the uniquely characterize a process area called specific goals 
and specific practices. Subpractices are more concrete and detailed descriptions that help interpreting 
and implement specific and generic practice. Similarly, work products are supplied to complement prac-
tice definitions with typical activity inputs and outputs.
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FIGURE 79.5  Knox theoretical CoSQ model. (Adapted from Knox, S.T., Digit. Tech. J., 5, 9, 1993. With permission.)

TABLE 79.4  CMMI-DEV Process Areas

Name (Abbreviation) Area Maturity Level

Configuration management (CM) Support 2
Measurement and analysis (MA) Support 2
Project monitoring and control (PMC) Project management 2
Project planning (PP) Project management 2
Process and product quality assurance (PPQA) Support 2
Requirements management (REQM) Project management 2
Supplier agreement management (SAM) Project management 2
Decision analysis and resolution (DAR) Support 3
Integrated project management (IPM) Project management 3
Verification (VER) Engineering 3
Validation (VAL) Engineering 3
Product integration (PI) Engineering 3
Requirements development (RD) Engineering 3
Technical solution (TS) Engineering 3
Organizational process definition (OPD) Process management 3
Organizational process focus (OPF) Process management 3
Organizational training (OT) Process management 3
Risk management (RSKM) Project management 3
Organizational process performance (OPP) Process management 4
Quantitative project management (QPM) Project management 4
Causal analysis and resolution (CAR) Support 5
Organizational performance management (OPM) Process management 5
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CMMI-DEV supports continuous and staged representations of processes and associates them 
with capability levels and maturity levels, respectively. Capability levels define goals to achieve 
improvement incrementally in an individually selected process area. Maturity levels address orga-
nizations improvement standing with respect to the attainment of goals in successive sets of pre-
defined process areas. The levels can also be used to appraise the corresponding levels of process 
capability or organizational maturity of an organization. The model defines a “target profile” as the 
combination of process areas and capability levels selected for improvement. “Achievement profile” 
represents the actual progress for a combination. Capability evaluations are performed and ratings 
are given using SEI official appraisal method, standard CMMI appraisal method for process improve-
ment (SCAMPI) (Team 2011). Successful type “A” appraisals are awarded with SEI certificates for the 
achieved level.

Personal software process and team software process are works of Humphrey that complement 
CMMI and operationalize the underlying principles of CMMI to individual developer(s) and develop-
ment teams (Humphrey 2000a,b). These models were developed as a response to the early criticism on 
SW-CMM that process-orientation ignores human factors. The models have been reported to be suc-
cessfully used independent from CMMI in companies including Microsoft, IBM, and governmental 
software organizations (Davis and Mullaney 2003).

CMMI models have been used by more than 5000 companies from over 70 countries. According to 
a recent maturity profiles report, which is updated regularly (Software Engineering Institute 2012), 
4846 appraisals have been reported since 2006. More than 66% of appraised organizational units 
have a workforce less than 100 employees, and the majority of reported appraisals are maturity level 
2 and 3.

Process area

Specific goals

Specific practices

Example work
products Subpractices Subpractices Generic practice

elaborations

Generic practices

Purpose
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Related
process areas

Generic goals

Required Expected Informative

FIGURE 79.6  Process area. (Adapted from SEI, CMMI for Development (CMMI-DEV), Version 1.3, Software 
Engineering Institute, Pittsburgh, PA, 2010. With permission.)
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79.3.2.2  ISO/IEC 15504

ISO/IEC 15504 Information technology—Process assessment, also known as SPICE is a multiple-part 
standards framework used for assessment and improvement of software and system processes (ISO/
IEC 2004). Part 1 gives general information on the concepts of process assessment and its use in pro-
cess improvement and process capability determination. It gives a top-view of the components of the 
framework, explains their relations, and provides guidance for the selection of parts and their use. 
It explains the requirements contained within ISO/IEC 15504 and their applicability to performing 
assessments. Part 2 is a normative part that sets out the minimum requirements for performing an 
assessment that ensure consistency and repeatability of the ratings. The process and capability dimen-
sions of the process assessment model are described and assessment process is explained including 
inputs, outputs, and roles and responsibilities. Figure 79.7 illustrates the context ISO/IEC 15504 defines 
for the assessment process.

Parts 3 and 4 provide guidance on ensuring the requirements for performing an assessment have 
been met, and the results of a conformant assessment are properly utilized. Parts 5, 6, and 8 (part 8 is 
under development) are exemplar process assessment models that conform to the requirements given 
in Part 2. The domain of the exemplar models and lifecycle processes used in the process dimension are 
software engineering, system engineering, and IT service management and ISO/IEC 12207 (ISO/IEC 
2008a), ISO/IEC 15288 (ISO/IEC 2008b), ISO/IEC 20000-4 (ISO/IEC 2010), respectively. Part 7 extends 
the framework by setting the norms for determining organizational maturity based upon the process 
capability profiles obtained from process assessments. Part 9 provides guidance for creating and using 
target process profiles that describe pairs of process and process capabilities with respect to a particular 
business need such as process improvement or supplier selection. Part 10 is a safety extension to the 
process assessment models given in Parts 5 and 6.

Process reference model

Initial input Assessment process

Roles and responsibilities

Output
Planning

Data collection
Data validation

Process attribute rating
Reporting

Process
assessment model

Measurement framework

Purpose
Scope
Constraints
Identities
Approach

Additional information

Assessor competence
criteria

Scope
Indicators
Mapping
Translation

Capability levels
Process attributes
Rating scale

Date
Assessment input

Assessment process used
Process profiles
Additional information

Identification of
evidence

Sponsor
Competent assessor
Assessor(s)

Domain and scope
Process purpose
Process outcomes

FIGURE 79.7  (Adapted from ISO/IEC 15504 Assessment Model Normative Elements (Adapted from 
ISO/IEC 15504-2: Information Technology—Process Part 2: Performing an Assessment, International Standards 
Organization & International Electrotechnical Commission. With permission.) 
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Figure 79.8 illustrates the core components of the framework. The measurement framework com-
prises six-capability levels and process attributes to be rated on a four-scale rating (Table 79.5). A process 
reference model (PRM) is a set of processes in a defined domain such as software development. A con-
formant reference model fulfills the requirements involving process descriptions, process purposes and 
outcomes, the descriptions of relations between the processes, the relation between the model, and its 
context of use and community of interest.

ISO/IEC 12207 software life cycle processes standard is a conformant PRM (ISO/IEC 2008a). The 
standard contains 48 processes and related activities, and tasks that are to be applied during the acquisi-
tion, development, operation, and maintenance of software products. It’s purpose is to provide a defined 
set of processes to facilitate communication among acquirers, suppliers, and other stakeholders in the 
life cycle of a software product.

TABLE 79.5  SPICE Measurement Framework: Capability Levels, Process Attributes, 
and Rating Scale

Level 5—Optimizing: The process is continuously improved 
to meet relevant current and projected business goal

PA.5.1: Process innovation
PA.5.2: Process optimization

Level 4—Predictable: The process is enacted consistently 
within defined limits

PA.4.1: Process measurement
PA.4.2: Process control

Level 3—Established: A defined process is used based on a 
standard process

PA.3.1: Process definition
PA.3.2: Process deployment

Level 2—Managed: The process is managed and work 
products are established, controlled, and maintained.

PA.2.1: Performance management
PA.2.2: Work product management

Level 1—Performed: The process is implemented and achieves 
its process purpose

PA.1.1: Process performance

Level 0—Incomplete: The process is not implemented or fails 
to achieve its purpose

—

N: Not achieved 0%–15% achievement
P: Partially achieved >15%–50% achievement
L: Largely achieved >50%–85% achievement
F: Fully achieved >85%–100% achievement

M
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leMeasurement framework
Process

assessment
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1 2 3 n
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Mapping

Process reference model
Domain and scope
Processes with purpose and outcomes
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Process attributes
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FIGURE 79.8  Process assesment model. (Adapted from ISO/IEC, ISO/IEC 15504: Information Technology—
Process Assessment—Parts [1–10], International Standards Organization & International Electrotechnical 
Commission, 2004. With permission.)
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A process assessment model (PAM) forms the basis for the collection of evidence and rating of process 
capability. It provides a two-dimensional view of process capability. The capability and process dimen-
sions of a PAM are derived from the measurement framework and a reference model, respectively. A con-
formant PAM provides a mapping from the relevant elements of the model to the processes of the selected 
PRM and to the relevant process attributes of the measurement framework. The mappings are based a 
set of capability indicators that explicitly address the purposes and outcomes of the processes and dem-
onstrate the achievement of the process attributes within the capability levels in the scope of the PAM.

In Part 2, a PAM is an abstract component of the assessment model; however, in practice, the exem-
plar PAM in Part 5 of the suite is frequently addressed in the assessments and ISO/IEC 15504-based 
SPI initiatives. The exemplar model takes all 12207 processes into its scope and defines capability indi-
cators in terms of generic practices, generic work products, generic resources and base practices, and 
work products. ISO/IEC 15504 conformant PRM and PAM implementations are available for many 
business domains including automotive (Automotive SPICE), medical (Medi SPICE), space (SPICE 4 
SPACE), banking (Banking SPICE), and component-based software development domains (OOSPICE) 
(von Wangenheim et al. 2010).

ISO/IEC 15504 is applicable by or on behalf of an organization with the objective of understand-
ing any capability gap between the actual and the target capability profiles for the purpose of process 
improvement or determining the suitability of organization’s processes or determining the suitability of 
another organization’s processes for meeting particular requirements. ISO/IEC 15504 framework pro-
vide the means to determine process capabilities and can be used for setting improvement targets both 
at process entity (i.e., process area) and organizational levels.

79.3.3 R esults from Implementations

CMMI-DEV and its predecessor SW-CMM have been the dominant models used in model-based SPI 
investments throughout the world. According to a 2008 literature review (Staples and Niazi 2008), rea-
sons reported for CMM-based SPI includes “software quality” as the most common answer (65%–70%), 
followed by “development time” and “deployment costs” (around 55%), “productivity” (>40%), and 
“process visibility” (30%).

Substantial improvements in large companies in terms of software quality, development time, and 
productivity have been reported by individual and review studies (Agrawal and Chari 2007; Diaz and 
Sligo 1997; Gibson et al. 2006; Haley 1996; Herbsleb et al. 1997). In a SEI technical report, a survey 
of 61 assessments from different organizations was conducted, and the results of SEI report in 2006 
(Gibson et al. 2006) summarized the empirical results of CMMI-based improvements from 35 organi-
zations including small and mid-sized companies (Table 79.6). The organizations reported significant 
performance improvements after adopting CMMI, and they attributed their achievement to the model. 
The reporting organizations mostly defined quality measures as defects, and improvement in product 
quality is mostly measured by reductions in numbers of defects. Customer satisfaction was measured in 
terms of award fees and customer survey. Another study explored the relation between process maturity 

TABLE 79.6  CMMI Performance Results

Performance Category
Median 

Improvement
Number of Data 

Points
Lowest 

Improvement
Highest 

Improvement

Cost 34% 29 3% 87%
Schedule 50% 22 2% 95%
Productivity 61% 20 11% 329%
Quality 48% 34 2% 132%
Customer satisfaction 14% 7 −4% 55%
Return on investment 4.0:1 22 1.7:1 27.7:1
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and project performance using survey data from 154 experienced software project members (Jiang et al. 
2004). The results of the analysis confirmed that software process management maturity is positively 
associated with project performance.

Evidently, not every organization that has attempted CMMI-based process improvement has suc-
ceeded. A group of problems were observed to be general and related to the management of change and 
underestimated costs and time frames that SPI initiatives typically encounter. Survey results include 
evidence where SPI efforts are overcome by crisis due political struggles within the organizations or by 
an underestimated time and resource needs (Herbsleb et al. 1997; Dybå 2003, 2005; Pino et al. 2008). 
Another group of problems and risks are considered to stem from the characteristics of the CMM itself 
(Bollinger and McGowan 1991, 2009; Bach 1994; Staples et al. 2007). The model was found to be costly, 
heavy-weight, bureaucratic, and inherently infeasible for small scale organizations and projects. It was 
considered to overlook the people (creativity) dimension, not to provide adequate practical guidance 
on how to improve the process. SCAMPI appraisals were found inflexible with too much emphasis on 
statistical soundness and fairness. In addition to these causes for failure or inapplicability, the model 
was criticized to cause over expectations and not to be able to explain high maturity organizations with 
low performance and low maturity organizations dominating markets.

ISO/IEC 15504 is the second most used model after CMMI. A part of the difference in the usage share 
has been explained by the emergence of the standard much later than CMMI and continuous marketing 
of CMMI under the sponsorship of SEI and US Department of Defense. Nevertheless, the utilization 
of ISO/IEC 15504 standard has begun increasing in a wide-scale and a diversity of uses (Pino et  al. 
2008, von Wangenheim et al. 2010). This is mainly attributed to the fact that the model was found to 
be flexible, easy to use and understand. A frequent way of putting ISO/IEC 15504 into action have been 
through the development and use of conformant process assessment methods, particularly tailored for 
small and medium sized enterprises (SMEs) (von Wangenheim et al. 2005, 2006). Wangenheim et.al. 
and Montoni et al. separately reported the results of SPI that are based on ISO/IEC 15504-based confor-
mant models developed to help Brazilian small companies. In von Wangenheim et al. (2006), according 
to results of a survey performed 1 year after the assessments, they found convincing evidence on the 
practice of systematic approaches to project management, measurement, customer-relations, software 
testing, and product installations. Besides, the assessment method for small software companies was 
found beneficial, because they were able to understand the strengths and weaknesses of their processes 
and focus on high-priority processes. Similarly, in Montoni et al. (2009), promising improvements were 
realized at reasonable costs. In the study, it was also reported that the use of a process-centered software 
engineering environment have catalyzed the improvements, reducing SPI costs up to 60% and amount 
of project rework up to 36%. Effective uses of ISO/IEC 15504 have been also materialized through the 
development of domain specific conformant models. For instance, the results from the trail implemen-
tations of the S4S model (Cass et al. 2004), which have been developed for space domain, indicate that 
the model is found useful for effective assessment and addressing paths for improvement. Individual 
studies on ISO/IEC 15504-based SPI programs also have reported encouraging results where the models 
were found to enable systematic improvements (Moreau et al. 2003; Truffley et al. 2004).

79.4 R esearch Issues

We conducted a brief systematic literature review (SLR) to further confirm outstanding research issues. 
For a more comprehensive SLR, the readers may refer to Unterkalmsteiner et.al. (2012). Our analysis 
identifies three important topics: SPI for small organizations and agile development, measurement, and 
automation and tools.

The software processes of organizations are characterized by a vast number of factors, that is, the busi-
ness goals, the culture, accumulated knowledge and experience, the company size, the market and cus-
tomer demands, the software domain and environmental and regulatory constraints, etc. Moreover, each 
execution of an organization’s software process is unique as it is dominated by creative human activities.
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SPI is challenged by this process diversity issue, and there is no generic reference process model that 
suits for all software development projects and organizations (Lindvall and Rus 2000). However, SPI mod-
els are intended to provide the organizations with a systematic approach and relevant tools for managing 
the complexity of these factors, increasing their performance; thus, to implement “process-thinking” 
(Dybå 2005). Organizations increasingly recognize the importance of software processes and model-
based SPI is regarded as one of safe paths to improve their business and to survive in the market. In 
parallel to endeavors for adopting SPI models, SE research has been evaluating the theoretical soundness 
of SPI models and their validity in practice and proposing improvements to these models. Based on the 
current trends and analysis of available literature, we address the following issues for future SPI research.

79.4.1  SPI for Small Organizations and Agile Development

SMEs have a growing impact in software development industry. In some countries, the majority of soft-
ware project development is realized by SMEs. While empirical results have indicated that successful 
implementation of SPI models were mostly possible in large organizations, SPI research has identified 
various challenges that make model-based SPI infeasible or risky for SMEs (Emam 2006; Staples et al. 
2007; Mishra and Mishra 2008; Pino, García, and Piattini 2008).

A group of factors poses limitations on SMEs such as budget, time, subject-matter expert staff con-
straints and inadequate guidance. Others are related to structure of the models and their validity in 
SME business context. Most literature works consensually agree that adopting an SPI model is not just 
a matter of using the scaled-down versions of the models, and SMEs have highly variable priorities and 
motivations for doing business when compared to large organizations (Richardson 2001; Mishra and 
Mishra 2008). Nevertheless, there have been successful SME implementations of the SPI models (Dybå 
2003; Gibson et al. 2006). Several factors have been found to be critical in SMEs success with model-
based SPI such as model flexibility, improvement paths: continuous or staged, software development 
team members involvement, involved people’s prior experience in the field, existence of tools for self-
assessment, and learning strategy (Dybå 2005; Mishra and Mishra 2008; Pino et al. 2008). The problem 
is increasingly attracting attention from researchers and studies have begun investigating model-based 
SPI in SME context and collecting evidence on particular requirements and factors of SPI success (Pino 
et al. 2008). Empirical validation studies and systematic review indicate increasing number of publica-
tions on the subject and encourage more empirical results of SPI implementations (Pino et al. 2008; 
Staples and Niazi 2008).

In addition to proposals for new or tailored models for SMEs, possibilities for harmonizing other 
software development approaches are being explored (von Wangenheim et al. 2010). Among them, agile 
methods have been favored in SMEs due to its inherent suitability for small team settings (Dybå and 
Dingsoyr 2008). Agile methods have also attracted interests of large-scale companies, and attempts have 
been made to adopt agile practices to large organizations (Auvinen et al. 2005). In agile models, people are 
in focus, where in SPI models the processes are. Despite this difference, there is a growing discussion on 
harmonization of model-based SPI and agile practices (Boehm 2002; Nerur et al. 2005; McCaffery et al. 
2008; Lami and Falcini 2009). We expect that SPI research will continue to study the context for model-
based SPI success for SMEs and agile environments. In the near future, we may expect a separation of SPI 
models and standards for the SMEs and more emphasis on people and organizational learning factors.

79.4.2  Measurement and Using Statistical Process Control

Clearly, measurement has a crucial role in SPI as it does in any engineering area (Kitchenham 
1996; Dybå 2005). There is a vast diversity of measurement related issues for current and future SPI 
research that seeks to address and eliminate barriers in the effective use of measurement and in 
making progress through capability levels while implementing process models. However, we believe 
the following measurement issues will be influential in model-based SPI.
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The success and continuity of SPI programs and decisions rely on a well-established measurement 
program since the benefits from SPI efforts can be justified using proper measures. Software organiza-
tions need well-defined and valid SPI measures, measurement methods, performance baselines, and 
relevant guidance that are applicable even at low maturity levels (Dybå 2005; Unterkalmsteiner et al. 
2010). SPI change measurement is a promising topic for future research where means for supporting 
organizations in measuring, evaluating, benchmarking, and communicating the impact of improve-
ment initiatives can be derived and SPI implementations can be encouraged.

A CMMI compliant organization is required to develop capabilities (e.g., achieve measurement and 
analysis process area goals) for product, project, and process measurement at starting at lower maturity 
levels (repeatable and defined). Starting from managed level and measurement becomes a critical capa-
bility in order to implement process areas effectively. Similarly, ISO/IEC 15504 defines a measurement 
process in the assessment model and proposes many other measurement practices in the whole process 
system. ISO/IEC 15504 model also requires processes to fulfill process measurement process attribute at 
predictable process capability level (level 5) and higher. SPC is a very powerful tool in process manage-
ment and improvement, and SPI models direct SPI efforts to apply SPC techniques. However, despite 
the models exhort organizations to do measurement, the existence of SPC-enabling requirements at 
high maturity levels (level 4 and above) and the common sense belief that SPC can only be performed 
after achieving level 4 almost prohibits organizations implementing SPC techniques earlier (Sargut and 
Demirörs 2006). It normally takes up to 5–10 years to achieve level 4 for an emergent company, which 
implies that the company will not benefit from SPC techniques before level 4. Several case studies and 
experience reports demonstrate evidence that SPC can be used at lower levels provided that processes 
are stabilized and measurements capability and reliable data are available. Another challenge that orga-
nizations encounter is the selection of which processes to apply SPC (Sargut and Demirörs 2006; Boffoli 
et al. 2008) and lack of tools for assessing processes for quantitative management (Tarhan and Demirors 
2012). SPC might not be applicable to all software processes and critical processes in a software orga-
nization should be considered for SPC, although all SPC techniques seem to be applicable. Therefore, 
organizations need methods to systematically assess their processes and apply quantitative techniques 
to understand their potential for improvement. There is limited research on this issue where further 
research output can increase effective application of techniques such as SPC and Six-Sigma, shorten SPI 
cycles, and decrease development costs.

Another issue that undermines SPI initiatives, and can be generalized to software engineering, is 
related to use of software measures and metrics that lack theoretical rigor and validity. Despite the prog-
ress in software measurement research and international standardization efforts (e.g., ISO/IEC 14143), 
there is a lag between research and practice (Pfleeger et al. 1997). Research for defining and validating 
software measures and developing measurement methods is expected to continue together with further 
standardization and communication.

79.4.3 A utomation/Tools

Process definitions are central for both CMMI defined and ISO/IEC 15504 established levels. In 
model-based SPI, they also provide the comprehensive and efficient means to describe an organiza-
tion’s processes and compare them to prescriptive process libraries of an SPI model. Therefore, integrat-
ing process modeling with process improvement activities can enhance the efficiency of SPI initiatives 
(Makinen et al. 2007). Tool support is essential for modeling processes enabling formalism in descrip-
tions and other facilities for process automation, error checking, integration, and simulation. However, 
the relation between process modeling and process improvement has not been examined in the litera-
ture thoroughly.

Another challenge in SPI is the use of automated tools at large scale and in integration. For example, 
a CMM-adopting organization improvement focus extends from individual project performance to 
multiple projects and then to organizational performance as the organization progresses to upper levels. 
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This implies the use of integrated tools such as measurement, process modeling, workflow, and docu-
ment management tools used organization-wide (Sharp and McDermott 2009). Although large com-
panies can afford the burden to develop or acquire custom solutions, the problem challenges the SMEs 
requiring more resources and subject matter expertise (Montoni et al. 2009). SPI tools are among the 
important topics of future SPI research.

79.5  Summary

In this chapter, we introduced software quality and model-based process improvement. Quality is more 
and more often seen as a critical software attribute and a determinant of business success. The absence 
of quality in software products and services results in dissatisfied users, financial loss, and may even 
endanger to our lives. SPI is a process-oriented approach to address quality problems.

We presented underlying principles by focusing on quality, process and quality, and the CoQ. We 
explained quality using different defining approaches, such as transcendental, product, user, manufac-
turing, and value-based approaches.

We then defined process and quality starting with the concept of process as widely appreciated as the 
proper ground for improving product quality and productivity. We highlighted the importance of SPC, 
plan do check act, and TQM.

We also explained CoQ. CoQ analysis and techniques have been in use for more than 50 years and there 
are multiple models for CoQ. These models are the effective tools in feasibility analysis of SPI programs 
and the measurement and evaluation of the program performance. Both theory and experience advise 
investing on prevention and appraisal costs to get the highest returns from the decreased costs of appraisal 
and failure.

In terms of best practices, we focused on software process maturity, models for SPI, and results from 
implementations. The use of maturity models has been popularized in software engineering through the 
SEI software-CMM, which was published in 1991. In 1993, in Europe, ISO started the SPICE initiative. 
Both these models define capability levels for software processes and corresponding key process areas. 
Not every organization that has attempted model-based process improvement has succeeded. A group 
of problems were observed to be general and related to the management of change and to underesti-
mated costs and timeframes. Survey results also included evidence that SPI efforts were overcome by 
crisis due political struggles within the organizations.

Software processes are characterized by a vast number of factors, that is, business goals, organiza-
tional culture, accumulated knowledge and experience, company size, the market, domain and envi-
ronmental and regulatory constraints, etc. SPI is thus challenged by this process diversity, and there is 
no generic reference model that suits all software development projects and organizations. Furthermore, 
our analysis showed that the main areas of future research should focus on SPI for small organizations 
and agile development, measurement, and using SPC and automation/tools.

Key Terms

Capability maturity model integration (CMMI): An approach to process improvement that pro-
vides organizations with models that consist of the essential elements of effective processes. 
CMMI models define a number of levels of process maturity in terms of the key processes 
undertaken at these levels.

Cost of quality (CoQ): Any cost that would not have been expended if the quality was perfect such that 
there were no possibility of substandard service, failure of products, or defects in their manufac-
ture or development.

FURPS: An acronym representing a model for classifying software quality attributes: Functionality, 
usability, reliability, performance, and supportability. The model was proposed by Robert 
Grady and Hewlett Packard in 1987 (Grady and Caswell 1987).
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ISO/IEC 15504: A generic framework for the assessment of software and system processes published as 
an international standard. Used most widely by software and systems development organiza-
tions in process improvement and capability determination contexts. Also known as SPICE.

Model-based software process improvement: An approach to software process improvement where 
collections of best practices are organized into reference process models (e.g., CMMI models 
and ISO 15504-15505) that help organizations improve their processes.)

Plan–do–act–check cycle: An iterative four-step management method used for continuous improve-
ment of processes and products. Also known as Deming or Shewart cycle.

Six-Sigma: Six Sigma is a data-driven quality improvement strategy that values defect prevention over 
defect detection. It has a focus on the control and the reduction of process variation through 
the application of statistical methods.

Small and medium sized enterprise (SME): The organizations whose number of employees falls below 
certain limits. The defined limits vary across countries and organizations.

Software quality requirements and evaluation (SQuaRE): The second-generation software quality 
standards being published by ISO and aims to harmonize ISO 9106 (product quality) and ISO 
14598 (product evaluation).

Total quality management (TQM): An integrated system of principles and procedures whose goal is to 
improve the quality of an organization’s goods and services.

Further Information

As a sequel to book by Humphrey (1989), Software Engineering Institute (1995) provides a description 
and technical overview of the capability maturity model for software process management, along with 
guidelines for improving software process management. Hunter et al. (2001) summarizes the best prac-
tices for software process improvement (SPI) and related international standards and provides the reader 
with a collection of republished papers from journals in SPI and papers from international experts in 
the field. Emam et al. (1997) covers both the theory of SPICE (ISO 15504) and its practical applications, 
including the lessons learned from the SPICE trials. Kan (2003) gives a thoroughly updated overview and 
implementation guide for metrics and models used in software quality engineering, which are essential 
in support of process improvement. In his book, Kemp (2006) gives a general and practical guide to the 
basic terms, concepts, and tools for defining, measuring, and managing quality as well as giving an insight 
into history of quality movements. In particular, part 3 of Kemps’s book addresses software quality and 
process improvement. Similarly, two handbooks published by American Society for Quality are two com-
prehensive guides to Software Quality Engineering discipline, which includes quite valuable information 
for achieving quality through process improvement (Borror 2008, Westfall 2009).

Research articles on process and quality improvement regularly appear in the following journals, among 
others: Journal of Software: Evolution and Process, Software Quality Journal, IEEE Software, IET Software, IEEE 
Transactions on Software Engineering, Information Technology Journal, and Journal of Systems and Software.

The following annual conferences regularly present research work in software process improvement: 
EuroSPI2, Product-Focused Software Process Improvement, SPICE Conference on Process Improvement and 
Capability dEtermination in Software, Systems Engineering and Service Management, and International 
Conference on Software Quality.

The reader is also referred to the following web sites, which are hosted by organizations that include 
valuable resources in the field and include many other references to research in software quality and 
model-based process improvement:

http://www.eurospi.net, European System & Software Process Improvement and Innovation.
http://www.sei.cmu.edu/cmmi, Software Engineering Institute.
http://asq.org, American Society for Quality.
http://www.spiceusergroup.org/, SPICE Users.
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80.1  Introduction

Software measurement gained momentum as a field of study in the 1970s as researchers began to investi-
gate factors that were thought to influence software development and the performance of software appli-
cations. Over time, the scope of software measurement grew, and it took on a critical role in software 
engineering. In A Framework of Software Measurement, Horst Zuse observed, “From a management 
perspective, measures support up-front estimation of time, resources, and quality, provide true status 
of projects to permit early insight into potential problems, enable the correction of problems before the 
consequences consume you, guide decisions on resources, priority adjustments, and schedule stability 
based on data, not best guesses, and provide hard data on which process can be improved and where 
to improve them” (Zuse 1998). Software measurement is not a passive field of inquiry; it is an action-
oriented activity that supports informed decision making.

80.2  Principles

What are now considered the foundational principles of software measurement have emerged from 
years of experience and research. The field has evolved as challenges of implementation, adaptation 
to new methods of software development, and the scale and pervasiveness of software have increased. 
While some degree of software measurement is frequently employed in practice, overarching theories, 
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systematic applications, and empirically validated results have taken longer to emerge. A 1997 article on 
the state of software measurement by Shari Pfleeger noted that while measurement theory was receiv-
ing considerable attention from researchers, the theoretical underpinnings of software measurement 
were largely ignored by the practitioners and customers (Pfleeger et al. 1997). Rather, they seemed to 
be solely concerned with a metric’s utility in practice regardless of its scientific grounding. Indeed, 
Grady Booch has noted regarding his method of measuring architectural complexity, “In practice, I’ve 
found these rules of thumb sufficient for distinguishing relative complexity. They’re woefully inadequate 
for measuring absolute complexity; they’re also woefully under-tested. And yet, for my purposes they 
work” (Booch 2008). Shari Pfleeger and her colleagues went on to identify the lack of models in software 
engineering as symptomatic of a much larger problem: a lack of focus on software engineering as a sys-
tematic set of connected activities (Pfleeger et al. 1997).

More recently, Pfleeger highlighted new challenges in her article “Software metrics: Progress after 
25 Years?” (Pfleeger 2008). The first challenge, Pfleeger says, is dealing with uncertainty: “[W]hen we 
use models developed in the research community, we rarely see the assumptions expressed explicitly, 
let alone evaluate whether they apply to our particular situation. This disconnect is especially true 
when we apply economic models for cost estimation or trade-off analysis.” Another challenge is mea-
suring “soft” characteristics, such as context, experience, and expertise. Involving social scientists in 
measurement research could be helpful in developing useful measures for how these characteristics 
affect product and process outcomes. Finally, anticipating change and developing heuristics are identi-
fied as additional challenges that need to be addressed to enable progress in software measurement.
Together, these articles establish a set of principles around which best practices are defined. These prin-
ciples include

•	 Increasing and demonstrating the value provided by measurement
•	 Consistently capturing product and development context and other metadata
•	 Understanding variation and explicitly reflecting uncertainty
•	 Developing validated measures, especially for quality attributes
•	 Providing predictive models and indicators
•	 Developing validated benchmarks and heuristics
•	 Understanding and improving data quality

There is a continuing need for ensuring and demonstrating the value provided by software measurement 
and making its practice cost effective. For software measures to truly be useful and actionable, they 
must be based on sound principles, valid, and take the product and development context into account. 
As noted by Pfleeger, models and analyses also need to explicitly reflect uncertainty.

In recent years, software systems have been expected to possess a growing numbers of qualities such 
as security, interoperability, and usability. Before we can understand exactly what is meant by these 
qualities and how well they are implemented, the field of software measurement needs to develop, vali-
date, and agree on measures for these qualities. Additionally, measurement cannot be truly effective if 
it only reflects what has been. It must provide models and analyses that enable us to foresee problems 
and take actions to avoid or minimize adverse effects. Finally, given the increasing volume of informa-
tion that can confront managers and other decision makers, evaluating it and using it to make decisions 
can be quite difficult. Heuristics and guidelines need to be developed and validated to help people make 
sense of the information provided.

The area of data quality, although not explicitly identified as an issue in the software measurement 
literature, also needs attention (Kasunic et al. 2011). Poor-quality data are a problem from multiple per-
spectives. While the most common understanding relates to the quality of data in a database (such as 
information about customers), the same principles and techniques can be applied to assess the quality 
of the data related to software projects and software engineering.

In the following sections, we describe best practices and frameworks related to each of the seven 
principles noted earlier.
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80.3  Best Practices

80.3.1  Increasing and Demonstrating the Value of Software Measurement

80.3.1.1  Software Measurement Standards

The International Organization for Standardization (ISO) defines a standard as “a document that pro-
vides requirements, specifications, guidelines, or characteristics that can be used consistently to ensure 
that materials, products, processes, and services are fit for their purpose” (ISO 2012). Among those 
standards having an impact in the field of software measurement are ISO/IEC 15939 (ISO 2007a) for 
software and systems engineering measurement, and the ISO/IEC 25000 series for software quality 
measurement (ISO 2005). These standards embody principles and best practices as defined and codified 
by experts in the field.

ISO/IEC 15939 defines a general measurement and analysis set of practices and framework for soft-
ware. It has made a couple of important contributions to the field in addition to laying out practices 
related to the measurement and analysis process. First, it standardizes the terminology for the key con-
cepts associated with software measurement. Second, it defines an information model, shown in Figure 
80.1, which links the base measure and the method for collecting it to the decision that the measure 
should inform.

This standard is important because, as Vic Basili noted, the interpretation of a measure and the infor-
mation that it conveys depends on the context in which it was gathered and the context in which it will be 
used (Basili et al. 1994). Understanding and sharing the context is vital to the intelligent use of measures 
from a practical perspective and to validation of the purported utility of the measures by researchers.

To fully understand a measure, it is useful to think about the process that produces the information 
on which we base our decisions. Various depictions have been used to illustrate the process and the 
issues associated with producing highly quality data and analysis that supports informed decisions. As 
depicted in Figure 80.1, the ultimate purpose of the measurement and analysis process is to meet an 
information need. A measurement product, such as a report, graph, table, or dashboard, is created in 
this process to represent the interpretation of the analyses performed on the data that have been col-
lected. Continuing to move down the diagram in Figure 80.1, you will notice the concept of a derived 
measure. This is a measure that is the result of combining two or more base measures, for example, pro-
ductivity. Common measures for productivity include lines of code or function points per effort hour or 
effort month. The manner in which the base measures are combined is the measurement function. These 
functions could include addition, multiplication, division, or a more complex formula.

Further down are the base measures. This is where the raw data collection occurs. As Figure 80.1 
indicates, base measures result from applying a measurement method to one attribute of an entity. In 
software engineering, there are many entities, each with a multitude of attributes, from which to choose. 
For example, consider an application or file as an entity. Attributes commonly of interest include its size, 
quality, and cost or effort to produce. Assuming we want to measure its size, we can choose among sev-
eral measurement methods, such as counting lines of code or function points. Even at this point, there 
are variants and decisions to make about the specific counting details. For value to be delivered to the 
organization, choices need to be made and aligned with the information need to be served, not only at 
this point in the process but also at many other points in the measurement and analysis life cycle.

Several approaches can be taken to implement measurement. The Capability Maturity Model 
Integration (CMMI) Measurement and Analysis (M&A) process area provides a complete, high-level 
framework describing what is needed to implement measurement (CMMI 2010). The M&A process area 
describes important practices needed to institutionalize measurement and analysis, including provid-
ing the resources needed to implement it, training those involved, and verifying that the process is being 
performed. Specific practices for implementation address planning and defining what to measure, how 
to measure (including instrumentation, tools, and procedures), what types of analyses to perform, and 
how results will be reported and to whom.



80-4 Software Quality and Measurement

Organizations can use the Measurement and Analysis Infrastructure Diagnostic (MAID) method 
to help detect and evaluate shortfalls in the performance of their measurement and analysis pro-
cess (Kasunic 2010). MAID structures criteria from several sources of best practices into an assess-
ment method. Sources include CMMI, ISO standards, Practical Software and Systems Measurement 
(McGarry et al. 2001), and the works of leading practitioners in various areas of the measurement and 
analysis process, including information design, data analysis, and measurement technology (SEMA 
2009). Another useful tool for implementing measurement processes is the indicator template (Goethert 
and Siviy 2004). Building upon the GQM work of Basili et al. (1994), the GQIM approach adds an “indi-
cator” step (Zubrow 1998). In this approach, a sketch of the output of the measurement process, such 
as a chart, table, or report, serves two purposes. First, it can be analyzed to make sure that it addresses 
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FIGURE 80.1  The ISO 15939 information model.
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the identified information need prior to implementing the measurement process. Evaluating a sketch of 
the output helps determine if the data, as analyzed and displayed, will provide the information needed. 
Second, it specifies the data needed to build the indicator and serves as input for planning its imple-
mentation. The rationale and specification for the indicator can be recorded in the indicator template 
(Goethert and Siviy 2004).

Another notable series of standards, the ISO/IEC 25000 series, relates to the definition and measure-
ment of software qualities. The standard was originally identified as the ISO/IEC 9126 series. The 9126 
series and ISO 14598 are being integrated and updated as the ISO/IEC 25000 series (ISO 2005). This 
series focuses on software quality, with standards addressing requirements development, software eval-
uation, quality models, and measurement. Within the 25000 series, the measurement set of standards, 
25020–25024, includes a general measurement process building on ISO 15939 and catalogs of measures 
related to the quality characteristics listed in the quality model. The overall software quality model, ISO/
IEC 25010, is actually composed of a quality in use model and a product quality model (ISO 2011). Each 
model lists several quality characteristics and subcharacteristics. The quality in use model is shown in 
Figure 80.2 and the product quality model is shown in Figure 80.3.

ISO/IEC 25020 builds on the information model from ISO 15939 to show the relationship between 
the conceptual models depicted in Figures 80.2 and 80.3 and the operationalized measures of those 
qualities (ISO 2007b). Figure 80.4 shows this relationship.
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Measures for these quality characteristics can take a number of forms. For example, measures of the 
quality in use characteristics may be based on financial and sales information, end-user feedback, or 
surveys. Alternatively, measures of the product quality characteristics are likely to be based on static and 
dynamic measurement methods applied to software artifacts and work products. Examples of methods 
and data to measure product quality characteristics include software inspection, static analysis, and test 
results. Kasunic and colleagues developed a data specification for software project performance follow-
ing the approach described in ISO 15939 (Kasunic 2008b). The specification defines measures for project 
effort, productivity, project duration, schedule predictability, requirements completion ratio, and postre-
lease defect density. Furthermore, it defines measures for project influence factors. These are factors that 
influence project performance measures that may or may not be under the control of the project.

80.3.1.2  Understanding Value

A general principle for software measurement is to return more value to the organization than the 
expense the organization incurs to collect, store, and analyze the data. That is, the value of software 
measurement is directly tied to the use of the information generated versus the cost of collecting and 
analyzing the software measurement data. To help generate value, the right information needs to be pro-
vided to the right decision maker at the right time. To accomplish this, it is important to understand the 
decision to be made, the information needed to support the decision, and how that information should 
be displayed. As noted earlier, the Software Engineering Institute (SEI) indicator template is a useful 
tool to ensure the purpose and uses for data to be collected is understood and agreed upon prior to 
initiating data collection. While we want to maximize the value returned, it is also worthwhile to think 
about minimizing costs. One way costs can be minimized is by ensuring that only information that will 
be used is collected. If there is not an identifiable purpose and stakeholder for the information, then 
perhaps the data collection need not be done and overall measure expense can be reduced. A second 
strategy for increasing value is to integrate the collection into the work processes performed to develop 
the software. The measurement framework integrated into the Team Software Process is a good example 
of this (Humphrey 1999).

80.3.1.3  Measurement and Analysis Tools

A variety of tools are available to automate the collection and analysis of data. These tools support mea-
surement and analysis practitioners performing tasks such as data collection, storage, analysis, and 
reporting. Tools can now automate many of the activities involved in measurement and analysis and offer 
interfaces to engineering and management applications such as requirements management repositories, 
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FIGURE 80.4  The ISO 25020 software product quality measurement reference model.
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earned value management systems, and defect tracking systems. These tools ease the burden of collecting 
data by utilizing the data generated as a natural by-product of performing engineering activities. They 
can also be used to create a repository where data from multiple sources are stored, which facilitates anal-
yses and reporting for a variety of data types. A common product of this work is a project dashboard or 
balanced scorecard that reports cost, schedule, requirements, technical progress, risk and dependencies, 
and quality (Kaplan and Norton 1992, Few 2006).

Organizations today are using a wide variety of analyses to gain insight into and manage their engi-
neering activities and projects. Some of these techniques include modeling and simulation using discrete 
event simulation, dynamic simulation, and Monte Carlo methods. Discrete event simulation, for instance, 
can be used to analyze proposed process changes (Raffo et al. 2007), while Monte Carlo simulation can 
be used to improve schedule analyses by characterizing activities by best, worst, and most likely case 
distributions and running thousands of combinations to come up with an overall schedule distribution.

General statistics packages and specialized programming languages provide access to an enormous 
number of parametric and nonparametric multivariate techniques that can prove beneficial, including 
analysis of variance (ANOVA), regression analysis, correlation analysis, and chi-square analysis. As 
in any field, formal statistical analysis guards against being fooled by relationships that could be the 
result of chance and enables the detection of relationships that may be too complex or subtle to perceive 
through less sophisticated analytical techniques or visual inspections of the data. Software packages 
now include the ability to conduct more specialized analyses, such as statistical process control (SPC), 
that were once found in separate, specialized packages. Statistics packages can also provide a full gal-
lery of displays for visualizing raw data. Other special analyses for specific investigations include cost 
estimation, reliability growth modeling, Bayesian analysis, machine learning, and data mining applica-
tions. Finally, there are tools that will perform specified analyses and format and assemble the results 
in a report or in the form of a dashboard. These tools save much effort and time. However, users should 
be knowledgeable about their configuration and the business rules they use for aggregating and sum-
marizing results. This is especially true when the dashboard reduces the data to a stoplight chart and the 
thresholds used to assign red, yellow, and green values are not readily evident.

80.3.2  Capturing Context: The Importance of Metadata

Collecting data about measured values such as size, effort, and quality is useful for analysis and deci-
sion making, but metadata and contextual information also need to be captured and included with the 
analysis to get the most value from the data. Metadata provide context for understanding and interpret-
ing the measured data. Imagine the following scenario: You are asked to develop an estimate for the next 
project that your team will be performing. You think it would be useful to have a productivity figure to 
use as input to computing the estimate and look to the web to find an average productivity value. As you 
think about it, you might decide that you would like a figure based on projects that are similar to the one 
you will be conducting. Part of this context might include: the project’s type, size, when it was executed, 
the methodology used, characteristics of the team, the customer for the project, whether it was the ini-
tial or a subsequent release, the country where is was performed, and so on. This contextual information 
is considered metadata, although it might be referred to by other names. In the data specification for 
project performance measures described earlier, the project influence factors are examples of metadata.

The aspects of the context that you capture are driven by your understanding and anticipation of 
how the measures will be used. Often, the data are being generated and used in a specific project, so 
much of the context is implicit. A rich set of contextual information, or attributes, about measures 
enables analyses that span projects, processes, domains, and organizations. It also allows data to be 
segmented into groups that may exhibit patterns and predictability that are not apparent in the total 
aggregated data set. One way of identifying useful contextual attributes is by imagining the types of 
questions you want answered and analyses you might perform. Another technique is to sketch out any 
charts or reports to be produced and note the breakdowns that are needed.
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80.3.3  Understanding Variation and Explicitly Reflecting Uncertainty

Understanding variation in measures is important for making the information as useful as possible for 
informing decisions (Wheeler 2000). As measures are collected, they combine to form a distribution. 
For example, the average productivity within an organization might be 3 LoC/h. However, productivity 
might range from a minimum of 0.5 to a maximum of 5. The distribution reflects the degree to which 
productivity on projects varies within the organization. Rather than always using the average productiv-
ity, decision makers can select a value from the distribution that reflects their risk tolerance. If they want 
to be sure that the project has adequate resources and time to execute, they can select a value from the 
lower end of the productivity distribution. The distribution provides much more insight and informa-
tion for making decisions and allows consideration of uncertainty to be included in the decisions made.

Statistical process control is the most common type of analysis used to understand variation and is 
often represented by a control chart. The basic elements of a control chart include a center line, upper 
and lower control limits, and the plotted data in a time-ordered sequence. The center line represents 
the average performance of the process, while the distance to the control limits represents the varia-
tion in process performance and the magnitude of uncertainty associated with future performance. In 
Measuring the Software Process, Florac and Carleton discuss how to appropriately and effectively apply 
this method of analysis to software engineering processes (Florac and Carleton 1999).

Understanding variation and uncertainty can improve the nature of commitments and management 
decisions. For instance, when committing to a delivery date or budget, it might be wise to pick a point 
from the relevant distribution where previous performance suggests a 90% chance of being successful. 
Note that this is very different than basing the decision on average performance and requires detailed 
knowledge of the distribution of the relevant performance data.

80.3.4  Validating Measures: The Case of Quality Attributes

Validation in software measurement means the extent to which the measure meets its intended purpose 
or measures the concept that it is intended to measure. In the field of measurement, validity is not an 
all-or-nothing concept; rather, measures can have varying degrees of validity that are influenced by the 
reliability associated with their measurement method. The two concepts, validity and reliability, are 
inextricably linked. The practice of measurement system evaluation offers techniques for examining the 
degree to which measures are valid and reliable.

Measurement reliability is defined as the extent to which a measurement method produces the same 
value when applied to the same object. One way to effectively increase measurement reliability is to have 
clear and detailed operational definitions of software measures.

The lack of precision in operational definitions of measures was addressed by a series of technical 
reports by the SEI in 1992 (Carleton et al. 1992). These reports provided a means for communicating 
exactly what is to be included and excluded in a measure. One example of the lack of common inter-
pretation can be seen in the wide range found when counting the number of lines of code in a small 
function. Interpretation problems such as this have existed for years, and the problem of definition 
continues to plague the field as it addresses quality attributes such as security, interoperability, usability, 
and others. As software becomes more pervasive, an increasing number of these quality attributes are 
assigned to it. Recently, these attributes have been codified in ISO 25010, which is an update of its prede-
cessor, ISO 9126. The standard is structured into six main characteristics, each of which includes mul-
tiple subcharacteristics. These characteristics reflect an increasingly important challenge to the field of 
software measurement: many measures are proposed but few have been empirically validated. Validating 
the relationship between the conceptual definition and interpretation of an attribute (the upper part of 
the 15939 information model) and its operational definition in terms of a specific measurement method 
(the lower part of the 15939 information model) has rarely been done. Rather, the field has tended to 
rely on logical rather than empirical validation. This may seem to be a theoretical point, but it is not. 
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Decisions and actions are taken based on the conceptual model meaning: security is low or maintain-
ability is high, but assignment of the value, low or high, is based on the specific measurement employed.

This bleak assessment is a general, not universal, characterization. Current research is being done 
in this area and validation studies are being conducted. For instance, many studies in the journal 
Empirical Software Engineering include a description of how their results were validated. However, the 
generalizability of the results remains questionable. Among the obstacles are the lack of a good refer-
ence database against which validation analyses might be conducted, the difficulty developing samples 
from a reference population, and the general reluctance of organizations to collect and share data. To 
overcome these obstacles, researchers have become resourceful. They use data from public repositories 
and open sources, conduct experiments with students, and find industrial organizations with which to 
collaborate. However, this makes the process of transition into practice slow and uncertain. This type 
of evidence often does not sway an organization to adopt a new measure; it does not overcome an orga-
nization’s preference for “what seems to work for them” (Pfleeger et al. 1997, Booch 2008). While the 
decisions made might be right for individual organizations, they ground the field in local empiricism 
and slow scientific progression.

A related problem occurs when measures are used without explicit conceptual definitions. This can 
happen when measures are collected in an ad hoc manner in a repository and then used with assump-
tions placed on them by the analyst with no real knowledge of the details of measurement and collec-
tion. In these instances, there is often misunderstanding and ambiguity as differing interpretations, 
purposes, and meanings are assumed for a specific measure. This is often the case when measuring lines 
of code. Lines of code is often considered a needed and important measure, but the reason why is rarely 
explicitly stated. From a research and community view, the lack of details and metadata diminishes the 
contribution the measure can make to the community as a whole. Good practice would establish the 
validity of the measure in four ways corresponding to various forms of validation (Ghiselli et al. 1981). 
First, the measure would logically relate to what it purports or is intended to measure. Second, the way it 
is measured—that is, by counting something, by asking experts to provide a rating, or via some testing 
mechanism—should also make logical sense. Third, the measure should correlate with an independent 
measure of the same quality attribute. Finally, there should be evidence that the measure is providing 
value to the user.

80.3.5  Providing Predictive Models and Indicators

Measurement should not be used only to reflect the current state of a product or past performance but 
also to provide insight into what will be in the future. In order to do this, predictive models must be 
developed. As an analogy, think of a gas gauge. As a measure, it indicates the amount of fuel remaining 
in the tank. However, as the fuel level decreases, most drivers and cars can now predict the number of 
miles they can go before running out of gas. This information can then be used to decide when to go to 
a fueling station. The number of miles that can be driven before running out of fuel is based on a predic-
tive model.

Predictive models play many roles and inform many decisions in software engineering. For instance, 
a manager might want to know whether a project will meet its delivery date. The answer is often based 
on a predictive model, for example, a model that uses productivity to date to predict when the work will 
be completed. There are a variety of assumptions with such a simple model and they need to be explic-
itly assessed for their reasonableness and applicability. Furthermore, the model needs to be validated. 
While there are a variety of ways to demonstrate the validity of a model, the most direct is to measure 
the difference between the model’s predictions and the actual outcomes—that is, its accuracy. Accuracy 
is not an absolute characteristic but rather a measured amount. Having a measure of accuracy informs 
those using the model about the level of confidence that can be placed in its predictions. The downside of 
this is that it requires future data. During the development of the model, there are alternative statistical 
techniques that can be employed to assess its accuracy or goodness of fit.
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Developing a predictive model requires good data representing the quantity, class, or state to be pre-
dicted and data representing the variable or variables that the prediction will be based on.

80.3.6  Developing Benchmarks and Heuristics

Although it has been said that “the data speak for themselves,” this is rarely the case. There is always 
some ambiguity and possibility for misinterpretation. The principal purpose for measuring is to use 
the results to guide decision making and action. This generally requires some expectation about what 
is good, which often comes from a comparison against past performance, the performance of others, 
or customer expectations. Useful benchmark values have been published by Caper Jones (2000), the 
International Software Benchmarking Standards Group (ISBGS) (ISBSG 2012), software cost estima-
tion tool vendors, and others. However, users of this information should take care to understand the 
provenance and limitations of the underlying data.

80.3.7  Understanding and Improving Data Quality

Software measurement and analysis depends on data, yet there has been relatively little written regard-
ing the methods and practices for assessing and improving the quality of software measurement data. 
Much more attention in the commercial world has been focused on customer facing data in IT systems 
(English 2004). The research community has focused its attention on experimental methods, design, 
and instrumentation, with a relative lack of attention on data quality in practice (Kasunic 2008a). Some 
progress was made with the recent publication of the ISO/IEC 25012 standard (ISO 2008), a standard 
similar to ISO/IEC 25010. It contains a data quality model and defines a set of characteristics for data 
quality. In general, though, data quality is still an area in need of greater attention in terms of research 
and practice.

It is good practice to first check the data to be analyzed when performing an analysis of organiza-
tional, project, or product data (Tabachnick and Fidell 2013). Invariably, checks for data integrity and 
quality reveal errors and issues in the data. Errors can take the form of missing data, invalid data, and 
inaccurate data. Missing data occur when a desired piece of data is not available. This is fairly common 
if the data collection mechanism does not enforce the submission or collection of complete data. There 
are a number of methods for dealing with missing data that range from ignoring them to estimating the 
data value. How missing data are best handled depends on the particular circumstance. For instance, a 
simple solution is to replace missing data with the mean value. This can be reasonable if there are many 
cases and relatively little missing data. However, it can unduly influence the distribution of a variable if 
there are many instances of missing data. In those circumstances, it is better to use a method that cre-
ates appropriate variation in the missing values. This can be done by building an algorithm to estimate 
the missing value based on data available for that specific record. Another option is to sample from a 
distribution based on the present data.

Invalid data can occur when measured data are collected but they are not within the bounds of the 
valid range for that particular measure or are inaccurate. An example of a problem with measured data 
would be negative numbers for counts such as lines of code, requirements, and defects. Also, if there 
is a defined valid range, then numbers outside of the range would be invalid. For example, if a total is 
supposed to be 100%, then no individual value should be greater than 100% assuming that there can be 
no negative numbers. This can happen with categorical data in addition to measured values. Examples 
of problems with categorical data include nonexistent release identifiers, wrong codes for defect types, 
and status codes for change requests.

While missing data and invalid data are relatively easy to detect and prevent, inaccurate data are not 
so easy. A typical strategy is to use other information to develop integrity checks that bound the range 
of likely accurate data. For instance, historical data might inform the likely upper and lower bounds 
for certain measures thereby identifying outliers that might be errors. Knowing the distribution for 
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defect counts, requirements changes, earned value, and other measures can help detect inaccurate data. 
Techniques such as use of the Benford distribution can help identify data that have been fabricated or 
“chunked” (rounded to the nearest 5 or 0 value for instance) when in fact they were supposed to be actual 
measurements. Also, business rules representing known relationships among the data can be used. For 
example, it is often expected that the defect density of software will decrease as it progresses through dif-
ferent levels of testing (such as from integration to system testing). Should this expected trend not occur, 
reviewing the data for any errors is warranted before reviewing the development process.

80.4  Conclusions and Observations

While software measurement has long been a topic of interest and has provided measured benefits, 
much work remains. Increasing and demonstrating the value of measurement will encourage adop-
tion. As tools and technology mature, they provide an increasing amount of support for measurement 
activities and can increase the value they provide. Additionally, measures need to be carefully defined, 
contextual data recorded, information about uncertainty explicitly provided, and greater recognition 
brought to measurement reliability and validity. Models related to current software engineering meth-
ods and products need to be developed.

High-quality data are integral to effective modeling and analysis in support of making decisions 
related to software engineering. Data quality is directly related to the validity of the data used. Therefore, 
developing validated measures of quality attributes is also important. Creativity in developing measures 
of these attributes, as well as measures of progress and the quality of work products, should be encour-
aged. However, we should also demand evidence of validation and the utility of the measures before 
adopting and deploying them.

Current trends in software measurement and analysis include a greater focus on analysis, prediction, 
and integration of measurement with decision making. Better analysis could be done if the data for both 
dependent and independent variables in models of software engineering are collected. In data mining, 
this allows us to do supervised learning. While some of this occurred in previous years, it is explicitly 
included as part of best practice models and standards as well as the design of measurement systems. 
Software measurement is required to quantify quality and performance and to provide an empirical 
and objective foundation for decision making—a foundation that is a necessary element if software 
engineering is truly to be a disciplined field of engineering.
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Glossary

Unless otherwise noted, all definitions are from ISO/IEC 15939.
Attribute: Property or characteristic of an entity that can be distinguished quantitatively or qualita-

tively by human or automated means
Base measure: Measure defined in terms of an attribute and the method for quantifying it
Derived measure: Measure that is defined as a function of two or more values of base measures
Entity: Object that is to be characterized by measuring its attributes
Indicator: Measure that provides an estimate or evaluation of specified attributes derived from a model 

with respect to defined information needs
Information model: Structure linking information needs to the relevant entities and attributes of con-

cern software quality
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Process: Set of interrelated or interacting activities that transforms inputs into outputs
Software product: Set of computer programs, procedures, and possibly associated documentation and 

data (ISO/IEC 25000:2005)
Software quality characteristic: Category of software quality attributes that bears on software quality. 

Note: Software quality characteristics can be refined into multiple levels of subcharacteristics 
and finally into software quality attributes (ISO/IEC 25000:2005).

Work product: A useful result of a process (CMMI v1.3)
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Organizations

Practical Software and Systems Measurement
http://www.psmsc.com
Software Engineering Institute
http://www.sei.cmu.edu/measurement
http://www.sei.cmu.edu/tsp
Software Engineering Information Repository
https://seir.sei.cmu.edu
The Cyber Security and Information Systems Information Analysis Center (CSIAC).
http://www.thecsiac.com
The CSIAC is a Department of Defense (DoD) Information Analysis Center (IAC) sponsored by the 

Defense Technical Information Center (DTIC). The CSIAC is a consolidation of three predecessor 
IACs: the Data and Analysis Center for Software (DACS), the Information Assurance Technology 
IAC (IATAC), and the Modeling & Simulation IAC (MSIAC); with the addition of knowledge man-
agement and information sharing technical areas.
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International Function Point Users Group
http://www.ifpug.org
American Society for Quality Software Division
http://www.asq.org/software
University of Southern California Center for Systems and Software Engineering
http://sunset.usc.edu
Education Programs on Information Quality, University of Arkansas Little Rock, Information Quality Program
http://ualr.edu/informationquality/
This is a graduate program focused on information quality.
MIT Program on Information Quality
http://mitiq.mit.edu/
This is a professional education and research program.

Standards Organizations

International Organization for Standardization (ISO)
http://www.iso.org
Institute of Electrical and Electronics Engineers (IEEE)
ISO/IEC JTC1/SC7
http://www.jtc1-sc7.org/
This subcommittee within this joint committee of ISO and IEC focuses on the “(s)tandardization of processes, 

supporting tools and supporting technologies for the engineering of software products and systems.”
http://www.ieee.org
This site includes and provides access to standards and many publications including IEEE Software and 

Transactions on Software Engineering.

Publications

CrossTalk, The Journal of Defense Software Engineering
http://www.crosstalkonline.org/
Journal of Software Technology
https://journal.thecsiac.com/enews/enews4-measurement.php
General Accounting Office
http://www.gao.gov
The General Accounting Office (GAO) site has many publications addressing aspects of software and 

software projects within the Federal government.
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The persistence of similar problems in software development since the 1960s, as well as common 
observations that the vast majority of software projects are typically late and overbudget, suggests that 
the field of software engineering has not made much progress. But any close look at the complexity, 
quality, and breadth of software systems available today, for devices ranging from supercomputers to 
smartphones, demonstrates that software engineering has indeed made remarkable advances. In addi-
tion to much more sophisticated and easy to use software applications for various devices as well as the 
Internet, there are now far better programming languages, code libraries and other reusable modules, 
and support tools available. In addition, we know a lot more today than we did in the past about how to 
run software projects and software businesses.

Nevertheless, software development remains very much dependent on individual talents for prob-
lem solving, design, and creativity, leaving considerable room for managerial discretion. Moreover, 
not all individual programmers or software project managers incorporate best practices. The devel-
opment challenge is often further complicated in that many users do not know what they want until 
they see part of a working system or a prototype. Consequently, software managers and individual 
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engineers still need to think about how to manage the process of software development and how soft-
ware engineering skills can contribute to organizational success.

One reason why software projects do not always apply best practices seems due to ongoing disagree-
ments about what approaches are most effective in different contexts. Some projects require more 
invention and innovation, as well as trial and error. Invention and innovation are usually more diffi-
cult to manage and predict compared to routine work. Some customers have mission-critical reliability 
requirements, and others do not. But, whatever the situation, in order to be more systematic, software 
managers and engineers need to avoid treating all software projects as unique events.

At the same time, even though many projects may have much in common, the reality is that software 
developers still need to adapt their techniques and processes to the needs of different contexts. For exam-
ple, companies that offer mass-market products or Internet services like Microsoft, Adobe, Google, and 
Salesforce.com need to anticipate general user needs and release products or features relatively quickly. 
Professional services companies like IBM, Accenture, and Infosys, whether they are building or enhanc-
ing custom systems or hybrid solutions, have to work closely with individual clients and understand 
these distinct relationships as well as their customers’ technical and business requirements. Other kinds 
of software producers, such as those creating complex, real-time systems for defense or space applica-
tions, may have to invent as they go along and try to schedule what truly is rocket science.

In short, this chapter argues that there is no one best way to develop software and manage projects for 
all kinds of applications and contexts. It is, therefore, natural that the field of software engineering has 
generated disagreements over what is the best way to manage the development process. Be that as it may, 
some basic principles are useful to apply to a variety of projects: the need to have strategies for high-level 
process management, innovation and design, system architecture, team management, project manage-
ment, and quality assurance. The focus of this chapter is on these general principles, through the lens of 
my personal experience as a researcher, teacher, and consultant.*

81.1 � High-Level Process Concepts

When beginning a software project, rather than trying to plan out schedules and features in detail, 
managers and engineers should begin by deciding what process is most appropriate for their particular 
development effort (Cusumano et al. 2009). When making this decision, I have found three observations 
to be particularly useful. One is the recognition that all projects of more than a handful of people need 
some well-defined structure to keep everyone in synch (such as how and when to check in components, 
add features, fix bugs, or ship to the customer). This structure should be repeatable as well as adjustable 
across different phases or milestones of the same project and across multiple similar projects. Second, the 
structure should fit the particular technical characteristics and requirements of the product or system 
being built. This requires some extensive conversations with the customer or customer representatives as 
well as an understanding of the experience of the team. Third, the structure should fit the market and the 
business context of the project. This requires understanding the technology and competition as well as 
customer needs and goals.

81.1.1 � No “One Best Process”

Many companies have tried to define a standard development process for their entire organization in 
an attempt to improve quality, predictability, and perhaps productivity or cost control. One approach 
should make it easier to introduce a repeatable process, which the Software Engineering Institute (SEI) at 
Carnegie Mellon University has emphasized since the mid-1980s (Humphrey 1989). While a repeatable 
process is highly desirable, however, one process for every project or department is usually not. Again, 
software products and custom (bespoke) projects can differ greatly according to the application and the 

*	 This chapter adapts and updates material originally published in Cusumano (2004, pp. 128–185).
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market and due to unique customer requirements. It follows that software development projects even 
within a single organization need to define different processes or variations for their different needs.

The market and business strategy introduces complexity into process choices, though we can map 
these out across two dimensions: the level of uncertainty in requirements and thus the need for feedback 
during development versus the number of releases (i.e., chances to get it right) the team can expect in 
the future (Figure 81.1). For example, we have new applications where developers know little about what 
customers want and so feedback from early prototypes or other mechanisms is critical during develop-
ment. In some cases, rapid prototyping, where engineers evolve the requirements and an actual working 
system side by side with the customer, may be the best approach. However, if user requirements are well 
understood, as in the case where a team has built several similar systems before, and managers do not 
expect there will be multiple releases in the future where engineers can gradually improve the system (such 
as in embedded satellite software where uploads of new software are difficult), then a carefully documented 
“waterfall” approach may be best. In a waterfall type of process, development generally proceeds in care-
ful, documented, sequential phases, from concept to detailed design to coding and then to multiple levels 
and cycles of testing and debugging. In other contexts, again depending on the level of uncertainty in 
requirements and the number of expected releases in the future, different styles of “agile” or “iterative” devel-
opment seem most appropriate (Boehm 1988; McConnell 1996; Larman and Basili 2003). In these kinds of 
projects, developers add functionality in small increments as well as over multiple versions of the system.

81.1.2 � What to Emphasize Most

It follows that depending on a company’s business objectives (or organizational goals in the case of a non-
commercial entity, such as a government department), as well as the familiarity with the application domain 
and customer requirements, software managers need a different high-level process strategy that leads to 
different development approaches. The process should vary in terms of how much emphasis to place on 
practices like writing as complete a spec as possible before coding or applying a “full-court press” in qual-
ity assurance (such as intensive design reviews, formal code reviews, and rigorous testing at multiple levels 
and stages of the project). In mission-critical projects with extremely high reliability requirements, projects 
generally need extensive specification and architecture work before coding, though still leaving room for 
feedback and evolution of the spec, such as in the user interface (Fagan 1976; Gilb 1988; Humphrey 1989).

In some cases, such as for mass-market consumer applications, speed to market and innovation may 
be more important than product reliability. If a firm waits to deploy the latest technology or create a 
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FIGURE 81.1  Spectrum of process approaches in software development. (Reprinted from Cusumano, M.A., 
Staying Power, Oxford University Press, Oxford, U.K., p. 160, 2010. With permission.)
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zero-defect product, it may never deliver in time to beat the competition. On the other hand, if a firm 
targets the mass market, whether the users are enterprises or individual consumers, then quality in the 
sense of reliability will eventually become more important (Cusumano and Yoffie 1999).

In summary, if minimizing defects is important, research and anecdotal evidence suggests that 
project managers should insist on design and code reviews, continuous builds and testing of the 
evolving software, and careful documentation of the design (including changes) as well as the code 
and code changes and fixes. They should make sure teams have debugged features as thoroughly as 
possible before moving on to the next feature, function, or project milestone—otherwise, apparent 
progress will not be the real level of progress. Problems or unfinished work will accumulate and 
delay the project, result in serious quality problems, and eventually prevent shipping or releasing to 
the customer on time and on budget. Managers should also collect product and process data during 
and after a project and invest in some sort of formal or informal process review (postmortems) to 
figure out how to do things better with each project and to define at least some standards and com-
mon procedures. These are all good things to do in most if not all projects, but they are essential 
practices for firms building mission-critical software or enterprise applications and systems. For less 
critical projects, it is possible to cut some corners, although a software producer should never want 
to ship products or release systems with quality levels below the customer requirements or what 
competitors are offering. This is, of course, easier said than done in competitive markets with time 
and budget constraints.

81.2 � Innovation and Design Strategy

In fast-paced markets, there will be many projects where managers stress creativity and invention and 
encourage design changes even late in a project and at the risk of producing more defects and delaying 
the ship date or overrunning the budget. The danger is that loosely managed projects will spin out of 
control—never ship anything because of “infinite defect loops” (the state where every code change, such 
as to fix a defect, introduces yet another defect—Cusumano and Selby 1995, pp. 256, 333) or because 
they are too ambitious, with too little time for experimentation. It follows that managers need a strategy 
for managing the process of innovation and design, so they do not leave too much to chance.

81.2.1 � Level of Control

We have seen distinct and deliberate variations in how much control managers introduce into software 
projects. For example, at the dawn of the mass adoption of the Internet, a company called Netscape, 
founded in 1994, built a mass-market browser and the enterprise-class servers and tools. Managers at 
this firm had a specific philosophy of allowing projects to be “slightly out of control” in order to increase 
speed to market as well as stimulate innovation and creativity (Cusumano and Yoffie 1998). Microsoft, 
founded two decades earlier in 1975, pioneered personal computer (PC) software and was more orga-
nized than Netscape but less structured than IBM, its initial partner in PCs and the market leader 
in mainframe computing. Microsoft, like Netscape, wanted to be faster to market and more flexible 
in experimenting with PC software technology than a highly bureaucratic, waterfall-ish IBM process 
allowed (Cusumano and Selby 1995).

The downside of less control, taken to the extreme, is that too little structure can lead to bad deci-
sions, failed projects, and missed ship dates. For example, process problems at Netscape helped 
Microsoft win the browser wars of the 1990s, just as shipping delays for later versions of Windows 
encouraged users to adopt Apple computers and other alternatives to Microsoft products in the 
2000s. Perhaps for this reason, we see a mixture of different approaches at companies such as Google, 
where mission-critical systems such as for AdWords or back-office operations have been managed 
much more tightly than smaller projects, and often in more of a waterfall-ish rather than agile style 
(Striebeck 2006).
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81.2.2 �R isk Management

One thing we have learned is that iterative or agile development techniques as we know them today—
such as building systems in small increments, with frequent or continuous testing, debugging, 
integration, and synchronization of work under development—are particularly useful for risk man-
agement. These types of techniques provide mechanisms to add visibility and assess progress in a 
software project as well as make frequent adjustments such as in project scope, priorities, schedules, 
or staffing.

A form of iterative development called “synch-and-stabilize” (a term coined by myself and Richard 
Selby in our 1995 book Microsoft Secrets) relies on techniques such as vision statements, evolving specs, 
development work broken up into subcycles, daily builds, milestone stabilizations, early integration 
testing, and various customer feedback mechanisms during development (Cusumano and Selby 1995, 
pp. 187–326). These practices represent a middle approach to risk management between a highly bureau-
cratic, waterfall-ish style of software development and a potentially chaotic “hacker” style of develop-
ment. For example, the vision statement that kicks off a project is essentially a team contract that should 
scope out, very clearly, what the team hopes to do and what it is not going to do. Microsoft vision state-
ments have been as short as one paragraph or one page, and others extend many pages. Then evolving 
the product spec from an outline and reevaluating it periodically during the project avoids spending 
time detailing specs for features that the team will never get to or reject. The Microsoft-style itera-
tive process has about a 70% overlap with agile development techniques such as followed in Extreme 
Programming (XP) projects (Cusumano 2007b).

Also, as part of risk management, project teams should have a “multiversion release” mentality when-
ever possible. The idea here is that there is no need to try to create a “perfect” product or system that 
includes every favorite feature from customers, executives, sales, and marketing or that tries to do the 
equivalent of rocket science in a commercial setting. If a company is making a software product and it 
is successful, there is probably going to be a second and a third version. Even in custom development, 
software and services companies usually have a chance to refine their work with maintenance releases or 
a phased rollout. So there is rarely the need to attempt so much in any one project that the risk of failure 
becomes higher than the likelihood of success.

81.2.3 � Late Changes

Another important observation that comes from experience, and which has been associated with itera-
tive or agile development, is that late design changes can be good; they do not necessarily reflect mistakes 
or a step backward. Some managers and engineers find this hard to understand, no doubt because of 
their education and experiences with delayed schedules and buggy code. Many software developers and 
managers once thought the same way, before experiencing the fast-paced markets for PCs and Internet 
software and services.

My recollection is that software engineering texts and classes in the 1970s and 1980s used to empha-
size two particular ideas. One was that most problems occur because projects do not have a good 
requirements document and a complete specification before engineers start coding. A second was that 
late changes in the code or the design are too risky because they can destabilize the product, create more 
bugs, and make the project later, which then creates a destructive dynamic if the project shortchanges 
additional testing.

Mainframe software producers such as IBM and Japanese software factories got around this problem 
by giving tremendous authority to their QA departments. For example, at Hitachi, NEC, Toshiba, and 
Fujitsu, QA managers had to approve any product ship decision, and most used historical data telling 
them how many bugs they should be finding in design documents or code at different stages of devel-
opment and how much more testing was necessary before they could consider a product to be of high 
quality (Cusumano 1991, 1993). But new products for new markets or on new platforms (such as mobile 
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phones compared to mainframes or even PCs) do not have this kind of historical data. Furthermore, 
fast-paced markets may require different standards and procedures, within certain limits.

The main point is managers and engineers should recognize that any initial specification will be 
incomplete. Encouraging evolutionary designs through an iterative, agile, or prototype-driven develop-
ment process allows a team to respond to unforeseen market changes, user feedback, and competitors’ 
moves. Late changes may produce more defects and delay the schedule. But, as some research has shown, 
a coherent set of countermeasures—such as frequent builds, design and code reviews, and integration 
testing with each change—can mitigate the level of bugs and lateness (MacCormack et al. 2003). A pro-
cess that expects and allows projects to accommodate change with a minimal impact on quality and 
productivity is a great competitive advantage in the business of software.

81.2.4 � Economies of Scope

Another strategic aspect of innovation and design is how to increase not simply creativity or structure 
but also economies of scope—efficiency and effectiveness in building multiple products or conducting 
multiple customer engagements with the same engineering assets. This kind of efficiency and effective-
ness is almost always important to an ongoing software business. Simple economies of scale are not 
generally present, except in replicating a software product or in funding in-house R&D or tools devel-
opment used by multiple products or projects. Scope economies in general come from reusing system 
architectures, design frameworks, pieces of working code, support tools, test cases, and historical prod-
uct and process data (such as how long particular kinds of projects usually take and how much testing 
resources they normally require).

Code reuse seems to happen most often when companies package components in ways that are easy 
for developers in other projects or departments to understand and redeploy, like “black box” parts in 
the auto industry. If programmers have to change a lot of the design or code to use a part, then reuse can 
become inefficient. For example, Toshiba, before the days of object-oriented design and class libraries, 
found that its engineers could change up to 20% of a module and still find the reuse effort cost-effective. 
If engineers had to change more than that, then they were better off writing new code from scratch. 
Toshiba also kept track of reused modules and gave out awards to encourage programmers to think 
about reuse and writing popular modules—an interesting way to channel the energies and creativity of 
the engineers (Cusumano 1991, pp. 264–265).

Another way to achieve scope economies is to buy or license components or whole products and 
incorporate them into a new system, including open-source “freeware.” Cheap or free standardized 
packages or libraries of components often require some trade-offs in functionality. Nonetheless, from 
a business point of view, surveying what you can buy or get for free rather than build should be part of 
every organization’s innovation and design strategy.

81.3 �A rchitecture Strategy

An iterative or agile style of development (evolving specs, encouraging lots of feature changes during a 
project, and doing daily builds and continuous testing) requires a particular type of product or system 
architecture. With the wrong architecture, too many components and teams will be highly interdepen-
dent, leading to difficulties in testing and wasted time when trying to work in parallel.

The best strategy is to encourage a team to think ahead and, from the beginning of the release cycle 
for a new product or system, devote some engineering effort to designing an architecture that will last at 
least a few years and accommodate functionality likely to be important in the future. For example, in the 
early years of development products such as Office and Windows, senior Microsoft managers believed 
they should devote about 20% of their engineering resources to architectural work and reworking code 
(Cusumano and Selby 1995, pp. 280–281). They might allocate more for new strategic products or best-
selling products that desperately need rearchitecting, though not too much more.
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81.3.1 � Importance of Modular Designs

Modular designs are important to decouple components and allow at least some coding and testing to 
proceed independently or in parallel. Modularity also facilitates future design changes and enhance-
ments. There are no specific rules on how large or small a software module should be; it depends on the 
system. Moreover, there is a sliding scale of modularity for almost any complex product. For example, 
most automobiles have about 15,000 discrete components but automakers design and build their cars 
using subsystems. For some companies, the number of subsystems is relatively low, such as 25; for oth-
ers, it is relatively high, such as 300. The difference is the degree of functionality that each company is 
designing into the modules or subsystems of its products (Cusumano and Nobeoka 1998, pp. 43–47, 97).

However one defines it, a module in software should be some subset of functionality that is smaller 
than the whole product and hides information from other modules so that programmers can isolate it 
from other small chunks of functionality (Parnas 1972). Software companies making products, smart-
phone apps, or Internet services often think in terms of “features,” which contain modules within some 
larger subsets of functionality understandable to a user.

The opposite of a modular architecture is an integral architecture, where components are tightly 
coupled. It is difficult to change and test pieces of a product with an integral architecture without creat-
ing problems in dependent components (Baldwin and Clark 2000; Ulrich and Eppinger 2006). Integral 
architectures do the equivalent of binding the legs of everybody in a project together—slowing down 
even fast programmers. Managerial discretion is important here, though, because, in some software sys-
tems, an integral architecture is necessary to reduce size or generate superior performance, analogous to 
a custom-built racing car optimized for speed.

But, as code bases have grown to millions of lines of code for many common products and applica-
tions, a modular architecture often becomes essential for development and testing. The architecture 
needs to lay out what the subsystems of the product are, how the subsystems (collections of modules) 
relate to each other, perhaps what a module is within a subsystem, and, most important, what the 
interfaces are so that subsystems and individual modules can exchange data or instructions and work 
together. Interfaces should be stable for some period of time and not altered without communicating 
changes carefully to a development team because developers depend on knowing how to get modules to 
interact with each other.

Modularization also helps a project team prioritize features and build them in order of importance 
to the product or the business, like a sequential (or “horizontal”) list that the team gets to one by one. 
With prioritization and modularization, a team usually has the option to cut lower priority features if 
the project falls behind schedule. If the modules are too interdependent, then a project might need a very 
large team to build all the desired features in parallel. A smaller team might have to build pieces of the 
product sequentially. With the sequential process, though, the project will usually have to adopt a water-
fall type of schedule and not test the pieces in an integrated fashion until the team is mostly done—and 
when it may be too late to fix major problems or make important changes for the customer.

Again, I can cite examples from my study of Microsoft (Cusumano 2006a, 2007a). This company 
experienced firsthand the problems of inadequate modularity with the Windows Vista release, which 
eventually shipped in 2005 after several years of delays and wasted efforts. Microsoft may have adopted 
a particular strategy in the late 1990s and early 2000s to tie as many functions together into Windows so 
as not again to appear to violate antitrust law. The Vista (formerly called “Longhorn”) project began with 
the Windows NT code base. The desktop version of the product was supposed to contain many new fea-
tures and quickly grew to more than 50 million lines of “spaghetti” (i.e., nonmodular) code that proved 
impossible to build daily or test thoroughly and stabilize. The poor state of the code forced Microsoft to 
abandon years of work on new features, go back to the 2003 Windows server code base, and make some 
refinements to its engineering and design approach.

Microsoft eventually decided to break up Windows into different branches and rewrite as much code 
as possible into smaller, tighter modules. This approach resembled how company engineers had designed 
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Word, Excel, and PowerPoint and treated these products as “branches” or subsystems of Office, building 
them separately and then integrating the branches periodically, such as weekly. The new modularization 
and branching strategy made coding and daily builds for Windows and Office much more manageable 
than designing and building these as single “monolithic” products. Some teams also used new test-
ing tools from Microsoft Research that helped check automatically for a wider variety of errors (code 
coverage and correctness, application programming interfaces and component architecture breakage, 
security, problematic component interdependencies, and memory use) and automatically reject code at 
desktop builds and branch check-in points (Larus et al. 2004).

It is possible to evolve the architecture of a software system incrementally to make it more modular, 
even if it did not start out that way because of time pressures or simply a lack of foresight and expe-
rience. Microsoft, my example again, gradually rearchitected Office over several years to make the 
applications within Office able to share features. The company formerly sold Office as a collection of 
packaged “vertical” applications that were really separate products. Each product (mainly Word, Excel, 
and PowerPoint) had its own separate features for text processing, file management, table creation, 
cut and paste, printer drivers, etc. A separate team figured out how to redesign the products and share 
at least some of these features across the applications. Within a few years, Office became the product, 
with Word, Excel, and PowerPoint becoming subsystems that shared about half of their code, at least 
in some versions. This sharing evolved to the point where, for Office 2000, fully 38% of the develop-
ers working on the product were creating common features shared by one or more of the applications 
(MacCormack 2000).

81.3.2 � Long-Term versus Short-Term Trade-Offs

Working to get the architecture right or improving it incrementally is really an investment in the 
future—making it easier to maintain and enhance a system. Not all software companies or producer 
organizations have the money and time to make such investments, and users may not want to pay higher 
prices for such work when the trade-off may be less new features. Many new software companies also 
have to ship products quickly because the window of opportunity for their market may disappear.

It is unreasonable to expect new software businesses to devote too much effort to figuring out how 
to design a product architecture that will last for years. It is not clear what the right number of staff is 
to allocate to architecture development, especially for a start-up. But to make zero investment in archi-
tecture for the future would seem to be a technical and business mistake for any company that hopes to 
have a future.

81.4 �T eam Management

Another piece of common wisdom in the software engineering field is that a small team of very tal-
ented programmers works much better than a large team of mediocre people, and that talent is more 
important than experience (Brooks 1975; DeMarco and Lister 1987). Every experienced software man-
ager has encountered programmers who can write much more and often much better code than other 
members of the same team. The rule of thumb given by Tom DeMarco and Timothy Lister, the authors 
of Peopleware, is that your best programmer will probably be about 10 times better than your worst 
programmer and about 2.5 times better than your average programmer (DeMarco and Lister 1987, 
pp. 44–46).

81.4.1 � Problem of Large Teams

But one problem with managing by this philosophy is that “super programmers” are hard to find and 
maybe harder to keep. No rapidly growing company is likely to find enough programmers at the very 
upper end of the talent level to develop all the software it needs. So the more common problem in 
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software development is how to get relatively large groups of programmers with varying skills to work 
together like nimble, efficient small teams.

The synch-and-stabilize techniques, as well as iterative or agile development more broadly, can help 
managers tackle this problem of how to make large teams work like small teams. Selby and I made 
this argument in Microsoft Secrets, describing how this company tackled the problem with the follow-
ing approaches: project size and scope limits; modular architectures; project architectures mapped to 
the product (so that everyone knows why they are building what they are building); projects divided 
into small relatively autonomous teams (three to eight developers per feature team); rigid rules to force 
coordination and synchronization, such as through daily builds and periodic milestones; good com-
munications and shared functional responsibilities; and product and process flexibility to handle real-
time learning and the appearance of unpredictable problems (Cusumano and Selby 1995, pp. 409–417; 
Cusumano 1997).

81.4.2 �T eamwork Principles

Many researchers have also found it important to have strong project leaders to make sure that even the 
top programmers follow a few basic rules to improve teamwork. One is the need for overlapping func-
tional responsibilities. In the Microsoft case, for example, product managers take charge of writing vision 
statements but they are responsible for consulting program managers in order to do this. Program man-
agers write functional specs but they have to consult developers, who generally have de facto veto power 
because they have to estimate the time and people required to write the code. Developers and testers are 
paired and jointly responsible for testing code. Good communications and overlapping responsibilities 
help an organization avoid becoming too functionally oriented, bureaucratic, and compartmentalized, 
with large separate groups that simply hand off work to each other.

In general, software product companies tend to organize separate groups for each product and then 
smaller feature teams within these product units. Managers can also scale up this type of structure by 
creating more product units and more feature teams, as long as the product architectures allow teams to 
proceed more or less in parallel. Within a product unit that has an effective leader, the right set of devel-
opment techniques, and a modular product architecture, a company can have a large team of several 
hundred people or more working together almost like one nimble small team.

Companies such as IBM, Accenture, or Infosys that design or enhance custom systems also rely 
on small teams to build small chunks of functionality, but their structures are often far more com-
plex. They generally organize at the company level in a matrix, with some managers and personnel 
assigned to industry or “vertical” specializations, such as manufacturing or banking sectors, and oth-
ers in a variety of “horizontal” functions and specializations that cut across industry domains, such 
as experts in SAP, Oracle, Microsoft, or open-source systems. Bespoke projects generally have some 
team members, such as for the requirements phase or final customer acceptance testing, located at the 
customer site, while much of the actual software development takes place elsewhere (Carmel and Tjia 
2005; Cusumano 2008).

81.5 � Project Management

It is worth repeating that the traditional waterfall model, though it may sometimes deliver software on 
time and meet customer requirements relatively closely and with few bugs, is not a good process for fast-
paced markets driven by the need to adapt to continuous innovation, uncertainly in customer require-
ments, and unpredictable competition. The waterfall model originally came about in fairly stable but 
complex development projects, like rocket systems, where NASA needed to control requirements and 
schedules in great detail (Royce 1970). To NASA and contractors such as Lockheed, not making changes 
that might create bugs has been far more important than being innovative or fast to market. Most 
commercial software producers, however, whether they make mass-market products or custom-built 
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systems, need a process that lets them evolve designs and incorporate customer feedback in real time, 
during a project. For these kinds of environments, projects should do some preliminary planning but 
then more detailed requirements specification, program design, coding, and testing as concurrently as 
possible and with as much customer involvement as possible.

81.5.1 � Divide and Conquer

Tackling any complex task brings up the age-old principle of “divide and conquer.” In software, this 
means that managers should break large projects into multiple subprojects (many firms use the term 
subcycles or milestones) of no more than a few days, weeks, or months duration. It is much easier to 
manage several small groups that are doing a focused, small amount of work and that have a deadline 
not too far in the future than manage a large group building a lot of features scheduled for completion 
in months or years. Too many things can go wrong or change when a project deadline is too far into the 
future, when a team is too large, or when the amount of code that needs to be integrated is too extensive.

81.5.2 � Individual and Project Discipline

It is also important to get commitments from people to work as a team and deliver on individual prom-
ises. Programmers and testers should schedule their own work, rather than have managers dictate 
schedules. It is often not necessary to press programmers in product companies working in highly com-
petitive markets to shorten their estimates because they tend to be overly optimistic about what they 
can do. Self-scheduling by developers, therefore, produces aggressive schedules, which managers like, as 
well as fair schedules because they come from the bottom-up. But historical project data are still useful 
so that managers can evaluate the realism of individual estimates and schedule some buffer time into 
a project to accommodate misjudgments as well as unforeseen changes or problems that turn out to be 
more difficult than anticipated.

81.5.3 � Infrastructure Investments

Software producers generally invest heavily in various tools and infrastructure such as build teams or 
process experts. For example, it is important to make checking in easier and faster for programmers 
and to automate as much testing as possible. If check-in times take too long, then the frequent build 
process becomes burdensome and programmers will avoid it. But the real benefit of a smoothly work-
ing build process is that, again, a few simple rules can be enough to have discipline and still be subtle. 
Programmers do not like to rewrite their code.

81.6 � Quality Assurance

Finally, we come to the topic of testing and quality assurance. This is an entire subject in itself, as well as 
essential for any software-producing organization to be successful.

81.6.1 � Building in Quality

In automobiles and other industries, we learned from Japanese companies decades ago that it is 
cheaper ultimately to “build in” quality continuously rather than to test and fix product flaws at the 
end of a development cycle or production process. This has been especially true in waterfall-style 
software development projects, where it has long been recognized that fixing a bug at a customer site 
can cost perhaps a hundred times more than finding and fixing the bug early in a project (Boehm 
1976, 1981). Software products with modular architectures and built with iterative or agile techniques 
appear able to make design changes and fix problems late in a project more easily and with much 
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lower costs than traditional waterfall processes. But fixing problems in the field such as by sending out 
patches is still expensive and can be harmful to a company’s reputation.

Another point here is the importance not only of continuous feature testing—done manually by tes-
ters or through automated tests—but continuous integration and system-level testing. For example, cre-
ating a better drawing feature is fine. But if the user cannot print the object then the new feature is not 
properly integrated and the product has a bug. It is better to identify these problems earlier rather than 
later. Data from process surveys have reinforced this observation—the earlier a project can do integra-
tion testing, and the more it does integration testing, the higher the quality and the more likely the 
project will be closer to the schedule and budget targets (MacCormack et al. 2003).

It is also important for projects to automate as much feature or unit testing as well as component-
integration and system-level testing as possible. Automation makes it possible to rerun tests frequently, 
such as with each code change, and find bugs generated by those changes. However, it is a myth that auto-
mation significantly reduces the need for people. The reason is that organizations always need people to 
update the tests as a project moves forward and incorporate more functionality or changes in user interface 
designs. Most automated tests run off the user interface and have to change as the user interface changes.

81.6.2 � You Can Never Have Too Many Testers

In general, software managers would do well to adopt the philosophy that they can never do too much 
testing. This is especially true for a mass-market software products company. But it is also true for any 
mission-critical or enterprise-class software system. And, increasingly, consumers are expecting flaw-
less functionality even in inexpensive or free software or functionality accessed over the Internet.

Many people are surprised to learn how many people Microsoft started to allocate to testing in the 
1990s—as many as it does to programming, with testers usually assigned as “buddies” to developers in 
a one-to-one ratio (Cusumano and Selby 1995; Cusumano 2004). Some people are also surprised that, 
given this enormous investment in testing, Microsoft’s quality is not higher. It is important to under-
stand these two observations. First, Microsoft’s quality has improved dramatically over time and, in 
multiple ways, reduced bugs but also produced products that are far more complex yet much easier to 
install and use compared to the old MS-DOS or early Windows systems and applications. These results 
directly reflect the enormous investment in testing as well as in process and product improvement more 
broadly. Second, many of Microsoft’s testers, especially in the applications groups, are more like an 
advance army of beta users. These testers try to use a new product or version under development as a 
user would and try to detect user types of problems early on. It is a good investment to make because 
Microsoft sells tens or hundreds of millions of copies of its most popular software products. A few bugs 
or products that are difficult to install and use can generate millions of customer complaints.

81.6.3 � Continuous Process and Product Improvement

Over multiple projects, it is desirable to have a strategy to improve process and product quality on a con-
tinuous basis—the now-familiar Japanese notion of kaizen. One way is to conduct postmortem analyses 
and share the results with the team and then act on the conclusions. For example, in the late 1980s and 
early 1990s, Microsoft adopted a practice of creating postmortem reports. These generally had three 
parts to them, compiled by the managers for each function on each project—product management, pro-
gram management, development, testing, customer support, and user education (documentation). Each 
manager was supposed to interview his or her team members and come up with a summary of (1) what 
went well on the project, (2) what went poorly, and (3) what should they do differently the next time. 
Most of the Microsoft teams stayed together for a few years and had an opportunity to apply what they 
learned in a subsequent project (Cusumano and Selby 1995, pp. 331–339).

Another important source of learning is data from customers through the product support organiza-
tion. With data-collection tools, it is possible to create detailed lists of bugs and fixes. Good teams will 
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also develop heuristics about how to avoid and fix common bugs. They will create checklists or hand-
books or run training sessions for their testers and developers to help avoid common errors.

A phrase common at Microsoft in the 1990s and at other companies such as Netscape and Google—
“eat your own dog food”—captures yet another useful practice. That is to use the product internally as 
you are building it so that you get a firsthand experience of whether or not it is any good. For example, 
if you are building the next version of Windows, as soon as the team gets to a point where basic func-
tionality works, a developer will start using it to do basic things, like saving files and running the e-mail 
program. If the product is lousy and crashes, then the developer has to eat the programming equivalent 
of dog food.

Microsoft and other software product companies have also introduced a variety of mechanisms to 
get customer feedback during development. Early beta releases can provide important feedback on the 
quality as well as the design of a product from actual customers. Betas that come too late in the develop-
ment cycle do not allow the team enough time to make major design changes. Another technique is the 
usability lab, where companies bring in people to test features or user interfaces under development. 
In the Microsoft case, programmers watch from behind one-way mirrors to see what percentage of 
users struggle to understand their new features. Microsoft also has sent developers and testers to staff 
customer support lines after a new product ships so that, again, they can get firsthand feedback on cus-
tomer reactions. Product teams complement usability lab data and customer support data (summaries 
of which teams received on a weekly basis) with customer satisfaction surveys, product usage surveys, 
and other feedback mechanisms.

Another good practice to monitor and improve the operations of a software development organiza-
tion is to have each project track a small number of quantifiable metrics covering product quality, the 
size and performance of the product, and the development process. It is important to understand the 
major factors driving performance of teams and customer responses to products. Project managers need 
to be able to measure these factors quantitatively if they are to manage them effectively. This idea of sta-
tistical analysis and feedback has also been central to the SEI philosophy, especially for projects aiming 
to reach CMM Level 5 (Humphrey 1989).

81.7 �R esults from Project Surveys and Conclusions

During 2001–2003, several colleagues and I became curious about how widespread iterative develop-
ment techniques were becoming around the world, in contrast to more waterfall-ish approaches, and 
what, if any, measurable impact they were having on project output measures like quality, productivity, 
and scheduling. We conducted a pilot study at Hewlett-Packard (HP) and Agilent and then followed this 
with a survey of 104 projects from a variety of major software producers around the world (Cusumano 
et al. 2003).

81.7.1 � Global Differences in Practices

In the global survey, we first asked about conventional best practices. For example, how many projects 
wrote architectural and functional specifications as well as detailed designs before coding? How many 
used code-generation tools? How many implemented design and code reviews? Then we asked about the 
newer techniques: How many projects divided up into subcycles or milestones, used beta tests, paired 
programmers with each other and with testers, followed daily builds, and did regression tests on each 
build? We also divided the sample into regions: India, Japan, the United States, Europe, and others.

About 85% of the sampled projects wrote functional specs, and nearly 70% wrote architectural and 
detailed design documents, rather than just writing code with minimal planning and documentation. 
These conventional good practices were especially popular in India, Japan, and Europe. The major 
difference was that few US projects wrote detailed designs. (I had observed this practice earlier at 
Microsoft, where projects in general did not write detailed designs but went straight from a functional 
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specification to coding in order to save time and not waste effort writing specs for features that teams 
might later delete.) Code generation (a technique that uses special software programs to generate code 
from design frameworks or design tools) was most popular in the Indian sample. Design and code 
reviews require particular process discipline, as promoted in the SEI recommendations. Not surpris-
ingly, all the Indian and Japanese projects did design reviews, and all but one of the Indian projects 
did code reviews as well. Most projects in the other regions also followed these good practices, though 
not universally.

As for the iterative techniques, these were by now popular around the world, but with some varia-
tions. Most projects used subcycles, for example, though these were most common in our Indian 
and European and other samples and least popular in Japan. Projects that did not use subcycles, 
in our definition, followed a conventional waterfall process. More than half the Japanese projects, 
therefore, seemed to follow a conventional waterfall schedule. Most projects also used beta releases, 
which had become a useful testing and feedback tool since the widespread use of the Internet in the 
mid-1990s. Over 40% of the projects surveyed paired testers with developers—a Microsoft-style prac-
tice especially popular in India. Thirty-five percent of the projects used the XP-practice of pairing 
programmers, and, again, this was especially popular in our Indian sample (58%). More than 80% 
of the sample used daily builds at some time during the project and about 46% used daily builds at 
the beginning or middle, which is closer to the Microsoft style of development. More than 83% of the 
projects also ran regression tests on each build. Again, this good practice was most common in the 
Indian sample (nearly 92%).

81.7.2 � Links between Practices and Performance Metrics

Researchers on software engineering over the past two decades will not be surprised with two of our 
findings from analyzing the HP and Agilent survey (MacCormack et al. 2003). This set of projects was 
roughly comparable in techniques and metrics, compared to the global sample, which had a wider vari-
ety of projects.

First, the HP and Agilent developers tended to be more productive in terms of code output when they 
had a more complete design before starting to write code. Second, more complete designs before coding 
correlated with lower levels of bugs. These results make sense and have led many software managers to 
insist on having complete specs before programmers start writing code—the old waterfall process. It is 
logical that programmers can be more productive in a technical sense if they make fewer changes during 
a project and thus have less rework to do. They also have less chance of introducing errors if they make 
fewer design and code changes.

In a business sense, however, locking a project early into a particular design may not produce the best 
result for the customer or enable the firm to compete effectively in a rapidly changing market. We did, 
in fact, find some evidence that HP and Agilent managers thought their customers were more satisfied 
with designs that evolved during a project. We also found that use of early betas and prototypes—
opportunities for customers to provide early feedback on the design—was associated with higher code 
productivity and fewer defects, probably because the HP and Agilent projects were able to make early 
adjustments. In addition, running regression tests with each build, breaking projects into multiple sub-
cycles, and conducting design reviews were associated with fewer bugs.

The most important conclusion from the HP and Agilent data is that, at least within a single develop-
ment culture, iterative techniques such as described by the synch-and-stabilize philosophy appear to 
form a coherent, effective set of practices. Software projects can be more flexible in the sense of accom-
modating design changes with minimal impact on quality and productivity when they use several 
of these techniques together, rather than just selecting one or two. Our results suggest that there are 
trade-offs associated with using different techniques, especially with regard to allowing specifications 
to evolve after the start of coding. Use of particular techniques, however, helps projects overcome these 
potential trade-offs.
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In short, when the HP and Agilent projects used beta releases to get early user feedback, conduct 
design reviews, and run regression tests on each build of the code (i.e., after each change or addition 
of new code), then the correlation between having an incomplete design when coding starts and high 
levels of bugs disappeared. It seems, then, that software producers can have the best of both worlds. 
With the right set of techniques, they can write high-quality code in a productive manner and quickly 
adapt to customer feedback and changes in the marketplace during rather than after a project, as in the 
old waterfall style.

81.7.3 �R egional Differences in Performance

Project performance across firms is difficult to measure and even more difficult to compare regionally 
from such a small sample, but we used some crude measures and found some noteworthy differences 
in our global sample. Based on the data we collected, the Japanese had the best quality levels (median 
of 0.005) in terms of defects reported per 1000 lines of code in the 12 months after implementation at 
customer sites. The Indian projects (0.033) and US projects (0.030) were quite similar and very good by 
historical standards but still six times more “buggy” than the Japanese projects. Projects from Europe 
and other areas (0.05) fell in between the Japanese and the US and Indian levels. In terms of lines of code 
delivered per programmer per month—a measure of programmer output but not really productivity—
the Japanese ranked at the top. They had a median output level of about 469 lines of code per program-
mer per month, unadjusted for programming language or type of project. This was more than twice the 
level of the Indian projects and about 70% more than the US projects, though only slightly higher than 
the European and other projects.

Early research on Japanese software practices found few defects along with high levels of nominal code 
productivity and reuse, so these results are not surprising (Zelkowitz et al. 1984; Cusumano and Kemerer 
1990). US programmers often have different objectives and development styles. They tend to emphasize 
shorter or more innovative programs and spend much more time thinking about what they are writing 
and in optimizing code—which reduces lines of code productivity in a gross sense. The Indian compa-
nies have mainly US clients and seem to have adopted a US-type programming style, which tends to 
view shorter programs as better than longer programs. Nonetheless, we expected bug levels in India to 
be similar to the Japanese, given the emphasis of the Indian companies on achieving high SEI levels.

Overall, the data suggested some technical strengths in India and Japan with regard to software 
development but ongoing weaknesses from a business perspective. As is common in this type of 
research, due to the extreme variations in performance from project to project, it is hard to draw any 
definite conclusions. But it is important to remember as well that no Indian or Japanese company has 
made any real global mark in software innovation or establishing globally adopted technology plat-
forms, which have long been the province of US and a few European firms. Code productivity is by no 
means a good measure of business performance and is less valuable than quality numbers in judging 
a software development organization. Japanese companies still seemed preoccupied with producing 
close to zero-defect code, and one can only wonder how much this practice constrains their willingness 
to experiment and innovate in software development. The global survey data also suggest that Indian 
companies are doing an admirable job of combining conventional best practices with iterative tech-
niques. But they tend to treat software as a custom service business and, like the Japanese, lag behind 
the United States and some European firms in establishing global platforms for software products 
(Cusumano 2005, 2006b).
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82.1  Introduction

When planning a project, two critical areas that must be addressed are project personnel and organiza-
tion. In this chapter we walk the reader through the steps of how to put together a team and explain the 
options and potential obstacles you will face. We first discuss how you go about deciding the types of 
personnel that you will need on your team. In this discussion we highlight not only the different types 
of roles and responsibilities that are common with today’s varying methodologies but also emphasize 
why just assigning a role to an individual is insufficient to ensure project success. How team members 
acquire the needed skills and competencies to fulfill their assigned role is explained. We also explain the 
different ways you can organize your personnel along with the advantages and disadvantages of each 
approach. In the latter part of this chapter, we focus on what makes a team and how a team differs from 
just a random group of people. This section includes a discussion on how a team is formed and moves 
through multiple stages. What distinguishes a high-performance team is highlighted.

Throughout this chapter we examine the options you will have, the issues you are likely to face in 
organizing the personnel, and underlying principles and best practices. We conclude the chapter with a 
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discussion of future research areas with a focus on the social side and the ability of teams to function in 
whatever circumstances they find themselves in.

82.2 � Determining the Types of Personnel 
Required for Your Project

Before you can decide on the types of personnel, you need to understand the problem you are facing 
and have some idea about the solution and the technology you will use to solve it. This will lead you to 
the skills and competencies you will need in the composition of your team. Projects can quickly get into 
trouble when they prematurely bring people onboard before adequate analysis of the problem. A com-
mon best practice many organizations have learned the hard way is “don’t add people faster than your 
understanding of the problem.”

82.2.1  Looking Closer at Project Personnel from the Team Perspective

It is easy to state you need to understand the problem and something about your solution to identify 
your skill needs. However, this oversimplifies the real challenge often faced by project managers. 
There are usually multiple additional factors the project managers face, such as an aggressive 
schedule, a limited budget, and unrealistic stakeholder expectations. How well these additional fac-
tors are handled often comes down to qualitative aspects related to how well the project personnel 
perform as a team.

The skills and competencies of the personnel must be deployed and combined in some way to achieve 
the goals of time, cost, and quality. This is where individual team members must combine with other 
team members to function as a team and not as a collection of individuals. The topics of what makes a 
team and what makes a high-performance team are addressed in detail later in this chapter.

82.2.2  Ensuring Project Personnel Understand Their Responsibilities

Once you have decided on the types of personnel needed on your project and have those resources 
assigned, you will need to ensure your project personnel understand their responsibilities. One common 
best practice is to provide defined roles and responsibilities.

Clear roles and responsibilities help a team avoid the common problem of too many leaders, sup-
port accountability, and minimize the potential problem of excessive work overlap among team 
members.

There does not exist a single standard set of roles and responsibilities for project personnel. A role 
includes a set of responsibilities that an individual, or a group of individuals, may take on. The same 
individual may also take on more than one role at the same time or at different times on a project. Roles 
are important because they clearly establish the “who” is responsible for certain activities. Without 
clear roles it is easy for important work to be overlooked since no one is responsible for it or for two 
team members to take on the same work task. How an organization or project defines its roles depends 
on many factors including the nature of its product or service and its choice of methodology. The fol-
lowing section provides examples of roles and how their definitions can differ using three common 
methodologies:

•	 Scrum
•	 Team software process (TSP)
•	 Rational unified process (RUP)

Keep in mind that most organizations tailor their roles and responsibilities based on the specific needs 
of their project and product. Use the following information as a guide to help you determine appropriate 
roles in your organizations.
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82.2.2.1  Scrum

Scrum (Schwaber, 2004) is a management framework for developing complex products. Scrum defines 
three roles:

•	 Product Owner
•	 Developer
•	 ScrumMaster

The Product Owner is the person responsible for managing the product backlog.
The product backlog is an ordered list of everything that might be needed in the product and is the 

single source of requirements for any changes to be made to the product. The Product Owner is respon-
sible for the product backlog, including its content, availability, and ordering.

On small projects the Product Owner may be the actual customer. On large projects where there may 
exist multiple customers, or the customer is not readily accessible by the development team, the Product 
Owner may be a representative of the customer or customer community.

By explicitly defining this role as part of the team, Scrum helps to address the common problem 
observed on many software efforts of scope creep and unclear customer priorities.

Developers are members of the development team, which is a self-organizing team* when using 
Scrum. The development team is cross-functional with all the skills necessary to accomplish their work. 
Scrum recognizes no titles other than developer for all development team members. There are no excep-
tions to this rule as it supports the important Scrum principle that the team as a whole is accountable 
for their work.

The ScrumMaster is responsible for ensuring the rules of Scrum are understood and followed. The 
ScrumMaster does not direct the team but rather is a servant–leader. The ScrumMaster coaches the 
development team and assists the Product Owner in finding effective techniques to manage the product 
backlog.

82.2.2.2 T eam Software Process

TSP (Humphrey, 2006) is a framework and a process for building and guiding development teams. TSP 
defines 10 standard team roles:

	 1.	 Team leader
	 2.	 Team member
	 3.	 Customer interface manager
	 4.	 Design manager
	 5.	 Implementation manager
	 6.	 Test manager
	 7.	 Planning manager
	 8.	 Process manager
	 9.	 Quality manager
	 10.	 Support manager

At first it appears that TSP is more complex in its role definitions than Scrum, but on closer examination 
the difference may not be as large as one might think. TSP teams, like Scrum teams, are self-directed. 
This means the team as a whole is responsible for its work and the quality of its products. Software 
development is a complex and creative activity with many factors that require close attention to ensure 
the right product is built leading to a satisfied customer. These factors include ensuring the team is lis-
tening to its customers, ensuring appropriate design effort is conducted, ensuring the designs are being 
properly implemented, ensuring appropriate testing is being conducted, ensuring appropriate planning 

*	 Self-organizing teams are discussed in greater detail later in this chapter.
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is being conducted, ensuring the team is keeping their processes current and following them, ensuring 
data are being recorded appropriately, and ensuring team members have appropriate tools and training.

The eight manager roles in TSP are roles that are taken on by team members who essentially become 
the eyes and ears of their self-directed teammates with respect to these factors. It is the developers on a 
TSP team who take on these manager roles, not “managers” outside the team. All self-directed software 
development teams must ensure these factors are being addressed. The difference between Scrum and 
TSP is the degree to which these responsibilities are documented and formally trained or remain tacit 
knowledge among team members.

82.2.2.3 R ational Unified Process

The RUP (Kroll et al., 2003) is a software engineering process framework developed by the Rational 
Software Corporation, a Division of IBM. It is not a single prescriptive process but a framework that is 
intended to be tailored. A role in RUP goes further than roles in Scrum and TSP in that it breaks out 
responsibilities at a finer level of granularity, and it also defines the competency required and how the 
individual should do the work. Examples of roles defined in RUP include

•	 System analyst
•	 Business analyst
•	 Business-model reviewer
•	 Requirements reviewer
•	 Requirements specifier
•	 Test analyst
•	 User-interface designer
•	 Software architect
•	 Developer

For more information on RUP and its role definitions, refer to Kroll et al. (2003).

82.2.3 A dditional Roles Dependent on Project Circumstances

As stated previously, there does not exist a single standard set of roles and responsibilities for project per-
sonnel. Dependent on your project circumstances, other roles may be required. For example, in organi-
zations that develop large complex systems, there is often a software (or system) architect role. One of the 
purposes in establishing a Software or System Architect role on a large complex project is to aid commu-
nication and coordination across the software development teams (Dikel et al., 2001; McMahon, 2006).

82.2.4 � Ensuring Project Personnel Have Appropriate 
Skills and Competencies

Organizations must compete for the talent required to produce their products or perform their services. 
One of the major challenges faced by many organizations today is how to acquire and sustain a high-
quality work force (Curtis et al., 2001). This includes ensuring your personnel have appropriate skills 
and competencies to accomplish their assigned responsibilities.

In this section we focus on the skills required of personnel including soft skills, such as communica-
tion skills, and listening skills, as well as the technical skills. Group skills will be covered later when we 
deal with teams.

There are multiple best practices commonly used today by organizations to ensure project personnel 
have appropriate skills and competencies. Two of those best practices discussed in the following section are

•	 Training
•	 Coaching
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82.2.5 T raining and Coaching

Competencies are not the same as roles. Roles define a set of responsibilities, but when an individual 
accepts an assigned role, it doesn’t guarantee one is competent to perform that role. Helping to ensure 
project personnel are competent to perform their job is the purpose of training and coaching. Many 
organizations have developed extensive formal training programs for their personnel and have defined 
minimum training requirements for their people to fill standard roles defined in their organization. 
However, not all training needs to be formal classroom training. Over the last few years in an attempt 
to provide training in a more flexible and efficient way, many organizations have moved toward online 
web-based training that people can take as a quick refresher when needed or at a time that fits their 
personal schedule.

While formal training is necessary to ensure competency, it is not sufficient. No prescriptive training 
course can answer all the questions and address all the situations that arise on the job. This is where 
coaching is needed to supplement a formal training program.

82.2.5.1  Is the Coach the Same as the Team Leader?

A coach is a distinct role from a team leader although in many small organizations the same individual 
may take on both roles. The team leader on a self-directed team does not direct the team members but 
focuses on the project requirements, schedule, and success factors. Basic principles that an effective 
coach follows include

•	 Build talent
•	 Set high standards
•	 Focus on success
•	 Focus on improvement
•	 Improve in steps
•	 Celebrate every step (Humphrey, 2006)

As projects proceed, project conditions change. It is the responsibility of both the team leader and coach 
to be on the lookout for conditions that might warrant changes in team personnel to ensure the right 
people with the right competencies are taking on appropriate roles. While coaching can be effective in 
many of these situations, sometimes the best approach to address a potential trouble spot is to make a 
change in the personnel assigned to a project or to change an individual’s responsibilities on the project.

82.2.5.2 R elationship of Competency to Methodology and Agility

The competencies that project personnel must acquire to carry out their assigned responsibilities can 
vary depending on the project’s chosen methodology. Boehm and Turner (2004) point out that as you 
increase the agility of your methodology, the required skill levels of your people also increases. This is 
due to multiple factors. First, as organizations move increasingly in the agile direction, there is usually 
less documentation to help the personnel perform. Second, increased agility implies more rapid decisions 
often with less information. Third, increased agility implies self-direction and self-management, which 
means personnel need to be competent in planning and estimating and communicating with stakehold-
ers, as well as being technically competent. This is where the “soft” skills often become critical to success.

82.2.6  Need for Measurement, Listening, and Negotiating Skills

Watts Humphrey has stressed that software work is knowledge work (Humphrey, 2011). Because knowl-
edge work takes place in the workers head, rather than with their hands (Drucker, 1996), it is necessary 
for software professionals to measure and manage their own work. This also implies a need to be able 
to communicate the results of their measurements to stakeholders, listen to feedback, and negotiate 
appropriate to the situation.
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When using more traditional plan-based methods planning, estimating and communicating with 
stakeholders often fall under the responsibilities of a manager’s role. The manager in traditional func-
tional organizations breaks the work down, estimates the work, and assigns it to project personnel. The 
manager also assesses progress and maintains the schedule. On self-directed teams all of these tasks 
fall under the responsibilities of the team that implies a need for greater competency of team members.

82.2.7 � Consider All Competency Requirements to Break Down 
Walls between Interfacing Groups

Personnel in quality assurance groups and systems engineering groups also require communication 
skills. A common weakness often found in functional hierarchical organizations is a culture that breeds 
walls between software development groups and interfacing groups, such as quality assurance and sys-
tems engineering groups. Similar walls are often found between systems engineering and software engi-
neering. This culture results when systems engineering and quality are viewed as separate functions 
rather than integrated functions. Too often in these organizations, the view becomes one of quality as 
being the responsibility of the quality group rather than everyone’s responsibility and software being 
viewed as something distinct from the system it is a part of. Both of these cultures lead to increased 
bureaucracy and reduced product quality for the customer.

To address these common organizational weaknesses, all required competencies, including the soft 
communication skills, should be assessed when selecting project personnel to fill key project roles. Too 
often on software intensive efforts, only technical competencies are considered, which increases the risk 
of project failure.

82.3  Organizing Project Personnel

Organizations are complex people-based systems constructed to achieve a larger purpose (Rechtin, 
1999). In the case of a software organization, that larger purpose is to produce or maintain a software 
product that may operate stand-alone, embedded within another product or interface to another sys-
tem. The structure of a software organization can vary depending on the software or service produced. 
How you go about organizing your project personnel depends on multiple factors including constraints 
that may be levied upon you by policies in your overall organization, as well as your project’s chosen 
methodology.

In this section we first examine varying organizational structures in use today and how these dif-
ferent organizational structures may affect the decisions you make on your project for organizing your 
personnel. The organizational structures discussed in this section include

•	 Functional hierarchical organization
•	 Integrated product team (IPT) organization
•	 Self-directed team organization
•	 Product-line organization
•	 Hybrid software organization

82.3.1  Functional Hierarchical Organization

Traditional large software organizations are functionally partitioned hierarchical structures with per-
sonnel at each level reporting to the level earlier. This organizational structure supports the fundamental 
principle of solving a large complex problem through “divide and conquer.” Typical functional groups 
may include system architecture, systems engineering, software development, system integration and 
test, quality assurance, and configuration management. Depending on the product or service, the sys-
tems and software groups may be further partitioned based on the product architecture (Figure 82.1).
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The primary advantage of a functional organization is that it provides focus on key functional needs 
and the allocation and management of personnel with the appropriate skills to address each specific 
function required. There are, however, multiple negative consequences that have been observed when 
employing a strict functional hierarchical organizational structure.

Common negative consequences observed include too narrow of a focus on the groups specific 
function causing loss of proper attention to the ultimate end product goal and the customer’s needs. 
Functional organizations often include a system architecture and system integration and test group to 
help ensure proper attention to dependencies between functional groups and requirements that cross 
multiple functions. A common side effect often observed especially on large complex projects employ-
ing functional hierarchical organizations is long integration schedules due to too poor communica-
tion across functional group boundaries. This poor communication is often caused by inefficiencies 
introduced by a need to communicate up and back down the hierarchical management chain to get 
things done.

82.3.2  Integrated Product Team Organization

A common approach employed to address the problems observed in strict functional organizations is 
to use an IPT approach to software development. While this organizational approach still supports the 
fundamental principle of solving a large complex problem through “divide and conquer,” the criteria for 
division of work are now based on a partitioning of the product architecture rather than a functional 
partitioning. With IPTs the organizational architecture more closely reflects the product architecture, 
rather than the generic functions within the product (Figure 82.2).

With IPTs personnel with the required functional skills are assigned to each product team. The 
primary advantage to the IPT approach is improved communication as it removes the need for com-
munication up and down the chain and therefore supports more rapid decision making. This organiza-
tional structure provides more autonomy to individual teams within the overall project organization. 
However, a common negative side effect of IPTs is that it can still create communication problems, 
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but in these cases the communication difficulty moves to dependencies between components of the 
architecture, rather than dependencies between functions. Another commonly observed negative side 
effect of IPTs is a power struggle between project IPT team leaders and functional managers in the 
larger organization.

82.3.3  Self-Directed Team Organization

In small organizations self-directed teams are commonly employed. Self-directed teams are simi-
lar to IPTs in that they include personnel with all of the skills needed to solve the software problem. 
A strength of self-directed teams is that the members figure out what needs to be done on their own, and 
they do whatever is needed to get the job done. Self-directed teams stick together to the end of the job. 
Key characteristics of self-directed teams include (Humphrey, 2006)

•	 A sense of membership and belonging
•	 Commitment to a common team goal
•	 Ownership of the process and plan
•	 The skill to make a plan, the conviction to defend it, and the discipline to follow it
•	 A shared commitment to honest, truthful, and respectful behavior
•	 Dedication to excellence

Strengths of self-directed teams include improved communication and more rapid decision making 
with conflicts handled by the team rather than through escalation to higher level management. One of 
the weaknesses observed with self-directed teams is scalability and difficulty communicating outside 
the team. Self-directed teams are typically small. While self-directed teams could in theory be large, in 
practice self-directed teams that perform well are usually no larger than 15 people. Large projects can 
be broken down into multiple self-directed teams as long as some kind mechanism is established for 
communication among the teams.

82.3.4  Product-Line Organization

Projects, regardless of how they are organized, have different motivations than software businesses. 
Software businesses are motivated by the financial bottom line to the business. Projects are motivated by 
cost, schedule, quality of the specific software product, and the customer needs (Royce, 1998). Projects 
do not tend to invest in technology or services that their immediate customer is not asking for. Product-
line organizations are structures that are set up specifically to address the broader long-term needs of a 
product beyond just a single immediate customer.

In organizations with IPTs, team members are usually fully responsible for technical decisions affect-
ing the product. With the product-line approach, technical decisions related to core product assets 
become the responsibility of the product-line organization. In making technical decisions, this orga-
nization must consider the goals of the product and other current or potential customers that use the 
product-line.

Strengths of a software product-line organization include (Clemens and Northrop, 2001)

•	 Large-scale productivity gains
•	 Improve time-to-market
•	 Maintain market presence
•	 Improved product quality
•	 Increased customer satisfaction
•	 Increased reuse

Because product-line organizations are focused on the broader issues associated with the product, and 
because they have multiple customer needs to consider when making a change, one weakness often 
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observed is their lack of rapid response to the changing needs of individual customers. Product-line 
organizations are usually structured around the product architecture with a focus on reuse (Figure 82.3; 
see Clemens and Northrop, 2001; p. 316, Sections 6–10).

82.3.5  Hybrid Software Organization

Because all software organizational structures have weaknesses, often the best choice is a hybrid 
approach. An example of a hybrid software organizational structure could be the use of self-directed 
teams together with an architecture team and an integration and test team to aid coordination and 
communication.

82.3.6  Where Product, Organization, and People Intersect

It is not uncommon, especially in product-line organizations, to see organizational architecture reflect the 
product architecture. This can be both good and bad. It can be good because it brings focus to the skills 
and competencies needed for product development and support. But it can be bad because in today’s rap-
idly changing world, continual product evolution is required to keep pace with changing customer needs. 
This also implies a need for continual evolution of personnel skills and competencies.

Too often when organizational architecture is structured too close to a product architecture, politics 
and fear of change get in the way of the product innovation needed to remain competitive. Best in class 
organizations counter this risk by keeping their personnel challenged continually updating their skills. 
When organizations provide planned career growth paths for their people, and actively support these 
plans, organizations and products evolve naturally. When organizations fail to pay proper attention to 
the growth of their people, fear of change often takes over leading to product stagnation and lost orga-
nizational competitiveness.

82.4  What Makes a Team?

To distinguish between a team and a random group of people collected together in the one place for 
some arbitrary purpose, we must first revisit what a team is. One very useful definition is “A team can 
be defined as a social system of three or more people, which is embedded in an organization (context), 
whose members perceive themselves as such and are perceived as members by others (identity), and who 
collaborate on a common task (teamwork)” (Hoegl and Gemeunden, 2001).

The obvious question is “Why can’t the team simply follow the process?” The answer is that processes 
provide guidance but cannot deal with the uncertainty and variation inherent in software development 
or, indeed, many of the tasks undertaken by teams. The team needs to understand, frequently to consid-
erable depth, what they are doing, why they are doing it, how to do it, when to know that they have done 
it among other things. It is more useful to think of the software development as a problem to be solved 
than as a thing to be produced. A team can be thought of as a distributed cognition system rather than 
some sort of production system in which each member is a component.

Architecture Components
Reusable

product-line
assets

Product 2 Product NProduct 1

FIGURE 82.3  Product-line organization.
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Although there are as many ways to transform a random group of people into a functioning team, 
they all seem to go through similar stages during their transformation. Bruce Tuckman reviewed pub-
lished research on groups before hypothesizing that all groups go through stages of “forming,” “storm-
ing,” “norming,” and “performing.” The model was reviewed again in 1977 and found to be sound other 
than to add a final stage of “adjourning.”

82.4.1  Forming

In software development teams are most often formed anew for each project. It is rare that a team 
remains intact from one project to the next so forming the team becomes a routine but important 
activity. During formation the team meets, gathers information about the task and each other, and 
decides how to approach the task. The team also learns about opportunities and challenges before 
considering team goals. At this stage the team is likely to be acting independently since they have yet 
to learn about issues and objectives of the team. Although we may believe that all teams are similar 
enough that that can simply be brought together and immediately become productive, it does not 
happen like that.

Watts Humphrey (2001) proposed the following when he considered what it is that a team must 
agree on:

	 1.	 What are our goals?
	 2.	 What are the team roles and who will fill them?
	 3.	 What are the responsibilities of these roles?
	 4.	 How will the team make decisions and settle issues?
	 5.	 What standards and procedures does the team need and how do we establish them?
	 6.	 What are our quality objectives?
	 7.	 How will we track quality performance and what should we do if it falls short?
	 8.	 What processes should we use to develop the product?
	 9.	 What should be our development strategy?
	 10.	 How should we produce the design?
	 11.	 How should we integrate and test the product?
	 12.	 How do we produce our development plan?
	 13.	 How can we minimize the development schedule?
	 14.	 How do we assess, track, and manage project risks?
	 15.	 How do we determine project status?
	 16.	 How do we report status to management and the customer?

Individual circumstances may vary, Humphrey’s list will be a good place to start.
A more recent study (Gilley et al., 2010) proposes that teams need to build skills in several areas: con-

flict resolution, problem solving, communication, organizational understanding, decision making, goal 
setting and performance management, and planning and task coordination. Certainly a team would 
need all of those skills to answer Humphrey’s questions.

82.4.2  Storming

Every group will next enter the storming stage in which different ideas compete for consideration. This is 
not necessarily a bad thing nor does it need to be antagonistic or acrimonious despite the connotations 
of the term “storming.” Brainstorming is an accepted technique of bringing out different possibilities 
that each can be considered in turn after the brainstorming session has ended.

This is the time when the team may know “what,” but not “how.” Somehow the team must identify 
and consider all the possibilities they can. Premature agreement or forced agreement will usually result 
in later need to reconsider the matter, usually at greater cost than if time had been taken earlier.
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82.4.3  Norming

Having identified all of the decisions the team needed to make in the “forming” stage and explored all 
the possible answers in the “storming” stage, the team must now decide which of those answers to accept 
and act upon. Gradually the team builds up a mental model of the way the team will function (Walz 
et al., 1993). The “norming” stage does not conclude tidily with answers to everything the team may have 
considered, but enough of them will have been well enough resolved for the team to start performing.

82.4.4  Performing

This stage is reached by some teams who manage to resolve sufficient of their issues to start working 
smoothly as a unit without inappropriate conflict or the need for external supervision. Team at this level 
would normally be considered as self-directed teams. Conflicts are expected but are resolved appropri-
ately; new issues arise and are similarly dealt with appropriately.

Teams can, and will, occasionally revert to earlier stages in response to some external changes. Perhaps 
the team composition changes, or the task changes enough that they need to learn a new domain or new 
techniques, or their organization changes their supervision arrangements.

82.4.5  Distributed Teams

What must be done differently when the team is distributed?
Distributing the team challenges their ability to communicate with the same immediacy and richness 

that face to face communication affords. To some extent the diminished communication richness can be 
compensated by electronic means such as video conferences, electronic chats, or social media. However, 
the informal coordination that high-performing teams depend on for their effectiveness usually must be 
augmented by some formal coordination such as project schedules, specifications, backlogs, defect reg-
isters, configuration management, and project meetings, among other things. Distance between team 
members is like any other stress on software development: greater attention is required to ensure small 
problems do not become large problems. Where a collocated team can rely on informal, and to some 
extent accidental communication, a distributed team must go to some effort to create communication. 
Where a collocated team can get by with informal issue tracking, a distributed team usually needs for-
mal issue tracking. That additional formality adds time and slows responsiveness.

Today using physically distributed teams has become an accepted software development approach 
for many organizations. When the Agile (Cockburn, 2006) movement began around 2000, many of 
the experts were claiming that agile software development teams needed to be small and collocated. 
While collocation can aid optimal conditions for software development, today it is recognized that agile 
approaches, as well as other development approaches, can work effectively with physically distributed 
teams (refer to Schwaber, 2004).

Nevertheless, one should not assume that the skills required on a distributed development team are 
no different from that of a collocated team. Experience has shown that many inexperienced project per-
sonnel work best when they are placed in an environment where they can easily listen to conversations 
of their teammates and easily ask questions at the moment the need arises. Collocation usually works 
best in these situations.

The fundamental problem of global software development is that many of the mechanisms that 
function to coordinate the work in a colocated setting are absent or disrupted in a distributed project 
(Herbsleb, 2007). There is much less communication and it is less effective. In many ways it is the prob-
lem of “out of sight, out of mind.” Communication is less frequent because we must consciously think 
to communicate instead of being reminded by frequent cues such as their appearance in the hallway. 
When communication is immediate, there is opportunity to clarify, to respond to puzzled looks, to 
answer questions, and to change vocabulary to suit the listener. Communication over a distance tends 
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to be less responsive, much more likely to be written and with less opportunity to question and clarify. 
When people are distant, there is also a lack of awareness of their specific context, which can lead to 
misunderstandings between sites.

To work effectively as a distributed team requires personnel who are self-starters and have strong self-
discipline and self-management skills. Similarly, not all managers are good at managing remote person-
nel. Some managers are uncomfortable when they can not see and have direct personal interaction with 
the people they are managing. These factors should always be considered when selecting project person-
nel for distributed team efforts (McMahon, 2000).

82.4.6  Globally Distributed Teams

Whenever software development is globally distributed, it is usually with a distribution of collocated 
teams rather than the teams themselves that are distributed. Nevertheless, it is worth reviewing what 
has been found about distributed software development.

Most attention has been paid to cultural aspects of globally distributed projects possibly because the 
effects of culture can be subtle and difficult to deal with or can be obvious but requiring attention all the 
same. Some examples are the attitude to defects where one country could not see the point in classifying 
or prioritizing defects because they believed that all defects should be rectified before the product was 
delivered (Borchers, 2003). A more subtle problem is what Hofstede (1991) refers to as power distance. 
Cultures with small power distances tend to expect subordinates to raise issues with their superiors and 
openly to discuss matters, whereas cultures with a larger power distance will tend to expect the subor-
dinate to carry out their superior’s instructions without question. This can come as a surprise to many 
western team members who tend to question their superiors but who also can be surprised that a team 
member has acted on something they believed was offered only as a suggestion to be discussed.

Cultural differences are not the only challenge facing globally distributed teams. Obviously commu-
nication can become a challenge when time zones do not overlap by much, even though the IT industry 
is becoming accustomed to conference calls outside regular working hours.

Technologies are becoming available also to overcome many of the communication challenges facing 
distributed teams. Video conferencing, cheap voice calls, collaboration websites, and social media sites 
are all helping not only to reduce the communication costs and barriers but also to help team members 
become familiar with each other’s cultures.

82.4.7  Large Teams

As the problems we try to solve become larger and more complex, the teams we need also become larger. 
Large problems have been successfully dealt with by decomposition into smaller problems. However, the 
problem of how to integrate the component solutions into a coherent whole again is less easy to manage. 
Change is inevitable to the requirements, to the technical solution, to the manner of integration, and 
to the work that must be done. Solutions to these challenges have emerged in the shape of Microsoft’s 
“synch and stabilize” (Cusumano and Selby, 1997), code check-in gates that provide enough to assure a 
clean build without becoming burdensome, and interfaces that serve as contracts between components 
(Brechner, 2005). Coordination is achieved through the common code repository and the rules about 
how to incorporate code into that repository. It does not do away entirely with the need for some admin-
istrative oversight of what gets developed and when it gets integrated, but it reduces dependence on it.

Common too is the idea that there should be just enough process to ensure that people can interact 
successfully without compromising independence and creativity. So processes will define relationships 
between people and between components, but not how someone is expected to perform a task. It is 
assumed that they are competent.

Another approach to increasing team size is “Scrum of Scrums” in which there is a cascade of 
Scrums. To date this has been reported as reaching a depth of three Scrums but most frequently is only 
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two Scrums. The general idea is that a delegate from each daily Scrum attends a higher level Scrum in 
which matters of overlap and integration are discussed.

82.5  Challenges and Research Directions

Larger, more complex and more critical projects and the knowledge of what is required to achieve suc-
cess coevolve. We attempt such projects because we believe we can succeed and we learn what is required 
to succeed through our attempts. In this area three main challenges seem to be emerging: self-manage-
ment, governance, and performance measurement. In this section we will first discuss self-manage-
ment through different approaches to aligning the goals, understanding, and work processes. We will 
then discuss emerging trends of governance before concluding with a brief discussion of performance 
measurement.

82.5.1  What Makes a High-Performing Team?

As briefly discussed earlier, a team needs to do more than simply follow instructions. Moreover, with 
many of the task to be performed in software development, it is not possible to provide a set of instruc-
tions that can prescribe how to develop software. Instead there have been various studies of teams and 
teamwork designed to identify the elements of teamwork.

Work gets done better when there is a common understanding of both the task and the means to 
accomplish that task. There is less need for over coordination and less need for administrative and orga-
nizational support or interference in the task.

82.5.1.1  Mental Models

Team mental models are team members’ shared, organized understanding and mental representation 
of knowledge about key elements of the team’s relevant environment (Mohammed and Dumville, 2001). 
The content of a team mental model includes shared representation of tasks, equipment, working rela-
tionships, and situations (Mohammed and Dumville, 2001).

The notion of a team mental model was developed to help account for the differences in performance 
levels of teams. The mental models of individual team members will be quite different at the start then 
converge toward a common representation. Both team work and taskwork mental models relate posi-
tively to team process and performance. In other words, teams with greater convergence in their mental 
models will perform better.

The concept of a mental model is quite rich, to the point where it can be useful to separate different 
aspects of them. For example, team performance could be enhanced if the team shared a model of the 
team itself, its collective skills, and who had those skills. This could be separate from a mental model of 
the task, what sequence of activities were needed for its completion and which team member would be 
responsible for different activities. Separate again from the mental model of the software product to be 
developed.

Whereas teamwork and taskwork reflect knowledge structures, varying interpretations and perspec-
tives regarding key team issues reflect belief structures (Mohammed and Dumville, 2001). If the belief 
structures are too dissimilar, miscommunication and misunderstanding will prevail. However, if there 
is too much similarity, there is a danger of group think.

Information sharing and transactive memory research has been task oriented, concentrating on 
domains of expertise. Some knowledge will need to be common to all team members, but other, more 
specialized information is not needed by all team members so can be left to a few individual members 
who can apply that knowledge when needed.

In contrast, knowledge of how the group will function together, how they will communicate, and how 
they will resolve their differences should be held by all members (Mohammed and Dumville, 2001).
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82.5.1.2  Collective Mind

In a study of flight deck operations, Weick and Roberts (1993) proposed the concept of “collective mind” 
distinguishing it from “group mind.” The term collective refers to individuals who act as if they are a 
group, taking care to interrelate their activities. Weick and Roberts are interested in the actions and how 
they are interrelated within the group. An individual can contribute to a collective mind, but a collective 
mind is distinct from an individual mind because the collective mind is made up from the pattern of 
interrelated actions within the system.

Weick and Roberts used three characteristics when describing the workings of collective mind: con-
struction, representation, and subordination.

Construction occurs when individuals in the group construct their actions as if there are social forces 
operating within the group. They decide what actions they believe are expected of them and what actions 
they believe are expected of others. In a formal organization such actions would be described in formal 
organization charts and the distribution of roles and responsibilities. To some extent that is also true in teams 
except that in most teams there are more actions required than are formally described. In some way individu-
als within the group decide, or construct, their actions and the actions they expect of others. Importantly 
individuals look for signs that the expected actions have occurred in order to carry out their own actions. 
For example, if a programmer was scheduled to integrate someone else’s code into their own work, they would 
normally look for cues about the status and stability of the other work before committing their own work to it.

The second characteristic of collective mind is representation in which people envisage a social sys-
tem of joint actions. Within a team each has some awareness of the totality of actions to be undertaken 
by the group, who will undertake them and how they interrelate. Again, a certain amount of this is given 
by the work breakdown structure and allocation of work within a project but this does not capture the 
detail of all of the actions of software development.

People relate their envisaged actions within the constructed system of actions. They know what they 
have to do and how it fits into the overall picture. This “subordination” is the third characteristic of collec-
tive mind and is clearly necessary in order that the whole collection of interrelated actions functions well.

Software development is not quite as action packed nor as immediately dangerous as flight deck oper-
ations of military aircraft carriers, but the lessons of how to form high-performance, high-reliability 
teams appear to be applicable to a wide range of domains, including software development.

82.5.1.3 T ransactive Memory

In tasks of any size, very few people are able to know everything about the task and how to accomplish 
it. Instead different people know different parts, but the team collectively knows all of it. Transactive 
memory is defined as the set of knowledge possessed by group members, coupled with an awareness of 
who knows what (Wegner, 1987).

When teams are a primary mechanism for accomplishing organizational work, effective coordina-
tion of teamwork becomes an important organizational issue.

Members of a team come to understand how their individual know-how and skill become linked 
together within a spatial and technology environment. The team is then able to respond as a complete 
system to meet situational demands even though the complexity of the task is beyond the cognitive 
capabilities of individual team members (Faraj and Sproull, 2000).

Need to know where the expertise is. The driving force behind one organization in Sydney, Australia, 
related how he overcame the problem of developing awareness of team members’ knowledge and skills. 
From time to time, the team members were required to describe the knowledge and skills of another 
team member to a potential or actual client:

I think I’m a pretty good technologist but I think my real skill is putting together incredibly high 
performance teams and people. That’s what I think I hang my hat on. The way I do that is I make 
sure everyone is familiar with the competencies and skills and the value that each other brings to 
the table. So they can account for that when they are creating or designing or thinking of an idea 
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for a customer. How I manifest that within my team is anyone of my team, and I have them do 
this on a regular basis, can stand up and explain to a group of people what the role, responsibility, 
history and experience, career path of another member of the team to everyone else. The purpose 
of that is to ensure that each member of the team understands intrinsically what the skill or the 
value or the capacity of other members of the team are. The benefit of that, the ability to reflect the 
knowledge base or the understanding of another team member manifests itself in a very cohesive 
team and a team that is very open in its communications.

—Stefan Gillard, CEO Studio Engine

Faraj and Sproull demonstrated that expertise coordination contribute to team performance above and 
beyond traditional factors such as group resources and the use of administrative coordination.

82.5.2  High-Reliability Teams*

The level of reliability expected of software systems coupled with the increasing size and complexity 
of those systems challenges the ability of teams to meet those expectations. We can draw some lessons 
from high-reliability organizations where the potential for disaster is overwhelming yet the organiza-
tion has little choice but to function reliably. For software development the equivalent is to produce 
high-performance software for life critical systems. It can be done with those same humanly fallible 
people that make up teams in any organization. High-reliability organizations share five characteristics:

82.5.2.1  Preoccupation with Failure

High-reliability organizations pay attention to small problems, treating all of them as symptoms of 
failure in the system. Small errors could develop into large problems if left undetected and unchecked. 
Thinking about the potential consequences of each incident counters the tendency to dwell on success 
and become complacent.

82.5.2.2 R eluctance to Simplify Interpretations

The usual tendency is to simplify in order to pay attention to the few key issues and key indicators. 
High-reliability organizations fight such a tendency, acknowledging that the environment in which they 
operate is nuanced, complex, unstable, unknowable, and unpredictable. They encourage diverse experi-
ence, skepticism toward conventional wisdom, and ways of negotiating differences of opinion without 
destroying the nuances that diverse people detect.

82.5.2.3  Sensitivity to Operations

High-reliability organizations are less strategic and more situational in their outlook. When people have 
well-developed situational awareness, they can make continuous adjustments that prevent errors from 
accumulating and enlarging.

82.5.2.4  Commitment to Resilience

Resilience is a combination of keeping errors small and improvising work-arounds to keep the system 
functioning. Both of those avenues of resilience demand deep knowledge of the technology, system, 
team members, self, and materials. The signature of a high-reliability organization is not that they are 
error free but that errors do not disable it.

82.5.2.5  Deference to Expertise

High-reliability organizations push decision making down and around. Decisions are made on the front 
line, authority migrates to those with the most expertise regardless of rank.

*	 Weick, K. E. and Sutcliffe, K. M., Managing the Unexpected: Assuring High Performance in an Age of Complexity, Jossey-
Bass, San Francisco, CA, 2001. With permission.
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82.5.3  Governance

“Consensus has not yet emerged on a definition of IT governance” (Bannerman, 2009) but can instead 
be taken as the arrangements to direct, monitor, and control at the level of software development. In 
the main these arrangements have been the responsibility of project management, quality management, 
and, to a lesser extent, human resources. What is challenging about software development governance 
now is that past methods appear to be inadequate for highly complex, highly uncertain volatile project 
environments that face many teams.

Instead of relying on directives from higher levels of management, teams have to interpret the goals 
and intent of higher management. Instead of relying on precise specifications from customers and other 
stakeholders, teams have to understand their goals and intent. This is challenging because there are few 
reliable methods of knowing if the development team are “on the same page” as their customers, higher 
management, and other stakeholders. From a corporate perspective, it is insufficient simply to trust that 
the team will somehow incorporate the goals and intent of others into their own goals.

Software development is not the only organization that operates in highly uncertain, highly volatile 
and often hazardous environments. Military operations too are faced with many of the same challenges, 
albeit with higher consequences. The military has the concept of “commander’s intent” to guide indi-
vidual initiatives, actions, and decisions (Augustine et al., 2005).

The military may have significant experience in commander’s intent as other domains may have 
experience with other methods but software development has some catching up to do, both to overcome 
past experience of development teams pursuing their own agendas and of development teams lacking 
the tools and methods to elicit and understand the goals and intent of their senior management, cus-
tomers, and other stakeholders.

82.5.4  Performance Measurement

Measures of performance are used to monitor projects, to determine their state and status, and to deter-
mine the need for change. Developing a system for a well-understood problem in a stable environment 
can rely on long-term planning and associated measures such as budget, earned value, and delivered 
artifacts. In such an environment, it is reasonable to equate time with progress since actual progress 
does tend to reflect planned progress.

But in volatile environments and when developing a system for something that is largely unknown, 
being discovered, and solved on the run, such performance measures prove inadequate. In such volatile 
and uncertain circumstances, measures of risk or, more specifically, risk reduction have been proposed 
as more appropriate and more useful (Eisenmann et al., 2011; Ries, 2011). The biggest risk is that a sys-
tem will be developed that solves the wrong problem or no one wants. So instead of measuring against 
a plan on the assumption that all will happen as it was planned, projects are measured against risk 
reduction. What are the biggest risks facing the project and how could those risks be resolved at an 
acceptable cost?

The challenges of such a shift in perspective are that we tend to revert back to old habits and convert 
the highly uncertain project into a sequence of prototypes that are assumed to prove what we want them 
to prove or we simply launch the project with some open-ended commitment to resolve all the risks then 
watch the escalating cost of doing so rather than stop the project.

While the work of Eric Ries is very appealing and does offer a new direction to pursue, there is much 
to be investigated. While Ries and others are eager to point out the risks of new product development, 
there is little guidance about measuring the types and potential impacts of risks in new product develop-
ment, their interaction with the development, or how best to manage them. Possibly of more importance 
is knowing when to shift measurement systems from those traditional measures of stable, long-term 
production projects to those of risk recognition and reduction of highly volatile emergent projects and 
back again.
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82.6  Summary and Conclusion

In this chapter we walked the reader through the steps of how to put together a team and explained the 
options and potential obstacles you will face. We examined options you have and issues you are likely to 
face. This included selecting personnel with the right skills and the importance of clearly defined roles 
and responsibilities to ensure important work is not overlooked and team members are not working on 
the same task. We identified critical skill needs including both personal and team skills.

Underlying principles and best practices were identified including training and coaching. We 
explained why coaching is needed to supplement formal training programs. We discussed differing 
organizational structures including functional hierarchical organizations, IPT organizations, self-
directed team organizations, product-line organizations, and hybrid software organizations. Strengths 
and weaknesses of each were identified.

We explained what distinguishes a team from a random group of people and we discussed the stages 
groups go through in becoming an effective team including forming, norming, storming, and perform-
ing. We discussed what is different when a team is distributed and why distributed teams require per-
sonnel with self-starter, and strong self-discipline and self-management skills.

We discussed the management and coordination challenges of large teams and what makes a high-
performance team different. Finally we identified and discussed future research areas including mental 
models, collective mind, transactive memory, and high-reliability teams.

Future changes in the nature of software engineering will require matching changes in the nature of 
software engineering teams. While some of the responses to those challenges are likely to be technical in 
nature, more of them are likely to be social in nature placing a premium on our ability to form function-
ing teams suited to whatever circumstance we find ourselves in.
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83.1  Introduction

This chapter describes two well-known control methods that can be applied to controlling software 
development projects and to their underlying software development processes. The first method is closely 
related to traditional engineering methods for controlling manufacturing and communications systems 
using feedback. That method is most applicable to the overall management control of entire software 
development projects. The second method is known as statistical process control (SPC). It can be applied 
beneficially to portions of the software development processes that can be most easily quantified, such as 
the inspection process. We will describe both of these methods and their underlying mathematical and 
engineering foundations, and will then provide some examples of their use in typical software develop-
ment projects. We will end with a brief discussion of the extensive literature in which other authors have 
described the application of SPC methods to software projects and the successes and failures that they 
have reported.

All plan-based software development projects must be planned, organized, monitored, and con-
trolled by their project manager. We will refer to the project manager’s control activities in executing 
the project as project control. We will refer to control of the underlying software development processes 
as process control. Controlling a project and controlling the underlying processes are very different 
activities, and consequently, they require very different techniques to make them effective.

83.2  Project Control

A project is usually defined as activities performed by people that produce something unique and that 
have a limited lifetime. It can be described as a set of tasks that are linked together in a network that 
shows which of the tasks must be completed before subsequent tasks can begin. Software projects usu-
ally require tasks that involve the development of requirements, the development of architectural and 
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design specifications, coding, testing, delivery to the customer, and continuing maintenance. It will 
also sometimes involve the development of a proposal or a business case, which presents the economic 
justification for the undertaking, and an agreement, or a contract, with the customer specifying what 
will be delivered, when it will be delivered, and how much it will cost. At a high level, virtually all large 
software projects can be defined by these activities. However, because each project produces something 
unique, the details of tasks that need to be performed to complete the project are usually different from 
project to project. For most large software projects, the network and schedule relationships usually look 
similar to Figure 83.1.

For the software development project shown in Figure 83.1, the team needs to develop five different 
software modules (Mod 1 through Mod 5) and integrate them into two different releases of the product. 
The project starts with planning and requirements development. The architecture, which defines each 
of the modules and how they work together, is developed next. Then the design, coding, and unit test-
ing (D, C, and T) of three of the modules is undertaken. When all three modules have been unit tested, 
they are integrated to produce Release 1 (R1) of the product. Release 1 is then system tested and that 
release is deployed.

During or shortly after Release 1 has been integrated, two of the resources that developed the first 
three modules go to work on design, coding, and unit testing of the two additional modules that provide 
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the capabilities included in Release 2. The information in Figure 83.1 also assumes that while Modules 4 
and 5 are being designed, coded, and unit tested, someone needs to return to modify Module 2 to accom-
modate Release 2 (R2) features. When all three modules have been unit tested, they are integrated with 
the software that was developed for Release 1 to produce Release 2 of the product. Release 2 is then sys-
tem tested and that release is deployed.

83.2.1  Project Plan

The project plan is a document, prepared by a core team that answers the following questions for the 
team, for the team’s management and for the project’s other stakeholders:

What is the project going to produce?
How is the team going to produce the product?
Who is going to do each task?
When will each task, each release, and the whole project be completed?
How much will each task and the entire project cost?

The core team that produces the plan should be a set of people whom we expect to work on the project 
from beginning to end who can represent all of the functions (such as requirements development, archi-
tecture and design, coding) that will be required for completion of the project.

The plan needs to specifically define each of the tasks that must be accomplished, who will be respon-
sible for each task, and visible end points for each task so that the project manager and other members 
of the team will know when each task has been completed. These visible end points might be things 
like inspections of requirements, customer sign-off on requirements documents, inspections of detailed 
designs, unit test results, demonstrations of design, coding and unit testing tasks, demonstrations of test 
results, and sign-off by team members on installation and user documents.

The reason for specifying very visible end points for each task is so that the project manager does not 
have to be continually asking each person assigned to a task what the status of work on that task is. Tasks 
should be defined in such a way that they can be completed by one person working full time on the tasks 
for no more than a few weeks. By defining relatively small tasks and by having visible end points for 
each task, the manager no longer needs to ask about the status of the task. The task is either completed 
or not completed. And the manager can confirm when it is completed by viewing the visible end point. 
This avoids the challenge of having to use subjective estimates of how much of a given task has been 
completed. Assigning a percent complete to a project task is a guess on the part of the individual who is 
responsible for that task. This author has observed that individuals frequently provide overly optimistic 
estimates when asked this question thereby delaying availability of the manager’s knowledge that prob-
lems may be developing on the project.

83.2.2  Project Operations

The project plan should also contain some general descriptive materials outlining how the project 
will be staffed; how it will be kicked off; how and with whom the project will communicate, both 
internally and with its external stakeholders; and, probably most importantly, how the project will be 
monitored. Most project managers monitor the status of their projects by arranging periodic project 
meetings on a weekly, biweekly, or monthly basis. Those project meetings provide a forum in which 
the project’s status and the status of individual tasks can be observed and reported. They also serve 
as a place where current issues are raised, where responsibilities for addressing issues are assigned, 
where a variety of project data can be shared with members of the team, and where demonstrations of 
progress can be conducted.
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83.2.3  Project Monitoring and Feedback

The project plan should describe the number of people who are expected to be working on the 
project as a function of time. It should also describe the cost, or budget, indicating how much the 
management expects to have to pay for salary and expenses in support of the software development 
team. Finally, it needs to list all of the tasks that need to be accomplished to complete the project 
and who will be responsible for each task. This information can be displayed in either tabular or 
graphical form, that is, in a spreadsheet or in a Gantt chart. As an example, Figure 83.2 shows a 
Gantt chart for the project that was outlined in Figure 83.1. Figure 83.3 shows the same information 
in a tabular format.

In addition to the status of the project’s tasks, we might also be interested in the resources working on 
the project and their cost. Figures 83.4 and 83.5 also show, in a graphical format, the number of people 
we plan to have working on a project and their cost.

83.2.4  Project Control

Now that we have discussed and set up the basics of a project plan, we are ready to start discussing 
project control. In order to exercise project control, we need to make use of another major project 
management processes, namely, the monitoring process. Monitoring is the process of tracking the 
status of the project, comparing the current status with the status contained in the plan for the cur-
rent point in time, and searching for deviations between the baselined project plan and the actual 
project status. The deviations are then used as the basis for taking actions to address the deviations, 
namely, the control process.

Figure 83.6 shows how the monitoring and control processes are used together. Input to the 
monitoring process includes the project plan, specifically the data shown in Figures 83.2 through 
83.5, showing which tasks should be completed at each point in time, the number of resources 
that should be working on the project at each point in time, and the costs that should have been 
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incurred at that time. In preparation for each periodic project meeting, the project manager com-
piles the status of all tasks, the number of people working on the project, and the cost that has been 
incurred. When the manager discovers that some of the tasks that should have been completed 
have not been completed, the number of resources is not at the planned levels or the cost incurred 
is different from the planned cost the manager needs to take control and do something to address 
the deviation.

FIGURE 83.3  Tabular description of a software development project.
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“Project monitoring and control” is a key process area in the Capability Maturity Model Integrated 
Development (CMMI-DEV) [6], developed by the Software Engineering Institute. Inclusion of both 
monitoring and control in the same key process area, and in most other software development 
best practice descriptions, indicates that monitoring and control are closely related and highly 
dependent processes.

Figure 83.6 shows that the outputs from the project control process become modifications of the 
project plan. The purpose of those modifications is to get the project back on track. While these modi-
fications might not literally result in changes to the written project plan, they will certainly result in 
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modifications to the way the project is operating. In practice, when an unacceptable deviation from 
the project management plan is discovered, the project manager needs to take corrective action. As a 
first step the project manager may ask the individual who is responsible for the deviation to develop 
and present the steps needed to get back to the baseline plan as quickly as possible.

The project manager may need to provide support to the responsible person. Corrective actions that 
do not require additional costs or delays in the project completion date should be considered first. These 
actions could include nonpaid overtime work or the use of resources assigned to tasks with slack to assist 
with the delayed work.

If no such modifications can be found, the project manager should consider two additional tech-
niques, “fast tracking” and “crashing.” Fast tracking means that tasks that are normally done in 
sequence are done, instead, partially in parallel. For example, if you would not normally start prepar-
ing detailed designs until requirements and an architectural solution were documented, fast tracking 
might mean starting detailed design or, perhaps, even coding before the requirements and architectural 
specifications were complete. Fast tracking involves risks that could lead to increased cost and rework 
later. If the requirements or the architecture changes, this might result in having to redo some of the 
detailed design or coding work already underway, thereby delaying project completion and/or increas-
ing total project cost.

Crashing the schedule means adding additional resources to tasks on the critical path without nec-
essarily being concerned about the level of efficiency for those tasks. Let’s assume that one person was 
working on a 4-week design, code, and unit test activity and they are having difficulty getting agreement 
on how their software module will interface with a module designed and coded by another person. If 
you really need to assure that the task finishes in 4 weeks, you might add a second person to this task. 
That person might not have all the right skills for this task, and they might have to work for two weeks 
just to reduce the overall time on this task by 1 week. That trade-off, on the surface, might not make 
sense. However, if the project’s delivery date is of utmost importance, we might be willing to make that 
trade-off even if it results in an incremental increase of the project’s cost. One of the goals of crashing 
the schedule is to minimize the incremental cost increase. However, in exchange for completing tasks 
on the critical path on schedule, crashing almost always leads to additional incremental cost. If the 
project manager is willing and able to spend more to accelerate the schedule, crashing is sometimes the 
best alternative.

If the schedule will be delayed, the cost increased, or the scope reduced, the project manager will 
need to consult with the customer and/or other stakeholders to negotiate an increased budget, a proj-
ect schedule delay, or a reduction in the project’s scope (requirements) to accommodate the necessary 
modifications. Obviously, prevention of schedule delays, cost overruns, or scope reductions is superior 
to alternatives that require these negotiations.

All of these actions constitute project control.

83.2.5 T heoretical Basis for Project Control

The methods that have been discussed previously are similar to those used in modern control engi-
neering, also called feedback control. Feedback control uses the difference between signals, deter-
mined by comparing the values of system’s output variables to their desired values, as a method for 
controlling the system. A very common and well-known use of feedback control is the room thermo-
stat used to control the temperature of a room. The setting provided by the user or occupant of the 
room is the desired temperature. During periods when heat is required to maintain a comfortable 
temperature, the occupant will position a lever or, with a digital thermostat, set the desired tempera-
ture. Based on that input, the thermostat will determine a temperature slightly lower than the desired 
temperature at which the thermostat will send a signal to the furnace or other heating device to turn 
“on” and start delivering heat to the environment. When the temperature rises to slightly more than 
the desired level, it will send a second signal to the heating device to tell it to turn “off.” In the case of 
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room thermostats, turning the switch to “on” or to “off” is usually implemented by a combination of 
temperature sensitive mechanical devices and electrical circuitry.

This theory of feedback control was first formalized by James Clerk Maxwell who provided the first 
rigorous analyses of a feedback control system. In 1868, he wrote a famous paper “On Governors,” [4] 
which is widely considered the seminal paper in feedback control theory. In that paper he anticipated 
many aspects of modern control engineering. Figure 83.7 is a diagram that shows in a more formal way 
the use of differences between desired results and actual results to control a system.

Note that the relationships shown in this figure are similar to the relationships between the project 
monitoring process and the project control process shown in Figure 83.6. The “desired output” is the 
information contained in the project plan. The System represents the project. The Sensor corresponds 
to the monitoring process, and the Controller represents the actions taken by the project manager to 
address deviations from the plan. While the theoretical basis for control of many electromechanical 
systems can frequently be expressed and analyzed quantitatively, that is not usually possible for project 
control systems that depend very heavily on the experience and capabilities of the project manager and 
the project team to implement the control actions discussed previously.

83.2.6 A rtifact Control

Another aspect of project operations related to control is those activities that have become known as 
configuration, or artifact, control. Configuration control is the formalized process of keeping track of arti-
facts such as requirements, architecture, and design documents as well as code and test cases. After a draft 
of these documents is formalized by being baselined, any further change in those artifacts requires formal 
approval. That approval is frequently in the hands of managers who are responsible for the project or, 
more likely for larger projects, a configuration control board, which is usually a subset of team members 
who take on primary responsibility for controlling what changes are made to the artifacts and how those 
changes are integrated into the project’s formal documentation. Those changes may come from customer 
trouble reports, from customer requests for changes, or from members of the software development team 
who are making changes to the system. It is imperative that there be a methodology in place to keep care-
ful track of artifacts included in each release of the project so that all team members know which version(s) 
of the software is in the hands of customers, which are being tested, and which are in development.

While these activities have the word “control” in their names, they are qualitatively a different kind of 
control from project control and from process control that will be discussed in later sections of the chap-
ter. The most important characteristic of these artifact control activities is the care with which they must 
be executed and the cost of exercising this kind of control. There are many software-based commercial 
configuration management systems available that can be investigated by browsing the web. Information 
on each is readily available there, so we will not go into any further discussion about artifact control in 
this chapter.

Controller System

Sensor

System outputDesired output Error
System
input

Measured system output

Disturbances

–

FIGURE 83.7  A formalized control system based on feedback.
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83.3  Process Control

83.3.1  What Is a Process?

A process can be defined as a set of tasks performed by people, machinery, or nature that transform 
inputs into outputs using resources [1]. So a process must be considered in the context of the agents car-
rying out the tasks and the resources that are required [2]. The tasks are usually linked together in such 
a way that some of the tasks need to be completed before subsequent tasks can begin. A process may also 
be defined as the workflows and sequence of events inherent in processes such as engineering, business, 
or manufacturing.

83.3.2  Control of Repetitive versus Nonrepetitive Processes

Several methods have been developed for controlling processes. The continuous feedback control 
methods that were described briefly in the first half of this chapter are particularly suitable for completely 
automated electromechanical applications such as the room temperature control system described there 
and many other repetitive operations, particularly in the chemical manufacturing and electrical com-
munications industries. These are all examples of repetitive processes in which the same processes are 
executed again and again with the objective of performing them exactly the same way every time.

A second method that has been developed for controlling repetitive processes is SPC. SPC was devel-
oped by Walter Shewhart in the 1920s and later applied very successfully by W. Edwards Deming during 
World War II to improve the manufacturing quality of weapons and other products that were important 
to the war effort. It has become a very effective method for controlling the variability inherent in many 
repetitive manufacturing processes. SPC makes use of control charts, as shown in Figure 83.8, to record 
observations of a numerical variable of interest in the manufacturing process. Those limits are used to 
raise a flag when the variable goes above or below specified limits indicating that the process is out of 
control. Such excursions stimulate an investigation to determine the root causes of unusual variability 
and elimination of those causes.

Based on a sequence of observations, the upper and lower control limits (UCL and LCL) shown in 
Figure 83.8 were calculated. The control limits are calculated using an assumption that, if the process 
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is in control, that is, if the mean of the measured attribute and the standard deviation of the attribute 
are not changing over time, the observed data will fall within plus or minus one standard deviation of 
the mean approximately 67% of the time and within plus or minus two standard deviations of the mean 
about 95% of the time (see Figure 83.9). So the observed measurements should appear above the UCL 
only about once in 40 observations unless there is some systematic cause that results in the observa-
tion being out of control more than 5% of the time. Likewise, the same logic could be applied to points 
appearing below the LCL.
The calculation of control limits is done using the following formulas:
Assume that

Xi is the individual measurements of the variable being studied
μ is the mean (average) of all observations
N is the number of observations

	
UCL X /N

N

= + −( )∑µ µ2
1

2
i

	
LCL X /N

N

= − −( )∑µ µ2
1

2
i

LCL = 0 if the previous LCL expression is negative

The use of SPC to help control software engineering processes has been encouraged by its inclusion in 
the CMMI-DEV [6]. However, its use for that purpose has been controversial because of several basic 
differences between typical manufacturing processes and software development processes [5,8].

Software development processes, while they might look repetitive at a high level, are actually exe-
cuted differently each time they are performed. We call these nonrepetitive processes. Most projects, 
whether they are in the construction industry, the software development industry, or in some other 
industry, must use nonrepetitive processes by their basic nature. This is because part of the definition of 
a project is that it is an activity, performed by people using resources that produce something unique. 
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FIGURE 83.9  Assumptions made in calculating UCL and LCL.
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If the objective is to produce something unique each time the project’s processes are executed, they 
must be nonrepetitive and must be uniquely planned, organized, monitored, and controlled. While the 
application of SPC to software development processes is controversial, in a later section of this chapter 
we will provide an example of an application of this technique to at least one subprocess of the overall 
software development process, inspections.

Nonrepetitive processes are frequently controlled using a method called management by walking 
around (MBWA). Using this method a manager would determine if employees are following the desired 
process by frequently reviewing the work that they are doing, looking over their shoulders while they 
work, and talking with them about how they are doing the task in which they are engaged. The manager 
can then provide informal feedback on how the process is being executed and what should be done to 
improve its execution.

Alternatively, software development processes can be controlled by defining the process in writing, 
including in that definition a requirement that calls for written artifacts from the process while it is 
being executed. Documents produced during execution of the process are then reviewed by the manager 
and/or audited by professional auditors to determine if the process is being executed in compliance with 
its requirements. This is the method used to achieve International Organization for Standardization 
(ISO) 9001 certification of a software development process [3]. For that kind of certification, a team of 
people in the organization seeking certification writes a description of the process. This description is 
reviewed by the external auditors to ensure that the description complies with general ISO 9001 pro-
cess description requirements. It becomes part of the organization’s ISO 9001 quality manual. Then 
the development team does the work, following the description while documenting the work along the 
way. Finally, a team of external auditors reviews the documentation that has been produced, interviews 
people on the development team about how they have been doing their work, and compares the process 
that is actually being used with the process described in the quality manual. Any mismatches between 
the requirements in the quality manual and the process uncovered by the auditors produce nonconfor-
mances, which must be addressed and improved before the next external audit to reduce the probability 
that the nonconformance will occur again.

The CMMI-DEV is a similar model with corresponding processes. That model specifies specific pro-
cesses for developing software that are generally considered best practices for software development. 
The model describes an evolutionary improvement path from ad hoc, immature processes to disci-
plined, mature processes with improved quality and effectiveness. It provides a method for identifying 
opportunities for improvement and for comparing the maturity of an organization’s processes with 
the model’s components to produce a maturity rating from one to five indicating how completely and 
correctly each of the model’s components have been implemented. The model describes the following 
22 key process areas listed approximately in the order of maturity with lower levels of maturity using 
only processes near the top of the list and higher levels of maturity using processes near the bottom of 
the list in addition to all of the processes above them toward the top of the list:

Configuration management
Measurement and analysis
Project monitoring and control
Project planning
Process and product quality assurance
Supplier agreement management
Requirements management
Decision analysis and resolution
Integrated project management
Organizational process definition
Organizational process focus
Organizational training
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Product integration
Requirements development
Risk management
Technical solution
Validation
Verification
Organizational process performance
Quantitative project management
Organizational performance management
Causal analysis and resolution

Organizations may conduct an appraisal and earn a maturity level as specified by the model. Appraisal 
requirements are specified in CMMI ARC [7]. Appraisals focus on identifying improvement opportuni-
ties and comparing the organization’s processes to CMMI-DEV best practices.

83.3.3  Control of a Specific Software Development Processes

To achieve high maturity levels of CMMI-DEV, organizations must use quantitative project management. 
This requirement could conceivably be met by tracking the number of tasks actually completed versus 
the number planned as a function of time, by tracking trends in numbers of customer trouble reports 
per unit of time or in number of faults found per line of code during testing. However, the most exten-
sive, and theoretically sound, use of quantitative project management techniques has been the use of 
SPC in analyzing data produced by inspection processes.

Figure 83.10 shows control charts for a set of date that were produced by 15 requirements inspections. 
In each chart the number of the inspection is shown on the horizontal axes. The vertical axes show 
defect density in number of defects per 1000 lines of text, preparation rate in lines of text per hour of 
preparation, inspection rate in lines of text inspected per hour, and document size in lines of text. The 
UCLs for each chart were calculated using the formula shown earlier in this chapter. LCL calculations 
indicated that the LCL for each chart was zero.
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It is instructive to look at the data for inspections numbered 3, 8, 12, and 15. For inspection three 
the defect density, the preparation rate, the inspection rate, and the document size are all within the 
control limits. We could conclude that inspection number three was a normal inspection meeting and 
that the document was acceptable with a nominal defect rate. For inspection number eight, the defect 
density was at or very close to zero. The preparation rate, the inspection rate, and the document size were 
all within the control limits. We could conclude that this was a normal inspection meeting and that, 
because the defect rate was at the LCL, this was a very-high-quality document. For inspection number 
twelve, the number of defects was zero. The preparation rate, the inspection rate, and the document size 
were all high and were all above their UCLs. Therefore, we could conclude that this was likely to have 
been a poor inspection and that the document should be inspected again. Finally, for inspection number 
fifteen, the defect density was high and above the UCL. The preparation rate, the inspection rate, and 
the document size were all within the control limits. Therefore, we could conclude that the inspection 
was probably a good one but that the quality of the document was poor. The document should probably 
be reworked and reinspected.

In each of the four control charts shown in Figure 83.10, only one of the points are actually outside 
the control limits, which is close to the expected number of times such variation would be expected to 
occur due to random causes, so there is no strong evidence of any systematic cause for these outliers. 
However, if these excursions continue to occur in the future or if the frequency of occurrence increases, 
an investigation of the reason why the process is out of control should be undertaken and actions should 
be taken to prevent these outliers. Such actions might include not starting an inspection meeting if it is 
determined before the meeting starts that the document size is outside the control limits or stopping an 
inspection meeting as soon as it is determined that the preparation rate has exceeded the UCLs. These 
are the kinds of process improvement actions, based on the use of quantitative SPC methods that could 
be implemented during the execution of the process.

83.3.4  Practical Implications and Major Challenges

Application of the control techniques discussed in this chapter is relatively straightforward in practice. 
However, the author has observed that they are frequently not applied by project managers. There could 
be several reasons for this situation. First, and most obvious, is that if a project is not well planned, then 
the project manager has no basis for comparing the project’s status with a baseline plan. A good plan 
should specify what is going to be done, how it will be done, who is responsible for each task, when each 
task will be completed, and how much the project will cost.

If the project plan does not specify the necessary tasks in sufficient detail and if there is nothing 
specified that the project manager can see to determine when each task is completed, the manager needs 
to rely only on the word of team members that a task has been completed. Anyone who has managed a 
project has observed that when reporting on task completions, members of software development teams 
are sometimes overly optimistic, frequently reporting that tasks are completed when there still remains 
work to be done. This is particularly bothersome during the creation of the project architecture and the 
design and coding phases of the project. During those phases it is helpful if the project plan calls for 
formal inspection of the artifacts that are produced during each task so that the project manager can 
see a short inspection report indicating that the task has been completed. This also provides a basis for 
implementing an inspection program and controlling its operation as discussed in the second part of 
this chapter.

When unit and integration testing has begun, the project plan could call for demonstrations of the 
results of these tests to the team so that completion of the tasks can be visually confirmed. Finally, when 
system testing begins, the completion of individual test cases, indicating whether they have passed or 
failed, can and should be reported and tracked.

Developing a plan that includes resources for all of these activities usually requires more work and 
overcoming more resistance from team members and stakeholders with financial interests than the 
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effort associated with monitoring and control of the project. Therefore, the major challenge faced by 
project managers is usually the development and implementation of a sound project plan that includes 
all of these activities.

83.4  Summary and Conclusions

We have reviewed the methods commonly used to control software projects. They involve close 
monitoring of the project as compared with the project plan and taking appropriate actions when it is 
found that there are significant deviations from the plan. This method was shown to be closely related to 
feedback control used for controlling many engineered systems. We then moved to the control of soft-
ware development processes. Methods discussed there ranged from informally observing how the work 
was being performed through more formal ISO 9001 certification and CMM assessments to the use of 
SPC for specific subprocesses of the software development process.

Control of both projects and processes is one of the more difficult activities that must be undertaken 
by software development project managers and their teams. Monitoring projects to find deviations 
from the plan is quite straightforward once an appropriate plan has been developed. However, deciding 
what actions to take in response to deviations requires the exercise of considerable care and judgment. 
Controlling processes is even more difficult, not only because significant effort and cost are required to 
do it well but also because there is considerable debate about whether the most soundly based method, 
SPC, can and should be applied to software development processes.
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84.1  Introduction

Agile is an umbrella term used to describe a set of paradigms and approaches to the software devel-
opment process. The term was popularized with the publication of the Agile Manifesto (Beck et al. 
2001) by a group of 17 authors and reflects an intention of the signatories to differentiate agile 
approaches from a trend in software development methodologies that had gained dominance in 
previous decades.

That trend, in turn, had been a reaction to the software crisis that had been widely publicized 
by the early 1970s (Dijkstra 1972) and had led to the rise of increasingly elaborate and prescriptive 
approaches to software development. The publication of Managing the Software Process (Humphrey 
1989) had culminated a long turn away from a focus on individual developers described in Dijkstra 
(1972) toward a focus on detailed, defined development processes. The Capability Maturity Model 
introduced by the Software Engineering Institute (SEI) (Paulk and Curtis 1993) moved the defined 
software process squarely to the center of attention in software development. Large initiatives such 
as the Ada Programming Support Environment (Fairley 1980) exemplified the attempt to sup-
port defined processes with comprehensive tools. The development of the V-Model in Germany 
in the mid-1980s enshrined a view of the software development lifecycle as a series of activities 
based upon a particular sequential interpretation of the waterfall lifecycle model published in 1970 
(Royce 1970).
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The V-model and similar lifecycle reference models also formed the basis of new software devel-
opment standards such as IEC 61508 (IEC 2010) with numerous associated workproducts in the 
form of documentation to be produced by developers. Such documentation workproducts (e.g., user 
requirements) generally became the object of contractual negotiations that were gated prerequisites to 
progress in projects. These documentation workproducts were often not associated with functioning 
software (especially in early phases of projects), which often led to antagonistic relationships between 
customer and developer as each maneuvered for position regarding functionality whose cost could 
only be predicted with considerable uncertainty.

By the early 1990s, evidence was accumulating and being reported in publications such as the Chaos 
reports (Standish 1994) that organizations following established software development doctrine were 
failing at alarming rates. Those who became the signatories to the Agile Manifesto had come to the 
conclusion through independent experience that the main source of failure was an unforeseen degree 
of change in systems over all phases of their lifecycle and an inability of the currently popular defined 
processes to manage that change. They began to introduce the alternative approaches that became known 
as agile methods.

The primary differentiating characteristic of the agile methods promoted by the signatories of the 
Agile Manifesto was an iterative and incremental approach to the development process. Although it 
represented a radical departure from the sequential development processes that had become domi-
nant, it was not unprecedented. As Larman and Basili (2003) recount in detail, iterative and incre-
mental development had been practiced and promoted at numerous times throughout the history of 
software development. In addition to anecdotally documented experience in IBM Federal Systems 
Division and NASA Project Mercury, publications explicitly recommending this approach were 
beginning to appear by the late 1960s (Randell and Zurcher 1968). Gilb was a strong early promoter 
(Gilb 1989) of iterative and incremental development (Extreme Programming [XP] author Beck has 
explicitly acknowledged a debt to Gilb’s work). The 1980s were also characterized by influential pub-
lications promoting an explicit iterative and incremental lifecycle representation, such as the spiral 
model (Boehm 1988).

Likewise, specific practices that came to be associated with agile methods had important prec-
edents. The practice of test-first development was being used in the NASA Project Mercury by 1960 
(Larman and Basili 2003). The practice of continuous integration was noted by Cusumano at the 
XP2003 conference on agile processes to be strikingly similar to the daily build already being prac-
ticed in Microsoft (Cusumano and Selby 1995) in the early 1990s. The agile vision of software being 
its own best documentation has echoes in literate programming (Knuth 1992). Pair programming 
had been introduced by Plauger at Whitesmiths several years earlier than its popular reintroduction 
in XP (Constantine 1992). In an influential article in the mid-1980s, Brooks (1987) advocated the 
idea of “growing” a system from simple to more complete functionality, in such a way that a run-
ning system was always available to stakeholders. This idea was a precursor to the agile vision of 
“working software.”

Likewise, the refocused attention on individuals and interactions in the Agile Manifesto was 
not unprecedented, as the landmark book The Psychology of Computing Programming (Weinberg 
1971) had studied both individual and team software development behavior 30 years earlier, coin-
ing terms such as egoless programming that became precursors to the group ownership practices 
seen in agile methods. Even during the heyday of institutional process definition activity, books like 
Peopleware (DeMarco and Lister 1987) were seeking to raise awareness of the human factor in soft-
ware development.

Thus, the rise of agile software development in the late 1990s and early 2000s can be viewed 
not so much as innovation in specific software practices as a codification and consolidation of 
long-existing practices into a number of coherent, usable methodologies and frameworks. This 
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happened within the context of a rebalancing in the nature of large software systems. Whereas the 
large software systems in the 1970s and 1980s were primarily mission-critical, military, and space 
systems, a new kind of large software system began to appear in the 1990s with the rise of networks 
such as the Internet (including the World Wide Web) and financial networks with a global reach. 
Applications on these new systems were characterized by extremely volatile, rapid feature evolu-
tion and high degrees of user interaction and provided the context for the agile methods to take 
root and thrive.

84.2  Underlying Principles

A set of 12 principles underlying the agile approach to software development was provided by the signa-
tories of the Agile Manifesto (Beck et al. 2001):

	 1.	 Our highest priority is to satisfy the customer through early and continuous delivery of valuable 
software.
A direct link to the surrounding business environment is established by several principles in 
the Agile Manifesto. Although stakeholder satisfaction had always been at least implicit (e.g., 
through user requirements) in previous approaches, there was a distinctly technical slant in those 
approaches. Agile software development places an emphasis on delivery of business value, with an 
implicit (and often explicit) interpretation as economic value (Beck and Andres 2004). While the 
link to business value had been made in specific subdisciplines such as software reuse (Favaro 
et al. 1998) and software product lines, it was relatively unusual to find it in general software devel-
opment methodologies.

	 2.	 Welcome changing requirements, even late in development. Agile processes harness change for the 
customer’s competitive advantage.
Beyond the link to economic value (which could manifest itself simply as cost savings), a strong, 
explicit link was made by the promoters of agile software development to competitive strategy, 
going beyond the simpler time-to-market arguments seen previously. Here, the software devel-
opment process was interwoven with business strategy—in particular, reacting successfully to 
changing business conditions. Enabling this new interweaving with competitive strategy neces-
sitated a complete reworking of the lifecycle not only in terms of iterative development but also 
in terms of introducing interaction points between technical development and strategy develop-
ment. Whereas technically oriented iterative development had been practiced in the past, there 
had been much less attention paid to its interaction with iterative business strategy develop-
ment and execution. The principle of harnessing change and uncertainty for competitive busi-
ness advantage forms the foundation of the real options approach, borrowed from mainstream 
corporate finance (Brealey et al. 2008) and strategy that underlies and is appealed to explicitly in 
several of the agile methodologies.

	 3.	 Deliver working software frequently, from a couple of weeks to a couple of months, with a preference 
to the shorter timescale.
Aside from enshrining the iterative and incremental development paradigm in agile methods, 
this principle is also related to promises such as the following (Jeffries et al. 2000):

Customer Development Right #1: […] You may cancel at any time and be left with a useful 
working system reflecting investment to date.

Such a promise could not be made with a sequentially defined waterfall lifecycle: a cus-
tomer wishing to cancel a contract would risk having only a set of requirements and design 
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documents, with no code written. The promise, however, poses serious challenges for imple-
mentation techniques, such as how to implement infrastructure incrementally along with the 
more user-visible features. It also has led to considerable experimentation with the duration 
of iteration periods (e.g., determining the shortest possible duration of an iteration that can 
still result in useful working software), as well as the management of that iteration (e.g., fixed 
timeboxing versus more elastic boundaries). All agile methods confront these issues in vari-
ous ways.

	 4.	 Business people and developers must work together daily throughout the project.
The principle of generating customer satisfaction through frequent delivery of working software 
implies the need for more frequent interaction between customer and developer than in a sequen-
tial process, where customer–developer interaction is primarily at the beginning (requirements 
definition) and end (acceptance testing) of a project. At a minimum, interaction points must occur 
between iterations, but agile methods encourage continuous interaction. The most extreme mani-
festation is the request for a customer representative to be onsite and part of the development team. 
Not only does this principle redefine the customer–developer relationship in more collaborative 
terms, but it also places heavy requirements on the customer’s resources (i.e., making personnel 
available on a daily basis) that can be very challenging.

	 5.	 Build projects around motivated individuals. Give them the environment and support they need, 
and trust them to get the job done.
Along with the acceptance of the sequential waterfall process in the 1970s, a view of the cost of 
changes to systems over lifecycle phases was popularized that embodied the assertion that the 
cost of changing software grows exponentially over the lifecycle. In particular, it was orders of 
magnitude more expensive to make a change during programming (the “coding phase”) than 
during the earlier phases of design and requirements analysis.

The effect of this diagram was that suddenly those earlier phases took over the central impor-
tance. The requirements analyst became a “Very Important Person” in the software process, 
and an entire discipline of requirements analysis grew up around him. The designer (or, more 
eloquently, the “architect”) became another Very Important Person, and an entire discipline of 
software architecture grew up around him. Conversely, the programmer was suddenly much 
less important. With all the real effort concentrated in the earlier requirements and design 
phases, the programmer became a mere assistant, transforming the results of the requirements 
analyst and architect in a mechanical fashion into code. No special skill was needed, because at 
least in theory, the requirements analyst and the design architect had already done the impor-
tant work.

After the organizational emphasis in the process-oriented approaches of previous decades, 
with the agile movement individual programmer came back onto center stage, as DeMarco 
noted:

Part of our 20-year-long obsession with process is that we have tried to invest at the orga-
nizational level instead of the individual level … If agile means anything to me, it means 
investing heavily in individual skill-building rather than organizational rule sets. (DeMarco 
and Boehm 2002)

	 6.	 The most efficient and effective method of conveying information to and within a development team 
is face-to-face conversation.
Agile methods reversed a trend toward physical separation of software developers from each 
other. One source of that trend was psychological: the argument that programming was an intel-
lectually intense activity that suffered greatly from interruptions, and therefore, programmers 
should ideally have individual offices (DeMarco and Lister 1987). Another source was technical: 



84-5Agile

increasingly dislocated teams through improved telecommunications, for example, through the 
Internet. In contrast, agile methods view programming as a social activity involving intense 
interpersonal interaction. This involves the heavy use of colocated teams, with open spaces favor-
ing face-to-face communication. It also implies a small size of development teams—a departure 
from the ever-growing size of development teams in previous years, for example, through the 
software factory initiatives in Japan (Cusumano 1991).

	 7.	 Working software is the primary measure of progress.
In the agile approach, an expression often heard is, “The code contains all the answers.” 
Although this is a simplification, it is a reflection of a return to what the agile perspective 
perceives as the most fundamental fact of software development: the ultimate purpose of soft-
ware development is the production of a working system. The working system embodies the 
results of all requirements, design, and coding activities and is seen as the only truly reliable 
source of information about the software. This is in direct opposition to a sequential waterfall 
lifecycle, where significant requirements and design phases are traversed before any code is 
produced.

	 8.	 Agile processes promote sustainable development. The sponsors, developers, and users should be 
able to maintain a constant pace indefinitely.
The principle of continuous delivery espoused by agile methods is supported by considerable 
emphasis on smooth, well-paced production workflow. Much of this emphasis has taken its inspi-
ration from the experience of the authors of agile methodologies with Japanese production work-
flow management (such as the Toyota Production Management System). For example, the Kanban 
technique that has been the subject of much recent interest in the agile community is essentially 
a technique for smoothing the production workflow and rendering it sustainable over long peri-
ods. The emphasis on human factors in agile methods also resulted in a set of principles aimed at 
avoiding overwork, such as the 40 h week of XP.

	 9.	 Continuous attention to technical excellence and good design enhances agility.
In spite of the emphasis on organizational issues in the previous decades, a great deal of prog-
ress had also been made in technical areas by the end of the 1990s. In particular, the rise of 
object orientation had stimulated a kind of Renaissance in software construction techniques. 
Innovative and highly skilled researchers and programmers had introduced new paradigms 
such as architectural styles and design patterns. The agile movement featured small teams of 
programmers who exploited the technical advances of the past decade (many of which they had 
authored themselves), to create a highly sophisticated technical environment. New techniques 
were invented by those in the agile movement to support the concept of “continuous attention to 
technical excellence”: refactoring (Fowler et al. 1999) involved continuous improvement of code, 
a radical departure from the “if it’s not broken, don’t touch it” philosophy of earlier approaches. 
Small, targeted tools such as JUnit (Massol and Husted 2003)—codeveloped by Beck, one of 
the agile signatories—together with a test-first approach supported a sophisticated automated 
testing environment that provided the immediate feedback necessary to support the resulting 
continuous interventions in the code base.

	 10.	 Simplicity—the art of maximizing the amount of work not done—is essential.
Although the need to master complexity in software development through simplicity has been 
recognized for a long time, agile methods made it into a fundamental principle. Variations 
on established principles such as Occam’s razor were introduced in precepts such as the The 
Simplest Thing That Could Possibly Work (i.e., the simplest implementation of a feature) in 
the XP methodology. New principles were, however, also introduced to support an interpreta-
tion of simplicity as the avoidance of unnecessary features. The colorfully named You Aren’t 
Going to Need It (YAGNI) principle in XP (Beck 1999) forcefully discourages the gratuitous 
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implementation of functionality that, while not explicitly required at the present time, is 
judged not to be difficult to implement at the present time and might be required or consid-
ered useful in the future (Favaro 2004). A concept of “design carry” was coined to character-
ize the added cost of introducing unneeded features in terms of maintenance, understanding, 
size of the code base, etc., and make explicit the advantages of simplicity in terms of avoided 
implementation.

	 11.	 The best architectures, requirements, and designs emerge from self-organizing teams.
The agile approach to development team organization is in stark contrast to previous 
trends, in which development teams were characterized by an increasing number of roles, 
often defined according to lifecycle phases—requirements analyst, chief architect, and V&V 
specialist (including suitable organizational independence from the development team), 
together with management-oriented roles such as project leader. Agile methods encourage 
the establishment of few roles, which often have no direct counterparts in a defined process, 
such as facilitating roles (e.g., Scrum master) that ref lect the self-organizing nature of agile 
teams: the facilitator’s main duty is to ensure smooth running of the self-organized team, 
not to impose authority. The self-organizing nature of agile teams introduces a set of issues 
around the distribution of leadership, authority, responsibility, and accountability—all of 
which are addressed in various ways in the agile methods—as well as issues with roots in 
group dynamics.

	 12.	 At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its 
behavior accordingly.
Although the idea of “process improvement” was already well established in organizational 
approaches to software development in the past (Paulk and Curtis 1993), agile methods introduce 
techniques considered to be more lightweight and suitable for the smaller teams. One technique 
that has gained considerable currency in recent years is retrospectives (Derby and Larsen 2006). A 
retrospective is a meeting held within a project team at certain points in the project. This may be 
the end of the project, after a certain number of iterations, or even after a single iteration, to reflect 
upon what happened during the period of time under consideration and how it could be improved 
upon. The general concept covered by the retrospective may be found in virtually all the major 
agile methods, including Scrum, XP, and lean development, where it is also known by different 
names such as Kaizen and continuous improvement.

84.3  Best Practices

Since the publication of the Agile Manifesto, a number of agile methods have entered into regular use in 
the software industry (Abrahamsson et al. 2002) and have collectively formed a concrete baseline of best 
practices in agile development. Those that have had the most significant impact on industrial practice 
are presented in this section, in particular:

	 1.	 XP
	 2.	 Scrum
	 3.	 Lean software development

In addition, the following also have made contributions that are described in a further section:

	 4.	 Kanban
	 5.	 Rational Unified Process (RUP)
	 6.	 Crystal
	 7.	 Personal Software Process (PSP) and Team Software Process (TSP)
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The following table presents a summary overview of the general relationship between the principles 
expressed in the Agile Manifesto and the form they take in the three major methods, as well as other 
characteristics not explicitly appearing in the Agile Manifesto:

Characteristic XP Scrum
Lean Software 
Development

Principles from the agile manifesto
  1. �Customer 

satisfaction first
Economics as a principle, 

general concern with 
business value delivery

Product owner determines 
priorities according to 
business value.

Optimize the whole, value 
stream mapping

  2. �Welcome changing 
requirements

“Embrace Change” Continuous renegotiation of 
product backlog

More implicit than explicit 
in lean

  3. Frequent delivery Continuous integration Sprints Deliver fast
  4. �Business and developer 

collaboration
Onsite customer, negotiated 

scope contracts
Product owner negotiates 

with implementation team.
Optimize the whole

  5. Motivate individuals Humanity as a principle, 
accepted responsibility

Scrum master role to facilitate 
individual excellence

Engage everyone

  6. �Prefer face-to-face 
interaction

Collocated teams, 
communication as a value

Scrum master interacts 
directly.

  7. �Working software as 
measure of progress

Test-driven development 
(TDD)

Partial implementation not 
acceptable in sprints

Implicit in flow-driven 
paradigm

  8. Sustainable pace 40 h week Extensive planning and 
velocity estimation to ensure 
sustainable pace

Attention to flow

  9. Technical excellence Reduced cost of change due 
to improved technology

Build quality in

10. Simplicity Direct counterpart in XP
11. �Self-organizing teams Collective ownership Direct counterpart in Scrum
12. �Regular reflection for 

improvement
Daily stand-up meetings Daily Scrum, sprint 

retrospective
Learn constantly, Keep 

getting better

Other principles
Continuous flow Flow as a principle Scrum master facilitates 

smooth flow.
Comparison with 

continuous flow system of 
manufacturing

Eliminate waste YAGNI principle Direct origins in lean
Release planning Planning game Planning poker Value stream mapping, 

Kanban techniques
Options approach Baby steps, YAGNI, business 

options, economics principle
Renegotiation of sprint 

backlog after each sprint
Last responsible moment, 

learn constantly

84.3.1  Extreme Programming

XP was developed in the mid-1990s and described in an influential book (Beck 1999). It became a cata-
lyst for much of the discourse around agile methods because of its concise formulation, internal coher-
ence, and “…its interesting name” (Larman and Basili 2003). The name is intended to characterize an 
approach whereby best practices are applied to an extreme degree (e.g., integration is performed far 
more frequently than in other methods). It received extensive application in the software industry in the 
decade following its introduction and has stimulated research on various practices that it introduced. 
The original edition was followed 5 years later by a second edition (Beck and Andres 2004) that provided 
additional motivation for the approach underlying the method, in addition to reorganizing and extend-
ing the set of principles and practices.
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To set the context, XP identifies four so-called variables that can be manipulated to control (an agile 
approach to) software development:

•	 Money: The XP method was an early advocate of actively placing constraints on resources avail-
able to projects, noting that although underfinanced projects were problematic, overfinanced 
projects tended to create problems as well, with bloat in both management and technical struc-
tures. This point of view may be found also in lean approaches.

•	 Time: Similarly, XP identifies both lower and upper limits in terms of time management. While 
too little time will clearly cause problems, likewise so will too much time. The preoccupation 
with time management refers not only to overall project duration but also to the management of 
iterations.

•	 Quality: The introduction of this variable in XP recognized that delivered quality can be adjusted 
according to other factors (e.g., time pressure), but the method also explicitly states that quality 
cannot be lowered beyond a certain point (an aspect of XP that is often misunderstood). The study 
of technical debt that has become popular in recent years is a reflection of this attention to issues 
in managing the quality of the delivered software over time.

•	 Scope: The most extreme and (initially) least understood variable introduced by XP is scope, which 
varies along with the set of requirements during execution of the project. In defined sequential 
lifecycle methods, scope is defined once, at the beginning. Allowing the scope to vary over the 
course of the project, with requirements being added, modified, and deleted, creates a series of 
cross-cutting issues ranging from managerial to technical to contractual, each of which has been 
studied and experimented within the last decade.

84.3.1.1  Values

Although the operational core of XP is formed by its practices, the method was particularly influential 
in providing a set of four values that summarized an overall approach to software development and 
set it apart from previous process-oriented methods. Note that these values were published previously 
(1999) to the Agile Manifesto (2001), and as such, several of them found their way into its principles in 
a generalized form.

84.3.1.1.1  Communication
This first value reflects the extreme attention to issues of human interaction in the XP method, which 
is acknowledged in other agile methods but not treated in as much depth. This value is directly associ-
ated with several practices that cannot be carried out without high levels of communication. The second 
edition of the method (Beck and Andres 2004) added a second author with training in psychology, 
organizational behavior, and decision analysis, further reinforcing the emphasis on human factors. In 
this second edition, a new and related value was also added: respect, both for one’s own work (striving 
for the highest quality) and for the work of others (e.g., by not undertaking activities that may interfere 
with the work of other team members).

84.3.1.1.2  Simplicity
Another XP value that was absorbed into the Agile Manifesto concerns simplicity, particularly in 
design. An incremental approach to design is encouraged, allowing the appropriate architecture to 
emerge over the course of the project. The interpretation of simple design as also the avoidance of 
implementation that is not explicitly required is justified in the method with a hypothesis on the evolu-
tion of technology:

The software development community has spent enormous resources in recent decades trying to 
reduce the cost of change—better languages, better database technology, better programming prac-
tices, better environments and tools, new notations … It is the technical premise of XP. (Beck 1999)
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The hypothesis that the cost of change is no longer exponential but rather a flattened curve underlies 
the recommendation to keep all current implementation as simple as the current requirements justify, 
because the prospective value of future functionality, the need for which is uncertain, is outweighed 
by the reduced technological cost of waiting and implementing functionality only when it is explicitly 
called for by current requirements. This is supported by the practice of refactoring that contributes to 
minimizing the current complexity of the implementation.

84.3.1.1.3  Feedback
This value enshrines the concept that concrete, continuous feedback about the current state of the sys-
tem is necessary and invaluable (Williams and Cockburn 2003). Its primary technical support within 
the XP method is a practice that was developed by the same author and has acquired a significant follow-
ing on its own: TDD (Beck 2002), in which unit tests are written before feature implementation. Much 
of the technology for supporting this practice was developed by the same people who developed XP. 
In addition to JUnit, codeveloped by Beck, the FIT framework (Mugridge and Cunningham 2005) for 
automated regression testing was developed by Cunningham, often cited by Beck as a primary inspira-
tion for the XP method.

The primary managerial support for this value is the frequent interaction with the customer provided 
by the short iteration and planning activities, which deliver business level feedback on the state and 
direction of system implementation.

84.3.1.1.4  Courage
The main interpretation of this value is “a willingness to abandon a failing activity”—in particular, a 
willingness to discard code that has already been written if it is unsatisfactory in some way (functional-
ity, performance, maintainability, etc.). An additional interpretation in appropriate contexts is a will-
ingness to try something new.

Many consider the practices of XP to be its most important contributions to the agile movement, 
because they give concrete expression to the principles and values. Indeed, they are often combined with 
other methods (e.g., Scrum), whereby the management of the overall process may be different accord-
ing to the approach of the other methods, but the practices (with their origins in XP) are maintained. 
However, wedged between the values and the practices of XP are a set of principles that are intended 
to provide guidelines for putting the practices into place in the local context of the project and imple-
mentation team (Fowler 2003). A number of these principles reflect (or conversely, were the basis for) 
principles expressed in the Agile Manifesto. Certain of these, however, reflect points of view that either 
originated in XP or at least receive particular emphasis in XP:

•	 Accepted responsibility: From the first edition of the method onward, an emphasis on placing 
responsibility squarely on the shoulders of the team and not some externally defined role, signal-
ing a major rethinking of the group dynamics of a software development team.

•	 Economics: From the beginning, XP strove to establish a link to established economic theory. The 
first edition of the method (Beck 1999) included an entire chapter on the economics of software 
development, and the principles elaborated in that chapter were maintained into the second edi-
tion. These rested on the foundation of the time value of money and in particular an approach in 
terms of real options. As such, XP was one of the earliest agile methods to promote an options-
oriented view of agile development, followed subsequently by other methods such as lean software 
development (Poppendieck and Poppendieck 2003).

•	 Baby steps: Known as “small initial investment” in the first edition, this principle also reflects the 
economic perspective of learning options: staged investments as uncertainty is gradually resolved 
over the course of the project.

•	 Humanity: A significant emphasis on human factors, leading to several practices that were popu-
larized by XP.
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84.3.1.2  Practices

The first edition of XP contained a tightly interwoven set of 12 practices, all of which were char-
acterized as being essential, which were reorganized (Marchesi 2005) in the second edition into a 
new set of 13 primary practices (can be introduced individually) and 11 corollary practices (rely on 
primary practices for their introduction). Among those practices that have been inf luential on the 
evolution of agile software development are as follows:

•	 TDD: This practice has spawned an entire subdiscipline of agile development (Jeffries and Melnik 2007).
•	 Pair programming: While it did not originate with XP (Constantine 1992), the practice of pair 

programming—two programmers developing together, at a single keyboard—was popularized 
through XP and received much subsequent attention in the published literature including exten-
sive tutorials (Williams and Kessler 2002), experience reports (Dybå et al. 2007), and criticism 
(Stevens and Rosenberg 2003).

•	 Planning game: Iteration planning is a core practice across all agile methods and as practiced in 
XP has made a significant contribution to the literature on agile planning, including a book coau-
thored by the author of the method (Beck and Fowler 2000). In the second edition, the planning 
process was extended and refined with weekly and quarterly planning cycles with characteristics 
reminiscent of those (e.g., release planning) in the Scrum method.

•	 Collocated teams, collective code ownership, whole team: With practices such as the colocation 
of personnel in the same open space, cross-functional teams, and the liberty to change any code 
written by anybody at any time, XP introduced or reinforced the discussion of many of the group 
dynamic issues that have dominated the discourse in agile methods. For example, the effects of 
collective code ownership (called Shared Code in the second edition of the method) have been 
debated vigorously (Levison 2008) since its introduction.

•	 Onsite customer: The practice of having a representative of the customer organization onsite as part 
of the development team (or at least available to the team for constant consultation) generated much 
interest and controversy. Detractors point to the increased cost of providing an onsite customer; 
supporters point to the advantages of being able to resolve questions about requirements quickly. 
The practice has inspired much experimentation and research (Koskela and Abrahamsson 2004).

•	 Negotiated scope contract: XP entered early into the discussion of legal issues and contractual issues 
associated with agile software development. As early as the first edition of the method, optional scope 
contracts were discussed (Beck and Cleal 1999) in which scope was negotiated, in stark contrast to 
fixed scope contracts associated with sequential lifecycle development processes. Further interest 
in agile contract mechanisms was stimulated by this practice and continues (Arbogast et al. 2012).

Other practices such as continuous integration were in use in some organizations before the develop-
ment of XP—indeed, it has been estimated (Cusumano 2007) that there is an overlap of as much as 70% 
between XP and the iterative development approach previously in use at Microsoft—but without doubt 
it was the publication of XP that exposed these practices to a broader audience.

84.3.2  Scrum

Where XP has been responsible for much of the success of agile approaches within the IT development 
community, Scrum may be seen as being responsible for much of the success of agile approaches within 
the IT management community. Although XP has disciplined project management practices, they have 
had less visibility than the development practices and thereby often led to the perception that XP is a 
“hacker’s approach.” The project management practices of Scrum, on the contrary, are central in the 
method. Indeed, Scrum is more properly seen as an agile development framework, whereby its project 
management practices constitute that framework.
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Several additional factors have contributed to the relatively broad acceptance of Scrum within the main-
stream IT management community:

•	 Its project management practices have been described in great detail in a number of well-received 
books (Schwaber and Beedle 2001) that continue to be updated over time (Schwaber 2009).

•	 The method has been practiced in very visible ways in several leading mainstream IT organiza-
tions including Microsoft, IBM, and Nokia.

•	 A number of commercial and open source tools support the method.
•	 A number of defined roles, together with programs for certification (Scrum Alliance 2012) in 

those roles, lead to a perception of stability and shared understanding of the method.
•	 Activities for monitoring progress over the lifetime of a project are codified into the method, lead-

ing to an impression of controllability, a key concern of project managers.

The method evolved over a period of several years from its origins in Japanese product management 
in the mid-1980s and a consolidation of multiple independently developed methods by the end of the 
1990s. The name Scrum is a rugby term reflecting the general idea that the whole team cooperates in the 
development process.

The method defines a quintessential iterative and incremental lifecycle, serving as a model for an 
archetypal set of agile project management activities. In addition, the method defines a clear set of 
roles and their relationships to the activities. The Product Backlog is a prioritized list of user stories 
(essentially equivalent to those of XP) to be implemented by the Scrum team. Much attention has been 
paid in the Scrum community to the development of guidelines for constructing user stories (Navarro 
2010). The Product Backlog is the responsibility of the Product Owner, one of the three core roles. The 
Product Owner is essentially equivalent to the customer in XP and determines the priorities of the user 
stories in terms of foreseen business value. The implementation team is self-organizing: there is no 
“team leader” role.

An implementation iteration is known as a sprint and typically lasts approximately 4 weeks (whereas 
XP iterations tend to be much shorter). The Sprint Backlog is determined before each sprint in terms of 
user stories to be implemented during the sprint. The Sprint Backlog is negotiated between the Product 
Owner and the implementation team and results in a set of stories that the team agrees to implement in 
that sprint. Note that only entire stories may be implemented—no “partial” implementation of stories is 
permitted. In addition, the stories are broken down into implementation-related tasks by the team. The 
Product Owner has no influence on this activity, which is considered wholly the responsibility of the 
implementation team. Within the sprint cycle, there is a tighter, daily cycle in which the implementation 
team has daily Scrum meetings (equivalent to the daily stand-up meetings of XP), discussing current 
problems and potential issues. Progress is tracked against the scheduled implementation commitments 
within the sprint.

At the completion of a sprint, a working increment of new functionality is available. A Sprint 
Review meeting is held in which the results of the sprint are examined. A demonstration of com-
pleted functionality is presented to the stakeholders (primarily the Product Owner). The Product 
Owner decides whether a particular delivered Product Backlog item is acceptable according to speci-
fied exit criteria (Definition of Done in Scrum terminology). Only completed functionality may be 
demonstrated. A Sprint Retrospective is held to examine the process and make corrections and 
improvement.

An important role in Scrum is that of the Scrum master, who is not a team leader (as may be implied 
by the name) but rather a facilitator, whose job is to ensure that impediments to progress are removed 
and that the Scrum rules are followed. This role, which is characteristic to Scrum, echoes the ideas of 
ensuring smooth development flow in other agile methods (such as the “flow” principle in XP second 
edition and in particular the ideas of Kanban).
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In summary, Scrum has had a major role in the penetration of agile approaches into mainstream 
software development and remains a significant source of agile best practices today. Because of the 
straightforward, concise definition of the core Scrum framework and a small number of clearly 
defined core roles, over the span of many years, practitioners have been able to gather concrete 
implementation experience and then refine and document each of the activities and responsibilities. 
This has resulted in significant contributions of Scrum to the corpus of established best practices for 
agile software development, including the following:

•	 Sprint planning and estimation: An essential practice in any iterative and incremental method is 
iteration planning. As in XP, Scrum practitioners have dedicated many resources to the study and 
documentation of best practices for sprint planning. Similar to the Planning Game of XP, another 
“game” (Grenning 2002) known as Planning Poker® (a registered trademark of Mountain Goat 
Software) provides a technique for estimate consensus building and has been widely documented 
(Cohn 2005) and discussed in the Scrum community.

•	 Sprint management: There are numerous considerations in managing the actual execution of iter-
ations. The Scrum community has debated the management of sprints at great length including 
issues such as sprint duration, management of tasks, and dealing with interrupted and unfinished 
work. Several books (Kniberg 2007) have documented practical experience dealing with such 
issues and recommended approaches.

•	 Tracking: Much of the popularity of Scrum in the general management community is due to 
its attention to tracking the results of work in iterations. In addition to recording velocity (the 
amount of work actually done in a sprint, generally measured in story points or in hours) as an 
aid to improving estimation, Burndown Charts—implemented in many ways ranging from hand-
drawn charts to spreadsheets to advanced features of sophisticated Scrum project management 
tools—track remaining work in a sprint. The practice has been extended to variations deemed 
useful in overall project management, such as Release Burndown Charts, which track progress 
against an entire release plan over multiple sprints.

•	 Modeling and tool support: The clear and concise definition of the Scrum process and its associ-
ated roles and artifacts (Sutherland and Schwaber 2011) has encouraged the development of more 
formal models as well as support tools incorporating those models. The overall Scrum frame-
work process and its associated artifacts have been modeled with the Eclipse Process Framework 
(Eclipse 2012). The clear definition of the process is also an enabler for tool support. Tools sup-
porting Scrum include IBM Rational Concert, Jiri, Microsoft Visual Studio, and Polarion. The 
Scrum culture has been somewhat more receptive to tool support than the XP culture, leading to 
broader management acceptance.

Although it emerged out of the object-oriented community, Scrum does not place much emphasis on 
specific technical practices (indeed, none are listed here). Therefore, it is common to combine the Scrum 
framework with specific technical practices from XP in industrial projects (Kniberg 2007). It has also 
been combined with Kanban practices (Ladas 2009).

84.3.3  Lean Software Development

The majority of agile methods in current use were developed by the late 1990s, and most of the authors 
of those methods were also signatories of the Agile Manifesto in 2001. A later arrival is lean software 
development, as described in a book (Poppendieck and Poppendieck 2003) whose authors had not been 
signatories of the Agile Manifesto. In 2003, the concept of “lean” had been in use for nearly 20 years in 
production management and had resulted primarily from exposure to the Japanese automotive industry 
and in particular the Toyota Production System, as recounted in Poppendieck and Cusumano, 2012, but 
its application to software development had not yet been popularized.



84-13Agile

Lean software development, as in other methods such as XP, provided a set of principles intended to 
guide the developer in implementing an appropriate lean process in his software development context.

•	 Optimize the whole: This is an appeal to a holistic approach. Consider the whole system, of which 
software is only a part, when pursuing value creation. Not only the development phase must be 
emphasized but all of the phases (including design and deployment) that have an impact on value 
creation.

•	 Eliminate waste: This principle is at the core of a “lean” approach: discover and eliminate anything 
that does not directly contribute to value creation. In the case of software development, it could be 
anything from time spent in unproductive meetings to implementation of unused features (as in 
the YAGNI practice of XP) to time spent debugging. This principle also involves the restriction of 
work in progress (WIP)—that is, partial, unfinished work.

•	 Build quality in: This principle is essentially an appeal to continuous integration of small devel-
opment increments and fixing problems as soon as they occur, much like the principle of Single 
Code Base in the second edition of XP.

•	 Learn constantly: This is an appeal to the real options approach seen in agile methods such as XP 
(Erdogmus and Favaro 2002). Two techniques are recommended: elaboration of multiple alterna-
tives and creating an option to defer investment (Sullivan et al. 1999) and creation of a learning 
option through small staged investments (Erdogmus 2002).

•	 Deliver fast: This is an appeal to the metaphor of flow, similar to the flow principle in XP second 
edition. Through seeking an ideal of continuous delivery, software development is no longer seen 
through a metaphor of a project but rather as a flow system as in manufacturing.

•	 Engage everyone: This principle involves the inclusion of team members reflecting all aspects of 
value creation, rather than only software development. This may include customer-facing personnel, 
operations personnel, and appropriate types of support personnel.

•	 Keep getting better: This is an appeal to a general principle of continuous improvement found in 
many agile methods and the Agile Manifesto itself.

Over the last decade considerable implementation experience has been acquired with lean software devel-
opment (Kniberg 2011). Lean software development seeks to position itself differently from “mainstream” 
agile methods such as XP and Scrum (Poppendieck and Cusumano 2012). For example, whereas agile 
methods define a separate customer role to which responsibility for the overall business success of the 
product is assigned, lean software development defines no such role but rather considers software devel-
opment to be integrated in a larger product development under the responsibility of a product manager.

However, Erdogmus argues that the principles of lean software development, while often employing 
different terminology, can be mapped to those of the Agile Manifesto and that the true contribution of 
lean software development lies rather in its practices (Erdogmus 2012).

In this regard, he singles out two main practices. The first is value stream mapping (Locher 2008), 
which provides a technique for analyzing the information flow across the full product lifecycle and 
identifying potential sources of problems and waste. The second is Kanban.

84.3.4  Other Methods

The set of methods presented in the previous subsections provide representative coverage of the core 
characteristics of current agile approaches, but the presented set is by no means complete. In many cases, 
other methods exhibit different emphases. For example, Adaptive Software Development (Highsmith 
2000) and agile project management (Highsmith 2009) focus on management and business-oriented 
aspects of agile development more than on programming-related issues. The following methods each 
have special characteristics that merit discussion.



84-14 Software Development Management: Processes and Paradigms

84.3.5  Kanban

Kanban is a system of production control associated with the Toyota Production System (Shingō 1989) and 
therefore in the software context most closely associated with lean software development. Strictly speaking, 
it is a practice rather than a method. It represents the “on-demand, pull-oriented” approach of just-in-time 
manufacturing, in which the signals controlling production propagate backward from customer demand, 
rather than forward as in more traditional “push-oriented” production control approaches. Kanban (liter-
ally “signboard”) cards are used to control and limit the amount of WIP in the overall production system. 
Kanban seeks to achieve an ideal of continuous flow of production, thereby offering an alternative to the 
time-boxed, iteration-based workflow management found in most mainstream agile methods (Erdogmus 
2012). A number of variations exist, such as “Constant Work in Progress” (CONWIP), a simpler single-
stage variant (Spearman et al. 1990). An economic analogy between WIP and the financial tracking mea-
sure of economic profit is described in Favaro, 2003. In Humble and Farley (2010), technical practices for 
continuous release of software in production environments are described in detail.

By its nature as a production control practice, Kanban may be used within different agile methods. 
It forms an integral part of the lean software development approach, of course, but has also been used 
together with Scrum (much like the practices of XP are used within the Scrum framework) as described 
in Kniberg, 2007 and Ladas, 2009. A full method has been developed around Kanban (Anderson 2010) 
for implementing and managing flow-based software development. It includes a set of core practices that 
are based upon those observed in successful Kanban systems (visualize, limit WIP, manage flow, make 
policies explicit, implement feedback loops, improve collaboratively, and evolve experimentally).

84.3.6  Crystal

The author of the Crystal software development method was a signatory of the Agile Manifesto. While 
having much in common with other agile methods, Crystal distinguishes itself in being a “family” of 
methods (known as Crystal Light) in the sense that it is explicitly tailored in two dimensions: project 
scale and criticality. In the scale dimension, the Crystal Clear variant is intended for projects of 2–6 
persons, Crystal Yellow for 6–20 persons, and Crystal Orange for 20–40 persons (Cockburn 2001). Thus, 
it was an early method to take into explicit account the problem of scaling agile methods. Even more 
notable is the second dimension of criticality, which is segmented according to the consequences of sys-
tem malfunction: loss of comfort, loss of discretionary money, loss of essential money, and loss of life. 
This scale constitutes an informal version of an integrity level scale seen in most modern standards for 
mission-critical systems, such as the Safety Integrity Levels (SILs) of the IEC 61508 standard (IEC 2010) 
for electrical and electronic systems. In the Crystal Light family, this informal scale is described as cor-
responding to “hardening” of the method according to increasing degrees of criticality. This approach 
corresponds roughly to the way in which standards such as IEC 61508 prescribe increasingly rigorous 
practices in the development process according to the SIL of the item under development. As such, the 
Crystal family can be seen as one of the earlier methods to attempt to explicitly address the problem of 
adapting the agile approach to the development of mission-critical systems.

The best-documented member of the Crystal Light family is Crystal Clear (Cockburn 2004).

84.3.7 R ational Unified Process

The RUP was developed in the 1990s at Rational Software Corporation (Kruchten 1998). Although it was 
not developed specifically as an “agile method” (none of its authors was a signatory of the Agile Manifesto), 
it presents an iterative and incremental approach to software development and may be used in a way that 
is fully compatible with the principles expressed in the Agile Manifesto. Analogous to Scrum, the RUP is 
more properly a process framework (rather than a single, specific process) that is intended to be tailored 
and instantiated for a specific implementation context, while selecting from a large number of provided 
practices. In this respect, it has been criticized for being so flexible that anything from an iterative, agile 
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process to a pure sequential, waterfall process can be accommodated. Nonetheless, the intent behind the 
framework was clearly to support iterative development, as may be seen in the four defined lifecycle phases:

•	 Inception: This is primarily a phase in which the business case and feasibility studies for the proj-
ect are developed.

•	 Elaboration: In this phase, an architecture is established for the system under development. In 
some respects this is the most characteristic, distinguishing phase of the method. The architec-
ture-centric nature of the RUP has been a stimulus for much discussion about the relationship 
between agile development and architecture and has also been the source of some criticism that 
the RUP encourages excessive up-front design.

•	 Construction: In this phase, the system is constructed (following the architecture) in a series of 
iterations.

•	 Transition: This phase consists essentially of transitioning the system from development to pro-
duction and deployment.

Within these phases, a number of activities are carried out inside a set of nine predefined disciplines: 
business modeling, requirements, analysis and design, implementation, test, deployment, project man-
agement, configuration and change management, and environment.

Like many agile methods such as XP and lean, the RUP also provides a set of guiding principles, or best 
practices, to guide the application of the method:

•	 Develop software iteratively: An explicit appeal to iterative and incremental development.
•	 Manage requirements: The authors of the RUP pioneered the use case approach to development 

that is the heritage of the user story-driven approach of agile methods. This principle has some-
times been misinterpreted to favor pure up-front requirements definition.

•	 Visually model software: The coauthors of the Unified Modeling Language were strongly associ-
ated with the RUP and bring a strong bias toward visual modeling into the method.

•	 Verify software quality: The same strong emphasis on continuous assurance of high quality seen 
elsewhere in agile methods.

•	 Control changes to software: This principle is in the same spirit of “embracing change” as expressed 
in the Agile Manifesto, whereby constant change is expected and mechanisms are provided to 
protect the system integrity under change.

Despite criticisms from the agile community regarding its “purity,” the RUP has been an important 
instrument for introducing best practices of iterative and incremental development into the broader soft-
ware engineering community. It has consolidated tool support such as the Rational Method Composer 
(IBM 2013) and has been introduced in many large organizations (Sägesser et al. 2013). Its clear defini-
tion has made it possible to define variants with a more specifically agile flavor, such as Disciplined Agile 
Delivery (Ambler and Lines 2012).

84.3.8  Personal Software Process and Team Software Process

The PSP was developed at the SEI in 1993 (Humphrey 2005) and followed by the TSP in 1998 (Humphrey 
et al. 2010). As such they are precedent to the Agile Manifesto and most current agile methods. Nevertheless, 
the PSP represents an early attempt to provide a process oriented toward the individual—a fundamental 
characteristic associated also with agile approaches. Its emphasis on use of concrete data to drive schedule 
prediction is also reminiscent of the emphasis on feedback in agile methods. Finally, it emphasizes individual 
accountability as in agile methods. TSP includes PSP-trained individuals in a team process in which product 
development may be iterative, another fundamental characteristic of agile approaches. It also includes an 
emphasis on self-directed teams, exhibiting respect and responsibility within its membership, reminiscent 
of the self-organizing teams of the principal agile methods. PSP and TSP thus represent an interesting vari-
ant coming from (and trademarked by) a source normally associated with so-called heavyweight processes.
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84.3.9  Discussion

Agile methods as exemplified by those presented in this section (in particular the first three methods) 
have established themselves within the mainstream of software development. Over the last decade, one 
of the principal issues addressed by practitioners has been their relationship to the methods that pre-
ceded them. Shortly after the publication of the Agile Manifesto, analyses began to appear that sought to 
compare and contrast them to these other methods. In Boehm and Turner, 2004 a distinction between 
agile and plan-driven methods was made, and a “home ground” was identified for each in which its 
application was more suitable, according to four project characteristics:

•	 Application: Rapid value delivery, small teams, and turbulent environment (agile home ground) 
versus predictability, stability, high assurance, larger teams, and stable environment (plan-driven 
home ground)

•	 Management: Dedicated onsite customers, internalized plans, and tacit knowledge through 
interpersonal communication (agile home ground) versus as-needed customer interaction, docu-
mented plans, and explicit documented knowledge (plan-driven home ground)

•	 Technical: Prioritized informal stories changing in unforeseeable ways and simple design in short 
increments with refactoring (agile home ground) versus requirements with foreseeable evolution 
and extensive design in long cycles (plan-driven home ground)

•	 Personnel: Collocated, high percentage of highly qualified personnel throughout project, and thriv-
ing on chaos (agile home ground) versus concentration of highly qualified personnel in early stages 
with lower-level personnel later, not always collocated, and thriving on order (plan-driven home 
ground)

A risk-based strategy for balancing agile and plan-driven approaches according to the characteristics of 
projects is presented in Boehm and Turner, 2003.

For many, the iconic plan-driven approach is represented by the Capability Maturity Model 
Integration (CMMI) of the SEI (2012), and it has been often remarked that agile methods arose as a reac-
tion against the CMMI. Seven years after the signing of the Agile Manifesto, the SEI published a report 
(Glazer et al. 2008) that argued forcefully that the perceived incompatibility of CMMI and agile meth-
ods is unwarranted and largely due to misunderstandings of the nature of each approach. The report 
stresses that CMMI is fundamentally a model rather than a process standard, as viewed by many agile 
proponents, and its rich set of mechanisms for facilitating process improvements has great potential to 
contribute to a fully compatible agile process. It cites a number of cases (Sutherland et al. 2007) in which 
CMMI and agile methods have been integrated successfully. The discussion of the relationship between 
plan-driven approaches and agile approaches is likely to continue in the foreseeable future. In any case, 
in 2010 the US Department of Defense issued a report (USDOD 2010) recommending that the depart-
ment’s IT procurement policy be modified to promote development practices that are fully compatible 
with the Agile Manifesto—a strong indication that agile methods are here to stay.

84.4 R esearch Areas

Since the publication of the Agile Manifesto, there has been vigorous research activity in agile software 
development. A literature survey in Dingsøyr et al., 2010 reports that from 1997 onward, several hun-
dred papers were published in countries all over the world. Although the single country with the largest 
number of publications was the United States, Europe constituted the largest overall source when the 
countries comprising Europe were taken collectively. A systematic review (Dybå and Dingsøyr 2008) of 
empirical studies of agile software development reported on four broad thematic groups:

•	 Introduction and adoption: Most empirical studies tend to report that agile methods are easy to 
adopt, although XP was found to be difficult to introduce in organizations of higher complexity.
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•	 Human and social factors: Not surprisingly, given the human-centered character of agile 
approaches, many studies focus on various specific human factors. Interestingly, XP was found to 
work well in many very different kinds of development environments.

•	 Perceptions of agile methods: Many studies focus on perceptions of agile from the point of view 
of different stakeholder groups (e.g., architects). Customers in general were found to be satisfied 
with feedback opportunities but less satisfied with demands for onsite customer involvement. 
Satisfaction among developers using XP was generally found to be high.

•	 Comparative studies: Studies of agile methods against other approaches (e.g., waterfall) have 
tended to find that methods such as XP increase productivity.

Despite positive results such as the last one cited earlier, the authors concluded that more empirical 
studies of agile software development are needed, within a broader and more complete research agenda. 
Research in specific areas is discussed in the following sections.

84.4.1 R ole of Architecture in Agile Software Development

The 1990s were a period of great advances in the discipline of software architecture (Shaw and Garlan 
1996), and methods developed during that period such as the RUP were characterized as explicitly 
architecture-centric. Ever since the characterization of architecture as emergent within agile software 
development was coined, however, controversy has surrounded its role within agile methods. The 
de-emphasis of Big Design Up Front in agile methods seemed to exclude the possibility of architecture-
centric approaches in agile methods. In Abrahamsson et al. (2010), it is suggested that much of the 
controversy may be due to underlying misunderstandings, since authors of several major agile methods 
have incorporated concepts that reflect a positive attitude toward architecture, for example, “divisible 
system architecture” of Poppendieck and Poppendieck (lean software development), the “walking skel-
eton” of Cockburn (Crystal), and the “system metaphor” of Beck (XP).

Some recent research has been oriented toward making the effects of architecture on agile develop-
ment more explicit (Madison 2010). In Nord et al. (2012), the use of a Kanban board within a lean devel-
opment process is described as a technique for rendering more visible how architecture either supports 
or inhibits throughput.

In Falessi et al. (2010), researchers from the University of Rome and the Italian Ministry of Defense 
collaborated with practitioners from IBM to conduct an exploratory study of attitudes of professional 
developers who use agile methods toward software architecture. They found that overall, agile develop-
ers consider software architecture to be relevant and important to their work; in particular they dis-
played a favorable attitude toward such practices as the use of architectural design patterns. Conversely, 
however, they found that those not practicing agile development were more likely to find architecture 
approaches to be in contrast with agile approaches. Thus, the controversy over their compatibility is 
likely to continue in the future, both in research and in practice.

84.4.2  Human Factor Research

Given that the very first principle of the Agile Manifesto emphasizes “individuals and interactions over 
processes and tools,” it is not surprising that much research in agile software development has concen-
trated on human factors. An early ethnographic study (Sharp and Robinson 2004) of XP teams noted 
that “we seek here to explore the values, beliefs, and assumptions that inform and shape agile practice 
and … to explore the manner in which a community of agile developers sustains itself.” In Robinson and 
Sharp (2004), several human characteristics of XP teams are identified and discussed: respect, responsi-
bility, quality of working life, faith in abilities, and trust.

Within university environments, courses on human aspects of software engineering began early 
to present case studies in agile development methods (Hazzan and Tomayko 2004). Interdisciplinary 
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approaches to the study of agile human factors were also introduced. In Falcone and Favaro, 2003 an 
environment called the Agile Theater is described in which classical techniques of theatrical improvisa-
tion were used to teach and explore interactions and roles in agile development teams. Agile Theater 
sessions with experienced developers revealed that, without exception, the continuous exchange of roles, 
interaction of participants, and conflict development and resolution always brought out a discussion of 
the problem of leadership in agile teams. The issue of roles in agile teams was also studied in Dubinsky 
and Hazzan 2004, which concluded that adding a specific role for each member of an agile team beyond 
normal technical responsibilities augments the sense of personal accountability and responsibility in 
the individuals.

Extending earlier interdisciplinary work concerning creativity in requirements engineering (Maiden 
and Robertson 2005)—in which experts were brought into an air traffic control environment from 
fields as diverse as railway signaling, oriental textiles, and cooking—Maiden and Hollis (Hollis 2011) 
performed research on creativity in agile development. Calling into question a common assumption 
that agile development automatically produces innovative solutions (Oza and Abrahamsson 2011), 
they embedded creativity techniques into a full agile software development process—specifically, 
within Scrum, during the envisioning process and at the beginning of selected sprints containing 
those epics with the most potential for creative outcomes. A case study was performed in a BBC 
Worldwide project, with results indicating that more novel requirements were generated through the 
extended epic process.

In XP, collective code ownership is associated with many benefits. A study at Microsoft (Bird et al. 
2011) examined the relationship between different measures of ownership and software failures in 
Windows Vista and Windows 7 development. The study distinguished different levels of ownership 
(major versus minor contributor to components) and found that strong ownership is indicative of higher 
quality—which may contradict the usual claims for the benefits of collective ownership.

The colocation of development teams is a cornerstone of agile approaches, but strong business 
motivations (e.g., offshoring) exist for distributed development; consequently, the effects of distrib-
uted development on agile teams have become a subject of research. An overview of the challenges 
encountered in distributed agile development is provided in (Kajko-Mattsson et al. 2010) in which six 
classes are identified: culture, time zone, communication, customer collaboration, trust, and train-
ing and technical issues. The specific problem of trust in distributed agile projects is also discussed 
in Dorairaj et al. 2010, while the problem of communication is discussed in Dorairaj et al. 2011. 
Techniques for supporting multisite and offshore Scrum development are presented in Larman and 
Vodde 2010.

84.4.3 A gile Development of Mission-Critical and Embedded Systems

Agile software development methods had their first successes within environments exhibiting high inter-
activity (e.g., web-based systems) and changing often malleable requirements. They were largely ignored in 
mission-critical and embedded systems environments, due to a perceived lack of compatibility. However, 
as the benefits of agile development were publicized, practitioners and researchers began to search for 
suitable adaptations of agile approaches for these environments. An early example is (Fredriksen 2002), 
in which a mapping of the RUP to the IEC 61508 standard (IEC 2010) for development of safety critical 
software for electronic systems was made as part of a research initiative and found to be feasible.

In Smith et al. 2009 an adaptation of XP to a lifecycle for the development of embedded medical 
instrument software is described. It was noted that significant adaptation of XP was required, which 
may even lead to challenges to its claim to be still an agile approach. A prototype TDD embedded system 
test framework called Embedded Unit was developed by the researchers. Another example of applying 
TDD to embedded systems software development is Grenning 2011. A full methodology is developed 
in Douglass 2009.
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A survey of the state of the art in the use of agile methods for embedded systems development 
(Srinivasan et al. 2009) classified the major challenges into two categories with six areas:

•	 Technical: Requirements management, testing
•	 Organizational: Process tailoring, knowledge sharing and transfer, culture change, support 

infrastructure

Future research is likely to be concentrated in these areas.

84.4.4  Economics of Agile Development

Given the explicit commitment of agile methods to the delivery of business value, it is natural that there 
would be a great interest of researchers in the economics of agile software development.

The exhortation in the Agile Manifesto to “welcome change” positions agile methods in the area 
of economic research known as decision theory. In Drury et al. (2012), research is described that 
analyzes the decision-making process over the iteration cycles of several real-world projects and iden-
tifies six obstacles to decision-making (an example is “unwillingness to commit to decisions”) in 
agile development and then maps those obstacles to descriptive decision-making principles to analyze 
their impact.

Even more narrowly, agile methods are positioned at the heart of decision theory in the area known 
as decision-making under uncertainty. Because of this, the relevance of real options was recognized early 
(Favaro 1999), and a treatment of the YAGNI principle as an option to defer investment appeared in 
the first book on XP (Beck 1999). Several other real options associated with agile development were 
subsequently analyzed (Erdogmus and Favaro 2002), and lean software development (Poppendieck and 
Poppendieck 2003) promoted a real options approach to decision-making, singling out the option to 
defer and introducing an informal characterization of this real option as decision-making at the “last 
responsible moment.” Another discussion of agile decision timing and delay is provided in Favaro (2003) 
using the “tomato garden” metaphor of Luehrmann. The integration of the concept of the last responsi-
ble moment and a general real options approach to architectural decision-making in agile development 
is described in Blair et al. (2010) as responsibility-driven architecture.

Given the intersection of human factors and economics in agile methods, interest has recently been 
growing in the relationship of some branches of behavioral economics to agile software development. 
An early investigation is represented by Erdogmus (2009) in which the application of diversity (Page 
2007) to the formation of cross-functional teams (as seen in agile methods like Scrum) is discussed. 
The author draws on diversity theory to conclude that a diverse group of average yet sufficiently com-
petent people will often outperform a homogeneous group of star performers who have overlapping 
skills. Nonetheless, the caveat is provided that a single top expert will still perform better on average 
than a not-so-wise group—and thus, competence management in cross-functional agile teams remains 
relevant and important.

Within behavioral economics, prospect theory (Kahneman 2011) has been perceived as particularly 
relevant due to its emphasis on the psychological foundations of decision-making under uncertainty. 
In Makabee (2012), the planning fallacy of prospect theory is studied as a source of insight into why 
planning estimates in Scrum are often significantly inaccurate. The fourfold pattern of prospect theory 
is discussed in Favaro and Erdogmus (2012), in the context of the tendency to undertake desperate 
measures to salvage projects that are failing, rather than adopting the agile values of “courage” and “cel-
ebrating failure.” The concept of high-validity environments is also discussed as a prerequisite for reliable 
expert intuition, and it is hypothesized that a primary effect of agile development practices such as con-
tinuous feedback and integration is to move software development toward a high-validity environment 
in which expert intuition can develop reliably.
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84.4.5 T echnical Debt

Technical debt refers to the quick implementation and delivery (e.g., to meet time pressure) of a feature 
while sacrificing quality, with a promise to remediate at some later point. Although technical debt has 
become a concern in general software management, it is closely associated with the agile movement both 
in origin and practice. The expression was coined by agile pioneer Ward Cunningham (Cunningham 
1992), and indeed it has been remarked (Bavani 2012) that technical debt is central to the definition 
of agile itself. Other authors from the agile community (Fowler 2009) have written extensively about 
technical debt (Gat 2010).

It is studied most frequently in the context of agile project management because of its natural affinity 
to iteration-oriented development (Sterling 2010). An appeal was recently made (Kruchten et al. 2012) 
to the research community to establish a theoretical basis for the concept of technical debt that goes 
beyond the current ad hoc definition as a metaphor.

84.4.6  Measuring and Quantifying Agile Development Practices

Agile software development has been presented by proponents as a more effective alternative approach 
to previous software development methods, but the evidence has often been anecdotal. Likewise, the evi-
dence for comparative effectiveness among agile methods themselves has often been mostly anecdotal.

One early exception was a series of empirical investigations of the effectiveness of pair programming. 
An empirical study was undertaken by Williams et al. 2000 in which it was determined that pairs spent 
on average 15% more total effort than solo programmers to complete the same programming tasks, but 
that code written by pairs on average passed an additional 15% of the specified acceptance tests. This 
study was followed by another (Erdogmus and Williams 2003) that concluded that pair programming 
long-term productivity could achieve a 30% advantage over productivity of solo programmers. Overall, 
all such studies found that pair programming is costly in the short term but appears to exhibit a qual-
ity advantage for complex tasks (Dybå et al. 2007). Notwithstanding, with regard to the effectiveness of 
pair programming, Wray (2010) points to the need for further experimentation, noting that “we are no 
longer in the first flush and the pros and cons seem farther apart than ever.”

Another subject of numerous empirical studies is TDD. As noted in Turhan et al. (2010), TDD “ … is 
one of the most referenced, yet least used agile practices in industry.” An early study was conducted by 
Erdogmus et al. (2005). A subsequent (Turhan et al. 2010) systematic literature review focused on studies 
that evaluated TDD with respect to productivity, quality, and test support. Their findings, summarized 
in Shull et al. (2010), concluded that there is moderate evidence in favor of TDD. More recent studies 
(Rafique and Misić 2012) report similar conclusions—for example, that TDD appears to support quality 
improvement with more complex tasks.

With the emergence of evidence-based software engineering (Dybå et al. 2005), anecdotal claims 
regarding effectiveness of agile methods began to come under the closer scrutiny of researchers. For 
example, one of the key premises underlying claims of the superiority of lean software development 
approaches is the literature on Japanese automobile manufacturing successes (Womack et al. 1990). But 
Dybå and Sharp (2012) point out that the evidence for the claims made in that literature is open to valid 
alternative interpretations that potentially diminish their strength considerably.

As a consequence of the trend toward evidence-based software engineering research, in recent years 
the research community has undertaken numerous initiatives to measure and quantify the effects of 
agile practices in particular and agile development in general, along several dimensions. In Sjøberg et al. 
(2012), an initiative is described in which the comparative effectiveness of the use of the Scrum and 
the Kanban approaches is investigated using data gathered from more than 12,000 work items pro-
duced over a period of 3 years. In the study described, an organization almost halved its lead time after 
replacing Scrum with Kanban, improved its productivity, and reduced the number of weighted bugs by 
10%. The authors provide several caveats regarding interpretation of the results, including the fact that 
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introducing Kanban after Scrum may have introduced a bias toward Kanban because the development 
professionals were more familiar with agile software development by that time.

One of the largest ongoing initiatives to measure the comparative effectiveness of agile software 
development methods based upon industrial project data is that of QSM, an early pioneer in software 
estimation and benchmarking. QSM has collected industrial project data continuously since 1978, 
compiling a database with validated data from over 10,000 projects suitable for comparative bench-
marking. Its Software Lifecycle Model (SLIM) (Putnam 1978) provides input project data parameters 
of time, size, and effort, which were reinterpreted in an agile context in order to enable data collec-
tion for agile projects. For example, size is estimated through stories, story points, and lines of code; 
development effort is modeled as one estimate with milestones for the iterations, or alternatively 
each iteration may be an estimate. An initiative of the Central Ohio Agile Association and QSM over 
the 2012–2013 time frame (QSM 2012) within a specific industrial community (Columbus, Ohio) 
yielded benchmark data indicating that the agile projects included in the study exhibited defect data 
that are significantly better than industry averages, with a 30% improvement in completion rate over 
industry norms.

84.4.7  Conclusions on Agile Research

In Dingsøyr et al. (2012), the observation is made that the research community has been very active 
ever since the publication of the Agile Manifesto, with over 60 countries contributing to the cor-
pus of research, in numerous special issues of reputable journals, dedicated conferences, and many 
books, including best sellers in the software engineering market. But the observation is likewise made 
that researchers are still not paying enough attention to establishing the theoretical underpinnings 
of agile development and its associated practices. The establishment of these theoretical underpin-
nings as a basic for solid, effective future research remains of the most urgent themes in agile software 
development.

84.5  Summary

The so-called agile movement in software development began with the publication of the Agile Manifesto 
in 2001. Although agile methods were already in use by that time, the Agile Manifesto coined the term 
and codified its characteristics through twelve principles. The agile movement was widely seen as a reac-
tion to rigid, sequential, defined processes of the previous two decades. The iterative and incremental 
approach embodied in the agile movement, however, had deep roots in practices that had been proposed 
at various times throughout the history of software engineering.

Two agile methods in particular are emblematic of industrial best practices in the decade follow-
ing the publication of the Agile Manifesto. XP offered a concrete set of core practices that exempli-
fied the quintessence of agile software development practice and was well received by programmers. 
Scrum provided a framework for the overall management of an iterative and iterative development 
project that was well received by managers. In parallel, methods such as lean software development 
brought a flow-based character into the movement, later strengthened by the introduction of Kanban. 
Several analyses appeared over the decade comparing the appropriateness of agile approaches versus 
more traditional plan-driven approaches in different environments.

Academic research in agile methods began in earnest even before the publication of the Agile 
Manifesto. Human factors and economic aspects were consistent research topics from the begin-
ning. Agile methods in demanding environments such as critical embedded systems became another 
research topic, as well as the problem of understanding the role of architecture in agile software devel-
opment. There has been a steady increase in publication of empirical studies of pre- and post-adoption 
impact of agile methods.
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In February 2011, on the tenth anniversary of the publication of the Agile Manifesto, ten of the 
original signatories provided commentary (Hunt et al. 2011) on its impact on software development 
during the intervening decade. Although there was general agreement that the Agile Manifesto and 
the principles and practices it embraced had significantly affected the software engineering com-
munity, there was likewise general disappointment that the agile approaches had not been adopted 
to the expected degree. In particular, the observation was made that the processes and practices of 
agile approaches had been implemented by too many practitioners in a slavish and formulaic manner, 
reflecting a fundamental misunderstanding of the word “agile.” Thus, the adoption of agile method-
ologies as envisioned by the signatories of the Agile Manifesto remains a challenge even today for the 
software development community.

Key Terms

The agile vocabulary is vast and as varied as the number of agile methods. The following glossary con-
tains terms that are important to understanding agile approaches and/or common to several methods.

Backlog: In Scrum, those tasks or stories that will be worked on in the future.
BDUF: Big Design Up Front. Refers to the practice of designing a system before any implementation has 

begun, in contrast to the emergent design approach of agile methods.
Burndown chart: A technique in Scrum to track and display work remaining to finish.
Continuous integration: An approach to software development that involves frequent integration of 

individual work into the whole system. Generally this occurs at least daily.
Daily stand-up: Agile methods often encourage short daily meetings to report on progress and plan 

future actions. They are often held while standing up in order to discourage a long duration.
Epic: In Scrum, a large user story that eventually is partitioned into smaller stories.
Iteration: A period (ranging from days to 2 months) in which an agile team implements an increment 

of functionality.
Kanban: Japanese, roughly translates to “signboard.” A technique generally associated with lean soft-

ware development, for visualizing work in progress.
Pair programming: An agile practice in which two programmers share a single workstation, with one 

acting as coder and the other as reviewer or “navigator.”
Refactoring: Rewriting of code to improve its design and maintainability. Generally the refactoring 

actions are small and local.
Retrospective: A meeting at the end of an iteration (or entire project) in which the team considers what 

could be improved. A way to implement process improvement in agile methods.
Scrum: Rugby term regarding a method for restarting play after an infringement. Refers to teams hud-

dling together in a group. Used as the name for the agile method.
Spike: An investigation of feasibility outside the normal flow of work.
Sprint: An iteration in the Scrum agile method.
Story: A description (usual textual) of a feature to be implemented. May be seen as a compact version 

of a use case.
TDD: Test-driven development. An approach to coding that involves first writing a failing test and then 

writing the code that makes the test succeed.
Timebox: A fixed duration, with reference to the length of an iteration in agile development.
Velocity: A measure of the speed at which an agile team completes its work, usually the number of 

stories in an iteration.
WIP: Work in progress—a concept in particular from lean software development. Work that has been 

incurred but not yet delivered to the customer.
YAGNI: You Aren’t Going to Need It. Refers to an XP practice of not implementing a feature for which 

a firm requirement does not yet exist.
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known resources are listed as follows:

http://retrospectivewiki.org/index.php?title=Main_Page.
http://www.agilealliance.org.
http://www.scrumprimer.com.
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85.1  Introduction

In software engineering, service-oriented development, or service-oriented development of applications 
(SODA), is a process and activity of developing applications and systems based on service-oriented archi-
tectures (SOA). The concept of SOA has received significant attention in the software architecture and 
development field since the early twenty-first century. SOA is a type of software architecture based on using 
services available on a network. The fundamental building blocks of the system are services. Services are 
commonly viewed as self-contained software application modules exposed through interfaces over a dis-
tributed environment. The consumers of these services are not end users but rather software applications.

SOA has been emerging as a major integration and architecture framework in today’s complex and het-
erogeneous computing environment (Mahmoud 2005). It represents “a paradigm for organizing and uti-
lizing distributed capabilities that may be under the control of different ownership domains” (MacKenzie 
and Laskey 2006). Compared with other architecture styles, SOA has the following features and benefits:

•	 Services have well-defined interfaces that are independent of its implementation. Thus, the clients 
are primarily concerned with what the services will provide rather than how these services will 
execute their requests.

•	 Services are loosely coupled for greater level of flexibility and reuse.
•	 Services can be dynamically discovered.
•	 Composite services can be built based on service aggregation.
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Service-oriented development has evolved along with a number of computing and software develop-
ment fields, which have directly or indirectly contributed to the development of SOA and in turn been 
impacted by SOA.

85.1.1 � Component-Based Software Engineering 
or Component-Based Development

Component-based software engineering (CBSE), or component-based development (CBD), is a 
branch of software engineering that emphasizes the building of applications based on software com-
ponents (Wang and Qian 2005). A software component is a reusable piece of code that encapsulates a 
set of related functions and data and communicates with other parts of the system via interfaces. The 
concept first became prominent with Douglas McIlroy’s NATO conference address on software engi-
neering in 1968 (Mcilroy 1969). The approach is characterized by reusability, development focusing 
on defining, implementing, and composing loosely coupled independent components into systems. 
Popular implementations of components include Enterprise Java Beans and web services. Software 
components are considered to be part of the emerging platform for service orientation. Services can 
be built from service components and inherit further characteristics that were not part of an ordi-
nary component.

85.1.2 � Distributed Computing and Components

Distributed computing is a field that studies distributed systems that consist of multiple autonomous 
computers that communicate through a computer network. A computer program that runs in a distrib-
uted system is called a distributed program or application. Components then can be accessed and used 
by multiple programs across multiple computers. The significance of the change is the way of communi-
cating with components over the network. The major change of the environment leads to major changes 
on interfaces and communication protocols and other issues like persistency, state, and synchroniza-
tion. Microsoft’s DCOM and OMG’s Common Object Request Broker Architecture (CORBA) are two 
major architectures supporting the distributed components.

SOA can be viewed as an evolvement of distributed components to a more generic and loosely coupled 
level. In some cases, they are similar. For example, both services and components could support abstrac-
tion (component via an interface, service via a contract) and thus with loose coupling. But component-
based architecture (CBA) and SOA are different:

•	 CBA is based on component models and technologies. There is no universally accepted compo-
nent standard up to the present (Szyperski 2002).

•	 SOA is at a higher level and CBA is more dependent of detailed implementation and bind to a 
framework/environment (Sessions 2004). Both SOA and CBA are similar in principle, but they 
are different in implementation.

•	 It is difficult for component-based systems to work over Internet firewalls as they usually use 
nonstandard ports.

85.1.3 � Web Services

A web service is a software program designed to support interoperable machine-to-machine interaction 
over a network (Haas and Brown 2004). It is also built based on the software components exposed through 
standard web interface called services. Web services play a pivotal role in a majority of SOA initiatives and 
are supported by the major development tool and enterprise package vendors (Haines and Rothenberger 
2010). However, web services itself are not equal to SOA. It is one implementation that can realize an SOA. 
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An SOA may be realized with technologies other than existing web services standards. However, web 
service has been the most promising technology for SOA and for the foreseeable future (Vogels 2003).

85.2 � Underlying Principles

Software development involves several stages such as analysis, design, implementation, testing, integra-
tion, and maintenance. There are many different paradigms to develop software, each with its strength 
and limitations. These paradigms could also be called software development styles, approaches, meth-
ods, or principles, because each paradigm defines uniquely its own approach to conducting and pro-
ducing system requirements analysis, system architecture, implementing language and environment, 
testing methodology, and maintenance activities. For instance, object-oriented software development 
uses “object” as a fundamental concept during development process. The key of object-oriented devel-
opment is to identify objects and specify objects during the analysis phase, design a hierarchy of objects 
with well-defined relationships, and implement those objects with high-performance code. Another 
example is component-oriented development, which is similar to object-oriented development but more 
general and more powerful in terms of software reusability and granularity. A component is a self-
contained and self-deployable unit, while an object is self-contained but not self-deployable.

Service-oriented development is a new software development paradigm, which has its own system 
specification language, its own system design approach, and its own implementation and testing meth-
odology. In a service-oriented development process, all development activities evolve around the central 
concept called “services.” A service is a software component, a piece of self-contained, self-deployable 
computer program with well-defined functionality and can be integrated with other services through 
its interface. Therefore, service-oriented development can be viewed as a special case of component-
oriented development, if we recognize services as reusable components.

With the advances of technologies in computing and networking, software development has 
evolved from machine-code programming, structured programming, object-oriented programming, 
to component-oriented programming. Software components are interchangeable units encapsu-
lating functionality and providing services through well-defined interfaces. A service is a software 
component. Thus, the underlying principles of service-oriented development follow the principles of 
component-oriented development. This section introduces some general principles of service-oriented 
development, followed by a detailed discussion of “service infrastructure,” including principles and 
models for service-oriented development.

85.2.1 � General Principles for Service-Oriented Development

85.2.1.1 � Principle 1: Services Represent Decomposition and Abstraction

The basic and effective strategy for tackling any large and complex problem in software development 
is “divide and conquer.” One major idea in service-oriented development is to create software modules 
that are themselves self-contained and independently deployable. Thus, different developers will be able 
to work on different services independently, without needing much communication among developers, 
and yet the services will work together seamlessly. In addition, during software maintenance phase, 
it will be possible to modify some of the services without affecting all of the other services. When we 
decompose a system, we factor it into separable services in such a way that each service is at the same 
level of details; each service can be solved independently; and the implementations of these services can 
be integrated to satisfy the original system requirements.

Abstraction is a way to do decomposition productively by changing the level of detail to be consid-
ered. Service components hide certain details in an effort to provide only necessary information to the 
clients through their interface. The strategy of abstracting and then decomposing is typical in software 
development process.
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85.2.1.2 � Principle 2: Reusability Should Be Achieved at Various Levels

Software exists in different forms throughout the software development process. At the modeling and 
analysis phase, the requirements specification is seen as a form of software. In the design phase, archi-
tectural design and detailed design documents are part of the software. Source code and executable 
code deployed to the customer site are certainly software. Therefore, software reusability includes the 
reuse of any software artifacts in various forms. In service-oriented development, there are five forms of 
software components, namely, service specification, service interface, service implementation, installed 
services, and service objects. Each form of the service components could be reused in different stages of 
software life cycle.

85.2.1.3 � Principle 3: Service-Oriented Development 
Increases the Software Dependability

The dependability of a computing system relies heavily on the trustworthiness of its software part, as 
opposed to its hardware part. Service-oriented development provides a systematical way to achieve 
dependable systems. Owing to the abstraction of services and systematic integration of services, it is 
much easier to validate critical requirements and verify safety for the service-based systems. On the 
other hand, reusable services have usually been tested through the validation process and real usage for 
a long time and, therefore, their quality can be assured.

85.2.1.4 � Principle 4: Service-Oriented Development Could 
Increase the Software Productivity

Service-oriented software is constructed by assembling existing reusable components rather than devel-
oping from scratch every time—reuse instead of reinventing the wheel. This process is much faster than 
developing an application from scratch in most cases.

85.2.1.5 � Principle 5: Service-Oriented Development Promotes Software Standardization

Service standards must be in place before a mature service market in software industry. Standards can 
be used for creating an agreement on concrete interface specifications, enabling effective composition, 
and ensuring service-oriented development to be a new programming paradigm in which “plug and 
play” becomes a reality in software development just like the hardware counterpart.

85.2.2 � Service Infrastructure

A service infrastructure is the basic, underlying framework and facilities for service construction and 
service management. It consists of three models:

	 1.	 A service model
	 2.	 A connection model
	 3.	 A deployment model

A service model defines what a valid service is and how to create a new service under the service 
infrastructure. Service developers build reusable services according to the service model. Each ser-
vice infrastructure has a reusable service library containing building blocks confirming to the service 
model. The connection model defines a collection of connectors and supporting facilities for service 
assembling. Thus, the connection model determines how to build an application or a larger compo-
nent out of existing services. The deployment model describes how to put service components into a 
working environment. The deployment model deals with all issues related to service distribution and 
maintenance.
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85.3 � Best Practices

The concept of SOA has been around for more than 10 years. The field is matured with abundant best 
practices, design patterns, software products, development methodologies, and standards. In this sec-
tion, we select and discuss some important practices: using reference architectures, adopting enterprise 
service bus (ESB), choosing service interface style, and adjusting development activities.

85.3.1 �R eference Models and Architectures

SOA is just a general architecture style or paradigm that can lead to various different implementations. 
In the earlier years, even the understanding of basic SOA concepts and terminologies was inconsistent. 
Eventually many people realized that it is important to agree on a common understanding of basic con-
cepts and semantics that can be used across different implementations. Reference models and ontologies 
(MacKenzie and Laskey 2006; The Open Group 2010) have been developed for this purpose. On top of 
that, reference architectures have been developed to provide high-level architectural that can be used 
as the basis of many implementations. The reference architectures incorporate the best practices and 
design patterns of developing SOA systems. Utilizing these reference architectures has a number of 
benefits:

•	 They can be used to set the context for a system, to provide a common foundation of understand-
ing for developers and users to map products to and design services for, and to articulate a set of 
building blocks for solutions (Kreger et al. 2012).

•	 Reference architectures help produce well-designed system (in both technical and business 
perspectives).

•	 Reference architectures can shorten development cycles and increase software productivity.
•	 Reference architectures can reduce development cost and improve implementation quality.
•	 Reference architectures serve as the learning guide for junior developers.

There can be more than one reference architecture, and the actual implementation may not necessarily 
follow exactly one reference architecture. Reference models and architectures have been produced by 
standards bodies such as the Organization for the Advancement of Structured Information Standards 
(OASIS) and the Open Group, as well as big IT companies like IBM (Arsanjani et al. 2007), Microsoft,* 
and Accenture.† In the following sections, two notable efforts by two IT standards organizations are 
introduced.

85.3.1.1 � OASIS SOA Reference Model and Reference Architecture

The OASIS, an IT industry standards body, has been working on the SOA Reference Model and 
Reference Architecture since 2005. The reference model (SOA-RM) was voted into standards in 2006 
while the reference architecture (SOA-RA) is still under development. According to the OASIS, the 
reference model and reference architecture are different. A reference model aims to provide a higher 
and more abstract level of common understanding, while a reference architecture provides more 
detailed and concrete guidelines. A reference model consists of a minimal set of unifying concepts 
and relationships in a particular problem domain and is not directly tied to any standards, tech-
nologies, or other concrete implementation details, such as web services (MacKenzie and Laskey 
2006). The OASIS SOA-RM is a conceptual and abstract framework that is used primarily for a 
common and consistent understanding of key entities and relationships between them. The OASIS 
SOA-RAF, on the other hand, provides more descriptive solutions to the problem of building an 

*	 See http://msdn.microsoft.com/en-us/library/bb833022.aspx
†	 See http://www.accenture.com/cn-en/pages/service-technology-soa-reference-architecture-summary.aspx
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actual SOA-based system. OASIS-RAF describes a complete SOA ecosystem including the context 
within which the system functions and the participants involved in making it function (OASIS 
2012). It covers both IT and business perspectives in constructing, using, owning, and managing 
an SOA system.

Following IEEE’s recommendation for architecture description (IEEE 2000), the OASIS-RAF 
describes the SOA development from three views and corresponding viewpoints (OASIS 2012):

	 1.	 Participation in an SOA Ecosystem: this defines an SOA ecosystem’s context, structures, and 
actions. It identifies roles, responsibilities, and relationships of participants.

	 2.	 Realization of an SOA Ecosystem: this focuses on the infrastructure elements that are needed 
to support the construction of SOA-based systems. The viewpoint defines four models: service 
description, service visibility, service interaction, and policy.

	 3.	 Ownership in an SOA Ecosystem: this addresses the concerns involved in owning and managing 
SOA-based systems. Many of these concerns are not easily addressed by automation; instead, they 
often involve people-oriented processes. Four models are defined: governance, security, manage-
ment, and testing.

It should be noted that the OASIS SOA-RAF is not a concrete guideline for building a specific SOA 
system. It is more of a view-based abstract reference architecture foundation that is used to guide other 
reference architectures and eventual concrete architectures. SOA-RAF models SOA from an ecosystem/
paradigm perspective and is the first standard that extends SOA from a pure technical realm into the 
business world (Poulin 2006).

85.3.1.2 � Open Group SOA Standards

The Open Group published a serial of SOA standards and guides including the Open Group SOA 
Ontology, the Open Group Service Integration Maturity Model (OSIMM), the Open Group SOA Reference 
Architecture, and others.*

The Open Group SOA Ontology defines SOA-related concepts, explaining what they are and how 
they relate to each other (The Open Group 2010). Compared to OASIS SOA-RM, it provides a more 
refined and formal specification of some of the core concepts (Kreger and Estefan 2009). The ontology 
is formally represented in web ontology language (OWL) to enable processing automation by directly 
using applications.

The Open Group SOA Integration Maturity Model (OSIMM) provides a way to assess an organiza-
tion’s SOA maturity level. The model consists of seven levels of maturity (silo, integrated, componen-
tized, service, composite services, virtualized services, and dynamically reconfigurable services) based 
on the evaluation of seven dimensions of consideration that represent significant views of business and 
IT capabilities (business, organization and governance, method, application, architecture, information, 
and infrastructure and management). OSIMM defines a process of a staged and incremental adoption 
and implementation that maximizes business benefits at each stage. It acts as a quantitative model to aid 
in assessment of current state and desired future state of SOA maturity (The Open Group 2011a).

A little different from OASIS SOA-RA, the Open Group SOA Reference Architecture can represent 
both abstract enterprise designs as well as concrete SOA implementations (The Open Group 2011b). 
Originally based on IBM’s SOA Solution Stack and Service-Oriented Modeling and Architecture 
(SOMA) (Kreger et al. 2012), the Open Group SOA-RA includes nine layers or nine key clusters of 
considerations and responsibilities that typically emerge in the process of designing an SOA solution or 
defining an enterprise architecture (Figure 85.1).

One key building block is the services layer. It is important to understand different types of services 
in the development of a service portfolio of an SOA. Categorizing services affects how both business 

*	 These standards and guides can be access through The Open Group SOA Source Book available at http://www.opengroup.
org/soa/source-book/intro/



85-7Service-Oriented Development

and IT views and understands the architecture and the service portfolio that supports it. A common 
high-level classification based on logic type puts services into three categories (Erl 2007): entity services 
(which represents business logic related to business entities), task services (which represent narrower 
scoped business logic, or steps in a process, that are within a business entity), and utility services (which 
provide functionality that is common to many functionalities, such as event logging, notification, and 
exception handling).

The reference architecture provides a finer level categorization scheme for services, based on their 
functions and purposes (Figure 85.2). One of the significant services is the ESB, which will be described 
in more detail in the Section 85.3.2.

Strategy and planning services

Business services and events

Enterprise service bus

Partner
services

Business
application

services

Access
services

Asset and registry services

Infrastructure services

Lifecycle services

Interaction
services

Development
services

Process
services

Information
services

Management
services

FIGURE 85.2  The Open Group SOA-RA service functional categorization scheme view. (From The Open Group, 
SOA reference architecture technical standard, http://www.opengroup.org/soa/source-book/soa_refarch/, 2011b.)

Consumer

G
ov

er
na

nc
e

In
fo

rm
at

io
n

In
te

gr
at

io
n

Q
ua

lit
y o

f s
er

vi
ce

Provider

Operational
systems

Services

Service
components

Consumer
interfaces

Business
processes

FIGURE 85.1  The Open Group SOA-RA logical solution view. (From The Open Group, SOA reference architec-
ture technical standard, http://www.opengroup.org/soa/source-book/soa_refarch/, 2011b.)



85-8 Software Development Management: Processes and Paradigms

85.3.2 � Enterprise Service Bus

Because of its loose coupling style and flexibility, SOA is particularly suitable for enterprise systems 
where various applications need to be integrated. The enterprise is rather a closed environment with 
management and infrastructure planning consistency, but technological heterogeneity still poses a 
big challenge. One of the key practices in designing application integration is the implementation of 
ESB, which is also included in the Open Group Reference Architecture as a communication chan-
nel. An ESB is considered as an SOA implementation pattern used for designing and implementing 
the interaction and communication between services (Flurry and Reinitz 2007). It is one of the 
key components for messaging in the field of enterprise system integration. In a typical enterprise 
environment, different applications need to communicate to one another though messages. Instead 
of having applications to communicate directly end to end, ESB provides a communication bridge 
for all services. However, ESB should not just be perceived as the SOA itself, nor should ESB be 
implemented without other proper plan and design of other services that provides business utility 
(Woolf 2007).

The key concept in ESB is the bus. In ESB-based architecture, the bus acts as the single message path 
between applications. Every client directs all its requests through the ESB instead of passing it directly to 
a central broker. Because the communication is usually accomplished using messaging techniques, it is 
also called a message bus (Hohpe and Woolf 2003). In the traditional enterprise application integration, 
a centralized message broker is also implemented as a communication bridge. But ESB is different in 
that the message translation is not centralized to the broker. Each application uses adapters to conform 
to a canonical message format.

ESB is not a standard and can provide different functions and capabilities in different implantations. 
The following are usually considered to be the basic set of capabilities of ESB:

•	 Message queue and routing
•	 Data transformation and mapping
•	 Monitor and control routing of messages
•	 Provide commonly needed commodity services like security, event handling, exception handling, 

protocol conversion, and service quality monitoring

ESB is usually implemented as a message communication service. It is provided as an enterprise archi-
tecture integration tool by vendors like IBM (WebSphere ESB), Microsoft (BizTalk), and Oracle (BEA 
Logic). There are also open source projects such as Apache ServiceMix and Synapse, JBoss, Open ESB, 
and NServiceBus.

85.3.3 � Web Services: SOAP versus REST

Services are exposed and accessed through interfaces. The interface is a contract of how to use the ser-
vice. Currently, the most common and reliable implementation is web services. Traditional web services 
utilize the simple object access protocol (SOAP) message, but more recently another style representa-
tional state transfer (REST) is gaining popularity.

The original web services standards include three parts: SOAP, web services description language 
(WSDL), and universal description discovery and integration (UDDI). SOAP is a protocol specifica-
tion that defines a message architecture and format for exchanging structured information. It uses 
an extensible markup language (XML) for its message format and usually relies on other applica-
tion layer protocols, most notably hypertext transfer protocol (HTTP), for message transmission. 
SOAP-based web services mirror the traditional IT integration style of distributed objects with 
messaging technologies layered on top of web technologies (Vogels 2003). WSDL is an XML-based 
language for defining an interfaces syntactically (including the syntax and structure of request and 
response messages). UDDI is an XML-based mechanism to register and locate web services on 
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the Internet. All three standards utilize the XML language and can be processed directly by software 
programs, thus effectively hiding the perceived complexity from the application programmer and 
integrator (Pautasso et al. 2008).

More recently, another more lightweight style REST has been gaining popularity among many web 
mash-up applications. REST is an architectural style for distributed resources, introduced by Roy 
Fielding (Fielding 2000). REST requests and responses between servers and clients are built around the 
representation (addressing and transferring) of resources (Rodriguez 2008). The World Wide Web is the 
most well-known example of the REST architecture. A web service implemented based on REST prin-
ciples is often called a RESTful web service. A concrete RESTful web service follows four basic principles 
(Rodriguez 2008):

•	 Explicitly use HTTP methods (GET, POST, PUT, DELETE) for operations.
•	 Resources are exposed through directory structure-like URIs.
•	 Resources are usually represented by standard format like XML, JavaScript Object Notation 

(JSON), or both.
•	 Be stateless. Stateful interactions are based on the concept of explicit state transfer (Pautasso et al. 

2008). A number of techniques exist to make HTTP stateful, including URL rewriting, session 
cookies, and hidden form fields, all of which embed the state information in response messages 
for future reference.

Web services are very ambitious, providing extensibility and processing models, with extension of 
dealing asynchrony, reliability, integrity, confidentiality, etc. It is protocol independent although 
almost majority is implemented with HTTP. Service interfaces are more complex but more func-
tional. Compared to the heavyweight full stack of web service, REST is a lightweight implementation 
of services over the web. It is simple in implementation, resource oriented, with simple interfaces. 
The necessary infrastructure for REST has become pervasive. The effort required to build a client to 
a RESTful service is also very small. Developers can begin testing such services from a common web 
browser, without having to develop custom client-side software, and deploying a RESTful web service 
is very similar to building a dynamic web site (Pautasso et al. 2008). Furthermore, it is possible to 
discover RESTful web resources without a centralized repository approach that requires registration 
like UDDI.

However, REST is not a substitute for web services. Rather, it is an alternative style that could be 
considered as an alternative approach for designing SOA. It has been perceived as a way to provide 
web services with less dependence on proprietary middleware (e.g., an application server) than the 
“big” web services. Exposing a system’s resources through a RESTful interface is more flexible to meet 
integration requirements where data need to be combined easily among different kinds of applica-
tions (e.g., the mash-ups). Generally, REST is more widely chosen for simple web applications over the 
Internet where consumer clients are mostly unknown, while SOAP web services are used more within 
an organization’s enterprise system. A quantified method of choosing REST- or SOAP-based service 
can be found in a tutorial at the 19th International Conference on World Wide Web (Pautasso and 
Wilde 2010).

85.3.4 � SOA Development Activities Adjustment

SOA not only brings technical changes but also business and organizational changes; therefore, the 
development of SOA needs to make adjustments in development phases and activities. Generally in 
SOA development, there are three basic tasks: building a service infrastructure, building services, and 
consuming services in applications. These activities are different in terms of a development method-
ology. On one hand, the infrastructure is the overall basis upon which the whole system is built. Its 
changes are more likely to have a greater impact on other applications that use the infrastructure. 
Services, or at least their interface, are used by multiple applications. They need to be well designed 
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and planned for relatively small changes. Because of this stability requirement, building the service 
infrastructure and services may require a more rigorous approach with careful planning and design 
(Haines and Rothenberger 2010). On the other hand, the internal implementation of services is more 
independent of how their interfaces, and composite applications built on services need to quickly 
respond to changing requirements. They require a more flexible and shorter development cycles. This 
may in many circumstances benefit from using a more agile software development approach (Haines 
and Rothenberger 2010).

Some traditional development activities need to be adjusted because of this duality of SOA devel-
opment. Certain activities may need to be added, emphasized (or de-emphasized), or rearranged. 
Figure 85.3 (Haines and Rothenberger 2010) summarizes some key adjustments in the typical develop-
ment activities in the system development life cycle.

The most radical changes are probably in the design phase due to the paradigm shift. In earlier sys-
tems, when the technology and infrastructures were not matured, incorporating too many remotely 
located services in a composite orchestration would be considered a bad design. Now especially in an 
internal architecture, service management is more matured and reliable; more loosely coupled sys-
tem is encouraged to advocate flexibility and agility. One of the important considerations of service 
design is to determine the granularity of services. Services that are too fine-grained and require many 
roundtrips to complete a business transaction may cause performance problems, while services that are 
too coarse-grained limit reusability and may result in the wrong applications being built (Haines and 
Rothenberger 2010).

Phase Adjustments Important Characteristics and Changes

Planning substantial •	 More holistic, enterprise-level
•	 Broader more effective communication channels needed
•	 Higher uncertainty, project estimation more difficult
•	 Assessment of relevant standards and vendor support

Analysis lowest •	 Requires rigorous, disciplined traditional analytics
•	 Development of common data models and schemas is a key task

Design most radical •	 Development of reusable enterprise-level components
•	 Interface design must be explicit part early in the lifecycle that requires 

learning about standards and tool availability
•	 Determining granularity of services
•	 Limiting remote services (based on current remote management capabilities)
•	 Developing effective interfaces descriptions

Implementation some •	 Need for increased automation with deployment tools
•	 Increased need for coordination with more independent stakeholders
•	 More complex service management
•	 Implementing multiple channels for business partners with different 

maturity levels of Web services
•	 Awareness of standards maturity and interoperability issues

Testing substantial •	 Emphasis on integration testing and different environments
•	 Need for increased automation with testing tools, including generation of 

test clients as well as test services
•	 Compliance testing (e.g., WS-I)
•	 Increased performance and security testing

FIGURE 85.3  Changes needed in the SOA development. (From Haines, M.N. and Rothenberger, M.A., Commun. 
ACM, 53(8), 135, 2010.)
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Another phase with substantial changes is the testing phase. Some best practices are (Ahuja 2009) as 
follows:

•	 Maintain automated service integration test suites.
•	 Adopt a service testing framework.
•	 Use mock services to test consumers ahead of integration with providers.
•	 Use test suites to adequately test services ahead of consumer integration.
•	 Always plan for performance testing.

85.4 �R esearch Issues

As we discussed earlier, a service infrastructure consists of three parts: a service model, a connection 
model, and a deployment model. Each of these three models has research issues and open questions. 
Research issues related to a service model include the following:

•	 How do we formally define a service? A service is a reusable component with properties, refer-
ences, functional and nonfunctional requirements, and implementation details. These are the 
basic elements of business function units, which are assembled into complete business solutions 
by the connection model of deployment model. Therefore, it is essential to define these basic 
services in a precise and concise manner. Many service infrastructures provide both text and 
graphical representations of a service component. For instance, the picture that follows was used 
by OASIS (OASIS 2011). A concise text representation of a service component helps to define ser-
vice infrastructure as a formal system; thus, formal methods could be applied to service oriented 
architecture (Figure 85.4).

Component… …
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Properties

Implementation
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FIGURE 85.4  The Open Group SOA-RA service functional categorization scheme view. (From OASIS, Service 
component architecture, assembly model specification version 1.1, http://docs.oasis-open.org/opencsa/sca-assembly/
sca-assembly-spec-v1.1.html, 2011.)
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•	 Connections as operations. The connection model of a service infrastructure is the most interest-
ing part for further research. The connection model defines ways to combine new and preexisting 
service components together into a unified system. These rules of assembly could be described as 
operations of a component algebra (Wang and Qian 2005), and they are the abstractions to repre-
sent different composable aspects of the system.

•	 Deployment as service binding. The deployment model defines the manner in which a service can 
be made available and how it can be utilized in different applications. It may also define possible 
methods of access, for instance, through web services, JMS, RMI- IIOP, or EJB. Nonfunctional 
requirements could be captured by the deployment model as specific bindings such as security, 
time constraints, transaction, and reliability.

Currently web services represent an active research area. A web service is an online component that 
can be described by its interface expressed with WSDL, deployed by a deployment tool such as WSDD, 
published in a registry such as UDDI, located by a SOAP lookup based on UDDI API, and invoked 
by a SOAP request. Web services are loosely coupled, contracted components that communicate via 
XML-based WSDL web service interface.

The development and management of SOA (e.g., methodologies) is also a good research area. The 
software development process is changed due to the adoption of SOA. What is the impact of such 
changes? How do we assess them? Future research may investigate the productivity and cost reduction 
by conducting a comparative analysis of traditional development processes and SOA-driven processes. 
However, beyond the question of whether SOA is good or bad, it is more worthwhile to study how it can 
be done right in a given context (Haines and Rothenberger 2010).

Papazoglou et al. (2007) envisions an service oriented computing (SOC) roadmap (Figure 85.5) and 
put the development and management aspects on top of the research pyramid. Several issues were raised 
in this chapter and we think the following will be the focal point of future research. First, more research 
could focus on a specific phase or a specific methodology in a given organizational context using detailed 
case studies or field surveys. Software development changes can be related to underlying technical 
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characteristics to examine if recommendations made for SOA also apply to other development paradigms. 
Second, the management becomes a critical issue as the number of services grows. Third, it is important 
to have a highly coordinated process and to consider testing throughout the life cycle. Tools that help 
automating the process play an important role in effective testing by addressing not only the functional 
issues but also security and performance.

85.5 � Summary

SOA has been around for more than a decade now. It has become a fundamental enabler for many 
enterprise technologies and systems, such as software as a service (SaaS) and cloud computing. It is also 
evolving beyond the traditional remote-procedure-call style to encompass more interaction forms as 
found in REST, web-oriented architecture, and event-driven architecture (Thompson 2009). Reference 
models, architectures, and patterns have proliferated to guide the service-oriented development. The 
development also goes beyond simple technical mandate to a high-level conceptual thinking that influ-
ences the architectural design. The question nowadays is not just focused on whether or not SOA is a 
better paradigm but more on how it can be implemented in the right way in a given context.

Key Terms

Enterprise service bus: ESB is an SOA implementation pattern used for designing and implementing 
the interaction and communication between services.

RESTful web services: Web services implemented based on REST principles.
Service: A service is a software component, a piece of self-contained, self-deployable computer program 

with well-defined functionality and can be integrated with other services through its interface.
Service-oriented architecture: SOA is a software architecture style utilizing distributed capabilities that 

may be under the control of different ownership domains. It provides a uniform means to offer, 
discover, interact with, and use capabilities to produce desired effects consistent with measurable 
preconditions and expectations. The fundamental building blocks of the system are services.

Service-oriented development: Service-oriented development is a new software development paradigm 
that develops software systems based on SOAs.

Web services: A web service is a software program designed to support interoperable machine-to-
machine interaction over a network.
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86.1  Introduction

Due to ever-shorter life cycles, maintaining leadership in software-intensive product development orga-
nizations depends increasingly on the ability to improve their design and development processes faster 
than their competitors. There is clearly a need to considerably reduce development effort by increasing 
productivity and consistently generating higher-quality software.

It is a well-known fact that in more established engineering disciplines, the use of standard parts and 
known solutions to recurrent design problems is routine and contributes toward the reproducibility and 
reliability of the solutions produced. By contrast, in the software development universe, there is a strong 
tendency to start from scratch each time a new project is embarked on, with software continually being 
reinvented to perform essentially the same function.

A promising approach is to move the focus from building single systems, where one repeatedly cus-
tom-writes routine functionality, to orchestrating families of systems in a range of similar products. 
Focusing on a “range of similar” products can potentially take advantage of economies of scope, a benefit 
that comes from developing one asset used in multiple contexts by identifying “reusable” solutions that 
support future development of multiple systems, thus, making it possible to derive individual systems 
in a prescribed manner instead of creating them anew. Moves toward systematic, institutionalized reuse 
have shown that similar results can be obtained in the software industry as proposed by software prod-
uct line (SPL) engineering.

A group of related software-intensive systems sharing a managed common set of software assets 
explicitly recognizing variability among similar user requirements, or features, for the same product 
is considered a SPL. SPL development is attractive because it enables strategic and systematic soft-
ware  reuse, that is, software reuse that is planned and aligned with a business strategy [1]. Strategic 
software reuse increases software development productivity and improves the quality of the products 
derived while allowing an organization to expand its products portfolio rapidly. The set of common 
features is used for developing a platform—a set of core reusable assets—that provides mechanisms for 
introducing individual system variations among the group of related systems by combining mass pro-
duction with individual customization.
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Over the past several years, issues associated with SPL have attracted the attention of a relatively high 
number of software engineering researchers and practitioners. However, we do know from experience 
that the SPL paradigm has not been widely adopted in industry. Why is this the case? What are the 
impediments to adopting SPL in industry? Correspondingly, what software processes are “required” for 
effective and efficient SPL development?

In this chapter, we answer these and other related questions to the SPL paradigm. In the rest of this 
chapter we present an overview of SPL development and best practices and a discussion and arguing 
that to effectively implement SPL, organizations need to achieve a high level of maturity in the pro-
cess improvement scale. To buttress this argument, we describe the Software Engineering Institute 
(SEI)-sponsored Framework for Software Product Line Practice and compare its key practices with 
those found in the Capability Maturity Model Integration for Development (CMMI-DEV). Finally, we 
close with some of the most relevant contributions in the SPL research over time and highlight unre-
solved research issues. We conclude with an analysis of SPL adoption and research challenges, outlining 
the main issues and unsolved problems that impede the widespread adoption of the SPL approach as a 
way to deliver software products more effectively.

86.2 A bout Software Product Lines

The overall goal of SPL development is to produce quality products consistently and predictably and at 
the same time greatly increase productivity. A key realization is that most software systems developed 
conventionally, that is, “in isolation, routinely written from scratch” are not completely new or 
unique [2,3]. That is to say, software-intensive systems satisfying specific needs of a particular market 
segment or mission share a common set of “features” [4]. Several focused conferences, books, and 
more general publications have covered SPL [5]. An annual workshop on product family engineering 
(PFE) started in Europe in 1996 [6], and the international conference on SPLs (SPLC) started in the 
United States in 2000 [36]. Both events were held separately until 2004 when they merged to form the 
leading conference in the subject [7].

An underlying assumption is that the benefits from the reuse of components will offset the potential 
extra cost for any increased organizational and design complexity. The benefits of SPL are clear, pro-
vided that assets can be systematically reused several times, including the following:

•	 Organizations reduce cycle time and cost of new applications by eliminating redundancy.
•	 Building systems from a common component base reduces risk and improves quality by using 

trusted, proven components repeatedly.
•	 An asset-based approach allows the management of legacy systems more efficiently, increasing the 

likelihood of longer time-IN-market; the organization evolves a common marketing strategy and 
strengthens its core competency around strategic business interests and goals [8].

•	 Despite an initial investment on creating a common platform, the approach reduces time to mar-
ket and costs significantly when compared to developing the corresponding set of systems each 
independently and in isolation [9].

86.2.1  Software Reuse: An Elusive Goal

Since the dawn of computer programming, different approaches have been developed for exploiting 
the benefits of software reuse. Programmers have practiced ad hoc code reuse since the earliest days 
of computer programming: they have always reused sections of code, functions, and procedures. As a 
recognized area of study in software engineering, software reuse dates from 1968 when McIlroy, from 
Bell Labs, proposed at the now famous NATO conference on software engineering, basing the software 
industry on reusable components [10].
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Earlier definitions of software reuse and reusability include the following:

Re-use is considered as a means to support the construction of new programs using in a system-
atical way existing designs, design fragments, program texts, documentation, or other forms of 
program representation [11].
Reusability is the extent to which a software component can be used (with or without adaptation) 
in multiple problem solutions [12,13].

Over the decades, more organized forms of software reused, although still not in a systematic way, 
focused on larger and larger assets: subroutine libraries in the 1960s, modules in the 1970s, objects in 
the 1980s, components in the 1990s, and web services after that. These approaches represent significant 
advances in achieving the elusive goal of software reuse; they have indeed increased reusability but only 
incrementally and in an ad hoc, small-scale way—for example, reuse on the basis of a single system. 
Code from one project can be saved in a “reuse” library in the hope that it will be useful in the future; but 
unplanned, miscellaneous collections of code components simply fail to achieve high-leverage reuse. 
They are difficult to locate, understand, and modify, since typically design information is unavailable 
and adaptability is not designed in. This need for design for commonality and for control of variability 
results in the introduction of product lines [6,9].

SPL proposes an intentional, systematic, and predictable large-scale software reuse paradigm. 
Of course, the approach stands on the benefits of the early contributions previously mentioned, 
which were primarily programming techniques, plus other important ones as discussed later in 
this chapter.

It is not until systematic reuse is conquered that we will see software reuse widely accepted, and a 
key differentiator is domain engineering (DE) [14], a process of collecting, organizing, and modeling 
the knowledge in a domain in the form of reusable assets, “to model software system families and build 
software modules such that, given particular requirements specs, highly customized and optimized 
intermediate or end products can be constructed on demand [15].”

Systematic software reuse is the organized creation of common parts or assets with controlled 
variability that forms the basis for systematically building systems in a domain of expertise by assembling 
them from these reusable assets, a dual process of DE for building assets and applications engineering for 
building systems of these assets. When product lines are designed to support an organization’s objective 
or mission, we are institutionalizing reuse [16]. The achievement of design for commonality and control 
of variability requires the establishment of a reuse infrastructure as discussed next.

86.2.2  Domain Engineering (DE)

In his PhD thesis [17], Neighbors introduces the term domain analysis (DA) and Draco, which is con-
sidered the first approach to DE. With Draco he also introduces the idea of domain-specific languages, 
currently receiving renewed attention [18].

Systematic reuse requires “original engineering design” work at front, done once, followed by 
“routine practice” [19]. The former known as Domain Engineering (DE) refers to a development-for-
reuse process effort necessary to build a reusable asset base as model solutions. The latter complementary 
process, known as application engineering (AE), refers to a development-with-reuse process to create 
specific systems from these model solutions and prefabricated assets. Within this duality products are 
created by instantiating models and by integrating prefabricated artifacts, mapping needs to solutions 
rather than building from scratch, that is, not building products from first principles. This duality pro-
vides a sound basis for industrial-strength software engineering, a necessary condition that naturally 
leads to systematic reuse [20]. Fundamentally, reuse has the effect of reducing variance and increasing 
homogeneity, two essential aspects observed from disciplines that have moved into industrialization. 
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Modeling is an important practice in increasing homogeneity. As Shaw has put it, supporting the 
modeling first develop second duality (the underlining added):

Engineering relies on codifying knowledge about a technological problem domain in a form that is 
directly useful to the practitioner, thereby providing answers for questions that commonly occur 
in practice.… Engineers of ordinary talent can then apply this knowledge to solve problems far 
faster that they otherwise could [21].

In this way, development requires original design effort only once while the applications engineering 
process uses the known solutions repeatedly to create different systems in two ways:

•	 Adaptive design: use known, established solution principles adapting the embodiment to the 
requirements. It may be necessary to perform original design on some individual parts.

•	 Variant design: arrangements of parts and other product properties (size) vary within the limits 
set by a previously designed product structure during original engineering (DE).

DE requires careful technical and economic analyses; it involves the discovery of solutions to solve 
reoccurring problems and goes through all of the development phases of (domain) analysis, (domain) 
design, (domain) implementation, and testing.

During domain analysis commonality and variability among the systems in the domain are identi-
fied and made explicit. Commonality and variability are often traced back to Parnas’ work on program 
families [22], although Parnas himself acknowledges Dijkstra’s work on structured programming [23] 
as the root of his ideas. See [24] for a survey of DA methods.

Commonalities and variabilities of an SPL are typically specified in terms of characteristics visible to 
the end user called features. Kang’s work on feature-oriented DA [25] introduces feature models for spec-
ifying and modeling relationships among features. Feature models have been further extended and have 
become the de facto standard for modeling SPL high-level functional requirements. Other important 
contributions in DA are commonality analysis [26] and SCV (scope, commonality, and variability) [27].

The design activities are supported by system and software architecture technology, most notably 
architecture description languages (ADLs) [28]. Component design is supported by interface definition 
languages (IDLs). Jacobson [29] introduced the notion of variation point for identifying locations within 
software artifacts where variability can occur, including a comprehensive list of variability mechanisms 
for realizing variation points in the implementation [6,30].

Design-commonality forms the basis for standardizing assets to build products in a domain of 
expertise by encapsulating common features of related products into a domain model and by defining 
a common architecture for related products into a domain (or reference) architecture [31]. A specific 
design is created by instantiating a common design and the product implemented by the identified reus-
able components.

Control-variability is the basis for providing flexibility in the assets to meet requirements for a variety 
of products without compromising commonality; it requires careful design to include appropriate levels of 
parameterization, generalization and specialization, and extension. Like commonality, adaptability must 
be engineered a priori, and thus analysis must explicitly identify variations that anticipate adaptations 
specifying optional components, alternate structures, parameterized context dependencies, and the like.

Reuse occurs both within a product line and across product lines, a notion discovered earlier and 
associated with the concepts of horizontal and vertical reuse. Assets that cross several systems take 
advantage of “economies of scope,” a benefit that comes from developing one asset used in multiple con-
texts [32]. Horizontal reuse refers to the use of an asset across several distinct product lines; typically, 
assets reused in this way tend to be general (i.e., they are application domain independent) and with a 
very specific set of functionality.
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86.2.3  Process Framework for SPL

A framework for practicing SPL has been developed by the SEI [33], and a hall of fame for recognizing 
representative experiences applying SPL has also been established [34]. The SPL framework provides 
details of how to perform SPL engineering. It divides the development process into two major categories: 
core asset development and product development with a management infrastructure.

The SEI SPL framework has 29 practice areas that are divided into three categories: software engi-
neering, technical management, and organizational management as shown in Table 86.1.

Contrast this with CMMI’s framework that consists of 25 key process areas (KPAs) and four 
categories of project management, process management, engineering, and support as shown in 
Table 86.2. The CMMI-DEV is a software development improvement model that provides an orga-
nization with a roadmap for improving their development process. The model is a collection of best 
practices that help organizations to dramatically improve the effectiveness, efficiency, and quality of 
their software development practices. CMMI-DEV describes five levels of maturity and provides an 
assessment instrument to measure an organization’s software development capabilities against the 
five-point scale.

TABLE 86.1  SPL Practice Areas by Category

Software Engineering Technical Management Organizational Management

Architecture definition
Architecture evaluation
Component development
COTS utilization
Mining existing assets
Requirements engineering
Software system integration
Testing
Understanding relevant domains

Configuration management
Data collection, metrics, 

and tracking
Make/buy/mine/

commission analysis
Process definition
Scoping
Technical planning
Technical risk management
Tool support

Building a business case
Customer interface management
Developing an acquisition strategy
Funding
Launching and institutionalizing
Market analysis
Operations
Organizational planning
Organizational risk management
Structuring the organization
Technology forecasting
Training

TABLE 86.2  CMMI Process Category and KPAs

Project Management Process Management Engineering Support

1. Project planning
2. �Project monitoring 

and control
3. �Supplier agreement 

management
4. �Integrated project 

management 
(IPPD)

5. �Integrated supplier 
management (SS)

6. Integrated teaming
7. Risk management
8. �Quantitative project 

management

9. �Organizational process 
focus

10. �Organizational process 
definition

11. Organizational training
12. �Organizational process 

performance
13. �Organizational 

innovation and 
deployment

14. �Requirements 
management

15. �Requirements 
development

16. Technical solution
17. Product integration
18. Verification
19. Validation

20. �Configuration 
management

21. �Process and product 
quality assurance

22. �Measurement and 
analysis

23. �Causal analysis and 
resolution

24. �Decision analysis 
and resolution

25. �Organizational 
environment for 
integration (IPPD)
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A KPA is a body of work or a collection of activities that an organization must master to successfully 
achieve their goals for the process area. Each KPA has a set of specific goals and specific practices as well 
as a set of generic goals and generic practices. Specific goals and practices relate “what” must be done to 
meet the process purpose. The generic goals and practices relate to “how well” the process is carried out. 
The generic practices guide an organization to move to higher levels of capability.
There are six levels of process capabilities defined in CMMI as follows:

•	 Level 0: Process performance is incomplete.
•	 Level 1: Process is performed that means specific practices are performed.
•	 Level 2: Process is managed, that is, there is a policy that indicates you will perform it. There is a 

plan for performing it; there are resources provided, responsibilities assigned, training on how to 
perform it, and selected work products from performing the process area are controlled.

•	 Level 3: Process is defined, that is, the process is established and maintained organizationally.
•	 Level 4: Process is quantitatively managed; that is, the defined process is controlled using statis-

tical and other quantitative techniques. A critical distinction between a defined process and a 
quantitatively managed process is the predictability of the process performance.

•	 Level 5: Process is optimized with defect prevention, proactive improvement, innovative technol-
ogy insertion, and deployment.

It is important to distinguish between process capability and organizational maturity. A single process 
has capabilities that can be measured on a 1–5 scale (listed earlier). An organization consists of group-
ings of processes; how well these processes perform their function is a measure of that organization’s 
maturity. If an organization is rated level 4, for example, that implies that all its processes have reached 
at least capability 4. Maturity levels feed into each other on an upward trajectory. CMMI provides a path 
to mastering a practice area with the goal of achieving level 4 capability that is quantitatively controlled 
and continuously improving. We suggest that a CMMI equivalent of level 4 capability is needed to 
achieve mastery of SPL practices.

Of particular importance to us is level 4 maturity since we believe that is the necessary level of matu-
rity needed to effectively implement product lines. Level 4 maturity (capability) involves use of statistical 
and other quantitative methods to understand past and predict future quality and process performance. 
Through a mature measurement system, organizations establish objectives for quality and process per-
formance based on their business objectives. Projects establish their objectives based on those of the 
organization and the needs of customers and end users. Projects and individuals use statistical and 
quantitative methods in their activities to plan, monitor, and control progress against their objectives. 
Organizations use the resulting information to understand process performance, understand variation, 
target areas for continuing improvement, and evaluate the impact of proposed improvements.

CMMI-DEV and its predecessor CMM have been in use in a variety of organizations globally since 
1987. As a result, a wealth of experiential data is available to support the notion that higher maturity 
results in higher productivity, higher quality, and shorter cycle time. Boeing Australia, as an example, 
has reported a 33% decrease in the average cost to fix a defect, reductions by half in the amount of time 
required to turn around releases, and a 60% reduction in work and fewer outstanding actions following 
pretest and posttest audits [35].

Therefore, CMMI-DEV has a proven migration path guiding organizations toward increasing pro-
cess capability and organizational maturity. CMMI-DEV, however, contains only “what” to do and is 
void of “how” to do it. Since the majority of SPL practice areas map into one or more CMMI-KPA, it is 
prudent to leverage CMMI experience and create a level 4 management infrastructure wrapped around 
core asset development and product development processes. There are equivalences among the majority 
of CMMI-KPA’s and SPL’s practice areas (Table 86.3).
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86.3 R esearch Issues

SPL, although an active research area in software engineering with some recent contributions from the 
research community, still presents key technical problems that slow down its widespread adoption in 
industrial settings [36]. Additional work in this direction includes obviously conducting a systematic 
literature review of the top problems reported and identifying the most influential solutions. What are 
the main issues and unsolved problems that impede the widespread adoption of the SPL approach as a 
way to deliver software products more effectively?

Assessing the status of research in this area helps the research community to focus the agenda on the 
critical problems limiting the advancement of the field. In early studies, including a mapping analysis of 
the literature, some findings that called our attention were the following:

•	 Feature modeling was ranked high among participants’ current research areas (see below). But, 
according to our study, feature modeling is not one of the top problems.

•	 Product derivation was not considered one of the top problems, but it is the second most active 
research area.

•	 SPL evolution, the second most important problem we found, has not been featured explicitly in 
any of the important conferences.

In this section, we report on our findings from a survey directed to understand some of these ques-
tions [37]. The main goal was (1) to collect opinions among longtime SPL researchers and practitioners 
regarding critical problems in SPL adoption, (2) to verify how actively the research community has been 
working on these problems, and (3) to quantify the SPL research field and find answers to additional 
questions like the following:

•	 Which of the previously reported problems remain unsolved?
•	 How actively has the research community been working on solving these problems?
•	 What new problems have emerged?

TABLE 86.3  CMMI-KPA versus SPL Practice Areas

SPL Practice Area CMMI-KPA

Requirements engineering Requirements management
Requirements development

Software system integration Product integration
Testing Verification

Validation
Configuration management Configuration management
Process definition Organizational process definition
Technical planning Project planning

Project monitoring and control
Technical risk management Risk management
Data collection, metrics, and tracking Measurement and analysis

Organizational process Performance
Architecture definition Technical solution
Architecture evaluation
Component development
COTS utilization
Make/buy/mine/commission analysis Decision analysis and resolution
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To answer these two questions, a mixed empirical study was conducted by combining an expert-focused 
survey with a systematic mapping study. Expert sampling [38] is useful because knowledgeable research-
ers and practitioners in SPL are easy to identify but also because data can be collected and coded quan-
titatively promptly. Researchers are typically ranked based on publications [39–41]. The complementary 
content analysis and literature review provided more insight on how actively the research community 
have been working on solving the identified problems.

The findings corroborate previous assessments, citing variability management and evolution among 
the most important research problems in SPL. Figure 86.1 shows the topmost SPL research problems 
uncovered by the survey.

Although opinions varied widely, 40 out of 86 reported problems fell into three big groups. These 
were variability management, evolution, and economic and organizational aspects. Their breakout was 
as follows:

•	 Variability management, with a frequency of nearly 20% (17 responses), is clearly the top research 
problem.

•	 The second most important problem is evolution with 15% (13 responses).
•	 Economic and organizational issues were third with 12% (10 responses).
•	 Others included a plethora of smaller individual problems and counted for 16% of the 

responses.

86.3.1  Variability Management

In software, variability can be defined as the quality, state, or degree of a software system or artifact to 
be extendable, changeable, customizable, or configurable for being used in a particular context [42]. In 
SPL, variability is higher than in conventional software systems, because multiple software systems are 
derived from a common set of reusable assets. That is to say, reusable assets must anticipate variations 
for handling differences across the systems in a product line. Furthermore, the driving force behind SPL 
is that the effort required for introducing these variations is minimal. To achieve this goal, variability 
needs to be managed following a process for identifying, introducing, constraining, using, implement-
ing, and evolving variations and managing the variants [43,44].

Bosch et al. [45] describe several variability issues that materialize in different phases of the SPL engi-
neering life cycle. The root causes of most of these SPL variability issues are complexity management, 
visibility of variability, and dependency management.

Complexity management. The value behind an SPL stems from the degree of variability required. The 
number of possible configurations for an unconstrained feature model is O (2n), where n is the number 
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of variable features; this number of configurations grows polynomially in the number of versions avail-
able. Although variability provides flexibility and enriches an SPL, when thousands of options exist, 
it is difficult to effectively identify the possible configurations that make sense both technically and 
commercially. Therefore, complexity management is critical for managing an SPL with a large num-
ber of features with complex interdependencies, asset variants, and variation points associated with 
product configurations. As in conventional software, complexity is an essential problem that cannot be 
completely solved [46]. Typical approaches for taming complexity in SPL include reducing unnecessary 
variability [47] and clustering variation points into packaged variants.

Visibility of variability. Documenting variability is one of the key properties that characterize SPL engi-
neering. Variability is made explicit from the outset through variation points that are realized in further 
stages of production. A product line of industrial size can easily incorporate several thousand varia-
tion points, which imposes serious issues in modeling, assessing the impact of changes, and in ensur-
ing consistency in such large amount of variability [48]. Although modeling techniques developed in 
recent years provide first-class representation of variation point, there is no evidence of its scalability 
in industrial-size SPL. Furthermore, an expected benefit of modeling and managing variability is to 
be able to derive products at mass production costs—that is, to automate the derivation of products as 
much as possible. Achieving this goal requires more visibility of the variation mechanisms selected for 
realizing the variation points.

Dependency management. A critical problem is the lack of efficient mechanisms for maintaining a map-
ping between the problem space and the solution space. The problem space constitutes a configuration 
space typically defined using feature models. However, the solution space is comprised of conventional 
implementation artifacts with no precise traceability to features. This impedance mismatch between 
features and implementation artifacts occurs because a single feature can be scattered over multiple 
artifacts (feature scattering) or several features can be tangled into a single component (feature tan-
gling). Without an explicit mapping between features and implementation artifacts, it is problematic to 
assure feature-wise systems derivation and evolution.

86.3.2  SPL Evolution

Arguably, products and core assets in SPL evolve more often than in other kind of non-software-
intensive product lines (e.g., manufacturing). Product lines require an efficient control of evolutionary 
changes in both the core assets and the derived products. This is due to the higher degree of interde-
pendency between core assets and products. Components in existing instances of the SPL architecture 
and derived products in use are frequently replaced by new versions. A lack of an effective control of 
changes deteriorates the SPL and drains its reuse benefits.

Since an SPL is usually aligned with a business strategy, its evolution is driven by changes in the 
marketed products, for example, features are added, changed, or removed, or new products are added 
to the product line. It is thus critical to be able to identify accurately the affected implementation arti-
facts when feature-based changes occur and, conversely, to identify the features affected by changes 
introduced in implementation artifacts. Having proper dependency management between features and 
implementation artifacts is key for maintaining an SPL feature-wise consistent. Existing variation man-
agement approaches (see above) support SPL evolution on a solution artifact basis but to the best of our 
knowledge do not provide feature-based evolution.

A textual analysis of the papers published in the SPLCs from 2006 to 2008 identified the most fre-
quently used keywords as shown in Figure 86.2.

This frequency analysis included all the words containing more than five characters that appeared 
more than 10 times in a paper. Predictably, the keyword “feature” is the topmost frequent word, but it is 
considered an outlier. Feature modeling is the de facto standard modeling technique used in SPL and it 
is very likely that any paper about SPL uses this word very often.
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“Variability” is the most frequent keyword in the last three SPLCs. This result is consistent with its 
importance in solving SPL adoption problems. “Variation,” usually associated with “variability manage-
ment,” is within the top 10 most frequently used keywords we found.

“Derivation” and “evolution” were not explicitly among the most frequently used keywords. However, 
the word “configuration,” the fourth more used keyword found, can be associated with derivation and 
evolution—that is, product derivation is usually expressed in terms of building configurations, and 
configuration management usually supports software evolution.

Some other frequent keywords were “component,” “service,” and “aspect.” This reflects the interest 
of integrating SPL with new technology and paradigms like component-based development, service-
oriented architecture, and aspect-oriented approaches.

86.4  Summary and Conclusions

Software gets bigger all the time, becoming very costly to create and modify, and the software industry 
is very large and growing at unprecedented rates. This enormous demand for software is fundamen-
tally based on two opposing aspects, namely, the critical nature of software for today’s well-functioning 
world and the poor state of the practice in software development.

Plummeting hardware costs are leading to rapid growth in many new application areas requiring more 
software being built in shorter time frames. In today’s post-PC era, new artifacts and systems are increas-
ingly more software-driven. Many artifacts, from consumer electronics (e.g., smart phones, personal digital 
assistants, set-top boxes), transportation systems (including automotive, avionics, trains, etc.), to industrial 
plants and corporations, all depend on well-engineered software for their continuing functioning.

The other critical reality is the poor record of accomplishment in software construction: software 
seldom performs as expected, and cost/schedule overruns are very common even in the most sophisti-
cated organizations. This further increases demand. What is worse, it is quite typical that for many such 
systems each time a new application is built, routine functionality is custom-written repeatedly from 
scratch. This also contributes to higher demands for more software. Concomitant with these problems, 
there is a shortage of qualified software professionals [49].
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Software is critical to business’ strategic advances, and it has become the bottom line for many 
organizations, even those who never envisioned themselves to be in the software business. Yet, major 
software projects failure rates are very high, and, although difficult to quantify the financial cost aris-
ing from these low success rates, estimates are in the billion of dollars. There is also a serious impact 
on all aspects of our lives, national economies, and society in general. Software development orga-
nizations must improve both the quality of the software they produce and the productivity of their 
development groups.

For these software-intensive systems, a reuse-driven approach will potentially reduce time to mar-
ket while improving product quality and reducing uncertainty on cost and schedule estimates. The 
approach would allow software professionals to come up with the “right” solution quickly and effec-
tively by assembling applications out of “proven” components. The quality of products is maintained 
through rigorous analysis and prediction, continuous improvement and refinement, and designed 
experimentation and feedback from observations of actual systems in a clearly coordinated role in 
meeting a common need. This represents a main motivation for SPL: a desire to modularize a system 
in such a way that there is a high probability that significant portions of the system can be built from 
standard parts.

Quality and budgetary issues with software have their root cause in human error. One proven 
approach [50] to improving the way software is developed is by knowing what you do and how you 
do it, as described in the CMMI-DEV published by Carnegie Mellon’s SEI. In this chapter we placed 
the CMMI-DEV in juxtaposition with the also SEI-sponsored Framework for Software Product Line 
Practice. The former is a proven approach to enhance the quality of software products in general, 
whereas the latter provides a discipline framework for implementing SPLs, a promising approach that 
increases productivity multifold yet to be widely adopted by industry.

Our conclusion in this area is that this is a winning combination for the production of quality soft-
ware predictably and within budget and time constraints.

In the SPL conference held in 2006, SPL research status has been assessed based on the insights of 
recognized experts in a panel with some of the world’s leading SPL researchers. Panelists presented 
their perspectives regarding lessons learned and outcomes from the prior 10 years as well as direc-
tions and potential outcomes for the following 10 years. The presented topics have much in common 
with the results we obtained in a study presented in this chapter corroborating our findings. In par-
ticular, the following were in common:

•	 Variability management topics included “managing variability in requirements engineering,” 
“introducing variability into software architectures,” and the need of novel technologies for set-
ting up “variation mechanisms automatically.”

•	 Evolution included the challenges of “controlling versions of components and architectures” with 
multiproduct nature and “how to keep products unified overtime.”

•	 Organizational and business issues for adopting SPLs.
•	 Other topics, including tooling and integration with new technologies such as ubiquitous com-

puting, service-oriented architecture, and model-driven approaches. Participants in the survey 
also ranked “integration with other technology” as the fourth most cited technical research 
problem.

Some additional findings that called our attention were as follows:

	 1.	 Feature modeling, a topic ranked third among participants’ current research areas, but feature 
modeling is not considered one of the top problems.

	 2.	 Product derivation was not considered one of the top problems, but it is the second most active 
research area.

	 3.	 SPL evolution, the second most important problem we found, has not been featured explicitly in 
any of the SPLCs.
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87.1  Introduction

The requirements engineering (RE) task [11,26–28,39,44,49,51] focuses on gathering information from 
members of a client’s organization in order to produce a coherent specification of the requirements for a 
computer-based system (CBS) that the client desires to be built.

Requirements elicitation (RElic) is the subprocess of RE concerned with gathering information about 
the CBS to be built

•	 From whatever source it is available, including requests for proposals, organizational policy docu-
ments, documentation about the existing system, and videotapes, etc.,

•	 From whomever might provide information, including the client and the users, etc.,
•	 By whatever technique or means available, including interviews, questionnaires, focus groups, 

and observations of the organization at work, etc., even by invention.

Requirements analysis is the process of refining all the elicited information about a CBS into a require-
ments specification (RS) for the CBS by deriving what is possible from the information, validating what 
is derived with the client and the users, eliciting more information when questions prevent validation, 
and repeating all as necessary, until the RS can be written.
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The more thorough RE and RElic are, the cheaper the subsequent development, because it is well known 
that fixing a CBS defect during implementation costs an order of magnitude more than fixing it during RE, 
and fixing the defect after deployment costs two orders of magnitude more than fixing it during RE [9].

This chapter focuses on RElic. Other chapters deal with specifications, including formal, of CBSs 
(Chapter  88), with formal methods (Chapter 71), and with model checking of formal specifications 
(Chapter 89).

87.2 � Context of RElic and Vocabulary 
for the Rest of This Chapter

This chapter assumes that a client, C, has come to a requirements analyst (RA), A, for the purpose of 
having A produce a RS, for a CBS, S, that C wants built. S is intended to solve a problem P that C and 
other people, mostly within C’s organization, O, are having. Almost always, S, the new CBS, replaces an 
existing system, E. E could be (1) a CBS built earlier or (2) a paper-and-word-of-mouth-driven manual 
system. The problem, P, may be that E does not do a needed something at all, or that E does it poorly. 
P may be that E does something that it should not do. Finally, P might even be only that E should be 
automated to take advantage of computers, the Internet, the Web, etc.

S is a bespoke system, generally developed for one client, C, or is a mass-market system, developed for 
many customers. (The distinction between client and customer is coming up.)

The set of people affected by P, that want P solved, that are using E, and that will use the new CBS, S, 
are S’s stakeholders. Among S’s stakeholders are

•	 C, the client, the person or organization paying for S to be developed,
•	 The customer, the person or organization who buys S after it is developed,
•	 Users of both E and S,
•	 Domain experts, who understand P and E,
•	 Developers, who will implement S from its RS,
•	 Quality assurers, the people who will do inspections and testing of all of S’s artifacts, including its 

RS and artifacts leading to the RS,
•	 Compliance inspectors, experts on government and safety regulations,
•	 Market researchers,
•	 Lawyers, and
•	 Experts on systems adjacent to S.

Note that sometimes the client and customer are the same; sometimes the client, customer, and user are the 
same; and sometimes the market researchers represent the customers, for example, for a mass-market CBS, in 
which case the client might be the head of the developing organization’s marketing department, who decides 
that there is a market for S. In the rest of this chapter, the term “stakeholder” is used to mean all or much of 
the set of stakeholders that have been determined as relevant for the development of S. When only a specific 
stakeholder, for example, C or the users, is needed in the discussion, only that stakeholder is mentioned.

With the RS produced by A, C will go to a developer to arrange that S will be implemented according 
to the RS, to C’s satisfaction. It is intended that the RS will say enough about S that the developer will 
not have to ask C questions about C’s requirements for S; all the information about S that the developer 
needs to implement S is expressed in the RS.

In this context, A’s main jobs are

	 1.	 To understand P, which C wants solved by S,
	 2.	 To extract the essence of the stakeholders’ requirements for S,
	 3.	 To invent a way to solve P that is better for the users than the way it is being solved currently by E, 

particularly if E is manual,
	 4.	 To negotiate with the stakeholders a consistent set of requirements for S, and
	 5.	 To record the resulting requirements in a RS for S.
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RElic is used to carry out Jobs 1, 2, 3, and 4. That is, RElic is used to gather information from various 
sources to inform A’s jobs.

In the rest of this chapter, each of “A”, “C”, “E”, “O”, “P”, and “S” is a proper noun naming a specific 
RA, CBS, existing system, organization, and problem, namely that in the specific RE task instance at 
hand. On the other hand, each of “CBS”, “MS”, “RA”, and “RS” is a nonproper noun and is always used 
with an indefinite or definite article. When one of these nouns is preceded by a definite article and has 
neither a qualifying adjective nor a specific referent in a previous sentence, then the noun refers to the 
specific instance of the noun in the specific RE task instance at hand. Each of “RE” and “RElic” is a gen-
eral noun, used without any article.

87.3 R E and RElic as Part of RE

RE is generally the first step in the development lifecycle of a CBS, especially if the so-called Waterfall 
Lifecycle Model [45] is followed. Even if an iterative lifecycle model, such as the Spiral Model [10], is 
followed, then RE is generally the first step in each 360° sweep of the spiral. Even if an agile [1] lifecycle 
model is followed, then an abbreviated RE process is the first step of each spike.

Two of the problems with the Waterfall Lifecycle Model, shown in Figure 87.1 with the normal flow 
of information and all possible feedback loops, are the implications that

	 1.	 Requirements appear in the starting milestone out of nowhere all ready to use, and
	 2.	 One produces a specification, that is, a RS, from requirements just as easily as one produces a 

design from a RS or a realization from a design.

However, as suggested in Figure 87.2,

	 1.	 The starting milestone are the client’s ideas,
	 2.	 Client ideas are far more nebulous and informal than even the most informally stated natural 

language RS, which at least attempts to be complete and consistent, and
	 3.	 The transition from client ideas to the RS is far more torturous, difficult, and haphazard than the 

relatively systematic transition from the RS to the design milestone.

The wavy line between client ideas and the RS in Figure 87.2 is RE.

Realization

Operation

Integration

Design

Specifications

Requirements

FIGURE 87.1  Waterfall lifecycle model.
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RE has its own lifecycle that is illustrated in Figure 87.3. Each block represents a phase of RE, 
conception (of S), elicitation, analysis, specification, and validation. Just as with the general 
Waterfall Lifecycle Model, this RE Lifecycle Model is an idealization. The reality is that there is a 
spiral, with each sweep going through this entire waterfall, and all the steps in the sweep happen-
ing concurrently. That is, every phase informs every other phase, and every phase is happening 
throughout RE.

The most important aspect of RE is not the production of the RS, A’s fifth job. It is the process of 
negotiating requirements that are agreed to by all stakeholders, A’s fourth job. Certainly if the RS is 
inadequate, the developers will have a hard time building the intended CBS, S. However, even with a 
totally well-formed RS, if the CBS that the RS specifies is not what C requires, then C will not be happy 
with the developed CBS. Therefore, the success or failure of the project to develop S depends critically 
on whether S satisfies its requirements, that is, whether it solves P, C’s problem.

More difficult than thought to be

Client
ideas

Reqs
specs CodeDesign

More haphazard More systematic

FIGURE 87.2  True lifecycle model.

Specification

Validation

Analysis

Elicitation

Conception

FIGURE 87.3  Requirements engineering lifecycle model.
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87.4  Elicitation and RElic as Human Activities

An amalgamation of several dictionary definitions of “to elicit” is that it means “to bring out, to evoke, 
to call forth,” in the case of RElic, “…, information pertaining to requirements.” The main purpose of 
RElic is to get information about (1) the domain and goals from which the requirements are specified 
and (2) the requirements from which S is developed.

A must get information out of stakeholders’ minds without damaging the stakeholders or their 
minds! Many times, this information does not come out easily. As is discussed later, the stakeholders do 
not know it themselves, the stakeholders subconsciously do not want to let it out, or both. Additionally, 
sometimes needed or relevant information is not in any stakeholder’s mind.

RElic is a human activity involving interaction between human beings [17], the stakeholders (including 
the nonhuman adjacent systems, represented by human beings). If A cannot do the human interaction 
right, A is not going to be able to elicit, no matter what technology and methods he or she uses. Technology 
and methods might help, but they can also get in the way. Often, success in RElic depends on just being 
able to talk with the stakeholders about what they really want from S, the system being developed.

The skills needed for RElic are (1) identifying contexts, (2) spotting linguistic ambiguities, (3) inter-
viewing, (4) brainstorming, (5) facilitating, (6) getting people to open up, (7) spotting equivocation in 
people, and (8) inculcating guilt (that the stakeholders have not told the RA everything they know [5]). 
Only the first two are not human interaction.

Gause and Weinberg’s Exploring Requirements: Quality Before Design [17] covers a number of tech-
niques, some of which are described later. They are no replacement for the skills, but they do help focus 
those skills and give ideas on what to do next at an impasse.

A lot of the RE literature talks about eliciting requirements for S as if it were simply a matter of ask-
ing the right questions of C and the users. The reality is not so simple. In practice, requirements for S 
are poorly understood by everyone. It is only by having all stakeholders review and discuss all docu-
ments, both provided by C and other stakeholders and generated during analysis, that the stakeholders 
can conduct the negotiations that lead to an agreement about what the requirements S really are. If the 
stakeholders cannot come to an agreement, then the project to develop S will probably fail.

87.5 R Elic for Each Job of the RA

Recall that A’s main jobs are

	 1.	 To understand P, which C wants solved by S
	 2.	 To extract the essence of the stakeholders’ requirements for S
	 3.	 To invent a way to solve P that is better for the users than the way it is being solved currently by E, 

particularly if E is manual
	 4.	 To negotiate with the stakeholders a consistent set of requirements for S
	 5.	 To record the resulting requirements in a RS for S

Each but the last involves RElic in some way, and each, including the last, is affected by what is learned 
in RElic.

87.5.1  Understanding the Customer’s Problem

RElic is necessary in order for A to get the information with which to to understand P, which C wants 
solved by S. Obtaining this understanding may require analyzing E, the existing system that S is to 
replace, if for no other reason that E probably does most of what O expects of it. It will be necessary to 
ensure that S, the new CBS, performs at least the functionality of E that is still needed as well as solve the 
problem P that prompted the initiation of the project to develop S. If S is radically different from E, the 
users of E, that is, the future users of S, may be reluctant to use S.
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If the intent is to build into S a new-and-improved version of E, then it is necessary for A, with the 
help of the stakeholders, to determine

•	 What of E is used and what is not used
•	 What of E works well and what does not
•	 How E is actually used
•	 How E was intended to be used when it was deployed
•	 What is missing from E that is needed now to solve P
•	 What the stakeholders wish E could do

If A does not understand E well enough to determine these issues, then there is a good chance that S will 
be deficient in at least some of the following ways:

•	 S is so different from E and imposes so new a way of working that the users are reluctant to use S 
or even rebel against using S.

•	 S fails to have the obvious improvements to E.
•	 S fails to implement features of E that were not mentioned or are not obvious. In this case, O may 

end up running both E and S.

The elicitation of the information about E is done in one or more of several methods [3,11,26–28,39, 44,49,51]:

	 1.	 A reviews all available documentation about E, including from its development, deployment, and 
maintenance.

	 2.	 A observes O and its users as they use E. This observation should initially be as unobtrusive as 
possible to guard against the users showing off an unrealistic candy-coated view of the opera-
tion of E. Later, after the users are used to being observed without showing off, the observers can 
and should start to ask questions such as “What are you doing?” and “Why are you doing that?” 
Such questions asked during the actual doing get better answers than if they are asked in ques-
tionnaires or interviews. Almost everybody is better at explaining what he or she is doing at the 
moment than at explaining what he or she has done or will do. Moreover, during the doing of a 
task, he or she is more likely than other times to be able to explain
•	 The steps of the task precisely,
•	 Why the task is done the way it is being done, and
•	 Most importantly, the exceptions that can occur, even if they do not occur specifically during 

the present doing of the task.
	 3.	 A prepares questionnaires that ask stakeholders, particularly users, about features of E that they 

use and do not use.
	 4.	 A interviews stakeholders, particularly users, about features of E that they use and do not use.
	 5.	 A conducts focus groups with stakeholders, particularly users, about features of E that they use 

and do not use.

Any or more than one of Methods 3, 4, and 5 can be used (1) to elicit information about issues that 
did not manifest themselves during the observations and (2) to confirm conclusions drawn during any 
others of Methods 1, 2, 3, 4, and 5.

87.5.2  Extract the Essence of the Stakeholder’s Requirements

RElic is necessary for A to get all the information to see beyond each stakeholder’s goals and require-
ments to the essence of all stakeholders’s common requirements. Generally this job involves building 
a model of O’s business and of the way that E supports it. Building the model is itself not part of RElic 
and is covered partially in Chapter 88. Many textbooks [11,26–28,39,44,49] go in depth into the topic 
of requirements modeling. Nevertheless, as the model is being built, questions will arise that are not 



87-7Requirements Elicitation

answered by the information that A has already elicited. A will have to go back to the stakeholders to 
do more RElic. In this case, A will show the stakeholders the current version of the model and ask both:

•	 Whether the model reflects reality as the stakeholders see it.
•	 The specific question that A had while modeling that prevented him or her from proceeding with 

the modeling.

87.5.3  Invent New Ways to Do the Users’ Work

RElic is important for A to be able to invent better ways to do the users’ work. Once A has an under-
standing of the work the users of E are trying to accomplish, A may be able to suggest new requirements 
that would help them because A is aware of technology that could help them or A can identify patterns 
in their work of which they are not aware.

Inventing a better way is often overlooked during RElic. Yes, it is important to determine what C and 
users want and to document it. However, if A stops with only that determination, then the built system will 
conform to only the limited notion of what C and users think is possible. For real success, A must give to C, 
not what he or she wants, but what he or she never even dreamt of having; and when C gets it, he or she rec-
ognizes it immediately as exactly what he or she wanted all the time—“I’ll know it when I see it” (IKIWISI).

One way to invent a better way involves A

	 1.	 Asking stakeholders why the requirements that have been documented thus far are desired, that 
is, engaging in more RElic, and then thinking about ways to address the goals implied by the 
offered reasons.

	 2.	 Considering ways to give each user more control over his or her activities in E.
	 3.	 Brainstorming (see Section 87.6.6), with the stakeholders, to invent new requirements.

Thus, A needs to go beyond RElic to find requirements, to possibly invent some.

87.5.4  Help the Stakeholders Negotiate to a Consistent Set of Requirements

RElic is occasionally needed during negotiating with all stakeholders a consistent set of requirements. In 
general, this negotiation requires that the RA find the inconsistencies among the stakeholders’ require-
ments. Attempting to model all the requirements exposes these inconsistencies as the inconsistencies 
prevent the formation of the model. The remedy for these inconsistencies is to convene the stakeholders 
and to show them the inconsistencies. Then ideas on how to resolve the inconsistencies in the form of 
alternative proposals for requirements are elicited. There are techniques for conducting the negotia-
tions, for example, Win–Win [8] that are outside the scope of this chapter.

87.6  Specific Techniques for RElic

There are a number of specific CBS issues or RElic techniques whose consideration or use help focus 
RElic or idea invention to be more effective than it might otherwise be [11,26–28,39,44,49,51].

87.6.1  Social and Organizational Factors

In RElic, A must keep in mind that any CBS is used within its own context that consists of technical and 
social factors. Social factors include organizational factors and these can dominate the technical fac-
tors in determining requirements [40,48]. For example, if employees have a particular way of working, 
S should be built to support it. The user interface of S must accommodate all of its users, including the 
most computer illiterate of them. If a future user feels that his or her job is threatened by S, he or she may 
engage in obstructing activities ranging from passive resistance through to active sabotage [16,34,40,48].
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87.6.2  Ethnographic Analysis

In ethnographic analysis [22], someone that is trained as a social scientist spends a lot of time observ-
ing the members of O to observe how they conduct O’s work using E. The social scientist should try to 
blend into the background so that the members of the client organization forget that the social scientist 
is observing them. Normally the social scientist learns strictly by observation. However, variations of 
ethnographic analysis permit the social scientist to ask questions. Of course, then the members of the 
client organization are once again aware that they are being observed.

A variation of ethnographic analysis is for A to take the role of an apprentice in the client organiza-
tion, as suggested by Contextual Inquiry [7]. Then, the members of the client organization are aware 
that they are being observed. However, a person acting as an apprentice is probably perceived more as 
an insider than a social scientist quietly observing or asking questions because a new employee needs to 
learn the truth in order to function well within O. Thus, the apprentice is less likely than an observing 
social scientist to be shown abnormal, candy-coated behavior.

87.6.3  PIECES

PIECES [50] can be viewed as a check list for helping to focus RElic. A examines S from six specific view-
points and initiates RElic in each viewpoint. The name of the technique is an acronym formed from the 
first letters of the names of the six viewpoints:

	 1.	 Performance, for example, throughput and response time
	 2.	 Information and data, for example, relevance, form, timeliness, and accessibility of information 

and data
	 3.	 Economy, for example, trade-offs of costs vs. minimal acceptable performance
	 4.	 Control, for example, degrees of automation, of auditing, of robustness, and of security
	 5.	 Efficiency, for example, measurement of unintentional waste (differs from economy, which is con-

cerned about acceptable waste)
	 6.	 Services, for example, how S is to be used by its primary and secondary users

Admittedly, there is some overlap in the viewpoints, but an overlap is better than a gap in trying to 
ensure that everything that can be relevant is considered. PIECES is oriented toward business informa-
tion CBSs, but it can be used with other kinds of CBSs. A RA experienced with another kind of CBS can 
surely think of relevant viewpoints to add to the “PIECES” list for that kind of CBS.

87.6.4  Interviews

In an interview, A talks one-on-one with a stakeholder about P and S and anything else that A needs 
to know. In conducting interviews, it is important to interview all kinds of stakeholders if not all 
stakeholders. It is important for A to avoid detailed solution-specific questions and to ask problem-
related questions that help understand the problem P that S is to solve and to extract the essence of the 
stakeholders’ requirements.

A useful technique is for several stakeholders to be interviewed at once to get synergy, as one inter-
viewee amplifies or disputes what another interviewee says.

It is essential that A ask calibrating, meta, and unaskable questions. A calibrating question, such as 
“Is this answer official? ”, attempts to determine how much the interviewee’s answer can be relied upon. 
A meta question, such as “Am I asking the right questions?” and “Should I be asking some other ques-
tions?” attempts to discover all questions that should be asked. Finally, an unaskable question, such as 
“Are you opposed to S?”, “Are you trying to make yourself indispensable?”, and “Are you trying to pro-
tect your job?” attempts to expose hidden agendas and other hidden information.
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An interview should probably start with a list of prepared questions, to at least ensure that A does not 
forget to ask any question. However, A should be prepared to deviate from the prepared questions to dig 
deeper into important issues and to explore emergent issues.

87.6.5  Focus Groups

Basically, a focus group [47] is an interview of a group of group of people conducted by a trained facilita-
tor. In a focus group for RElic, a group of stakeholders are gathered for a short period, for example, about 
2 h to ask them specific questions about E, P, S, or some combinations of them.

The technique originated in marketing, in which the focus group is used to ask a group of potential 
customers their opinions about a planned product, service, advertising, vel cetera* so that the plans can 
be changed for maximum marketability. The technique has been used to assess the usability of proposed 
or prototyped user interfaces; this use of focus groups is most like that in RElic. Indeed, to the extent 
that determining user interfaces is part of RE, this use of focus groups is a RE technique.

The main advantage of a focus group over the interview of an individual is the potential synergistic effect 
of one group member’s response to a question on the other group members’ responses, sort of as in a group 
brainstorm in which participants build on each other’s ideas. Also, a focus group can promote a discussion 
between stakeholders with differing viewpoints on a question, leading to a resolution of the differences. 
Thus, a focus group can be used to conduct the negotiations among stakeholders that are one of A’s jobs.

The main drawback of a focus group that group mentality may lead it, like a herd of sheep, down one 
particular idea that is not as good as what would have been exposed if each individual could reply alone. 
It is important for the facilitator to recognize when this phenomenon has happened, to cut of the way-
ward discussion, and to refocus the group with other questions.

The advice for conducting interviews concerning the contents of questions, the open-endedness of 
the planned sequence of questions, and the selection of interviewees for interviews applies also to focus 
groups. Of course, in a given time period, a focus group will be able to consider many fewer questions 
than is possible in the interview of one person, if for no other reason than to give everyone a chance to 
speak, but also to allow any discussion that happens. Also, the advice given in Section 87.6.6, concern-
ing managing the interaction during group brainstorming applies also to focus groups, in order that the 
participants contribute freely and fully.

The more people in a focus group, the fewer the questions that can be asked in the session. On the 
other hand, one needs to get a representative set of stakeholders participating. Probably, there should 
not be more than a dozen people in any focus group.

87.6.6  Brainstorming

Brainstorming [37] is hands’ down the most popular method of quickly generating new ideas for any 
purpose including RElic [12]. A brainstorming session consists of two activities: (1) idea generation and 
(2) idea pruning.

To begin idea generation for a brainstorming session, the leader of the session throws out a question or 
problem. People try to think of answers or solutions, never mind how outrageous or outlandish. The goal 
is to generate as many ideas as possible. An outrageous, outlandish idea could trigger yet other good idea.

The rules are the following:

•	 Shoot for quantity.
•	 Mutate and combine ideas.
•	 Do not criticize anyone’s ideas, even your own.
•	 If you don’t like someone’s idea, including your own, leave it be, but improve on it.

*	 “vel cetera” means “inclusively or others” as “et cetera” means “and others”.
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•	 Nothing anyone says is to be held against him or her after the session—what happens in brain-
storming stays in brainstorming.

•	 Let your imagination soar; wild is good.
•	 Feel free to be gloriously wrong.

The participants in a brainstorming session for RElic are

	 1.	 The stakeholders, with an emphasis on those who know most about or are affected most by 
E, P, or S

	 2.	 Some people from outside the project to develop S, in order to get out-of-the-project-box ideas

However, the effect of any participant’s power in O should be minimized. That is, if a person and his or 
her boss are participants in the same session, the boss’s power should be left outside the session, so that 
the person can contribute freely.

The number of participants should be kept manageable, so that everyone gets a chance to contribute. 
With too many people, the shy shut up and only the loud are heard. Among the participants, there are 
two special roles, the scribe and the moderator.

	 1.	 The scribe’s role is to write down all ideas. He or she also may contribute ideas and may ask clari-
fying questions, to improve the accuracy of the list of ideas, but not critical questions.

	 2.	 The moderator’s role can be described as something between two extremes, the traffic cop and the 
provocative agent.

	 a.	 The traffic cop enforces rules but does not lead.
	 b.	 The provocative agent actively leads, coming prepared with wild ideas to be thrown out at the 

beginning and whenever idea generation begins to wane. He or she may look for variations 
and combinations of other ideas, and he or she acts as a traffic cop.

Idea generation should continue until the first of the following happens:

	 1.	 The ideas stop coming.
	 2.	 Two hours have passed.

Beyond the two-hours limit, efficiency of idea generation and the quality of the ideas seem to drop off 
significantly.

After the idea generation has been terminated, idea pruning begins. Idea pruning is the removal of 
useless raw ideas and the refining what is left. As quantity is the focus of idea generation, quality is the 
focus of idea pruning. The purpose of idea pruning is to make the best ideas possible.

Care should be taken in idea pruning to to avoid to throwing out an idea just because it looks useless, haz-
ardous, or uneconomical. In this sense, creativity is needed also in idea pruning. In addition, it may be useful 
to bring into idea pruning, stakeholders and outsiders who did not participate in idea generation. For exam-
ple, it might be particularly useful to get the input of marketing and development people for idea pruning.

There are several choices of how to do idea pruning, including the following:

•	 Voting with threshold: Each person is allowed to vote up to n times. Keep those ideas with more 
than m votes. Have multiple rounds thereof with ever smaller n and m.

•	 Voting with campaign speeches: Each person is allowed to vote up to n times. Keep those ideas 
with at least one vote. Have someone who did not vote for an idea defend it for the next round. 
Have multiple rounds thereof with smaller n.

•	 Ranking ideas by priority or quality: Rank ideas by priority, quality, innovativeness, cost-
effectiveness, pervasiveness of requirements coverage, speed of implementation, cheapness of 
implementation, etc., or any combination thereof. The group works to rank ideas by some method, 
for example, writing each on a card and placing cards into an ordering or a lattice. Find a cut-off 
point in the ranking, above which ideas are kept and below which ideas are discarded.

•	 Blending ideas: Consider pairs, triples, etc., of ideas for combining in some way. Then, go into one 
of the ranking or voting procedures.
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Brainstorming is not the only technique for enhancing creativity in idea generation for RElic. There 
are other techniques that have more systematic or more focused idea generation [6,13,23,32,38,46]. For 
example, one problem with brainstorming is that it allows a random walk through the space of ideas. 
EPMcreate makes the walk through the space of ideas more systematic by having A lead a group of RAs 
to consider all 16 combinations of for and against the viewpoints of two stakeholders of S and for each 
combination to think of ideas that meet the requirements for the combination. One such combination 
would be “for stakeholder 1 and against stakeholder 2” [32].

87.6.7  Gause and Weinberg Techniques

Don Gause and Jerry Weinberg, the authors of two classic books on RElic [17,18], suggest a number of 
useful RElic techniques that help A to find those hard-to-find new requirements ideas:

•	 Questioning norms is considering things that are done in E and asking why they are done the way 
they are.

•	 Questioning assumptions is actively searching for assumptions in what is known about E, P, and 
S and asking if each is really true.

•	 Questioning existence assumptions is a refinement of questioning assumptions in which the 
assumptions that are sought and questioned are the very existence of things that are needed 
for S as currently conceived to work, for example, the underlying operating system provides an 
assumed capability.

•	 Use of the right brain is promoted by getting stakeholders to draw diagrams showing how they see 
E working, where P arises, and how they see S working and solving P.

•	 Naming is simply brainstorming for cooler or more precise names for things to encourage seeing 
them in different lights.

87.6.8  Prototyping

Many people, especially the nontechnically oriented, learn only while doing. They have got to see some 
kind of working version, a prototype, in order to discover what they want. There are several kinds of 
prototypes that can be built to help C and users see what is possible and then to comment on it, in order 
that they begin to discover what they really want:

•	 A functioning, throw-away, quick-and-dirty implementation of at least some of the function-
ality of S

•	 A mock up, a program that accepts only preplanned input of S to produce only preplanned output 
of S and is devoid of all other functionality of S

•	 A wizard of Oz, a user interface operated by a human being that pretends to be S to produce the 
intended results for any input

•	 A story board that describes, with, say, screen-diagram pictures, anticipated scenarios of the 
use of S

•	 A draft user’s manual for S that shows with screen-diagram pictures, anticipated scenarios of the 
use of S

Any of these prototypes can focus on only the main functionality or only the functionality over which 
there is least understanding or the most contention.

The rationale behind prototyping is IKIWISI. Many clients and users simply cannot describe 
what they want, but if they see what they want, they can recognize it as what they want immediately. 
Unfortunately, sometimes AYSTII (anything you show them is it), and A will have to judge whether 
what he or she is observing is IKIWISI or AYSTII.
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One problem with the prototyping approach, particularly if it uses a running program, is that it 
can raise unrealistic expectations in C and the users, namely, that the guts of the software is already 
developed, that development of the production version will go as fast as the production of the pro-
totype, or something else totally unrealistic. A must make clear and continually remind C and the 
users that what they see is not real software, that it is only a mock up, an empty shell, a wizard of Oz, 
vel cetera.

87.6.9  Joint Application Design

Joint application development (JAD) can be thought of as structured group brainstorming with the 
emphases on “structure” and “group” or as an extended focus group. The main idea of JAD is get all 
the stakeholders who matter and who can make binding decisions together in an isolated place to work 
intensively in a short time period to make the key requirements and design decisions, to which every 
stakeholder present commits, allowing implementation to proceed straightforwardly from the agreed to 
RS and design documents [52].

JAD for a CBS is carried out in two steps:

	 1.	 JAD/Plan, the RElic step
	 2.	 JAD/Design, the software design step

This chapter, being about RElic, focuses on the first step. Each step consists of three phases,

	 1.	 Preparing for the session
	 2.	 The session itself
	 3.	 Reporting on the session

There are six roles for each step:

	 1.	 Session leader, a JAD expert who organizes and facilitates the session
	 2.	 Analyst–scribe, who understands and develops the big picture and produces the session report
	 3.	 Executive sponsor, the manager who has ultimate responsibility for S, who understands O’s goals 

for S and can make binding decisions concerning S and its development
	 4.	 User representatives, a selection of knowledgeable users and managers
	 5.	 Information systems representatives, a selection of technical experts who understand the technol-

ogy and its trade-offs
	 6.	 Specialists, a selection of experts on special topics deemed relevant to S, for example, security, the 

application domain, laws, regulations

Advance preparation is the key to the success of JAD. The executive sponsor picks the participants 
and invites them to the JAD session with explanations of what is to be done at the session and their roles. 
The session leader and the executive sponsor familiarize themselves with P, the problem at hand; the 
domain of S; and the stakeholders. They try to identify the possible issues and points of contention. They 
set the scope of the session. They prepare materials both for before the session, for example, reading 
material for the participants, and for during the session, for example, electronic slides, flip chart pads, 
markers for the whiteboards, food, etc.

The session is planned for, say, a full day or longer, at some place sufficiently isolated that participants 
will not be drawn away from the session to deal quickly with short matters. Cell phones should be 
turned off! Breaks for coffee, meals, and even some recreation are planned.

At the session itself, the session leader welcomes the participants and thanks them for agreeing to iso-
late themselves for the session period. He or she presents P and the goal for what is to be accomplished. 
He or she establishes the ground rules for the session and delimits the scope. Finally, he or she throws 
out some initial ideas.
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The participants work on solving P, that is, doing the RElic that is needed. There will be brainstorm-
ing sessions as needed. The goal is to make decisions that everyone present can buy into and that have 
the power of the executive sponsor behind them.

Toward the end of the session or even very soon afterwards, the scribe writes up what has been 
decided, in the form of a RS if the session was for RElic. Everyone, including the executive sponsor, 
reads the write up, corrects it, and signs off on it.

JAD was developed at IBM and was found to be very successful because it is very effective at using 
the isolation and the short time available to get diverse stakeholders to agree to and buy into concrete 
decisions that have the power of an organizational executive behind them.

87.7  What Can Go Wrong during RElic?

There are a number of reasons that RElic can fail to lead to an adequate RS for S:

	 1.	 The existence of an unknown requirement: None of the stakeholders mentioned the requirement 
because none knew of it. Modeling helps expose the incompleteness of a set of requirements, as 
the known requirements fail to lead a complete model.

	 2.	 The existence of a known but undiscussed requirement: The requirement was known to several 
stakeholders, but each such stakeholder assumed that it was understood the same way by all and 
was therefore not worthy of mentioning. The only hope for exposing such requirements is the 
tendency for a person to say things that depend on unspoken, tacit assumptions, because he or 
she knows that the assumption is true. Having on the RElic team someone who is capable of being 
puzzled by things that different stakeholders describe differently—perhaps someone ignorant of 
S’s domain [4]—is helpful for exposing these tacit assumptions and undiscussed requirements. To 
the extent that an undiscussed requirement causes the discussed set of requirements to be incom-
plete, techniques for finding an unknown requirement can help expose known but undiscussed 
requirements.

	 3.	 The existence of a known, discussed, but undocumented requirement: The requirement was thor-
oughly discussed, but no one wrote it down, creating the possibility that if it is discovered again 
later, it will be understood differently from what was agreed to mean when it was first discussed. 
Having on the RElic team someone who is taking complete minutes and notes helps ensure that 
everything that is discussed ends up being documented properly.

	 4.	 The existence of a wrongly documented requirement. No stakeholder understood the requirement 
correctly and the incorrect understanding was documented, or it was understood correctly, but a 
saboteur documented it incorrectly, unbeknown to the other stakeholders.

87.8  Myths about RElic

The biggest myth about RElic is that A can just ask C and the users what they need and want and can 
expect to hear accurate answers. The fact is that S’s just asking C and users what they need and want 
does not always work.

Sometimes, C and the users know what they need and want but cannot describe it, for example, as 
few people who can ride a bicycle can describe how to ride a bicycle, at least in a way such that anyone 
hearing the description will be able to just get on a bicycle and start riding without falling. Instead, they 
have to show what they need and want, for example, by showing when, where, and how E should deviate 
from what it does and then showing with pictures what it should do instead.

Other times, they do not know what they need and want; they know only that what E does is not what 
they need and want. They might be able to put their fingers on only what is wrong with what E does, and 
A would have to take it from there.
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Closely related to not being able to describe what they need and want is not being able to describe 
in detail what they need and want, the exceptions from the norm, and the responses to the exceptions. 
When most people are asked what they do, they will quote the official policy, and not what they actu-
ally do. Most of what they really do, which is not specified by the policy, is what they do in situations 
not covered by the policy. This quoting of official policy is not an example of conscious, politically safe 
mouthing of the policy. Many people simply do not remember the exceptions unless and until they actu-
ally come up. The official policy is their conscious model of what happens. Domain experts among these 
people, from their experience with E and their understanding of O’s goals, instinctively know what to 
do for each exception as it comes up. Ultimately, even with a prototype, A has to be watching when any 
exceptional situation happens during the operation of E to see what really happens.

Sometimes requirements information is simply not in the mind of any stakeholder. Joseph Goguen 
[20] observed in 1993 that

It is not quite accurate to say that requirements are in the minds of clients; it would be more accurate 
to say that they are in the social system of the client organization. They have to be invented, not cap-
tured or elicited, and that invention has to be a cooperative venture involving the client, the users, 
and the developers. The difficulties are mainly social, political, and cultural, and not technical*.

Finally, many people just do not know why they do something, saying only that it is done this way 
because the policy says so. They very often do not even know why the policy is the way it is. It could be 
that the reasons for the policy are lost in history and that they were in response to a situation that is 
irrelevant today. In other words, the policy once made sense, but the person who formulated the policy, 
the reasons for it, and the understanding of the reasons are long since gone. For example, many com-
panies that have committed all data to a highly reliable data base continue to print out the summary in 
quintuplicate. Why? At the time of automation, the five most senior members of the company, who have 
since retired, refused to learn to use the computer to access the data directly!

87.9  Why Invention and Creativity Are Necessary for RElic

The quotation from Joseph Goguen in Section 87.8 pointed to the need to invent requirements. Invention 
requires creativity. Many others have observed the importance of creativity in RE, particularly for dis-
covering and inventing requirements for S [17,20,21,24,29,30,31,33,35,36,43], for solving wicked [42] 
problems, and for addressing critical business challenges [14,19,41,42].

Creativity is a part of RElic because requirements have to be invented. Requirements have to be 
invented, because if not, we would never advance beyond what we do now. Anytime S is different from 
E, someone had to have invented some new requirement that made the difference. That someone could 
be A or any of the stakeholders, including C and the users.

87.10  Empirical Studies of RElic Techniques

A lot of what is said about RElic techniques is folkloric. That is, a lot is said without what is accepted as 
empirical evidence that it is true. A significant fraction of what is said is probably true. That is, experi-
enced practitioners, for example, Gause & Weinberg and Beyer & Holtzblatt, have learned what works 
and have described the abstracted techniques, suggesting that others try them too.

Nevertheless, there is empirical work testing whether specific techniques work as expected and discov-
ering what really works. For example, for brainstorming and other creativity enhancement techniques, 

*	 Note that this quotation is from a draft of what was later published as a chapter in a book [21]. The quotation did not 
survive into the book chapter. However, by e-mailed personal communication, Goguen assured the author that he still 
believed in the contents of the quotation.
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there are empirical studies about what works [2,25,32,46]. More empirical research is needed to validate 
RE methods in general and RElic methods in specific.

Dieste and Juristo have published a systematic review of research empirically validating RElic tech-
niques [15]. Independent of the contents of the review, its bibliography is a gold mine of references to 
RElic techniques.

87.11  Conclusions

RElic is fundamentally the gathering of information about the CBS S to be built, from whatever sources 
the information is available, beit the client C; other stakeholders in C’s organization, O; the existing 
system, E, to be replaced by S, documentation about E; and invention. Often times, the information does 
not come freely from stakeholders in O that do not fully understand the problem P to be solved by S or 
have a political agenda. This chapter describes techniques that can be used to help start the free flow of 
this information, so that eventually a good RS can be produced for S.
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88.1  Underlying Principles

In the discipline of software engineering, the term specification has various possible interpretations. 
Whether applied to a simple routine, to a class, to a small subsystem, or a large system, it relates to the 
behavior of the entity as seen externally. Thus, how does its operation impact on the external environment, 
what is the effect of its operation, etc.? In this chapter, the focus will be on specifications for software systems 
and the term software requirements specification (often abbreviated to SRS) is typically used to capture this.

SRSs are relevant to different categories of interested parties. At an early stage, a very informal descrip-
tion can be used to inform users about the system—about what the system will do, what role it will play, and 
how users can interact with it. Such descriptions are very useful; they are typically accessible to many parties 
who can then react with helpful insights into providing improvements, amplifications, and clarifications.

Where the software is embedded and forms part of a much larger system, the software requirements 
are typically derived directly from the specification of the larger system. The functionality of the soft-
ware is derived in this way together with the manner in which it interacts with the wider system and 
typically includes constraints and performance issues.

For software system designers and implementers, it is important to have an SRS document that describes 
the system in unambiguous terms. Such documents have to be written in a rather formal (i.e., precise and 
unambiguous) manner and are the subject matter of this chapter. These specifications have to be agreed 
among all interested parties. For large systems, such documents can themselves be relatively large.

For a general overview of different aspects of software specification (see Gehani and McGettrick, 1986 
and Dorfman and Thayer, 1997).

88.2  Best Practices

88.2.1  Nature of Specifications

88.2.1.1 T ypical Structure of Specifications

Central to the SRS will be two important aspects of specification: typically SRS documents will be 
couched in terms of

•	 The functional specification that captures the activities that the system has to perform. The various 
activities have to be identified and their functionality described.
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•	 The nonfunctional specification that captures additional aspects such as timing constraints, reli-
ability requirements, safety issues, security and privacy constraints, and recovery from exceptions.

Having said this, an SRS document will have to be far more comprehensive than just this. Such a docu-
ment will need to capture the context for the software system in all its forms. Much will depend on 
practices within an organization but typically supplying all the relevant detail can occupy as much 
as 20%–25% of overall development time. The rationale for such major investment is that errors or 
omissions at this stage can typically be 10–20 times more expensive than errors at the design stage and 
100–200 times more costly than coding errors.

From this perspective, great care should be taken to ensure that as much relevant detail is obtained at 
this stage and that it is an accurate reflection of what is required. Conversely all irrelevant detail ought to 
be excluded; for clarity, this refers to detail irrelevant for the explicit purpose of providing an SRS docu-
ment that is as simple as possible. Having said this, such documents can often be very abstract and the 
provision of a number of illustrative use cases can be used to add clarity and assist with understanding.

To facilitate the provision of SRS document, guidelines are often supplied to provide a framework for 
a specification. In this spirit an industrial standard exists—see IEEE (1998). A typical SRS document 
will include

•	 An introduction that informally captures the goals and intent of the system.
•	 Environmental factors that capture the characteristics of the environment in which the system is 

to run, that is, the software, hardware, and communications infrastructure and human interac-
tion issues.

•	 Interface considerations detail how the system will interact with other software and with the 
various users; this may well be amplified by use cases that capture the class of possible users and 
the manner in which they have to interact.

•	 The functional specification.
•	 The nonfunctional specification.
•	 Constraints on design: the languages to be used, standards to be followed, resource issues, policy 

considerations, etc.

The structuring of these specifications is an important matter. The principles associated with such struc-
turing are similar to the guidance for structuring and organizing programs themselves. Thus, it should 
be clear where the need for particular parts of the requirements arose and then individual aspects of the 
specification should be grouped together in some natural and logical fashion, for example, those related 
to some event, to some data structure, and to some subsystem.

88.2.1.2  Some Fundamental Questions

At this stage there are two fundamental questions to be asked:

	 1.	 Is it possible to build this software system? Behind this comment lies the observation that it is pos-
sible to specify software systems that can never be built, not because of limitations of resources but 
because of basic theoretical considerations. For instance, it is just not possible to build a program 
that tells whether arbitrary programs will terminate or a system that tells whether two arbitrary 
arithmetic expressions are identical. There are also matters such as the possibility of stating very 
demanding performance requirements when the reliability of the underlying operating system or 
hardware makes this impossible.

		    A related matter is that, even if it is possible to build a particular system, the task may turn out 
to be enormously expensive, even far too expensive in retrospect. When this happens it is desirable 
to know well in advance so that unnecessary development does not occur. The SRS document is 
the definitive statement and so the input for any discussions or analysis on questions of feasibility. 
For such purposes, simplicity and clarity are desirable.
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	 2.	 Are there software systems for which it is not reasonable to think of supplying a specification? 
Here the issue is not the ability of the person undertaking the task but it relates to the nature of 
the task itself. It is recognized that providing a specification for a sophisticated search engine falls 
into this category.

88.2.1.3  Usage of the SRS Document

Generally, the usage of the SRS document falls into several categories:

•	 It can be viewed almost as a legal document and the basis of a contract between a client and devel-
opment team; it captures in succinct terms what has to be produced.

•	 It is a definitive statement that can be used to resolve questions, for example, between members of 
a development effort, about the final system.

It can be used to address certain (usually limited) questions about the feasibility of building such a system:

•	 It is the starting point for a serious development effort.
•	 It can be used as the basis of an evaluation of the resources required for the development effort 

and this includes costs, manpower, and timing.
•	 Importantly, it provides the basis for an independent testing effort, that is, an effort that can pro-

ceed independently of the work of the development team.
•	 Finally, it is a sound starting point for considerations of possible future enhancements to the system.

To fully meet these various demands, the SRS document should ideally possess certain desirable 
characteristics.

88.2.1.4  Desirable Characteristics of SRS Documents

A key characteristic is simplicity. This is a somewhat vague concept but in this context includes being 
easy to read and understand, easy to obtain answers to questions, is well structured and organized, and 
is free of obscurity and complexity. Ideally also it should be relatively compact and free of extraneous 
detail. For instance, an argument often given is that an SRS document should be free, for instance, of 
implementation detail; the latter is the concern of the implementation team who will wish to be free to 
make implementation decisions and choices.

Another important characteristic is completeness. Thus, there should be no areas of omission so that, 
for instance, all ways in which the system can be accessed by a user and all ways in which it interacts 
with other software are captured and the relevant functionality explained in detail. Importantly, the 
issue of completeness is relevant not just to the functional requirements but also to the nonfunctional 
requirements and the other dimensions of the SRS document. In safety critical systems, for instance, 
safety requirements need to be carefully clarified and then articulated. Under completeness, an often-
neglected area relates to error situations, exception handling, and fault tolerance. It may be desirable 
that the SRS document should stipulate what happens in the event of exceptions taking place, an upper 
bound on time to recovery, etc. In safety critical systems, for instance, it can be vital to know how the 
system responds to exceptions so as to be comfortable that no life will be lost and the system will always 
be in a safe state.

Requirements need to be captured in such a way that the resulting document is unambiguous. All 
readers must be able to interpret the requirements in the same way; otherwise, there is scope for confu-
sion and inefficiency. An aspect of this, of course, is consistency of the requirements; so, for instance, 
particular terms should be referred to in the same way throughout to avoid possible confusion. When 
natural languages are used, there is often scope for employing an associated glossary to capture meaning.

Another term often associated with specifications is correctness. The term correctness usually implies 
consistency between two entities, for example, in simple mathematics a known answer and a suggested 
answer. Given this interpretation, if two specifications are supplied, then consistency between these can 
be addressed and used to produce a definitive SRS document. Otherwise, notions of correctness tend 
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to take the form of comparing an SRS document and some abstract view of the system that resides in 
someone’s mind. If the abstract view is just one person’s view that can be problematic, that vision needs 
to be transmitted to a wider audience and group activity and discussion can facilitate that.

The term verifiable is also often used in the context of SRS documents. This is intended to capture 
the notion that requirements can easily be checked. To illustrate “fast response” is better captured in 
quantifiable terms so that a developer will know if this is being achieved. Likewise, reliability targets 
should be quantified.

The concept of full referential transparency is also highly relevant. Possessing this property implies 
that accessing the system for a particular purpose has the stated effect and does not have curious side 
effects in other parts of the wider system. The reverse is also equally relevant, that is, that activities in 
other parts of the system (e.g., in other locally resident software systems) do not have an impact on the 
software under consideration.

To emphasize the earlier text, an additional very important and related aspect relates not to what the 
final system should do but what it should not do. The possibility of the system producing unexpected or 
undesirable effects is often ignored. Of course, an implementer may choose to offer additional function-
ality (hopefully with the approval of the client) that proves to be exceedingly attractive and useful. But as 
well as implementing the agreed functionality, a devious implementation could include some malicious 
code that produces highly undesirable side effects. This can happen deliberately or accidentally, for exam-
ple, through the reuse of code developed elsewhere. It is important to have an eye to such possibilities. 
Basically, the external impact of the system should not be beyond that captured in the SRS document.

Finally, although every effort has to be made to produce a final definitive SRS document, part of the 
reality of software systems is that they will need to be modified, perhaps several times. Consideration 
should be given to ensuring that a SRS document is written, organized, and structured so that it is read-
ily amenable to modification and amplification.

88.2.2  Language of Specifications

An important consideration is the language in which a specification is described. There are various 
possibilities. Natural languages can be used although normally considerable care has to be taken to 
ensure precision. However, an important class of formal languages called specification languages exists. 
These are used for capturing what has to be done and not how implementation should proceed.

The motivation here is that a formal structure tends to bring additional rigor and a greater ability to 
reason about a system. An additional important consideration is that formal languages are amenable to 
processing by tools of different kinds. Included in these are tools to

•	 Check such matters as syntax, the proper use of types as appropriate, certain aspects of semantics.
•	 Assist with ensuring the desirable characteristics such as consistency and completeness men-

tioned earlier; this may even extend to reasoning about the system.
•	 Allow a certain amount of simple animation of the specification in the sense that certain inputs 

can be provided and appropriate outputs produced; this can include error situations.
•	 Possibly support aspects of the implementation activity; there are systems that aim to carry out 

correctness—preserving transformations that will ultimately lead to final executable code.

The class of specification languages is subdivided into various categories.

88.2.2.1  Model-Based Specifications

With model-based specification languages, a specification captures a system’s behavior in terms of an 
abstract model; this is typically constructed using mathematical structures such as sets, functions, and 
relations. The functionality of the system is then defined in terms of changes to the model. Examples of 
these languages include the Z specification language (see Spivey, 1992), the Vienna Development Method 
(VDM) (see Dawes, 1991), and Milner’s Calculus of Communicating Systems (CCS) (see Milner, 1980).
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Some insight into the nature of these specifications and the benefits they bring is relevant. Using the 
formal specification language, an abstract model of a system is developed using the facilities of the lan-
guage, usually sets relations, variables of particular types, etc. Of course these will be initialized in appro-
priate ways, for example, initially a particular set may be empty. The various activities that the system 
has to perform then take the form of functions or routines that change the state of the system in clearly 
defined ways. So basically, the system is state based. Through the application of functions, the system 
moves from an initial state through other states by the application of the various functions and routines.
Beyond the basic requirements,

•	 Invariants capture those aspects of the state of the system that must remain unaltered through-
out all changes of state, for instance, in a library system invariants may stipulate that all users of 
the library must be registered and that all books are classified as either on loan or available for 
lending.

•	 For each function, there will also be preconditions and post-conditions: the preconditions stipu-
late state characteristics that must pertain prior to certain state changes being attempted, for 
example, a book can be borrowed only if it is not already on loan; post-conditions capture the 
effect of invoking the function.

A key matter is that after the operation of each function, the system invariants must remain intact. This 
is to reflect the fact that the various states have desirable properties and no undesirable ones. This will 
typically require proof (for example, see Yang and Hawblitzel, 2011).

There is obvious scope for tools to check syntax, to carry out relevant type checking, to check that 
variables have been initialized appropriately, and to assist with proof.

88.2.2.2  Property-Based Specification Languages

Here the specification takes the form of system constraints on system behavior; typically the fewer the 
properties or constraints specified, the richer the range of possible design decisions to be made. This 
group of languages is typically subdivided as follows:

•	 The axiomatic that uses first-order logic to describe preconditions and post-conditions. The lan-
guages OBJ (see Malcolm and Goguen, 1996) and Larch (Guttag et al., 1990) support this form of 
specification.

•	 The algebraic where data types and processes are captured in the form of an algebra and then 
axioms in the form of equations are employed.

88.2.2.3  Concurrent and Distributed Systems Specification

Concurrent and distributed systems pose an even greater set of problems for system developers. The 
timing issues, the potentially complex interactions, the problems of sharing, and the constraints pose a 
new set of very complex problems. Different approaches, different languages, and different formalisms 
are needed to address the challenges.

The topics here are not the main focus of this chapter. However, temporal logic has provided the basis 
for many developments in this area; this is in the form of a logic that permits arguments about hap-
penings over time. Advances in model checking (see Clarke et al., 2009) have made many of the related 
problems of verifying properties of finite-state systems.

88.2.3  Specification of Nonfunctional Requirements

The specification of nonfunctional requirements is often ignored, and that can lead to serious disruption 
in project delivery. In reality the nonfunctional specification should be given similar prominence and 
attention as the functional specification part of an SRS document. It should possess desirable character-
istics and be checked for such matters as feasibility and completeness.
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88.2.3.1  Classification

Where they are addressed, it is customary to provide a classification of nonfunctional specifications. The 
IEEE standards (see Kotonya and Sommerville, 1998) use a classification that includes

•	 Process requirements that cover standards to be used as well as other implementation require-
ments and importantly delivery dates

•	 Product requirements that address matters such as efficiency, performance, reliability, and storage 
requirements as well as safety, security, and usability

•	 External requirements that address economic considerations, legal matters, etc.

The manner in which these requirements are stated is generally fairly obvious.

88.2.3.2 R eliability and Safety

In the context of reliability requirements, safety requirements, etc., a quantitative approach based on 
probability can be employed. For instance, in the context of safety, critical systems probability is typi-
cally employed to identify the criticality of the software and to capture the required safety levels. Safety 
integrity levels (SILs) are used to capture the level of criticality of the software and so the required 
measures of performance of the software. These ideas are captured within the standard IEC 61508—see 
IEC 61508 (2010).

To illustrate the SILs where the demands on the software are relatively low, the following captures the 
average probability of failure to perform on demand:

SIL Maximum Average Probability of Failure (Low Demand)

4 ≥10−5 to <10−4

3 ≥10−4 to <10−3

2 ≥10−3 to <10−2

1 ≥10−2 to <10−1

On the other hand, if the demands on the software are very high, even continuous, the following may 
be more apt:

SIL l Maximum Average Probability of Failure (High Demand)

4 ≥10−9 to <10−8

3 ≥10−8 to <10−7

2 ≥10−7 to <10−6

1 ≥10−6 to <10−5

The comment should be made that higher SILs are deemed unachievable due to current limits of the 
technology; there is scope for change here as technology improves.

88.2.3.3  Specification of Security

An increasingly important matter is the specification of security requirements. Such requirements are 
normally concerned with the careful management and organization of data, but there are huge concerns 
over such practices as compromising the software that has access to the data.

Of course, this is an ever-changing landscape. Providing nonfunctional requirements in the general 
area of security is nontrivial. One way of approaching this is to stipulate that steps should be taken to 
exclude certain common security risks. The latter are known and in Owasp (2013), for instance, there is 
a list of the 10 most common security risks for 2013.
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88.3 R esearch Issues

Although considerable progress has been made, the field of SRS remains one in which there are many 
challenges. Included in these is the wish to automate to some extent the process of going from an SRS 
document to code that meets the required objectives. Progress has been made in this regard but much 
more remains to be done.

The EU funded Prospectra project, for instance—see Hoffman and Kreig-Brueckner (1993)—had the 
ambitious goal of making software production a truly engineering discipline. It sought to support devel-
opment from a formal specification to executable code through a sequence of correctness preserving 
transformations and in the process building up knowledge of program construction and the associated 
proof. There were many interesting developments here but a final usable system did not materialize.
Included among the challenges are

•	 How can high-quality (meeting the requirements of consistency, completeness, etc.) SRS docu-
ments that embrace all aspects of specifications including functional, nonfunctional, and other 
aspects be produced quickly? What guidance can be provided in this regard?

•	 Can better approaches be devised to ensure that nonfunctional requirements are captured sys-
tematically in a useful and complete manner?

•	 What guidance can be provided for ensuring that an SRS document can be the basis of the provi-
sion of a realistic measure of costs and more generally resources?

•	 How can formal specification languages and their habitual use in software development process 
be made ever more accessible to software engineers, with associated proof happening but in a 
manner that does not require deep insights into logic?

•	 How can better tools be provided to support the aim of ensuring that software engineering 
becomes a true engineering discipline, that is, complete with reuse of knowledge about program 
construction and proof?

•	 How can correctness preserving program transformations be developed starting with SRS docu-
ments, taking account of advances in multi-core?

88.4  Summary

There are differing approaches to the topic of SRS, ranging from the relatively informal through to 
the very formal. Having high-quality specifications tends to becomes more and more important as the 
size and complexity of a project increases and also as its significance (in terms of safety, security, etc.) 
increases. In all cases, high-quality specifications can dramatically enhance the efficiency of the soft-
ware development process; the more formal approaches open doors for an increased use of support tools 
and rigorous approaches. Although these are gradually gaining support and favor, some continue to see 
the lack of skills in this area as a cause for concern and a source of risk.

In the background, there are serious systems issues that need to be addressed. Thus, high-quality spec-
ifications are the ultimate goal, but these need to be present in larger systems that are themselves of high 
quality (thus reliable) and the tools used to process specifications themselves need to be of high quality.
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89.1  Introduction

This chapter provides an overview of techniques and tools for analyzing the correctness of software sys-
tems using model checking. After providing some background on traditional finite-state model checking 
and related tools (Section 89.2, we give an overview of two classes of techniques that have allowed model 
checking to be applied directly to the source code of large software systems: counterexample-guided 
abstraction refinement (CEGAR) using predicate abstraction (Section 89.3), and bounded model check-
ing (Section 89.4). The chapter concludes with a brief survey of tools that leverage traditional model 
checking methods for the analysis of software systems (Section 89.5). Software model checking tech-
niques based on CEGAR and bounded model checking are also treated in the Software Verification 
chapter of the Handbook of Satisfiability [73]; we believe these chapters complement one another.

89.2  Model Checking

We begin with some background on traditional model checking techniques for finite-state systems. For 
full coverage of this topic, we refer the reader to several excellent books and tutorials [3,35,66,78,79]).

The model checking problem can be stated as follows:

Given a finite-state model M and a logical property ϕ, does M satisfy ϕ?

The finite-state model M under consideration is usually a Kripke structure consisting of a set of states, 
a transition relation over pairs of states, and a description of the logical formulas that hold in each state, 
while ϕ is a formula in some temporal logic, such as linear temporal logic (LTL) or computation tree 
logic (CTL).

A model checker is an algorithm for answering the model checking problem with respect to a specific 
temporal logic. A model checking algorithm either determines that the model satisfies the property, 
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or produces a counterexample: a sequence of state transitions through M which demonstrates that 
the property is violated. Among the many model checking tools that have been designed, perhaps the 
most notable are Spin [66] and SMV [77]. Practical model checking tools allow models to be expressed 
using relatively high-level description languages, such as Promela (the input language for Spin) or the 
SMV language.

Model checking can be used in the analysis of any kind of system (e.g., a hardware design, proto-
col specification or software program) if it is possible to express desired properties of the system as 
temporal logic formulas, and if it is possible to obtain a finite-state model that accurately describes 
behaviors of the system that are relevant to these properties. In this case a model checker can be 
used to prove that the system satisfies the properties of interest, or to yield counterexamples dem-
onstrating that the system is incorrect. The production of counterexamples is a key benefit of model 
checking over other formal verification techniques: counterexamples can be invaluable aid to engi-
neers in the process of debugging and fixing a system. In practice, model checking tools operate on 
models provided using high-level description languages which can be expanded automatically into 
Kripke structures.

The first algorithms for model checking date from the early 1980s [28,83]; see [27] for a retrospective 
on the birth of the field. The development of symbolic model checking [21,77] in the early 1990s led to 
model checking being used extensively in industrial hardware verification. The application of model 
checking to software verification, the focus of this chapter, has been more recent.

The main challenge associated with practical model checking is state space explosion. Typically a 
model is described as the composition of a number of components, for example variables or processes, 
each describing aspects of the system under consideration. The potential state space of the model grows 
exponentially with the number of components, and can quickly become too large to explore exhaus-
tively using standard algorithms. A significant portion of model checking-related research has been on 
techniques for ameliorating state space explosion while maintaining soundness guarantees, including 
symbolic representation [21,77], partial order reduction [51,81], symmetry reduction [31,48,68,91], and 
abstraction [30,55].

The state space explosion problem is particularly relevant to software model checking because pro-
grams exhibit extremely large and often infinite state-spaces. This can stem from potentially unbounded 
allocation of heap data structures, and from recursive procedure calls. In some programming languages, 
numeric data types such as integers are regarded as having infinite range. In mainstream languages such 
as C, C++ and Java, all numeric types have finite (though often very large) domains.

89.3  CEGAR-Based Software Model Checking

Counterexample-guided abstraction refinement (CEGAR) [29] aims to leverage the power of traditional 
finite-state model checking techniques for the analysis of systems with very large or infinite state spaces. 
Model checking based on CEGAR was originally proposed for the analysis of finite-state transition sys-
tems with intractably large state spaces, based on the following idea:

	 1.	 Given a description of a finite state transition system C, compute an abstract transition sys-
tem A such that A has a smaller state space than C and A over-approximates C: for every path 
through P there is a corresponding abstract path through A, thus A contains at least the behav-
iors of P.

	 2.	 Apply traditional finite-state model checking techniques to decide whether A is correct. If A is 
correct then, because A over-approximates C, correctness of C follows.

	 3.	 If A is incorrect, a counterexample π showing incorrectness of A is produced by the model checker. 
Examine π to determine whether it is also a counterexample to the correctness of C. If it is, incor-
rectness of C follows directly.



89-3Software Model Checking

	 4.	 If π is deemed spurious (it is a counterexample to the correctness of A but not to that of C) then 
extract information from π to refine the abstract program A such that π (and ideally a whole fam-
ily of counterexamples to which π belongs) is no longer a counterexample to A, and continue from 
step 2.

The CEGAR process is illustrated in Figure 89.1.
The key motivations for CEGAR are that while there may exist an abstraction of a large transition 

system that facilitates sound, efficient verification, it may not be straightforward to directly pinpoint 
the required abstraction. CEGAR allows verification to start with a coarse abstraction and gradu-
ally refine this abstraction in response to counterexamples, driving the abstraction closer to a point 
where verification will succeed or, during this process, discovering a genuine counterexample to 
correctness.

For finite-state transition systems, the CEGAR process is guaranteed to terminate, though in the 
worst case the state-space of the abstract system may grow as large as that of the concrete system [29].

89.3.1  Predicate Abstraction

CEGAR-based model checking can also be applied to infinite-state systems, including software, but 
in this case there is no termination guarantee. Each time the abstract system is refined it is possible 
for new spurious counterexamples to manifest, and there is no limit to how large the abstract system 
can grow. Nevertheless, CEGAR-based model checking has proven successful in the analysis of infinite 
state software systems, as demonstrated by several tools including Slam [10], Blast [15], SatAbs [33], 
Magic [25], and CPAchecker [16].

The majority of software model checkers that employ CEGAR use predicate abstraction [55] as their 
abstraction method. Predicate abstraction involves choosing a fixed set of predicates over the state of 
a system and then representing a concrete state abstractly according to the truth values of these predi-
cates when evaluated with respect to the state. For example, consider a simple system with two integer 
variables x and y. The state space of this system is infinite, consisting of all integer pairs. If we perform 
predicate abstraction over this state space with respect to predicates p x� = 0 and q y� = 0, then there 
are four abstract states, as depicted in Figure 89.2, corresponding to each of the four possible valuations 
of p and q.

A predicate abstraction technique for C programs was proposed in [7]. This method takes a C pro-
gram together with a set of predicates, and produces a corresponding Boolean program. The Boolean 
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FIGURE 89.1  Counterexample-guided abstraction refinement.
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program has identical control structure to the C program, but instead of operating over the original 
program it operates over a set of Boolean variables, one for each predicate.

We illustrate predicate abstraction for C programs using an example adapted from [10], and sim-
plified further for presentation here. Consider the fragment of C code shown in Figure 89.3a, which 
is originally derived from a peripheral component interconnect (PCI) device driver [10]. The method 
process iterates through a queue of requests via global variable req. We omit details of the structure 
of requests, except that the reqest_t structure has a next field. Before accessing the request queue, 
the method acquires a lock, shown in Figure 89.3a for simplicity by setting variable locked to true. 
The lock is released by setting locked to false.

We wish to verify that the process function obeys correct locking discipline, that is that the lock is 
not acquired while it is already held, and that the lock not released unless it is held. In Figure 89.3a, we 
have instrumented the code with assertions about locked to check this.

Figure 89.3b is a Boolean program obtained by applying predicate abstraction to the program of Figure 
89.3a with respect to the predicate locked. The only data tracked by the Boolean program, in addition 
to the program counter, is the truth of locked. This means that statement locked = true at line 11 of 
Figure 89.3a maps to an identical statement in Figure 89.3b, but statement nPktsOld = nPkts at line 13 
is replaced with skip (a no-op), because this statement cannot affect the truth of locked. The condition 
req at line 14 is replaced with the nondeterministic condition *: the only data available to the Boolean 
program is the truth of locked, so whether req is null cannot be precisely determined. The Boolean 
program soundly over-approximates this condition by evaluating it non-deterministically. The transla-
tion of the remaining statements of Figure 89.3a to corresponding statements in Figure 89.3b is similar.

Notice that for every execution trace through the program of Figure 89.3a there is a corresponding trace 
through the program of Figure 89.3b such that the value of locked is identical throughout both traces. 
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FIGURE 89.2  Predicate abstraction of a system with two integer variables x and y, with respect to predicates x = 0 
and y = 0. The abstract state space comprises four abstract states, one for each valuation of the predicates.
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As we shall see in Section 89.3.3, the reverse is not true: the Boolean program contains additional execu-
tion traces that are not feasible in the original program.

Now let us consider applying predicate abstraction to the program of Figure 89.3a with respect to the 
predicates locked and nPkts==nPktsOld. The resulting Boolean program is shown in Figure 89.3c. 
Predicate locked is treated as in Figure 89.3b. Boolean variable nP_eq_nPO tracks the predicate 
nPkts==nPktsOld. Initially the value of this predicate is unknown. At line 13 the predicate becomes 
true due to the assignment nPkts = nPktsOld in the original program. At line 21 the predicate is 
updated to model nPkts being incremented. It is clear that if nPkts and nPktsOld are equal then 
they will no longer be equal after nPkts is incremented. However, if the variables are not equal then 
incrementing nPkts may or may not lead to equality: if nPkts==nPktsOld−1 holds then equality 

1 unsigned nPkts, nPktsOld;

2 request_t* req;
3 bool locked; bool locked; bool locked, nP_eq_nPO;

4
5 // Precondition: !locked // Precondition: !locked // Precondition: !locked

6 void process() { void process() { void process() {

7
8   do {   do {   do {

9     // Acquire lock

10     assert(!locked);     assert(!locked);     assert(!locked);

11     locked = true;     locked = true;     locked = true;

12
13     nPktsOld = nPkts;     skip;     nP_eq_nPO = true;

14     if(req) {     if(*) {     if(*) {

15       req = req->next;       skip       skip;

16
17       // Release lock

18       assert(locked);       assert(locked);       assert(locked);

19       locked = false;       locked = false;       locked = false;

20
21       nPkts++;       skip;       nP_eq_nPO =

22         �nP_eq_nPO ? 
false : *;

23     }     }     }
24   �} while (nPkts != 

nPktsOld);
  } while (*);   } while (!nP_eq_nPO);

25
26   // Release lock

27   assert(locked);   assert(locked);   assert(locked);

28   locked = false;   locked = false;   locked = false;

29 } } }

(a) (b) (c)

FIGURE 89.3  Example programs illustrating CEGAR-based model checking. (a) Device driver code 
fragment, instrumented for verification of correct locking discipline. (b) Boolean program obtained after 
abstraction with respect to predicate locked. (c) Boolean program obtained after abstraction with respect to 
predicates locked and nPkts==nPktsOld. (From Ball, T. and Rajamani, S. K., The SLAM toolkit, In Berry, 
G., Comon, H., and Finkel, A., eds., CAV, volume 2102 of Lecturer Notes in Computer Science, Springer, New 
York, pp. 260–264, 2001.)
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will result after the increment, otherwise it will not. In the absence of any such further information 
about nPkts and nPktsOld, in this case the best we can say is that after the increment the value of the 
predicate becomes unknown. The statement:

	 nP_eq_nPO=nP_eq_nPO? false:*;

at line 21 of Figure 89.3c reflects this reasoning.
The predicate nPkts==nPktsOld allows the guard of the do..while loop to be represented pre-

cisely at line 24 of Figure 89.3c. Because the two predicates under consideration say nothing about req, 
testing and updating req at lines 14 and 15 of Figure 89.3a still lead to a nondeterministic choice and 
no-op, respectively, at the corresponding lines of Figure 89.3c.

Boolean and Cartesian Abstractions: We have illustrated the process of predicate abstraction informally 
through an example. For a complete procedure for this translation, treating pointers and procedure 
calls, see [7].

Predicate abstraction can be applied with varying degrees of precision. At one extreme, the 
Boolean abstraction represents each program statement as the most precise possible predicate 
transformer [55]. In the worst case, for a set of n predicates, this can involve checking the feasibil-
ity of all 2n × 2n potential predicate transformations. An alternative is the Cartesian abstraction, 
combined with the maximum cube length approximation [7], which allows faster but less precise 
predicate abstraction. The loss of precision may require additional refinement steps as described in 
Section 89.3.4. The relationship between the Boolean and Cartesian abstractions has been studied 
formally [8].

89.3.2  Boolean Program Model Checking

The Boolean program corresponding to a recursion-free C program has a finite state space. If the C 
program is recursive, then so is the corresponding Boolean program, in which case the Boolean pro-
gram corresponds to a pushdown system, for which the model checking problem has been studied (see, 
e.g., [20,22,50]). Model checking tools for Boolean programs include Bebop [9], Moped [86], BoPPo 
[36], and Boom [12] (though BoPPo and Boom do not support recursive Boolean programs). Each of 
these tools uses symbolic model checking techniques based on binary decision diagrams to curb state 
explosion.

By construction, the Boolean program obtained from a C program is an over-approximation, thus 
if Boolean program model checking determines that the Boolean program is correct it follows that 
the C program is also correct. In the best case, it may be possible to prove correctness of an infinite-
state C program by performing predicate abstraction and Boolean program model checking with 
respect to a small number of predicates. However, if model checking reveals that the Boolean pro-
gram is not correct, this does not directly reveal anything about the original program; further analy-
sis is required.

89.3.3  Counterexample Simulation

Continuing the example of Section 89.3.1, suppose that we have computed the Boolean program of 
Figure 89.3b with respect to the predicate locked. Model checking this Boolean program will result 
in a counterexample because the Boolean program is not correct. One counterexample that might be 
returned by a Boolean program model checker is the trace that, starting with locked = false, sets 
locked to true at line 11, enters the if statement at line 14, sets locked to false at line 19 and 
leaves the do..while loop at line 24. As a result, control reaches line 27 with locked set to false, 
and the assertion fails.
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It is now necessary to decide whether this counterexample trace corresponds to a feasible trace of the 
original program. This can be achieved by building a logical formula describing the conditions for the 
Boolean program counterexample to be followed in the original program and ending in a state where 
the assertion does not hold. For the counterexample, we have just described the corresponding formula 
is as follows:

	

∧ ∧ ∧ ≠ ∧ ∧

∧ ∧ ∧

!locked locked nPktsOld nPkts req 0 req req ->next

!locked nPkts nPkts +1 nPktsOld nPkts !locked

0
5

1
11

1 0
13

0
14

1 1
15

2
19

1 0
21

1 1
24

2
27

= =

= =

The superscripts in this formula are for illustration only and indicate from which line of Figure 89.3a 
each conjunct arises. Multiple assignments to variables are modeled in the formula by giving each vari-
able a fresh index (indicated by a subscript) each time it is assigned, in the style of static single assign-
ment form.

Satisfiability of the formula corresponding to a counterexample can be checked by a state-of-the-art 
theorem prover or SAT/SMT solver. If the formula is satisfiable then abstract counterexample does cor-
respond to a concrete counterexample, and the satisfying assignment provides a test input to the pro-
gram that will cause the bug to manifest. If the formula is unsatisfiable, the abstract counterexample is 
spurious: it does not correspond to a trace of the original program, and the abstraction must be refined 
to block the counterexample.

The aforementioned formula is easily seen to be unsatisfiable due to the unsatisfiable subformula:
∧ ∧nPktsOld nPkts nPkts nPkts +1 nPktsOld nPkts1 0

13
1 0

21
1 1

24= = =  and thus the coun-
terexample is spurious.

89.3.4 A bstraction Refinement

On discovering a spurious counterexample, it is necessary to refine the abstraction, making it suffi-
ciently precise that the counterexample trace is blocked. Eliminating spurious counterexamples clears 
the way for either finding genuine bugs, or proving correctness.

Two complimentary approaches to abstraction refinement are used by CEGAR-based model check-
ers: transition refinement and predicate discovery.

As discussed in Section 89.3.1, it may be infeasible to compute a Boolean program that uses the most 
precise abstraction, the Boolean abstraction, with respect to a set of predicates. Instead, less precise 
abstractions can be used: the Slam tool uses Cartesian abstraction with maximum cube length approxi-
mation [7], while SatAbs [33] employs an extremely coarse method known in the community as fast 
abstraction. This source of imprecision can lead to spurious counterexamples, which can be refined away 
using transition refinement [5]. Transition refinement considers each abstract transition a → b occurring 
in the counterexample trace. Suppose that the transition a → b is associated with the abstract statement 
at program point i. We can check, using a theorem prover, whether there exists concrete program states 
s and t such that: s is abstracted by a, t is abstracted by b, and the concrete statement at program point i 
leads to a transition between s and t. If no such pair of concrete states exists, then the transition a → b is 
spurious: it does not belong to the Boolean abstraction of the program, and can thus be safely removed 
by adding constraints to the Boolean program. The process for obtaining and adding such constraints 
is described in detail in [5].

If a counterexample is spurious but contains no individually spurious transitions, then even the most 
precise Boolean abstraction is insufficient for proving the program with respect to the current set of pred-
icates. In this case, the abstraction can be refined by adding further predicates. Some implementations 
choose to add further predicates before the possibilities for applying transition refinement have been 
exhausted [5]. Several schemes have been proposed to discover new predicates from counterexamples. 
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The simplest approach is to symbolically compute the weakest precondition from the failed assertion to 
the start of the program along the counterexample trace, and to add some or all of the atomic predicates 
occurring in the resulting formula to the set of predicates to be used for abstraction. This scheme is 
straightforward to implement and relatively predictable, but can lead to the generation of a large number 
of irrelevant predicates, and may generate predicates that are too counterexample-specific to facilitate 
verification. The problem of predicate explosion can be mitigated to some extent by alternating between 
weakest precondition and strongest postcondition-based analyzes [4], while interpolation techniques 
have shown success in the generation of relevant and general predicates [63,71].

Returning to our simple running example: transition refinement does not apply to the counterex-
ample trace described in Section 89.3.3. Applying any of the commonly employed predicate discovery 
techniques identifies the predicate nPkts==nPktsOld. Adding this to our set of predicates leads to 
the Boolean program shown in Figure 89.3c which we already discussed in Section 89.3.1. Model check-
ing for this Boolean program succeeds, thus we can conclude that the program of Figure 89.3a is correct.

89.3.5  Notes on CEGAR

The main bottlenecks for CEGAR-based verification using predicate abstraction are computing and 
model checking the abstraction. Adding further predicates to refine spurious counterexamples can 
quickly lead to an abstraction that is expensive to compute and infeasible to check. Lazy abstraction [64] 
aims to address this problem by localizing abstraction refinement. Rather than working with Boolean 
programs, this technique computes an abstract reachability tree (ART) with respect to a set of predi-
cates. When a spurious counterexample through the ART is discovered, yielding new predicates, only 
portions of the ART relevant to the counterexample are refined. This avoids state explosion in the 
remainder of the ART.

The scalability of predicate abstraction can be improved by computing predicate transform-
ers with respect to blocks of statements, rather than individual statements. This large block encoding 
technique [14] can dramatically reduce the size of the abstract state space, which is of prime impor-
tance for techniques based on ARTs, and facilitates the use of the more precise Boolean abstraction over 
Cartesian abstraction (see Section 89.3.1). The CPAchecker tool [16] implements a generalization of the 
large block encoding technique [17].

CEGAR-based model checking for concurrent programs has been considered in several works. The 
Magicis designed for analysis of concurrent programs where communication is by message passing [25]. 
An extension of the Blast model checker focuses on the detection of data races in shared variable con-
current programs [62]. Two recent techniques and tools aim at verifying freedom from assertion failures 
in shared variable concurrent programs: Threader [57,58] and SymmPA [43,44]. Threader applies 
thread modular reasoning to aim to combat state explosion arising due to concurrency, while SymmPA 
employs a combination of symmetry reduction and BDD representation [13].

89.4  Bounded Model Checking of Software

Bounded model checking (BMC) is a method for performing depth-bounded verification of transition 
systems [18]. Given a transition system described by an initial state predicate I(v) and a left-total transition 
relation* T(v, v′), and a predicate P(v) describing a property that should hold in all reachable states (where 
v and v′ denote vectors of system variables), BMC involves checking the following formula for some k ≥ 0:

	 I T T P Pk k k( ) ( , ) ( , ) ( ) ( )v v v v v v v0 0 1 1 0∧ ∧ ∧ ∧ ¬ ∨ ∨¬( )−… …
	 (89.1)

*	 A transition relation T ⊆ S × S is left-total if for every s ∈ S there exists some s′ ∈ S such that (s, s′) ∈ T. If we view T as a 
directed graph, this means that every node has at least one successor.
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This formula encodes all paths of the transition system of length k + 1 that commence in an ini-
tial state, and along which the property is violated at some point. If the formula is satisfiable, then 
the satisfying assignment yields a counterexample demonstrating that the property can be violated. 
Unsatisfiability of the formula establishes that the property holds in all states that are reachable within 
the given depth bound; no guarantees are provided about deeper execution traces. The technique can 
also be used for bounded verification of certain temporal logic properties [18].

Bounded model checking has proved very successful as a technique for hardware verification due to 
the ability of modern SAT solvers to handle large Boolean formulas. We describe two methods by which 
BMC has been applied to the analysis of software.

89.4.1  Programs as Transition Systems

Traditional bounded model checking can be applied directly to the analysis of nonrecursive programs 
by inlining all procedure calls and then interpreting the program control flow graph (CFG) as a transi-
tion system. We illustrate this using the example program of Figure 89.4a. This simple program frag-
ment initializes variables i and x to zero, then loops 100 times maintaining the invariant x = 2 * i. The 
program then asserts, incorrectly, that x and i are equal.

A possible CFG for this program is depicted in Figure 89.4b. Each block in the CFG is labeled with a 
unique number.

By using a program counter variable, pc, to record which CFG block is due to be executed next, we can 
encode the semantics of this program via the following formulas:

	

I pc x i pc

T pc x i pc x i pc x i pc
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We have used a special program counter value, end, to indicate that execution has terminated. If pc = 
end the transition system exhibits a self-loop; this ensures that the transition relation is left-total.

void foo() {
int i, x;
x=0;
i=0;
while (i<100) {
assert (x==2*i);
x=x+2;
i=i+1;

}
assert (x==i);

}

x:=0;
i:=0;

1

assert(x==2*i);
x=x+2;
i=i+1;

2

assert(x==i); 3

i<100

i>=100i<100

i>=100

(a) (b)

FIGURE 89.4  A simple program and its control flow graph. (a) Example program. (b) Control flow graph.
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Equation 89.1 can now be applied using these formulas to check freedom from assertion violations 
up to any specified depth. To discover that the assertion at the end of the program can fail, a depth of at 
least 100 is required.

The F-Soft [69] performs bounded model checking of C programs, treating the program CFG as a 
transition relation in a manner similar to the above.

89.4.2  Unwinding Loops in Control Flow Graphs

The disadvantage of the method described in Section 89.4.1 is that it does not exploit the structure of 
the program under consideration. An alternative to unwinding the transition relation associated with a 
program is to directly unwind loops in the program’s CFG.

We illustrate this using the example program of Figure 89.4. Figure 89.5a shows the result of unwind-
ing two iterations of the CFG of Figure 89.4b. Observe that block 2 in Figure 89.4b, the body of the 
loop, has been duplicated as blocks 2 and 2′ in Figure 89.5a. The edge (2, 3) which leaves the loop in 
Figure 89.4b results in two edges, (2, 3) and (2′, 3) in Figure 89.5a. The back-edge (2, 2) in Figure 89.4b 
results in an edge connecting block 2 to block 2′ in Figure 89.5a. Because we have chosen to unwind 
the loop by just two iterations, the edge leaving block 2′ which corresponds to the back-edge leads to an 
empty block, 4, with no successors. This causes execution to terminate without error along paths that 
would exceed the bound of two loop iterations.

The result of this unwinding is a loop-free CFG encoding all program traces that execute at most two 
loop iterations. Using techniques for computing weakest preconditions [11], this loop-free CFG can be 
turned into a logical formula whose satisfiability reveals an assertion failure, and whose unsatisfiability 
implies that the program is correct up to this execution depth. There is clearly room for optimizing 
this procedure: a cheap static analysis reveals that in the example of Figure 89.5a all the edges guarded 
by i >= 100 are infeasible, leading to the simpler CFG of Figure 89.5b in which node 3 is no longer 
reachable. Such an analysis allows the CFG to be simplified before it is turned into a formula.

The more general case of unwinding k iterations of an arbitrary loop is illustrated in Figure 89.6 
(adapted from [41]). Figure 89.6a depicts an arbitrary CFG which contains a natural loop L (see, e.g., [1] 
for a formal definition of natural loops in control flow graphs). The head of L can be reached from outside 

x:=0;
i:=0;

x:=0;
i:=0;

1

assert(x==2*i);

assert(x==2*i);

x=x+2;

x=x+2;

i=i+1;

i=i+1;

2

assert(x==2*i);

assert(x==2*i);

x=x+2;

x=x+2;

i=i+1;

i=i+1;

2́

4

assert(x==i); 3

i>=100

i>=100

i>=100

i<100

i<100

i<100

1

2

2́

4

(a) (b) 

FIGURE 89.5  Unwinding the control flow graph of Figure 89.4b by two iterations. (a) Straightforward unwinding. 
(b) Unwinding and simplification.
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the loop via a number of CFG edges (edges from Program to L). The loop contains a number of back edges 
(edges from nodes in L to the head of L), and a number of exit edges (edges from L to Program). Figure 
89.6b illustrates the effect of unwinding k iterations of loop L. The result is a CFG containing the Program 
part of Figure 89.6a unmodified, together with k copies of the loop body L, denoted L1,…, Lk. Exit edges 
of L are preserved in each Li. A back-edge of L leads to an edge from Li to the head node of Lj, for 1 ≤ i < k. 
In Lk, edges that would correspond to back edges of L are not present; this is indicated by crosses in 
Figure 89.6b. Omitting these edges restricts program executions to those involving at most k iterations 
of L, as desired.

Compared with the approach of applying BMC at the transition system level described in Section 
89.4.1, loop unwinding has the advantage that different unwinding depths can be applied to different 
loops in the program. It may be the case that to discover a bug at least k iterations of a certain loop L 
must be explored, where k is large, while other loops need only be minimally unwound. By unwind-
ing loops individually, it is possible to generate a minimal program unwinding that exposes the bug. 
Operating at the transition system level it would be necessary to unwind the entire transition system up 
to a bound proportional to k, the unwinding depth for loop L.

Unwinding a single loop by k iterations leads to a linear increase in the size of the CFG. However, if 
the unwound loop contains a nested loop then the nested loop will be duplicated k times in the unwound 
CFG. As a result, uniformly unwinding all loops in a loop nest by k iterations leads to O(kd) growth in 
the size of the CFG, where d is the depth of the loop nest.

Bounded model checking can be applied to recursive programs by inlining recursive calls up to a 
given bound.

The CBMC tool [32,34] performs bounded model checking of C programs via loop unwinding and 
inlining of recursive calls.

89.4.3  Notes on BMC

As discussed earlier, BMC provides no guarantees about program correctness beyond the given exe-
cution bound. In embedded software it is common for recursion to be absent and for loops to exhibit 
fixed upper bounds. In this case, sufficient unwinding of the program transition relation (Section 
89.4.1) or loops (Section 89.4.2) is guaranteed to lead to consideration of all possible program behav-
iors. The loop unwinding method can be combined with the insertion of unwinding assertions to 
determine when sufficient unwinding has been performed to establish program correctness [32,34]: 
when unwinding k iterations of a loop, we insert an assert(false); statement on execution paths 
that would execute a (k + 1)st iteration. In the example of Figure 89.5a, this corresponds to placing 

Program

L

Program

L1 L2 Lk···

(a) (b)

FIGURE 89.6  Illustration of unwinding k iterations of an arbitrary natural loop in a control flow graph. (a) A 
program containing in a loop L. (b) The program of Figure 89.6a after unwinding k interactions of loop L. Notice 
that loop back-edges which would lead to a further iteration have been cut.
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an assert(false); in block 4. With respect to the general case of Figure 89.6b, adding unwinding 
assertions would involve extending each cross in loop copy Lk with an edge to a node containing an 
assert(false); statement.

The k-induction method [87] enables BMC to be used for sound verification. In the context of transi-
tion systems, the method considers standard BMC to establish a base case, showing that all executions 
of length at most k, starting in an initial state are safe. Then, in addition, a step case is checked, in an 
attempt to show that an error-free execution trace of length k, starting from an arbitrary state, cannot be 
extended to an erroneous trace of length k + 1. Combining this with the base case establishes correctness 
of the transition system. The k-induction method has recently been applied in the context of software 
verification [41], allowing automatic verification of programs using weaker loop invariants than are 
required by traditional logic-based methods. Bounded model checking of software using k-induction 
has also been successful in establishing data race freedom for systems software that manipulates data 
using direct memory access (DMA) operations [45,46].

Bounded model checking techniques have proven effective in generating test cases for software (see, 
e.g., [2,61,65]). To generate a test vector that exercises a certain program behavior, one can instrument 
the program with assertions stating that the desired behavior is not possible. Applying BMC to detect 
violations of this assertion directly yields the desired test vector, if the behavior in question can be 
exhibited within a reasonable execution bound. Bounded model checking with k-induction has also 
been used for the detection of equivalent mutants in mutation-based testing [42].

BMC has been applied to the analysis of concurrent programs [39,84]. To limit state explosion 
arising due to concurrency these works employ the idea of bounding the number of thread context 
switches that are considered [74,82,88], in addition to bounding execution depth, based on the empiri-
cal observation that many concurrency bugs can be exposed using only a small number of thread 
context switches [76].

A technique closely related to BMC is dynamic symbolic execution, as implemented by tools such 
as EXE [24] and KLEE [23]. The key difference is that dynamic symbolic execution techniques main-
tain distinct formulas for different paths through a program, forking execution whenever a branch 
instruction is encountered such that both branch alternatives are feasible under the current set of con-
straints. In contrast, a bounded model checker unwinds the entire program, yielding a single formula 
that encodes all execution traces up to a given depth. The disadvantage of exploring execution paths 
separately, as in dynamic symbolic execution, is path explosion: the number of paths that must be 
considered to guarantee defect freedom up to a given depth k is in the worst-case exponential in d. 
An advantage is that the formula associated with a specific path remains relatively small and has a 
conjunctive form for which constraint solvers are highly optimized. The formula generated by pro-
gram unwinding during bounded model checking can quickly exceed the capacity of state-of-the-art 
constraint solvers.

89.5 T ools Based on Traditional Model Checking

We conclude the chapter with a brief survey of notable tools that directly employ techniques based on 
traditional finite-state model checking for the analysis of software.

Bandera and Bogor: The Bandera tool allows model checking of Java programs through a process of 
finite-state model extraction [37]. Program slicing is used to fist simplify a Java program with respect 
to the property under consideration. The program state-space is then restricted through the applica-
tion of user-provided abstraction functions. This leads to a sound over-approximation, as long as the 
given abstraction functions are sound. Then, if necessary a component restriction phase is used to make 
the resulting model tractable. This involves, for example, limiting the ranges of variables, or limit-
ing the number of objects that can be allocated in the heap. Component restriction sacrifices sound-
ness, but can allow the detection of subtle errors. The resulting finite-state model is represented in 
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the Bandera Intermediate Language (BIR). A BIR model can then be translated to the input language 
of any finite-state model checker; translators exist for variety of model checkers, including Spin [66], 
dSpin [40], nuSMV [26], and Java PathFinder [89]. Bandera provides a rich specification language for 
stating properties to be checked [38] and has been applied in the context of analyzing concurrent Java 
programs [59].

The Bogor framework [85] aims to provide an extensible platform for designing software model check-
ers, motivated by the Bandera project, during which the often large gap between features of full-blown 
programming languages and the input languages of finite-state model checking tools proved to be a 
major source of inefficiency in verification. The core of Bogor is a model checker for an extended version 
of the BIR language, where the extensions allow direct encoding of high-level programming constructs.

Java PathFinder: The Java PathFinder (JPF) tool [75,89] supports model checking of Java byte-code, 
allowing it to be applied to compiled Java programs for which source code is not available. A combina-
tion of state compression, partial order and symmetry reduction, abstraction and program slicing is 
used to combat state space explosion. An earlier version of JPF tool translated Java source code directly 
to Promela for model checking using SPIN [60].

JPF also provides support for symbolic execution [72], which facilitates test case generation for Java 
programs [90].

Spin: The Spin model checker [66] allows fragments of C source code to be included directly in a Promela 
verification model, and for selected C program variables to be tracked as part of the model state during 
verification. This allows users of Spin to extract verification models from C programs, either manually 
or with the assistance of automated model extraction tools [67].

As discussed earlier, Spin has been employed as a back-end model checker for a variety of software 
model checking tools.

VeriSoft: The VeriSoft model checker [53] is geared toward analysis of concurrent C and C++ programs, 
checking for coordination problems (such as deadlocks), as well as for violations of user-supplied 
assertions. Based on the observation that the state of C and C++ programs is typically large and complex, 
VeriSoft employs a stateless search approach in which a set of previously visited states is not maintained. 
This dramatically reduces memory consumption during model checking, but means that individual 
states may be visited many times during exhaustive exploration. VeriSoft employs symmetry and partial 
order reduction techniques to mitigate this problem to some extent [52]. The VeriSoft approach shares 
similarities with recent techniques for concurrency testing such as the CHESS tool [80].

89.6  Conclusion

We have surveyed two of the most successful techniques for practical software model checking: predi-
cate abstraction and CEGAR, and bounded model checking, and have provided an overview of other 
key model checking techniques that are geared towards software analysis.

A common technology shared by many of these techniques is constraint solving: the abstraction, coun-
terexample simulation and refinement processes in the CEGAR methods we have studied all involve 
invoking a constraint solver to decide formulas, and bounded model checking works by unwinding a 
program into a formula to be checked by a SAT or SMT solver. Thus, a key factor in future scalability 
of software model checking and other verification techniques will be the extent to which advances in 
constraint solving continue to improve performance.

Dramatic improvements in the capability of software model checkers have been made over the last 
15 years, and there has been some uptake by industry. Arguably the biggest success story for software 
model checking has been technology transfer from Microsoft’s Slam tool, which is based on predi-
cation abstraction and CEGAR, to Static Driver Verifier (SDV) that ships with the Windows Driver 
Development kit [6].
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Despite this success, it is fair to say that software model checking, and verification in general, is not 
employed widely in industry at present. In our view, there are three main barriers to widespread indus-
trial adoption of these techniques, and thus areas for further research:

•	 Scalability: Model checking complex systems is typically expensive; it is not unusual for a verifica-
tion run to take hours or days to complete.

•	 Lack of specifications: Formal analysis of software depends on the existence of meaningful prop-
erties to check. Such specifications are usually not present in general-purpose software.

•	 Lack of automation: Unlike lightweight approaches to improving software reliability, such as 
regression testing or basic type checking, applying a software model checker is rarely a “push-
button” process; significant manual intervention and expertise is usually required.
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90.1 � Introduction

The design of a software artifact is a critical step in making the move from the vision of a system to 
reality. First in the life cycle comes the vision, then the business case for the vision, then the business 
case is turned into requirements, and then the artifact is designed, implemented, tested, deployed, and 
released into the environment. These phases are usually not disjoint in time—the business case informs 
the vision, the requirements inform the business case and so forth, but the design should reflect the pre-
ceding phases (the vision, the business case, and the requirements). It is also influenced by the following 
phases: the design must be implementable, it should be easily testable, and it should be changeable when 
the artifact must be modified to reflect environmental changes.

One assumption underlying any design is that the design will satisfy some set of requirements. These 
requirements may be explicit or implicit, known or unknown, but it is the requirements that drive the 
design strategy. A consequence of this is that a designer is not looking for an optimum design but rather 
one that is “good enough” in that it satisfies the requirements. A complication is that some requirements 
may not be known to the designer during the design process but these requirements, nevertheless, must 
be met by the design.
Requirements can be categorized into three categories:

•	 The functional requirements—what the artifact should do.
•	 The quality requirements—how well the artifact will do what it is designed to do. These require-

ments are frequently called the nonfunctional requirements or the “ilities.” Quality requirements 
can be run time requirements such as performance or availability or they can be development 
time requirements such as an enumeration of expected modifications or a requirement that the 
development be distributed across specific teams in specific locations.

•	 The business requirements—what constraints the various stakeholders add to the other requirements.

We now turn to the principles underlying various design strategies.
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90.2 � Underlying Principles

A design is a point within a “design space.” This is a space formed by considering all possible decisions 
that might be made within the design process. Since nontrivial systems can have on the orders of thou-
sands of decisions, each with multiple alternatives, arbitrarily searching this space is clearly not feasible. 
Thus, a systematic method for navigating the design space is critical to produce acceptable designs in a 
reasonable amount of time.

We begin by discussing two background concepts—views or viewpoints and patterns and tactics. 
Then we move to the two basic principles of a systematic design strategy—decomposition and generate 
and test.

90.2.1 � Views

Complicated systems such as software systems are difficult to describe because the static version of 
the system (the code) can have very different structure and properties than the dynamic version of the 
system (the system in execution). A description of a set of element types in a computer system and their 
relationships is called a view (Clements et al. 2010). The perspective from a stakeholder who is interested 
in some properties of the system is called a viewpoint (ISO/IEC/IEEE 2011).

Common types of views are the module views, those that represent the code structures (see Figure 
90.1); the component and connector views, those that represent dynamic behavior involving processes, 

FIGURE 90.1  A sample class diagram.
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threads, and components (see Figure 90.2); and the allocation views, those that represent the mapping 
between software elements and non-software elements such as processors (see Figure 90.3).

90.2.2 �A rchitectural Patterns and Tactics

A pattern is a known solution to resolve conflicting forces (requirements) on a system. Patterns derive 
from the work of Alexander et al. (1977) and have been widely accepted by the software engineering 
community (Gamma et al. 1995, Buschmann et al. 1996). It is common to see patterns used in design 
strategies although the composition of patterns remains an unresolved problem.
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FIGURE 90.2  A sequence diagram is one notation for a component and connector view.
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Architectural tactics are transformations on a design to improve its performance with respect to 
a single quality attribute (Bachmann et al. 2002). Whereas patterns resolve conflicting requirements, 
tactics are intended to improve a design with respect to a single quality attribute requirement. Patterns 
are a coarse-grained mechanism to enable the meeting of certain requirements and tactics are a fine-
grained mechanism.

90.2.3 � Decomposition

Decomposing a difficult problem into its component portions is a basic engineering tenet. Each portion is 
independently solved and the various solutions are integrated together. We examine four different strate-
gies for decomposition. Structured Analysis and Design (SADT) and object orientation decompose the sys-
tem into modules, whereas using preconstructed components and architecturally significant requirements 
may decompose the system into combinations of module, component and connector, and allocation views.

90.2.3.1 � Using Preconstructed Components

This strategy was first articulated by Mcllroy at the 1968 NATO conference on software engineering 
(Mcllroy et al. 1968). The strategy is to determine a solution through the composition of preexisting 
components. The analogy is with the composition of physical components. The assumptions under 
which this is an effective strategy are that there exists a framework into which all of the components will 
fit and that there exist components that together provide all of the appropriate functionality with the 
correct set of quality characteristics. This vision is still being explored; see Kung-Kiu and Zheng (2007) 
for a survey of the current state. It is possible, for example, to quickly build a web site using preexisting 
components and tools but only for relatively simple and common needs. Most software development 
still involves a substantial amount of component design and construction.

90.2.3.2 � SADT

SADT was the next decomposition strategy to be articulated (Marca and McGowan 1987). It is based on 
considering a hierarchy of function. SADT considers the user-visible functions and derives an organiza-
tion of those functions. That is, it groups functions that are similar, identifies the core functionalities 
that underlie a group of functions, and arranges them in a hierarchical structure.

The problem with SADT is that it does not accommodate future modifications to the system very 
well. Consider a financial system. Business processes are based around workflow, individual specialties, 
and a separate common database. Modifications such as changing the concept of a customer will be far 
ranging and will impact many portions of the system.

SADT lives on into the modern world in two manifestations. First, it has some similarities to feature 
modeling used in product lines (Kang et al. 1990) although product lines consider a collection of sys-
tems, whereas SADT is used for a single system. Second, SADT has similarities to the user stories used 
in some agile methodologies (Cohn 2004). The difference is that user stories are linked to a development 
methodology that involves rapid delivery and future refactoring to accommodate the problems associ-
ated with modifiability.

90.2.3.3 � Object Orientation

Object-oriented design (Wirfs-Brock and McKean 2002) is a design strategy that builds on the ideas of 
objects in object-oriented programming (Goldberg and Robson 1989). Object-oriented design’s basic 
decomposition strategy is to decompose the system into objects where the objects represent concepts 
that are likely to change over time. These objects are determined through examination of scenarios of 
use (use cases) (Cockburn 2000).

Each object is specified through the allocation of “responsibilities” to the object. A responsibility is 
an action the object will accomplish, a decision the object will make, or a piece of information the object 
will retain.
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Objects are encapsulated (Parnas 1972) to hide certain data and expose other data. The choice of data 
to hide is dictated partially by consideration of assumed changes. Any data that are likely to change 
over time should be hidden so that changing the data will not have ripple effects to the remainder of the 
system. This prevention of ripple effects is one of the main goals of encapsulation.

Object-oriented design is still a viable design strategy and is taught and written about. The problem 
with object-oriented design is that it privileges modification among the quality attributes. That is, the 
decomposition strategy is based on consideration of modification. As we will see in the next section, 
modifiability is one possible source of a decomposition strategy but there are others.

90.2.3.4 �A rchitecturally Significant Requirements

Object-oriented decomposition makes two assumptions:

	 1.	 The primary design drivers are potential changes.
	 2.	 Potential changes can be identified through the identification of objects.

Decomposition based on identification of architecturally significant requirements removes those two 
assumptions. Architecturally significant requirements (Obink et al.) are those requirements that drive the 
design. Typically, these are quality or business requirements that pertain to either run time or develop-
ment time.

When one examines a design after it has been completed, one can see the primary requirements that the 
design is attempting to achieve. This is a post facto recognition of the architecturally significant require-
ments. The assumption behind decomposition based on architecturally significant requirements is that 
the architecturally significant requirements can be discovered a priori. These requirements may be change 
requirements based on objects but they could also be specific change requirements or other quality attri-
bute requirements such as performance or availability requirements. In this way, decomposition based on 
architecturally significant requirements can be seen as a generalization of object-oriented decomposition. 
In Section 90.3.1, we will describe a technique for discovering the architecturally significant requirements.

90.2.4 � Generate and Test

Generate and test is a basic strategy of problem solving. An initial hypothesis is generated, it is tested 
against some set of criteria, and, depending on the results of the test, another hypothesis is generated 
and tested. In order for this strategy to be effective, successive hypotheses should converge to a solution. 
Hofmeister et al. 2007 describe this process as one of analysis (understanding the architecturally 
significant requirements), synthesis (creating a hypothesis), and evaluation (test).

Viewing the design strategy as a process of generate and test leads to three questions:

	 1.	 How is the initial hypothesis generated?
	 2.	 How is the hypothesis tested and when is the process complete?
	 3.	 How are the results of the tests used to generate the next hypothesis?

90.2.4.1 � Generating the Initial Hypothesis

The initial hypothesis depends on the context of the particular design. Some possibilities for generating 
the initial hypothesis are as follows:

•	 Base the initial hypothesis on an existing system. Many systems are similar to an existing system 
and basing the initial hypothesis on that existing system will enable the exploitation of the simi-
larities. The differences will come out in the test phase.

•	 Base the initial hypothesis on an existing framework. A great many software frameworks are 
available in a wide variety of domains ranging from automotive to web services to content man-
agement to gaming. These frameworks provide generic functionality within the domain and must 
be specialized for the particular system under design.
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•	 Base the initial hypothesis on an object-oriented decomposition. Although the object-oriented 
decomposition assumes that modifiability is the most important quality attribute, it typically is 
one of the most important. The testing phase will discover the shortcomings of a purely object-
oriented decomposition for the particular system being designed.

•	 Base the initial hypothesis on patterns or tactics. Basing the initial hypothesis on either patterns 
or tactics will lead to a very sparse design compared to the final design since patterns consider 
only a few requirements and tactics even fewer. Patterns and tactics do provide a place to begin, 
however, as opposed to a strictly random hypothesis.

90.2.4.2 �T esting the Hypothesis

Three activities are included in the test phase of generate and test—selecting the test cases, performing 
the tests, and deciding when the process is complete:

	 1.	 Selecting the test cases is a matter of choosing those requirements, both explicit and implicit, 
that will have the most impact on the design, that is, the architecturally significant requirements. 
Other test cases will depend on particular usage aspects of the system. For example, a mobile 
application should have a test case that specifies what happens when the application becomes 
disconnected and then is reconnected. Start up and shut down are specific usage test cases that 
are relevant for many large operations. Upgrading the system is relevant for those systems that 
require 24/7 access, and so forth.

	 2.	 The actual process of testing produces one of two outputs. Either the current hypothesis is satis-
factory for the test or some problems are determined. These problems are carried forward to the 
“generate next hypothesis.” The tests can be performed through means of increasing fidelity and 
cost. The choice of which type of test to perform depends on the costs and benefits of the testing 
type. The cheapest tests have the least fidelity. We present the tests in increasing order of cost and 
fidelity. The types of tests are as follows:

	 a.	 Thought experiments. These are the most common forms of performing tests on a design. A 
thought experiment is a walk-through of the design in response to particular stimuli. This is 
the fastest, cheapest, and the type of test with the least fidelity.

	 b.	 Analytic modeling. Creating a model of the current design will enable a variety of “what-if” 
types of analyses. Being able to create an analytic model depends on the type of requirement 
that one is testing. Well-accepted analytic models can be created for performance, for modifi-
ability, and for availability (see, e.g., Smith and Williams 2001). Other quality attributes are 
more difficult to model and the creation of these models is an active area of research. The 
fidelity of an analytic model will determine the accuracy of the model’s predictions.

	 c.	 Simulation. Creating a simulation of the current design enables more fidelity to be incorpo-
rated into the test than through an analytic model. Simulations allow what-ifs to be explored 
in much the same fashion as do analytic models. Analytic models may be difficult to solve and 
so creating a simulation will generate the test results through mimicking the operation of the 
system rather than through generating a closed form solution.

	 3.	 Deciding when the generate and test process has completed is the easy portion of the test step. The 
process is complete when either the requirements are satisfied or the budget for the design portion 
has been exhausted. In the latter case, the hypothesis that best satisfies the requirements is the 
hypothesis carried forward to the implementation phase.

90.2.4.3 � Generating the Next Hypothesis

The output of the testing phase is essentially a list of requirements that are not met by the current 
hypothesis. For each requirement not met, there will be either or both of responsibilities that are not 
covered in the current design and a measurement of how far the current design diverges from the quality 
attribute requirement.
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The next hypothesis should incorporate both responsibilities not covered in the current hypothesis 
and adjustments to improve the hypothesis with respect to quality attribute requirements:

•	 Additional responsibilities are either added to modules in the current hypothesis or to newly cre-
ated modules. If a new responsibility has coherence with the existing responsibilities in a module, 
it should be added to that module. If the new responsibility does not have coherence with the 
responsibilities in any existing module, then possibly a new module should be created for the new 
responsibilities. Since modules also act as work assignments for teams, a new module should only 
be created when there are sufficient responsibilities within it to assign to a team. Responsibilities 
that are left dangling because they do not cohere with existing responsibilities and are not large 
enough to justify the creation of a new module can be assigned arbitrarily.

•	 Adjusting the current hypothesis to improve its quality attribute performance is the reason for 
architectural tactics. Each architectural tactic provides additional responsibilities; movement of 
responsibilities from one module to another; combining, splitting, or creation of a new module; 
or adjustment of the properties of responsibilities, modules, or components.

One or more tactics are chosen and applied to improve the design, the responsibilities discovered miss-
ing from the testing phase are added to the current architecture, and the next test can be performed.

90.3 � Best Practices

A major practical problem for a designer is dealing with the masses of detail both in the requirements 
and in the design. This problem is manifested in three fashions—a designer must abstract the detail 
to enable the designer to have an overall grasp of the system and its requirements, the designer must 
produce the design incrementally since designing for all of the requirements at once is not possible for 
large systems, and design decisions must be recorded, ideally with rationale, since the designer makes 
too many decisions to remember them all.

Abstracting the masses of detail in the requirements is discussed in Chapter 86. Abstracting the 
detail from a design perspective is discussed in the next section and appropriate tooling is discussed in 
Section 90.3.3.

90.3.1 � Finding Architecturally Significant Requirements

Architecturally significant requirements are those requirements that drive the design, that is, they are 
the most important requirements. Deconstructing “important” yields two types of importance—
business and structural:

•	 From a business perspective, a requirement can be essential (the system is unacceptable if the 
requirement is not met), important (the system is acceptable but not as good as desired if the 
requirement is not met), and nice to have (the system is fine without it but the meeting of this 
requirement adds incremental value).

•	 From a structural perspective, a requirement can be overarching (the design would be substan-
tially different without this requirement), significant (the design would be somewhat different 
without this requirement), or insignificant (the design would be essentially the same without this 
requirement).

Using these two types of criteria provides a means for discovering architecturally significant require-
ments. For each requirement (both explicit and implicit), assign it a business rating and a structural 
rating as previously mentioned. Those requirements that are both essential and overarching are the 
architecturally significant requirements. Using a construct called the utility tree (Clements et al. 2002) 
enables the designer to structure the requirements based on the type of quality attribute that they sup-
port. The utility tree is not essential to discovering the architecturally significant requirements, but it 
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provides a structure that is useful for discovering requirements that are essentially the same from a 
quality attribute perspective. For example, if two requirements have the same required response time 
and take essentially the same path through the current hypothesis, the utility tree would enable the 
designer to discover the duplication.

90.3.2 � Combining Generate and Test and Decomposition

Both generate and test and the decomposition strategies we discussed as basic principles are motivated 
by limitations of humans. Generate and test is motivated by the reality that people cannot solve mul-
tivariate problems in their head where the number of variables is large. Viewing each requirement as a 
variable that the design must satisfy means that the design problem is one with thousands of degrees 
of freedom. Decomposition is also motivated by human limitations. The details of any design are dealt 
with through the use of abstraction. The initial decomposition is a solution to the most abstract form of 
the requirements and each subsequent decomposition provides solutions to more detailed forms of the 
requirements although for a smaller portion of the overall solution.

The two techniques can be combined. Generate and test decomposes the system. Restricting the 
requirements that drive generate and test to architecturally significant requirements will provide an ini-
tial decomposition. Each element of the initial decomposition can then, in turn, be further decomposed 
by finding the architecturally significant requirements for that element and using generate and test to 
decompose that element. This leads to the following approach:

	 1.	 Determine the architecturally significant requirements.
	 2.	 Use generate and test to determine the initial decomposition of the system to satisfy the architec-

turally significant requirements.
	 3.	 For each element of the current decomposition, do the following:
	 a.	 Determine the architecturally significant requirements that pertain to that element.
	 b.	 Use generate and test to develop a solution for the restricted architecturally significant 

requirements.
	 4.	 Iterate until either the requirements are satisfied or the time allocated for designing has elapsed.

The attribute directed design method (Bass et al. 2003) is a method that utilizes this combination of the 
two techniques.

90.3.3 �T ooling

Tooling is essential to support the design of a complicated system. There are three types of functions that 
a tool or tool chain must support:

	 1.	 The recording of design decisions and their rationale. Recording of decisions is done in two forms 
depending on the audience. During the execution of the design process, many decisions are being 
made. These decisions should be recorded but the audience for this recording is the designers dur-
ing the design process. The mass of detail in the design will overwhelm any individual’s memory, 
even from day to day. This is especially true when the choice between two decisions is essentially 
arbitrary. One option must be chosen to move forward but recalling which one was chosen the 
next day when a similar situation arises may be problematic. Almost any means can be used to 
record this class of decisions—an engineering notebook, a word processing system, or other ad 
hoc means. Since the only point of these recording is to supplement the designer’s short-term 
memory, the form does not matter. Tools for recording of design rationale have received renewed 
attention in recent years (Jansen and Bosch 2005, Kruchten et al. 2009).

		    At particular milestones during the design, especially after the completion of the design, deci-
sions will be exposed to a broader audience. The design will be evaluated, it will be presented 
to developers as a blueprint, and the designers will revisit it after some period of time. In this 



90-9Software Design Strategies

situation, more formality is needed in the recording of the design and the tooling should support 
this formality. Different views of the design are presented using different notations and the tool 
used should support much more formality than needed for the short-term recording of the design 
decisions. See Clements et al. (2010) for a discussion of various types of notations. Bachmann 
(2011) proposes using frequent and focused design reviews as a means for encouraging develop-
ment teams to develop documentation in an incremental fashion.

	 2.	 Traceability to requirements. A design is intended to provide a solution for a set of requirements. 
Some requirements will be explicit and others implicit. The explicit requirements will be recorded 
in some form and a tool should support the tracing of particular sets of design decisions back to 
the explicit requirements. This will enable review of the design to determine if it satisfies at least 
those requirements that have been made explicit.

	 3.	 Integration with the development tools. Creating a design is one step in the development process. 
The tool chain used in the development should provide a smooth integration from one step to the 
next and, perhaps more importantly, back. One problem with designs is that they diverge from the 
code. This happens over time because maintenance activities are performed on the code, frequently 
without simultaneously updating the design. An integrated tool chain would support the reflec-
tion of code modifications in the design (backward integration) as well as the movement from the 
design to the code (forward integration). How to accomplish this integration is a research question.

90.4 �R esearch Issues

The research issues involved in design revolve around tools and models. Models are necessary for auto-
matic and semiautomatic design. Even with manual design, however, design tools need to be integrated 
into a coherent tool chain.

90.4.1 �A utomatic/Semiautomatic Design

One research question is the extent to which a design process can be automated or semiautomated. 
Several factors make the problem of intelligently supporting the design process a difficult question:

•	 The size of the design space is huge. Every decision that is made during the design process adds 
another sub-tree to the set of possible solutions. Since a serious design may encompass thousands of 
decisions, the tree that represents the design space is huge. Also adding to the size of the design space 
is the fact that decisions are not commutative. That is, decision to split a module and then deciding 
to add a particular responsibility to one sub-module may yield a different result than adding that 
responsibility to the module prior to splitting it. From this, it is clear that any automatic or semiau-
tomatic design engine must have a very sophisticated method for navigating the design space.

•	 The navigation of the design space must be driven by the requirements. These include the quality 
and the business requirements as well as the functional requirements. The navigation engine must 
have models that will guide its decisions in considering its next moves. These models must be able 
to both deduce the properties of a hypothesis and relate these properties to the satisfaction of 
requirements and suggest transformations of the hypothesis to improve its behavior with respect 
to the requirements. For example, a particular hypothesis may be deficient in performance and 
the design engine must have a menu of options that will improve the performance of the next 
hypothesis with respect to that particular requirement. See Bachmann and Bass (2003) for one 
example of a semiautomated tool that relies on human intervention for navigation but provides 
information to the human based on quality attribute models to guide the navigation.

•	 Improving the performance of a hypothesis with respect to one requirement will have an impact 
on how well other requirements are satisfied. This puts any tool for navigating the design space 
in the realm of multi-attribute optimization. See Makki et al. (2008) for a discussion of how the 
design process can be cast as a multi-attribute decision process.
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90.4.2 � Models

As the discussion about automated or semiautomated tool support for design indicated, models are 
critical to support the design process. The models must relate requirements to the design. The type 
of requirements that affect the design, as was discussed in the section on architecturally significant 
requirements, are the quality attribute and the business requirements:

•	 Quality attribute models. The maturity of models for the different quality attributes is very dif-
ferent. Performance has the best models. Queuing models have existed for networked computer 
systems since the 1970s (Kleinrock 1975) and real-time scheduling models have existed at least 
since the early 1990s (Harbour et al. 1993). Models for other quality attributes are much less 
mature and applicable. Security, for example, has no models that relate the design of the system to 
the probability of a successful attack.

•	 Business models. Models that relate business requirements to design are currently restricted pri-
marily to cost models. Different design choices may be made depending on costs. Many busi-
ness requirements are manifested as quality attribute requirements, for example, requirements 
for long-lived systems can usually be translated into modifiability requirements. Other business 
requirements that impact design decisions, for example, improve the skill set of our employees, 
have no models that can be used to support various design decisions.

90.4.3 �T ool Chain

Design sits between requirements elicitation and implementation in the life cycle. There are a large num-
ber of tools to support requirements elicitation and tracing and also a large number of tools to support 
implementation and testing. Designs are frequently not kept up to date because modifications done to the 
code are not easily reflected back into the design. What is needed is a tool that supports the design process 
and integrates well with both the requirements tools and the implementation tools so that the designer and 
implementer can seamlessly move between their various activities. The design of such a tool is a research 
problem. IBM has experimented with the Architect’s Work Bench (Abrams et al. 2006) but that effort has 
ended. In addition to the process integrations attacked by the Architect’s Work Bench, there is an addi-
tional question of the most effective method for reflecting modifications to the code back to the design.

90.5 � Summary

Designing a system is a crucial step to realizing the vision articulated for that system. Humans are 
good at creative activities and computers and processes are good at organizing these activities. Design 
strategies are built around recognition of human limitations and an understanding of the forces that 
drive design.

Research issues in design are motivated by increasing the models of important elements of the design 
process and embedding those models in tools.
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91.1  Underlying Principles

The term architecture has been used for centuries to denote the art and science of designing buildings 
and structures. The term is applied in various different domains scope including building architecture, 
town planning, urban design, and landscape architecture. One of the earliest written works on the topic 
of architecture is De Architectura (On Architecture), which was published as Ten Books on Architecture, 
by the Roman architect Vitruvius in the early first century CE [10]. The work is a treatise on architecture 
and served as a guide for building projects. Currently, the work is one of the most important sources of 
knowledge of Roman building methods and the planning and design of both large and small structures, 
including buildings, aqueducts, baths, harbors, and machines. The concept of architecture has further 
evolved in the history through various traditions and regions.

The software engineering community has also adopted the term architecture to denote the gross-level 
design of software-intensive systems. The importance of high-level architectural structure was already 
acknowledged early in the history of software engineering. The first software programs were written for 
numerical calculations using programming languages that supported mathematical expressions and 
later algorithms and abstract data types. Programs written at that time served mainly one purpose and 
were relatively simple compared to the current large-scale diverse software systems. Over time, due to 
the increasing complexity and the increasing size of the applications, the global structure of the software 
system became an important issue.

Currently, it is not the algorithms and data structures that constitute the major design problems, but 
the construction of the systems from many components and the organization of the overall system [16]. 
Already in 1968, Dijkstra proposed the correct arrangement of the structure of software systems before 
simply programming [13]. He introduced the notion of layered structure in operating systems, in which 
related programs were grouped into separate layers, communicating with groups of programs in adjacent 
layers. Later, Parnas argued that the selected criteria for the decomposition of a system impact the structure 
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of the programs and several design principles must be followed to provide a good structure [27,28]. Within 
the software engineering community, there is now an increasing consensus that the architectural design 
of software systems is important to cope with the increased complexity and meet the stakeholder require-
ments properly. Without loss of generality, we can state that software architecture is recognized as a key 
determinant of project success. Without the right architecture, the project will likely fail.

91.1.1  Definition

In tandem with the increasing popularity of software architecture design, many definitions of architec-
ture have been introduced over the last decade, though a consensus on a standard definition is still not 
established. We think that the reason why so many and various definitions on software architectures 
exist is because every author approaches a different perspective of the same concept of software archi-
tecture and likewise provides a definition from that perspective. Notwithstanding the numerous defini-
tions, it appears that the prevailing definitions do not generally conflict with each other and commonly 
agree that software architecture represents the gross-level design of the software system consisting of 
components and relations among them.

The ISO/IEC 42010 (formerly IEEE 1471) Recommended Practice for Architectural Description of 
Software-Intensive Systems provides the following definition for software architecture [19]:

Architecture is the fundamental organization of a system embodied in its components, their rela-
tionships to each other, and to the environment, and the principles guiding its design and evolution.

Another recent definition is given in [8]:

The software architecture of a program or computing system is the structure or structures of the 
system, which comprise software elements, the externally visible properties of those elements, and 
the relationships among them.

There are plenty of other definitions, each focusing on different aspects. Based on the definitions 
in the literature, we consider the following definition of software architecture that includes the 
important aspects:

Architecture represents the gross level structure of software intensive systems, which consists of soft-
ware components and relationship among these components, including systemic design decisions and 
the rationale for these design decisions, to meet the set of concerns for the stakeholders.

The aforementioned definition has in fact three parts: (1) the structure and behavior of the system, (2) 
the design decisions that have led to the structure together with the rationale behind these design deci-
sions, and (3) the stakeholder concerns that govern the design decisions and shape the architecture. The 
term component here is used as an abstraction of different interpretations and likewise may refer to sub-
systems, processes, software modules, hardware components, or any element that has systemic behav-
ior. In a similar sense, relations may refer to data flows, control flows, call relations, part of relations, etc.

91.1.2 R ationale for Architecture

Software architecture is an abstract representation that serves various purposes. We list the following:

•	 Architecture helps to understand the system
An important concern in software projects is the understanding of the system and its properties. 
Software architecture is a high-level abstraction of the system that abstracts away from the irrel-
evant details and as such can facilitate the understandability.
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•	 Architecture supports communication among stakeholders
Software architecture can be used as a common abstraction that stakeholders can use to com-
municate and discuss the system properties. A stakeholder is defined as an individual, team, or 
organization with interests in, or concerns relative to, a system. Each of the stakeholders’ concerns 
impacts the early design decisions that the architect makes. Architectural drivers [26] define the 
concerns of the stakeholders that shape the architecture.

•	 Architecture serves as a basis for the subsequent phases of the life cycle process
Architecture defines the gross-level structure of the system to which the subsequent life cycle 
detailed design and code artifacts should conform. Likewise, architecture defines the boundaries 
of the system and provides the constraints for the implementation. Further, the software architec-
ture is used to guide the subsequent life cycle activities and help to achieve integrity of the system.

•	 Architecture supports the quality requirements
It is important that the architecture design supports the software system quality requirements that 
are required by the various stakeholders. Since software architecture represents the earliest design 
decisions about a system, architecture can be used to define and reason about the quality attributes. 
In addition, software architecture can be used to analyze the risks, sensitivity points, and trade-offs.

•	 Architecture serves as a means for supporting the organization
The motivation for architecture-driven development is not just for technical reasons but also for 
organizational reasons. Architecture defines the gross-level structure of the system that can be 
used to support work allocation, budget planning, and development structure of the project.

91.2 A rchitecture Modeling

Every system has an architecture whether it is complex or not. If the architecture is modeled, we can 
control it and benefit from an architecture-driven development. Initially, software architecture was rep-
resented using arbitrary box-and-lines notations leading to ambiguous interpretations. As such, very 
soon, it was acknowledged to provide more formal support for architectural modeling, both visually and 
textually. Together with the quest for more formal approaches, a widespread awareness has established 
stating that architecture should be modeled based on architecturally significant requirements (architec-
ture drivers). These requirements are systemic in nature and usually concern the overall system or the 
large part of the system. Modifiability and performance requirements are examples of architecturally 
significant requirements. This need for modeling the architecture for different stakeholders has led to 
the notion of architectural views that is a representation of a system for a particular concern. Having 
multiple views of the architecture helps to separate the concerns and as such support the modeling, 
understanding, communication, and analysis of the software architecture for different stakeholders. 
Architectural views conform to viewpoints that represent the conventions for constructing and using 
a view. It is now common practice to model and document different architectural views for describing 
the architecture according to the stakeholders’ concerns [4,8,11,17,22,32,33,37]. An architectural view 
is a representation of a set of system elements and relations associated with them to support a particu-
lar concern. Having multiple views helps to separate the concerns and as such support the modeling, 
understanding, communication, and analysis of the software architecture for different stakeholders. 
Architectural views conform to viewpoints that represent the conventions for constructing and using a 
view. An architecture framework is defined as the coordinated set of viewpoints that are used to define 
the views. A more precise definition of architecture framework is given in the ISO standard [21]:

Conventions, principles, and practices for the description of architectures established within a 
specific domain of application and/or community of stakeholders

Different architectural frameworks have been proposed in the literature. Examples of architectural 
frameworks include Kruchten’s 4+1 view model [22], the Siemens Four View Model [17], and the Views 
and Beyond (V&B) approach [8]. An example list of architecture frameworks is shown in Table 91.1.
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Initially, architectural frameworks were proposed with a fixed set of viewpoints. Because of the different 
concerns that need to be addressed for different systems, the current trend recognizes that the set of views 
should not be fixed but multiple viewpoints might be introduced instead. As such, recent architectural 
frameworks such as the V&B approach provide mechanisms to adapt existing viewpoints or to add new 
viewpoints. Organizing the system as a set of viewpoints has also been addressed in enterprise applica-
tion system using the so-called enterprise architecture frameworks. Examples include the early Zachman 
Framework for Enterprise Architecture [39], The Open Group Architecture Framework (TOGAF) [38], 
and the ISO (ISO/IEC 10746) Reference Model of Open Distributed Processing (RM-ODP) [30].

So far, most architectural viewpoints seem to have been primarily used either to support the com-
munication among stakeholders or at the best to provide a blueprint for the detailed design. From a 
historical perspective, it can be observed that viewpoints defined later are more precise and consistent 
than the earlier approaches but a close analysis shows that even existing viewpoints lack some precision. 
Moreover, since existing frameworks provide mechanisms to add new viewpoints, the risk of intro-
ducing imprecise viewpoints is high. The development of a proper and effective architecture is highly 
dependent on the corresponding documentation. An incomplete or imprecise viewpoint will impede 
the understanding and application of the viewpoints to derive the corresponding architectural views 
and likewise lower the quality of the architectural document.

In Figure 91.1, we show the conceptual model for architectural view modeling that is based on the 
ISO/IEC 42010 recommended standard for architectural description [19]. The left part of the figure 
shows basically the definition of the architectural drivers. A system has one or more stakeholders who 
have interest in the system with respect to one or more concerns. Concerns can be functional concerns 
or quality concerns. The right part of the figure focuses on the architectural views for the different 
concerns. Each system has an architecture, which is described by an architectural description. The 
architectural description consists of a set of views that correspond to their viewpoints. Viewpoints aim 
to address the stakeholder’s concerns. Functional concerns will define the dominant decomposition 

TABLE 91.1  Example Architecture Frameworks

Architecture Framework Viewpoints

Rational unified process/
Kruchten’s 4+1 [22]

1. The logical view contains the key abstractions from the problem domain
2. �The implementation view represents the system from a programmer’s 

perspective and includes the implementation units
3. The process view documents the tasks—processes and threads
4. �The deployment view documents the various physical nodes for the most 

typical platform configurations
5. �The use case view or “plus-one view” contains use cases and scenarios of 

architecturally significant behavior
V&B approach [8] Three style categories

1. Module styles—How it is structured as a set of implementation units
2. �Component-and-connector (C&C) styles—How it is structured as a set of 

elements that have runtime behavior and interactions
3. Allocation styles—How it relates to nonsoftware structures in its environment

RM-ODP [33] 1. The enterprise viewpoint describes the business requirements
2. �The information viewpoint describes the information managed by the system 

and the structure and content type of the supporting data
3. �The computational viewpoint describes the functionality provided by the 

system and its functional decomposition
4. �The engineering viewpoint describes the distribution of processing performed 

by the system to manage the information and provide the functionality
5. �The technology viewpoint describes the technologies chosen to provide the 

processing, functionality and presentation of information
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along architectural units that are mainly functional in nature. On the other hand, quality concerns 
will define the dominant decomposition of the architecture along architectural units that explicitly 
represent quality concerns.

91.3 A rchitecture Design Methods

Various different software architecture design methods have been published in the literature. In general, 
the architecture design process is defined early in the software life cycle process. The main activities and 
a global architecture design process are given in Figure 91.2.

The process is typically defined as an iterative process in which one can iterate to previous activities 
if needed. In the succeeding text, we describe the activities.

91.3.1 A nalyze Concerns

As stated before, architecturally significant requirements define the concerns of the stakeholders that 
shape the architecture. To analyze the concerns, first, the stakeholders must be identified and their con-
cerns must be elicited. After analyzing and consolidating the elicited concerns, the concerns must be 
explicitly represented for guiding the subsequent architecture design activities.

91.3.2 A nalyze Domain

Domain analysis can be defined as the process of identifying, capturing, and organizing domain knowl-
edge about the problem domain with the purpose of making it reusable when creating new systems [1,9]. 
The UML glossary provides the following definition of the term domain:

Domain: An area of knowledge or activity characterized by a set of concepts and terminology 
understood by practitioners in that area.

A survey of domain analysis methods shows that these methods include the similar kind of activities. 
Figure 91.3 represents the common structure of domain analysis methods as it has been derived from 
survey studies on domain analysis methods [1,9].

Stakeholder

System
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Concerns

Functional
concerns

Architecture

Architectural
description

Viewpoint

Quality
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Addressed
by

View

Organized by

Has

Described by
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1.. 

Selects

Conforms

Has1.. 
1.. 

1.. 1.. 

FIGURE 91.1  Conceptual model for architectural views based on ISO/IEC 42010.
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Conventional domain analysis methods consist generally of the activities Domain Scoping and 
Domain Modeling: Domain Scoping identifies the domains of interest, the stakeholders, and their goals 
and defines the scope of the domain. Domain Modeling is the activity for representing the domain, or 
the domain model. The domain model can be represented in different forms such as object-oriented 
language, algebraic specifications, rules, and conceptual models. Typically, a domain model is formed 
through a commonality and variability analysis to concepts in the domain. A domain model is used as a 
basis for engineering components intended for use in multiple applications within the domain.

1. Analyze concerns

1b. Elicit
      stakeholders concerns

1b. Analyze
      stakeholders concerns

2. Analyze domain

3. Design the architecture

4. Evaluate the architecture

4a. Define concerns and
      quality criteria

4b. Analyze the
      architecture

4c. Provide analysis
      report

5. Realize the architecture

1d. Model
      stakeholders concerns

2a. De�ne the scope of the
      domain

2c. Analyze knowledge
      sources

2b. Identify knowledge
      sources

2d. Provide
      domain model

3a. Select architecture
      framework 3c. De�ne architecture views

3b. Select architecture
      viewpoints from
      framework

3d. Align and consolidate
      architecture views

3e. Describe information
      beyond views

3f. Document architecture

1a. Identify
stakeholders

FIGURE 91.2  Example software architecture design process.
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This activity results in a thorough understanding of the domain in which new concerns that were 
overlooked in the previous activity can be identified. For this, one can iterate back to the previous activ-
ity of concern analysis to update the identified concerns.

91.3.3 A rchitecture Design

Once the stakeholder concerns and the domain has been understood and modeled, the architecture 
design can be started. In this context, as stated before, the notion of viewpoint plays an important 
role in modeling and documenting architectures. Before the design process can begin, an architec-
ture framework needs to be selected that contains the viewpoints with which the architecture views 

Select/identify concerns

Identify the domains

Collect the relevant information
from the domains

Commonality and variability
analysis

Provide domain model

Evaluate domain model

Reuse
domain model

[Domain
modeled]

[Domain not
modeled]

[Discovered
new domains]

Domain scoping Domain modeling Domain reuse

FIGURE 91.3  Common structure of domain analysis methods.
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will be modeled. Sometimes, new viewpoints might need to be added if the existing viewpoints are 
limited in modeling the stakeholder concerns. In this respect, we can distinguish between viewpoint 
designer and viewpoint user (Figure 91.4). The viewpoint designer either designs new viewpoints or 
selects viewpoints from an existing architecture framework. The viewpoint user is the software architect 
who uses the viewpoints to document the architecture. Viewpoint designer and viewpoint users are 
roles and can represent the same architect or architecture team.

After the selection of the viewpoints, the architecture views need to be aligned with each other for 
consistency [39]. Typically, this includes checking whether the elements in each view map to other ele-
ments of related views.

During the design, one might identify the need for new concerns or analysis of domains that were 
not identified before. As such, iterating to the activity Analyze Concerns and/or Analyze Domain can be 
necessary.

91.3.4 A rchitecture Evaluation

The architecture forms one of the key artifacts in the entire software development life cycle since it 
embodies the earliest design decisions and includes the gross-level components that directly impact 
the subsequent analysis, design, and implementation. The key concerns of an architecture are defined 
by stakeholders, an individual, team, or organization with interests in, or concerns relative to, a sys-
tem. Each of the stakeholders’ concerns impacts the early design decisions that the architect makes. 
To ensure that the concerns have been properly addressed, the architecture needs to be evaluated with 
respect to the defined concerns. For this, the concerns and the quality criteria are identified. Based on 
these, the architecture will be evaluated and an impact analysis report will be provided. The result of 
the evaluation process might require iteration to activities Analyze Concerns, Analyze Domain, and 
Architecture Design. We elaborate on the evaluation process in Section 91.4.

91.3.5 A rchitecture Realization

The final step of the architecture development cycle is the realization of the architecture.
To realize the important architecture design concerns, one of the key goals of software architecture 

design is to serve as a guideline for the subsequent life cycle activities. Based on the architecture design, 
the detailed design and subsequent activities can be carried out. Figure 91.5 shows the relationships 
among these concepts. An architecture description is defined using architecture views and addresses a 
set of concerns. The architecture is followed by the detailed design that realizes the architecture and that 

Defines Software
architecture view

Software
architecture
viewpoints

Viewpoint designer/selector

Conforms to

Defines/selects

Viewpoint user

FIGURE 91.4  Viewpoint definition and view development for MPL.
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is subsequently realized by code. To preserve the benefits of the architecture, it is important to keep the 
life cycle artifacts consistent with the architecture.

Software systems are rarely static and need to evolve over time due to bug fixes or new requirements. 
These required changes might lead to a situation in which the realization of the architecture (in the 
detailed design and code) is different from the architecture description itself. As such, the benefits of an 
architecture-driven software development approach will be lost. A proper documentation of the archi-
tecture is important to minimize the cost of software maintenance. Despite this, the evolution of the 
system and likewise the discrepancy between the architecture description and the resulting implemen-
tation will be highly probable. The discrepancy between the architecture description and the architec-
ture realization is usually referred to as architectural drift or architecture degeneration. This architecture 
drift can be even introduced during the initial implementation of the architecture due to lack of knowl-
edge about the architecture or stringent time-to-market constraints. Even if the initial implementation 
of the architecture is properly aligned with the architecture description, the constant need for new 
requirements very often leads to a situation that can lead to architecture drift.

The existence of discrepancies among the architecture description and its implementation is not a 
mere theoretical issue, but it may directly lead to increased maintenance time and cost, because the 
original design goals have been lost. In the extreme cases, a system’s architecture may even deteriorate to 
a degree where further development is not feasible, leading to a complete system reimplementation. As 
such, preferably conformance checking of the architecture description and the implementation should 
be exercised over the architecture of a system during development and maintenance, with the aim of 
enforcing architecture consistency.

91.4 A rchitecture Evaluation

In the previous section, we have discussed the generic approach for designing software architec-
ture. Various other architecture design approaches can be found in the literature. In this context, 
Hofmeister et al. [18] also provide a model of software architecture design approaches. The aim of 

Architecture
framework

Architecture
viewpoint

Architectural
view

Detailed
design

Architectural
description

Governs

Conforms to

Realized by

1.. Concern
Addresses

Code

Realized by

1.. 

FIGURE 91.5  Relation between architecture viewpoint, architecture view, and detailed design.
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all these architecture design approaches is to design a software architecture that meets the stake-
holder goals. Since architecture is critical for the success of a project, different architectural evalua-
tion approaches have also been introduced to evaluate the stakeholders’ concerns. A comprehensive 
overview and comparison of architecture analysis methods have been given by, for example, Dobrica 
et al. [10], and Babar et al. [2]. Kazman et al. [20] have provided a set of criteria for comparing the foun-
dations underlying different methods, the effectiveness and usability of methods. Figure 91.6 provides 
a conceptual model that relates the architectural concepts with the architecture evaluation approach. 
Although different architecture evaluation approaches have been proposed in the literature, we can 
state that most of these follow the model as defined in Figure 91.6. In essence, each architecture evalu-
ation approach takes as input the stakeholder concerns, the environment issues, and the architecture 
description. Based on these inputs, the evaluation results in an architecture evaluation report, which is 
used to adapt the architecture.

Figure 91.7 shows the generic conceptual process for architecture evaluation that has been based 
on the proposed architecture evaluation approaches. Each architecture evaluation approach appears 
to take as input the architecture and the quality criteria that need to be evaluated. If the architecture 
meets the criteria, then a decision can be made to realize the architecture, if not, then a refactoring of the 
architecture is required. Architecture evaluation approaches usually differ with respect to, for example, 
the goal of the approach, the type of inputs, the evaluation techniques, the addressed quality attributes, 
the stakeholders involvement, the ordering of activities, and the output results [2,20].

91.5 R esearch Issues

It is now generally accepted that software architecture design plays a fundamental role in coping with 
the inherent difficulties of the development of large-scale and complex software systems. Research on 
architecture design in the last two decades has resulted in different useful techniques and approaches. 
Different architectural modeling approaches for representing multiple views of the architecture have 
been proposed. Multiple architectural patterns have been introduced in literature to support the quality 

Architecture
evaluation approach

System
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Architecture evaluation
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Has interests in

Concern
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Architecture
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1.. 

1.. 
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FIGURE 91.6  Conceptual model for software architecture analysis.
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of architecture [3,6,22]. A broad range of architecture analysis approaches has been proposed to ana-
lyze the architecture before it is implemented [15,34]. We can state that the software architect is now 
equipped with a broad set of techniques to design a software architecture that aims to meet the stake-
holder concerns. Using these approaches, the software architect makes a wide range of design decisions 
that leads to the selection of a particular design alternative. Yet, there are indeed still challenging issues 
in the state of the practice and different research questions need to be tackled in the architecture design 
community [35]. We list some of the important research directions:

91.5.1  Modeling Quality Concerns

In the literature, initially a fixed set of viewpoints has been proposed to model and document the archi-
tecture. Because of the different concerns that need to be addressed for various systems, the current 
trend recognizes that the set of views should not be fixed but open-ended. An important example in this 
context is the V&B approach as proposed by Clements et al. [8]. Hereby, the authors propose the notion 
of architectural style that is a specialization of architectural element types and relationship types, along 
with any constraints. The notion of styles makes the V&B approach adaptable and open-ended since 
the architect is not bound to a fixed set of views but can in principle define any style that is needed. 
Certainly, existing architectural modeling approaches are important for representing the structure and 

Quality criteria

Evaluate architecture

Architecture

Realize architecture

[architecture meets
quality criteria]

Architecture design

[architecture does not
meet quality criteria]

Identify quality criteria

FIGURE 91.7  Generic architecture evaluation process.
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functionality of the system and are necessary to document the architecture systematically. An analysis 
of the existing multiview approaches reveals that they are primarily focused on functional concerns and 
appear to be incomplete when considering nonfunctional concerns [40]. The ISO/IEC 42010 standard 
is intentionally not specific with respect to concerns that can be addressed by views. In approaches 
such as the V&B approach, nonfunctional concerns appear to be implicit in the different views but 
no specific style has been proposed for this yet. One could argue that for addressing nonfunctional 
concerns, software architecture analysis approaches have been introduced. The difficulty here is that 
these approaches usually apply a separate quality model, such as queuing networks or process algebra, 
to analyze the quality properties. Although these models represent often precise calculations, they do 
not depict the decomposition of the architecture, and an additional translation from the evaluation of 
the quality model needs to be performed. To represent nonfunctional concerns more explicitly, archi-
tectural views should also be able to model the decomposition of the architecture based on the required 
nonfunctional concern. Viewpoints for nonfunctional concerns will typically overlap or crosscut exist-
ing viewpoints based on functional concerns. The crosscutting nature of nonfunctional concerns can 
be both observed within an architectural view and across architectural views. Aspect-oriented software 
development (AOSD) promotes the separation of crosscutting concerns to increase modularity. Hereby, 
crosscutting concerns are separately represented as first-class abstractions (aspects) and woven into the 
base code. To cope with the crosscutting concerns at the architecture design level, we believe that AOSD 
techniques are necessary [6].

Appropriate models for quality concerns can support the architecture design process to design for 
quality. In addition, different approaches have been defined that provide guidelines for designing for 
various qualities. Architectural Perspectives [32] are a collection of activities, tactics, and guidelines 
to modify a set of existing views to document and analyze quality properties. Architectural perspec-
tives as such are basically guidelines that work on multiple views together. An important observation 
hereby is that the crosscutting nature of quality concerns can be both observed within an architec-
tural view and across architectural views. Architectural tactics [3] aim at identifying architectural 
decisions related to a quality attribute requirement and composing these into an architecture design. 
Defining explicit viewpoints for quality concerns can help to model and reason about the application 
of architectural tactics.

91.5.2  Model-Driven Approach for Architecture Design

Architecture design is basically about modeling the system from different perspectives. Historically, 
models have had a long tradition in software engineering and have been widely used in software projects. 
The primary reason for modeling is usually defined as a means for communication, analysis, or guid-
ing the production process. Models are different in nature and quality and different classifications of 
models have been provided in the literature. Mellor et al. [25] make a distinction between three kinds 
of models, depending on their level of precision. A model can be considered as a sketch, as a blueprint, 
or as an executable. According to [25], an executable model is a model that has everything required to 
produce the desired functionality of a single domain. Executable models are more precise than sketches 
or blueprints and can be interpreted by model compilers. A similar classification of models is defined 
by Fowler [15] who suggests a distinction based on three levels of models, namely, conceptual models, 
specification models, and implementation models.

In model-driven software development, the concept of models can be considered as executable mod-
els as defined by the aforementioned characterization of Mellor et al. [25,34]. In model-driven software 
development, models are not mere documentation but become “code” that are executable and that can 
be used to generate even more refined models or code. This is in contrast to model-based software devel-
opment in which models are used as blueprints at the most.

The language in which models are expressed is defined by metamodels. As such, a model is said to be 
an instance of a metamodel, or a model conforms to a metamodel. A metamodel itself is a model that 
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conforms to a meta-metamodel, the language for defining metamodels [12,13,23]. Given the different 
levels in which the models reside in model-driven development, models are usually organized in a four-
layered architecture. The top (M3) level in this model is the so-called meta-metamodel and defines the 
basic concepts from which specific metamodels are created at the meta (M2) level. Normal user models 
are regarded as residing at the M1 level, whereas real-world concepts reside at level M0.

In fact, we can state that the current architectural modeling practices can be categorized as model-
based development, rather than model-driven development. In the last two to three decades, architec-
tural modeling and the corresponding notations have evolved from simple sketches to more precise 
models as defined by architectural view concept. Yet, the view models can usually not be considered 
as executable models. Moreover, the link between architectural models and the link from architectural 
models are merely implicit and not formal [12].

In architecture modeling literature, the notion of metamodel is not explicitly used. Nevertheless, 
the concepts related to architectural description are formalized and standardized in ISO/IEC 
42010:2007, a fast-track adoption by ISO of IEEE-Std 1471-2000, Recommended Practice for 
Architecture Description of Software-Intensive Systems [21]. The standard holds that an architecture 
description consists of a set of views, each of which conforms to a viewpoint, but it has deliberately 
chosen not to define a particular viewpoint. Here, the concept of view appears to be at the same 
level as the concept of model in the model-driven development approach. The concept of viewpoint, 
representing the language for expressing views, appears to be on the level of metamodel. Although 
the ISO/IEC 42010 standard does not really use the terminology of model-driven development, the 
concepts as described in the standard seem to align with the concepts in the metamodeling frame-
work. In Figure 91.8, we provide a partial view of the standard that has been organized around the 
metamodeling framework. An Architecture Description is a concrete artifact that documents the 
Architecture of a System of Interest. The concepts System of Interest and Architecture reside at layer 
M0. System of Interest defines a system for which an Architecture is defined. Architecture is described 
using Architectural Description that resides at level M1. Architectural Description includes one or 
more Architectural Views that represent the system from particular stakeholder concern’s perspec-
tive. Architectural views are described based on Architectural Viewpoint, the language for the cor-
responding view. Architectural Viewpoints are organized in Architectural Framework. The latter two 
reside at level M2. The standard does not provide a concept that we could consider at level M3, and as 
such we have omitted this in Figure 91.8.
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Architectural
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FIGURE 91.8  Architectural description concepts from a metamodeling perspective.
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91.6  Summary

In this chapter, we have defined an overview of software architecture design. We have focused on three 
basic topics including software architecture modeling, software architecture design methods, and soft-
ware architecture evaluation.

Software architecture modeling has evolved from informal box-and-line drawings to extensive 
architecture frameworks that include various viewpoints for modeling the architecture based on the 
concerns of stakeholders. Different architecture frameworks have been introduced in the literature, 
each with its own set of viewpoints. Earlier frameworks assumed a fixed set of viewpoints from which 
the architect can select the required ones to model the architecture. Recent approaches such as the 
V&B approach adopt an open-ended approach in which new viewpoints can be designed if deemed 
necessary.

The process of software architecture design usually starts in the early phases of the software devel-
opment life cycle. Various architecture design methods have been introduced. We have identified 
five key activities that can be observed in most architecture design methods. The activities include 
Analyzing Concerns, Analyze Domain, Architecture Design, Evaluate Architecture, and Architecture 
Realization.

Once the architecture is designed, it can be evaluated based on quality criteria. The evaluation results 
in impact analysis report that might require refactoring the architecture to align it with the defined 
quality criteria.

Key Terms

Architectural (architecture) pattern: “An architectural pattern expresses a fundamental structural 
organization schema for software systems. It provides a set of predefined subsystems, speci-
fies their responsibilities, and includes rules and guidelines for organizing the relationships 
between them” [5, p. 12].

Architecture description language (ADL): A language for representing a software and/or system archi-
tecture. ADLs are usually graphical languages that provide semantics that enable analysis and 
reasoning about architectures, often using associated tools.

Architecture framework: “Conventions and common practices for architecture description established 
within a specific domain or stakeholder community” (ISO/IEC 42010:2007).TOGAF and 
DoDAF are examples of architecture frameworks.

Architecture stakeholder: An individual, team, or organization with interests in, or concerns relative 
to, a system.

Concern: Any matter of interest that is held by a stakeholder.
Module: An implementation unit of software that provides a coherent set of responsibilities.
Relation: A definition of how elements cooperate to accomplish the work of the system. The description 

of a relation names the relations among elements and provides rules on how elements can and 
cannot be related.

Resource: A function, method, data stream, global variable, message end point, event trigger, or any 
addressable facility within an interface.

Software architecture: The fundamental organization of a system embodied in its components, their 
relationships to each other, and to the environment, and the principles guiding its design 
and evolution.

View: A representation of a set of system elements and relations among them.
Viewpoint: ISO 42010 defines a viewpoint as a work product establishing the conventions for the con-

struction, interpretation, and use of architecture views and associated architecture models.
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92.1  Speech Interface Design

A speech application is considered effective if it simulates the core aspects of human conversation. 
Language is deeply entrenched in human behavior; therefore, a successful speech interface should 
be based on the different ways that people use speech to communicate. Language conventions that 
help people know what they should say next should be adopted when creating speech applications 
(Weinschenk, 2003).
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92.1.1  Introduction to Speech Application Development

Human–computer interaction (HCI) focuses on the interaction between humans and computers. This 
can be done by studying the current design of technology and how it could be redesigned to make 
technology more user-friendly, more interesting, and engaging. One of the best ways to achieve this is 
through speech. Integrating speech in an application is a vast benefit because speech is natural. Speaking 
is a skill humans acquire at an early age and is something we as humans practice quite frequently. The 
naturalness of a conversation refers to the way that people cooperate with each other in order to ensure 
successful communication. A speech application is considered effective if it simulates the core aspects 
of human–human conversation. Language is deeply entrenched in human behavior; therefore, a suc-
cessful speech interface should be based on the different ways that people use speech to communicate. 
Language conventions that help people know what they should say next should be adopted when creat-
ing speech applications (Weinschenk, 2003).

92.1.1.1  When Is Speech Used?

When determining the success of a speech application, whether or not using speech input is beneficial 
is a crucial factor. When using a speech application, the user’s expectations are high; therefore, speech 
only needs to be used when the need is clear. When the users are enthusiastic about cooperating, a 
speech application is most successful (Weinschenk, 2003). For example, airline companies successfully 
use speech recognition to automate checking flight statuses. People checking flight statuses want to do 
this as quickly as possible, so they listen and answer the prompts very carefully. People checking flight 
statuses are also motivated to cooperate, because they do not want to miss any important information, 
such as a gate change. Automated systems assist the users and save companies’ money as well. Speech is 
suitable for some tasks, but not for others. Table 92.1 lists when speech input and output are appropriate 
to use (Weinschenk, 2003).

92.1.1.1.1  Speech Challenges
According to Weinschenk et al., using a speech application poses many substantial challenges, and 
understanding these challenges and the various trade-offs help to produce an effective interface. Six 
challenges were identified, which are as follows:

•	 What did you say? Once it has been heard or said, it’s gone. Since speech is transient, only a limited 
number of items in a list can be remembered and a user may forget important information that 
were given at the beginning of a sentence. This is also true when speaking to a dictation system. 
The users sometimes forget what they have just spoken. The ability to remember transient infor-
mation has substantial implication for speech interface design.

TABLE 92.1  When Is Speech Input Appropriate?

Use When Avoid When

Users have a physical disability (e.g., seizures) Users work in noisy environment
No keyboard is available (e.g., phone) Task can be accomplished more efficiently using 

keyboard and mouse
Users are unable to type or are not 

comfortable with typing
Task requires users to engage in conversation 

with others while using the application
Task requires the user’s hands to be occupied 

(e.g., driving)
Information is personal or confidential

Task requires user’s eyes to be looking at 
something other than the screen

Large amounts of information need be presented

Situation requires getting the user’s attention Task requires the user to do a comparison
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•	 What can I say? In a speech application, the lack of visibility makes it challenging to communicate 
the functional boundaries of the application to the user. Furthermore, it is challenging to tell the user 
what actions can be performed and what words or phrases they can use to perform these actions.

•	 Asymmetry. People are able to speak easily and quickly, but cannot listen as easy and quickly. This 
means that we as humans can speak faster than we type but listen more slowly than we can read. 
Asymmetry produces an implication for “the type and the amount of information to speak” when 
designing speech interfaces.

•	 Feedback and Latency. Timing is very important when having a conversation. People read into the 
meaning behind pauses. Pauses in places where they naturally do not belong causes unfortunate 
processing delays in speech applications. For example, a user may reply to a prompt and because 
the system may take a long time to respond, then the user will think the system did not hear them 
and repeat the response again. This will cause the system to return the wrong response or the user 
to miss the systems response.

•	 Prompting. Well-designed prompts in a speech application provide the user with a smooth interac-
tion. When designing prompts, many things have to be considered. Good design is accomplished by 
assessing the trade-off between performance and flexibility. The more the user is constrained on what 
they can say to an application, the chances of recognition errors are decreased. However, allowing the 
users to answer flexibly can speed up the interaction and makes the conversation feel more natural.

•	 Handling Errors. The quality of users experiences depend on how a system is able to handle recog-
nition errors. If the users or the application notices an error, the speech interface should be able to 
provide a way for correcting the error. The most important thing not to do when handling these 
errors is to repeat the same error message if the users encounter the same rejection error in a row.

92.1.1.2  Speech Recognition

Today, when we call most companies, a person does not answer the phone, an automated machine does. 
The automated machine instructs the user how to move through the menu of options using touchtone 
keys or voice, allowing the user to say certain commands or keywords. This is done by speech recogni-
tion, the technology that enables computers or other electronic systems to understand human speech 
(Sharma, 2002). Speech recognition systems have two main functions: to understand the words spoken 
by the user and convert the spoken words to text for future use and to convert text to speech (TTS) for 
information access (Weinschenk, 2003). Speech recognition can be divided into two different categories: 
continuous and discrete.

92.1.1.2.1  Continuous versus Discrete
Continuous recognition allows the user to engage with the system in an everyday manner without 
using specific commands. Using this type of recognition makes the system error prone and extremely 
expensive. Discrete recognition allows the user to use a limited vocabulary of single words and phrases. 
Discrete vocabulary is easy to learn and produces higher accuracy rates; however, it is not as natural 
(Weinschenk, 2003).

92.1.1.2.2  Recognition Challenges
Speech application design, with its concerns for understanding human language, interpreting different 
dialects, intonations, and speaking speed, makes speech application design a great research area. The 
difficulties just listed are a few of the challenges faced for understanding human utterances. The follow-
ing sections explain the challenges of recognition performance and flexibility versus accuracy.

92.1.1.2.2.1  Performance  When designing a speech application, a big challenge is working with an 
imperfect speech recognizer. The biggest challenges for recognition performance are background 
noise, accents, and ambiguity. Background noises and utterances can interfere or distort the input that 
user gives to the system. The variations of different users’ voices such as accents can also decrease the 
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accuracy of the speech recognition system (Carroll, 2009). The larger the vocabulary or grammar of a 
speech recognition system the chances of ambiguity increases. Although the strings may be different 
when spoken by the user, they might sound alike and therefore the wrong output will be given (Cohen, 
2004). Even though speech recognizers are improving consistently, it is very unlikely that in the foresee-
able future it will be as robust as they are in science fiction movies. There are some recognition systems 
that over time adapt to their users, but in order to have good recognition performance, the system needs 
users who are willing to adapt their speech needs to the recognition system (Weinschenk, 2003).

92.1.1.2.2.2  Flexibility versus Accuracy  The more flexible an application is, the more likely errors are to 
occur. Flexible systems allow the users to speak a command in various ways. When designing a speech 
application, there must be a balance between flexibility and recognition accuracy (Weinschenk, 2003). 
For example, a car application may allow the user to change the radio station as follows:

•	 Change to one oh one point three f m please.
•	 Can you please go to one hundred one point three?
•	 Go to station one oh one point three f m.
•	 Please change the station to one hundred one point three.

In theory, this may be the natural but if the recognition performance is poor, users will not be in favor of 
using the application. Accepting a variety of ways to complete a task can offer flexibility without causing 
the recognition performance to decrease (Weinschenk, 2003).

92.1.1.3  Speech Synthesis

A speech synthesizer, synonymous with TTS, converts written TTS (Sharma, 2002). Speech synthesis is 
complementary to speech recognition (Carroll, 2009). The history of speech synthesis surpasses that of 
speech recognition but is still progressing today. It is used as a screen reader and provides verbal instruc-
tion, feedback, or assistance (Weinschenk, 2003). Speech synthesis can be broken into two categories: 
concatenated and formant.

92.1.1.3.1  Concatenated versus Formant
Concatenated synthesis uses segments of recorded human speech and pieces them together to pro-
duce meaningful speech output (Sharma, 2002). Using concatenated synthesis produces a more natural 
sound. Having a human reader read segments of speech and storing the segment of speech is the process 
for creating concatenated synthesizers. This type of synthesis is used for systems that require a small 
vocabulary (Weinschenk, 2003). Formant synthesis uses a set of guidelines that control audio wave-
forms that simulate human speech. Formant synthesis creates true machine-generated speech that often 
sounds like a robot. This form of synthesis is used in most TTS applications (Sharma, 2002).

92.1.1.3.2  Synthesis Limitations
Speech synthesizers can make errors at any given time. Here is a list of some of the sources of error in 
producing TTS output (Weinschenk, 2003).

•	 Structure analysis: The beginning and end of paragraphs and sentences are inconsistently indi-
cated due to punctuation and formatting.

•	 Text preprocessing: The speech synthesizer cannot know all the possible abbreviation and acro-
nyms. It also cannot determine all the ways things such as time and dates can be written.

•	 Text-to-phoneme conversion: Although speech synthesizers can pronounce a lot of words cor-
rectly, there are still some words that it has to guess.

•	 Prosody analysis: Speech synthesizers try to guess the emphasis that a human uses on correctly 
phrasing a sentence and sometimes the output sounds artificial and unnatural.

•	 Waveform production: Due to the fact that speech synthesizers do not have lips, mouths, lungs, 
and other things used in human speech, they often produce speech that is mechanical.
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92.1.1.3.3  Evaluating Synthesis
Being able to evaluate speech synthesis quality and understanding the factors that can affect the output 
are important in the utilization of speech synthesis (Weinschenk, 2003). The measures of the quality of 
synthesized speech are (Cohen, 2004) as follows:

•	 Intelligibility: An indication of how well the listener understands the words and sentences spoken 
by the synthesizer.

•	 Naturalness: An indication of the extent of how much the synthesized speech sounds like a 
human.

•	 Accuracy: An indication of how correct the speech synthesizer is at converting TTS.
•	 Listenability: An indication of how long and well the users can listen to the speech synthesizer for 

an extended amount of time without becoming tired.

92.1.2 A pplication Development Process

A voice–user interface (VUI) is an application with which a person interacts using her or his voice 
(Guang-li, 2011). These interfaces are evaluated based on how well they perform when interacting with 
various people. A system is said to perform well when it returns the correct responses to a user without 
lagging, making mistakes, and/or causing frustration. Other vital factors to consider are solving the 
problem, communicating naturally, and user satisfaction (Cohen, 2004). The accuracy of VUIs depends 
heavily on how well the application was designed and on how well the speech recognizer can parse 
through the input. Because most people speak, and speak often, designing an application to respond 
well to natural speech is often severely underestimated. Designing a machine that understands and 
communicates using natural language to provide a seamless user experience is a major undertaking. 
Responding well to natural speech is one of the most substantial challenges a VUI designer faces. 
Approaching VUI design in a similar way as a software engineer approaches designing software enables 
quicker development time, and upon application, completion results in a better user experience.

92.1.2.1 T hink about the Problem: Requirements Analysis

In order to develop an application, the requirements must first be understood. Requirements Engineering 
(RE) is the systematic process of developing requirements through an iterative cooperative process. The 
process entails analyzing the problem, documenting the resulting observations in a variety of represen-
tation formats, and checking the accuracy of the understanding gained (Loucopoulos, 1995).

This section of the development process often begins with a mission statement and becomes more 
elaborate through studies and meetings with prospective clients (Rosson, 2002). The result of this effort 
is a full list of all functions and features the system must satisfy. Requirements analysis is an ongoing 
process but many users cannot declare or understand their real needs until they see what kind of options 
are available. According to (Rosson, 2002), “Usability engineers participate in requirements analysis by 
studying how work currently takes place to see if they can identify problems or opportunities that might 
be addressed by new technology.”

Scenarios or narratives are also often used during requirements analysis because they evoke reflec-
tion and conversation. Additionally, scenarios foster mutual understanding among the different groups 
who participate in the analysis (Rosson, 2002).

92.1.2.2  VUI Design

Once the problem is clear, designers can begin to envisage solutions. “The field of human-computer 
interaction (HCI) is concerned with the joined performance of tasks by humans and computational 
machines” (Hewett, 1996). Some would say that HCI’s major contribution to the field of computer sci-
ence is the design, evaluation, and implementation of interactive computing systems for human use 
(Hewett, 1996).
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Speech technology has improved significantly within the last decade where it has become pos-
sible and rather preferable to integrate voice into applications. Using voice as a means of interaction 
with a technology has its advantages over the traditional input/output modalities. Certain environ-
ments such as applications developed for in-vehicle use encourage the use of voice over the tradi-
tional input/output modalities. Designing VUIs differs from graphical user interface (GUI) design 
(Yankelovich, 1995).

While visual sketches are fundamental in GUI design to mock up user experience with an applica-
tion, designers of VUIs find it vital to understand people’s natural conversational styles and commu-
nications. A well-designed voice interface dialogue does not violate natural conversation behaviors. 
A natural dialogue would be one that simulates a natural conversation with the user without influencing 
the voice input. For example, a system would say, “what would you like to eat?” instead of prompting the 
user with “do you want an apple or an orange?” While the latter is restricting, the first example simu-
lates more natural interaction. It is vital that VUI designers put together a dialogue that prompts and 
allows for natural navigation. The design of such a dialogue would consist of scenarios represented by a 
flowchart of in/output prompts.

As with any other input modality, using voice to place information into an application isn’t perfectly 
reliable. Errors in speech input are encountered in myriad ways. Noise is one of the more troublesome 
challenges for speech application input. Another major challenge is the limitations of the applications 
grammar. A well-designed VUI allows a seamless workaround for these major challenges that does not 
frustrate the user (Yankelovich, 1998).

A VUI should be intuitive and complement human communication. A user would be easily frustrated 
if miscommunication and misunderstanding were too frequent while interacting with a VUI. Humans 
are wired to use speech to communication needs and desires among each other. A voice application 
should be able to attend to that need and deal with miscommunications smoothly. A VUI design fails 
if the user could detect the application’s inefficiency in handling errors and completing tasks for which 
it was designed.

As aforementioned, errors occur when interacting with voice applications. A designer should incor-
porate prompts in the application to sympathetically aid the user. The user, with the systems help, should 
be able to backtrack to the point before miscommunication and continue interactions.

92.1.2.3  Implementation

One of the main aspects of speech application design is the grammar. The grammar tells your 
speech recognition application that to which it should listen. Once the system knows that to which 
it should listen, you can program an application to respond to utterances. Because humans gener-
ally communicate through speech, a good grammar is designed to process natural language. In 
order to implement a speech design, you need a speech recognition application and be able to build 
a grammar.

92.1.2.3.1  Grammar
A grammar consists of an organized list of rules specifying the words or phrases that can be used for 
that particular speech recognition system. The list of rules gives the guidelines for the applications 
spoken input. These guidelines are used to predict the possible speech input that the user will give and 
also restricts the words or phrases that the system can recognize. Grammars can be written in one of 
two forms: a grammar file or an inline script. A grammar file is an external file that holds the words 
and phrases for your speech recognition system. An inline script is within the actual code of the speech 
recognition application (Microsoft, 2004a).

A grammar limits vocabulary, filters response recognition, matches speech, and identifies rules. The 
grammar only contains the words or phrases that the system needs to successfully match the user’s 
speech input. An application might only need to recognize a small set of words and the grammar 
prevents the system from having to search an entire dictionary. By specifying a group of words in 
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a grammar, the recognition accuracy may also increase. Using a grammar also filters the results by 
only returning a successful recognition event only if the grammar is matched. Even though grammar 
structures need to be flexible for the user, it also needs to restrict the users input for a specific situation 
or task. Grammars have rules or entities that define and give order to the possible words, phrases, or 
utterances of the user. The rules can be referenced repeatedly within the particular grammar or rules 
in other grammars. Grammars can define all combinations of how to say a phrase in a single rule 
(Microsoft, 2004b).

Grammars can be written in various formats such as GSL, XML, JSGF, and ABNF. All grammars 
are constructed by using five basic operators. Table 92.2 describes how the operators are used in GSL 
(Nuance, 2001). The symbols A, B, C, and D denote a grammar or word name in the table.

Here are some GSL expressions and some of the phrase they describe: [coffee juice tea] matches “cof-
fee,” “juice,” or “tea;” (I would like [coffee juice tea]) matches “I would like coffee,” “I would like juice,” or 
“I would like tea;” (?(I would like) [coffee juice tea]) matches “I would like coffee,” “I would like juice,” “I 
would like tea,” or simply “coffee,” “juice,” or “tea;” and (thanks + very much) matches “thanks very much,” 
“thanks very very much,” etc.

92.1.2.3.2  Highlighted Speech Platforms and APIs
Some easily available tools that enable speech application design for the web and desktop are Web-
Accessible Multimodal Applications (WAMI) by MIT and Dragon NaturallySpeaking by Nuance. These 
tools are highlighted because of their good reputation and their ability to aid in the design of speech appli-
cations. WAMI is a speech platform that is available to use for free online. Dragon NaturallySpeaking is 
considered the state of the art for personal speech recognition. The following paragraphs further explain 
how WAMI and Dragon NaturallySpeaking can aid speech application design.

92.1.2.3.2.1  Web  WAMI is a JavaScript API that allows a user to add speech recognition capabilities 
to a website. WAMI was developed by MIT’s Computer Science and Artificial Intelligence (CSAIL) 
Spoken Language Systems group. WAMI provides developers with a sufficient set of components 
to build a web-based multimodal interface. WAMI is designed to ease the development of multi-
modal interfaces with modest natural language understanding needs. Grammars are written using 
the Java Speech Grammar Format (JSGF) standard. WAMI can be used to produce applications on 
recent versions of Firefox, Opera, Safari, or Internet Explorer on a Windows, Linux, or OS X system 
(McGraw, 2008).

92.1.2.3.2.2  Desktop  Dragon NaturallySpeaking is a speech platform created by Nuance. It allows the 
user to converse with the computer instead of typing. While the user is talking, whatever they are saying 
is transcribed to the screen and into documents or e-mail messages. Dragon can be used to compose 
letters and memos and send e-mail message. Dragon can also be used to do things such as enter data 
in forms or spreadsheets, work on the web, start programs, and open menus. Using Dragon boosts 
the productivity of your application. Personalizing Dragon’s vocabulary is easy and very important for 
productivity because it preempts recognition errors. Correcting Dragon’s errors will also help it learn. 
The more Dragon is used, the more it learns and adapts to the user in terms of acoustics and vocabulary 
(Nuance, 2012).

TABLE 92.2  Grammar Specification Language Operators

Operator Expressions Meaning

() concatenation (A B C D) A and B and C and D
[] disjunction [A B C D] One of A or B or C or D
? optional ?B B is optional
+ positive closure +C One or more repetitions of C
* Kleene closure *D Zero or more repetitions of D



92-8 Software Modeling, Analysis, and Design

92.1.2.4  VUI Evaluation

A VUI designer should have a clear understanding of what the purpose of the application is and what 
needs to be accomplished when accessing the application. Any interruption that stops a user from 
accomplishing the task would negatively affect the experience. VUI designers should always aim to 
achieve higher user satisfaction. User satisfaction could be evaluated and measured via questionnaires, 
interviews, and focus groups. There are two ways to evaluate a VUI, a summative and a formative evalu-
ation. A summative evaluation is one that takes place once after the application has been developed. 
Data collected from this evaluation are used to improve the next version of the VUI. A formative evalu-
ation is one that takes place several times while the system is being developed and appears as part of the 
prototyping application. There are several ways to measure task succession. One is running a number of 
pilot studies to smooth out any wrinkles in interaction flow. A designer should calculate task completion 
time and evaluate the system’s ability to fix errors.

92.1.2.5  Wizard of Oz

The Wizard of Oz (WOZ) is a method of system prototyping where a human experimenter sits behind 
the scenes and interacts with the user on behalf of the system. This method is useful in trying to under-
stand the interaction that the user would expect under near perfect conditions. Since system prompts 
are simulated via the human experimenter, the interaction behavior between both the participant and 
the experimenter depends heavily on the believability of the wizard. Therefore, the user would have dif-
ferent interactions based upon the believability of the wizard. The two major ways of evaluating a VUI 
are summative and formative. Summative evaluation is an informal and is performed at the end of the 
interface development phase. The data collected are usually used at the next major release. Formative 
evaluations are more formal procedures that occur during prototyping.

92.1.2.6  Usability Measures

The best method for measuring the usability of a system is through observation. This method requires 
analyzers to observe the system during broad situations that closely match the predicted usage pat-
terns. One issue with this method is the amount of effort needed to construct a robust prototype 
(Campos, 2003).

Obviously, analytical methods do not solve usability issues, but they do help generate early feedback 
about interactive systems. It is valuable to attain as much feedback as possible before expensive decisions 
are made. Analytical techniques can be used with informal representations of the design, such as a sto-
ryboards or wireframes. It should be noted that the feedback attained from this method alone is seldom 
enough to provide adequate specifications for programming the system (Campos, 2003). There are a few 
issues associated with informal methods. Informal methods are difficult to perform systematically and 
should only be used by someone who has sufficient expertise.

Two common methods for measuring usability include usability inspection and cognitive walk-
through. The inspection involves an examination of the design representation using a sequence of stan-
dard questions. Although both methods involve a systematic set of questions, the walkthrough actually 
requires an initial representation of how the system will be used. This is due to the fact that the walk-
through questions are related to the task representations (Table 92.3).

TABLE 92.3  Sample Questions for Assessing Usability

Sample Usability Questions

Is the system easy to use (circle the most appropriate response)?
Strongly agree Agree Neutral Disagree Strongly disagree
How satisfied are you with this system (circle the most appropriate response)?
Very satisfied Satisfied Neutral Unsatisfied Very unsatisfied
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The usability inspection method uses heuristic evaluation. This approach systematically inspects the 
system using a set of best practice guidelines. A team of evaluators, preferably not those involved in the 
design process, is assembled to perform the heuristic evaluation (Table 92.4). A sample of best practice 
guidelines used by Microsoft can be found in the succeeding text. Once the team of expert evaluators is 
assembled, they perform their assessment based on the design guidelines and aggregate the results. By 
aggregating results from multiple evaluators, a more comprehensive evaluation is created.

Because the usability inspection method does not explicitly mention how the system is to be used, a 
cognitive walkthrough is sometimes useful (Campos and Harrison, 2003). The purpose of a cognitive 
walkthrough is to assess how well an interface will guide users in performing a task. In order for this to 
be effective, the expected tasks must be identified and there must be a model of the interface that allows 
these tasks to be performed. According to Campos and Harrison (2003), the assessment is achieved 
through answering the following three key questions at each stage of interaction:

•	 Will the correct action be made sufficiently evident to users?
•	 Will users connect the correct actin’s description with that they are trying to achieve?
•	 Will users interpret the system’s response to the chosen action correctly?

They also state usage models documenting predicted courses of action for the user is a prerequisite. If 
“no” is an answer to any of these questions, it exposes a problem that will be addressed.

92.2 R esearch Issues and Future Development

Previous sections of this chapter have introduced design strategies and tools targeted toward develop-
ers. In this section, however, user-focused applications take center stage. Here, we present a general 
overview of the speech technology application landscape with signs pointing toward more specialized 
readings. Broad classes of real-world applications of VUIs in the past and present are explored, and 
based on the trajectory defined by these developments, a brief glimpse into the future of speech applica-
tions is described.

92.2.1  Speech Technology Applications: Then

When referring to speech applications “then,” we refer to applications that accomplish the most fun-
damental tasks that allow for the existence of speech systems. Stored voice applications allow for the 
recording and playback of recognizable human language. Synthesized speech applications are enabling 
applications that allow for the mechanic or digital production of human-like speech. The final type of 
fundamental speech application, or speech application “then,” is those that are able to listen to human 
speech and in some form understand utterances. Speech applications “then” consist of systems that 
store voice information for later listening, synthesize speech, and recognize words or interactive voice 
response (IVR) systems.

TABLE 92.4  Microsoft’s Lessons in the Art of Automated Conversation

Selected Best Practice Guidelines for Speech Interfaces

1. Make It Real
Users come with their own set of terminologies (?), metaphors, and organizational structures in mind. This is 
known as their mental model, or expectation of the interaction. Usable applications tap into this knowledge to 
give users a head start in understanding how to interact with the application.

2. Clearly and Consistently Communicate System Capabilities
VUIs must be carefully designed to help users understand the capabilities of the system. Interfaces need to 
unobtrusively guide users to speak predictable utterances and avoid the unconstrained conversational speech 
that we use talking to another person. The goal is to achieve a natural conversation within the technological 
boundaries of speech recognition.
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92.2.1.1  Stored Voice and Interactive Voice Response Systems

Among the most widely used speech technology systems are those that permit both the storage and the 
playback of human (or human-like) voices. Systems of this kind, in fact, have been in existence for at 
least 150 years (Feaster, 2009). Stored voice applications use limited speech collections as “read only” 
data in which individual sounds, or responses, are mapped to specific user actions, or input (Schmandt, 
1993). Stored voice applications are most appropriately used when the set of acceptable responses is 
finite. Example categories of stored voice applications, which may use either synthesized speech or digi-
tally recorded human speech as output, are the following: playback-only applications, interactive record 
and playback applications, dictation applications, and multimedia/multimodal applications (Rodman, 
1999; Schmandt, 1993, 1999).

92.2.1.1.1  Interactive Voice Response Systems
The deployment of VUIs, especially for use over the telephone, has grown rapidly over the past decade, 
and incentives for both corporations and their clients have stimulated this growth (Cohen, 2004). The 
quintessential example of this general observation is the IVR system, or call center.

92.2.1.2  Speech Synthesis Applications

Speech synthesis is one of the oldest branches of speech technology research. Speech synthesis (i.e., TTS) 
systems have applications in many different domains, including telecommunications (see Section 92.1.1), 
public safety, entertainment, and education (Rodman, 1999). In addition, aid for the disabled is a small, but 
very important, application niche. Synthetic speech systems can be used by the blind or visually impaired. 
These systems provide computer access, to read, and to manage personal productivity (Schmandt, 
1993). Those who have lost the ability to speak by traditional means can also use synthetic speech systems. 
Theoretical physicist Stephen Hawkins, who lives with a form of amyotrophic lateral sclerosis (ALS), or 
“Lou Gehrig’s disease,” is one of the most famous users of speech synthesis technology (Lange, 2012).

92.2.2  Speech in the Automobile: Speech Applications “Now”

Speech technologies “now” refer to speech applications that take the fundamental speech applications 
and allow a person to interface with devices. One of the main thrusts of a lot of speech application 
design research for speech technologies “now” is for speech applications in the automobile.

The increase in the electronics within many vehicles can be attributed to the fact that automobiles 
have become more than just a means of transportation and for many people have become a multifunc-
tional living space (Kern, 2009). Reducing distraction and cognitive load is the main thrust for design-
ing speech application in the automobile.

92.2.2.1 R educing Distraction

Any task whether cognitively, physically, or visually demanding can have a significant influence on 
driver distraction (Young, 2007). However, unlike other input modalities, like direct touch or gestures, 
the speech input does not require drivers to take their hands off the steering wheel and eliminates much 
of the overall difficulty of manual device interactions (Gruenstein, 2009). Even more, researchers have 
found speech to perform better than other input modalities for text input (Ablassmeier, 2006; Camilli, 
2011; Maciej, 2009). Ford motor company has done a considerable amount of work in developing a VUI 
for their vehicles (Rana, 2010).

92.2.2.2  Design to Reduce Cognitive Load

Speech as an input modality is very effective; however, if improperly designed, it can increase cognitive 
loads. When used as an output modality, Christiansen et al. demonstrated that even though auditory 
feedback had the fewest eye glances, it had the longest completion times, and the authors state that 
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“listening to audio output while driving causes an increase in the cognitive load of the driver, thereby 
drawing mental resources away from the task of driving” (Christiansen, 2011).

92.2.2.2.1  Evaluating Speech Interfaces in the Vehicle
Usability measures should be collected using standardized tools such as the system usability scale 
(Lewis, 2009) or the technology acceptance model (Venkatesh, 2003). These questionnaires assess the 
overall perception of the system from the user’s perspective and are decisive indicator of the possible 
acceptance of the system in real-life scenarios.

92.2.2.3 T oward Tomorrow

It has also been noted that many auditory and speech alerts are clearly useful when the driver is not 
looking at an interface. However, additional research will be necessary to ensure that these alerts are not 
masked by other auditory information (Kramer, 2007).

Currently, handling speech in the automobile is a rich area of research and with increased 
developments in natural language processing and automotive user interfaces, speech research and 
developments in the automobile will flourish.

92.2.3  Future of Speech Application Design

Like most technologies, speech application design can be improved by incorporating aspects of comple-
mentary technologies. Current speech application design is limited. A limit is the inability of current 
speech applications to distinguish one person from another and the inability to determine a speaker’s 
mood in order to manage their affect. Integrating biometrics and affective technologies, speech applica-
tion design can be improved.

In order to make speech applications more acceptable for users of all kinds, it is necessary to use them 
in conjunction with other technologies. As HCI designers, we want to use technologies that improve and 
enhance the usability of our applications. Adding security features and basing responses on user affect 
are two fantastic ways to improve the efficacy of speech applications. Voice biometrics is the modality that 
uses spoken utterances, as do speech applications, and affective technologies can use voice, facial expres-
sions, body language, and many other human responses and physiological factors. One of the main things 
that biometrics and affective computing have in common is they take physiological aspects of humans 
and find patterns from these aspects that help recognize or understand people. The next couple of sections 
will speak to the usage of voice biometrics and affective computing in conjunction with speech interfaces.

92.2.3.1  Biometrics

Biometrics is the science of measuring the patterns of life. Biometrics is quantitatively taking measure-
ments of physiological and behavioral aspects of humans and using them for tasks of identification or 
classification. Biometrics can be physiological or behavioral. A single type of biometric reading, physi-
ological or behavioral, is referred to as a modality. Some of the physical modalities are fingerprint, iris, 
face, periocular, hand, finger geometry, odor, ear, and DNA (Jain, 2004). Some of the behavioral modali-
ties (those included in direct and indirect HCI biometrics) are keystroke dynamics, mouse dynamics, 
haptic, programming style, audit logs, GUI interaction, and call stack. Yampolskiy and Govindaraju 
have come up with a definition for direct and indirect HCI biometrics and give examples of several 
modalities. Direct HCI biometrics are modalities that evaluate a person based on abilities, style, pref-
erence, knowledge, and strategy. Indirect HCI biometrics are those deduced from behaviors recorded 
when a person interacts with technology (Yampolskiy, 2007).

92.2.3.1.1  Biometrics HCI Concerns
Biometrics is a science that can make people uncomfortable because it learns them on a very intimate 
level. For example, fingerprint is a modality that makes people uncomfortable because law enforcement 
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uses it when registering people upon arrest. Hence, making people submit their fingerprint in order to 
access a location or service has negative connotations.

Considering HCI concerns with respect to biometrics allows us choose modalities whose connota-
tions are not inherently negative and helps find uses of negative modalities in a manner that are less 
abhorrent to users (Wertheim, 2010). Gamboa and Fred also use HCI techniques to create behavioral 
biometric modalities. Given the previous work with respect to HCI and biometrics, how do we leverage 
the research to improve speech application design (Gamboa, 2003)? The most obvious way is incorpo-
rate voice biometrics into speech application design practices.

92.2.3.1.2  Voice Biometrics
The biometric modality that makes the most sense to use with speech applications is voice. Voice 
biometrics is a science that leverages the intricacies of the voice for the purposes of recognition and 
classification.

Voice biometrics, like most biometric modalities, comes in two recognition-based flavors: speaker 
verification and speaker identification. Voice has the four main requirements to be a biometric modal-
ity: distinctiveness, universality, permanence, and collectability. The systems employing this biometric 
modality operate similarly to all biometrics systems, which have four major components: sensor, feature 
extractor, matcher, and system database (Jain, 2004). In order to use voice biometrics with speech appli-
cation design, these components must be included.

92.2.3.1.3  Speech Application Design Using Voice Biometrics
A speech application can prompt the user for their name and after making sure this name is in the sys-
tem database prompt for other information, but the system may also be able to verify the speaker with 
the identity claim alone. Once the speaker is verified, they will be privy to using the system further. 
Markowitz writes about a case study involving a company Girl Tech, Inc. that makes products Door Pass 
and Password Journal (Markowitz, 2000). Both Door Pass and Password Journal use speaker verification 
to keep a door locked or a journal closed.

Obtaining useful information from a biometric signature that is or isn’t adequate for authentication 
or identification is referred to as soft biometrics (Ross, 2007). Soft biometrics deals with the classification 
of people into groups based on similar attributes. Incorporating voice biometrics in speech applications 
takes speech applications to the next level.

92.2.3.1.4  A Look at the State of the Art
Voice biometrics has been steadily improving for over a decade (González-Rodríguez, 2008; Markowitz, 
2008; Miller, 2012). Recently, a company has improved speaker verification using state-of-the-art recog-
nition technology in conjunction with a smartphone (Miller, 2012). This new technology boasts that it 
accepts the incorrect user (false accept rate—FAR) once out of 10,000 times and rejects the correct user 
(false rejection rate—FRR) five times out of one hundred. Affective computing isn’t a biometric modal-
ity, but using it in conjunction with voice biometrics can provide more secure and usable applications 
than voice biometrics alone.

92.2.3.2 A ffective Computing

Affective computing attempts to recognize emotions and uses what it recognizes to improve a user’s 
computing experience (Wu, 2010). Affective computing uses sensors to capture information. From the 
sensors, algorithms analyze the information in the context of the situation in which the data were cap-
tured (Healey, 1998). Because the data are analyzed in context, it can be labeled to match emotions and 
feelings a user has when his or her data are recorded. A system is created that uses the information 
learned from previous sensor readings and is able to understand what a user is feeling. Facial expression 
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is an important and often used indicator of mood. Galvanic skin response (GSR) is another popular 
indicator of mood. Facial expression information can be captured by camera, whereas specialized sen-
sors must be attached or worn to capture GSR data.

92.2.3.2.1  Affect Improving Speech Applications
Affect can improve speech applications in a couple of ways. There are sensors that can be worn similar 
to wristwatches or gloves that record GSR data (Affectiva, 2012; Strauss, 2005). Using a wireless version 
of one of these sensors in conjunction with a speech application, the system would be able to cause the 
voice to respond to changes in a user’s mood. Affective technology can improve speech applications and 
design by keeping track of user engagement or alertness. There are many more ways affective technology 
can improve and complement speech applications but that is for future research.
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93.1 � Introduction

In this chapter, we introduce software assurance, discussing the impact of software on our lives, the 
risks associated with software vulnerabilities, and some basic definitions of software assurance. We 
then introduce modern principles of software assurance, along with historical principles of software 
assurance. With this background in hand, we were able to identify a number of process models, frame-
works, and best practices that were relevant to software assurance. Finally, we identify a research 
framework that could be used to support current research and to identify gap areas for future research.

93.2  What Is Software Assurance?

Formal practices to ensure correct software date back at least 40 years (Royce 1970). America’s official 
interest in secure software dates back 9 years to Action Recommendation 2–14 in the National Strategy 
to Secure Cyberspace (DHS 2003). So if the aim of the prior 40-year practices was not to ensure that our 
code was secure, what were we trying to do? That work was to ensure the quality of the software product. 
To serve that aim, practices to validate product correctness have become an integral part of the industry. 
Likewise, because of the long history of software quality assurance, there is a seemingly endless list of 
assurance practices, which have always been considered part of the software life cycle. Activities such as 
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design practices (adopted in 1972), inspections (1976), change management (1979), incremental integra-
tion (1979), branch coverage testing (1979), and source code control (1980), which predate today’s inter-
est in security by decades, are often included in the steps for developing secure code (McConnell 2005).

What has happened over the past decade to change the emphasis from quality assurance to security 
assurance? The answer to that question lies in the appearance of the adversary. Prior to 2000, developers’ 
only concern was to develop products that worked right under ordinary circumstances. Therefore, the 
aim of the software engineering process was to ensure properly functioning code. The fact that defects 
might be present did not matter as long as the product satisfied user requirements and functioned prop-
erly. However, when every bad actor on the planet began using the Internet as an avenue of attack, it 
became insufficient that the code only works right. Now software has to be free of all exploitable defects. 
Defects that might not have been worth fixing in the past if they did not affect operation may now rep-
resent a pathway for trouble. That changes the focus of the software assurance process from quality to 
security. This chapter will center on the shift in the definition of terms that results from this change in 
focus as well as the newest models and methods for finding and fixing exploitable defects in software.

93.2.1  Changing the Assurance Focus to Security

According to the US Committee on National Security Systems’ (CNSS) National Information Assurance 
(IA) Glossary, software assurance is “the level of confidence that software is free from vulnerabilities, 
either intentionally designed into the software or accidentally inserted at any time during its life cycle, 
and that the software functions in the intended manner” (CNSS 2010, p. 56). In addition, a report from 
the USC Center for Systems and Software Engineering (CSSE) says that software assurance amounts to 
the addition of concrete functionality to secure the product (Colbert and Yu 2006). That includes the 
complete set of additional development activities from specification through design and on to code 
that are aimed at ensuring security functionality. Finally, a Department of Homeland Security (DHS) 
report suggests that the purpose of the assurance process is to build software-based systems that “limit 
the damage resulting from any failures caused by attack-triggered faults, ensuring that the effects of 
any attack are not propagated, and recover as quickly as possible from those failures as well as ensur-
ing that the software will continue to operate correctly in the presence of most attacks by resisting the 
exploitation of weaknesses in the software by the attacker, or by tolerating the failures that result from 
such exploits” (Redwine et al. 2007). For the purpose of developing a curriculum model for software 
assurance in the Master of Software Assurance Reference Curriculum report, the CNSS definition was 
expanded as follows (Mead et al. 2010):

Application of technologies and processes to achieve a required level of confidence that software 
systems and services function in the intended manner, are free from accidental or intentional vul-
nerabilities, provide security capabilities appropriate to the threat environment, and recover from 
intrusions and failures.

The expanded definition emphasizes the importance of both technologies and processes in software 
assurance, observes that computing capabilities may be acquired through services as well as new devel-
opment, recognizes that security capabilities must be appropriate to the expected threat environment, 
and identifies recovery from intrusions and failures as an important capability for organizational con-
tinuity and survival.

These definitions all suggest that software assurance involves the execution of a well-defined process 
to ensure that all vulnerabilities are identified and actively mitigated and that the everyday software 
development, sustainment, and acquisition processes always follow good security practices. However, in 
addition to finding and fixing faults in the product and process, another important software assurance 
role is to field software-based systems that limit the damage resulting from any failures caused by attack-
triggered faults. The objective of this activity is to ensure that defects that represent vulnerabilities are 
identified, that the effects of any subsequent attack are not propagated, and that the system recovers as 
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quickly as possible from those attacks. The aim of this type of assurance is to ensure that the system 
continues to operate correctly in the presence of most attacks. This correct operation can be achieved by 
either establishing functions to resist the exploitation of weaknesses in the software or by building soft-
ware functions that will tolerate the failures that result from such exploits. This shifts the purpose of the 
software assurance process from the simple identification and remediation of identifiable vulnerabilities 
to the establishment of real-time survivability and recovery in the product. Thus, for our purposes, the 
goal of software assurance is to ensure comprehensive organizational capability in the specification, 
design, and coding of the software, as well as in the development of specific security functionality to 
minimize damage from any unforeseen attacks and ensure a systematic recovery.

93.3  Why Does Software Assurance Matter?

The General Accounting Office (GAO) summarized the security concerns associated with software 
organizations in a March 2012 report. Software issues fall into five categories. Each category has slightly 
different implications for product integrity: “Installation of malicious logic on hardware or software, 
installation of counterfeit hardware or software, failure or disruption in the production or distribution 
of a critical product or service, reliance upon a malicious or unqualified service provider for the perfor-
mance of a technical service and installation of unintentional vulnerabilities on software or hardware” 
(GAO 2012, p.1).

Embedding a malicious object in a product is always a hostile act that fulfills some specific purpose. 
Malicious objects are by definition not part of the intended functionality. Therefore, in order to find and 
eliminate any instance of malicious objects, which should be a high priority for any software customer, 
rigorous testing and inspection is required. Because it is hard enough to ensure the quality and security 
of the functions that should be present in a piece of software, it is asking a lot to expect that functions 
that should not be present are also identified and eliminated. Therefore, it is almost impossible to esti-
mate how much malicious code currently resides in software products. Because the decision to embed 
a piece of malicious logic in a product is intentional, one of the most effective ways to ensure against 
the presence of such objects is to maintain strict oversight and control over the software development, 
sustainment, and acquisition work.

Some suppliers use counterfeit parts to save money or supply a feature that the maker is otherwise 
incapable of providing. Counterfeit parts can appear at any stage in the development and sustainment 
of any information and communication technology product. While counterfeits execute product func-
tions as intended, they threaten product security and integrity because they are not the same as the 
actual part. As a result, counterfeits embody shortcuts in product quality or security that can fail in 
many ways. Because they function like the original part, it is often hard to spot a counterfeit in a large 
array of legitimate components. Consequently, it is critical that the customer for the part fully and com-
pletely understands their suppliers’ business and technical practices prior to engaging in any use of their 
products. A capability model is particularly helpful in enforcing that understanding since it establishes 
a common and auditable basis among both organizations.

The problems caused by breakdowns in the supply chain mirror the problems encountered in con-
ventional manufacturing, in that the failure lies in the inability to do the work because a component is 
missing. From the standpoint of product security, a failure to deliver a critical part prevents the software 
product from being used, which is the equivalent of a denial of service in conventional security terms. 
So efforts to mitigate security risks or risks to product integrity tend to concentrate on identifying and 
managing single points of failure. Capability models help in that respect because they establish com-
mon management functions designed to monitor and control the overall process of construction or 
maintenance.

From a technical service standpoint, the focus is on learning whether the supplier’s operation is capa-
ble of delivering the product as specified. Since supplier capability is at the center of any acquisition or 
outsourcing decision, it is important to find out in advance if the contractors that comprise the supply 
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chain possess all of the capabilities required to do the work. Specifically, suppliers have to prove that 
they are capable of developing and integrating a secure product. Overall capability is usually demon-
strated by the suppliers’ past history with similar projects as well as their documented ability to adopt 
good software engineering practices. The presence of a commonly accepted model of best practice that 
is shared between customer and supplier and that is fully auditable helps to cement that assurance.

The issue of unintentional vulnerabilities is a result of the overall development and sustainment prob-
lem in that defects in software and hardware occur because of failure in the process. By definition, the 
installation of unintentional flaws is not a hostile act. However, because the problem is so pervasive, the 
sheer number of exploitable vulnerabilities placed in software products makes it a major concern. There 
is an extensive body of knowledge (BoK) in software product assurance; however, because the steps 
necessary to ensure product integrity have to be instituted, managed, and sustained in a logical way, 
best practices are often not followed or are performed halfheartedly. The result is that common defects 
in software products are exploited by a growing array of criminal and other bad actors. The installation 
and sustainment of a commonly accepted capability model addresses this concern directly. However, it 
is critical that the activities in that model be executed in a continuous and disciplined fashion.

93.4  Software Assurance Principles

93.4.1  Historical Principles for Information Protection

Much of the information protection in place today is based on principles established by Saltzer and 
Schroeder (1974) in their paper titled “The Protection of Information in Computer Systems,” which 
appeared in Communications of the ACM in 1974. They defined security as “techniques that control 
who may use or modify the computer or the information contained in it” and described the three main 
categories of concern: confidentiality, integrity, and availability (Saltzer and Schroeder 1974). Their pro-
posed design principles that focus on protection mechanisms to “guide the design and contribute to an 
implementation without security flaws” (Saltzer and Schroeder 1974) are still taught in today’s class-
rooms. They established eight principles for security in software design and development (Saltzer and 
Schroeder 1974):

	 1.	 Economy of mechanism: Keep the design as simple and small as possible.
	 2.	 Fail-safe defaults: Base access decisions on permission rather than exclusion.
	 3.	 Complete mediation: Every access to every object must be checked for authority.
	 4.	 Open design: The design should not be secret. The mechanisms should not depend on the ignorance 

of potential attackers, but rather on the possession of specific, and more easily protected, keys or 
passwords.

	 5.	 Separation of privilege: Where feasible, a protection mechanism that requires two keys to unlock it 
is more robust and flexible than one that allows access to the presenter of only a single key.

	 6.	 Least privilege: Every program and every user of the system should operate using the least set of 
privileges necessary to complete the job.

	 7.	 Least common mechanism: Minimize the amount of mechanism common to more than one user 
and depended on by all users.

	 8.	 Psychological acceptability: It is essential that the human interface be designed for ease of use, so 
that users routinely and automatically apply the protection mechanisms correctly.

Time has shown the value and utility in these principles; however, it is appropriate to consider that these 
were developed prior to the Morris worm that generated a massive denial of service by infecting more 
than 6000 UNIX machines on November 2, 1988 (Wikipedia 2012a). To provide a technology context, 
consider that the IBM System 360 was in use from 1964 through 1978 and the IBM System 370 came 
on the market in 1972. The advanced operating system Multiple Virtual Storage (MVS) was released in 
March 1974 (Wikipedia 2012b).
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These principles were assembled prior to the identification of the more than 46,500 software vul-
nerabilities and exposures that are currently exploitable in today’s software products as described in 
the Common Vulnerabilities and Exposures (CVE) database at http://cve.mitre.org/ (MITRE 2012). 
When these principles were developed, “buffer overflow,” “malicious code,” “cross-site scripting,” and 
“zero-day vulnerabilities” were not part of the everyday vocabulary of operational software support 
personnel. Patches were carefully tested and scheduled to minimize operational disruption instead of 
pushed into operation to minimize attack vectors.

While these principles are still usable today to address security within an individual piece of tech-
nology, they are no longer sufficient to address the complexity and sophistication of the environment 
within which that component must operate. We must broaden our horizon to consider the large-scale, 
highly networked, software-dependent systems upon which our entire critical infrastructure depends, 
from phones, power, and water to industries such as banking, medicine, and retail.

93.4.2  Modern Principles for Software Assurance

There are vast lists of practices and procedures that describe what should be done to address software 
assurance.* There are also an equal number of complaints that effective assurance is not being addressed 
in today’s software. We posit that some of the inaction stems from a general lack of understanding about 
why this additional work is needed. In our scrutiny of the wide range of materials published, the case 
for why to focus on software assurance has not yet been addressed. We proposed the following seven 
principles in response in our paper “Foundations for Software Assurance” (Woody 2012):

93.4.2.1 R isk

Risk drives assurance decisions: A perception of risk drives assurance decisions. Organizations with-
out effective software assurance perceive risks based on successful attacks to software and systems and 
usually respond reactively. They may implement assurance choices such as policies, practices, tools, 
and restrictions based on their perception of the threat of a similar attack and the expected impact 
should that threat be realized. Organizations can incorrectly perceive risk when they do not understand 
their threats and impacts. Effective software assurance requires that risk knowledge be shared among 
all stakeholders and technology participants; however, too frequently, risk information is considered 
highly sensitive and is not shared, resulting in uninformed organizations making poor risk choices.

93.4.2.2  Interactions

Risk is aligned across all stakeholders and all interconnected technology elements: Highly connected sys-
tems like the Internet require alignment of risk across all stakeholders and all interconnected technol-
ogy elements; otherwise, critical threats will be missed or ignored at different points in the interactions. 
It is no longer sufficient only to consider highly critical components when everything is highly intercon-
nected. Interactions occur at many technology levels (e.g., network, security appliances, architecture, 
applications, and data storage) and are supported by a wide range of roles. Protections can be applied at 
each of these points and may conflict if not well orchestrated. Because of interactions, effective assur-
ance requires that all levels and roles consistently recognize and respond to risk.

93.4.2.3 T rusted Dependencies

Dependencies are trusted: Because of the wide use of supply chains for software, assurance of an inte-
grated product depends on other people’s assurance decisions and the level of trust placed on these 
dependencies. The integrated software inherits all of the assurance limitations of each interacting com-
ponent. In addition, unless specific restrictions and controls are in place, every operational component 
including infrastructure, security software, and other applications can be affected by the assurance of 

*	 For a starting point see https://buildsecurityin.us-cert.gov/swa/ (DHS 2012a).
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every other component. There is a risk each time an organization must depend on others’ assurance 
decisions. Organizations should decide how much trust they place in dependencies based on a realistic 
assessment of the threats, impacts, and opportunities represented by an interaction. Dependencies are 
not static, and trust relationships should be regularly reviewed to identify changes that warrant recon-
sideration. The following examples describe assurance losses resulting from dependencies:

•	 Defects in standardized pieces of infrastructure (such as operating systems, development plat-
forms, firewalls, and routers) can serve as widely available threat entry points for applications.

•	 Using many standardized software tools to build technology establishes a dependency for the 
assurance of the resulting software product. Vulnerabilities can be introduced into software prod-
ucts by the tool builders.

93.4.2.4 A ttacker

There are no perfect protections against attacks: A broad community of attackers with growing technol-
ogy capabilities are able to compromise the confidentiality, integrity, and availability of an organization’s 
technology assets. There are no perfect protections against attacks, and the attacker profile is constantly 
changing. The attacker will use technology, processes, standards, and practices to craft a compromise 
(known as a socio-technical response). Attacks are crafted to take advantage of the ways we normally 
use technology or designed to contrive exceptional situations where defenses are circumvented.

93.4.2.5  Coordination and Education

Assurance is effectively coordinated among all technology participants: Protection must be applied 
broadly across the people, processes, and technology in an organization because the attacker will take 
advantage of all possible entry points. Authority and responsibility for assurance must be clearly estab-
lished at an appropriate level in the organization to ensure the organization effectively participates in 
software assurance. This assumes that all participants know about assurance and that is not usually a 
reality. There is much to be done to educate people on software assurance.

93.4.2.6  Well Planned and Dynamic

Assurance is well planned and dynamic: Assurance must represent a balance among governance, con-
struction, and operation of software and systems and is highly sensitive to changes in each of these areas. 
An adaptive response is required for assurance because the applications, interconnections, operational 
usage, and threats are always changing. Assurance is not a once-and-done activity. It must continue 
beyond the initial operational implementation through operational sustainment. Assurance cannot be 
added later; it must be built to the level of acceptable assurance that organizations need. No one has 
resources to redesign systems every time the threats change, and assurance cannot be readily adjusted 
upward after the fact.

93.4.2.7  Measurable

A means to measure and audit overall assurance is built in: That which is not measured cannot be man-
aged. Each stakeholder or technology user will address only the assurance for which they are held 
accountable. Assurance will not compete successfully with other competing needs unless results are 
monitored and measured. All elements of the socio-technical environment, including practices, pro-
cesses, and procedures, must be tied together to evaluate operational assurance. Organizations with 
more successful assurance measures react and recover faster, learn from their reactive responses and 
that of others, and are more vigilant in anticipating and detecting attacks. Defects per lines of code, a 
common development measure, may be useful for code quality but are not sufficient evidence for overall 
assurance because they provide no perspective on how that code behaves in an operational context. Both 
focused and systemic measures are needed to ensure that the components are engineered with sound 
security and that the interaction among components establishes effective assurance.
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93.5  Software Assurance Process Models and Practices

93.5.1  Putting Capability into Practice

The GAO report presents these three common sense principles based on process capability: “control the 
development and sustainment work using common best practice,” “adopt rigorous assurance practice at the 
component level,” and “rationally plan for failure” (GAO 2012). A very large percentage of the counterfeit-
ing, supply-chain-critical point-of-failure breakdowns and capability concerns can be mitigated by simply 
ensuring that every one of the entities up and down the supply chain is under strict management control. 
In addition, unwanted functionality and development failures should be addressed by rigorous product 
assurance from the time of inception to the time of acceptance. Then, when the inevitable failure does 
occur, there is a well-defined strategy in place to ensure that the problem is resolved in a rational fashion.

Control processes that satisfy these three principles are specified in a range of capability models, 
which we will discuss in the next section. These are called “capability models” because they provide a 
complete classification structure of best practices and standards for every aspect of software product 
development and sustainment work. Because those standards are highly authoritative, their recommen-
dations provide a coherent and logical high-level framework to ensure both the logic and relevance of 
all the elements of fundamental best practices.

93.5.2  Why Use a Process Model?

The role of software assurance is to ensure that faults do not occur in the first place. However, since man-
agers don’t actually do the software development work, they have to use some sort of generic management 
process to ensure product integrity. The aim of that management process is to establish order, or system, 
to the way the organization conducts its software work. System, or orderliness, is important because at 
present, there is no explicit, standard set of best practices for software development work in most tech-
nology organizations. Instead, there is some sort of “customary” approach, which is probably not even 
written down. And whether that approach is agile development, extreme programming, or the waterfall, 
there is extensive evidence to indicate that software products in general continue to have defects.

A capability-based process directly addresses the problem with defects. Increasing an organization’s capa-
bility ensures that reliability and integrity are designed and built into the products in the first place rather 
than added on at the end. Process capability improvement standards provide a given organization with a 
template for setting up and running an effective management system. The assumption is that a software 
management system that is based on and follows a commonly accepted model of best practice, or conforms to 
a formal best practice standard, ensures successful management. Most leading-edge corporations have had 
such a management system in place for years. Now, with the current set of generic software best-practice stan-
dards, any organization can implement the successful practices that more advanced corporations employ.

93.5.3 � Best Practices: Software Security Frameworks, 
Models, and Roadmaps

In addition to considering process models for software development and acquisition, a framework for 
building assured systems needs to build upon and reflect known, accepted, common practice for soft-
ware security. There are a growing number of promising frameworks and models for building more 
secure software. For example, Microsoft has defined their security development life cycle (SDL) (Howard 
2006) and made it publicly available (Microsoft 2010a). In version 2, the authors of the Building Security 
In Maturity Model (BSIMM) (McGraw, Chess, and Migues) have collected and analyzed software secu-
rity practices in 30 organizations (McGraw et al. 2010).

In this section, we summarize seven models, frameworks, and roadmaps, excerpting descriptive 
information from publicly available websites and reports. This section summarizes each effort to show 
the current state of the practice in building secure software and to aid in identifying promising research 
opportunities to fill gaps.



93-8 Software Modeling, Analysis, and Design

93.5.3.1  Building Security in Maturity Model

The BSIMM introduction states the following (McGraw et al. 2010):

The Building Security In Maturity Model (BSIMM) is designed to help an organization under-
stand, measure, and plan a software security initiative. The BSIMM was created through a process 
of understanding and analyzing real-world data from nine leading software security initiatives 
and then validated and adjusted with data from twenty-one additional leading software security 
initiatives. Altogether, the BSIMM collectively represents the wisdom and knowledge of thirty 
firms with active and successful software security initiatives. Though particular methodologies 
differ, such as the Open Web Application Security Project (OWASP) Comprehensive, Lightweight 
Application Security Process (CLASP), the Microsoft SDL, or the Cigital Touchpoints, many ini-
tiatives share common ground. This common ground is captured and described in the BSIMM.

BSIMM is appropriate for an organization whose overall business goals for software security 
include

•	 Informed risk management decisions
•	 Clarity on what is “the right thing to do” for everyone involved in software security
•	 Cost reduction through standard, repeatable processes
•	 Increased code quality

BSIMM is not a complete “how to” guide for software security, nor is it a one-size-fits-all model. 
Instead, BSIMM is a collection of good practices and activities that are in use today.

93.5.3.2  CMMI Assurance Process Reference Model

The DHS Software Assurance (SwA) Processes and Practices Working Group developed a draft pro-
cess reference model (PRM) for assurance in July 2008 (DHS 2008). This PRM recommends additions 
to CMMI for Development (CMMI-DEV) v1.2 to address software assurance. The “assurance thread” 
description includes Figure 93.1 (DHS 2012b).

The DHS SwA Processes and Practices Working Group’s additions and updates to CMMI-DEV 
v1.2 are focused at the specific practices level for the following (Table 93.1) CMMI-DEV process areas 
(CMMI Product Team 2006).

93.5.3.3  Open Web Application Security Project Software Assurance Maturity Model

The following discussion of OWASP SAMM is from SAMM v1.0 (OWASP 2009):

The Software Assurance Maturity Model (SAMM) is an open framework to help organizations 
formulate and implement a strategy for software security that is tailored to the specific risks facing 
the organization. The resources provided by SAMM will aid in

•	 Evaluating an organization’s existing software security practices
•	 Building a balanced software security assurance program in well-defined iterations
•	 Demonstrating concrete improvements to a security assurance program
•	 Defining and measuring security-related activities throughout an organization

SAMM was defined to be flexible so that small, medium, and large organizations can use it with any style of 
development. Additionally, this model can be applied organization wide, for a single line of business, or even 
for an individual project. Beyond these traits, SAMM was built on the following principles (OWASP 2009):

•	 �An organization’s behavior changes slowly over time—A successful software security pro-
gram should be specified in small iterations that deliver tangible assurance gains while 
incrementally working toward long-term goals.

•	 �There is no single recipe that works for all organizations—A software security framework 
must be flexible and allow organizations to tailor their choices based on their risk tolerance 
and the way in which they build and use software.
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•	 �Guidance related to security activities must be prescriptive—All the steps in building and 
assessing an assurance program should be simple, well-defined, and measurable. This 
model also provides roadmap templates for common types of organizations.

The foundation of the model is built upon the core business functions of software development with secu-
rity practices tied to each. The building blocks of the model are the three maturity levels defined for each of 
the 12 security practices. These define a wide variety of activities in which an organization could engage to 
reduce security risks and increase software assurance. Additional details are included to measure successful 
activity performance, understand the associated assurance benefits, and estimate personnel and other costs.

93.5.3.4  DHS SwA Measurement Work by Bartol and Moss

According to the DHS SwA Measurement Working Group (DHS 2010),

Practical Measurement Framework for Software Assurance and Information Security (Bartol 
2008) provides an approach for measuring the effectiveness of achieving software assurance goals 
and objectives at an organizational, program, or project level. It addresses how to assess the degree 
of assurance provided by software, using quantitative and qualitative methodologies and tech-
niques. This framework incorporates existing measurement methodologies and is intended to help 
organizations and projects integrate SwA measurement into their existing programs.

The Practical Measurement Framework focuses principally, though not exclusively, on the information secu-
rity viewpoint of SwA. Many of the contributing disciplines of SwA enjoy an established process improve-
ment and measurement BoK, such as quality assurance, project management, process improvement, and 
safety. SwA measurement can leverage measurement methods and techniques that are already established 
in those disciplines and adapt them to SwA. The Practical Measurement Framework report focuses on infor-
mation assurance/information security aspects of SwA to help mature that aspect of SwA measurement.

This framework provides an integrated measurement approach, which leverages the following five 
existing industry approaches that use similar processes to develop and implement measurement:

•	 Draft National Institute of Standards and Technology (NIST) Special Publication (SP) 800-55, 
Revision 1, Performance Measurement Guide for Information Security

•	 ISO/IEC 27004 information technology—security techniques—information security manage-
ment measurement

•	 ISO/IEC 15939, System and Software Engineering—Measurement Process, also known as Practical 
Software and System Measurement (PSM)

TABLE 93.1  CMMI-DEV Process Areas

CMMI-DEV Process Area Specific Practices

Process management Organizational process focus
Organizational process definition
Organizational training

Project management Project planning
Project monitoring and control
Supplier agreement management
Integrated project management
Risk management

Engineering Requirements development
Technical solution
Verification
Validation

Support
Measurement and analysis
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•	 CMMI measurement and analysis process area
•	 CMMI GQ(I)M—Capability Maturity Model Integration Goal Question Indicator Measure

The framework describes candidate goals and information needs for each stakeholder group. The frame-
work then presents example supplier measures as a table, with project activity, measures, information 
needs, and benefits as the columns. Example measures for acquirers are similarly presented in the 
framework and are intended to answer the following questions:

•	 Have SwA activities been adequately integrated into the organization’s acquisition process?
•	 Have SwA considerations been integrated into the SDLC and resulting product by the supplier?

93.5.3.5  Microsoft Security Development Life Cycle

The Microsoft SDL* is an industry-leading software security process. A Microsoft-wide initiative and 
a mandatory policy since 2004, the SDL has played a critical role in embedding security and privacy in 
Microsoft software and culture. Combining a holistic and practical approach, the SDL introduces secu-
rity and privacy early and throughout all phases of the development process.

The reliable delivery of more secure software requires a comprehensive process, so Microsoft defined 
Secure by Design, Secure by Default, Secure in Deployment, and Communications (SD3+C) to help deter-
mine where security efforts are needed. The guiding principles for SD3+C are identified in the following 
subsections, which are excerpted from Microsoft SDL version 5.0 (Microsoft 2010b):

Secure by Design
•	 �Secure architecture, design, and structure. Developers consider security issues part of the basic 

architectural design of software development. They review detailed designs for possible secu-
rity issues, and they design and develop mitigations for all threats.

•	 �Threat modeling and mitigation. Threat models are created, and threat mitigations are pres-
ent in all design and functional specifications.

•	 �Elimination of vulnerabilities. No known security vulnerabilities that would present a signifi-
cant risk to the anticipated use of the software remain in the code after review. This review 
includes the use of analysis and testing tools to eliminate classes of vulnerabilities.

•	 �Improvements in security. Less secure legacy protocols and code are deprecated, and, where pos-
sible, users are provided with secure alternatives that are consistent with industry standards.

Secure by Default
•	 Least privilege. All components run with the fewest possible permissions.
•	 Defense in depth. Components do not rely on a single threat mitigation solution that leaves 

users exposed if it fails.
•	 Conservative default settings. The development team is aware of the attack surface for the 

product and minimizes it in the default configuration.
•	 Avoidance of risky default changes. Applications do not make any default changes to the operating 

system or security settings that reduce security for the host computer. In some cases, such as for security 
products, it is acceptable for a software program to strengthen (increase) security settings for the host 
computer. The most common violations of this principle are games that either open firewall ports with-
out informing the user or instruct users to open firewall ports without informing users of possible risks.

•	 �Less commonly used services off by default. If fewer than 80 percent of a program’s users use 
a feature, that feature should not be activated by default. Measuring 80 percent usage in a 
product is often difficult because programs are designed for many different personas. It can be 
useful to consider whether a feature addresses a core/primary use scenario for all personas. If 
it does, the feature is sometimes referred to as a P1 feature.

*	 More information is available in The Security Development Lifecycle (Howard 2006), at the Microsoft Security Devel
opment Lifecycle website (Microsoft 2010a), and in the document Microsoft Security Development Lifecycle version 5.0 
(Microsoft 2010b).
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Secure in Deployment

•	 Deployment guides. Prescriptive deployment guides outline how to deploy each feature of a 
program securely, including providing users with information that enables them to assess the 
security risk of activating non-default options (and thereby increasing the attack surface).

•	 �Analysis and management tools. Security analysis and management tools enable administra-
tors to determine and configure the optimal security level for a software release.

•	 Patch deployment tools. Deployment tools aid in patch deployment.

Communications

•	 Security response. Development teams respond promptly to reports of security vulnerabilities 
and communicate information about security updates.

•	 Community engagement. Development teams proactively engage with users to answer ques-
tions about security vulnerabilities, security updates, or changes in the security landscape.

93.5.3.6 � CERT® Resilience Management Model (RMM) Resilient 
Technical Solution Engineering Process Area

Like software security and software assurance, resilience is a property of software and systems. 
Developing and acquiring resilient* software and systems requires a resilience-focused dedicated pro-
cess that encompasses the software and system life cycle. As described in the CERT-RMM (CERT 2012) 
resilient technical solution engineering (RTSE) process area (Caralli et al. 2010), the process defines 
what is required to develop resilient software and systems and is as follows (Caralli et al. 2010):

•	 Establish a plan for addressing resiliency as part of the organization’s (or supplier’s) regular develop-
ment life cycle and integrate the plan into the organization’s corresponding development process. Plan 
development and execution includes identifying and mitigating risks to the success of the project.

•	 Identify practice-based guidelines that apply to all phases such as threat analysis and modeling as 
well as those that apply to a specific life cycle phase.

•	 Elicit, identify, develop, and validate assurance and resiliency requirements (using methods for rep-
resenting attacker and defender perspectives, for example). Such processes, methods, and tools are 
performed alongside similar processes for functional requirements.

•	 Use architectures as the basis for design that reflect a resiliency and assurance focus, including secu-
rity, sustainability, and operations controls.

•	 Develop assured and resilient software and systems through processes that include secure coding of 
software, software defect detection and removal, and the development of resiliency and assurance 
controls based on design specifications.

•	 Test assurance and resiliency controls for software and systems and refer issues back to the design 
and development cycle for resolution.

•	 Conduct reviews throughout the development life cycle to ensure that resiliency (as one aspect of 
assurance) is kept in the forefront and given adequate attention and consideration.

•	 Perform system-specific continuity planning and integrate related service continuity plans to ensure 
that software, systems, hardware, networks, telecommunications, and other technical assets that 
depend on one another are sustainable.

•	 Perform a post-implementation review of deployed systems to ensure that resiliency (as well as 
assurance) requirements are being satisfied as intended.

*	 There is substantial overlap in the definitions of assured software (or software assurance) and resilient software (or soft-
ware resilience). Resilient software is software that continues to operate as intended (including recovering to a known 
operational state) in the face of a disruptive event (satisfying business continuity requirements) so as to satisfy its confi-
dentiality, availability, and integrity requirements (reflecting operational and security requirements) (Caralli et al. 2010).
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•	 In operations, monitor software and systems to determine if there is variability that could indicate 
the effects of threats or vulnerabilities and to ensure that controls are functioning properly.

•	 Implement configuration management and change control processes to ensure software and systems 
are kept up to date to address newly discovered vulnerabilities and weaknesses (particularly in ven-
dor-acquired products and components) and to prevent the intentional or inadvertent introduction 
of malicious code or other exploitable vulnerabilities.

In addition to RTSE, the following are goals and practices in other CERT-RMM process areas that 
organizations should consider when developing and acquiring software and systems that need to meet 
assurance and resiliency requirements (Caralli et al. 2010):

•	 Resiliency requirements for software and system technology assets in operation, including those that 
may influence quality attribute requirements in the development process, are developed and man-
aged in the Resiliency Requirements Development (RRD) and Resiliency Requirements Management 
(RRM) process areas respectively.

•	 Identifying and adding newly developed and acquired software and system assets to the organiza-
tion’s asset inventory is addressed in the Asset Definition and Management (ADM) process area.

•	 The management of resiliency for technology assets as a whole, particularly for deployed, opera-
tional assets, is addressed in the Technology Management (TM) process area. This includes, for 
example, asset fail-over, backup, recovery, and restoration.

•	 Acquiring software and systems from external entities and ensuring that such assets meet their 
resiliency requirements throughout the asset life cycle is addressed in the External Dependencies 
Management process area. That said, RTSE specific goals and practices should be used to aid in 
evaluating and selecting external entities that are developing software and systems (EXD:SG3.SP3), 
formalizing relationships with such external entities (EXD:SG3.SP4), and managing an external 
entity’s performance when developing software and systems (EXD:SG4).

•	 Monitoring for events, incidents, and vulnerabilities that may affect software and systems in opera-
tion is addressed in the Monitoring (MON) process area.

•	 Service continuity plans are identified and created in the Service Continuity (SC) process area. These 
plans may be inclusive of software and systems that support the services for which planning is performed.

The RTSE process area assumes that the organization has one or more existing, defined processes for 
software and system development into which resiliency controls and activities can be integrated. If this 
is not the case, the organization should not attempt to implement the goals and practices identified in 
RTSE or other CERT-RMM process areas as previously described.

93.6 R esearch Framework

93.6.1  Building Assured Systems Framework

In an earlier research project, a broad framework based on the Master of Software Assurance Reference 
Curriculum BoK (Mead et al. 2010) was developed and named the Building Assured Systems 
Framework (BASF).

We developed maturity levels to support our work in software security engineering (refer to Software 
Security Engineering [Allen et al. 2008]). We then applied them to the software assurance BoK in the 
Master of Software Assurance Reference Curriculum (Mead et al. 2010). The association of BoK ele-
ments and maturity levels was accomplished by evaluating the extent to which relevant sources, prac-
tices, curricula, and courseware exist for a particular BoK element and the extent to which the element 
was observed in practice in organizations.

The maturity levels can serve as a litmus test for whether research is needed in a specific area. Presumably 
we want to focus software assurance research on topic areas that are less mature. The mapping of the 
maturity levels to the Master of Software Assurance BoK knowledge areas is in the Appendix 93.A.
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93.6.1.1  Promising Software Assurance Research Areas

Using the software assurance curriculum model BoK (Mead et al. 2010), we performed an analysis to 
identify some promising software assurance research areas. In some cases, there has been a fair amount 
of research work, but more is needed; Assured Software Development is an example. With this in mind, 
here is our initial list of candidate research areas:

•	 Baseline level of assurance; allowable tolerances, if quantitative
•	 Product and process measures by life-cycle phase
•	 Other performance indicators that test for the baseline, by life-cycle phase
•	 Making the Business Case for Assurance
•	 Assured Software Development
•	 Assured Software Analytics
•	 Assurance in Acquisition

93.7  Summary

In this chapter we introduced software assurance, discussing the impact of software on our lives, the 
risks associated with software vulnerabilities, and some basic definitions of software assurance. We then 
introduced modern principles of software assurance, along with historical principles of software assur-
ance. With this background in hand, we were able to identify a number of process models, frameworks, 
and best practices that were relevant to software assurance. Finally, we identified a research framework 
that could be used to support current research and to identify gap areas for future research.

We then performed a gap analysis to identify areas where additional research would be needed. The 
benefit of this approach is that it establishes a desirable linkage between software assurance research 
and the associated educational curriculum research. We also wanted to address a more generic problem, 
one that we had seen in our own work and elsewhere, namely that various research projects in building 
assured systems appear unrelated to one another; we and other research entities consequently don’t have 
a good way to prioritize and select new research.

From a research perspective, researchers could periodically consider rating the maturity levels of 
their methods. This would assist users in deciding which methods to use. It would also be helpful if 
researchers could collect and/or provide available cost/benefit data and encourage users to assist in such 
data collection. All too often users decide on a particular method but do not collect enough information 
to determine whether the benefit justified the cost. At the same time, the smaller projects that research-
ers conduct on their own do not usually result in enough cost/benefit data to be sufficiently compelling.

The gap analysis that we have done could be used to help select, and to some extent prioritize, new 
research. For example, if research is proposed for an area where there are a number of mature approaches, 
it would be helpful to understand why that research would be considered a good investment, compared to 
areas where there are no mature approaches. Since there is a lot of research aimed at building assured sys-
tems, we anticipate that this framework would need regular review and revision in order to stay current.

93.A �A ppendix: Master of Software Assurance 
Knowledge Areas Mapped to Maturity Levels 
in the Building Assured Systems Framework

Maturity levels are defined as follows (Table 93.A.1):

•	 L1—The area provides guidance for how to think about a topic for which there is no proven or 
widely accepted approach. The intent of the area is to raise awareness and aid the reader in think-
ing about the problem and candidate solutions. The area may also describe promising research 
results that may have been demonstrated in a constrained setting.
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TABLE 93.A.1  Master of Software Assurance Knowledge Areas Mapped to Maturity Levels in the Building 
Assured Systems Framework

Knowledge Area Knowledge Units Maturity Level

Assurance across life cycles Software life-cycle processes
  • New development [L4]
  • Integration, assembly, and deployment [L4]
  • Operation and evolution [L4]
  • Acquisition, supply, and service [L3]
Software assurance processes and practices
  • Process and practice assessment [L3]
  • Software assurance integration into SDLC phases [L2/3]

Risk management Risk management concepts
  • Types and classification [L4]
  • Probability, impact, severity [L4]
  • Models, processes, metrics [L4] [L3—metrics]
Risk management process
  • Identification [L4]
  • Analysis [L4]
  • Planning [L4]
  • Monitoring and management [L4]
Software assurance risk management
  • Vulnerability and threat identification [L3]
  • Analysis of software assurance risks [L3]
  • Software assurance risk mitigation [L3]
  • �Assessment of software assurance processes 

and practices
[L2/3]

Assurance assessment Assurance assessment concepts
  • �Baseline level of assurance; allowable tolerances, 

if quantitative
[L1]

  • Assessment methods [L2/3]
Measurement for assessing assurance
  • Product and process measures by life-cycle phase [L1/2]
  • �Other performance indicators that test for the defined 

assurance baseline by life-cycle phase
[L1/2]

  • Measurement processes and frameworks [L2/3]
  • Business survivability and operational continuity [L2]
Assurance assessment process (collect and report measures 

that demonstrate the baseline as defined in 3.1.1.)
  • �Comparison of selected measurements to the 

established baseline
[L3]

  • Identification of out-of-tolerance variances [L3]
Assurance management Making the business case for assurance

  • �Valuation and cost/benefit models, cost and loss 
avoidance, return on investment

[L3]

  • Risk analysis [L3]
  • Compliance justification [L3]
  • Business impact/needs analysis [L3]
Managing assurance
  • Project management across the life cycle [L3]
  • Integration of other knowledge units [L2/3]

(continued)
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TABLE 93.A.1 (continued)  Master of Software Assurance Knowledge Areas Mapped to Maturity Levels 
in the Building Assured Systems Framework

Knowledge Area Knowledge Units Maturity Level

Compliance considerations for assurance
  • Laws and regulations [L3]
  • Standards [L3]
  • Policies [L2/3]

System security assurance For newly developed and acquired software for diverse 
systems

  • �Security and safety aspects of computer-intensive 
critical infrastructure

[L2]

  • Potential attack methods [L3]
  • Analysis of threats to software [L3]
  • Methods of defense [L3]
For diverse operational (existing) systems
  • Historic and potential operational attack methods [L4]
  • Analysis of threats to operational environments [L3]
  • �Designing of and plan for access control, privileges, 

and authentication
[L3]

  • �Security methods for physical and personnel 
environments

[L4]

Ethics and integrity in creation, acquisition, and operation 
of software systems

  • �Overview of ethics, code of ethics, and legal 
constraints

[L4]

  • Computer attack case studies [L3]
System functionality 

assurance
Assurance technology
  • Technology evaluation [L3]
  • Technology improvement [L3]
Assured software development
  • Development methods [L2/3]
  • Quality attributes [L3—depends on the 

property]
  • Maintenance methods [L3]
Assured software analytics
  • Systems analysis (L2 architectures; L3/4 

networks, databases 
[identity management, 
access control])

  • Structural analysis [L3]
  • Functional analysis [L2/3]
  • Analysis of methods and tools [L3]
  • Testing for assurance [L3]
  • Assurance evidence [L2]
Assurance in acquisition
  • Assurance of acquired software [L2]
  • Assurance of software services [L3]
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•	 L2—The area describes practices that are in early pilot use and are demonstrating some successful 
results.

•	 L3—The area describes practices that have been successfully deployed (mature) but are in limited 
use in industry or government organizations. They may be more broadly deployed in a particular 
market sector.

•	 L4—The area describes practices that have been successfully deployed and are in widespread use. 
Readers can start using these practices today with confidence. Experience reports and case studies 
are typically available.

Glossary

Software Assurance Definitions

The following are software assurance definitions we reviewed while developing the BASF.
The following is the US Department of Defense’s (DoD) definition of systems assurance taken from 

A DoD-Oriented Introduction to the NDIA’s System Assurance Guidebook (Popick et al. 2010):

The justified measures of confidence that a system functions as intended and is free of exploitable 
vulnerabilities, either intentionally or unintentionally designed or inserted as part of the system at 
any time during the life cycle (NDIA 2008).

The following definition is taken from the NDIA conference paper Engineering Improvement in Software 
Assurance: A Landscape Framework (Brownsword et al. 2009):

Environment of use:
Actual environment of use (not just the expected environment of use)
Means evaluating robustness against unexpected use, threats, and changes in the environment

The following is from the SEI webinar Engineering Improvement in Software Assurance: A Landscape 
Framework (Brownsword and Woody 2010):

Software assurance: a justified level of confidence that software-reliant systems function as 
intended within their operational environment

TABLE 93.A.1 (continued)  Master of Software Assurance Knowledge Areas Mapped to Maturity Levels 
in the Building Assured Systems Framework

Knowledge Area Knowledge Units Maturity Level

System operational assurance Operational procedures
  • Business objectives [L3]
  • Assurance procedures [L3]
  • Assurance training [L4]
Operational monitoring
  • Monitoring technology [L4]
  • Operational evaluation [L4]
  • Operational maintenance [L3]
  • Malware analysis [L2/3]
System control
  • Responses to adverse events [L3/4]
  • Business survivability [L3]
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The following is the CNSS definition (CNSS 2010) used in the DHS SwA website (DHS 2010b) and 
Software Security Engineering book (Allen et al. 2008):

Software assurance (SwA) is the level of confidence that software is free from vulnerabilities, 
either intentionally designed into the software or accidentally inserted at any time during its life 
cycle, and that the software functions in the intended manner (from CNSS 4009 IA Glossary—see 
Wikipedia for definitions and descriptions).

The following is the SAFECode software assurance definition (SAFECode 2008):

Confidence that software, hardware and services are free from intentional and unintentional vul-
nerabilities and that the software functions as intended.

The following excerpt is from the software security assurance state-of-the-art report (SOAR) (Goertzel 
et al. 2007).

2.1 Definition 1: Software Assurance
Until recently, the term software assurance was most commonly relating two software properties: 
quality (i.e., “software assurance” as the short form of “software quality assurance”), and reli-
ability (along with reliability’s most stringent quality—safety). Only in the past 5 years or so has 
the term software assurance been adopted to express the idea of the assured security of software 
(comparable to the assured security of information that is expressed by the term “information 
assurance”).
The discipline of software assurance can be defined in many ways. The most common definitions 
complement each other but differ slightly in terms of emphasis and approach to the problem of 
assuring the security of software.
In all cases, all definitions of software assurance convey the thought that software assurance must 
provide a reasonable level of justifiable confidence that the software will function correctly and pre-
dictably in a manner consistent with its documented requirements. Additionally, the function of 
software cannot be compromised either through direct attack or through sabotage by maliciously 
implanted code to be considered assured. Some definitions of software assurance characterize that 
assurance in terms of the software’s trustworthiness or “high confidence.”
Several leading definitions of software assurance are discussed below.
Instead of choosing a single definition of software assurance for this report, we synthesized 
them into a definition that most closely ref lects software security assurance as we wanted 
it to be understood in the context of this report—Software security assurance: The basis for 
gaining justifiable confidence that software will consistently exhibit all properties required to 
ensure that the software, in operation, will continue to operate dependably despite the presence 
of sponsored (intentional) faults. In practical terms, such software must be able to resist most 
attacks, tolerate as many as possible of those attacks it cannot resist, and contain the damage 
and recover to a normal level of operation as soon as possible after any attacks it is unable to 
resist or tolerate.

2.1.1 CNSS Definition
The ability to establish confidence in the security as well as the predictability of software is the 
focus of the Committee on National Security Systems (CNSS) definitions of software assurance 
in its National Information Assurance Glossary [8]. The glossary defines software assurance as—
The level of confidence that software is free from vulnerabilities, regardless of whether they are 
intentionally designed into the software or accidentally inserted later in its life cycle, and that the 
software functions in the intended manner.



93-19Software Assurance

This understanding of software assurance is consistent with the use of the term in connection with 
information, i.e., information assurance (IA). By adding the term software assurance to its IA glos-
sary, CNSS has acknowledged that software is directly relevant to the ability to achieve information 
assurance.
The CNSS definition is purely descriptive: it describes what software must be to achieve the level 
of confidence at which its desired characteristics—lack of vulnerabilities and predictable execu-
tion—can be said to be assured. The definition does not attempt to prescribe the means by which 
that assurance can, should, or must be achieved.

2.1.2 DoD Definition
The Department of Defense’s (DoD) Software Assurance Initiative’s definition is identical in mean-
ing to that of the CNSS, although more succinct—
The level of confidence that software functions as intended and is free of vulnerabilities, either 
intentionally or unintentionally designed or inserted as part of the software [9].

2.1.3 NASA Definition
The National Aeronautics and Space Administration (NASA) defines software assurance as—
The planned and systematic set of activities that ensure that software processes and products con-
form to requirements, standards, and procedures.
The “planned and systematic set of activities” envisioned by NASA include—
Requirements specification
Testing
Validation
Reporting
The application of these functions “during a software development life cycle is called software 
assurance” [10].
The NASA software assurance definition predates the CNSS definition but similarly reflects the pri-
mary concern of its community—in this case, safety. Unlike the CNSS definition, NASA’s definition 
is both descriptive and prescriptive in its emphasis on the importance of a “planned and systematic 
set of activities.” Furthermore, NASA’s definition states that assurance must be achieved not only for 
the software itself but also the processes by which it is developed, operated, and maintained. To be 
assured, both software and processes must “conform to requirements, standards, and procedures.”

2.1.3 DHS Definition
Like CNSS, the Department of Homeland Security (DHS) definition of software assurance empha-
sizes the properties that must be present in the software for it to be considered “assured,” i.e.—

Trustworthiness, which DHS defines, like CNSS, in terms of the absence of exploitable vulner-
abilities whether maliciously or unintentionally inserted
Predictable execution, which “provides justifiable confidence that the software, when executed, 
will function as intended [11].
Like NASA, DHS’s definition explicitly states that “a planned and systematic set of multidisci-
plinary activities” must be applied to ensure the conformance of both software and processes to 
“requirements, standards, and procedures” [12].

2.1.4 NIST Definition
The National Institute of Standards and Technology (NIST) defines software assurance in the same 
terms as NASA, whereas the required properties to be achieved are those included in the DHS 
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definition: trustworthiness and predictable execution. NIST essentially fuses the NASA and DHS 
definitions into a single definition, thereby clarifying the cause-and-effect relationship between 
“the planned and systematic set of activities” and the expectation that such activities will achieve 
software that is trustworthy and predictable in its execution [13].

2.2 Definition 2: Secure Software
DHS’s Security in the Software Life Cycle defines secure software in terms that have attempted to 
incorporate concepts from all of the software assurance definitions discussed in Section 93.1 as well 
as reflect both narrow-focused and holistic views of what constitutes secure software. The document 
attempts to provide a “consensus” definition that has, in fact, been vetted across the software secu-
rity assurance community (or at least that part that participates in meetings of the DHS Software 
Assurance Working Groups [WG] and DoD/DHS Software Assurance Forums). According to 
Security in the Software Life Cycle—Secure software cannot be intentionally subverted or forced to 
fail. It is, in short, software that remains correct and predictable in spite of intentional efforts to 
compromise that dependability. Security in the Software Life Cycle elaborates on this definition—
Secure software is designed, implemented, configured, and supported in ways that enable it to:
Continue operating correctly in the presence of most attacks by either resisting the exploitation of 
faults or other weaknesses in the software by the attacker, or tolerating the errors and failures that 
result from such exploits
Isolate, contain, and limit the damage resulting from any failures caused by attack-triggered faults 
that the software was unable to resist or tolerate, and recover as quickly as possible from those failures
The document then enumerates the different security properties that characterize secure software 
and clearly associates the means by which software has been developed with its security:
Secure software has been developed such that—
Exploitable faults and other weaknesses are avoided by well-intentioned developers.
The likelihood is greatly reduced or eliminated that malicious developers can intentionally implant 
exploitable faults and weaknesses or malicious logic into the software.
The software will be attack-resistant or attack-tolerant, and attack-resilient.
The interactions among components within the software-intensive system, and between the system 
and external entities, do not contain exploitable weaknesses.
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ment and the education of software professionals.

Like the second volume, this first volume describes what occurs in 
research laboratories, educational institutions, and public and private 
organizations to advance the effective development and use of com-
puters and computing in today’s world. Research-level survey articles 
provide deep insights into the computing discipline, enabling readers 
to understand the principles and practices that drive computing edu-
cation, research, and development in the twenty-first century. 

Features
• Aligns with the undergraduate curriculum models developed by 

the ACM and IEEE-CS 
• Describes the fundamental principles of computer science, such 

as algorithms and architecture
• Covers contemporary topics in computer science and software 

engineering, including graphics, intelligent systems, mobile com-
puting, and agile development
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