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Preface to the Computing
Handbook Set

The purpose of the Computing Handbook Set is to provide a single, comprehensive reference for spe-
cialists in computer science, information systems, information technology, software engineering, and
other fields who wish to broaden or deepen their understanding in a particular subfield of the comput-
ing discipline. Our goal is to provide up-to-date information on a wide range of topics in a form that is
accessible to students, faculty, and professionals.

The discipline of computing has developed rapidly since CRC Press published the second edition of
the Computer Science Handbook in 2004 (Tucker, 2004). Indeed, it has developed so much that this third
edition requires repartitioning and expanding the topic coverage into a two-volume set.

The need for two volumes recognizes not only the dramatic growth of computing as a discipline but
also the relatively new delineation of computing as a family of five separate disciplines, as described by
their professional societies—The Association for Computing Machinery (ACM), The IEEE Computer
Society (IEEE-CS), and The Association for Information Systems (AIS) (Shackelford et al., 2005).

These separate disciplines are known today as computer engineering, computer science, information
systems, information technology, and software engineering. These names more or less fully encom-
pass the variety of undergraduate and graduate degree programs that have evolved around the world,
with the exception of countries where the term informatics is used for a subset of these disciplines. The
document “Computing curricula 2005: The overview report” describes computing this way (Shackelford
etal., 2005, p. 9):

In a general way, we can define computing to mean any goal-oriented activity requiring, benefit-
ing from, or creating computers. Thus, computing includes designing and building hardware and
software systems for a wide range of purposes; processing, structuring, and managing various
kinds of information; doing scientific studies using computers; making computer systems behave
intelligently; creating and using communications and entertainment media; finding and gathering
information relevant to any particular purpose, and so on.

To add much flesh to the bones of this very broad definition, this handbook set describes in some
depth what goes on in research laboratories, educational institutions, and public and private organiza-
tions to advance the effective development and utilization of computers and computing in today’s world.
The two volumes in this set cover four of the five disciplines in the following way:*

1. Volume I: Computer Science and Software Engineering
2. Volume II: Information Systems and Information Technology

* The fifth discipline, computer engineering, is the subject of a separate handbook published by CRC Press in 2008.

xiii



Xiv Preface to the Computing Handbook Set

This set is not designed to be an easy read, as would be gained by browsing a collection of encyclope-
dia entries on computing and its various subtopics. On the contrary, it provides deep insights into the
subject matter through research-level survey articles. Readers who will benefit most from these articles
may be undergraduate or graduate students in computing or a related discipline, researchers in one area
of computing aiming to expand their knowledge of another area, or other professionals interested in
understanding the principles and practices that drive computing education, research, and development
in the twenty-first century.

This set is designed as a professional reference that serves the interests of readers who wish to explore
the subject matter by moving directly to a particular part and chapter of the appropriate volume. The
chapters are organized with minimal interdependence, so that they can be read in any order. To facili-
tate rapid inquiry, each volume also contains a table of contents and a subject index, thus providing
access to specific topics at various levels of detail.

The Preface to Volume I provides a more detailed overview of the organization and content of this
volume. A similar overview of the coverage of information systems and information technology appears
in the Preface to Volume II.



Preface to Volume I:
Computer Science and
Software Engineering

This volume is organized to mirror the modern taxonomy of computer science and software engineering
as described by the ACM and IEEE-CS (Joint Task Force, 2012):

Algorithms and Complexity
Architecture and Organization
Computational Science

Discrete Structures

Graphics and Visual Computing
*Human-Computer Interaction
*Security and Information Assurance
*Information Management
Intelligent Systems

Networking and Communication
Operating Systems

Platform-Based Development

Parallel and Distributed Computing
Programming Languages

Software Development Fundamentals
Software Engineering

Systems Fundamentals

Social and Professional Issues

To avoid redundancy, the three starred (*) topics in this list (Human-Computer Interaction, Security
and Information Assurance, and Information Management) are covered in Volume II, while the remain-
ing topics are covered in this volume.

The first eight parts of this volume cover the discipline of computer science (edited by Teofilo Gonzalez),
while the last four parts cover software engineering (edited by Jorge Diaz-Herrrera). Allen Tucker is the
editor in chief of the two volumes.

Computer Science

Implicit in the aforementioned taxonomy (and, indeed, in all current thinking about the nature of com-
puter science) is the idea of a dynamic discipline with an increasingly broad reach. For example, the
computational science area noted earlier emphasizes the necessity of interaction among computer scien-
tists and natural scientists in the many research and educational areas where their work now overlaps.

XV



XVi Preface to Volume I: Computer Science and Software Engineering

A more elaborate description of this idea is expressed in the following definition of computer science,
taken from the 2005 Joint Task Force Report (Shackelford, 2005, p. 13):

Computer science spans a wide range, from its theoretical and algorithmic foundations to cutting-
edge developments in robotics, computer vision, intelligent systems, bioinformatics, and other
exciting areas. We can think of the work of computer scientists as falling into three categories.

1. They design and implement software. Computer scientists take on challenging program-
ming jobs. They also supervise other programmers, keeping them aware of new approaches.

2. They devise new ways to use computers. Progress in the CS areas of networking, database,
and human-computer-interface enabled the development of the World Wide Web. Now CS
researchers are working with scientists from other fields to make robots become practical
and intelligent aides, to use databases to create new knowledge, and to use computers to help
decipher the secrets of our DNA.

3. They develop effective ways to solve computing problems. For example, computer scien-
tists develop the best possible ways to store information in databases, send data over net-
works, and display complex images. Their theoretical background allows them to determine
the best performance possible, and their study of algorithms helps them to develop new
approaches that provide better performance.

The computer science chapters are organized into eight parts: (I) Overview of Computer Science;
(II) Algorithms and Complexity; (III) Architecture and Organization; (IV) Computational Science and
Graphics; (V) Intelligent Systems; (VI) Networking and Communication; (VII) Operating Systems; and
(VIII) Programming Languages. A brief summary of what you can expect to find in each part is pro-
vided in the following.

Overview of Computer Science

Part I consists of two very important chapters. In Chapter 1, Peter Denning discusses the 50-year evolu-
tion of computer science as a discipline distinct from the fields from which it emerged: mathematics,
science, and engineering. In Chapter 2, Valerie Barr introduces the idea of “computational thinking,” a
relatively new term that is helping to shape modern thinking about the expanding presence of computer
science, especially in the K-12 and undergraduate college curricula.

Algorithms and Complexity

This part discusses the algorithmic and computational complexity issues that underlie all of computer
science. Chapter 3 covers important ways of organizing data inside computers to facilitate their retrieval.
It discusses the time and space trade-offs for implementing the most important algorithms used in almost
every application. The different design paradigms behind these algorithms are discussed in Chapter 4.
The chapter covers greedy methods, divide-and-conquer, and dynamic programming, as well as other
techniques that have been applied successfully in the design of efficient algorithms. Graphs and networks
have been used to model a wide range of computer science problems as well as problems in different disci-
plines. Chapter 5 discusses graph and network techniques that have been devised to efficiently solve these
problems. In some applications, computational problems can be simplified by formulating them as prob-
lems in two-dimensional space. Computational geometry problems include those that have intrinsic geo-
metric properties. Chapter 6 discusses the techniques that have been applied successfully in this domain.

Chapter 7 discusses computational complexity classes. This is a grouping of problems according to the
time and space required to solve them. The major classes are called P and NP, and they help characterize
most of the computational challenges that arise in practice. A fundamental problem in computer science
is to prove or disprove whether P = NP. In fact, it is so important that a so-called “Millennium Prize”
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consisting of $1,000,000 has been offered by the Clay Institute to anyone who solves this problem. At
a more abstract level, Chapter 8 reviews formal methods and computability. This chapter explores the
limits of what is computable within the most basic computing models that are equivalent to current
computer architectures. One of the most complex areas of research is cryptography. Chapter 9 provides
a comprehensive overview of this very important area. Since millions of private transactions take place
on the Internet every second, we need ways to keep them secure and guarantee their integrity. Solutions
in this area require sophisticated mathematical analysis techniques. Chapter 10 addresses the area of
algebraic algorithms. The basic applications in this area are in science and engineering.

As the input size of most computationally complex problems continues to grow (sometimes referred to as
the phenomenon of big data), the study of randomized algorithms has grown considerably in recent years.
Chapter 11 discusses techniques to design such algorithms by presenting algorithms to solve some specific
problems. Another way of dealing with computational complexity is to aim for approximations rather than
optimal solutions. Chapter 12 discusses approximation algorithms and metaheuristics. The different meth-
odologies used in these two areas are surveyed and applied to problems from different disciplines. Algorithms
that take advantage of the combinatorial structure of the feasible solution space are discussed in Chapter 13.
Another important algorithmic challenge is how to visualize data and their structure. Chapter 14 covers the
area of graph drawing, which tries to design algorithms that display information in a clear way according
to given objective functions. In this era of big data, we also need to discover ways of storing, retrieving, and
transmitting it efficiently. Chapter 15 covers strategies for data compression and finding patterns in data
quickly. Chapter 16 studies computing in a landscape where the computations are distributed among many
computers. In this scenario, we need to address the issue of fault-tolerant computing; as the number of inde-
pendent devices grows, the likely failure of at least one of the components increases substantially.

Architecture and Organization

Part I1I takes us closer to computing machines themselves by examining their architecture and organi-
zation. Starting at the most basic organizational level, Chapter 17 covers digital logic, how it is imple-
mented, and how logical components are designed to carry out basic computations. Chapter 18 covers
the organization of memory and its implementation, including the different levels of memory, access
speeds, and implementation costs. Chapter 19 extends this discussion to the treatment of secondary
storage. A main issue here is how to store files in disks, solid state devices, and flash memories to ensure
reliability. Chapter 20 covers computer arithmetic, including the efficient implementation of the basic
arithmetic and logical operations that are fundamental to all computing activities. Modern input and
output devices are discussed in Chapter 21. As the way we interact with computers has changed over the
years, input and output design remains at the forefront of research and development.

Chapter 22 discusses performance enhancements for instruction processing, such as the use of over-
lap and low-level concurrency. Focusing on the theme of design for efficiency, Chapter 23 surveys the
different ways of organizing parallel computers. It begins with the standard types introduced several
decades ago and concludes with the highly successful GP-GPUs as well as cloud computing. To cir-
cumvent the memory access and sequential performance walls, modern architectures include multiple
processors on a single chip. Chapter 24 discusses the hardware and software challenges for the design
and use of multicore architectures. Chapter 25 explains how DNA can be used to compute some logical
functions and perform biological tests. Currently, performing these tests takes some time because it
requires several computational facilities and involves human intervention.

Computational Science and Graphics

Some aspects of computational science have been part of computing since its beginning. Computational
electromagnetics (Chapter 26) basically studies the computational solution of Maxwell equations. Analytical
solutions to Maxwell equations are usually unavailable, and the few closed-form results that exist have very
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restrictive solutions. The use of computer-based methods for the prediction of fluid flows has seen tremen-
dous growth in the past half century. Fluid dynamics (Chapter 27) has been one of the earliest, and most
active, fields for the application of numerical techniques. Computational astrophysics (Chapter 28) cov-
ers astrophysics, a computationally intensive discipline. Physics and astronomy make heavy use of online
access and data retrieval. Databases, data analysis, and theoretical modeling go hand in hand in this area.
The gravitational n-body problem and its modeling form the basis for cosmology. Chapter 29 discusses the
rich set of computational applications in chemistry. Computational biology/bioinformatics is an area that
has grown tremendously over the last decade. Chapter 30 discusses the interplay between the genetic analy-
sis provided by computational algorithms and the underlying biological processes. Chapter 31 on terrain
modeling examines the computational problems and new insights arising from the analysis of GIS data.

Computer graphics provides the underlying tools for scientific visualization and animation of a wide
variety of real and imaginary phenomena. Chapter 32 discusses the basic geometric primitives manipu-
lated by typical graphics systems. These primitives allow for the efficient representation and manipula-
tion of visual objects in a computer. Chapter 33 covers computer animation, which has become widely
used in the production of movies and videos.

Intelligent Systems

Mathematical logic and declarative programming provide theoretical foundations for artificial intel-
ligence applications, which are called intelligent systems. Chapter 34 explores the use of logic to allow a
system to work in spite of contradictions, dilemmas, and conflicts. Chapter 35 discusses qualitative rea-
soning, which supports reasoning with very little information. This is the first approach that one uses to
understand a problem before developing a more formal or quantitative strategy. Machine learning, dis-
cussed in Chapter 36, is concerned with identifying and exploiting patterns in data to simulate human
learning. Applications of machine learning to real-world problems are widely used on the Internet,
for example, in marketing. Chapter 37 introduces explanation-based learning, which adds inferential
domain theory to expand the reach of statistical machine learning. This theory adds expressiveness to
statistical methods such as Bayesian or Markov models.

Chapter 38 describes searching, which is a basic operation in most computing areas and is par-
ticularly important in intelligent systems where the search domain is often complex. This chapter
explores both blind exhaustive search methods using informed heuristics and optimal heuristics.
Chapter 39 covers planning (the process of creating an organized set of actions) and scheduling
(the process of assigning a set of actions to resources over time). These are basic operations arising
in all sorts of environments and have been studied over the years in several disciplines. Chapter 40
explores natural language processing, or developing systems to understand human languages. In
2011, IBM’s Watson program convincingly won the popular Jeopardy game over the most highly
skilled human competitors. This was a major accomplishment for natural language processing.
Spoken language understanding, covered in Chapter 41, is an emerging field between the areas of
speech processing and natural language processing. This area leverages technologies from machine
learning to create systems that would facilitate communication with users. Chapter 42 covers neural
networks, which have been used to solve a wide range of problems in modeling intelligent behavior.
Chapter 43 deals with cognitive modeling and surveys the methods and models used to understand
human cognition. The semantic basis and properties of graphic models (Bayesian Networks) are
explored in Chapter 44. Applications to reasoning and planning are discussed in this chapter.

Networking and Communication

In the last 20 years, the use of computer networks for communication has become an integral part of our
daily life. An incredible volume of information is transferred constantly worldwide through computer net-
works, and these must operate efficiently and reliably so that modern business and commerce can function
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effectively. Chapter 45 examines the communications software needed to interconnect computers, serv-
ers, and all sort of devices across networks. The unique aspects of wireless networks are discussed in
Chapter 61 in Part VII. Chapter 46 discusses the routing algorithms that manage information flow across
networks, including the trade-offs that exist among different alternatives. Chapter 47 discusses access
control, which is fundamental for protecting information against improper disclosure or modification.

Compression of images and videos needed for the efficient storage and transmission of these types
of data is covered in Chapter 48. Chapter 49 introduces underwater sensor networks, whose challenges
and techniques are very different from those in other types of networks. Chapter 50 surveys ideas for
transforming the World Wide Web to facilitate interoperability and integration of multiauthored, mul-
tithematic, and multiperspective information services seamlessly. Chapter 51 deals with search engines,
which have become indispensable in almost all aspects of our daily life. It discusses the fundamental
issues involved in designing and constructing search engines that interact with enormous amounts of
information and digest it for users.

Operating Systems

An operating system is the fundamental software that controls all aspects of a computer, its applications,
and its user interface. Chapter 52 discusses processes, the basic software activities that an operating
system manages, and the mechanisms needed for communication and synchronization. Chapter 53
covers thread management, where threads are basic sequences of code that comprise a program running
in a system. Breaking programs and systems into threads is particularly useful in multicore machines,
the modern organization of computers. Virtual memory, discussed in Chapter 54, explains the way in
which computer memory is organized for efficient access in computers. This chapter also discusses how
these techniques apply to other levels of storage and systems. The organization of file systems and sec-
ondary storage is discussed in Chapter 55. The main concern is the use of secondary storage space for
its use as long storage media.

Chapter 56 covers performance modeling of computer systems. Different computer architectures
have different performance limits. The chapter discusses different ways to analyze computer system
performance. Chapter 57 deals with a similar topic but for interconnected distributed computer systems
such as clusters, grids, and clouds. An important issue here is maintaining quality of service during
contention management. The architecture and special applications of real-time systems are discussed
in Chapter 58. In these systems, response must occur within specific deadlines; it is a challenge for the
operating system to schedule processes so that these deadlines are met. The design of distributed operat-
ing systems faces two main challenges: scheduling, covered in Chapter 59, and file systems, covered in
Chapter 60. Mobile devices pose new challenges for operating system design, and these are addressed
in Chapter 61. The proliferation of smart phones and tablets has brought this area to the forefront of
research and development. Chapter 62 provides an introduction to service-oriented operating systems
and concludes this part.

Programming Languages

Programming language research has a rich history, and it has remained vibrant with the development
of modern architectures, networks, and applications. Chapter 63 covers imperative programming lan-
guages, the oldest and probably the most prolific style of programming. These types of languages are in
widespread use and are familiar to software developers in all areas of computing. The object-oriented
programming paradigm discussed in Chapter 64 has become popular as it facilitates modeling real-
world software systems using object decomposition. Another form of programming, logic program-
ming discussed in Chapter 65, has major applications in artificial intelligence and natural language
processing research. Recent developments have been especially active in the areas of multiparadigm
programming languages and scripting languages described in Chapter 66 and Chapter 67, respectively.
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Chapter 68 deals with compilers and interpreters, which provide the interface between programs
written in higher-level programming languages and an equivalent encoding that a computer can under-
stand and carry out. Many aspects of this process have been automated, and the techniques and limita-
tions of these processes are also discussed. Every programming language has syntax and semantics.
Syntax refers to the valid strings of characters that define valid programs in the language, and semantics
refers to the meaning of such strings. Chapter 69 covers formal semantics for programming languages.
Chapter 70 describes type systems, which are used in modern programming languages to guarantee
that programs are free of type-related errors. This chapter discusses the formal underpinnings of type
systems as well as their implementations. Chapter 71 covers formal methods, a set of notations and tools
that provide a mathematical basis for proving the correctness of a program with regard to its formal
specification.

Software Engineering

As an academic field of study, software engineering was introduced in the early 1970s as a specialization of
computer science and engineering, first as master-level programs. In the 1990s, the field proliferated in North
America, Europe, and Australia, first in the form of BS programs and, more recently, programs at the PhD
level; that is, software engineering programs separate from computer science programs (Lethbridge et al.,
2006). What is the difference and why do we care?

Software is of critical importance in today’s world and of increasingly serious public significance in
our daily lives for our safety and security. Although the voicing of concerns about the critical conse-
quences of not considering software development as a more rigorous profession dates back to the late
1960s (Naur, 1969), today software engineering is still not a fully formed, mature professional discipline.
This seems more of an elusive goal than a concrete reality or even a future possibility. Some wonder if
trying to retrofit software engineering with the traditional engineering paradigm has hindered its accep-
tance as a professional discipline. Particularly lacking is a widespread recognition of software develop-
ers as professionals in the full sense of the word.*

Over the past decades, we have identified scientific and engineering body of knowledge needed to
solve technical software problems that meet user requirements (functional and otherwise) and deliver
software within budget, on time, as well as within its economic, legal, and social considerations. The
study of engineering requires a strong background in mathematics and the physical sciences. Although
this is not different for software engineers, the kind of mathematics and the specific science may be dif-
ferent from more traditional engineering disciplines. However, a legitimate research question remains
on whether there could be a scientific basis for understanding the complexity of software such that it can
be engineered to have predictable quality and behavior.

Ian Sommerville (1999) introduced the idea that software engineering is perhaps something else: “In
essence, the type of systems which we are interested in are socio-technical software-intensive systems....
Systems, therefore, always include computer hardware, software which may be specially designed or
bought-in as off-the-shelf packages, policies and procedures, and people who may be end-users and pro-
ducers/consumers of information used by the system.” Furthermore, Sommerville and his colleagues
claim that “there is no technical solution to software complexity” (Sommerville, 2012).

The fact that computing has become a distinct branch of knowledge, that is, a discipline in its own
right different from science and engineering—an idea first formally introduced by Denning (1998) and
further developed by Denning and Freeman (Denning, 2009)—fits this notion as has been demonstrated
by the creation of a unifying and enclosing academic entity that embraces the science, engineering, and
technology of computing: the computing college, “standing alone, headed by its own dean, with the

* Ttis a fact of life that many of the software industry professionals are graduates from computer science and related fields.
This is of no surprise since in most advertisements for such positions, the educational requirements often listed are
degrees in computer science. However, once hired, employers give them the title of software engineer.



Preface to Volume I: Computer Science and Software Engineering XX1i

same stature as traditional colleges” [op. cit.]. In this way, computer science is a different kind of science
and software engineering a different kind of engineering.

The chaptersin the last four parts consolidate our current understanding of the discipline of software engi-
neering and its effect on the practice of software development and the education of software professionals.
There are four main parts. (1) Discipline of Software Engineering; (2) Software Quality and Measurement;
(3) Software Development Management: Processes and Paradigms; and (4) Software Modeling, Analysis,
and Design (notice that programming topics were amply covered in Part VIII, programming languages).

Discipline of Software Engineering

This part includes five chapters. It starts with Chapter 72, which provides an overview of software engi-
neering. The chapter delineates the historical development of the discipline and provides an analysis of
accepted definitions and an outline of the elements of the field. It looks at generally accepted definitions
of engineering and shows the relation of certain elements to software development. It also points out
important differences and demonstrates through a detailed analysis how prominent features that cut
across all engineering disciplines can reasonably be mapped to software development. In this regard,
the two most fundamental aspects are problem solving and engineering design. Mastery of problem
solving involves a combination of proper judgment, experience, common sense, and know-how that
must be used to reduce a real-world problem to such a form that science can be applied to find its solu-
tion. Engineering design, on the other hand, is the process of devising a system, component, or process
to meet desired needs by finding technical solutions to specific practical problems, while taking into
account economic, legal, and ecological considerations. Among the fundamental elements of this pro-
cess are the establishment of objectives and criteria, synthesis, analysis, construction, testing, and evalu-
ation, all of which have a counterpart in software engineering.

Chapters 73 and 74 deal with professionalism and certification issues and the code of ethics and profes-
sional conduct, respectively. Chapter 73 addresses software engineering as a profession from the point of
view of the body of knowledge, accreditation of academic programs, and issues on licensure and certifi-
cation of software engineering professionals. It provides a good account of the political realities of mak-
ing software development a professional discipline and concludes that “it seems clear that the future of
software engineering professionalism will be driven by industry and government,” although the uptake
of credentials has been driven by practitioners’ interest (e.g., IEEE-CS CSDP).

Concomitant with the development of software engineering as a professional discipline is the intro-
duction of a code of ethics, and in late 1999 the Association for Computing Machinery and the IEEE
Computer Society approved the Software Engineering Code of Ethics and Professional Practice. In
Chapter 74, Gotterbarn, a principal architect of the code, provides a rich historical account of its devel-
opment and a thorough description of its purpose and principles, together with simple cases as examples
and practical guidance for public accountability and educational purposes.

Chapters 75 and 76 address software IT business and economics and open source and governance.
Chapter 75 provides an overview of the business of software from an IT and economics point of view,
with a focus on the success rate of projects in terms of schedule predictability and quality, while empha-
sizing available solutions and best practices to practically implement this framework. It concludes with
a look at business trends, naturally influenced and determined by external factors such as demand for
value, fashion, individualism, ever-changing expectations, demand for ubiquitous services, global com-
petition, economic and ecologic behaviors, and the need for security and stability, which in turn influ-
ence trends for software and IT business.

Chapter 76 on open source and governance is an authoritative manifesto in the subject, providing a
comprehensive set of underlying principles regarding copyright law and license terms, including the
peculiarities of COTS (commercial off-the-shelf). It also contains numerous examples of best practices
covering a myriad of situations in which companies “desiring to supplement and expand the capabilities
of their existing software” can find themselves.
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Software Quality and Measurement

This part highlights an important aspect that makes software engineering a distinct computing dis-
cipline and that lends it much scientific credibility. The first two chapters focus on evidence-informed
software engineering and empirical software engineering. Chapter 77 introduces the evidence-based par-
adigm, which originally emerged in medicine, together with a systematic literature review of its appli-
cation in software engineering. The idea, first advocated by Kitchenham et al. in 2004, suggests that
with some adaptation to fit the nature of software engineering studies, this could be a valuable way of
consolidating our empirical knowledge about what works, when, and where. Chapter 78 provides an
overview of how the ideas and practices associated with empirical software engineering have evolved.
It represents an invaluable aid for identifying suitable forms of study for a particular need and to pro-
vide enough background for software engineers to appreciate the strengths and limitations of empirical
knowledge and practice. This is particularly relevant if software engineering is to become a professional
discipline; in this way, its practices, methods, and tools would need to be informed by evidence from
well-conducted empirical studies.

Chapter 79 looks at quality in general and provides a comprehensive survey and analysis of qual-
ity under the umbrella of software process improvement. It differentiates software quality attributes
from the point of view of the end user to I'T operations, through marketing and projects and technical
concerns. It also describes five perspective approaches to quality, that is, transcendental, product, user,
manufacturing, and value based, with corresponding mappings to ISO quality standards. The chapter
then juxtaposes process and quality and cost and quality. It provides an overview of best practices cover-
ing the various approaches to software process maturity such as CMM and SPICE together with practi-
cal implementation implications. It also identifies issues associated with small organizations and Agile
development, as well as measurement and the use of statistical process control.

Chapter 80 focuses on software metrics and measurements and hence follows naturally here. This
is an important component of software engineering as a professional discipline. The chapter dem-
onstrates the value of software measurement and the role of international standards. These stan-
dards embody principles and best practices as defined and codified by experts in the field. Several
approaches to implement measurement are discussed, including CMMI measurement and analysis
(M&A), measurement and analysis infrastructure diagnostic (MAID), and goal-question-metric
(GQM) among others. The chapter also covers predictive models and indicators, developing bench-
marks and heuristics and improving data quality, concluding that “software measurement is required
to quantify quality and performance and to provide an empirical and objective foundation for deci-
sion making—a foundation that is a necessary element if software engineering is truly to be a disci-
plined field of engineering.”

Software Development Management: Processes and Paradigms

The chapters in this part address the development of software from a higher-level managerial, rather
than code development point of view. The first three chapters deal with management and organiza-
tional issues. Chapter 81 argues that there is no one best way to develop software and manage projects
for all kinds of applications but that there are some basic principles that can be applied to a variety of
projects within their contexts. It takes us through a series of high-level process concepts, innovation
and design, and architecture strategies and how they are used in different situations. It concludes with
a brief analysis of the results of a survey on global differences in practices and performance metrics in
different regions of the world.

Chapter 82 covers issues related to project personnel and organization such as how to put together a
team and how to decide on the types of personnel that you will need in your team based on the differ-
ent types of roles and responsibilities. The chapter also explains the different ways you can organize



Preface to Volume I: Computer Science and Software Engineering xxiii

your personnel along with the advantages and disadvantages of each approach, as well as underlying
principles and best practices.

Chapter 83 discusses project and process control. It makes a distinction between the project manager’s
control activities in executing a project, that is, project control, and the control of the underlying soft-
ware development processes, or process control. Controlling a project and controlling the underlying
processes are very different activities and, consequently, they require very different techniques to make
them effective. The chapter describes the underlying mathematical and engineering foundations of two
well-known control methods that can be applied to controlling software development projects and to
their underlying software development processes. The first is closely related to traditional engineering
methods for controlling manufacturing and communications systems using feedback. The second is
known as statistical process control (SPC). The chapter concludes with a brief discussion of the extensive
literature describing the application of SPC methods to software projects and the successes and failures
that they have reported.

The last three chapters in this part address more recent development frameworks. Chapter 84 pro-
vides a thorough introduction to Agile methods, an umbrella term popularized with the publication of
the Agile manifesto, reflecting an intention to differentiate Agile approaches from a trend in software
development methodologies that had gained dominance in previous decades. It describes the set of 12
principles underlying the Agile approach as provided by the Agile manifesto. Specific implementations
of the approach are described as best practices, including extreme programming, scrum, etc., together
with an analysis of their specific incorporation, or not, of the 12 principles. The chapter concludes with a
discussion of plan-driven approaches’ compatibility, such as CMMIs, with Agile methods and thorough
analyses of important research directions.

Chapter 85 presents a process for developing software based on service-oriented architectures. The
fundamental building blocks of the approach are services, commonly viewed as self-contained software
application modules exposed through interfaces over a distributed environment. The chapter intro-
duces related elements such as component-based development, distributed components, and web ser-
vices. The underlying principles of the approach are described together with the service infrastructure
needed. In terms of best practices, the chapter outlines reference models and reference architectures and
standards as well as the enterprise service bus idea and compares the specific implementations of the
web services SOAP and REST.

Chapter 86 on software product lines (SPL) provides an introduction to the topic and a thorough anal-
ysis of its research challenges. SPL is one of the most active research areas of software engineering, and
despite remarkable contributions, which are briefly highlighted, important technical problems remain.
The chapter reports quantitative information, based on a secondary study and literature review, on these
remaining problems, which slow down widespread adoption of SPL. The results provided are supported
by a survey among longtime and active SPL researchers and practitioners. The top two reported research
problems were variability management and evolution.

Software Modeling, Analysis, and Design

The last part of this section focuses on specific software development activities starting with require-
ments elicitation and specification, followed by model checking, design strategies, and software archi-
tecture and finally dealing with more overarching topics such human-computer interfaces and software
assurance.

Chapter 87 covers requirements elicitation, a subprocess of requirements engineering concerned with
gathering information about a computer-based system to be built. This is generally the first step in the
software development life cycle regardless of the process model, whether it be waterfall, spiral, or even
Agile. The chapter considers the different scenarios, reviews all available techniques with their pros and
cons, and provides sound advice on what could go wrong during requirements elicitation.
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Chapter 88 focuses on specifications for software systems and the software requirements specification
document (SRS) document capturing them. Software requirement specifications are discussed at dif-
ferent stages from a very informal description to inform users, to descriptions in unambiguous terms,
written in a rather formal (i.e., precise and unambiguous) manner. The chapter provides an overview of
best practices for producing an SRS possessing all the desirable quality attributes and characteristics. It
also provides a survey of the various specification languages and lists outstanding research issues such
as completeness, nonfunctional requirements, cost, program construction and proof, and correctness-
preserving program transformations.

Chapter 89 provides an overview of techniques and tools for analyzing the correctness of software
systems using model checking. Two classes of techniques are covered, namely, counterexample-guided
abstraction refinement (CEGAR) using predicate abstraction, and bounded model checking; other key
model checking techniques that are geared toward software verification analysis are also covered. The
chapter concludes with a brief survey of tools.

The next two chapters are about software design. Chapter 90 on design strategies leads us directly
from requirements as “one assumption underlying any design is that the design will satisfy some set of
requirements.” A set of underlying principles is discussed, including the notion of views, architectural
patterns and tactics, decomposition and refinements, and code generation and testing. Design best prac-
tices are presented together with an analysis of important research concerns such as automatic/semiau-
tomatic design, the accuracy of models, and the use and appropriate place for tools.

Chapter 91 on software architecture focuses exclusively on the main product of design: an archi-
tectural design of the software system to solve a specified problem. Various architectural frameworks
are contrasted from their specific viewpoints, as well as a survey of design methods. A metaprocess is
described, starting with concern analysis and domain analysis and concluding with architecture design,
evaluation, and realization. Research topics in software architectures presented include modeling qual-
ity and issues related to model-driven design.

Chapter 92 on human-computer interfaces in software engineering uses speech applications (both
input and synthesis) from requirements to design and implementation to illustrate principles and best
practices and describe difficult research issues that lie ahead on the implication of human-computer
interaction on software development. The latter discusses inherent current limits in speech applications
design.

Chapter 93 deals with software assurance. It discusses the impact of the risks associated with software
vulnerabilities and introduces basic definitions of software assurance. It also presents modern principles
of software assurance and identifies a number of relevant process models, frameworks, and best prac-
tices. The chapter concludes with a research framework to support and identify gaps for future research
and includes a description of the knowledge areas for a Master of Software Assurance as mapped to
maturity levels for building assured systems.
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Computing is integral to science—not just as a tool for analyzing data but also as an agent of thought
and discovery.

It has not always been this way. Computing is a relatively young discipline. It started as an academic
field of study in the 1930s with a cluster of remarkable papers by Kurt Godel, Alonzo Church, Emil Post,
and Alan Turing. The papers laid the mathematical foundations that would answer the question, “what
is computation?” and discussed schemes for its implementation. These men saw the importance of auto-
matic computation and sought its precise mathematical foundation. The various schemes they each pro-
posed for implementing computation were quickly found to be equivalent, as a computation in any one
could be realized in any other. It is all the more remarkable that their models all led to the same conclu-
sion that certain functions of practical interest—such as whether a computational algorithm (a method
of evaluating a function) will ever come to completion instead of being stuck in an infinite loop—cannot
be answered computationally.

In the time that these men wrote, the terms “computation” and “computers” were already in com-
mon use but with different connotations from today. Computation was taken to be the mechanical steps
followed to evaluate mathematical functions. Computers were people who did computations. In recog-
nition of the social changes they were ushering in, the designers of the first digital computer projects

* An earlier version of this chapter, without the section on technology view of the field, was published in American
Scientist 98 (September—October 2010), pp. 198-202. It was reprinted in Best Writings on Mathematics 2011 (M. Pitici,
ed.), Princeton University Press (2011). Copyright is held by the author.
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all named their systems with acronyms ending in “-AC,” meaning automatic computer or something
similar—resulting in names such as ENIAC, UNIVAC, and EDSAC.

At the start of World War II, the militaries of the United States and the United Kingdom became
interested in applying computation to the calculation of ballistic and navigation tables and the cracking
of ciphers. They commissioned projects to design and build electronic digital computers. Only one of the
projects completed before the war was over. That was the top-secret project at Bletchley Park in England,
which cracked the German Enigma cipher using methods designed by Alan Turing.

Many people involved in those projects went on to start computer companies in the early 1950s.
The universities began offering programs of study in the new field in the late 1950s. The field and the
industry have grown steadily into a modern behemoth whose Internet data centers are said to consume
almost 3% of the world’s electricity.

During its youth, computing was an enigma to the established fields of science and engineering.
At first, it looked like only the technology applications of math, electrical engineering, or science,
depending on the observer. However, over the years, computing seemed to provide an unending
stream of new insights, and it defied many early predictions by resisting absorption back into the
fields of its roots. By 1980, computing had mastered algorithms, data structures, numerical methods,
programming languages, operating systems, networks, databases, graphics, artificial intelligence, and
software engineering. Its great technology achievements—the chip, the personal computer, and the
Internet—brought it into many lives. These advances stimulated more new subfields, including net-
work science, web science, mobile computing, enterprise computing, cooperative work, cyberspace
protection, user-interface design, and information visualization. The resulting commercial appli-
cations have spawned new research challenges in social networks, endlessly evolving computation,
music, video, digital photography, vision, massive multiplayer online games, user-generated content,
and much more.

The name of the field changed several times to keep up with the flux. In the 1940s, it was called
automatic computation, and in the 1950s, information processing. In the 1960s, as it moved into aca-
demia, it acquired the name computer science in the United States and informatics in Europe. By the
1980s, the computing field comprised a complex of related fields including computer science, infor-
matics, computational science, computer engineering, software engineering, information systems,
and information technology. By 1990, the term computing became the standard for referring to this
core group.

1.1 Computing Paradigm

Traditional scientists frequently questioned the name computer science. They could easily see an engi-
neering paradigm (design and implementation of systems) and a mathematics paradigm (proofs of
theorems) but they could not see much of a science paradigm (experimental verification of hypotheses).
Moreover, they understood science as a way of dealing with the natural world, and computers looked
suspiciously artificial.

The word “paradigm” for our purposes means a belief system and its associated practices, defining
how a field sees the world and approaches the solutions of problems. This is the sense that Thomas Kuhn
used in his famous book, The Structure of Scientific Revolutions (1962). Paradigms can contain subpara-
digms: thus, engineering divides into electrical, mechanical, chemical, civil, etc., and science divides
into physical, life, and social sciences, which further divide into separate fields of science. Table 1.1
outlines the three paradigms that combined to make the early computing field.

The founders of the field came from all three paradigms. Some thought computing was a branch of
applied mathematics, some a branch of electrical engineering, and some a branch of computational-
oriented science. During its first four decades, the field focused primarily on engineering: The chal-
lenges of building reliable computers, networks, and complex software were daunting and occupied
almost everyone’s attention. By the 1980s, these challenges largely had been met and computing was
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Science

Engineering

Observe a possible
recurrence or pattern of
phenomena
(hypothesis).

Construct a model that

TABLE 1.1 Subparadigms Embedded in Computing
Math
1. Initiation Characterize objects
of study (definition).
2. Conceptualization ~ Hypothesize possible

relationships among
objects (theorem).

Deduce which
relationships are
true (proof).

3. Realization

4. Evaluation
5. Action

Interpret results.

Act on results (apply).

explains the
observation and enables
predictions (model).
Perform experiments
and collect data
(validate).
Interpret results.

Act on results (predict).

Create statements about
desired system actions
and responses
(requirements).

Create formal statements
of system functions and
interactions
(specifications).

Design and implement
prototypes (design).

Test the prototypes.
Act on results (build).

spreading rapidly into all fields, with the help of networks, supercomputers, and personal computers.
During the 1980s, computers had become powerful enough that science visionaries could see how to
use them to tackle the hardest, “grand challenge” problems in science and engineering. The resulting
“computational science” movement involved scientists from all countries and culminated in the US
Congress’s adopting the High Performance Computing and Communications (HPCC) act of 1991 to
support research on a host of large computational problems.

Today, there is agreement that computing exemplifies science and engineering and that neither sci-
ence nor engineering characterizes computing. Then what does? What is computing’s paradigm?

The leaders of the field struggled with the paradigm question ever since the beginning. Along the
way, there were three waves of attempts to unify views. Newell et al. (1967) led the first one. They argued
that computing was unique among all the sciences in its study of information processes. Simon (1996),
a Nobel laureate in Economics, went so far as to call computing a science of the artificial. Amarel (1971)
endorsed this basic idea and added an emphasis on interactions with other fields. A catchphrase of this
wave was that “computing is the study of phenomena surrounding computers.”

The second wave focused on programming, the art of designing algorithms that produced information
processes. In the early 1970s, computing pioneers Edsger Dijkstra and Donald Knuth took strong stands
favoring algorithm analysis as the unifying theme. A catchphrase of this wave was “computer science
equals programming.” In recent times, this view has foundered because the field has expanded well beyond
programming, whereas public understanding of a programmer has narrowed to just those who write code.

The third wave came as a result of the NSF-funded Computer Science and Engineering Research
Study (COSERS), led by Bruce Arden in the late 1970s. Its catchphrase was “computing is the automation
of information processes.” Although its final report successfully exposed the science of computing and
explained many esoteric aspects to the layperson, its central view did not catch on.

An important aspect of all three definitions was the positioning of the computer as the object of atten-
tion. The computational science movement of the 1980s began to step away from that notion, adopting
the view that computing is not only a tool for science but also a new method of thought and discovery in
science. The process of dissociating from the computer as the focal center came to completion in the late
1990s when leaders of the field of biology—epitomized by Nobel laureate David Baltimore (2001) and
echoing cognitive scientist Douglas Hofstadter (1985)—said that biology had become an information
science and DNA translation is a natural information process. Many computer scientists have joined
biologists in research to understand the nature of DNA information processes and to discover what
algorithms might govern them.

Take a moment to savor this distinction that biology makes. First, some information processes are
natural. Second, we do not know whether all natural information processes are produced by algorithms.
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The second statement challenges the traditional view that algorithms (and programming) are at the
heart of computing. Information processes may be more fundamental than algorithms.

Scientists in other fields have come to similar conclusions. They include physicists working with quan-
tum computation and quantum cryptography, chemists working with materials, economists working
with economic systems, cognitive scientists working with brain processes, and social scientists work-
ing with networks. All have said that they discovered information processes in their disciplines’ deep
structures. Stephen Wolfram (2002), a physicist and creator of the software program Mathematica, went
further, arguing that information processes underlie every natural process in the universe.

All this leads us to the modern catchphrase: “Computing is the study of information processes, natu-
ral and artificial.” The computer is a tool in these studies but is not the object of study. Dijkstra once said:
“Computing is no more about computers than astronomy is about telescopes.”

The term computational thinking has become popular to refer to the mode of thought that accompa-
nies design and discovery done with computation (Wing 2006). This term was originally called algo-
rithmic thinking in the Newell et al. (1960) and was widely used in the 1980s as part of the rationale for
computational science. To think computationally is to interpret a problem as an information process
and then seek to discover an algorithmic solution. It is a very powerful paradigm that has led to several
Nobel Prizes.

All this suggests that computing has developed a paradigm all its own (Denning and Freeman 2009).
Computing is no longer just about algorithms, data structures, numerical methods, programming
languages, operating systems, networks, databases, graphics, artificial intelligence, and software engi-
neering, as it was prior to 1990. It now also includes exciting new subjects including Internet, web sci-
ence, mobile computing, cyberspace protection, user-interface design, and information visualization.
The resulting commercial applications have spawned new research challenges in social networking,
endlessly evolving computation, music, video, digital photography, vision, massive multiplayer online
games, user-generated content, and much more.

The computing paradigm places a strong emphasis on the scientific (experimental) method to under-
stand computations. Heuristic algorithms, distributed data, fused data, digital forensics, distributed
networks, social networks, and automated robotic systems, to name a few, are often too complex for
mathematical analysis but yield to the scientific method. These scientific approaches reveal that dis-
covery is as important as construction or design. Discovery and design are closely linked: the behavior
of many large designed systems (such as the web) is discovered by observation; we design simulations
to imitate discovered information processes. Moreover, computing has developed search tools that are
helping make scientific discoveries in many fields.

The central focus of the computing paradigm can be summarized as information processes—natural
or constructed processes that transform information. They can be discrete or continuous.

Table 1.2 summarizes the computing paradigm with this focus. While it contains echoes of engineer-
ing, science, and mathematics, it is distinctively different because of its central focus on information
processes (Denning and Freeman 2009). It allows engineering and science to be present together with-
out having to choose.

There is an interesting distinction between computational expressions and the normal language of
engineering, science, and mathematics. Engineers, scientists, and mathematicians endeavor to posi-
tion themselves as outside observers of the objects or systems they build or study. Outside observers
are purely representational. Thus, traditional blueprints, scientific models, and mathematical mod-
els are not executable. (However, when combined with computational systems, they give automatic
fabricators, simulators of models, and mathematical software libraries.) Computational expres-
sions are not constrained to be outside the systems they represent. The possibility of self-reference
makes for very powerful computational schemes based on recursive designs and executions and
also for very powerful limitations on computing, such as the noncomputability of halting problems.
Self-reference is common in natural information processes; the cell, for example, contains its own
blueprint.
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TABLE 1.2 The Computing Paradigm

Computing

1. Initiation Determine if the system to be built (or observed) can be
represented by information processes, either finite
(terminating) or infinite (continuing interactive).

2. Conceptualization ~ Design (or discover) a computational model (e.g., an
algorithm or a set of computational agents) that generates
the system’s behaviors.

3. Realization Implement designed processes in a medium capable of
executing its instructions. Design simulations and models
of discovered processes. Observe behaviors of information
processes.

4. Evaluation Test the implementation for logical correctness, consistency
with hypotheses, performance constraints, and meeting
original goals. Evolve the realization as needed.

5. Action Put the results to action in the world. Monitor for
continued evaluation.

1.2 Two Views of Computing

Part of a scientific paradigm is a description of the knowledge of the field, often referred to as the
“body of knowledge.” Within the computing paradigm, two descriptions of the computing body
of knowledge have grown up. They might be called a technology interpretation and a principles
interpretation.

Before 1990, most computing scientists would have given a technological interpretation, describing
the field in terms of its component technologies. After 1990, the increasingly important science aspect
began to emphasize the fundamental principles that empower and constrain the technologies.

In reality, these two interpretations are complementary. They both see the same body of knowledge,
but in different ways. The technological view reflects the way the field has evolved around categories
of technology; many of these categories reflect technical specialties and career paths. The science view
reflects a deeper look at timeless principles and an experimental outlook on modeling and validation
in computing.

These two views are discussed in Sections 1.3 and 1.4.

1.3 View 1: Technologies of Computing

Over the years, the ACM and Institute of Electrical and Electronics Engineers Computer Society
(IEEECS) collaborated on a computing body of knowledge and curriculum recommendations for com-
puter science departments. The milestones of this process give a nice picture of the technological devel-
opment of the field.

1.3.1 First Milestone: Curriculum 68

In the mid-1960s, the ACM (with help from people in IEEECS) undertook the task to define curriculum
recommendations for schools that wished to offer degrees in the new field of computer science (ACM
1968). Their report said that the field consisted of three main parts:

Information structures and processes
Information processing systems
Methodologies
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The methodologies included design approaches for software and applications. The core material was
mostly the mathematical underpinnings for the parts listed earlier:

Algorithms
Programming

Data structures
Discrete math

Logic circuits
Sequential machines
Parsing

Numerical methods

Many computer science departments adopted these recommendations.

1.3.2 Second Milestone: Computing as a Discipline

The ACM and IEEECS formally joined forces in 1987 to defend computing curricula from a bastard-
ized view that “CS = programming.” Around Donald Knuth and Edsger Dijkstra (1970) started making
strong and eloquent cases for formal methods of software design, analysis, and construction. They said
“we are all programmers” trying to employ powerful intellectual tools to tame complexity and enable
correct and dependable software. Although computer scientists understood a programmer as highly
skilled expert at these things, the public view of programmers was narrowing to low-level coders, who
occasionally caused trouble by hacking into other people’s systems.

The committee laid out a model of the computing field that emphasized its breadth, showing that it is
much richer than simply programming (Denning et al. 1989). Table 1.3 depicts the 9 x 3 matrix model
of the computing field offered by the committee. Theory, abstraction, and design were used in the report
for the mathematics, science, and engineering paradigms, respectively. The report gave details about
what ideas and technologies fit into each of the 27 boxes in the matrix. It became the basis for a major
ACM/IEEE curriculum revision in 1991.

Although this effort had a strong internal influence on the curriculum, it had little external influence
on the perception that “CS=programming.” In fact, that perception was alive and well in the early 2000s
when enrollments declined by over 50%.

1.3.3 Third Milestone: Information Technology Profession

In 1998, the ACM launched an “IT profession” initiative, based on a widely held perception that the
field had evolved from a discipline to a profession (Denning 1998, Denning 2001, Holmes 2000). The
initiative responded to three trends: the growing interest in the industry for professional standards
(especially in safety-critical systems), organized professional bodies representing various specialties,

TABLE 1.3 Matrix Model of Computing Discipline, 1989

Topic Area Theory | Abstraction | Design

. Algorithms and data structures

. Programming languages

. Architecture

. Operating systems and networks

. Databases and information retrieval

. Artificial intelligence and robotics

. Graphics

1
2
3
4
5. Software engineering
6
7
8
9

. Human-computer interaction
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TABLE 1.4 The Profession of Information Technology

IT-Core Disciplines

IT-Intensive Disciplines

IT-Supportive Occupations

Artificial intelligence
Computer science
Computer engineering
Computational science
Database engineering
Graphics
Human-computer interaction
Network engineering
Operating systems
Performance engineering
Robotics

Scientific computing
Software architecture

Software engineering

Aerospace engineering
Bioinformatics
Cognitive science
Cryptography

Digital library science
E-commerce
Economics

Genetic engineering
Information science
Information systems
Public policy and privacy
Quantum computing
Instructional design

Knowledge engineering

Computer technician
Help desk technician
Network engineer
Professional IT trainer
Security specialist
System administrator
Web services designer
Web identity designer

Database administrator

System security Management information systems
Material science
Multimedia design

Telecommunications

and a university movement to establish degree programs in information technology. The ACM leader-
ship concluded that the computing field met the basic criteria for a profession and that it was time for
ACM to configure itself accordingly.

Table 1.4 is an inventory ACM made of the organized groups in the field. They saw IT professionals
as a much larger and more diverse group than computer scientists and engineers, with at least 42 orga-
nized affinity groups in three categories. The first category comprises the major technical areas of IT and
spans the intellectual core of the field. The second category comprises other well-established fields that
are intensive users of I'T; they draw heavily on IT and often make novel contributions to computing. The
third category comprises areas of skill and practice necessary to keep and support the IT infrastructures
that everyone uses. Allen Tucker and Peter Wegner (1996) also noted the dramatic growth and profes-
sionalization of the field and its growing influence on many other fields.

Unfortunately, the talk about “profession” led to a new round of terminological confusion. A profes-
sion is a social structure that includes many disciplines, but it is not a discipline in its own right. IT is
not a field of research; the core disciplines (left column) and partner disciplines (middle column) attend
to the research. To what does the term “computing field” refer in this context?

A decade later, it was clear that this interpretation of the field did not match what had actually evolved
(Denning and Freeman 2009). The popular label IT did not reconcile the three parts of the computing
field under a single umbrella unique to computing. IT now connotes technological infrastructure and its
financial and commercial applications, but not the core technical aspects of computing.

1.3.4 Fourth Milestone: Computing Curriculum 2001

The ACM and IEEECS Education Boards were more cautious than ACM leadership in embracing an IT
profession when they undertook a curriculum review and revision in 1999. They focused on the core special-
ties (first column in Table 1.2) and identified the computing discipline with these six academic specialties:

EE—Electrical engineering
CE—Computer engineering
CS—Computer science
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SWE—Software engineering
IS—Information systems
IT—Information technology

It was understood that students interested in hardware would enroll in an EE or CE program; students
interested in software in a CE, CS, or SWE program; and students interested in organizational and
enterprise aspects would enroll in IS or IT programs. Here, the term “IT” is far from what the IT pro-
fession initiative envisioned—it refers simply to a set of degree programs that focus on organizational
applications of computing technology.

The CC2001 committee organized the body of knowledge into 14 main categories, as follows:

Algorithms and complexity
Architecture and organization
Computational science
Discrete structures

Graphics and visual computing
Human-computer interaction
Information management
Intelligent systems
Net-centric computing
Operating systems
Programming fundamentals
Programming languages
Social and professional issues
Software engineering

There were a total of 130 subcategories. The body of knowledge had 50% more categories than a decade
before!

1.3.5 Fifth Milestone: Computing Curriculum 2013

The ACM and IEEECS again collaborated on a ten-year review of the computing curriculum. They
learned that the field had grown from 14 to 18 knowledge areas since the 2001 review:

Algorithms and complexity
Architecture and organization
Computational science

Discrete structure

Graphics and visual computing
Human-computer interaction
Information assurance and security
Information management
Intelligent systems

Networking and communications
Operating systems

Platform-based development
Parallel and distributed computing
Programming languages

Software development fundamentals
Software engineering

Systems fundamentals

Social and professional issues
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The committee was concerned about the pressure to increase the size of the computer science core. They
calculated that the 2001 curriculum recommended 280 core hours and an update in 2008 increased
that to 290. The core hours to cover the list earlier would be 305. They divided the core into two parts.
Tier 1, the “must have” knowledge, and Tier 2, the “good to have” knowledge. They recommended that
individual departments choose at least 80% of the Tier 2 courses, for a total of 276 hours, leaving plenty
of time for electives in a student’s specialization area.

When ACM issued Curriculum 68, most of us believed that every computer scientist should know the
entire core. Today, that is very difficult, even for seasoned computer scientists, since the field has grown
so much since 1968.

1.4 View 2: Great Principles of Computing

The idea of organizing the computing body of knowledge around the field’s fundamental principles is not
new. Many of the field’s pioneers were deeply concerned about why computing seemed like a new field, not
a subset of other fields like mathematics, engineering, or science. They spent considerable effort to explain
what they were doing in terms of the fundamental principles they worked with. Prominent examples
are Turing’s paper (1937); the essays of Newell et al. (1967); Simon’s book (1996); and Arden’s COSERS
report (1971, 1983). In subsets of the field, thinkers ferreted out the fundamental principles. Examples are
Coftman and Denning (1973) on operating systems, Kleinrock (1975) on queueing systems, Hillis (1999)
on the nature of computing machines, and Harel (2003) on algorithms and limits of computing.

This viewpoint, however, stayed in the background. I think the reason was simply that for many
years, we were concerned with the engineering problems of constructing computers and networks that
worked reliably. Most computer scientists were occupied solving engineering problems. The ones most
interested in fundamental principles were the ones interested in theory. By 1990, we had succeeded
beyond our wildest dreams with the engineering. However, our descriptions of the field looked like
combinations of engineering and mathematics. Many outsiders wondered what the word “science” was
doing in our title.

When the computational science movement began in the 1980s, many computer scientists felt like
they were being excluded. Computational scientists, for their part, did not realize that computer scien-
tists were interested in science. A growing number of us became interested in articulating the science
side of computing. It was not easy, because many scientists agreed with Herb Simon (1996), that we are at
best a science of the artificial, but not a real science. Real sciences, in their opinions, dealt with naturally
occurring processes.

But by 1990, prominent scientists were claiming to have discovered natural information processes,
such as in biology, quantum physics, economics, and chemistry. This gave new momentum to our efforts
to articulate a science-oriented view of computing (Denning 2005, Denning 2007).

Inspired by the great principles work of James Trefil and Robert Hazen (1996) for science, my col-
leagues and I have developed the Great Principles of Computing framework to accomplish this goal
(Denning 2003, Denning and Martell 2004). Computing principles fall into seven categories: computa-
tion, communication, coordination, recollection, automation, evaluation, and design (Table 1.5).

Each category is a perspective on computing: a window into the computing knowledge space. The
categories are not mutually exclusive. For example, the Internet can be seen as a communication system,
a coordination system, or a storage system. We have found that most computing technologies use prin-
ciples from all seven categories. Each category has its own weight in the mixture, but they are all there.

In addition to the principles, which are relatively static, we need to take account of the dynamics of
interactions between computing and other fields. Scientific phenomena can affect each other in one of
two ways: implementation and influence. A combination of existing things implements a phenomenon
by generating its behaviors. Thus, digital hardware physically implements computation, artificial intelli-
gence implements aspects of human thought, a compiler implements a high-level language with machine
code, hydrogen and oxygen implement water, and complex combinations of amino acids implement life.
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TABLE 1.5 Great Principles of Computing

Overview of Computer Science

Category Focus Examples

Computation What can and cannot be computed ~ Classifying complexity of problems in terms of
the number of computational steps to achieve
a solution. Is P=NP? Quantum computation.

Communication  Reliably moving information Information measured as entropy.
between locations Compression of files, error-correcting codes,

cryptography.

Coordination Achieving unity of operation from Protocols that eliminate conditions that cause
many autonomous computing indeterminate results. Choice uncertainty:
agents cannot choose between two near

simultaneous signals within a deadline.
Protocols that lead the parties to common
beliefs about each other’s system.

Recollection Representing, storing, and All storage systems are hierarchical, but no
retrieving information from storage system can offer equal access time to
media all objects. Locality principle: all

computations favor subsets of their data
objects in any time interval. Because of
locality, no storage system can offer equal
access time to all objects.

Automation Discovering algorithms for Most heuristic algorithms can be formulated
information processes as searches over enormous data spaces.

Human memory and inference are statistical
phenomena described by Bayes Rule. Many
human cognitive processes can be modeled
as information processes.

Evaluation Predicting performance of complex =~ Most computational systems can be modeled
systems as networks of servers whose fast solutions

yield close approximations of real throughput
and response time.

Design Structuring software systems for Complex systems can be decomposed into

reliability and dependability

interacting modules and virtual machines
following the principles of information
hiding and least privilege. Modules can be
stratified by layers corresponding to time
scales of events that manipulate objects.

Influence occurs when two phenomena interact with each other. Atoms arise from the interactions

among the forces generated by protons, neutrons, and electrons. Galaxies interact via gravitational
waves. Humans interact with speech, touch, and computers. Interactions exist across domains as well
as within domains. For example, computation influences physical action (electronic controls), life pro-
cesses (DNA translation), and social processes (games with outputs). Table 1.6 illustrates interactions
between computing and each of the physical, life, and social sciences as well as within computing itself.
There can be no question about the pervasiveness of computing in all fields of science.

1.5 Relation between the Views

The technology and the principles views discussed earlier are two different interpretations of the same
knowledge space. They are alternatives for expressing the computing body of knowledge.

The same principle may appear in several technologies, and a particular technology likely relies on
several principles. The set of active principles (those used in at least one technology) evolves much more
slowly than the technologies.
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TABLE 1.6 Examples of Computing Interacting with Other Domains
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Physical Social Life Computing
Implemented by =~ Mechanical, optical, =~ Wizard of Oz, Genomic, neural, Compilers, OS,
electronic, mechanical robots, immunological, emulation, reflection,
quantum, and human cognition, DNA transcription, abstractions,
chemical games with inputs evolutionary procedures,
computing and outputs computing architectures, languages
Implements Modeling, Artificial intelligence, Artificial life,
simulation, cognitive modeling, biomimetics,
databases, data autonomic systems systems biology
systems, quantum
cryptography
Influenced by Sensors, scanners, Learning, Eye, gesture, Networking, security,
computer vision, programming, user expression, and parallel computing,
optical character modeling, movement distributed systems,
recognition, authorization, speech tracking, grids
localization understanding biosensors
Influences Locomotion, Screens, printers, Bioeffectors, haptics,
fabrication, graphics, speech sensory immersion
manipulation, generation, network
open-loop control science
Bidirectional Robots, closed-loop  Human-computer Brain-computer
influence control interaction, games interfaces

While the two styles of framework are different, they are strongly connected. To see the connection,
imagine a 2D matrix. The rows name technologies, and the columns name categories of principles. The

interior of the matrix is the knowledge space of the field.

Imagine someone who wants to enumerate all the principles involved with a technology. If the matrix

is already filled in, the answer is simply to read the principles from the row of the matrix. Otherwise, fill
it in by analyzing the technology for principles in each of the seven categories. In the figure later, we see
that the security topic draws principles from all seven categories.

Security

Computation Communication Coordination Recollection Automation Evaluation Design
O(.) of encryption Secr.ecy' Key distr protocol q?nﬁ'nement Instrusion detection| Protocol perform End-to-enfi
. authentication partitioning for MLS . ] 3 layered functions
functions zero knowl proof X biometric id under various loads | X
covert channels reference monitor virtual machines

Within the principles framework, someone can enumerate all the technologies that employ a particu-
lar principle. In the example later, we see that the coordination category contributes principles to all the
technologies listed.



1-12 Overview of Computer Science

Computation Communication Coordination Recollection Automation Evaluation Design

Hardware
handshake

Architecture

TCP and IP
protocols

Internet

Key distr protocol

Security
zero knowl proof
Virtual Page fault interrupt
memory
Database Locking protocol
Programming Semaphores
language monitors

1.6 What Are Information Processes?

There is a potential difficulty with defining computation in terms of information. Information seems to
have no settled definition. Claude Shannon the father of information theory, in 1948 defined informa-
tion as the expected number of yes-no questions one must ask to decide which message was sent by a
source. This definition describes the inherent information of a source before any code is applied; all
codes for the course contain the same information. Shannon purposely skirted the issue of the meaning
of bit patterns, which seems to be important to defining information. In sifting through many published
definitions, Paolo Rocchi (2010) concluded that definitions of information necessarily involve an objec-
tive component, signs and their referents or, in other words, symbols and what they stand for, and a
subjective component, meanings. How can we base a scientific definition of information on something
with such an essential subjective component?

Biologists have a similar problem with “life.” Life scientist Robert Hazen (2007) notes that biologists
have no precise definition of life, but they do have a list of seven criteria for when an entity is living. The
observable affects of life, such as chemistry, energy, and reproduction, are sufficient to ground the sci-
ence of biology. In the same way, we can ground a science of information on the observable affects (signs
and referents) without a precise definition of meaning.

A representation is a pattern of symbols that stands for something. The association between a rep-
resentation and what it stands for can be recorded as a link in a table or database or as a memory in
people’s brains. There are two important aspects of representations: syntax and stuff. Syntax is the
rules for constructing patterns; it allows us to distinguish patterns that stand for something from
patterns that do not. Stuff is measurable physical states of the world that hold representations, usually
in media or signals. Put these two together and we can build machines that can detect when a valid
pattern is present.

A representation that stands for a method of evaluating a function is called an algorithm. A repre-
sentation that stands for values is called data. When implemented by a machine, an algorithm controls
the transformation of an input data representation to an output data representation. The distinction
between the algorithm and the data representations is pretty weak; the executable code output by a
compiler looks like data to the compiler and algorithm to the person running the code.

Even this simple notion of representation has deep consequences. For example, as Gregory Chaitin
(2006) has shown, there is no algorithm for finding the shortest possible representation of something.
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Some scientists leave open the question of whether an observed information process is actually con-
trolled by an algorithm. DNA translation can be called an information process; if someone discovers a
controlling algorithm, it could be also called a computation.

Some mathematicians define computation separate from implementation. They do this by treating
computations as logical orderings of strings in abstract languages and are able to determine the logical
limits of computation. However, to answer questions about running time of observable computations,
they have to introduce costs representing the time or energy of storing, retrieving, or converting repre-
sentations. Many real-world problems require exponential-time computations as a consequence of these
implementable representations. I still prefer to deal with implementable representations because they
are the basis of a scientific approach to computation.

These notions of representation are sufficient to give us the definitions we need for computing. An
information process is a sequence of representations. (In the physical world, it is a continuously evolv-
ing, changing representation.) A computation is an information process in which the transitions from
one element of the sequence to the next are controlled by a representation. (In the continuous world, we
would say that each infinitesimal time and space step is controlled by a representation.)

1.7 Where Computing Stands

Computing as a field has come to exemplify good science as well as engineering. The science is essential
to the advancement of the field because many systems are so complex that experimental methods are the
only way to make discoveries and understand limits. Computing is now seen as a broad field that studies
information processes, natural and artificial.

This definition is broad enough to accommodate three issues that have nagged computing scientists
for many years: Continuous information processes (such as signals in communication systems or analog
computers), interactive processes (such as ongoing web services), and natural processes (such as DNA
translation) all seemed like computation but did not fit the traditional algorithmic definitions.

The great principles framework reveals a rich set of rules on which all computation is based. These
principles interact with the domains of the physical, life, and social sciences, as well as with computing
technology itself.

Computing is not a subset of other sciences. None of those domains is fundamentally concerned with
the nature of information processes and their transformations. Yet this knowledge is now essential in all
the other domains of science. Computer scientist Paul Rosenbloom (2012) of the University of Southern
California argued that computing is a new great domain of science. He is on to something.
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2.1 Introduction

The early twenty-first century is a time of two trends in computing. One trend is that computing tech-
nology has become less expensive and more ubiquitous. The second trend is “big data,” both the exis-
tence of extremely large amounts of data and a push to be able to process large amounts of data. For
example, in 2012 the Big Data R&D Initiative committed six US federal agencies and departments to
“improve our ability to extract knowledge and insights” from large quantities of digital data [1].

Concurrent with these trends, the term “computational thinking” (CT) has come into use. This fre-
quently refers to a set of computational concepts and skills that should be widely taught. These concepts
and skills are generally seen as important and necessary additions to the mathematical, linguistic, and
logical thinking skills already taught [2]. There have been several approaches to this in the past, includ-
ing teaching students basic computer literacy (usually identified as being able to use the computer as a
tool), teaching programming in specific languages, or teaching programming through specific applica-
tion areas [2]. Many computer scientists, however, generally feel that these approaches do not lead to
a clear understanding of the shifts in thinking and approach that are necessary and facilitated when
computing technology is incorporated into problem solving. Yet with the increased use of the term
“computational thinking,” there has arisen considerable debate about exactly what it means, who should
be expected to do it, and in what contexts. The confusion about what CT means is even apparent in
nontechnical discourse. An example of this is found in a March 2012 article in the New York Times [3]
in which the author conflates “understanding of computational processes” and “the general concepts
programming languages employ.”

In 2010, the National Research Council’s Committee for the Workshops on Computational Thinking
identified an ongoing need in the field to “build consensus on the scope, nature, and structure of com-
putational thinking.” To some extent, the lack of consensus stems from disagreement about the level of
granularity used in the definition. This has led to a set of questions that are at the heart of discussions
about CT. Does CT refer to the ways in which we change our thoughts about a problem and its possible
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solution when we know we can incorporate computing? Is CT about managing layers of abstraction
through use of computation, or should it explicitly involve detailed computing concepts such as state
machines, formal correctness, recursion, and optimization [2]? Is there a set of analytical skills, unique
to computing disciplines, that all people should develop? Is there a distinction between doing CT and
effectively applying computation to solve problems? Is CT something other than simply saying “let’s
apply computing to solve a problem in X (e.g., biology, economics, literary analysis, etc.)”? Finally, who
is best equipped or best suited to teach CT to those outside of computer science? Should it be computer
scientists, or should it be disciplinary specialists?

2.2 Definitions of Computational Thinking

The term “computational thinking” was first introduced by Seymour Papert [4] in a 1996 paper about
math education. It was next brought into use by Jeanette Wing in 2006 [5] and subsequently clarified
by her in later work (e.g., [6,7]). Since 2006, there have been various attempts to clarify and redefine the
term, as well as efforts to articulate the ways in which CT should shape K-12 and college level education
and pedagogy. There is not yet consensus about what is meant by the term, especially across educational
levels, though a wide range of activities have evolved that are enriching educational practices in com-
puter science and related fields.

In his paper, Papert [4] laid out several approaches to solving a geometric problem, all of which could
be implemented using software packages or programming approaches: a probabilistic approach, a stan-
dard Euclidean solution, and a heuristic approach that was used to create a supporting visualization.
This led Papert to identify two ways in which computers are typically used to contribute to problem
solving. The first, evident in the probabilistic approach, is to use the computer as a high-speed data anal-
ysis tool, able to evaluate many values and generate an answer. The second, in the Euclidean approach, is
to use the computer to provide an alternative to building geometric representations by hand. In both the
cases, the computer quickly and effectively generates a solution, but does so using representations that
have no clear connection to the original problem and do not bring clarity to the solution. Papert argued
that a computationally thoughtful approach would allow one to address his fundamentally geometric
problem with a combination of different kinds of computer approaches, making it possible to use the
computer to solve problems in ways that “forge ideas,” that allow one to carry out heuristic approaches,
and that actually help people better analyze and explain the problem, the solution, and the connection
between them.

At her most basic, Wing defines CT as a problem-solving and system design approach that “draws
on concepts fundamental to computing” [6] and as the “thought processes involved in formulating
problems and their solutions so that the solutions are represented in a form that can be effectively car-
ried out by an information-processing agent” [7]. Key to CT, in Wing’s view, are the layers of symbolic
abstractions of data, processes, and equipment that are used when problems are encoded so that they
can be solved using a computer. She argues that the underlying computing device forces a strictly com-
putational problem-solving approach, yet she labels as computational various concepts and skills that
predate the advent of computing and are used across numerous disciplines. By contrast, Papert argues
that the use of computing devices, in combination with other fields of knowledge and their problem-
solving approaches, enables rich, creative problem-solving methods that are new and not merely the
computerization of an algorithm that already exists in another discipline.

The fundamental differences between Papert’s and Wing’s definitions lie in the relationship between
computing and the problem domain, and in the genesis of the problem-solving strategy. Wing’s is a
unidirectional view, basically asking the question “What would I have to do to get a computer to imple-
ment an existing solution to this problem?” [6]. In this view, the computer has a set of capabilities.
Based on these capabilities, problems are expressed algorithmically, as a set of specific instructions that
the computer can execute. Papert’s approach is bidirectional, using computing in concert with other
problem-solving approaches to evolve new solution methods. He interprets “computation” broadly, not
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just numerically, and sees the computer as an agent that can provide us with useful capabilities and
encourage new ways of viewing a problem. It is this rich bidirectional perspective that allows us to
address problems that lie at the intersection of disciplines, and is reflected in the development of new
fields, such as bioinformatics, computational linguistics, and lexomics [8].

It is when Wing makes a distinction between shallow and deep CT [6] that she begins to approach
Papert’s view. While still rooted in a largely unidirectional view (choice of abstractions, modeling larger
order-of-magnitude problems, hierarchical decomposition), she also considers that initial problem-
solving steps can prompt new questions and new ways of viewing data. However, it is not clear that
computing is necessarily the best means for teaching concepts such as abstraction, for example. In fact,
abstraction is used quite differently in computing than in mathematics. In computing, abstraction is
used as a way to express details so that they are manipulable by the computer, whereas in mathematics,
underlying detail can be completely ignored or forgotten once the abstraction is created.

Much of the discussion about CT following Wing’s 2006 article has followed a unidirectional
approach, focusing on whether there is a set of experiences, knowledge, concepts, and skills that are
necessary in order for people to be able to apply algorithmic solutions to problems in non-computer
science fields. Is CT a definable set of concepts that can be taught? Are these concepts taught, by default,
to computer science students, or is CT relevant only in the context of non-computer science disciplines?
Should it be taught explicitly as a set of concepts and skills, or only implicitly through the combina-
tion of disciplinary knowledge and computational methods? These questions have arisen repeatedly in
discussions of pedagogy and curriculum, particularly in K-12 where decisions ultimately depend on the
age of the students as well as the context in which the teaching is being carried out. At the college level,
we have to ask whether the goal is to expect a single person to have sufficient depth in both computing
and another discipline, or whether the goal is to prepare people to bring their respective knowledge and
skills to a conversation that can examine how computing and another discipline influence and serve
each other. Overall, the discussion of CT has largely ignored the question of what level of exposure
to computer science concepts and skills is necessary in order for people to achieve the bidirectional
problem-solving insights that Papert presumed can take place.

Several writers have critiqued Wing’s original definition of CT or tried to pose definitions that will
lead more directly to curriculum and classroom practices. In many cases, a fundamental question
raised is whether her definition is at all different than “algorithmic thinking” or “logical thinking.” The
critiques are summarized and expanded on by David Hemmendinger [9] who cautions against easy
distortions of CT. Echoing Papert, he argues that computational metaphors may inspire new problem
solutions (and the solving of new problems) in non-computer science disciplines. Hemmendinger points
out that “thinking with computation” requires use of algorithms and a consideration of resources that
would not be necessary if one were not planning on a computer implementation. Yet he cautions that a
push for “computational thinking” is easily permuted into a call to make everyone think like computer
scientists, when the goal should be to promote instances in which applications of computing facilitate
explicative problem solutions.

At the 2012 ACM Turing Centenary [10], Turing Award recipient Dana Scott posed the question
“Is computational thinking or algorithmic thinking something that one knows when he sees it, or can it
be explained?” Interestingly, none of the responses delved into any distinction between computational
and algorithmic thinking. Donald Knuth commented that algorithmic thinking has been present in
works of past centuries, including thirteenth century Sanskrit writings about permutations in music.
He discussed the importance of being able to fluently jump levels of abstraction, “seeing things in the
small and the large simultaneously, and being able to go effortlessly to many levels in between.” Christos
Papadimitriou followed Knuth by saying that algorithmic thinking meant “being comfortable with
detail, understanding that it is detail, being able to push it away and work without it, and then come back
to it.” Les Valiant added that we had to recognize the latent computational content of scientific objects
and processes. This is an example of the implicit view of CT, not arguing that we should impose on a
problem a computer science decision about the appropriate algorithmic solution, but rather suggesting
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that we ask what data and algorithmic content is already present. This is particularly the case for biologi-
cal applications in which nature has already provided considerable data encoding.

Papert introduced CT in an education-oriented context, based on the idea that “every time you learn
something, you learn two things, the other being the model of learning you just used” [4]. The computer
science community has understandably embraced CT, in part because we want people to learn about
computing by learning via computing. Wing has also discussed CT in a context of core concepts and
tools that should be taught to children in K-12, particularly taking advantage of children’s willingness to
explore new technology devices. Subsequent to Wing’s call for “computational thinking for everyone,”
many efforts were undertaken to incorporate CT into the K-12 educational landscape and into the col-
lege experience. In the following sections, we discuss a number of these efforts.

Despite the lack of consensus within the community about what CT is, there does seem to be con-
sensus that students at all levels will benefit from exposure to and increased practice with computing-
related concepts and skills. Depending on the degree and type of exposure, students will better
understand the role that computing can play in the formulation and execution of problem solutions.
This will ultimately help them engage in collaborative problem solving across a range of disciplines,
either as a disciplinary specialist with an understanding of computation or as a computer scientist
who can collaborate with disciplinary specialists. Certainly, there is no denying that the increasing
use of computational methods in many disciplines, and the development of new interdisciplinary
fields that include computing, requires that we educate students in a manner that prepares them to
do that work.

This still leaves open, however, the question of whether there truly are core aspects of computing that
everyone needs to understand. The National Science Foundation (NSF), in their 2009 CPATH solici-
tation (CISE Pathways to Revitalized Undergraduate Computing Education) [11], loosely defined CT
as “competencies in computing concepts, methods, technologies, and tools” [12]. On their FAQ site,
they said “NSF has described a broad CT framework, but does not attempt to define the computing
constructs. You are invited to join in the definition and articulation of the computing constructs that
have permeated and transformed our modern world and to use these to develop methods, curricula,
and pedagogies to assure that all students are able to think computationally.” The CPATH program
focused primarily on college and university interventions, but also considered K-12 interventions in
situations where they were tied to transition into an undergraduate program that involved CT. By con-
trast, the subsequent NSF CE21 solicitation (Computing Education for the twenty-first century) gives
no definition of CT at all, simply saying that “Efforts can focus on computational thinking as taught in
computing courses or infused across the curriculum” and will “increase ... knowledge of computational
thinking concepts and skills” [13].

2.3 College and University

There are numerous examples of the infusion of computing and computer science content into non-
computer science courses and non-computer science disciplines. While many do not explicitly mention
CT, these efforts generally have a goal of exposing students to interdisciplinary applications of comput-
ing. We present a few examples, both individual courses at different curricular levels and efforts at larger
programmatic or institutional change.

2.3.1 Individual Courses

2.3.1.1 Computing for Poets

Professor Mark LeBlanc of Wheaton College (Norton, MA) developed the course Computing for Poets
[14], which focuses on the use of computers to analyze written text. It involves a number of “compu-
tational thinking skills,” including problem decomposition, algorithmic thinking, and experimental
design. A key focus is on developing programs that can address new questions about texts, rather
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than relying solely on existing text analysis tools. This course has been developed in the context of
the Lexomics project [15] in which various computational and statistical methods are combined with
existing text analysis approaches, leading to methods for answering new questions about ancient
texts. The course is connected to two English courses, one on Anglo-Saxon Literature and another
on J.R.R. Tolkien. This connection of courses gives students firsthand experience devising problem-
solving methods that combine traditional and computational approaches, allowing them to ask new
questions, and then ask whether bringing the power of computing to literary analysis leads to the
formulation of new answers.

2.3.1.2 Computational Microeconomics

Professor Vincent Conitzer of Duke University developed the course Computational Microeconomics
[16], which was intended to introduce undergraduates to work at the intersection of economics and
computer science. The course is usually taken by students from computer science, economics, math, and
electrical and computer engineering. It has minimal prerequisites and starts with an introduction to lin-
ear and integer programming, along with the MathProg language and the GNU Linear Programming
Kit. The remainder of the course focuses on economics topics such as expressive marketplaces, game
theory, Bayesian games, and auction design. The students work on both written and programming
assignments and do a small (possibly team) project that involves programming. This course provides
students with firsthand experience in working at the intersection of two disciplines.

2.3.1.3 Advanced Algorithmic Techniques for GPUs

In the context of a course on Advanced Algorithmic Techniques for GPUs (graphical processing
units), two researchers from the visual computing technology company NVIDIA, Wen-mei Hwu and
David Kirk, present a lengthy list of areas in which GPU computing is being used. They include a range
of computing, business, scientific, and engineering applications such as financial analysis, digital audio
and video processing, scientific simulation, computer vision, and biomedical informatics. The inference
is that people from a range of backgrounds and disciplines are increasingly in a position to try to use
GPUs, or to coordinate with computer scientists who will use GPUs. This is underscored when they
put forward a definition of CT skills: “The ability to translate/formulate domain problems into compu-
tational models that can be solved efficiently by available computing resources” [17]. The goal of their
course is to make commonly used many-core GPU techniques accessible to scientists and engineers,
claiming that “computational thinking is not as hard as you may think it is.” They further define CT
skills as

» Understanding the relationship between the domain problem and the computational models
+ Understanding the strengths and limitations of the computing devices
o Defining problems and models to enable efficient computational solutions

2.3.2 Institutional Change
2.3.2.1 Bowdoin College

Bowdoin College is beginning to take steps toward institution-wide change, with initial discussion
of the importance of some form of CT across the curriculum. Bowdoin’s president, Dr. Barry Mills,
addressed this in his 2012 baccalaureate address to graduates [18]. Speaking about the role of informa-
tion and the ability to interpret information, Mills addressed CT as a “mode of inquiry” in the curricu-
lum. While citing Wing’s 2006 definition, Mills put forth that it is possible to “engage computational
thinking and analysis” across disciplines that span the sciences, social sciences, and humanities. Rather
than arguing for the direct application of computing, he argues for the integration of disciplines with
“arapidly changing landscape of data, information, and knowledge,” seeing this as an important step for
the continued development of liberal arts education.
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The perspective put forward by Dr. Mills is an indication of the extent to which leaders of educational
institutions are beginning to grapple with some definition of CT as an educational priority.

2.3.2.2 DePaul University: Computational Thinking across the Curriculum

Faculty at DePaul University, led by Professors Amber Settle and Ljubomir Perkovic, undertook a proj-
ect [19] designed to incorporate CT into the DePaul curriculum at all levels, using their Liberal Studies
(general education) courses as the vehicle to accomplish this. The DePaul project leaders recognized
that Wing’s original definition of CT was problematic, in part because she gave no examples from
outside the sciences and quantitative social sciences. They began their project by defining CT as “the
intellectual and reasoning skills that a professional needs to master in order to apply computational
techniques or computer applications to the problems and projects in their field.” This definition hews
closely to Wing’s approach, though they argue in their project documents that hers is not a new way of
thinking, pointing to a number of examples that significantly predate her article. However, they make a
distinction between the implicit use of CT within various fields and the explicit recognition of the use
of computationally oriented reasoning skills. The underlying principle of the DePaul project was that
it could only be successful if faculty across disciplines agreed on a useful framework for implementing
CT in their courses.

In order to convince faculty from other fields to participate, the project leaders developed a set of
examples from a range of disciplines, based on categories of CT that they defined using Peter Denning’s
“Great Principles of Computing” [20]. Denning, preceding Wing’s article by several years, put forward
a set of principles with the goal of showing people in other disciplines “how to map the principles into
their own fields.” The DePaul project offered definitions of each principle (computation, communica-
tion, coordination, recollection, automation, evaluation, and design) and gave examples of how CT has
been used in a number of disciplines. Ultimately, the project included 18 faculty at DePaul who modified
19 Liberal Studies courses. The project leaders also collaborated with six teachers at the University of
Chicago Lab Schools in order to also explore middle school and high school course modifications [21].

2.3.2.3 Union College: Creating a Campus-Wide Computation Initiative

Union College [22], with NSF funding, carried out a five-year project to create a campus-wide com-
putation initiative. The goal of the project was to provide an appropriate foundation in computing for
non-computer science students who are or should be using computing in the context of their discipline.
There were two key elements:

1. Provide engaging introductory computer science courses, open to all students on campus. The
department offers six theme-based courses: big data, robotics, game development, artificial intel-
ligence, media computation, and programming for engineers.

2. Support infusion of a computing component into non-computer science courses.

To date, 24 faculty from 15 disciplines, working with summer research students, have developed
computational components for over two dozen courses. These efforts were also extended to three
other undergraduate institutions, with faculty-student teams at Mount Holyoke College (Music),
Denison College (Geology), and Bard College (Computer Science and Literature). The nature of the
computational modules is quite varied, with no common set of key concepts or skills across all of
the courses. The key result, however, is that a majority of students taking the infused courses have
reported that the computational component helped them understand the disciplinary material. In
addition, in line with Papert’s definition of CT, faculty and students alike have been able to move
forward with new research efforts and new class exercises because incorporating a computational
element allows them to ask new questions and combine data in new ways. Very few of the infused
courses, however, have an explicit programming component, or any explicit discussion of concepts
such as abstraction, problem decomposition, etc., beyond what would normally take place in the
context of that discipline.
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2.4 K-12

Considerable effort has been made to address content and pedagogy issues regarding CT in K-12. Despite
the lack of consensus about exactly what CT is, numerous attempts have been made to bring component
elements into the K-12 classroom. Each K-12 effort reflects an inherent definition of CT, with a result-
ing view of what should be introduced and how it should be incorporated into the classroom setting (as
separate content, or integrated with existing curricular content). Concepts often considered part of CT
that have been introduced across the array of K-12 activities include iterative refinement, problem decom-
position, connections between social systems and physical systems, modeling of abstraction, continu-
ous versus discrete data, Boolean operations, causal relationships, searching for patterns, data mining,
and complexity. These concepts are introduced either through general subject areas or through domain-
specific content, including scientific models (simple models of physical phenomena for younger children;
more complex models for older students), visualization and large data sets, computational media, game
development, genetics, and environmental simulations. Throughout the K-12 work, an important issue
is the role of age and grade level in determining what students can do, and the transition from prebuilt
examples and models to independent building or programming. Of course, competing pedagogies lead to
different approaches based on how accessible the pedagogy makes different concepts and skills.

K-12 projects that are focused on teaching computer science can effectively sidestep the issue of how
to define CT. Such courses (e.g., see Section 2.4.4) will cover concepts frequently considered part of CT
because those are part and parcel of computer science. The Computer Science Teachers Association
(CSTA) addresses grade level and implementation issues through a comprehensive set of curricular
standards for K-12 computer science education [23]. These standards, divided into three levels, cover the
introduction of fundamental concepts of computing at all levels, as well as additional secondary-level
computer science courses. The curriculum is built around five complementary strands, one of which is
CT (the others are collaboration; computing practice; computers and communication devices; and com-
munity, global, and ethical impacts).

The focus of the CT strand is to promote problem solving, system design, knowledge creation, and
improved understanding of the power and limitations of computing. The CSTA uses the definition
developed during a joint project with the International Society for Technology in Education (ISTE)
(Section 2.4.1). The interdisciplinary view that CT is important for combining computer science with all
disciplines can actually facilitate teaching it in lower grades since it does not necessitate specific detailed
knowledge of computing on the part of teachers. For example, in grades K-3, the standard for CT is met
if students can use certain technology resources to solve age-appropriate problems, use various tools
to illustrate stories, and understand how to sort information. In grades 3-6, the standards are met by
students understanding and using the basic steps of algorithmic problem solving, developing a simple
understanding of an algorithm, and making a list of subproblems that contribute to the solution of a
larger problem. These abilities continue to scale up for grades 6-9 and 9-12 so that eventually students
can describe the software development process, understand sequence, selection, iteration, and recur-
sion, compare techniques for analyzing massive data collections, etc.

2.4.1 CSTA and ISTE

The CSTA and the ISTE, with support from the NSF, undertook development of an operational (rather
than formal) definition of CT for K-12 [24]. This effort, involving K-12 teachers, college faculty, and edu-
cational administrators, focused on a set of questions relevant to the K-12 setting (from [24]):

o  What would CT look like in the classroom?

o What are the skills that students would demonstrate?

o What would a teacher need in order to put CT into practice?

« What are teachers already doing that could be modified and extended?
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The consensus reached was that CT, in the K-12 setting, involves solving problems such that the solu-
tion can be implemented with a computer. Students will use concepts such as abstraction, recursion,
and iteration, applying these across many subjects. This led to the identification of key concepts and
capabilities, with examples of how these could be embedded in activities across the K-12 curriculum.
This effort addresses an issue raised by Lu and Fletcher [25]. While agreeing with Wing’s basic definition
of CT, they argue for the gradual introduction of CT concepts through consistent terminology. Lu and
Fletcher propose a computational thinking language of vocabulary and symbols that can be used from
grades 3-12 to refer to computation, abstraction, information, execution, etc. Many disciplines involve
problem solving and promote logical and algorithmic thinking, so active engagement of these practices
across the disciplines will reinforce students’ developing capabilities (such as designing solutions to
problems, implementing designs, testing and debugging, etc.). In this sense, linguistic analysis of sen-
tences in a Language Arts class may not seem inherently computational, but it will reinforce patterns of
thinking that can be applied to problem solving in other fields. The full set of concepts and capabilities
identified in the CSTA-ISTE effort includes data collection, data analysis, data representation, problem
decomposition, abstraction, algorithms and procedures, automation, parallelization, and simulation.
Examples are provided from computer science, math, science, social studies, and language arts. Finally,
a set of resources provide concrete examples for classroom teachers [26,27].

2.4.2 UK Computing: A Curriculum for Schools

In 2012, the British Computing at School Working Group published the report Computer Science: A cur-
riculum for schools [28]. The purpose of the report was to address the question of what constitutes computer
science as a school subject. The authors present the following definition of CT, very much based on Wing:
“a mode of thought that goes well beyond software and hardware, and that provides a framework within
which to reason about systems and problems.” As might be expected in a document focused on computer
science learning requirements, they see CT in the unidirectional way, as “the process of recognising aspects
of computation in the world that surrounds us, and applying tools and techniques from computing to
understand and reason about ... systems and processes.” They further argue that students are empowered
by the combination of CT, computing principles, and a computational approach to problem solving.

Like the CSTA-ISTE project, the Computing at School group presents a detailed breakdown of what
students should know about computing and computer science, and what they should be able to do at
each academic level (roughly equivalent to grades K-2, 2-5, 5-8, and 8-10). The set of concepts is roughly
equivalent to the CSTA-ISTE set, focusing on algorithms, programs, data, computers, and communica-
tion. Whereas the CSTA-ISTE project identifies ways in which the key concepts and capabilities could
be addressed in non-computing disciplines, the Computing at School group does not address how the
material should be taught. They do, however, provide a very clear set of “attainment targets” for each
level student, demonstrating increased mastery as students progress.

2.4.3 Computational Science and Computational Science Thinking

The slogan of the Shodor Foundation [29] is “Transforming Learning Through Computational Thinking.”
Their focus is on computational science, combining quantitative reasoning, analogical thinking, algo-
rithmic thinking, and multiscale modeling. They want students to develop the math and computing
knowledge and skills necessary to generate and understand computational results across a number of
disciplines. (Part IV of this volume describes advances in computational science, including computa-
tional biology, bioinformatics, astrophysics, chemistry, scientific visualization, and other areas.) The
Shodor Foundation provides resources for both faculty and students, including free online workshop
materials that focus on model building, simulation, and model-based reasoning in various math and
science disciplines (such as astronomy and astrophysics, biomedical science, computational chemistry,
environmental science, forensic science, and physics). Without an overt emphasis on CT, Shodor also
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provides instructional materials for various levels of K-12 that support student facility with underlying
math and technology (databases and spreadsheets, graphics and visualization, and scientific comput-
ing, for example). Given the nature of their materials, much can be used either inside the classroom in a
formal setting or outside the classroom in an informal education setting.

For college and university faculty, Shodor provides discipline-specific workshops that focus on the
use of computation (e.g., computational biology, computational chemistry) as well as workshops that
focus more generally on the use of parallel and cluster computing in computational science. A related
effort is found in the INSTANCES project, Incorporating Computational Scientific Thinking Advances
into Education and Science Courses [30]. The focus of this project is to introduce K-12 teachers, through
a series of modules, to computing in the context of scientific problems, viewing computational sci-
ence as the solution of scientific and engineering problems using the “combination of techniques, tools,
and knowledge from multiple disciplines,” combined with computer simulations. Like the Shodor
Foundation (part of the INSTANCES project), they argue that the problems that are central to compu-
tational science form an important core for science, math, and computer science education. They define
computational science thinking (CST) as “using simulation and data processing to augment the scien-
tific method’s search for scientific truth for the realities hidden within data and revealed by abstrac-
tions.” Each module details the learning goal and objectives, activities, products that will be generated
by students, and discussion of the embedded CST. The modules cover areas such as exponential sponta-
neous decay, exponential biological growth, bug population dynamics, and projectile drag.

2.4.4 Exploring Computer Science, CS Principles

A number of efforts are aimed at increasing high school-level interest in computer science, particularly
in ways that will encourage students to continue with computer science study in college. These efforts
address CT to the extent that a student just learning about computer science would be encouraged to
consider applications of computing to other disciplines.

Exploring Computer Science (ECS) [31] is a one-year college-preparatory course that evolved out of
efforts to involve in computer science a larger number of underrepresented students in the Los Angeles
Unified School District. The course is focused on computer science concepts, with the following key
instructional units:

o Human Computer Interaction
+ Problem Solving

o Web Design

« Introduction to Programming
« Data Analysis

» Robotics

The course is designed to address “real world, socially relevant, interdisciplinary, and creative applica-
tions of computing” [31]. In that context, the developers identify three CT practices: algorithm develop-
ment, problem solving, and programming (specifically related to real-life problems faced by students).

The goal of the CS Principles project [32] is the development of a new Advanced Placement Computer
Science course. A set of six CT practices are listed as part of the Principles project, including analyz-
ing problems and artifacts, communicating, and collaborating. The three practices that most directly
involve computing are

1. Connecting computing, specifically identifying its impacts, describing connections between peo-
ple and computing, and explaining connections between computing concepts

2. Developing computational artifacts, using appropriate techniques and appropriate algorithmic
and information management principles

3. Abstracting, which involves representation, identification of and use of abstractions in computa-
tion or modeling
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These are reasonable, and not unexpected, practices to incorporate into a computer science course, and
will be taught to students who are already committed to studying at least introductory computer science.

2.5 Changes to Computer Science

As discussed earlier, a bidirectional view of CT has led to the development of new disciplines, and it
has also led to changes in computer science as a field. Computer science has become a driving force
of innovative practices and new knowledge. The combination of computing power, existing and new
computing techniques, and disciplinary knowledge leads to the identification of new problems and the
development of new solution methods. An early example (1988) of this is the Human Genome Project,
when computer science was faced with a “big data” problem. This led to efforts to build parallel sequence
analysis algorithms, better visualization tools, mechanisms to distribute databases, new pattern rec-
ognition algorithms, and gene modeling algorithms. Today, we may think of this work within the dis-
ciplines of genomics or computational biology, but its origins were in efforts to determine how best to
combine computing with biological knowledge and methods to solve a new problem. Similarly, data
mining and information retrieval methods were advanced in the context of the genome project, and
today are employed to solve problems relevant to a host of disciplines.

Beyond the above connections, the relationship between biology and computer science is extremely
bidirectional. Initially, there were two separate efforts, with computational methods to solve biologi-
cal problems and the study of biological systems to derive new optimization methods for computing.
Increasingly, however, computing and biology have supported each other in new ways, based on a view of
biological processes as algorithms and information processing systems that solve real-world problems. In
an extensive survey [33], Navlakha and Bar-Joseph focus on coordination, networks, tracking, and vision
as examples of areas in which an information processing view has led to better understanding of biologi-
cal properties and led to the improvement of computational systems. They report on research on prob-
lems that can be addressed both computationally and biologically. A model constructed for the biological
problem can then be used to improve the solution to the computational problem. For example, they cite
research in visual processing computational neuroscience that is leading to new models of human visual
processing, which in turn is leading to better algorithms for computer vision. The bidirectional connec-
tions between biology and computer science demonstrate that commonalities between computational
and biological processes allow solutions to problems in one area to apply to problems in the other.

Terrain analysis (see Chapter 46) is another domain in which new computer science methods had to
be developed if computing was to be used effectively as part of new problem-solving approaches. Terrain
analysis involves applying computational models to very large global positioning system (GPS) data sets
(replacing surveyor data) in order to analyze terrain features, particularly important for environmental
modeling and land use management. The use of digital, remotely acquired, data for terrain analysis
allows for the analysis of very remote, relatively unexplored areas for which actual on-site surveying
would be prohibitive. The use of digital data for terrain analysis, however, has necessitated evolution of
interpolation methods, visualization of the relevant GPS data, animation, and other areas of computer
graphics. In general, the sizable number of tools available ([34] gives examples) is a clear indication of
the extent to which the analysis of geographic information system data has become a critical part of
certain fields, and computer science has developed the techniques necessary to meet the analysis needs.

There are also humanities disciplines and humanities research that present opportunities for com-
puting to support research and for the demands of research to push developments in computing.
One such area, underscored by a NSF and National Endowment for the Humanities (NEH) grant
program, is documenting endangered languages [35]. The goal is to “exploit advances in information
technology to build computational infrastructure for endangered language research.” The solicita-
tion is explicit that funding can support fieldwork efforts related to the recording, documenting,
and archiving of languages, but also will support preparation of “lexicons, grammars, text samples,
and databases,” with an interest in data management and archiving. This is clear recognition that the
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necessary computing infrastructure to address the problem of endangered languages may not yet
exist. Therefore, the aggregate of projects in this area have to address both the humanities side and
the computing side of the problem, and that work on both sides will be informed by understanding
and knowledge of the other.

2.6 Summary

The increasing ubiquity of computing and increased focus on “big data” make it possible for almost
every discipline to consider new questions or address longstanding problems. In some instances, the
methods for solving those problems are already clear, requiring straightforward applications of com-
puting in order to implement existing algorithms. In other situations both disciplinary and computing
knowledge, the bidirectional form of CT, must be utilized to develop new solutions. This will continue
to lead to changes in existing fields, and to the formulation of new disciplines. There is not yet agree-
ment on a single set of CT concepts and skills that all students should be taught. There is clearly increas-
ing interest, however, in broadening student exposure to elements of computing, preparing those in
computer science and those in other fields to better contribute to interdisciplinary applications.
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A data structure is a method for organizing large amounts of data so that it can be accessed efficiently.
Any piece of software will almost certainly make use of fundamental data structures, and proper choices
of data structures can have a significant impact on the speed of an application, while poor choices can
make the application impractical for even modest-sized inputs. Consequently, the study of data struc-
tures is one of the classic topics in computer science. Most data structures can be viewed as containers
that store collections of items.

3.1 Types of Containers

All basic containers support retrieving, inserting, and removing an item, and the basic containers differ
in which items can be efficiently accessed. Containers also often provide a mechanism for viewing every
item; in languages such as C++, C#, and Java, this is implemented with an iterator and a language for
loop construct.

A sequence container stores items in a linear order, and an item is inserted at a specified position.
Examples of sequence containers include fixed-sized arrays, variable-length arrays, and linked lists.
Typically, retrieval is based on finding an item given a position; testing whether some item present in
the list is likely to devolve into a sequential search and be inefficient.

3-1
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A set container stores items without linear order and thus can provide for more efficient retrieval. Some
sets will guarantee that items can be viewed in sorted order; others provide no such guarantees. Examples
of sets include search trees, skip lists, and hash tables. In some languages, sets can have duplicates.

A map container allows searching for key/value pairs by key. Although the interface is different from
the set container, the underlying data structures used for efficient implementation are the same.

A priority queue container provides access only to the minimum item. An efficient implementation of
a priority queue is the binary heap.

Some containers are designed specifically for searching of text. Examples include suffix trees and
radix search trees [1-3].

3.2 Organization of the Chapter

The remainder of this chapter focuses primarily on the fundamental container types, namely, the sequence
containers, ordered and unordered sets, and the priority queue. We also discuss one data structure that
is not a container: the union/find data structure. After examining the fundamental data structures, we
discuss the recurring themes and interesting research challenges seen in the design of data structures.

3.2.1 Sequence Containers

A sequence container stores items in a linear order, and an item is inserted at a specified position.
Typically, retrieval is based on finding an item given a position; testing whether some item present in
the list is likely to devolve into a sequential search and be inefficient. If items can be accessed, inserted,
and removed from only one end, the container is a stack. If items can be inserted at one end (typically
the back) and removed only from the other end (the front), then the container is a queue. If all operations
are allowed at both ends, the container is a double-ended queue [4].

3.2.1.1 Fixed-Size Arrays

A fixed-sized array is usually a language primitive array, as in C++ or Java. Items are accessed by the array-
indexing operator, and the fixed-size array is often used as a building block for resizable arrays. In many cases,
particularly when insertions and deletions are rare, fixed-sized arrays are the fastest sequence container.

3.2.1.2 Resizable Arrays

Resizable arrays allow efficient access to an item by specifying its position (an array index) and also
efficient adding and removal of an item, provided that the position is at or very close to the high index.
Inserting new items near the low index is inefficient because it requires pushing all the subsequent items
one index higher in the array; similar logic applies for removing items near the front. Resizable arrays
are often implemented by using a primitive array and maintaining a current size; the primitive array is
replaced with a larger array if capacity is reached. If the array size is increased by a multiplicative factor
(e.g., it is doubled) then the amortized overhead incurred by the expansion is constant time. The C++
vector and Java ArrayList are examples of resizable arrays.

3.3 Linked Lists

In a linked list, items are not maintained in (logically) contiguous order; this potentially avoids the
problem of having to move large numbers of items during an insertion or deletion. In a singly linked list,
a node stores an item along with a link to the next node in the list. Additionally, the size of the list and
alink to the first item are stored. This gives O(1) access time for adding, removing, or accessing the first
item. If a link to the last item is also stored, we obtain O(1) access time for adding or accessing the last
item. If each node contains both the next and previous item in the list, we obtain a doubly linked list.
Although the doubly linked list uses more space than the singly linked list, it supports the removal of
the last item in O(1) time and allows bidirectional traversal of the list.
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FIGURE 3.1 Insertion into a doubly linked list.

Resizable Array | Singly-Linked List | Doubly-Linked List
addFront O(N) 0(1) o(1)
addBack O(1) o(1) 0(1)
addAtIndex O(N) O(N) O(N)
addAfterIterator O(N) o(1) 0(1)
addBeforelterator O(N) O(N) O(1)
removeFront O(N) o(1) 0(1)
removeBack O(1) O(N) o(1)
removeAtIndex O(N) O(N) O(N)
removelterator O(N) Oo(1)* o(1)
getByIndex 0O(1) O(N) O(N)
advancelterator O(1) 0(1) o(1)
retreatIterator O(1) O(N) 0O(1)
contains O(N) O(N) O(N)
remove O(N) O(N) O(N)

FIGURE 3.2 Running times for operations on sequential containers. *represents constant time if we are pre-
sented with the node prior to the one actually being removed; O(N) otherwise.

Figure 3.1 shows how a new node is spliced into a doubly linked list (the reverse process also shows
the removal).

Accessing of an item by specifying its index position is inefficient if the index is not near one of the
list ends because the item can only be reached by sequentially following links.

Items can be inserted into the middle of a linked list with only a constant amount of data movement by
splicing in a new node. However, an insertion based on providing an index is inefficient; rather these kinds of
insertions are usually done by providing a link to the node itself using some form of an iterator mechanism.

Figure 3.2 summarizes the cost of the basic operations on the sequential containers.

3.4 Ordered Sets and Maps (Search Trees)

An ordered set stores a collection of unique items and allows for their efficient insertion, removal, and

access. Iteration over the set is expected to view the items in their sorted order. An implementation using
a sorted array allows for access of an item by using binary search. In a binary search, we compare the
target item x with the item in the middle of the array. This either locates x or reduces to a search in either
the lower or upper half of the array that can be resolved recursively. Since the recursion reaches a base
case after in approximately log N steps,* the cost of an access is in O(log N) time; however, adding or
removing items will take O(N) time, because all items larger than the item being manipulated will need
to be shifted one position in the array. Using a sorted linked list appears problematic because binary
search requires accessing the middle item, and that operation is not efficiently supported by linked lists.
Most set implementation use a different linked structure based on trees; typically, these are binary trees.

* Throughout, log N means log,N.
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FIGURE 3.3 Binary search tree (a) before and (b) after insertion of 9.

3.4.1 Binary Search Trees

In a binary search tree, each node stores an item and also contains a link to a left subtree and a right
subtree. All items in the left subtree are smaller than the value in the node; all items in the right subtree
are larger than the item in the node. The size of the tree and a link to the root node are also stored.

Figure 3.3a shows a binary search tree (the root is the node with item 15). Searching in a binary search
tree starts at the root and branches either left or right depending on whether the item in a node is smaller
or larger than the target. Either the target is found or we eventually reach the bottom. Thus, the search
for 9 in the binary search tree in Figure 3.3a reports that 9 is not present, after visiting nodes containing
15, 6, and 12 in that order. Insertion of item x into a binary search tree proceeds in the same manner, by
searching for x. If the item is found, the insertion will fail because duplicates are not allowed. Otherwise,
the new item can be inserted at the exact point at which the search terminated, as shown in the insertion
of 9 in Figure 3.3b. Removal of an item is slightly more complicated. If the item to remove is at the bot-
tom of the tree (i.e., it is a leaf, having no children), it can be removed from the tree. If the item to remove
has only one child (e.g., node 12 in Figure 3.3a), then it can be bypassed, as would be the case in a singly
linked list. If the item to remove has two children, we leave the node in place and replace its value with
the smallest value in the right subtree. This preserves the binary search tree order but creates a duplicate.
The removal can be completed by removing the smallest value from the right subtree recursively.

The cost of any of insertion, removal, or access is dependent on the depth of the tree. If the tree is
created by random insertions, the depth is O(log N) on average. However, for nonrandom insertion
sequences, such as 1, 2, 3, 4, ..., N that typically arise, the depth is O(N), and thus, binary search trees
are not suitable for general-purpose library implementations. Instead, slightly more advanced tech-
niques are required in order to assure O(log N) behavior, which can be either a worst-case bound (bal-
anced binary search trees), an expected-time bound (skip lists), or an amortized bound (splay trees).

3.4.2 Balanced Binary Search Trees

A balanced binary search tree is a binary search tree with a balance condition that guarantees that the
depth of the tree is O(log N). With this balance condition in force, searching of a balanced binary search
tree is identical to searching of a binary search tree but has an O(log N) worst-case guarantee. Insertion
and removal in a balanced binary search tree are also identical to operations on a binary search tree, except
that all nodes on the path from the accessed node back to the root must have their balance maintained and
possibly restored. Examples of balanced binary search trees include AVL trees and red-black trees.

3.4.2.1 AVL Trees

The first balanced search tree was the AVL tree [5], and it is also one of the simplest to describe and imple-
ment. In an AVL tree, each node stores balance information (for instance its height), and the balancing prop-
erty is that for every node, its left and right subtrees must have heights that differ from each other by at most 1.
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The balancing property implies that the height of an AVL tree is at most approximately log,N,
where @ = 1.618 is the golden ratio, though in practice it is much closer to the optimal log N.

Insertion of a new value x proceeds in the usual fashion as a binary search tree. This step will be
O(log N) worst case, since the depth of the tree is now guaranteed. However, it potentially changes
the height information of all nodes on the path from x to the root, and it may also violate the balance
requirement. Thus, we follow the path from x back to the root, updating height information. If at any
point a balance violation is detected, we repair the node by using a local rotation of tree nodes. Let a
be the first node on the return path to the root whose balance is violated. There are four possible cases:

. x was inserted into the left subtree of the left child of a.

. x was inserted into the right subtree of the right child of a.
. x was inserted into the right subtree of the left child of a.
4. x was inserted into the left subtree of the right child of .

w N~

Note that cases 1 and 2 are mirror-image symmetries, as are cases 3 and 4. Hence, we focus on cases
1 and 3 only.

Case 1 is repaired with a single rotation as shown in Figure 3.4

Here, k,’s left subtree is two levels deeper than k,’s right subtree. By changing two links (k,’s left child
and k;’s right child), the subtree becomes balanced. Once this subtree is reattached to the parent, the
heights for the parent and all other nodes on the path to the root are all guaranteed to be unchanged
from prior to the insertion of x.

Case 3 is repaired with a double rotation as shown in Figure 3.5
In this case, x is inserted into either subtree B or C, and one of those trees is two levels deeper than
D (possibly both subtrees are deeper in the special case that all of A, B, C, and D are empty). B and Care

FIGURE3.4 Singlerotation (case 1) to fixan AVL tree. (a) Generic case before rotation, (b) generic case after rota-
tion, and (c) rotation applied after insertion of 5.
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FIGURE 3.5 Double rotation (case 3) to fix an AVL tree. (a) Generic case before rotation, (b) generic case after
rotation, and (c) rotation applied after insertion of 7.

drawn 1% levels deeper, to signify this uncertainty, but the rotation shows that regardless of which tree
is the deeper tree, the balance is repaired. Deletion in an AVL tree uses the same types of rotations, with
more cases. Unlike insertion, a deletion may require a logarithmic number of rotations.

3.4.2.2 Red-Black Trees

Red-black trees [6] are currently used in both the C++ and Java libraries to implement ordered sets. Like
AVL trees, they are balanced binary search trees with logarithmic depth that must be rebalanced after
insertions or deletions. In a red-black tree,

1. Every node is colored either red or black.

2. The root is black.

3. If a node is red, its children must be black.

4. Every path from a node to a null link must contain the same number of black nodes.

The balancing rules guarantee that the depth of a red-black tree is at most 2log(N + 1), though in practice
it is much closer to the optimal log N. Rebalancing is done by rotations and color changes, and red-black
trees have the advantage that they can be implemented nonrecursively, with one top-down pass that
incorporates rebalancing. The number of rotations needed for red-black trees is bounded by a constant.

3.4.3 Multiway Search Trees

In a multiway tree, each node can have k children, with the branching based on k — 1 keys per node.
Examples of multiway trees include structures such as radix search trees and suffix trees (see Chapter 15)
and B-trees [7,8], which we discuss briefly.

In a B-tree of order m, each non-leaf node has between [m/2] and m children (except that the root can
have between 2 and m children if it is not a leaf) and all leaves are at the same level. Special cases of m = 3
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and m = 4 are 2-3 trees and 2-3-4 trees. Interestingly, 2-3-4 trees are equivalent to red-black trees: a
four-node is replaced with a black node and two red children; a three-node is replaced with a black node
and one red child, and a two-node is replaced with a black node. If insertion of a new node would create
an (m + 1)th child for the node’s potential parent, that parent is split into two nodes containing [m/2] and
|m/2| children. As this adds a new child to the grandparent, the splitting process can potentially repeat all
the way up until the root, in the worst case resulting in the creation of a new root with only two children.
Deletion works in a similar manner by combining nodes. B-trees are widely used in the implementation of
databases because large values of m will yield very shallow trees and minimize disk accesses.

3.4.3.1 Skip Lists

A skip list [9] implements an ordered set using a randomization strategy. As we described earlier in the
section, binary search on a singly linked list does not work because it is difficult to get to the middle of
the list. In a skip list, each node potentially stores many links. A level k node has k links, each storing
a link to the next level i node for 1 <i < k. As shown in the top of Figure 3.6, nodes 3, 9, 15, and 21 are
level 1 nodes; nodes 6 and 18 are level 2 nodes; node 12 is a level 3 node; and there are currently no level
4 nodes. A header node is also provided, large enough to store the largest level.

To search the skip list, we use the highest levels to advance quickly, dropping down to lower levels
when it is apparent that we have advanced too far. If levels are randomly assigned, and the probability
that a node’s level k is 27, then on average there will be O(log N) levels, and we will spend only a constant
amount of time on any level, yielding O(log N) expected performance for a search (here, the expectation
is based on the randomness of the creating a level, not the particular input; see Chapter 11 for a discus-
sion of randomized algorithms). Insertion is straightforward; as shown in the bottom of Figure 3.6, we
create a new node with a randomly chosen level (level k is selected with probability 27%) and then it is
spliced in at the points where search switched levels.

The primary advantage of the skip list is that it can be efficiently implemented in a multithreaded
environment [10] and it is used in the standard Java library.

3.4.3.2 Splay Trees

A splay tree [11] is a binary search tree that stores no balance information yet provides a guarantee of
O(log N) amortized cost per basic operation of insertion, removal, or access. In a splay tree, after a node x is
accessed, it is repeatedly rotated toward the root until it becomes the root, a process that is called splay-
ing. If the node is a child of the root, this is accomplished with a single rotation, which we call a zig rota-
tion and which terminates the splaying step. Otherwise, let the node’s parent be p, and its grandparent
be g Then we have four cases that are similar to an AVL tree:

. x is the left child of p and p is the left child of &

. x is the right child of p and p is the right child of g
. x is the right child of p and p is the left child of g.

. x is the left child of p and p is the right child of g.

W N =

A 4

h 4

I
% %
Yy yYw
[
‘;

12 [1 (15 [ 18 [ 21 Y

FIGURE 3.6 Insertion into a skip list.
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In cases 1 and 2, which are symmetric, we rotate p with g and then x with p. This is a zig-zig rotation.
In cases 3 and 4, which are also symmetric, we rotate x with p and then x with g (this is a basic double
rotation, known as a zig-zag rotation for splay trees). If this makes x the root, we are done; otherwise,
we continue the splaying step.

Figure 3.7 shows the three types of rotations that can be involved in splaying, and Figure 3.8
shows how node 1 is splayed to the root. Splaying has the effect of roughly halving the length of long
access paths.

A search in a splay tree is performed by a usual binary search tree search followed by a splay of the
last accessed node. An insertion is performed by a usual binary search tree insertion, and then the
inserted node is splayed to the root. A deletion is performed by first performing a search. This brings

%
o

FIGURE 3.7 Rotations in a splay tree: zig (top, a basic single rotation), zig-zag (middle, a basic double rotation),
and zig-zig (bottom, unique to the splay tree).

FIGURE 3.8 Splaying node 1 to the root (two zig-zigs and one zig).
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the item to delete to the root, at which point it can be removed, leaving just a left subtree and a right
subtree. If either is empty, the deletion is easy to complete. Otherwise, the largest item in the left subtree
can be accessed, bringing it to the root by a splay, and the right subtree can be attached to the new root
of the left subtree.

The proof that splay trees take O(log N) amortized cost per operation is one of the classic results in
amortized analysis.

3.5 Unordered Sets and Maps (Hashing)

An unordered set stores a collection of unique items and allows for their efficient insertion, removal,
and access. Unlike an ordered set, iteration over the set is not expected to view the items in their sorted
order, and thus, the items do not require the ability to be comparison ordered. Because the operations
required for an unordered set are a subset of the ordered set operations, it is reasonable to expect that it
can be implemented more efficiently.

3.5.1 Separate Chaining

The most common implementation of an unordered set is a separate chaining hash table [12]. In a sepa-
rate chaining hash table, we maintain a collection of M buckets and provide a hash function that maps
any item into a bucket index. If the hash function is reasonably chosen, then each bucket will have only
N/M items on average. If N is O(M), then each bucket will have constant size on average, and can be
searched sequentially, and then updated as needed, all in constant average time. The items in the bucket
will typically be maintained in a singly linked list.

3.5.2 Linear Probing

An alternative to separate chaining is linear probing [13]; we maintain a larger table (typically of size
roughly 2N) but only allow one item per bucket, thus avoiding the need to maintain linked lists. Let
p be the position computed by the hash function for item x. When inserting, if position p is already
occupied, we sequentially probe positions p + 1, p + 2, etc., until a vacant position is found (wrapping
around to the start of the bucket array if needed). The average number of probes is determined by the
load factor A= N/M and is approximately (1 + 1/(1 — A))/2 for a successful search and (1 + 1/(1 — A)?)/2
for an insertion (or unsuccessful search) [14]. This is higher than the naive estimate of 1/(1 — 1) that one
would obtain if each probe was an independent random event, and translates to an average of 2.5 rather
than 2.0 probes for insertion of an item into a half-full hash table, but significantly worse performance
at higher load factors. This phenomenon is known as primary clustering: items that probe to different
array slots (e.g., slots 6, 7, and 8) nonetheless attempt to resolve collisions in the same manner, thus
creating long chains of occupied slots. Primary clustering was long thought to make linear probing a
poor choice for hash tables, but it has recently reemerged as a popular choice due to its excellent local-
ity of reference.

3.5.3 Quadratic Probing

Quadratic probing avoids the primary clustering of linear probing by using positions p + 12, p + 22, etc.,
again wrapping around as needed. Since p + i = (p + (i — 1)?) + (2i — 1), the ith position can be computed
from the (i — 1)th position with two additions and a bit shift and, possibly, a subtraction if a wraparound
calculation is needed [15,16]. Although quadratic probing has not been fully analyzed, its observed per-
formance is similar to what would be expected without primary clustering, it is easy to implement, and
it has locality properties that are similar to linear probing.
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3.5.4 Alternative Hashing Schemes

Perfect hash tables [17] provide guarantees of constant access time, assuming that the items are known
in advance. Using a random hash function, a primary hash table is constructed with N buckets; however,
for each bucket i, if the bucket contains b, items, the items will be stored in a secondary hash table of size
b}, using a randomly generated hash function (each secondary hash table will use its own random hash
function). This two-level scheme is shown in Figure 3.9.

If the total size of all the secondary hash tables exceeds 4N, then we have picked an unlucky (pri-
mary) random hash function, and we simply pick a different hash function until the total size is no
larger than 4N. This will require only a constant number of attempts on average. In each secondary
hash table, since there are b, items and b buckets, a collision occurs with probability less than %. Hence,
only a constant number of attempts are needed to choose each secondary hash function until we obtain
a collision-free secondary hash table. Once all this is done, at total cost of O(N) to build all the tables,
an access can be done in two table lookups. The perfect hash table can be extended to support insertions
and deletions [18].

Cuckoo hash tables [19] provide O(1) worst-case access using a relatively simple algorithm. In cuckoo
hashing, we maintain two tables, each more than half empty, and we have two independent hash func-
tions that can assign each item to one position in each table. Cuckoo hashing maintains the invariant
that an item is always stored in one of its two hash locations. Consequently, the cost of a search is guar-
anteed to be O(1), and the remove operation is likewise very simple. There are several alternative algo-
rithms to insert an item x, all use the same basic concepts. If either of x’s valid locations is empty, then
we are done. Otherwise, place x in one of the occupied locations, displacing some other element a. Then
place a in @’s other valid location; if that other valid location was empty we are done; otherwise, we have
displaced another element b, and we continue the same process until either we are able to place the most
recently displaced item or we detect a cycle (or reach a threshold of displacement that indicates a high
probability of a cycle). In this case, we choose a different random hash function and rebuild the table. If
the tables are less than half empty, it is unlikely that a new random hash function is needed; however,
the hash functions must be carefully chosen.

FIGURE 3.9 Perfect hash table.
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3.5.5 Hash Functions

All implementations of hash tables presume the existence of a hash function that returns a suitable array
index, which in modern languages will range from 0 to M — 1. Any hash function should satisfy basic
properties:

1. If x = y, then hash(x) = hash(y).
2. If x # y, then the collision probability that hash(x) = hash(y) should be approximately 1/M.

The hash function should be relatively easy to compute, since if it is a good function, the cost of comput-
ing the hash function will be a significant cost of any hash table operation.

Normally, the input values can be considered to be a long sequence of bits, so hash functions can be
modeled as a mathematical operation on large integers. In such a case, hash(x) = x mod M generates a
hash code with the desired properties if the input values have a significantly larger range than 0 to M — 1
and if they are randomly distributed in that range. However, this hash function can be an unsuitable
choice if, for example, M is a power of 2 and the low-order bits of all inputs are likely to be similar.

When random functions are needed, an alternative is to use a universal hash function, which provides
the needed hash properties for all pairs x and y, where the collision probability for any pair (x, y) is taken
over all choices of random functions [17]. One set of universal hash functions can be obtained by choos-
ing a prime p > M and then any random pair (a,b) such that 1 <a <pand 0 < b < p, yielding

hash, 1)(x) = ((ax +b)mod p)mod M

An alternative scheme that is more efficient in practice is the multiply shift in [20].

An important use case for hash tables is storing strings. There have been many different hash
functions proposed. The simplest that provides very good performance is the algorithm shown in
Figure 3.10, implemented in C++. This function returns an unsigned integral type that can be brought
into the proper range with a mod operation by the hash table implementation. Many choices of
(a, hy) have been used including (31, 0) used in both the Java library and in [21]; other implementa-
tions replace addition with a bitwise-exclusive OR, some implementations perform the addition (or
bitwise-exclusive OR) before the multiply, and implementations on 64-bit machines are likely to use
large prime numbers for a.

Hash functions that are used in hash tables are generally reversible in the sense that it is possible to
produce several inputs that map to the same output. Cryptographic hash functions are used to authenti-
cate documents and store passwords; for these hash functions, it is infeasible to modify x without chang-
ing hash(x), it is infeasible to produce an input y such that hash(y) is some specified value, it is infeasible
to recover x from hash(x) even if a large number of x’s bits are known, and it is infeasible to produce a
pair of inputs that compute the same output. Because cryptographic hash functions are expensive to
compute, their use is primarily in computer security.

Chapter 11, which discusses randomized algorithms, has other material related to hashing (e.g., tabu-
lation hashing, hashing with choices, and the analysis of cuckoo hashing).

. size_t hash ( const string & key )

{

size t hashval = hO;

hashval = a * hashVal + ch;

1

2

3

4.

5. for ( char ch : key )
6

7

8 return hashval;

9

}

FIGURE 3.10 Simple C++ hash function.
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3.6 Priority Queues

A priority queue stores a collection of items and allows for their efficient insertion but allows removal
(deleteMin) and access (findMin) of the minimum item only. Alternatively, sometimes priority queues are
defined to allow removal and access of the maximum item only. Priority queues are used in diverse appli-
cations such as job scheduling, discrete-event simulation, sorting, and graph algorithms. As an example,
suppose we want to merge k sorted lists containing a total of N items into one sorted list of N items. We can
place the first item of each list in a priority queue and use deleteMin to select the smallest. We then insert
the next item from the appropriate list in the priority queue, and repeat. After N insert and N deleteMin
operations in a priority queue that never contains more than k items, we have successfully merged all
sorted lists into one. This algorithm takes O(N log k) if priority queue operations are logarithmic.

In fact, priority queues can be implemented with a balanced binary search tree at logarithmic worst-
case cost per operation. An alternative implementation that is likely to be faster and more space efficient
is the binary heap.

3.6.1 Binary Heaps

A binary heap [22] stores items in a complete binary tree. In a complete binary tree, all levels are full
except possibly the last level, which is filled in left to right with no missing nodes. A complete binary tree
has at most [log(N + 1)] nodes on the path from the root to a bottom leaf and can be easily represented
without using the normal links associated with a binary tree. Specifically, if we store the nodes in level
order in an array whose index begins with 1, then the root is stored at index 1, and a node that is stored
at index i will have its left child, right child, and parent stored at indices 27, 2i + 1, and [i/2], respectively.

The items in the binary heap will also satisfy heap order: the value stored in any node is never smaller
than the value stored in its parent. Figure 3.11 shows a binary heap and its representation in an array.

In a binary heap, the minimum item must be at the root. We can insert a new item x by creating an
empty new node at the next available position and then placing x in the sorted position along the path
from the newly created node to the root. Algorithmically, this involves moving the vacant node’s parent
into the vacant node until x can be placed into the vacant node without violating heap order and is easily
seen to require at most log N comparisons. In this step, the vacant node moves up toward the root until
x is finally placed in it. Figure 3.12 shows the insertion of 13 into a binary heap.

Figure 3.13 shows that removing the minimum item follows a similar process. The minimum item, which is
atthe root, is removed from the heap, thus vacating the root. The last node in the binary heap is removed, thus
leaving one value, x, homeless. x is placed in the sorted position along the path from the root through smaller
children. Algorithmically, this involves moving the vacant node’s smaller child into the vacant node until x
can be placed into the vacant node without violating heap order and requires at most 2log N comparisons.

12 | 18

0 1 2 12 13

FIGURE 3.11 Binary heap and an array representation.
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FIGURE 3.12 [Initial binary heap; inserting 13 shows creation of new vacant node and the path to the root;
13 is inserted onto this path.
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FIGURE 3.13 Initial binary heap; removing the minimum (12) vacates the root and displaces last item (23) path
of minimum children is shown; 23 is placed by following path of minimum children.

A binary heap can also be constructed in linear time by placing the items in the binary tree without
heap order and then repairing the heap order bottom-up [23].

If the position of an item is known, the item’s value can be either increased or decreased by gen-
eralizing the deletion or insertion algorithm; decreasing a value (decreaseKey) involves moving it
up the tree toward the root, whereas increasing a value involves moving it down the tree through a
path of minimum children; this operation takes O(log N) time. In some algorithms that use priority
queues, such as computation of shortest paths, implementing the decreaseKey operation in o(log N)
yields a faster running time. Thus, alternative priority queue schemes have been proposed, and most
use linked heap-ordered tree structures that can be easily merged. Several examples include leftist
heaps, Fibonacci heaps, and pairing heaps.
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3.6.2 Mergeable Heaps

The first mergeable heap was the leftist heap, invented in 1972 [24]. A leftist heap is a heap-ordered tree with
the “imbalance requirement” that for each node, the left subtree is at least as deep as the right subtree. The
requirement forces the tree to lean left (hence its name); however, this property is easily seen to imply that the
rightmost path has at most log (N + 1) nodes. Merging two leftist heaps simply involves merging right paths
together and swapping left and right children of any node on the resulting right path that violates the leftist
heap imbalance requirement and thus takes O(log N) time by virtue of the bound on the right path length.
Insertion can be implemented as a merge with a one-node tree and is thus also O(log N). Removing the min-
imum is easily implemented in O(log N) by deleting the root node and merging its left and right subtrees.

Binomial queues [25] introduce the idea of using a heap-ordered tree that is not binary but of a
restricted form known as a binomial tree and maintaining a priority queue as a collection of these heap-
ordered binomial trees.

Fibonacci heaps [26] achieve O(log N) amortized cost for merge and deleteMin and O(1) amortized
cost for decreaseKey. This performance produces more efficient worst-case bounds for several graph
algorithms, including Dijkstra’s shortest-path algorithm, but in general, Fibonacci heaps have overhead
that limits its usefulness in practice. Fibonacci heaps introduce the idea of implementing decreaseKey
by cutting a tree into two and also introduce the idea that there can be as many as ®@(N) trees while
maintaining amortized efficiency.

Pairing heaps [27] were designed in the hope of matching Fibonacci heaps theoretical performance
bounds while being simple to implement, and thus practical. A pairing heap is a single heap-ordered
tree that is implemented by having each node store a link to its leftmost child and then having all
siblings doubly linked. The leftmost child also stores a link back to its parent. Thus, in the bottom of
Figure 3.14, each line between nodes represents one link in each direction. The advantage of the pair-
ing heap is that it maintains no balance information, uses only two links per node, and is only one tree.

To merge two pairing heaps, the larger root is made the new first child of the smaller root. We can treat
an insertion as a merge of a one-node tree. To perform a decreaseKey of node p, we cut the subtree rooted at
p from the tree and then merge the two resulting trees. Observe that all these operations take constant time.

Deleting the minimum, however, is more difficult. When the minimum is removed, what is left is a
collection of subtrees (there could be N subtrees) that must all be combined back into one heap-ordered
tree. There are several strategies, the best of which appears to be two-pass merging [28]. In the first pass,

OO

FIGURE 3.14 (a) Pairing heap as a tree, and (b) pairing heap in left child, right sibling representation, using bidi-
rectional links everywhere.
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do doo o

FIGURE3.15 (a) Trees resulting from removal of root in Figure 3.14, (b) after first pass halves the number of trees,
(c) first merge of the second pass, and (d) second merge of the second pass.

we merge each pair of heaps (see Figure 3.15b); then we work backward, merging the last two trees, then
that result with the next tree, and so on (Figure 3.15¢ and d) until we obtain only one tree.

Although the performance of the pairing heap is excellent, the analysis of the pairing heap is still unre-
solved. It has been shown that if the amortized cost of merge and deleteMin are O(log N), decreaseKey is
not O(1). For a wide range of merging strategies, decrease Key’s amortized cost will be Q(log log N) and

for two-pass merging, the cost has recently been bounded by 022 loeloe ) [29,30].

3.7 Union/Find Data Structure

The union/find data structure is a classic solution to the problem of maintaining a partition of {1, 2, 3, ..., N}
under the following operations:

o initialize: Creates N single element sets.

o union(s,, s,): Combines two sets s, and s,, destroying the original (thus maintaining the partition).

o find(x): Returns the set containing x (at the time of the query); most importantly, find(x) and
find(y) return the same result if and only if x and y are in the same set.
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1. class DisjointSets
2. {
3. private:
4. vector<int> p;
5.
6. public:
7. DisjointSets( int n ) : p( n, -1 ) // Size n, all -1s
. ()
9.
10. void unionSets( int rootl, int root2 )
11. {
12. if( pl root2 ] < pl rootl ] ) // More negative means larger root
13 swap ( rootl, root2 ); // Make sure rootl is larger (or same)
14.
15 pl rootl 1 += p[ root2 1; // Update rootl size
16. pl root2 ] = rootl; // Update root2 parent
17. }
18
19. int find( int x )
20. {
21. if(plx1 < 0)
22. return x;
23 else
24. return p[ x ] = find( pl x 1 );
25. }
26. };

FIGURE 3.16 Implementation of union by size with path compression.

The union/find operations can be used to maintain the connected components in an undirected graph
and thus is a fundamental data structure in the implementation of spanning tree algorithms.

The most elegant approach to maintaining the partition represents each set as its own tree, with the
root of the tree denoting the set name [31]. Each set also stores its size. Each node in the tree maintains a
link to its parent only; thus, it is easy to provide an implicit implementation of this structure in a single
array in which each entry that is not a root stores its parent and each entry that is a root stores its size
information as a negative number.

To perform a union given two tree roots, we make the smaller tree a child of the larger tree and
update the larger tree’s size. This is clearly a constant-time operation. To perform a find, we simply
follow parent links until we reach a root. The cost per operation is the number of nodes on the path
to the root, which will be O(log N) if the union is done by size (because a node gets one level deeper
only when its tree is combined into a larger tree, the size of the node’s tree doubles every time it gets
one level deeper). A simple optimization on the find known as path compression changes the par-
ent of every node on the find search path to be the eventual root. With this optimization and union
using the size rule (or a similar height rule), the amortized cost of a find operation is nearly constant
and bounded by O(x(N)), where a(N) is the exceptionally slow-growing inverse Ackermann function
[32-34]. Figure 3.16 shows a complete C++ implementation (minus error checking) of the union/find
data structure.

3.8 Recurring Themes and Ongoing Research

The study of data structures involves many recurring issues, most of which are still being actively
researched, many of which lead into each other. We briefly discuss some of these, pointing especially to
examples that we have already seen.
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3.8.1 Static, Dynamic, and Persistent Structures

Static data structures restrict operations to access on the data and do not support updates. Examples
in this chapter include the binary search and perfect hash table. Dynamic data structures sup-
port updates and are thus more complex; most of the data structures we have seen are of this type.
Advanced data structures have been designed to maintain connected components and shortest paths
in graphs even as the underlying structure of the graph can change. Persistent data structures sup-
port updates and allow operations on prior versions of the data structure. We have not examined any
persistent data structures.

3.8.2 Implicit versus Explicit Structures

An implicit data structure stores the data using little extra memory, in such a way that the structure
of the items can be implied without the need for extra storage for links between the items. Examples
of implicit data structures include the binary heap and the union/find data structure. An explicit data
structure is more typical and uses extra memory to link items together structurally.

3.8.3 Space versus Time Considerations

A recurring theme in data structures and algorithm design is the ability to trade space for time. The hash
table is an example of a data structure in which the ability to use more space can save time; similarly, a
doubly linked list will use more space than a singly linked list but has the advantage that some opera-
tions can be made faster because of the additional links.

3.8.4 Theory versus Practice

Although most data structures have theoretical asymptotic performance guarantees, usually expressed
in Big-Oh notation, it is sometimes the case that the constants hidden in the Big-Oh notation can make
it difficult to compare data structures with identical Big-Oh running times. Additionally, some bounds
such as worst-case bounds can be overly pessimistic, leading to situations in which a theoretically infe-
rior data structure performs better in practice than its counterpart with better run time guarantees.
Examples include hash tables that are very difficult to compare based on the O(1) run time per operation
and also priority queues, in which the Fibonacci heap despite having the best time bound is generally
outperformed by the pairing heap and binary heap (e.g., see [35]).

3.8.5 Modern Architecture Considerations

Because of many advances in computer hardware including multilevel memories and CPU design,
experimental results for data structures can be very machine dependent, often requiring the designer to
have several competitive alternatives to benchmark. For example, linear probing performs much better
relative to other hash table algorithm on modern machines than on older computers. Multicore CPUs
will require a reexamination of fundamental data structures that for the most part have been designed
for single threaded efficiency (e.g., see [36]).

3.8.6 Data Structures for Specialized Types

Containers that work on types such as integers and strings have for many years been an active area of
research. In particular, there has been much work designing priority queues for integers and containers
for strings [37].
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Key Terms

AVL tree: The first balanced binary search tree. Has a balance requirement that each node’s left and
right subtrees can have heights that differ by at most 1.

Balanced binary search tree: A binary search tree that adds a balance requirement to every node that
guarantees the tree has O(log N) depth. Typically, this means that insertions and deletions
must provide algorithms to maintain the balance requirement.

Binary heap: An implementation of a priority queue that uses only a simple array and supports inser-
tion and deleteMin in logarithmic time.

Binary search: An algorithm to search a sorted array in O(log N) time by searching in the middle and
recursing.

Binary search tree: An implementation of an ordered sequence collection that generally uses two links per
node; without balancing, performance can be linear in the worst case but logarithmic on average.

B-tree: A multiway search tree often used for database systems.

Complete binary tree: A binary tree in which all levels are full, except possibly for the last level that is
left-filled with no missing nodes. Used in the binary heap.

Container: Stores a collection of items.

Cuckoo hash table: A hash table implementation that uses two tables and two hash functions and sup-
ports constant worst-case access.

Double-ended queue: A sequence container in which operations are restricted to the front and back.

Fibonacciheap: Animplementation of a priority queue that provides O(1) amortized cost for decreaseKey.

Hash function: Maps items to array indices, with the property that if x = y, then hash(x) = hash(y) and if
x#y, then the collision probability that hash(x) = hash(y) should be approximately 1/M.

Hash table: An implementation of an unordered sequence collection that typically provides constant
time search and update on average.

Heap order: In a priority queue that allows access to the minimum item, heap order means that every
node's value is at least as large as its parent's value.

Leftist heap: The first efficient mergeable priority queue.

Linear probing: A hash table implementation that uses only a simple table and tries array slots sequen-
tially starting from the hash value position until an empty slot is found.

Linked list: A sequence container in which the items are linked; can be singly linked, storing a link to
the next item, or doubly linked, storing links to both the previous and next items.

Map: Stores key value pairs.

Pairingheap: Animplementation of a priority queue that provides o(log N) amortized cost for decreaseKey,
uses two links per node, does not require balance information, and performs very well in practice.

Path compression: In the union/find data structure, the process of changing the parent of every node
on a find path to the root.

Perfect hash table: A hash table scheme that supports constant time access by using hash tables to
resolve hash table collisions.

Primary clustering: A phenomena in linear probing in which keys with different hash values attempt to
resolve to similar alternate locations, potentially resulting in poor performance.

Priority queue: A container in which only the minimum can be accessed and removed.

Quadratic probing: A hash table implementation that uses only a simple table and tries slots sequentially
starting from the hash value position plus i? (starting with i = 0), until an empty slot is found.

Queue: A sequence container in which insertions are restricted to the back and access and removal is
restricted to the front.

Red-black tree: A balanced search tree currently used in both the C++ and Java library.

Rotation: A process by which parent/child relations among a few nodes are changed, while retaining
binary search tree order. Examples include single and double rotations for AVL trees and a
zig-zig rotation for splay trees.
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Search tree: An implementation of an ordered sequence collection that generally uses either binary
trees or multiway trees.

Separate chaining hash table: A hash table scheme in which collisions are resolved by singly linked lists.

Sequence container: Stores items in a linear order, with items inserted at specified positions.

Skip list: An ordered container that uses linked lists with multiple forward pointers per node. A concur-
rent version is implemented as part of the Java library.

Splay tree: A binary search tree that maintains no balance information but that has O(log N) amortized
cost per operation.

Splaying: The process in splay trees by which a node is rotated toward the root using zig, zig-zig, or
zig-zag rotations.

Stack: A sequence container in which operations are restricted to one end.

Union/find data structure: Maintains a partition of {1, 2, ..., N} under a sequence of union and find
operations at only slightly more than constant cost per find.

Universal hash function: A collection of hash functions such that for any specific x # y, only O(1/M) of
the hash functions in the collection yield hash(x) = hash(y).

Further Information

Material in this chapter is based on the presentations in Weiss [15,16]. Other popular textbooks on data
structures and algorithms include Cormen et al. [38], Sahni [39], and Sedgewick and Wayne [40].
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We outline the basic methods of algorithm design and analysis that have found application in the
manipulation of discrete objects such as lists, arrays, sets, and graphs, and geometric objects such as
points, lines, and polygons. We begin by discussing recurrence relations and their use in the analysis of
algorithms. Then we discuss some specific examples in algorithm analysis, sorting, and priority queues.
In the final three sections, we explore three important techniques of algorithm design—divide-and-
conquer, dynamic programming, and greedy heuristics.

4.1 Analyzing Algorithms

It is convenient to classify algorithms based on the relative amount of time they require: how fast does
the time required grow as the size of the problem increases? For example, in the case of arrays, the “size
of the problem” is ordinarily the number of elements in the array. If the size of the problem is measured
by a variable n, we can express the time required as a function of n, T(n). When this function T(n) grows
rapidly, the algorithm becomes unusable for large n; conversely, when T(n) grows slowly, the algorithm
remains useful even when n becomes large.

We say an algorithm is ©(n?) if the time it takes quadruples when # doubles; an algorithm is ©(n)
if the time it takes doubles when » doubles; an algorithm is ®(log #) if the time it takes increases by
a constant, independent of n, when #n doubles; an algorithm is ®(1) if its time does not increase at all
when 7 increases. In general, an algorithm is ©(T(n)) if the time it requires on problems of size n grows
proportionally to T(n) as n increases. Table 4.1 summarizes the common growth rates encountered in
the analysis of algorithms.

The analysis of an algorithm is often accomplished by finding and solving a recurrence relation that
describes the time required by the algorithm. The most commonly occurring families of recurrences in
the analysis of algorithms are linear recurrences and divide-and-conquer recurrences. In the following

4-1
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TABLE 4.1 Common Growth Rates of Times of Algorithms

Algorithms and Complexity

Rate of Growth Comment Examples

0(1) Time required is constant, independent of problem size Expected time for hash searching
O(log log n) Very slow growth of time required Expected time of interpolation search
O(log 1) Logarithmic growth of time required—doubling the problem Computing x"; binary search of an

size increases the time by only a constant amount

O(n) Time grows linearly with problem size—doubling the problem
size doubles the time required

O(nlog n) Time grows worse than linearly, but not much worse—doubling
the problem size more than doubles the time required

O(n?) Time grows quadratically—doubling the problem size
quadruples the time required

O(n?) Time grows cubically—doubling the problem size results in an
eight-fold increase in the time required

O(c") Time grows exponentially—increasing the problem size by 1
results in a c-fold increase in the time required; doubling the
problem size squares the time required

array
Adding/subtracting n-digit numbers;
linear search of an n-element array

Merge sort; heapsort; lower bound
on comparison-based sorting
Simple-minded sorting algorithms

Ordinary matrix multiplication

Traveling salesman problem

subsection, we describe the “method of operators” for solving linear recurrences; in the next subsection,

we describe how to transform divide-and-conquer recurrences into linear recurrences by substitution

to obtain an asymptotic solution.

4.1.1 Linear Recurrences

A linear recurrence with constant coefficients has the form

Coly + €18y + g+ + i, = f(n),

4.1)

for some constant k, where each ¢; is constant. To solve such a recurrence for a broad class of functions f

(i.e., to express a, in closed form as a function of n) by the method of operators, we consider two basic opera-

tors on sequences: S, which shifts the sequence left,

S{a, ay, a5,...) ={ay, ar, as,...),

and C, which, for any constant C, multiplies each term of the sequence by C:

C<ao, ap, ﬂz,...) = <Ca0, Cﬂl, Cﬂz,...).

Then, given operators A and B, we define the sum and product

(A +B) <llo,al, (le,...> =A<€lo, ap, (lz,...) +B<ao, ap, (12,...>,

(AB) <a0,a1, az,...> =A(B<ao,a1, az,...>).

Thus, for example,

(82 _4) <a0, a],az,...> = <a2 _4(10, as —4611,(14 —4612,...),
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which we write more briefly as
(8" =4)(ai) = a2 — 4a;).
With the operator notation, we can rewrite Equation 4.1 as

P(S){a;) ={f @),
where
P(S)=cpS* +6,8 +6,8 7+ 4y
is a polynomial in S.

Given a sequence (a,), we say that the operator P(S) annihilates (a;) if P(S){a;) = (0). For example, §? — 4
annihilates any sequence of the form (u2’ + v(-2)?), with constants u and v. In general,

The operator $¥! — c annihilates (¢ x a polynomial in i of degree k).

The product of two annihilators annihilates the sum of the sequences annihilated by each of the
operators—that is, if A annihilates (a;) and B annihilates (b;), then AB annihilates (a;, + b,). Thus,
determining the annihilator of a sequence is tantamount to determining the sequence; moreover, it is
straightforward to determine the annihilator from a recurrence relation.

For example, consider the Fibonacci recurrence

FO =0;
Fl =1)
E., =E. +FE.

The last line of this definition can be rewritten as F,,, — F,,, — F; = 0, which tells us that (F,) is annihilated
by the operator

SZ—S—lz(S—q))(S;-I}

where ¢ =(1+ JE)/z. Thus we conclude that
F =u¢’ +v(-0)”,

for some constants u and v. We can now use the initial conditions F, = 0 and F, = 1 to determine u
and v. These initial conditions mean that

ud? +v(—=0)° =0
ud' +v(—9) "' =1

and these linear equations have the solution
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and hence

In the case of the similar recurrence,

Git2 =Giy +Gj +i,

the last equation tells us that
(§*=S-1)(G) =),

so the annihilator for (G;) is (5> = S — 1)(S — 1)? since (S — 1)? annihilates (i) (a polynomial of degree 1
in i) and hence the solution is

Gi=ud +v(=0)" +(a polynomial of degreelini),
that is,
Gi=ud +v(—=0)" +wi+z.

Again, we use the initial conditions to determine the constants u, v, w, and x.
In general, then, to solve the recurrence (4.1), we factor the annihilator

P(S) =C()Sk +C18k71 +C28k72 +- e,

multiply it by the annihilator for (f(i)), write down the form of the solution from this product (which is
the annihilator for the sequence {a,)), and use the initial conditions for the recurrence to determine the
coeflicients in the solution.

4.1.2 Divide-and-Conquer Recurrences

The divide-and-conquer paradigm of algorithm construction that we discuss in Section 4.3 leads natu-
rally to divide-and-conquer recurrences of the type

Tn)=gmn)+uT(n/v),

for constants u and v, v > 1, and sufficient initial values to define the sequence (T(0), T(1), T(2), ...).
The growth rates of T(n) for various values of u and v are given in Table 4.2. The growth rates in this
table are derived by transforming the divide-and-conquer recurrence into a linear recurrence for a sub-
sequence of (T(0), T(1), T(2), ...).

To illustrate this method, we derive the penultimate line in Table 4.2. We want to solve

Tn)=n*+vTn I v),



Basic Techniques for Design and Analysis of Algorithms 4-5

TABLE 4.2 Rate of Growth of the Solution
to the Recurrence T(n) = g(n) + uT(n/v), the
Divide-and-Conquer Recurrence Relations

g(n) u, v Growth Rate of T(n)
0(1) u=1 O(log n)
u#1 On'e)
O(log n) u=1 O[(log n)?]
u#1 (')
O(n) u<v O(n)
u=v O(n log n)
u>v On'em)
O(n?) u<v? O(n?)
U= O(n?log n)
u>1? On'e")

Note: u and v are positive constants, indepen-
dent of n, and v > 1.

so we want to find a subsequence of (T(0), T(1), T(2), ...) that will be easy to handle. Let n, = v¥; then,
T () =n} +1/2T(T11/k j,
or
TR =v* +9 T ).
Defining t, = T(v¥),
e =v* +v2%, .
The annihilator for ¢, is then (S — v?)? and thus
t =v*(ak +b),

for constants a and b. Expressing this in terms of T(n),

T(n) = tig » =v>°*"(alog, n+b)=an’log, n +bn*,
or

T(n)=0(n*logn).

4.2 Some Examples of the Analysis of Algorithms

In this section, we introduce the basic ideas of analyzing algorithms by looking at some data structure
problems that occur commonly in practice, problems relating to maintaining a collection of # objects
and retrieving objects based on their relative size. For example, how can we determine the smallest of
the elements? Or, more generally, how can we determine the kth largest of the elements? What is the
running time of such algorithms in the worst case? Or, on the average, if all n! permutations of the input
are equally likely? What if the set of items is dynamic—that is, the set changes through insertions and
deletions—how efficiently can we keep track of, say, the largest element?
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4.2.1 Sorting

The most demanding request that we can make of an array of n values x[1], x[2], ..., x[n] is that they be
kept in perfect order so that x[1] < x[2] < ... < x[n]. The simplest way to put the values in order is to
mimic what we might do by hand: take item after item and insert each one into the proper place among
those items already inserted:

1 void insert (float x[], int i, float a) f{
2 // Insert a into x[1] ... x[i]

3 // x[1] ... x[1i-1] are sorted; x[i] is unoccupied
4 if (1 == || x[i-1] <= a)

5 x[1i] = a;

6 else {

7 x[1] = x[1-1];

8 insert (x, i-1, a);

9 }

10 }

11

12 void insertionSort (int n, float x[]) {
13 // Sort x[1] ... xI[n]

14 if (n > 1) {

15 insertionSort (n-1, X);

16 insert (x, n, x[nl);

17 }

18 }

To determine the time required in the worst case to sort n elements with insertionSort, welett,
be the time to sort n elements and derive and solve a recurrence relation for ¢,. We have,
_ [em ifn=1,
"lto 5,0 +0O(1)  otherwise,

where s,, is the time required to insert an element in place among m elements using insert. The value
of s, is also given by a recurrence relation:

(1) ifm=1,
S
Sma +0O(1)  otherwise.

The annibhilator for (s;) is (S — 1)?, so s,, = ©(m). Thus the annihilator for (t,) is (S — 1), so t, = ©(n?). The
analysis of the average behavior is nearly identical; only the constants hidden in the ®-notation change.

We can design better sorting methods using the divide-and-conquer idea of the next section. These algo-
rithms avoid ®(n?) worst-case behavior, working in time ®(nlog n). We can also achieve time ©(nlog 1) by
using a clever way of viewing the array of elements to be sorted as a tree: consider x[1] is the root of the
tree and, in general, x[2*1] is the root of the left subtree of x[i] and x[2*1 +1] is the root of the right
subtree of x [1]. If we further insist that parents be greater than or equal to children, we have a heap; Figure
4.1 shows a small example.

A heap can be used for sorting by observing that the largest element is at the root, that is, x[1]; thus
to put the largest element in place, we swap x[1] and x [n]. To continue, we must restore the heap prop-
erty which may now be violated at the root. Such restoration is accomplished by swapping x[1] with
its larger child, if that child is larger than x[1], and the continuing to swap it downward until either it
reaches the bottom or a spot where it is greater or equal to its children. Since the tree-cum-array has
height ®(log n), this restoration process takes time (log n). Now, with the heap in x[1] to x[n-1] and
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x[1] =100

x[2] =95
x[4] =81 x[5] =51 x
x[8] =75 x[9] =14 x[10]=3

FIGURE 4.1 A heap—that is, an array, interpreted as a binary tree.

x[n] thelargest value in the array, we can put the second largest element in place by swapping x[1] and

x[n-1]; then we restore the heap property in x[1] to x[n-2] by propagating x[1] downward—this

takes time ©(log(n — 1)). Continuing in this fashion, we find we can sort the entire array in time

O(logn +log(n —1)+---+logl) =

O(nlogn).

The initial creation of the heap from an unordered array is done by applying the restoration process suc-
cessively to x[n/2], x[n/2-1], .., x[1] which takes time ®(n).

Hence we have the following @(nlog 1) sorting algorithm:

1 void heapify (int n, float x[], int i) {

2 // Repair heap property below x[i] in x[1] .. x[n]

3 int largest = 1i; // largest of x[i], x[2*i], x[2*i+1]

4 if (2*1 <= n && x[2*1i] > x[i])

5 largest = 2*i;

6 if (2*i+1 <= n && x[2*i+1l] > x[largest])

7 largest = 2*i+1;

8 if (largest != i) {

9 // swap x[i] with larger child and repair heap below
10 float t = x[largest]; x[largest] = x[i]; x[i] = t;
11 heapify(n, x, largest);

12 }

13 }

14

15 void makeheap (int n, float x[]) {
16 // Make x[1] x[n] into a heap
17 for (int i=n/2; i>0; i--)

18 heapify(n, x, 1i);

19 }

20

21 void heapsort (int n, float x[]) {
22 // Sort x[1] x [n]

23 float t;

24 makeheap (n, x);

25 for (int i=n; i>1; i--) {

26 // put x[1] in place and repair heap
27 t = x[1]; x[1] = x[1i]; x[i] = t;
28 heapify(i-1, x, 1);

29 }

30 }

Can we find sorting algorithms that take time less than ®(n log #)? The answer is no if we are restricted
to sorting algorithms that derive their information from comparisons between the values of elements.
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The flow of control in such sorting algorithms can be viewed as binary trees in which there are n! leaves,
one for every possible sorted output arrangement. Because a binary tree with height / can have at most
2 ]eaves, it follows that the height of a tree with n! leaves must be at least log,n! = @(n log n). Since the
height of this tree corresponds to the longest sequence of element comparisons possible in the flow of
control, any such sorting algorithm must, in its worst case, use time proportional to n log n.

4.2.2 Priority Queues

Aside from its application to sorting, the heap is an interesting data structure in its own right. In par-
ticular, heaps provide a simple way to implement a priority queue—a priority queue is an abstract data
structure that keeps track of a dynamically changing set of values allowing the operations

create: Create an empty priority queue.

insert: Insert a new element into a priority queue.

decrease: Decrease an element in a priority queue.

minimum: Report the minimum element in a priority queue.
deleteMinimum: Delete the minimum element in a priority queue.
delete: Delete an element in a priority queue.

merge: Merge two priority queues.

A heap can implement a priority queue by altering the heap property to insist that parents are less than
or equal to their children, so that the smallest value in the heap is at the root, that is, in the first array
position. Creation of an empty heap requires just the allocation of an array, an ©(1) operation; we assume
that once created, the array containing the heap can be extended arbitrarily at the right end. Inserting
a new element means putting that element in the (1 + 1)st location and “bubbling it up” by swapping it
with its parent until it reaches either the root or a parent with a smaller value. Since a heap has logarith-
mic height, insertion to a heap of n elements thus requires worst-case time O(log #). Decreasing a value
in a heap requires only a similar O(log n) “bubbling up.” The minimum element of such a heap is always
at the root, so reporting it takes ®(1) time. Deleting the minimum is done by swapping the first and last
array positions, bubbling the new root value downward until it reaches its proper location, and truncat-
ing the array to eliminate the last position. Delete is handled by decreasing the value so that it is the least
in the heap and then applying the deleteMinimum operation; this takes a total of O(log n) time.

The merge operation, unfortunately, is not so economically accomplished—there is little choice but
to create a new heap out of the two heaps in a manner similar to the makeheap function in heap sort.
If there are a total of # elements in the two heaps to be merged, this recreation will require time O(n).

There are better data structures than a heap for implementing priority queues, however. In particular,
the Fibonacci heap provides an implementation of priority queues in which the delete and deleteMi-
nimum operations take O(log n) time and the remaining operations take ®(1) time, provided we con-
sider the times required for a sequence of priority queue operations, rather than individual times. That is,
we must consider the cost of the individual operations amortized over the sequence of operations: Given
a sequence of n priority queue operations, we will compute the total time T(n) for all n operations. In
doing this computation, however, we do not simply add the costs of the individual operations; rather,
we subdivide the cost of each operation into two parts, the immediate cost of doing the operation and
the long-term savings that result from doing the operation—the long-term savings represent costs not
incurred by later operations as a result of the present operation. The immediate cost minus the long-
term savings give the amortized cost of the operation.

It is easy to calculate the immediate cost (time required) of an operation, but how can we measure
the long-term savings that result? We imagine that the data structure has associated with it a bank
account; at any given moment, the bank account must have a nonnegative balance. When we do an
operation that will save future effort, we are making a deposit to the savings account and when, later on,
we derive the benefits of that earlier operation, we are making a withdrawal from the savings account.
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Let B(i) denote the balance in the account after the ith operation, B(0) = 0. We define the amortized
cost of the ith operation to be

amortized cost of ith operation = (immediate cost of ith operation) + (change in bank account)
= (immediate cost of ith operation) + (B(i) - B —1)).

Since the bank account B can go up or down as a result of the ith operation, the amortized cost may be
less than or more than the immediate cost. By summing the previous equation, we get

Z(amortized cost of ith operation) = Z(immediate cost of ith operation) + (B(n) — 5(0))

i=1 i=1
= (total cost of all n operations)+ B(n)
> total cost of all # operations

=T(n),

because (i) is nonnegative. Thus defined, the sum of the amortized costs of the operations gives us an
upper bound on the total time T(n) for all n operations.

It is important to note that the function 3(i) is not part of the data structure, but is just our way to
measure how much time is used by the sequence of operations. As such, we can choose any rules for B,
provided B(0) = 0 and B(i) > 0 for i > 1. Then the sum of the amortized costs defined by

amortized cost of ith operation = (immediate cost of ith operation) + (B()— B(i —1))

bounds the overall cost of the operation of the data structure.

Now, we apply this method to priority queues. A Fibonacci heap is a list of heap-ordered trees (not
necessarily binary); since the trees are heap ordered, the minimum element must be one of the roots
and we keep track of which root is the overall minimum. Some of the tree nodes are marked. We define

B(i) = (number of trees after the ith operation)

+2 X (number of marked nodes after the ith operation).

The clever rules by which nodes are marked and unmarked, and the intricate algorithms that manipu-
late the set of trees, are too complex to present here in their complete form, so we just briefly describe the
simpler operations and show the calculation of their amortized costs:

create: To create an empty Fibonacci heap, we create an empty list of heap-ordered trees. The
immediate cost is ©(1); since the numbers of trees and marked nodes are zero before and after
this operation, B(i) — B(i — 1) is zero, and the amortized time is ©(1).

insert: To insert a new element into a Fibonacci heap, we add a new one-element tree to
the list of trees constituting the heap and update the record of what root is the overall
minimum. The immediate cost is ©(1). B(i) — B(i — 1) is also 1 since the number of trees
has increased by 1, while the number of marked nodes is unchanged. The amortized time
is thus ©(1).

decrease: Decreasing an element in a Fibonacci heap is done by cutting the link to its parent,
if any, adding the item as a root in the list of trees, and decreasing its value. Furthermore, the
marked parent of a cut element is itself cut, propagating upward in the tree. Cut nodes become
unmarked, and the unmarked parent of a cut element becomes marked. The immediate cost of
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this operation is ®(c), where ¢ is the number of cut nodes. If there were f trees and m marked
elements before this operation, the value of B before the operation was ¢ + 2m. After the opera-
tion, the value of Bis (t + ¢) + 2(m — ¢ + 2) so B(i) — B(i — 1) =4 — c. The amortized time is thus
O(c) + 4 — ¢ = ©(1) by changing the definition of B by a multiplicative constant large enough to
dominate the constant hidden in ©(c).

minimum: Reporting the minimum element in a Fibonacci heap takes time ®(1) and does not
change the numbers of trees and marked nodes; the amortized time is thus ©(1).

deleteMinimum: Deleting the minimum element in a Fibonacci heap is done by deleting that
tree root, making its children roots in the list of trees. Then, the list of tree roots is “consoli-
dated” in a complicated O(log n) operation that we do not describe. The result takes amortized
time O(log n).

delete: Deleting an element in a Fibonacci heap is done by decreasing its value to —eo and then
doing a deleteMinimum. The amortized cost is the sum of the amortized cost of the two
operations, O(log n).

merge: Merging two Fibonacci heaps is done by concatenating their lists of trees and updating
the record of which root is the minimum. The amortized time is thus ®(1).

Notice that the amortized cost of each operation is ©(1) except deleteMinimum and delete, both
of which are O(log n).

4.3 Divide-and-Conquer Algorithms

One approach to the design of algorithms is to decompose a problem into subproblems that resemble the
original problem, but on a reduced scale. Suppose, for example, that we want to compute x". We reason
that the value we want can be computed from x 724 because

1 if n=0,
x" = (9chz/2J)2 if n is even,

xx(xl_n/2J)2 if nis odd.

This recursive definition can be translated directly into

1 int power (float x, int n) {

2 // Compute the n-th power of x
3 if (n == 0)

4 return 1;

5 else {

6 int t = power(x, floor(n/2));
7 if ((n % 2) == 0)

8 return t*t;

9 else

10 return x*t*t;

11 }

12 }

To analyze the time required by this algorithm, we notice that the time will be proportional to the
number of multiplication operations performed in lines 8 and 10, so the divide-and-conquer recurrence

T(n)=2+T(|n/2]),
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with T(0) = 0, describes the rate of growth of the time required by this algorithm. By considering the
subsequence 1, = 2%, we find, using the methods of the previous section, that T(n) = @(log n). Thus above
algorithm is considerably more efficient than the more obvious

int power (int k, int n)
// Compute the n-th power of k
int product = 1;
for (int 1 = 1; i <= n; 1i++)
// at this point power is k*k*k*...*k (i times)
product = product * k;
return product;

}

0 J 0 Ul W N

which requires time ®(n).

An extremely well-known instance of the divide-and-conquer algorithm is binary search of an
ordered array of n elements for a given element—we “probe” the middle element of the array, continuing
in either the lower or upper segment of the array, depending on the outcome of the probe:

1 int binarySearch (int x, int w[], int low, int high) {

2 // Search for x among sorted array w[low..high]. The integer returned
3 // is either the location of x in w, or the location where x belongs.
4 if (low > high) // Not found

5 return low;

6 else {

7 int middle := (low+high)/2;

8 if (w[middle] < x)

9 return binarySearch(x, w, middle+1, high) ;

10 else if (w[middle] == x)

11 return middle;

12 else

13 return binarySearch(x, w, low, middle-1);

14 }

15 }

The analysis of binary search in an array of n elements is based on counting the number of probes used
in the search, since all remaining work is proportional to the number of probes. But, the number of
probes needed is described by the divide-and-conquer recurrence

n

with T(0) = 0, T(1) = 1. We find from Table 4.2 (the top line) that T(n) = ©(log n). Hence binary search is
much more efficient than a simple linear scan of the array.

To multiply two very large integers x and y, assume that x has exactly [ > 2 digits and y has at most [
digits. Let x,, x,, x,, ..., x,_; be the digits of x and y,, y,,..., y._, be the digits of y (some of the significant
digits at the end of y may be zeros, if y is shorter than x), so that

X =xp4+10x, +10%x, +---+ IOHx,_l,
and

y =y, +10y, +10%y, +---+10""y,_).
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We apply the divide-and-conquer idea to multiplication by chopping x into two pieces, the leftmost n
digits and the remaining digits:

X = Xiefe lonxright)
where n = I/2. Similarly, chop y into two corresponding pieces:

Y = Yeft +10"yright>

because y has at most the number of digits that x does, y,,, might be 0. The product x x y can be now
written

XX Y = (Kiert 10" Xpight) X (V1efe +10" Yrige )

2
=X1eft X Yiee + 10" (Kright X Ve + X1eft X Vright ) + 107" Xrighe X Vrighe-

If T(n) is the time to multiply two n-digit numbers with this method, then
T(n)=kn+ 4T(ZJ;

the kn part is the time to chop up x and y and to do the needed additions and shifts; each of these tasks
involves n-digit numbers and hence ®(n) time. The 4T(n/2) part is the time to form the four needed
subproducts, each of which is a product of about #/2 digits.

The line for g(n) = ®(n), u =4 > v = 2 in Table 4.2 tells us that T'(n) = O(n'"e*) = O(n?), so the divide-
and-conquer algorithm is no more efficient than the elementary-school method of multiplication.
However, we can be more economical in our formation of subproducts:

XXy = (Kiet 10" Xrighe) X (Ve +10" Yrighe )

=B+10"C +10™A,
where

A = Xright X Vright
B = Xieft X Vet

C = (xleft + xright)>< (yleﬂ + yright) - A -B.
The recurrence for the time required changes to
n
Tn)=kn+ 3T(2 j

The kn part is the time to do the two additions that form x x y from A, B, and C and the two addi-
tions and the two subtractions in the formula for C; each of these six additions/subtractions involves
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n-digit numbers. The 3T(n/2) part is the time to (recursively) form the three needed products, each of

which is a product of about »/2 digits. The line for g(n) = ®(n), u =3 > v =2 in Table 4.2 now tells us that
T(n) = On"%?).

Now,

_log;e3

log, 3
&2 logm 2

=1.5849625---,

which means that this divide-and-conquer multiplication technique will be faster than the straightfor-
ward ©(n?) method for large numbers of digits.

Sorting a sequence of n values efficiently can be done using the divide-and-conquer idea. Split the n
values arbitrarily into two piles of n/2 values each, sort each of the piles separately, and then merge the
two piles into a single sorted pile. This sorting technique, pictured in Figure 4.2, is called merge sort.
Let T(n) be the time required by merge sort for sorting n values. The time needed to do the merging is
proportional to the number of elements being merged, so that

Tn)=cn+2T(n/2),

because we must sort the two halves (time T(1/2) each) and then merge (time proportional to n). We see
by Table 4.2 that the growth rate of T(n) is ®(n log 1), since u = v = 2 and g(n) = O(n).

=
ﬁﬂﬁﬁ

Split into two
nearly equal piles

= =

‘ Sort recursively

Sort recursively

=] =)
=

FIGURE 4.2 Schematic description of merge sort.
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4.4 Dynamic Programming

In the design of algorithms to solve optimization problems, we need to make the optimal (lowest cost,
highest value, shortest distance, and so on) choice from among a large number of alternative solutions;
dynamic programming is an organized way to find an optimal solution by systematically exploring all
possibilities without unnecessary repetition. Often, dynamic programming leads to efficient, poly-
nomial-time algorithms for problems that appear to require searching through exponentially many
possibilities.

Like the divide-and-conquer method, dynamic programming is based on the observation that many
optimization problems can be solved by solving similar subproblems and composing the solutions of
those subproblems into a solution for the original problem. In addition, the problem is viewed as a
sequence of decisions, each decision leading to different subproblems; if a wrong decision is made, a
suboptimal solution results, so all possible decisions need to be accounted for.

As an example of dynamic programming, consider the problem of constructing an optimal search
pattern for probing an ordered sequence of elements. The problem is similar to searching an array—in
the previous section, we described binary search in which an interval in an array is repeatedly bisected
until the search ends. Now, however, suppose we know the frequencies with which the search will seek
various elements (both in the sequence and missing from it). For example, if we know that the last few
elements in the sequence are frequently sought—binary search does not make use of this information—
it might be more efficient to begin the search at the right end of the array, not in the middle. Specifically,
we are given an ordered sequence x, < x, < --- < x, and associated frequencies of access B, f,, ..., B,
respectively; furthermore, we are given o, a, ..., &, where «; is the frequency with which the search will
fail because the object sought, z, was missing from the sequence, x; < z < x;,, (with the obvious meaning
when i = 0 or i = n). What is the optimal order to search for an unknown element z? In fact, how should
we describe the optimal search order?

We express a search order as a binary search tree, a diagram showing the sequence of probes made
in every possible search. We place at the root of the tree the sequence element at which the first probe
is made, say x; the left subtree of x; is constructed recursively for the probes made when z < x; and
the right subtree of x; is constructed recursively for the probes made when z > x,. We label each item
in the tree with the frequency that the search ends at that item. Figure 4.3 shows a simple example.
The search of sequence x, < x, < x5 < x, < x5 according to the tree of Figure 4.3 is done by comparing
the unknown element z with x, (the root); if z = x,, the search ends. If z < x,, z is compared with x,

Xy

/N,
YANA
% x O O

B B3 %4 %5

FIGURE 4.3 A binary search tree.
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(the root of the left subtree); if z = x,, the search ends. Otherwise, if z < x,, z is compared with x, (the
root of the left subtree of x,); if z = x,, the search ends. Otherwise, if z < x,, the search ends unsuccess-
fully at the leaf labeled o,. Other results of comparisons lead along other paths in the tree from the
root downward. By its nature, a binary search tree is lexicographic in that for all nodes in the tree, the
elements in the left subtree of the node are smaller and the elements in the right subtree of the node
are larger than the node.

Because we are to find an optimal search pattern (tree), we want the cost of searching to be mini-
mized. The cost of searching is measured by the weighted path length of the tree:

ZB" x[1+ level (B,)] + Z(xi xlevel(ay;),
i=1 i=0
defined formally as

wer=M=waew ) Fas 3,

where the summations Zoc,- and ZBl are over all o; and B, in T. Since there are exponentially many

possible binary trees, finding the one with minimum weighted path length could, if done naively, take
exponentially long.

The key observation we make is that a principle of optimality holds for the cost of binary search
trees: subtrees of an optimal search tree must themselves be optimal. This observation means, for
example, if the tree shown in Figure 4.3 is optimal, then its left subtree must be the optimal tree for
the problem of searching the sequence x, < x, < x; with frequencies p,, §,, f; and o, o, &, a;. (If a
subtree in Figure 4.3 were not optimal, we could replace it with a better one, reducing the weighted
path length of the entire tree because of the recursive definition of weighted path length.) In general
terms, the principle of optimality states that subsolutions of an optimal solution must themselves
be optimal.

The optimality principle, together with the recursive definition of weighted path length, means
that we can express the construction of an optimal tree recursively. Let C;;, 0 < i < j < n, be the
cost of an optimal tree over x;,, < x;,, < -+ < x; with the associated frequencies f,, B;,,, ..., p; and
.»» ;. Then,

O Oy -

where
‘/Vij = ai!

Wij =Wija+Bj+o.
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These two recurrence relations can be implemented directly as recursive functions to compute C, ,, the
cost of the optimal tree, leading to the following two functions:

1 int W (int i, int ) {
2 if (1 == 3)
3 return alphaljl;
4 else
5 return W(i,j-1) + betalj] + alphaljl;
6 }
7
8 int C (int i, int j) {
9 if (1 == 3J)
10 return 0;
11 else {
12 int minCost = MAXINT;
13 int cost;
14 for (int k = i+1; k <= j; k++) {
15 cost = C(i,k-1) + C(k,3j) + W(i,3);
16 if (cost < minCost)
17 minCost = cost;
18 }
19 return minCost;
20 }
21 }

These two functions correctly compute the cost of an optimal tree; the tree itself can be obtained by stor-
ing the values of k when cost < minCost in line 16.

However, the above functions are unnecessarily time-consuming (requiring exponential time)
because the same subproblems are solved repeatedly. For example, each call W(i, j) uses time
O(j - 1) and such calls are made repeatedly for the same values of 1 and j. We can make the process
more efficient by caching the values of W(i, j) inan array as they are computed and using the cached
values when possible:

1 int W[n] [n];

2 for (int 1 = 0; 1 < n; i++)

3 for (int j = 0; j < n; j++)
4 W[il [j] = MAXINT;

5

6 int W (int i, int j) {

7 if (W[i] [j] = MAXINT)

8 if (1 == 3)

9 W[i] [§] = alphaljl;
10 else

11 W[il [J] = W(i,j-1) + betalj] + alphaljl;
12 return W[il [J];
13 }

In the same way, we should cache the values of C(1, j) in an array as they are computed:

int C[n] [n];
for (int 1 = 0; 1 < n; i++)
for (int j = 0; j < n; Jj++)

C[i] [j] = MAXINT;

o Ul B W N

int C (int i, int j) {
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7 if (C[i] [j] == MAXINT)
8 if (1 == 3J)
9 C[i] [3] = ©O;
10 else {
11 int minCost = MAXINT;
12 int cost;
13 for (int k = i+1; k <= j; k++) {
14 cost = C(i,k-1) + C(k,3j) + W(i,3);
15 if (cost < minCost)
16 minCost = cost;
17 }
18 C[i] [j] = minCost;
19 }
20 return CI[i] [j];
21 }

The idea of caching the solutions to subproblems is crucial to making the algorithm efficient. In this
case, the resulting computation requires time ®(n’); this is surprisingly efficient, considering that an
optimal tree is being found from among exponentially many possible trees.

By studying the pattern in which the arrays C and W are filled in, we see that the main diagonal
C[11[4] is filled in first, then the first upper super-diagonal C[1i] [1 + 1], then the second upper super-
diagonal C[1] [1 + 2], and so on until the upper right corner of the array is reached. Rewriting the code
to do this directly, and adding an array R[] [] to keep track of the roots of subtrees, we obtain

1 int Win] [n];

2 int R[n] [n];

3 int C[n] [n];

4

5 // Fill in main diagonal

6 for (int 1 = 0; i < n; i++) {

7 W[i] [i] = alphal(i];

8 R[i] [1] = O;

9 c[i]l [1] = O;

10 }

11

12 int minCost, cost;

13 for (int d = 1; d < n; d++)

14 // Fill in d-th upper super-diagonal

15 for (i = 0; i < n-d; i++) {

16 W[i] [i+d] = WI[i] [i+d-1] + betali+d] + alphali+d];
17 R[i] [i+4d] = 1i+1;

18 C[i] [i+d] = C[i][i] + C[i+1] [i+d] + W([di] [1+d];;
19 for (int k = i+2; k <= i+d; k++)
20 cost = C[i] [k-1]1 + C[k] [1i+d] + WI[i] [i+d];
21 if (cost < C[i] [1+d]) {
22 R[i] [i+d] = k;
23 C[i] [i+d] = cost;
24 }
25 }
26 }

which more clearly shows the ©(n®) behavior.
As a second example of dynamic programming, consider the traveling salesman problem in
which a salesman must visit # cities, returning to his starting point, and is required to minimize
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the cost of the trip. The cost of going from city i to city j is C;;. To use dynamic programming, we
must specify an optimal tour in a recursive framework, with subproblems resembling the overall
problem. Thus we define

cost of an optimal tour from city i to city

o ] 1 that goes through each of the cities j;,
T(l;]l)]2)~~~)]k)= . . .
j2»-- - Ji exactly once, in any order, and

through no other cities.

The principle of optimality tells us that
T (515 2se -5 Jk) Zgg{ci,jm AT s Ji>Joe e Jnets Jnstse -5 Ji) b
where, by definition,
T(@55)=C;;+C;,.

We can write a function T that directly implements the above recursive definition, but as in the
optimal search tree problem, many subproblems would be solved repeatedly, leading to an algorithm
requiring time ®(n!). By caching the values T(; j,, j,, ..., j), we reduce the time required to ®(n22"), still
exponential, but considerably less than without caching.

4.5 Greedy Heuristics

Optimization problems always have an objective function to be minimized or maximized, but it is
not often clear what steps to take to reach the optimum value. For example, in the optimum binary
search tree problem of the previous section, we used dynamic programming to examine systemati-
cally all possible trees; but perhaps there is a simple rule that leads directly to the best tree—say
by choosing the largest B, to be the root and then continuing recursively. Such an approach would
be less time-consuming than the ®(#n’) algorithm we gave, but it does not necessarily give an opti-
mum tree (if we follow the rule of choosing the largest §; to be the root, we get trees that are no
better, on the average, than a randomly chosen trees). The problem with such an approach is that
it makes decisions that are locally optimum, though perhaps not globally optimum. But, such a
“greedy” sequence of locally optimum choices does lead to a globally optimum solution in some
circumstances.

Suppose, for example, f; = 0 for 1 <i < n, and we remove the lexicographic requirement of the tree;
the resulting problem is the determination of an optimal prefix code for n + 1 letters with frequen-
cies ay, ay, ..., ®,. Because we have removed the lexicographic restriction, the dynamic programming
solution of the previous section no longer works, but the following simple greedy strategy yields an
optimum tree: Repeatedly combine the two lowest-frequency items as the left and right subtrees of a
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newly created item whose frequency is the sum of the two frequencies combined. Here is an example
of this construction; we start with five leaves with weights

U U U U U U

ag=25 a; =34 ay=38 az=58 a,=95 a5=21

First, combine leaves o =25 and o5 =21 into a subtree of frequency 25 + 21 = 45:

25+21=45 0 0 0 0
/\ o =34 =38 a3=58 =95
H U
ap=25 a5=21

Then combine leaves «; = 34 and «, = 38 into a subtree of frequency 34 + 38 =72:

25+21-45 344+38=72 O O
/ \ a3=58 a,=95
O 0 0 O
ag=25 a5=21 oy =34 a,=38

Next, combine the subtree of frequency o+ a5 = 45 with o3 = 58:

45+58=103 34+38=72 O
/ \ o
25+21=45 0 g O
/\ az=58 oy =34 a,=38
O O
ay=25 as=21

Then, combine the subtree of frequency a; + oy = 72 with a, = 95:

45+58=103 72+95=167
25+21=45 N 34+38=72 N

/ \ a3=58 / \ a,=95
H l l H

ag=25 a5=21 a; =34 a,=38
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Finally, combine the only two remaining subtrees:

103 +167 =270

RN

45+58=103 72+95=167

ANEERYAN

25+21=45 a 34+38=72 N
/\ az=58 /\ a,=95
O O O O
ag=25 a5=21 o =34 ay=38

How do we know that the above-outlined process leads to an optimum tree? The key to proving that
the tree is optimum is to assume, by way of contradiction, that it is not optimum. In this case, the greedy
strategy must have erred in one of its choices, so let’s look at the first error this strategy made. Since all
previous greedy choices were not errors, and hence lead to an optimum tree, we can assume that we have
a sequence of frequencies &y, , ..., o, such that the first greedy choice is erroneous—without loss of
generality assume that oy and o, are two smallest frequencies, those combined erroneously by the greedy
strategy. For this combination to be erroneous, there must be no optimum tree in which these two leaves
are siblings, so consider an optimum tree, the locations of a, and a;, and the location of the two deepest
leaves in the tree, o, and a;:

By interchanging the positions of o, and o; and o, and a; (as shown), we obtain a tree in which o, and a,
are siblings. Because o, and o, are the two lowest frequencies (because they were the greedy algorithm’s
choice) o, < o; and o, < o, thus the weighted path length of the modified tree is no larger than before
the modification since level(a) > level(a,), level(a,) > level(a) and hence

level(o;) X oty +level(o;) x oy < level(aty) X ot + level(or ) X 0.

In other words, the first so-called mistake of the greedy algorithm was in fact not a mistake since there
is an optimum tree in which a, and a, are siblings. Thus we conclude that the greedy algorithm never
makes a first mistake—that is, it never makes a mistake at all!

The greedy algorithm above is called Huffman’s algorithm. If the subtrees are kept on a priority queue
by cumulative frequency, the algorithm needs to insert the n + 1 leaf frequencies onto the queue, and
repeatedly remove the two least elements on the queue, unite those to elements into a single subtree, and
put that subtree back on the queue. This process continues until the queue contains a single item, the
optimum tree. Reasonable implementations of priority queues will yield O(n log n) implementations of
Huffman’s greedy algorithm.

The idea of making greedy choices, facilitated with a priority queue, works to find optimum solutions
to other problems too. For example, a spanning tree of a weighted, connected, undirected graph G = (V; E)
is a subset of |V| — 1 edges from E connecting all the vertices in G; a spanning tree is minimum if the
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sum of the weights of its edges is as small as possible. Prim’s algorithm uses a sequence of greedy choices
to determine a minimum spanning tree: Start with an arbitrary vertex v € V as the spanning-tree-to-be.
Then, repeatedly add the cheapest edge connecting the spanning-tree-to-be to a vertex not yet in it. If the
vertices not yet in the tree are stored in a priority queue implemented by a Fibonacci heap, the total time
required by Prim’s algorithm will be O(|E| + |V|log |V]). But why does the sequence of greedy choices
lead to a minimum spanning tree?

Suppose Prim’s algorithm does ot result in a minimum spanning tree. As we did with Huffman’s algo-
rithm, we ask what the state of affairs must be when Prim’s algorithm makes its first mistake; we will see
that the assumption of a first mistake leads to a contradiction, proving the correctness of Prim’s algorithm.
Let the edges added to the spanning tree be, in the order added, e, e,, e, ..., and let e, be the first mistake. In
other words, there is a minimum spanning tree T, containing e, e, ..., €;,_;, but no minimum spanning
tree contains ey, e,, ..., e, Imagine what happens if we add the edge e, to T,,,: since T, is a spanning tree,
the addition of ¢; causes a cycle containing e;. Let e, ,,, be the highest-cost edge on that cycle. Because Prim’s
algorithm makes a greedy choice—that is, chooses the lowest-cost available edge—the cost of e, is at least
that of e;, so the cost of the spanning T,,;,, — {e,...} U {e}} is at most that of T, ; in other words, T,,,;, — {e...} U {e;}
is also a minimum spanning tree, contradicting our assumption that the choice of ¢; is the first mistake.
Therefore, the spanning tree constructed by Prim’s algorithm must be a minimum spanning tree.

We can apply the greedy heuristic to many optimization problems, and even if the results are not
optimal, they are often quite good. For example, in the n-city traveling salesman problem, we can get
near-optimal tours in time O(n*) when the intercity costs are symmetric (C,; = C;, for all i and j) and
satisfy the triangle inequality(C;; < C;; + G ; for all 4, j, and k). The closest insertion algorithm starts with
a “tour” consisting of a single, arbitrarily chosen city, and successively inserts the remaining cities to the
tour, making a greedy choice about which city to insert next and where to insert it: the city chosen for
insertion is the city not on the tour but closest to a city on the tour; the chosen city is inserted adjacent
to the city on the tour to which it is closest.

Given an n x n symmetric distance matrix C that satisfies the triangle inequality, let I, be th\e tour of
length |I,| produced by the closest insertion heuristic and let O, be an optimal tour of length |O,|. Then,

—|1”|<2.
[O, |

This bound is proved by an incremental form of the optimality proofs for greedy heuristics we have seen
above: we ask not where the first error is, but by how much we are in error at each greedy insertion to the
tour—we establish a correspondence between edges of the optimal tour and cities inserted on the closest
insertion tour. We show that at each insertion of a new city to the closest insertion tour, the cost of that
insertion is at most twice the cost of corresponding edge of the optimal tour.

To establish the correspondence, imagine the closest insertion algorithm keeping track not only of
the current tour, but also of a spiderlike configuration including the edges of the current tour (the body
of the spider) and pieces of the optimal tour (the legs of the spider). We show the current tour in solid
lines and the pieces of optimal tour as dotted lines:
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Initially, the spider consists of the arbitrarily chosen city with which the closest insertion tour begins
and the legs of the spider consist of all the edges of the optimal tour except for one edge eliminated arbi-
trarily. As each city is inserted into the closest insertion tour, the algorithm will delete from the spider-
like configuration one of the dotted edges from the optimal tour. When city k is inserted between cities
l'and m, the edge deleted is the one attaching spider to the leg containing the city inserted (from city x to
city ), shown here in bold:

Now,

Ck,m < Cx,y >

because of the greedy choice to add city k to the tour and not city y. By the triangle inequality,
Cix £Cpy +Con
and by symmetry we can combine these two inequalities to get
Cix <Cpu +Cy .
Adding this last inequality to the first one,
Cix +Cim <Gy +2C,
that is,

Cix +Cim —Cp o £2C, .

Thus, adding city k between cities / and m adds no more to I, than 2C, . Summing these incremental
amounts over the cost of the entire algorithm tells us

1, <20,,

as we claimed.
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5.1 Introduction

Graphs are useful in modeling many problems from different scientific disciplines because they capture
the basic concept of objects (vertices) and relationships between objects (edges). Indeed, many optimi-
zation problems can be formulated in graph-theoretic terms. Hence, algorithms on graphs have been
widely studied. In this chapter, a few fundamental graph algorithms are described. For a more detailed
treatment of graph algorithms, the reader is referred to textbooks on graph algorithms (Cormen et al.
2001, Even 1979, Gibbons 1985, Tarjan 1983).

An undirected graph G = (V, E) is defined as a set V of vertices and a set E of edges. An edge e = (i, v) is
an unordered pair of vertices. A directed graph is defined similarly, except that its edges are ordered pairs
of vertices; that is, for a directed graph, E C V x V. The terms nodes and vertices are used interchangeably.

In this chapter, it is assumed that the graph has neither self-loops, edges of the form (v, v), nor multiple
edges connecting two given vertices. A graph is a sparse graph if |E| < |V

5-1
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Bipartite graphs form a subclass of graphs and are defined as follows. A graph G = (V; E) is bipartite if
the vertex set V can be partitioned into two sets X and Y such that E C X x Y. In other words, each edge
of G connects a vertex in X with a vertex in Y. Such a graph is denoted by G = (X, Y, E). Because bipartite
graphs occur commonly in practice, algorithms are often specially designed for them.

A vertex w is adjacent to another vertex v if (v, w) € E. An edge (v, w) is said to be incident on vertices
vand w. The neighbors of a vertex v are all vertices w € V such that (v, w) € E. The number of edges inci-
dent to a vertex v is called the degree of vertex v. For a directed graph, if (v, w) is an edge, then we say that
the edge goes from v to w. The out-degree of a vertex v is the number of edges from v to other vertices.
The in-degree of v is the number of edges from other vertices to v.

A pathp = [vy, v,, ..., v] from v, to v, is a sequence of vertices such that (v;, v,,,) is an edge in the graph
for 0 <i < k. Any edge may be used only once in a path. A cycle is a path whose end vertices are the same,
that is, v, = v,. A path is simple if all its internal vertices are distinct. A cycle is simple if every node has
exactly two edges incident to it in the cycle. A walk w = [vy, v,, ..., v] from v, to v, is a sequence of verti-
ces such that (v, v,,,) is an edge in the graph for 0 < i < k, in which edges and vertices may be repeated.
A walk is closed if v, = v+ A graph is connected if there is a path between every pair of vertices. A directed
graph is strongly connected if there is a path between every pair of vertices in each direction. An acyclic,
undirected graph is a forest, and a tree is a connected forest. A directed graph without cycles is known as
adirected acyclic graph (DAG). Consider a binary relation C between the vertices of an undirected graph
G such that for any two vertices u and v, uCv if and only if there is a path in G between u and v. It can be
shown that C is an equivalence relation, partitioning the vertices of G into equivalence classes, known
as the connected components of G.

There are two convenient ways of representing graphs on computers. We first discuss the adjacency
list representation. Each vertex has a linked list: there is one entry in the list for each of its adjacent
vertices. The graph is thus represented as an array of linked lists, one list for each vertex. This rep-
resentation uses O(|V| + |E|) storage, which is good for sparse graphs. Such a storage scheme allows
one to scan all vertices adjacent to a given vertex in time proportional to its degree. The second rep-
resentation, the adjacency matrix, is as follows. In this scheme, an n x n array is used to represent
the graph. The [i, j] entry of this array is 1 if the graph has an edge between vertices i and j, and 0
otherwise. This representation permits one to test if there is an edge between any pair of vertices in
constant time. Both these representation schemes can be used in a natural way to represent directed
graphs. For all algorithms in this chapter, it is assumed that the given graph is represented by an
adjacency list.

Section 5.2 discusses various types of tree traversal algorithms. Sections 5.3 and 5.4 discuss depth-
first search (DFS) and breadth-first search (BFS) techniques. Section 5.5 discusses the single-source
shortest path problem. Section 5.6 discusses minimum spanning trees (MSTs). Section 5.7 discusses the
bipartite matching problem and the single commodity maximum-flow problem. Section 5.8 discusses
some traversal problems in graphs, and the Further Information section concludes with some pointers
to current research on graph algorithms.

5.2 Tree Traversals

A tree is rooted if one of its vertices is designated as the root vertex and all edges of the tree are oriented
(directed) to point away from the root. In a rooted tree, there is a directed path from the root to any
vertex in the tree. For any directed edge (u, v) in a rooted tree, u is v’s parent and v is u’s child. The descen-
dants of a vertex w are all vertices in the tree (including w) that are reachable by directed paths starting
at w. The ancestors of a vertex w are those vertices for which w is a descendant. Vertices that have no
children are called leaves. A binary tree is a special case of a rooted tree in which each node has at most
two children, namely, the left child and the right child. The trees rooted at the two children of a node are
called the left subtree and right subtree.
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In this section, we study techniques for processing the vertices of a given binary tree in various
orders. We assume that each vertex of the binary tree is represented by a record that contains fields to
hold attributes of that vertex and two special fields left and right that point to its left and right subtree,
respectively.

The three major tree traversal techniques are preorder, inorder, and postorder. These techniques are
used as procedures in many tree algorithms where the vertices of the tree have to be processed in a spe-
cific order. In a preorder traversal, the root of any subtree has to be processed before any of its descen-
dants. In a postorder traversal, the root of any subtree has to be processed after all of its descendants.
In an inorder traversal, the root of a subtree is processed after all vertices in its left subtree have been
processed but before any of the vertices in its right subtree are processed. Preorder and postorder tra-
versals generalize to arbitrary rooted trees. In the example to follow, we show how postorder can be used
to count the number of descendants of each node and store the value in that node. The algorithm runs
in linear time in the size of the tree:

Postorder Algorithm. PostOrder (T):

1 if T#nil then
lc < PostOrder (left[T]).
rc < PostOrder (right[T]).
desc[T] < lc + rc + 1.
return desc[T].

else
return O.

end-if

end-proc

o J O Ul b W N

5.3 Depth-First Search

DFS is a fundamental graph searching technique (Hopcroft and Tarjan 1973, Tarjan 1972). Similar graph
searching techniques were given earlier by Tremaux (see Fraenkel 1970, Lucas 1882). The structure of
DEFS enables efficient algorithms for many other graph problems such as biconnectivity, triconnectivity,
and planarity (Even 1979).

The algorithm first initializes all vertices of the graph as being unvisited. Processing of the graph
starts from an arbitrary vertex, known as the root vertex. Each vertex is processed when it is first dis-
covered (also referred to as visiting a vertex). It is first marked as visited, and its adjacency list is then
scanned for unvisited vertices. Each time an unvisited vertex is discovered, it is processed recursively
by DFS. After a node’s entire adjacency list has been explored, that invocation of the DFS procedure
returns. This procedure eventually visits all vertices that are in the same connected component of the
root vertex. Once DFS terminates, if there are still any unvisited vertices left in the graph, one of them is
chosen as the root and the same procedure is repeated.

The set of edges such that each one led to the discovery of a new vertex form a maximal forest of the
graph, known as the DFS forest; a maximal forest of a graph G is an acyclic subgraph of G such that
the addition of any other edge of G to the subgraph introduces a cycle. The algorithm keeps track of
this forest using parent pointers. In each connected component, only the root vertex has a nil parent
in the DFS tree.

5.3.1 Depth-First Search Algorithm

DEFS is illustrated using an algorithm that labels vertices with numbers 1, 2, ... in such a way
that vertices in the same component receive the same label. This labeling scheme is a useful
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preprocessing step in many problems. Each time the algorithm processes a new component, it num-
bers its vertices with a new label.

Depth-First Search Algorithm. DFS-Connected Component (G):

1 c«0.

2 for all vertices v in G do
3 visited[v] « false.

4 finished[v] « false.

5 parent[v] « nil.

6 end-for

7 for all vertices vin G do
8 if not visited[v] then
9 c—c+1.

10 DFS (v, ¢).

11 end-if

12 end-for

end-proc

DFS (v, ¢):
1 visited[v] < true.
2 component[v] « c.

3 for all vertices w in adj[v] do
if not visited[w] then
parent[w] « v.

DFS (w, ¢).
7 end-if
8 end-for
9 finished[v] « true.
end-proc

AN G

5.3.2 Sample Execution

Figure 5.1 shows a graph having two connected components. DFS was started at vertex a, and the
DEFS forest is shown on the right. DFS visits the vertices b, d, ¢, e, and f, in that order. DFS then

AN

() €

FIGURE 5.1 Sample execution of DFS on a graph having two connected components: (a) graph and (b) DFS
forest.
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continues with vertices g, h, and i. In each case, the recursive call returns when the vertex has no
more unvisited neighbors. Edges (d, a), (¢, a), (f, d), and (i, g) are called back edges (these do not
belong to the DFS forest).

5.3.3 Analysis

A vertex v is processed as soon as it is encountered, and therefore at the start of DES (v), visited[v] is false.
Since visited[v] is set to true as soon as DFS starts execution, each vertex is visited exactly once. DFS pro-
cesses each edge of the graph exactly twice, once from each of its incident vertices. Since the algorithm
spends constant time processing each edge of G, it runs in O (|V] + |E|) time.

Remark 5.1

In the following discussion, there is no loss of generality in assuming that the input graph is connected.
For a rooted DFS tree, vertices u and v are said to be related, if either u is an ancestor of v, or vice versa.

DFS is useful due to the special way in which the edges of the graph may be classified with respect
to a DFS tree. Notice that the DFS tree is not unique, and which edges are added to the tree depends
on the order in which edges are explored while executing DFS. Edges of the DFS tree are known as tree
edges. All other edges of the graph are known as back edges, and it can be shown that for any edge (u, v),
u and v must be related. The graph does not have any cross edges, edges that connect two vertices that
are unrelated. This property is utilized by a DFS-based algorithm that classifies the edges of a graph into
biconnected components, maximal subgraphs that cannot be disconnected by the removal of any single
vertex (Even 1979).

5.3.4 Directed Depth-First Search

The DFS algorithm extends naturally to directed graphs. Each vertex stores an adjacency list of its outgo-
ing edges. During the processing of a vertex, first mark it as visited, and then scan its adjacency list for
unvisited neighbors. Each time an unvisited vertex is discovered, it is processed recursively. Apart from
tree edges and back edges (from vertices to their ancestors in the tree), directed graphs may also have
forward edges (from vertices to their descendants) and cross edges (between unrelated vertices). There
may be a cross edge (1, v) in the graph only if u is visited after the procedure call DFS (v) has completed
execution.

5.3.5 Sample Execution

A sample execution of the directed DFS algorithm is shown in Figure 5.2. DFS was started at vertex
a, and the DFS forest is shown on the right. DFS visits vertices b, d, f, and c in that order. DFS then
returns and continues with e and then g From g, vertices h and i are visited in that order. Observe that
(d, a) and (i, g) are back edges. Edges (c, d), (e, d), and (e, f) are cross edges. There is a single forward
edge (g, 1).

5.3.6 Applications of Depth-First Search

Directed DFS can be used to design a linear-time algorithm that classifies the edges of a given directed
graph into strongly connected components: maximal subgraphs that have directed paths connecting
any pair of vertices in them, in each direction. The algorithm itself involves running DFS twice, once
on the original graph and then a second time on GR, which is the graph obtained by reversing the
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FIGURE 5.2 Sample execution of DFS on a directed graph: (a) graph and (b) DFS forest.

direction of all edges in G. During the second DFS, we are able to obtain all of the strongly connected
components. The proof of this algorithm is somewhat subtle, and the reader is referred to Cormen et al.
(2001) for details.

Checking if a graph has a cycle can be done in linear time using DFS. A graph has a cycle if and
only if there exists a back edge relative to any of its DFS trees. A directed graph that does not have any
cycles is known as a DAG. DAGs are useful in modeling precedence constraints in scheduling problems,
where nodes denote jobs/tasks, and a directed edge from u to v denotes the constraint that job u must
be completed before job v can begin execution. Many problems on DAGs can be solved efficiently using
dynamic programming.

A useful concept in DAGs is that of a topological order: a linear ordering of the vertices that is
consistent with the partial order defined by the edges of the DAG. In other words, the vertices can
be labeled with distinct integers in the range [1 ... |[V]] such that if there is a directed edge from a
vertex labeled i to a vertex labeled j, then i < j. The vertices of a given DAG can be ordered topologi-
cally in linear time by a suitable modification of the DFS algorithm. We keep a counter whose initial
value is |V]. As each vertex is marked finished, we assign the counter value as its topological number
and decrement the counter. Observe that there will be no back edges and that for all edges (u, v), v
will be marked finished before u. Thus, the topological number of v will be higher than that of u.
Topological sort has applications in diverse areas such as project management, scheduling, and cir-
cuit evaluation.

5.4 Breadth-First Search

BES is another natural way of searching a graph. The search starts at a root vertex r. Vertices are added
to a queue as they are discovered and processed in first-in—first-out (FIFO) order.

Initially, all vertices are marked as unvisited, and the queue consists of only the root vertex. The
algorithm repeatedly removes the vertex at the front of the queue and scans its neighbors in the graph.
Any neighbor not visited is added to the end of the queue. This process is repeated until the queue is
empty. All vertices in the same connected component as the root are scanned and the algorithm outputs
a spanning tree of this component. This tree, known as a breadth-first tree, is made up of the edges that
led to the discovery of new vertices. The algorithm labels each vertex v by d [v], the distance (length of
a shortest path) of v from the root vertex, and stores the BFS tree in the array p, using parent pointers.
Vertices can be partitioned into levels based on their distance from the root. Observe that edges not in
the BES tree always go either between vertices in the same level or between vertices in adjacent levels.
This property is often useful.
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(a)
FIGURE 5.3 Sample execution of BFS on a graph: (a) graph and (b) BES tree.

Breadth-First Search Algorithm. BFS-Distance (G, r):

=

MakeEmptyQueue (Q).

2 for all verticesvin Gdo
3 visited[v] « false.
4 d[v] « oo,
5 plv] < nil.
6 end-for
7 visited[r] < true.
8 d[r] « 0.
9 Enqueue (Q, 7).
10 while not Empty (Q) do
11 v < Dequeue (Q).
12 for all vertices w in adj[v] do
13 if not visited[w] then
14 visited[w] < true.
15 plw] < v.
16 dw] < d[v]+1.
17 Enqueue (Q, w).
18 end-if
19 end-for
20 end-while
end-proc

5.4.1 Sample Execution

Figure 5.3 shows a connected graph on which BFS was run with vertex a as the root. When a is processed,
vertices b, d, and c are added to the queue. When b is processed, nothing is done since all its neighbors
have been visited. When d is processed, e and fare added to the queue. Finally ¢, ¢, and fare processed.

5.4.2 Analysis

There is no loss of generality in assuming that the graph G is connected, since the algorithm can be
repeated in each connected component, similar to the DFS algorithm. The algorithm processes each
vertex exactly once and each edge exactly twice. It spends a constant amount of time in processing each
edge. Hence, the algorithm runs in O(|V] + |E|) time.

5.5 Single-Source Shortest Paths

A natural problem that often arises in practice is to compute the shortest paths from a specified node
to all other nodes in an undirected graph. BFS solves this problem if all edges in the graph have the
same length. Consider the more general case when each edge is given an arbitrary, nonnegative length,
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and one needs to calculate a shortest-length path from the root vertex to all other nodes of the graph,
where the length of a path is defined to be the sum of the lengths of its edges. The distance between two
nodes is the length of a shortest path between them.

5.5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm (Dijkstra 1959) provides an efficient solution to this problem. For each vertex v, the
algorithm maintains an upper bound to the distance from the root to vertex v in d[v]; initially d[v] is set
to infinity for all vertices except the root. The algorithm maintains a set S of vertices with the property
that for each vertex v € S, d[v] is the length of a shortest path from the root to v. For each vertex u in V
- §, the algorithm maintains d[u], the shortest known distance from the root to u that goes entirely within
S, except for the last edge. It selects a vertex u in V — S of minimum d[u], adds it to S, and updates the
distance estimates to the other vertices in V — S. In this update step, it checks to see if there is a shorter
path to any vertex in V — S from the root that goes through u. Only the distance estimates of vertices that
are adjacent to u are updated in this step. Because the primary operation is the selection of a vertex with
minimum distance estimate, a priority queue is used to maintain the d-values of vertices. The priority
queue should be able to handle a DecreaseKey operation to update the d-value in each iteration. The next
algorithm implements Dijkstra’s algorithm.

Dijkstra’s Algorithm. Dijkstra-Shortest Paths (G, r):

1 for all verticesvinGdo
2 visited[v] « false.

3 d[v] « oo.

4 plv] < nil.

5 end-for

6 d[r] < o.

7 BuildPQ (H, d).

8 while not Empty (H) do

9 u « DeleteMin (H).

10 visited[u] < true.

11 for all vertices vin adju] do
12 Relax (u,v).

13 end-for

14 end-while

end-proc

Relax (u,v)

1 if not visited[v] and d[v] > d[u] + w(u, v) then
2 dv] « du] + w(u, v).

3 plv] < u.

4 DecreaseKey (H, v, d[v]).

5 end-if

end-proc

5.5.1.1 Sample Execution

Figure 5.4 shows a sample execution of the algorithm. The column titled Iter specifies the number of
iterations that the algorithm has executed through the while loop in step 8. In iteration 0, the initial val-
ues of the distance estimates are co. In each subsequent line of the table, the column marked u shows the
vertex that was chosen in step 9 of the algorithm and the change to the distance estimates at the end of
that iteration of the while loop. In the first iteration, vertex r was chosen, after that a was chosen because
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FIGURE 5.4 Dijkstra’s shortest path algorithm.

it had the minimum distance label among the unvisited vertices, and so on. The distance labels of the
unvisited neighbors of the visited vertex are updated in each iteration.

5.5.1.2 Analysis

The running time of the algorithm depends on the data structure that is used to implement the priority
queue H. The algorithm performs |V| DeleteMin operations and, at most, |E| DecreaseKey operations. If
abinary heap is used to update the records of any given vertex, each of these operations runs in O(log |V])
time. There is no loss of generality in assuming that the graph is connected. Hence, the algorithm runs
in O(|E| log |V]). If a Fibonacci heap is used to implement the priority queue, the running time of the
algorithm is O(|E| + [V|log |V]). Although the Fibonacci heap gives the best asymptotic running time, the
binary heap implementation is likely to give better running times for most practical instances.

5.5.2 Bellman-Ford Algorithm

The shortest path algorithm described earlier directly generalizes to directed graphs, but it does not
work correctly if the graph has edges of negative length. For graphs that have edges of negative length,
but no cycles of negative length, there is a different algorithm due to Bellman (1958) and Ford and
Fulkerson (1962) that solves the single-source shortest paths problem in O(|V]|E|) time.

The key to understanding this algorithm is the RELAX operation applied to an edge. In a single scan
of the edges, we execute the RELAX operation on each edge. We then repeat the step |V| — 1 times. No
special data structures are required to implement this algorithm, and the proof relies on the fact that a
shortest path is simple and contains at most |V| — 1 edges (see Cormen et al. 2001 for a proof).

This problem also finds applications in finding a feasible solution to a system of linear equations,
where each equation specifies a bound on the difference of two variables. Each constraint is modeled by
an edge in a suitably defined directed graph. Such systems of equations arise in real-time applications.

5.6 Minimum Spanning Trees

The following fundamental problem arises in network design. A set of sites needs to be connected by a
network. This problem has a natural formulation in graph-theoretic terms. Each site is represented by
a vertex. Edges between vertices represent a potential link connecting the corresponding nodes. Each
edge is given a nonnegative cost corresponding to the cost of constructing that link. A tree is a minimal
network that connects a set of nodes. The cost of a tree is the sum of the costs of its edges. A minimum-
cost tree connecting the nodes of a given graph is called a minimum-cost spanning tree, or simply an
MST. The problem of computing an MST arises in many areas and as a subproblem in combinatorial
and geometric problems. MSTs can be computed efficiently using algorithms that are greedy in nature,
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and there are several different algorithms for finding an MST. One of the first algorithms was due to
Boruvka (1926). The two algorithms that are popularly known as Prim’s algorithm and Kruskal’s algo-
rithm are described here. (Prim’s algorithm was first discovered by Jarnik [1930].)

5.6.1 Prim’s Algorithm

Prim’s (1957) algorithm for finding an MST of a given graph is one of the oldest algorithms to solve the
problem. The basic idea is to start from a single vertex and gradually grow a tree, which eventually spans
the entire graph. At each step, the algorithm has a tree that covers a set S of vertices and looks for a good
edge that may be used to extend the tree to include a vertex that is currently not in the tree. All edges
that go from a vertex in S to a vertex in V — § are candidate edges. The algorithm selects a minimum-
cost edge from these candidate edges and adds it to the current tree, thereby adding another vertex to S.

As in the case of Dijkstra’s algorithm, each vertex u € V — § can attach itself to only one vertex in the
tree (so that cycles are not generated in the solution). Because the algorithm always chooses a minimum-
cost edge, it needs to maintain a minimum-cost edge that connects u to some vertex in S as the candi-
date edge for including u in the tree. A priority queue of vertices is used to select a vertex in V — S that is
incident to a minimum-cost candidate edge.

Prim’s Algorithm. Prim-MST (G, r):

1 for all verticesvin Gdo

2 visited[v] < false.

3 d[v] « oo.

4 plv] « nil.

5 end-for

6 d[r] < o.

7 BuildPQ (H,d).

8 while not Empty (H) do

9 u <« DeleteMin (H).
10 visited[u] < true.
11 for all verticesvinadjlu] do
12 if not visited[v] and d[v] > w(u, v) then
13 d[v] < w(u, v).
14 plv] < u.
15 DecreaseKey (H, v, d[v]).
16 end-if

17 end-for
18 end-while
end-proc

5.6.1.1 Analysis

First observe the similarity between Prim’s and Dijkstra’s algorithms. Both algorithms start building
the tree from a single vertex and grow it by adding one vertex at a time. The only difference is the rule for
deciding when the current label is updated for vertices outside the tree. Both algorithms have the same
structure and therefore have similar running times. Prim’s algorithm runs in O(|E| log |V]) time if the
priority queue is implemented using binary heaps, and it runs in O(|E| + |V| log | V) if the priority queue
is implemented using Fibonacci heaps.

5.6.2 Kruskal’s Algorithm

Kruskal’s (1956) algorithm for finding an MST of a given graph is another classical algorithm for the
problem and is also greedy in nature. Unlike Prim’s algorithm, which grows a single tree, Kruskal’s
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algorithm grows a forest. First, the edges of the graph are sorted in nondecreasing order of their costs. The
algorithm starts with the empty spanning forest (no edges). The edges of the graph are scanned in sorted
order, and if the addition of the current edge does not generate a cycle in the current forest, it is added to
the forest. The main test at each step is: does the current edge connect two vertices in the same connected
component? Eventually, the algorithm adds |V| — 1 edges to make a spanning tree in the graph.

The main data structure needed to implement the algorithm is for the maintenance of connected com-
ponents, to ensure that the algorithm does not add an edge between two nodes in the same connected
component. An abstract version of this problem is known as the union-find problem for a collection of
disjoint sets. Efficient algorithms are known for this problem, where an arbitrary sequence of UNION
and FIND operations can be implemented to run in almost linear time (Cormen et al. 2001, Tarjan 1983).

Kruskal’s Algorithm. Kruskal-MST (G):

1 T« ¢

2 for all verticesvinGdo

3 Makeset(v).

4 Sort the edges of G by nondecreasing order of costs.
5 for all edgese=(u,v) in G in sorted order do

6 if Find (u) # Find (v) then

7 T« TuU (u,v).

8 Union (u, v).

9 end-proc

5.6.2.1 Analysis

The running time of the algorithm is dominated by step 4 of the algorithm in which the edges of the graph
are sorted by nondecreasing order of their costs. This takes O(|E| log |E|) [which is also O(|E| log |V])]
time using an efficient sorting algorithm such as heapsort. Kruskal’s algorithm runs faster in the follow-
ing special cases: if the edges are presorted, if the edge costs are within a small range, or if the number of
different edge costs is bounded by a constant. In all of these cases, the edges can be sorted in linear time,
and the algorithm runs in near-linear time, O(|E| « (|E|, |V])), where a(m, n) is the inverse Ackermann
function (Tarjan 1983).

Remark 5.2

The MST problem can be generalized to directed graphs. The equivalent of trees in directed graphs are
called arborescences or branchings; and because edges have directions, they are rooted spanning trees. An
incoming branching has the property that every vertex has a unique path to the root. An outgoing branch-
ing has the property that there is a unique path from the root to each vertex in the graph. The input is a
directed graph with arbitrary costs on the edges and a root vertex r. The output is a minimum-cost branch-
ing rooted at . The algorithms discussed in this section for finding MSTs do not directly extend to the prob-
lem of finding optimal branchings. There are efficient algorithms that run in O(|E| + |V| log |V]) time using
Fibonacci heaps for finding minimum-cost branchings (Gabow et al. 1986, Gibbons 1985). These algorithms
are based on techniques for weighted matroid intersection (Lawler 1976). Almost linear-time deterministic
algorithms for the MST problem in undirected graphs are also known (Fredman and Tarjan 1987).

5.7 Matchings and Network Flows

Networks are important both for electronic communication and for transporting goods. The problem
of efficiently moving entities (such as bits, people, or products) from one place to another in an underly-
ing network is modeled by the network flow problem. The problem plays a central role in the fields of
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operations research and computer science, and much emphasis has been placed on the design of efficient
algorithms for solving it. Many of the basic algorithms studied earlier in this chapter play an important
role in developing various implementations for network flow algorithms.

First, the matching problem, which is a special case of the flow problem, is introduced. Then, the
assignment problem, which is a generalization of the matching problem to the weighted case, is studied.
Finally, the network flow problem is introduced and algorithms for solving it are outlined.

The maximum matching problem is studied here in detail only for bipartite graphs. Although this
restricts the class of graphs, the same principles are used to design polynomial time algorithms for
graphs that are not necessarily bipartite. The algorithms for general graphs are complex due to the
presence of structures called blossoms, and the reader is referred to Papadimitriou and Steiglitz (1982,
Chapter 10) or Tarjan (1983, Chapter 9) for a detailed treatment of how blossoms are handled. Edmonds
(see Even 1979) gave the first algorithm to solve the matching problem in polynomial time. Micali and

Vazirani (1980) obtained an O(,MVHE ‘) algorithm for nonbipartite matching by extending the algo-
rithm by Hopcroft and Karp (1973) for the bipartite case.

5.7.1 Matching Problem Definitions

Given a graph G = (V; E), a matching M is a subset of the edges such that no two edges in M share a
common vertex. In other words, the problem is that of finding a set of independent edges that have no
incident vertices in common. The cardinality of M is usually referred to as its size.

The following terms are defined with respect to a matching M. The edges in M are called matched
edges and edges not in M are called free edges. Likewise, a vertex is a matched vertex if it is incident to
amatched edge. A free vertex is one that is not matched. The mate of a matched vertex v is its neighbor
w that is at the other end of the matched edge incident to v. A matching is called perfect if all vertices
of the graph are matched in it. The objective of the maximum matching problem is to maximize |M|
the size of the matching. If the edges of the graph have weights, then the weight of a matching is
defined to be the sum of the weights of the edges in the matching. A path p = [v, v,, ..., v] is called
an alternating path if the edges (v,;_;, v,),j = L, 2, ..., are free and the edges (v, v,;,,), j= 1, 2, ..., are
matched. An augmenting path p = [v,, v,, ..., v] is an alternating path in which both v, and v, are
free vertices.

Observe that an augmenting path is defined with respect to a specific matching. The symmetric dif-
ference of a matching M and an augmenting path P, M © P, is defined to be (M — P) U (P — M). The
operation can be generalized to the case when P is any subset of the edges.

5.7.2 Applications of Matching

Matchings are the underlying basis for many optimization problems. Problems of assigning workers to
jobs can be naturally modeled as a bipartite matching problem. Other applications include assigning a
collection of jobs with precedence constraints to two processors, such that the total execution time is
minimized (Lawler 1976). Other applications arise in chemistry, in determining structure of chemical
bonds, matching moving objects based on a sequence of photographs, and localization of objects in
space after obtaining information from multiple sensors (Ahuja et al. 1993).

5.7.3 Matchings and Augmenting Paths

The following theorem gives necessary and sufficient conditions for the existence of a perfect matching
in a bipartite graph.
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Theorem 5.1 (Hall’s Theorem)

A bipartite graph G = (X, Y, E) with |X| = |Y] has a perfect matching if and only if VS C X, [N(S)| > ||,
where N(S) C Y is the set of vertices that are neighbors of some vertex in S.

Although Theorem 5.1 captures exactly the conditions under which a given bipartite graph has a
perfect matching, it does not lead directly to an algorithm for finding maximum matchings. The follow-
ing lemma shows how an augmenting path with respect to a given matching can be used to increase the
size of a matching. An efficient algorithm that uses augmenting paths to construct a maximum match-
ing incrementally is described later.

Lemma 5.1

Let P be the edges on an augmenting path p = [v,, ..., v;] with respect to a matching M. Then, M’ = M
@ P is a matching of cardinality |M| + 1.

Proof Since P is an augmenting path, both v, and v, are free vertices in M. The number of free edges in P
is one more than the number of matched edges. The symmetric difference operator replaces the matched
edges of M in P by the free edges in P. Hence, the size of the resulting matching, |M’|, is one more than |M]|.

The following theorem provides a necessary and sufficient condition for a given matching M to be a
maximum matching.

Theorem 5.2

A matching M in a graph G is a maximum matching if and only if there is no augmenting path in G with
respect to M.

Proof If there is an augmenting path with respect to M, then M cannot be a maximum matching, since
by Lemma 5.1 there is a matching whose size is larger than that of M. To prove the converse, we show that
if there is no augmenting path with respect to M, then M is a maximum matching. Suppose that there is
a matching M’ such that |[M’| > |M|. Consider the set of edges M & M'. These edges form a subgraph in G.
Each vertex in this subgraph has degree at most two, since each node has at most one edge from each match-
ing incident to it. Hence, each connected component of this subgraph is either a path or a simple cycle. For
each cycle, the number of edges of M is the same as the number of edges of M". Since |M'| > |M], one of the
paths must have more edges from M’ than from M. This path is an augmenting path in G with respect to
the matching M, contradicting the assumption that there were no augmenting paths with respect to M.

5.7.4 Bipartite Matching Algorithm

5.7.4.1 High-Level Description

The algorithm starts with the empty matching M = @ and augments the matching in phases. In each
phase, an augmenting path with respect to the current matching M is found, and it is used to increase
the size of the matching. An augmenting path, if one exists, can be found in O(|E|) time, using a proce-
dure similar to BFS described in Section 5.4.
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The search for an augmenting path proceeds from the free vertices. At each step when a vertex in X is
processed, all its unvisited neighbors are also searched. When a matched vertex in Y is considered, only
its matched neighbor is searched. This search proceeds along a subgraph referred to as the Hungarian tree.

Initially, all free vertices in X are placed in a queue that holds vertices that are yet to be processed.
The vertices are removed one by one from the queue and processed as follows. In turn, when vertex v
is removed from the queue, the edges incident to it are scanned. If it has a neighbor in the vertex set
Y that is free, then the search for an augmenting path is successful; procedure AUGMENT is called to
update the matching, and the algorithm proceeds to its next phase. Otherwise, add the mates of all of
the matched neighbors of v to the queue if they have never been added to the queue, and continue the
search for an augmenting path. If the algorithm empties the queue without finding an augmenting path,
its current matching is a maximum matching and it terminates.

The main data structure that the algorithm uses consists of the arrays mate and free. The array mate is
used to represent the current matching. For a matched vertex v € G, mate[v] denotes the matched neighbor of
vertex v. For v € X, free[v] is a vertex in Y that is adjacent to v and is free. If no such vertex exists, then free[v] = 0.

Bipartite Matching Algorithm. Bipartite Matching (G = (X, Y, E)):

1 for all verticesvinGdo
2 mate[v] < 0.
3 end-for
4 found « false.
5 while not found do
6 Initialize.
7 MakeEmptyQueue (Q).
8 for all verticesxe Xdo
9 if mate[x] = 0 then
10 Enqueue (Q, x).
11 label[x] « 0.
12 endif
13 end-for
14 done « false.
15 while not done and not Empty (Q) do
16 x < Dequeue (Q).
17 if free[x] # 0 then
18 Augment (x).
19 done « true.
20 else
21 forall edges (x,x') € Ado
22 if label[x'] = 0 then
23 label[x'] < x.
24 Enqueue (Q, x').
25 end-if
26 end-for
27 end-if
28 if Empty (Q) then
29 found « true.
30 end-if
31 end-while

32 end-while
end-proc
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Initialize:

1 for all verticesxe€ Xdo

2 free[x] < 0.

3 end-for

4 A<« Q.

5 for all edges (x,y) € Edo

6 if mate[y] = 0 then free[x] « y
7 else if mate[y] # x then A «— A U (x, mately]).
8 end-if

9 end-for

end-proc

Augment(x):
1 if label[x] = O then

2 mate[x] « free[x].

3 mate[free[x]] « x

4 else

5  free[label[x]] <« mate[x]
6  mate[x] « free[x]

7 mate[free[x]] « x

8  Augment (label[x])

9 end-if

end-proc

5.7.4.2 Sample Execution

Figure 5.5 shows a sample execution of the matching algorithm. We start with a partial matching and
show the structure of the resulting Hungarian tree. An augmenting path from vertex b to vertex u is
found by the algorithm.

5.7.4.3 Analysis

If there are augmenting paths with respect to the current matching, the algorithm will find at least one
of them. Hence, when the algorithm terminates, the graph has no augmenting paths with respect to
the current matching and the current matching is optimal. Each iteration of the main while loop of the
algorithm runs in O(|E|) time. The construction of the auxiliary graph A and computation of the array
free also take O(|E|) time. In each iteration, the size of the matching increases by one and thus there are,
at most, min(|X], |Y]) iterations of the while loop. Therefore, the algorithm solves the matching problem
for bipartite graphs in time O(min(|X], |Y])|E|). Hopcroft and Karp (1973) showed how to improve the
running time by finding a maximal set of shortest disjoint augmenting paths in a single phase in O(|E|)

time. They also proved that the algorithm runs in only O (\/M) phases.

5.7.5 Assignment Problem

We now introduce the assignment problem, which is that of finding a maximum-weight matching in a given
bipartite graph in which edges are given nonnegative weights. There is no loss of generality in assuming that
the graph is complete, since zero-weight edges may be added between pairs of vertices that are nonadjacent
in the original graph without affecting the weight of a maximum-weight matching. The minimum-weight
perfect matching can be reduced to the maximum-weight matching problem as follows: choose a con-
stant M that is larger than the weight of any edge. Assign each edge a new weight of w'(e) = M — w(e).
Observe that maximum-weight matchings with the new weight function are minimum-weight perfect
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FIGURE 5.5 Sample execution of matching algorithm.

matchings with the original weights. We restrict our attention to the study of the maximum-weight match-
ing problem for bipartite graphs. Similar techniques have been used to solve the maximum-weight matching
problem in arbitrary graphs (see Lawler 1976, Papadimitriou and Steiglitz 1982).

The input is a complete bipartite graph G = (X, Y, X x Y) and each edge e has a nonnegative weight
of w(e). The following algorithm, known as the Hungarian method, was first given by Kuhn (1955). The
method can be viewed asa primal-dual algorithm in the linear programming framework (Papadimitriou
and Steiglitz 1982). No knowledge of linear programming is assumed here.

A feasible vertex-labeling £ is defined to be a mapping from the set of vertices in G to the real numbers
such that for each edge (x;, y;) the following condition holds:

Uxi)+L(y;) 2wix;, y;)

The following can be verified to be a feasible vertex labeling. For each vertex y; € Y, set £(y;) to be 0; and
for each vertex x; € X, set £(x;) to be the maximum weight of an edge incident to x;:

Uy;)=0,

U(x;) = maxw(x;, y;)
i

The equality subgraph, G,, is defined to be the subgraph of G, which includes all vertices of G but only
those edges (x;, y)) that have weights such that

Lxi)+Ll(y;) =wlxi, y))

The connection between equality subgraphs and maximum-weighted matchings is established by the
following theorem.
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Theorem 5.3

If the equality subgraph, G, has a perfect matching, M*, then M* is a maximum-weight matching in G.

Proof Let M* be a perfect matching in G,. By definition,
p g ¢ DY

w(M*) = 2w(e)= Z ()

eeM* veXUY

Let M be any perfect matching in G. Then,

W(M)ZZw(e)S Z Uv) = w(M*)

eeM veXUY

Hence, M* is a maximum-weight perfect matching.

5.7.5.1 High-Level Description

Theorem 5.3 is the basis of the algorithm for finding a maximum-weight matching in a complete
bipartite graph. The algorithm starts with a feasible labeling and then computes the equality sub-
graph and a maximum cardinality matching in this subgraph. If the matching found is perfect, by
Theorem 5.3, the matching must be a maximum-weight matching and the algorithm returns it as its
output. Otherwise, more edges need to be added to the equality subgraph by revising the vertex labels.
The revision keeps edges from the current matching in the equality subgraph. After more edges are
added to the equality subgraph, the algorithm grows the Hungarian trees further. Either the size of the
matching increases because an augmenting path is found or a new vertex is added to the Hungarian
tree. In the former case, the current phase terminates and the algorithm starts a new phase, because
the matching size has increased. In the latter case, new nodes are added to the Hungarian tree. In n
phases, the tree includes all of the nodes, and therefore there are at most n phases before the size of
the matching increases.

It is now described in more detail how the labels are updated and which edges are added to the
equality subgraph G,. Suppose M is a maximum matching in G, found by the algorithm. Hungarian
trees are grown from all the free vertices in X. Vertices of X (including the free vertices) that are
encountered in the search are added to a set S, and vertices of Y that are encountered in the search are
addedtoaset T. Let S = X — Sand T = Y — T. Figure 5.6 illustrates the structure of the sets S and T.
Matched edges are shown in bold; the other edges are the edges in G,. Observe that there are no edges
in the equality subgraph from S to T, although there may be edges from T to S. Let us choose & to
be the smallest value such that some edge of G — G, enters the equality subgraph. The algorithm now
revises the labels as follows. Decrease all of the labels of vertices in S by 8 and increase the labels of the
vertices in T by 8. This ensures that edges in the matching continue to stay in the equality subgraph.
Edges in G (not in G,) that go from vertices in S to vertices in T are candidate edges to enter the equal-
ity subgraph, since one label is decreasing and the other is unchanged. Suppose this edge goes from
x € Sto y € T.If yis free, then an augmenting path has been found. On the other hand, if y is matched,
the Hungarian tree is grown by moving y to T and its matched neighbor to S, and the process of revis-
ing labels continues.

5.7.6 B-Matching Problem

The b-matching problem is a generalization of the matching problem. In its simplest form, given an inte-
ger b > 1, the problem is to find a subgraph H of a given graph G such that the degree of each vertex is
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exactly equal to b in H (such a subgraph is called a b-regular subgraph). The problem can also be formu-
lated as an optimization problem by seeking a subgraph H with most edges, with the degree of each ver-
tex to be at most b in H. Several generalizations are possible, including different degree bounds at each
vertex, degrees of some vertices unspecified, and edges with weights. All variations of the b-matching
problem can be solved using the techniques for solving the matching problem.

In this section, we show how the problem can be solved for the unweighted b-matching problem in
which each vertex v is given a degree bound of b[v], and the objective is to find a subgraph H in which the
degree of each vertex v is exactly equal to b[v]. From the given graph G, construct a new graph G, as fol-
lows. For each vertex v € G, introduce b[v] vertices in G,, namely, v,, v,, ..., V},;. For each edge e = (u, v)
in G, add two new vertices ¢, and e, to G,, along with the edge (e, e,). In addition, add edges between v,
and e, for 1 <i < b[v] (and between u;and e, for 1 < j < b[u]). We now show that there is a natural one-
to-one correspondence between b-matchings in G and perfect matchings in G,.

Given a b-matching H in G, we show how to construct a perfect matching in G,. For each edge
(u, v) € H, match e, to the next available u; and e, to the next available v;. Since u is incident to exactly
b[u] edges in H, there are exactly enough nodes u,, u,... u,, in the previous step. For all edges e = (u, v) €
G - H, we match e, and e,. It can be verified that this yields a perfect matching in G,.

We now show how to construct a b-matching in G, given a perfect matching in G,. Let M be a perfect
matching in G,. For each edge e = (i, v) € G, if (e, ¢,) € M, then do not include the edge e in the b-matching.
Otherwise, ¢, is matched to some u; and e, is matched to some v, in M. In this case, we include e in our
b-matching. Since there are exactly b[u] vertices u,, u,, ... 4, each such vertex introduces an edge into
the b-matching, and therefore the degree of u is exactly b[u]. Therefore, we get a b-matching in G.
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5.7.7 Network Flows

A number of polynomial time flow algorithms have been developed over the past two decades. The
reader is referred to Ahuja et al. (1993) for a detailed account of the historical development of the
various flow methods. Cormen et al. (2001) review the preflow push method in detail; and to comple-
ment their coverage, an implementation of the blocking flow technique of Malhotra et al. (1978) is
discussed here.

5.7.8 Network Flow Problem Definitions
First, the network flow problem and its basic terminology are defined.

Flow network: A flow network G = (V; E) is a directed graph, with two specially marked nodes, namely,
the source s and the sink . There is a capacity function c: E — R* that maps edges to positive real numbers.

Max-flow problem: A flow function f: E — R maps edges to real numbers. For an edge e = (i, v), f(e) refers
to the flow on edge e, which is also called the net flow from vertex u to vertex v. This notation is extended to

sets of vertices as follows: If X and Y are sets of vertices, then f(X, Y) is defined to be Z Z fle,p).
A flow function is required to satisfy the following constraints:

o Capacity constraint. For all edges e, f(e) < c(e).
o Skew symmetry constraint. For an edge e = (u, v), f(u, v) = —f(v, u).
o Flow conservation. For all verticesu € V — {s, t}, 2 fu,v)=0.

veV
The capacity constraint says that the total flow on an edge does not exceed its capacity. The skew sym-
metry condition says that the flow on an edge is the negative of the flow in the reverse direction. The flow
conservation constraint says that the total net flow out of any vertex other than the source and sink is zero.
The value of the flow is defined as

fl= )

vevV

In other words, it is the net flow out of the source. In the maximum-flow problem, the objective is to find
a flow function that satisfies the three constraints and also maximizes the total flow value |f].

Remark 5.3

This formulation of the network flow problem is powerful enough to capture generalizations where
there are many sources and sinks (single commodity flow) and where both vertices and edges have
capacity constraints.

First, the notion of cuts is defined, and the max-flow min-cut theorem is introduced. Then, residual
networks, layered networks, and the concept of blocking flows are introduced. Finally, an efficient algo-
rithm for finding a blocking flow is described.

An s—t cut of the graph is a partitioning of the vertex set V into two sets S and T'= V — S such that
se€ Sand t e T If fis a flow, then the net flow across the cut is defined as f (S, T). The capacity of the cut

is similarly defined as ¢(S,T) = 2 2 c(x,y). The net flow across a cut may include negative net
xeX yeY

flows between vertices, but the capacity of the cut includes only nonnegative values, that is, only the
capacities of edges from Sto T.
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Using the flow conservation principle, it can be shown that the net flow across an st cut is exactly
the flow value |f|. By the capacity constraint, the flow across the cut cannot exceed the capacity
of the cut. Thus, the value of the maximum flow is no greater than the capacity of a minimum s-t
cut. The well-known max-flow min-cut theorem (Elias et al. 1956, Ford and Fulkerson 1962) proves
that the two numbers are actually equal. In other words, if /* is a maximum flow, then there is some
cut (X, X) such that |f*| = ¢(X, X). The reader is referred to Cormen et al. (2001) and Tarjan (1983)
for further details.

The residual capacity of a flow f is defined to be a function on vertex pairs given by ¢'(v, w) =
c(v, w) — f(v, w). The residual capacity of an edge (v, w), ¢'(v, w), is the number of additional units of
flow that can be pushed from v to w without violating the capacity constraints. An edge e is satu-
rated if c(e) = f(e), that is, if its residual capacity, c¢’(e), is zero. The residual graph Gg(f) for a flow f
is the graph with vertex set V; source and sink s and ¢, respectively, and those edges (v, w) for which
c'(v, w) >0.

An augmenting path for fis a path P from s to t in Gi(f). The residual capacity of P, denoted by ¢'(P),
is the minimum value of ¢’(v, w) over all edges (v, w) in the path P. The flow can be increased by ¢'(P), by
increasing the flow on each edge of P by this amount. Whenever f(v, w) is changed, f(w, v) is also corre-
spondingly changed to maintain skew symmetry.

Most flow algorithms are based on the concept of augmenting paths pioneered by Ford and Fulkerson
(1956). They start with an initial zero flow and augment the flow in stages. In each stage, a residual
graph G(f) with respect to the current flow function fis constructed and an augmenting path in G,(f)
is found to increase the value of the flow. Flow is increased along this path until an edge in this path is
saturated. The algorithms iteratively keep increasing the flow until there are no more augmenting paths
in Gg(f) and return the final flow fas their output.

The following lemma is fundamental in understanding the basic strategy behind these algorithms.

Lemma 5.2

Let fbe any flow and f* a maximum flow in G, and let Gy(f) be the residual graph for f. The value of a
maximum flow in Gy(f) is [f*] - | f]-

Proof Let ' be any flow in Gi(f). Define f + f' to be the flow defined by the flow function f(v, w) +
f'(v, w) for each edge (v, w). Observe that f + f' is a feasible flow in G of value [f]| + |f'|. Since ™ is the
maximum flow possible in G, |f'| < |f*| - |f|- Similarly define /* — f to be a flow in G(f) defined by
f*(v, w) = f(v, w) in each edge (v, w), and this is a feasible flow in Gi(f) of value |f*| — |f], and it is a
maximum flow in Gp(f).

Blocking flow: A flow fis a blocking flow if every path in G from s to ¢ contains a saturated edge.

It is important to note that a blocking flow is not necessarily a maximum flow. There may be augment-
ing paths that increase the flow on some edges and decrease the flow on other edges (by increasing the
flow in the reverse direction).

Layered networks: Let Gy(f) be the residual graph with respect to a flow f. The level of a vertex v is
the length of a shortest path (using the least number of edges) from s to v in G,(f). The level graph L
for fis the subgraph of Gy(f) containing vertices reachable from s and only the edges (v, w) such that
dist(s, w) = 1 + dist(s, v). L contains all shortest-length augmenting paths and can be constructed in
O(|E|) time.

The maximum-flow algorithm proposed by Dinitz (1970) starts with the zero flow and iteratively
increases the flow by augmenting it with a blocking flow in G,(f) until  is not reachable from s in G,(f).
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At each step, the current flow is replaced by the sum of the current flow and the blocking flow. Since in
each iteration the shortest distance from s to ¢ in the residual graph increases, and the shortest path from
s to tis at most |V| — 1, this gives an upper bound on the number of iterations of the algorithm.

An algorithm to find a blocking flow that runs in O|V|? time is described here, and this yields an
O(|V]?) max-flow algorithm. There are a number of O(|V]?) blocking flow algorithms available (Karzanov
1974, Malhotra et al. 1978, Tarjan 1983), some of which are described in detail in Tarjan (1983).

5.7.9 Blocking Flows

Dinitz’s algorithm to find a blocking flow runs in O(|V||E|) time (Dinitz 1970). The main step is to find
paths from the source to the sink and saturate them by pushing as much flow as possible on these paths.
Every time the flow is increased by pushing more flow along an augmenting path, one of the edges on
this path becomes saturated. It takes O(|V]) time to compute the amount of flow that can be pushed on
the path. Since there are |E| edges, this yields an upper bound of O(|V||E|) steps on the running time of
the algorithm.

Malhotra-Kumar-Maheshwari Blocking Flow Algorithm. The algorithm has a current flow function f
and its corresponding residual graph G(f). Define for each node v € Gi(f), a quantity tp[v] that speci-
fies its maximum throughput, that is, either the sum of the capacities of the incoming arcs or the sum of
the capacities of the outgoing arcs, whichever is smaller. tp[v] represents the maximum flow that could
pass through v in any feasible blocking flow in the residual graph. Vertices for which the throughput is
zero are deleted from Gg(f).

The algorithm selects a vertex u for which its throughput is a minimum among all vertices with
nonzero throughput. It then greedily pushes a flow of tp[u] from u toward ¢, level by level in the layered
residual graph. This can be done by creating a queue, which initially contains u and which is assigned
the task of pushing tp[u] out of it. In each step, the vertex v at the front of the queue is removed and the
arcs going out of v are scanned one at a time, and as much flow as possible is pushed out of them until
v’s allocated flow has been pushed out. For each arc (v, w) that the algorithm pushed flow through, it
updates the residual capacity of the arc (v, w) and places w on a queue (if it is not already there) and incre-
ments the net incoming flow into w. Also, tp[v] is reduced by the amount of flow that was sent through
it now. The flow finally reaches ¢, and the algorithm never comes across a vertex that has incoming flow
that exceeds its outgoing capacity since u was chosen as a vertex with the smallest throughput. The
preceding idea is again repeated to pull a flow of tp[u] from the source s to u. Combining the two steps
yields a flow of ¢p[u] from s to ¢ in the residual network that goes through u. The flow fis augmented
by this amount. Vertex u is deleted from the residual graph, along with any other vertices that have
zero throughput.

This procedure is repeated until all vertices are deleted from the residual graph. The algorithm has
a blocking flow at this stage since at least one vertex is saturated in every path from s to t. In the algo-
rithm, whenever an edge is saturated, it may be deleted from the residual graph. Since the algorithm
uses a greedy strategy to send flows, at most O(|E|) time is spent when an edge is saturated. When find-
ing flow paths to push tp[u], there are at most n times, one each per vertex, when the algorithm pushes
a flow that does not saturate the corresponding edge. After this step, u is deleted from the residual
graph. Hence, in O(|E| + |V|?) = O(|V]?) steps, the algorithm to compute blocking flows terminates.

Goldberg and Tarjan (1988) proposed a preflow push method that runs in O(|V||E|log|V|*/|E|) time
without explicitly finding a blocking flow at each step.

5.7.10 Applications of Network Flow

There are numerous applications of the maximum-flow algorithm in scheduling problems of various
kinds. See Ahuja et al. (1993) for further details.
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5.8 Tour and Traversal Problems

There are many applications for finding certain kinds of paths and tours in graphs. We briefly discuss
some of the basic problems.

The traveling salesman problem (TSP) is that of finding a shortest tour that visits all of the vertices in
a given graph with weights on the edges. It has received considerable attention in the literature (Lawler
et al. 1985). The problem is known to be computationally intractable (NP-hard). Several heuristics are
known to solve practical instances. Considerable progress has also been made for finding optimal solu-
tions for graphs with a few thousand vertices.

One of the first graph-theoretic problems to be studied, the Euler tour problem, asks for the existence
of a closed walk in a given connected graph that traverses each edge exactly once. Euler proved that
such a closed walk exists if and only if each vertex has even degree (Gibbons 1985). Such a graph is
known as an Eulerian graph. Given an Eulerian graph, an Euler tour in it can be computed using DFS
in linear time. Given an edge-weighted graph, the Chinese postman problem is that of finding a shortest
closed walk that traverses each edge at least once. Although the problem sounds very similar to the TSP
problem, it can be solved optimally in polynomial time by reducing it to the matching problem (Ahuja
etal. 1993).

Key Terms

Assignment problem: That of finding a perfect matching of maximum (or minimum) total weight.

Augmenting path: An alternating path that can be used to augment (increase) the size of a matching.

Biconnected graph: A graph that cannot be disconnected by the removal of any single vertex.

Bipartite graph: A graph in which the vertex set can be partitioned into two sets X and Y, such that each
edge connects a node in X with anode in Y.

Blocking flow: A flow function in which any directed path from s to t contains a saturated edge.

Branching: A spanning tree in a rooted graph, such that the root has a path to each vertex.

Chinese postman problem: Asks for a minimum length tour that traverses each edge at least once.

Connected: A graph in which there is a path between each pair of vertices.

Cycle: A path in which the start and end vertices of the path are identical.

Degree: The number of edges incident to a vertex in a graph.

DFS forest: A rooted forest formed by DFS.

Directed acyclic graph: A directed graph with no cycles.

Eulerian graph: A graph that has an Euler tour.

Euler tour problem: Asks for a traversal of the edges that visits each edge exactly once.

Forest: An acyclic graph.

Leaves: Vertices of degree one in a tree.

Matching: A subset of edges that do not share a common vertex.

Minimum spanning tree: A spanning tree of minimum total weight.

Network flow: An assignment of flow values to the edges of a graph that satisfies flow conservation, skew
symmetry, and capacity constraints.

Path: An ordered list of edges such that any two consecutive edges are incident to a common vertex.

Perfect matching: A matching in which every node is matched by an edge to another node.

Sparse graph: A graph in which |E| < |V]2.

s—t cut: A partitioning of the vertex set into S and T'such thatse Sandte T.

Strongly connected: A directed graph in which there is a directed path in each direction between each
pair of vertices.

Topological order: A linear ordering of the edges of a DAG such that every edge in the graph goes from
left to right.
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Traveling salesman problem: Asks for a minimum length tour of a graph that visits all of the vertices
exactly once.

Tree: An acyclic graph with |V| - 1 edges.

Walk: An ordered sequence of edges (in which edges could repeat) such that any two consecutive edges
are incident to a common vertex.
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Further Information

The area of graph algorithms continues to be a very active field of research. There are several journals
and conferences that discuss advances in the field. Here, we name a partial list of some of the impor-
tant meetings: ACM Symposium on Theory of Computing, IEEE Conference on Foundations of Computer
Science, ACM-SIAM Symposium on Discrete Algorithms, the International Colloquium on Automata,
Languages and Programming, and the European Symposium on Algorithms. There are many other
regional algorithms/theory conferences that carry research papers on graph algorithms. The journals
that carry articles on current research in graph algorithms are the Journal of the ACM, SIAM Journal
on Computing, SIAM Journal on Discrete Mathematics, Journal of Algorithms, Algorithmica, Journal
of Computer and System Sciences, Information and Computation, Information Processing Letters, and
Theoretical Computer Science.

To find more details about some of the graph algorithms described in this chapter, we refer the reader
to the books by Cormen et al. (2001), Even (1979), and Tarjan (1983). For network flows and matching,
a more detailed survey regarding various approaches can be found in Tarjan (1983). Papadimitriou and
Steiglitz (1982) discuss the solution of many combinatorial optimization problems using a primal-dual
framework.

Current research on graph algorithms focuses on approximation algorithms (Hochbaum 1996),
dynamic algorithms, and in the area of graph layout and drawing (DiBattista et al. 1994).
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6.1 Introduction

Computational geometry is the branch of algorithms research that deals with problems that are geo-
metric in nature. Its goal is to develop algorithms that are always correct and efficient. Theoretically,
efficiency refers to the scaling behavior of an algorithm when the input size gets larger and larger.
Furthermore, we are interested in worst-case analysis, where an upper bound on the scaling behavior is
to be determined irrespective of the specific input values. The basic problem of sorting a set of values can
be seen as a one-dimensional problem. Although computational geometry includes one-dimensional
problems, its emphasis is on two-, three-, and higher-dimensional problems. In most cases, the dimen-
sion is constant.

Typical geometric objects involved in geometric computations are sets of points, line segments, lines
or hyperplanes, sets of circles or spheres, sets of triangles or simplices, or simple polygons or polyhedra.
Relationships between these objects include distances, intersections, and angles.

Geometric problems that require computation show up in many different application areas. In robot
motion planning, a path must be determined that avoids walls and other obstacles. In automated cartog-
raphy, text labels must be placed on a map next to the corresponding feature without overlapping other
labels or other important map information. In data analysis, clusters of objects from a collection must be
formed using similarity measures that involve distance in some space. To form a complex between two
proteins, a good local geometric fit is required. The list of examples of such questions where geometric
computations on data are necessary is endless.

6-1
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6.1.1 Basic Algorithmic Problems

To get a quick feel of which problems belong to computational geometry, we list a number of these prob-
lems in this section; see also Figure 6.1.

Convex hull: Given a set P of n points in the plane or d-dimensional space, compute a representation
of the boundary of the minimum convex set that contains these points.

Convex hull Voronoi diagram
f x=y x=y ; ;‘
Arrangement to lines Linear programming
.
.
. .
.
.
7 . . .
.
. .
Line segment intersection reporting Delaunay triangulation
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Shortest path Polygon triangulation
V={1,2,3,4,5,6} 2 1
E={(1,2),(1,3)
(3,5), (4,5)
(1,6), (5,6) 4 5
Polygon guarding Graph embedding

FIGURE 6.1 Ten basic problems in computational geometry. To the left the input is shown in black, and to the
right the computed output is shown in black.
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This problem can be solved in O(n log n) time when d = 2 [6,38,56,86] or d = 3 [35,38,86], and in
O(n'?2l) time when d > 4 [24].

Voronoi diagram: Given a set P of n points in the plane or d-dimensional space, compute a subdivision
into cells so that any single cell represents exactly that part of the space where a single point is closest,
among the points in P.

This problem can be solved in O(n log ) time when d = 2 [38,50,95], and in O(n/*?1) time when
d >31[22,3594].

Arrangement of hyperplanes: Given a set H of n hyperplanes in d-dimensional space (lines in
the plane, planes in three-dimensional space, etc.), compute a representation of the subdivision
they induce.

This problem can be solved in O(n?) time [42,43].

Linear programming: Given a set H of n half-spaces in d-dimensional space and a linear function
in the d coordinates, determine if the common intersection of the half-spaces of H is nonempty, and
if so, determine a point that minimizes the linear function or report that arbitrarily low values can
be realized.

This problem can be solved in O(n) time [34,76,94] when d is a constant.

Intersection reporting: Given a set of n objects (line segments, rectangles, circles) in the plane, report
every intersection point or every pair of intersecting objects.

This problem can be solved in O(n log n + k) time, where k is the number of pairs of intersecting
objects [25,35,79].

Delaunay triangulation: Given a set P of n points in the plane or d-dimensional space, compute a
maximal subdivision into triangles (simplices) whose vertices come from P such that no two triangles
(simplices) intersect in their interior and the circumcircle of each triangle (circumsphere of each sim-
plex) does not have any points of P in its interior.

This problem can be solved in O(n log n) time when d = 2 [38,50,95], and in O(n/*?1) time when
d >31[22,3594].

Shortest path: Given a set P of disjoint polygons in the plane with n vertices in total and two points s
and ¢, determine a shortest path between s and ¢ that does not intersect the interior of any polygon of P
or report that none exists.

This problem can be solved in O(n log #) time [63]. The three-dimensional version is NP-hard [19].

Polygon triangulation: Given a simple polygon P with n vertices, partition its interior into triangles
using edges that connect pairs of vertices, lie inside the polygon, and do not mutually intersect.

This problem can be solved in O(n) time [23], although a much simpler algorithm exists that is only
slightly less efficient [93]. The three-dimensional problem is tetrahedralizing a simple polyhedron. Not
all simple polyhedra can be tetrahedralized without using extra vertices, and as many as Q(n?) of these
may be necessary for some polyhedra [21].

Polygon guarding: Given a simple polygon P with n vertices, determine a minimume-size set S of points
such that any point in the interior of P can be connected to at least one point of P with a line segment
that does not intersect the exterior of P.

No polynomial-time algorithm for this problem is known. The Art Gallery Theorem states that |n/3|
point guards are always sufficient and sometimes necessary [32,82].

Graph embedding: Given a graph G = (V; E), compute an embedding in the plane by assigning coordi-
nates to each vertex, such that no two vertices have the same location, no edge has a vertex in its interior,
and no pair of edges intersect in their interiors, or decide that this is not possible.

This problem can be solved in O(n) time, where # is the size of the graph [12,39]. The vertices can be
placed on an integer grid of size 2n — 4 by n — 2.

The problems listed in the preceding text are all of the single computation type. Within computa-
tional geometry, geometric data structures have also been developed. These structures are either used
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to represent a subdivision of the plane or higher-dimensional space or to allow efficient query answer-
ing. A common data structure of the former type is the doubly-connected edge list [38,78]. It records
incidences of edges with vertices, faces, and other edges in a pointer-based structure, and allows easy
traversal of the boundary of a face or the edges incident to some vertex. In higher dimensions we can
store facets of all dimensionalities and the incidences among them [17,40].

We list a few basic data structuring problems for efficient query answering. The most important
properties of the structures are the amount of storage they require and the time needed to answer
a query.

Planar point location: Given a planar subdivision S represented by n vertices and edges, where each
face has a label, store S in a data structure so that the following type of query can be answered efficiently:
for a query point p, report the label of the face that contains p.

This problem can be solved with a data structure that uses O(n) storage and answers queries in
O(log n) time [37,41,66,79,91].

Orthogonal range searching: Given a set P of n points in the plane, store them in a data structure so
that the following type of query can be answered efficiently: for an axis-aligned query rectangle, report
all points of P that lie inside it.

This problem can be solved with a kd-tree, which requires O(n) storage and can answer queries in
O(\/; + k) time, where k is the number of points reported [13]. The range tree requires O(n log n) storage
and answers queries in O(log n + k) time [72,109].

The d-dimensional version of the problem is solved by a kd-tree with O(n) storage and query time
O(nlf% +k), and by a range tree with O(n log?™! n) storage and O(log? n + k) query time.

Simplex range searching: Given a set P of n points in the plane or d-dimensional space, store them in
a data structure so that the following type of query can be answered efficiently: for a query triangle or
simplex, report all points of P that lie inside it.

This problem can be solved with O(n) storage and query time O(\/E +k) [73]. Alternatively, it can be
solved with O(n“) storage and query time O(log*! n + k) [73].

Algorithms for many of the problems listed in the preceding text and their running time analyses can
be found in textbooks in the area of computational geometry [38,83,87]. Many more results and refer-
ences can be found in the Handbook of Discrete and Computational Geometry [54].

6.1.2 Brief Historical Overview

There are examples of geometric algorithms developed before the 1970s, but it was in the 1970s when
most of the basic geometric problems were solved in an algorithmically efficient manner. This is true for
many of the problems just listed, although some, like the shortest path problem, defied an efficient solu-
tion until the 1990s. In 1985 the first textbook on computational geometry was published, and that same
year the annual ACM Symposium on Computational Geometry was held for the first time. It was realized
early that implementing geometric algorithms is highly nontrivial, since robust computation tends to be
much harder than for graph algorithms, for example, or for one-dimensional problems. Another early
realization was that efficiency analyses of geometric algorithms often depend on combinatorial results
in geometry. For this reason, combinatorial geometry has always been considered an integral part of
computational geometry.

While the range of geometric problems under consideration continues to expand to this day, much
effort has also been directed to putting the theory to use in the application areas. Researchers from
computational geometry have contributed to areas like computer graphics, motion planning, pattern
recognition, and geographic information systems (GISs) for a long time now. Involvement in three-
dimensional reconstruction and computational biology are of a more recent date, where the recent trend
toward computational topology has played an important role.



Computational Geometry 6-5

6.2 Underlying Principles

Computational geometry revolves around approaches to develop geometric algorithms, analysis of
these algorithms in computational models, optimization of geometric problems, and applications and
software development. In this section, we treat the first three aspects; applications and software develop-
ment follow in the next section.

6.2.1 Algorithmic Approaches

Several algorithmic approaches used in computational geometry are also standard approaches in other
algorithmic areas. For example, incremental algorithms, divide-and-conquer algorithms, brute-force
algorithms, greedy algorithms, randomized algorithms, and dynamic programming are all used to
solve geometric problems.

6.2.1.1 Plane-Sweep Algorithms

One very important and typically geometric algorithmic approach is plane sweep. It is an incremental
approach, but one with a specific structure that we explain next.

A plane-sweep algorithm takes a set of objects in the plane as its input. The idea is to use an imagi-
nary line—the sweep line—that moves over all objects in the plane and computes whatever is necessary
when it reaches special situations. For example, the sweep line could be a horizontal line that starts
above all objects and moves downward until it is below all objects. The sweep line stops only at certain
positions (y-coordinates) where something of interest happens. These positions are called events. At the
same time, the algorithm must maintain certain essential information to be able to generate the desired
output. This information changes with the position of the sweep line and is called the status (Figure 6.2).

In the example of computing the intersecting pairs among a set of line segments in the plane, the
events occur when the sweep line starts to intersect a line segment (at the y-coordinate of its upper
endpoint), when the sweep line stops intersecting a line segment (at the y-coordinate of its lower
endpoint), and when two line segments intersect (at the y-coordinate of the intersection point). In
a plane-sweep algorithm the sweep line moves only in one direction, so the events will occur in the
order of decreasing y-coordinate. Note that the events coming from line segment endpoints can be
obtained easily from the input, but the events coming from intersection points are not known yet.
In fact, the whole purpose of the algorithm is to determine these intersection points (and report the
intersecting pairs).

S1
° // 4 /f
N\ [/ ° /52
N— -
) S s 7
4 S3

FIGURE 6.2 Plane-sweep algorithm. Positions where the sweep line has stopped are shown in gray. If the current
position is the gray, bold line, then the status is (s,, s}, 53, S5, 5,), and s; will be deleted at this event. Also, s, and s,
become horizontally adjacent; their intersection is detected and inserted in the event structure.
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The status is the situation at the current position of the sweep line. For our example, it is the set of line
segments that intersect the sweep line, ordered from left to right. Observe that the status changes exactly
at the events that we just listed.

The events and the status are each stored in a suitable data structure. In our example we use balanced
binary search trees. The event structure stores the (known) events by y-coordinate in the tree. The sta-
tus structure stores the intersected line segments by x-coordinate (valid for the current position of the
sweep line) in the tree. Initially, the status structure is empty because the sweep line starts above all line
segments. The event structure is initialized with all endpoints of the line segments.

The core of a plane-sweep algorithm is the handling of the events. This is where the algorithm actually
does its work. The imaginary sweep line jumps from event to event and handles each one by updating
the status, detecting new events that were not known yet, and generating output.

We must detect intersection point events before the sweep line reaches them. As soon as the algo-
rithm finds out that two line segments will intersect later, the event can be inserted in the event struc-
ture. The basic idea that makes the algorithm work is the following: before two line segments can
intersect, they must become horizontally adjacent first. Two line segments can become horizontally
adjacent only at other, higher events (recall that the sweep line goes from top to bottom). So during
the handling of any event, we also check if there are new horizontal adjacencies caused by that event, if
the involved line segments intersect below the sweep line, and if so, insert the intersection point in the
event structure.

The scheme described in the preceding text solves the line segment intersection reporting problem
by a sequence of binary search tree operations and geometric tests. Any event is handled by a small,
constant number of binary search tree operations. If the input consists of n line segments and there
are k intersecting pairs that will be reported, then the algorithm runs in O((n + k) log n) time, because
there are O(n + k) events [14]. Unless there are many intersecting pairs, this compares favorably with the
brute-force approach of testing each pair for intersection (taking O(n?) time).

Plane-sweep algorithms have been developed for computing Voronoi diagrams, Delaunay triangula-
tions, the area of the union of a set of axis-parallel rectangles, as a step in simple polygon triangulation,
and many other problems. The three-dimensional version, space sweep with a sweep plane, also exists.

6.2.1.2 Randomized Incremental Construction

Another well-known technique is randomized incremental construction. We illustrate this technique by
two-dimensional linear programming: Given a set of n half-planes in the plane, determine a point in the
common intersection of these half-planes with the lowest y-coordinate, if such a point exists. There are
two reasons why such a point would not exist. Firstly, the common intersection of the half-planes may
be empty. Secondly, points with arbitrarily low y-coordinates may exist in the common intersection: we
say that the linear program is unbounded.

To initialize, we find two half-planes bounded from below such that the intersection point of their
bounding lines is the solution to the linear program consisting of these two half-planes only. A straight-
forward scan over the half-planes achieves this. If no two half-planes exist with this property, there is no
solution to the linear program. Otherwise, we proceed by putting all other n — 2 half-planes in random
order and handling them one-by-one in this order. We always maintain the solution to the half-planes
handled so far, which is some point p in the plane.

To handle the next half-plane, we test whether p lies inside this half-plane. If so, then p is the solution
to the linear program with one more half-plane and we simply proceed with the next half-plane. If not,
then we must find a new solution p’ or decide that no solution exists. We can argue that if a solution
exists, then it must lie on the line bounding the half-plane that we are handling. Hence, we can search
for p’ on this line, which is a one-dimensional problem that can be solved by considering all previously
handled half-planes once more.

The algorithm outlined earlier takes O(n) expected time in the worst case. “Worst case” refers to
the fact that the time holds for any set of half-planes. “Expected” refers to the fact that the time bound
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depends on the random choices made during the algorithm execution. If these choices are unlucky, then
the algorithm may take quadratic time, but this is very unlikely.

The argument to prove the running time bound is as follows. We observe that if the next half-plane
contains p, then this half-plane is handled in O(1) time, but if it does not, then this half-plane is handled
in time proportional to the number of half-planes that have been handled before. Suppose we are con-
sidering the ith half-plane. We ask ourselves what the probability is that it does not contain point p.
This probability is the same as the following: after adding the ith half-plane we may have a solution p’,
what is the probability that p’ is no longer the solution when we remove a random half-plane from the
i — 2 half-planes (the two initial half-planes were not put in random order so we cannot remove them).
This probability is at most 2/(i — 2), which can be shown by studying a few geometric situations. If the
probability of the expensive case, requiring us to do O(i) work, is at most 2/(i — 2), then the expected
time for handling the ith half-plane is O(1). In short, every one of the n — 2 half-planes that is handled
requires O(1) expected time, so O(n) time is expected to be used overall. This argument is called back-
ward analysis [94].

Other geometric problems that can be solved efficiently with randomized incremental construction
include computing the smallest enclosing disk, Voronoi diagram, Delaunay triangulation, convex hull,
constructing a planar point location structure, deciding on red-blue point set separability, and many
more [54,79,107].

6.2.1.3 Using Data Structures

Many computational-geometry problems can be solved by using data structures and querying them. As
an example, we study the problem of computing the Hausdorff distance between a set R of  red points
and a set B of n blue points in the plane.

The Hausdorff distance H(R, B) between sets R and B is defined as follows:

H(R, B) = max{max(mind(r, b)), max(mind(b, r))}.
reR  beB beB reR

Intuitively, it is the maximum among all closest point distances from one set to the other or vice
versa. The Hausdorff distance is used as a similarity measure between two point sets or simple
polygons.

An algorithm to compute the Hausdorff distance between R and B is easy to describe, using the
results given before. We first build the Voronoi diagram of R and preprocess it for efficient planar point
location. Then we query with each point of B to find the closest point of R, and keep the maximum of
these distances. Then we do the same but with the roles of R and B reversed. The overall maximum is
the Hausdorff distance.

It takes O(n log n) time to build the Voronoi diagram of a set of n points. The Voronoi diagram
consists of O(n) line segments, and preprocessing it for planar point location takes O(n log n) time as
well. We query with each point of the other set, taking n times O(log n) time. So this is O(n log n) total
query time as well. Hence, we can compute the Hausdorff distance of two sets of n points in the plane
in O(n log n) time.

6.2.1.4 Dynamic Programming

Dynamic programming is an important algorithmic technique for optimization problems. It can often
be used if the problem has the optimal substructure property: an optimal solution of any subproblem
is composed of optimal solutions to smaller subproblems. We discuss the problem of triangulating a
simple polygon with minimum total edge length [67].

Let P be a simple polygon with vertices v, ..., v,_, listed clockwise. We make a table T of size n x n
with an entry for each ordered pair (v, v;) of vertices. This entry will store (i) whether v,v; is interior to

P and does not intersect any of its edges. If the answer is yes we mark the pair vaLID and we also store
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FIGURE 6.3 To compute L,, there are four valid choices for v,. The optimal choice of v, and the optimal triangula-

ij
tion to the left of v;; are shown to the right.

(ii) how many vertices N, the subpolygon of P bounded by v;v; and to the left of v;¥}, has, and (iii) the
minimum total edge length L; required to triangulate this subpolygon, excluding v,v;.

For the pairs (v;, vj) where j =i+ 1 (mod n) we also mark them vALID with N;=2 and L;=0. For the
pairs (v, v;) where j =i + 1 (mod n) we also mark them vaLID with N;; = n and initially we set L;; = +co.
At the end of the algorithm, all such L;; will contain the total edge length of the optimal triangulation.

The first and second pieces of information can be precomputed easily in O(n®) time overall, for all
O(n?) pairs. The third piece is initialized to +co. Next we sort the ordered pairs by the value of (ii) in
increasing order, ties broken arbitrarily. We treat the ones with N;; > 2 only.

We iterate over all pairs of edges in the sorted order. Suppose we are treating a pair (v, v)), see
Figure 6.3.

L; =1r?ki<ri{Lik +Lk]~+||ﬁ||+||17vj|||(vi,vk)and (v, v;) are valid and N, Ny < Nj;}.

The recurrence above defines the optimal substructure that polygon triangulation with minimum total
edge length has. If (v;, v)) is valid, then there must be a triangle in the triangulation to the left of v;;. The
recurrence optimizes over all choices of such triangles and selects the one that yields a minimum total
edge length. If this triangle is Av,v;v, then the optimal triangulation of the polygon left of viv; always
uses optimal triangulations of the polygons left of v;vy and v;v;, and these are polygons with fewer
vertices.

The algorithm essentially fills in the L-values of the table T'in the order of increasing N;;.. To determine
L;; we simply read for each k the information in the entries for pairs (v;, v) and (v, v) in table T. The
optimal triangulation length can be found in any L; where j =i + 1 (mod n).

Filling one entry takes O(n) time, and hence the whole algorithm takes O(n®) time.

Other applications of dynamic programming in geometric algorithms include optimization or
approximation for label placement, packing and covering, simplification, and matching.

6.2.1.5 Other Algorithmic Techniques in Computational Geometry

There are several other techniques that can be employed to develop algorithms for geometric prob-
lems. These include random sampling, prune-and-search, divide-and-conquer, and parametric
search. Other techniques of importance are geometric transformations to relate problems to other
problems. These include geometric duality, inversion, and Pliicker coordinates. For geometric data
structures, the technique of fractional cascading can help to make queries more efficient [26,27],
while the topics of dynamization [30,31,84] and kinetic data structures [60,101] are also important
research areas.
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6.2.2 Complexity
6.2.2.1 Machine Model

The standard model of computation assumed in computational geometry is the real RAM. In the real
RAM model, a real number can be stored in O(1) storage space, and any basic operation or analytic
function can be applied to real numbers in O(1) time. Obviously, we can evaluate a polynomial for any
real value in O(1) time only if the polynomial has constant degree.

Since algorithms that handle large amounts of data are typically slowed down by disk accesses, the
I/0 complexity model may sometimes be more appropriate [3,106].

6.2.2.2 Hardness and Reductions

Hardness of a computational problem refers to the (im)possibility of solving that problem efficiently or
solving it at all. Hardness results may be lower bounds on the time complexity to solve a problem. These
can be proved directly in a model of computation or obtained using a reduction from another problem
for which a lower bound is already known. It is essential to specify the model of computation in which a
lower bound holds. Many models do not allow rounding of reals to the nearest integer, for example, and
algorithms that make use of rounding can be more efficient than what a lower bound claims is possible
(in a model without rounding).

Lower bounds on the time complexity of computational problems can be proved using algebraic
decision trees [88,89]. Branches of such a tree represent comparisons that an algorithm might make
based on the input. The longest path in a decision tree corresponds to the worst-case running time of
an algorithm. Therefore, a lower bound on the depth of a decision tree for any algorithm that solves a
problem is a lower bound for that problem in the decision tree model. Algebraic decision trees give an
Q(n log n)-time lower bound for the very basic one-dimensional problem of deciding whether a set of real
numbers has two elements that are the same.

A two-dimensional problem that has an Q(n?)-time lower bound is the following [48]: Given a set of
n points in the plane, are there three of them that lie on a line? In higher dimensions, the problem of
deciding whether a set of n points contains a subset of d + 1 points that lie on a common hyperplane has
a lower bound of Q(n%) time.

Another type of hardness is referred to as numerical nonrobustness. Let P be a set of n points in the
plane. To solve the facility location problem of computing a point that minimizes the sum of distances
to the points of P, we must minimize an expression that is the sum of #n terms with square roots. This is
not possible in the usual model of computation, and hence we can only approximate the solution [10,16].
If we were interested in minimizing the sum of squared distances, then it would have been easy to
compute the optimal location: its coordinates are the mean x and mean y values of the input point set P.

A number of geometric optimization problems are NP-hard. Some well-known examples are
Euclidean traveling salesperson in the plane [53], Euclidean minimum Steiner tree in the plane [53],
minimum-weight triangulation of a planar point set [80], and shortest path in three-dimensional space
amid tetrahedra [19]. There are many more examples. Proofs of NP-hardness may use reductions from
any of the known NP-hard problems. It turns out that PLANAR 3-sAT is one of the more useful problems
to reduce from. PLANAR 3-sAT is a special case of the satisfiability problem where a formula has three
literals per clause, and the bipartite graph that has a node for every variable and for every clause, and an
edge between them if the variable occurs in the clause, is planar. See Figure 6.4.

Reductions from other problems establish that a geometric problem is at least as hard. For example,
the sorting problem can be reduced to planar convex hull computation, and hence any algorithm must
take Q(n log n) time to compute a planar convex hull in the algebraic decision tree model [110]. The
3sumM-problem is the problem of deciding, for a given set of n integers, whether it contains three elements
that sum up to zero. No algorithm is known for 3sum that is more efficient than quadratic time. It turns
out that many geometric problems can be used to solve 3sum—in other words, a reduction from 3sum
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FIGURE 6.4 Planar layout of the 3-sAT expression (x; V X, V x;) A (X, V X, V x5) A (X, V X5 V Xg) A (X, V X3 V X).

to such geometric problems exists—and therefore these geometric problems are unlikely to be solvable
more efficiently than in quadratic time [52]. Examples of such problems include deciding whether a pla-
nar point set contains three points that are collinear, deciding whether a line segment can be moved with
translations and rotations to a given position without colliding with obstacles, and deciding whether a
set of triangles in three-dimensional space occludes another triangle for a given viewpoint [52].

6.2.2.3 Realistic Input Models

It is possible that the union of a set of n triangles in the plane has descriptive complexity ©(n?); see
Figure 6.5. Therefore, any algorithm that computes the union of n triangles must take at least quadratic
time because it may have to report a shape of quadratic complexity. Now consider the problem of decid-
ing whether a set of n triangles in the plane cover the unit square [0:1] x [0:1] completely. This problem
has constant output size (yes or no), but still all known algorithms take quadratic time or more. The
problem is as difficult as 3sum [52].

In practice, however, unions of # triangles hardly ever have quadratic complexity. It is known that if
there is some constant a > 0, and all triangles have their three angles at least «, then the union complex-
ity cannot be quadratic but always is O(n log log 1) [75]. Such triangles are called fat. The problem of
deciding whether n fat triangles cover the unit square can be solved much faster than quadratic time. We
have made an assumption on the input that (possibly) corresponds to real-world situations and stated
a worst-case running time that is valid if the assumption holds. Such an assumption is called a realistic
input model.

Other realistic input models may refer to relative sizes of the objects in the input. We could assume,
for example, that a constant ¢ > 0 exists so that the largest diameter of an input object is no more than ¢
times the smallest diameter of an input object. Yet another realistic input model is the bounded spread
of a point set: the distance between the closest two points is at least f(n) times the diameter of the point
set, where f(n) is some function of n. With a packing argument, one can show that any d-dimensional
point set has spread Q(n'), so we cannot assume f(n) to be constant.

Realistic input models are important to explain the complexity of structures or running times of
problems in practice, since it is often different from the worst-case situation. For example, it is known
that a three-dimensional point set may have a Delaunay tetrahedrilization of size ®(n?), although
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FIGURE 6.5 The union of n triangles can have Q(n?) vertices and edges in its boundary.
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three-dimensional point sets that occur in practice often have a Delaunay tetrahedrilization of linear
size or slightly more. It has been shown that for three-dimensional point sets with spread O(n'?), the
Delaunay tetrahedrilization has size O(n) in the worst case [46,47].

6.2.3 Approximation

Geometric algorithms where optimization of a measure appears inefficient may be tackled using
approximation algorithms. This is the case for NP-hard problems, but approximation algorithms have
also been developed to improve on quadratic running times, or even to reduce O(n log n) time bounds
to linear.

An algorithm for a minimization problem A is a c-approximation algorithm for some ¢ > 1 if the
algorithm outputs a solution for any instance I whose value is at most ¢ times larger than the mini-
mum possible for instance I. For a maximization problem a c-approximation algorithm always gives
a solution that has value at least the maximum divided by c¢. Approximation algorithms occur in all
algorithms areas, but for geometric problems the proofs of approximation typically use geometric argu-
ments involving distances or areas (packing arguments).

A geometric setting often makes a problem easier to approximate. For example, consider traveling
salesperson on a graph and on a set of points in the plane. Both versions are NP-hard. Traveling sales-
person on a graph cannot be approximated within a constant factor in polynomial time (unless P = NP), but
for Euclidean traveling salesperson a simple O(n log n)-time 2-approximation algorithm exists (polynomial-
time approximation schemes exist as well [7,77]).

Similarly, when a graph is induced by a geometric configuration, approximation is often simpler
than on general graphs. The maximum independent set problem cannot be approximated within a
constant factor, while for a graph that is the intersection graph of a set of disks in the plane, a simple
5-approximation algorithm exists. The algorithm selects the smallest disk D and puts it into the inde-
pendent set, then removes all disks that intersect D and D itself from consideration, and then iterates
until no disks remain. The reason why this gives a 5-approximation is the following. The smallest disk
D can intersect many disks of the set, but it can intersect no more than five disks that mutually do not
intersect each other because these are at least as large as D, and the kissing number of disks implies this
fact. So we may have chosen one disk in the independent set while five were possible, but it cannot be
worse. The kissing number argument is an example of a packing argument.

Approximation can also be used to deal with numerical nonrobustness. For example, the facility loca-
tion problem of computing a point that minimizes the distance to the input points can be approximated
well: for any € > 0, one can compute a point in O(n) time whose sum of distances to the input points
is at most 1 + € times as large as the minimum possible [16]. The idea of this solution is to replace the
Euclidean distance by a different distance function that does not have algebraic hardness, and in which
all distances are within a factor 1 + € of the Euclidean distance (we use a polygonal convex distance
function).

When approximate solutions are allowed to certain queries, data structuring problems may have
much more efficient solutions. Two examples are approximate range searching and approximate nearest
neighbor searching. In approximate range searching, points that lie close to the boundary of the range
may or may not be reported, where “close” is related to the size of the range [8]. An approximate nearest
neighbor searching data structure may return a point that is a factor 1 + € further than the real nearest
neighbor [9].

6.2.4 Combinatorial Geometry

Combinatorial bounds relating to geometric situations can help to prove efficiency bounds on geometric
algorithms. For this reason, many combinatorial geometric results have been published in the area of
computational geometry. We discuss some of the main results.
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The number of faces of all dimensions in an arrangement of n hyperplanes in d-dimensional space is
©(n’) in the worst case. The total complexity of all faces incident to a single hyperplane in an arrange-
ment is O(n41), which is the most important result upon which the optimal algorithm to construct an
arrangement relies [43].

The convex hull of a set of # points in d-dimensional space obviously has at most n vertices, but the
total number of faces of all dimensions is O(nl¥/2l). This result is known as the Upper Bound Theorem.

The maximum complexity of a single cell in an arrangement of # line segments in the plane is ©(no())
in the worst case, where a(n) is the extremely slowly growing functional inverse of the Ackermann
function [59]. The upper bound proof makes use of Davenport-Schinzel sequences: an (n, s)-Davenport-
Schinzel sequence is a sequence of symbols from an alphabet of size n such that for any two symbols
a, b, there is no subsequence of the form ..., a, ..., b, ..., a, ..., b, ... (with symbols g and b alternating; in
total s + 2 symbols a or b), and no two equal symbols are adjacent. The concept is purely combinatorial,
but one can show that the total complexity of a face in an arrangement of line segments is bounded by
a function linear in the maximum length of an (1, 3)-Davenport-Schinzel sequence [97]. Since such a
sequence has length O(na(n)), the upper bound on the complexity of a face follows. The matching lower
bound is obtained by a clever construction [108].

The maximum number of ways to divide a set of n points in the plane by a line into a set of k points
and a set of n — k points is Q(n log k) and O(nk'”) in the worst case; the true bound is unknown (a slightly
better lower bound, Q(nzc‘/@), is known [102]). This is known as the k-set problem. The maximum
number of ways to separate at least one and at most k points, the (<k)-sets, is @(nk) in the worst case.

For a set of n points in the plane, each moving with constant speed along some line, the maximum
number of times the Voronoi diagram (or Delaunay triangulation) changes structurally is €(n?) and
O(n2m) [4].

6.2.5 Computational Topology

In topology, metric aspects of geometry like distances, angles, areas, and volumes are not relevant.
Computational topology deals with algorithms for problems relating to incidence structures and other
objects that are invariant under continuous deformations. It is often the combination of geometry and
topology that leads to new, practically relevant approaches.

As an example of such an approach, we consider a-complexes. Given a set of points in the plane, we
can imagine growing a disk centered on each point. At first the disks will not intersect, but when they
do we can imagine a subdivision inside the union of the disks that is the Voronoi diagram of the points.
For any radius of the disks we have such a subdivision, revealing more and more of the Voronoi diagram
(Figure 6.6).

We can define a structure dual to the Voronoi diagram inside the union of disks for any given radius
1/a.. This structure is the a-complex and consists of vertices, edges, and triangles. The vertices are sim-
ply the points of the set. Two vertices are connected by an edge in the a-complex if the union of disks

e

FIGURE 6.6 Two a-complexes for the same points but different values of a.
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contains a part of their bisector in the Voronoi diagram. Three vertices form a triangle in the a-complex
if their points define a Voronoi vertex in the union of the disks.

When the radius of the disks grows from 0 to e, the a-complex changes from the Delaunay trian-
gulation to a set of isolated points. At certain critical radii, new edges and new triangles appear in the
complex. The changes to the a-complex are topological, but they are induced by a geometric process.

The boundary of the a-complex—known as a-shape—is a simple and good shape descriptor for a set
of points that could have been samples from that shape. The radius of the disks corresponds to the level
of detail at which we regard the shape. A high level of detail can be realized only if the sampling density
is sufficiently high.

6.2.6 Robustness

Nonrobustness is caused by using fixed-precision numbers and computations when an algorithm designed
for the real RAM is implemented. It can cause an algorithm to produce a slightly incorrect value, but it can
also cause inconsistent results and program crashes. Geometric algorithms appear to be more susceptible
to nonrobustness than other algorithmic areas [112].

For example, when computing the Delaunay triangulation of a planar point set P, the most important
test is deciding whether the circle through three points p, g, r contains any other points of the set P,
because p, g, r define a Delaunay triangle if and only if this circle does not contain any other points. If P
contains four points p, g, 1, s that are nearly cocircular and the computation is not exact, then the test for
emptiness of the circle may return true for the triples (p, g, 7), (g, 1, 5), (1, s, p), and (s, p, g). This means that
the quadrilateral p, g, r, s is covered by two pairs of triangles that overlap, and the computed Delaunay
triangulation will not be a proper triangulation. It will not even be a planar graph. Other algorithms
that rely on the planarity of the Delaunay triangulation may crash due to this robustness problem.

One approach to obtain robustness is using fixed precision [55,57,61]. Points and other objects must
be represented using grid points with a fixed precision in some special way. For example, when snap-
rounding a set of line segments [62,85], their endpoints and intersections must all lie on the grid. Each
line segment becomes a polygonal line whose vertices lie on the grid. A caveat is that a geometric object
is moved or deformed.

Another approach is exact geometric computation [51,70,111]. Here a number may be represented
implicitly by constructs that use several numbers and operations like v/ . Any comparison that influ-
ences a branching decision in the algorithm must be exact. Since branching typically depends on com-
parisons using an inequality, we may achieve this by incrementally computing bits of the values on the
left-hand side and right-hand side of the inequality until we can evaluate the comparison correctly.

6.3 Impact on Practice

Geometric computation is needed in many areas of science, and the range of applications is large.
Fortunately, there are structures and concepts of general use for which geometric algorithms have been
developed. However, due to their generality, such structures are hardly ever directly useful in a practical
situation. To transfer general, theoretical results to applications, domain knowledge of the application is
needed to understand when abstraction is allowed and when it would make the result lose its relevance.

We overview a number of research areas where computational geometry has made important con-
tributions and highlight these. We also discuss the development of a general purpose, geometric algo-
rithms library called cGaL.

6.3.1 Computer Graphics

When three-dimensional scenes that are represented in models must be displayed on a two-dimensional
screen, one must compute what is visible from a given viewpoint. In the end, every pixel gets a color
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based on what object is visible “beyond” that pixel and how it is illuminated. Scenes are often composed
of many triangles that represent the boundaries of the objects in the scene. One of the main tasks in
computer graphics is rendering, which is the process of getting the objects in a three-dimensional scene
onto a two-dimensional image display for a given viewpoint. The operations needed are done partly
in the three-dimensional object space and partly in the two-dimensional image space. Computational
geometry is involved in those tasks that occur in object space.

Since graphics processors have become a lot more powerful and allow massive parallelization, there
has been a trend in computer graphics to do more and more in image space. The z-buffer method is
clearly the most popular method for deciding which parts of a scene are visible, especially in dynamic
or interactive situations.

On the other hand, object-space computations allow a more realistic visualization via ray tracing [99],
and object-space computations may still be important to reduce the number of objects to be rendered,
using simplification algorithms [33]. Furthermore, morphing between two shapes can be done better in
object space [36].

6.3.2 Motion Planning and Robotics

In motion planning, a robot has a number of degrees of freedom depending on its motions. For example,
a robot may move around and rotate in the plane, giving it three degrees of freedom. A robot arm with
four angular joints and one telescoping piece has five degrees of freedom. The different states of such a
robot or robot arm can be described by a number of real values equal to the number of degrees of free-
dom. In an environment with other objects—referred to as obstacles—some states may not be possible
because the robot would intersect an obstacle. We can capture this situation in the configuration space,
whose dimensionality is the same as the number of degrees of freedom. A point in the configuration
space is a potential state of the robot, which may be possible or impossible. All possible states form a set
of points called the free configuration space.

Bringing a robot from one position or state to another comes down to determining a path between
two points that lies completely in the free configuration space. To decide if this is possible, we can com-
pute the cell of the configuration space that contains the starting configuration, and test whether the
end configuration lies inside that cell as well.

In the case of two-dimensional translational motion planning for a polygonal robot amid polygo-
nal obstacles, we need to solve the computational-geometry problem of computing a single cell in an
arrangement of line segments [59,96]. If we want to compute the full free configuration space, we need
to solve the well-known problems of computing the Minkowski sum of two polygons and computing the
union of a set of polygonal regions [65,96].

6.3.3 Geographic Information Systems

Many computations that are done in a GIS are geometric [103]. One example is the map overlay
operation, which is possibly the most important operation in a GIS. Map overlay takes two or more
different thematic map layers covering the same region and performs a “spatial join.” For example,
if the one map layer is current landuse and the other layer soil type (sand, clay, ...), then the over-
lay is a subdivision where map space is partitioned into regions with some landuse on some soil
type. The standard map layer representation in GIS is similar to the doubly-connected edge list,
and the standard algorithm for map overlay is based on the plane-sweep paradigm as explained in
Section 6.2.1.1.

Spatial interpolation is needed when a type of data is acquired using point measurements, and we
are also interested in the values at places in between where no measurements were taken. Think of data
like depth to groundwater obtained from bore holes, temperature obtained from thermometers, and
ground pollution obtained from soil samples. Spatial interpolation between point-based measurements
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can be based on a triangulation of the points, where we can use linear interpolation over each triangle.
Alternatively, one can use natural neighbor interpolation based on Voronoi diagrams [100].

6.3.4 Information Visualization

Information visualization is about how graphs, maps, charts, and diagrams can communicate infor-
mation effectively to humans. Graph visualization occurs in workflow diagrams and VLSI design, for
example. The area of graph drawing is concerned with the drawings of all types of graphs in theory and
practice. Quality criteria like few edge-edge intersections, no very long edges, and large enough angles
between edges incident to the same vertex determine how good a drawing of a graph is. To draw a graph,
we must choose a position and shape for each vertex and edge, and methods from computational geom-
etry are often applied.

Specialized maps like metro maps and flow maps require a highly schematized representation of carto-
graphic information that satisfies certain conventions associated with the type of map [18,81]. The com-
putation of these schematized representations while keeping some degree of spatial correctness requires
geometric algorithms that often have a multiobjective flavor. The same is true for map annotation, also
called label placement [2]. Here, text must be placed with features on a map, diagram, or graph without
creating confusion as to which text belongs to which feature and without overlaps of the different texts.

Other types of information visualization involve hierarchical or clustered representations. The final
geometry of the visualization should highlight the hierarchy or clustering, so again geometric computa-
tions are needed.

6.3.5 Data Analysis and Statistics

In data analysis, the objective is to find dependencies or structure in large sets of data. One of the main
types of structure in data are clusters. For example, for a set of epicenters of earthquakes, one can
wonder if there are subsets of epicenters that are close together, closer than would occur by a random
process. Similarly, one could be interested in clusters of motion paths of hurricanes in the Atlantic. Since
clustering in general involves distance in some space, it requires geometric computations, and since data
sets can be large, efficient geometric algorithms are needed. Given a distance measure, there are several
well-known clustering algorithms, like single-link clustering, complete-link clustering, and k-means
clustering [64].

Outliers are data elements that are significantly different from the rest of the data. Outliers may be of
special interest because of this, but they may also be due to erroneous measurements. In any case, it is
important to be able to detect outliers, which again requires a notion of distance.

Instead of detecting and eliminating outliers, one can also devise robust statistics. The best-known
example is the median of a set of numbers. A few erratic values in the set do not influence the value of
the median much, so it is a robust statistic for the concept of center. For multivariate statistics, robust
methods can often be seen as geometric tasks for which efficient algorithms need to be developed [90].

6.3.6 Three-Dimensional Modeling

Several data acquisition methods yield three-dimensional point clouds. These could come from an object
scanned by a three-dimensional scanner or from an urban environment scanned by LiDAR methods.
The construction of a three-dimensional model from such a point cloud uses geometric algorithms of
various sorts. For free-form shapes, approaches may use the medial axis and prove reconstruction cor-
rectness by relating the sampling density to the curvature [5]. Often, techniques from computational
topology are applied, like persistence [20].

In urban reconstruction, one can use the fact that shape information is known. In urban environ-
ments many points are approximately coplanar because they were sampled from the same facade or roof.
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This makes detection of planes that lie close to many points, one of the basic steps in reconstruction [92].
Once these planes are found they must be connected where appropriate, and remaining gaps should be
filled to obtain a good three-dimensional model [11,104].

6.3.7 Finite Element Methods

The finite element method is used to approximately solve partial differential equations, which is useful
for computing and visualizing air flow around an airplane wing, stress of an object when forces are
applied, heat distribution on a printed circuit board, and similar situations. One of the main ingredi-
ents for finite element methods is a subdivision of the space of interest into elements of a simple shape
(triangles or convex quadrilaterals in the plane). This subdivision should respect the environment (the
airplane wing for air flow, the conductive tracks on a printed circuit board, etc.), meaning that no ele-
ment intersects any boundary of the environment. This subdivision is called a mesh, and the process is
called mesh generation [15,98]. The quality of a mesh for the finite element method depends on the shape
of its elements. Very small or large angles should be avoided. Hence, mesh generation is concerned with
producing meshes with such geometric quality criteria.

6.3.8 Retrieval

Both database search and information retrieval have a geometric version of the problem domain. To
search in multimedia databases of shapes, the query object may be a shape as well, and a full or partial
similarity matching of the query shape and all stored shapes determines which shapes are returned and
in what order [69]. The similarity measure used may be the Hausdorff distance, Fréchet distance, or Earth
movers distance, for instance [105]. In geographic information retrieval the spatial component of infor-
mation, often distance, is used to decide which documents or web pages are most relevant to a query [68].

6.3.9 Computational Biology

Within the area of computational biology, molecular simulation is concerned with the modeling of
three-dimensional molecules and proteins, and their interactions [44]. Molecules and proteins are made
up of atoms, and a standard geometric model is to take a ball for each atom and the union of these balls
for the molecule or protein. The radii of the balls are often chosen to be the van der Waals radii. The
shape of proteins determines for a large part its function. In particular, accessibility for solvents and
docking mechanisms of proteins depend on their shape.

6.3.10 Implementation

Providing correct implementations of geometric algorithms has proved to be a challenge in the past,
and it still is. This is due to two main issues. Firstly, implementations should also handle all degenerate
cases, while algorithm descriptions often ignore these, and secondly, robustness of the computations
should always be considered to avoid that rounding errors dramatically influence the outcome of an
implementation.

In the mid-1990s, a considerable effort has been made to develop a computational-geometry algo-
rithms library called cGaL, which allows robust number types and includes many basic operations that
are necessary in algorithms (compute the intersection point of two line segments, construct the circle
through three given points, etc.). In a layer on top of these basic operations, many data structures and
algorithms are implemented in the library. These include Voronoi diagrams, Delaunay triangulations,
smallest enclosing circle, the doubly-connected edge list, arrangement construction, a-shapes, and
much more. The library is made accessible by extensive documentation, including manuals, tutorials,
and books [49].



Computational Geometry 6-17

6.4 Research Issues

Although computational geometry deals with constant-dimensional computational problems, the curse
of dimension is still an issue. Most problems are considerably harder in three-dimensional space than
in the plane, and higher-dimensional problems are even harder and their solutions less well understood.
It should be mentioned that they are less common in applications, and therefore the research focus has
been on two- and three-dimensional problems.

A major open problem is developing a d-dimensional linear programming method that runs in time
O(f(d) - n), where n is the number of constraints and f is a polynomial function in d. A solution exists
where fis subexponential but superpolynomial [74].

There are many planar and three-dimensional problems whose algorithmic solutions are not known
to be optimal. In computational geometry, there is an ongoing quest to improve existing running time
bounds of algorithms, while providing better lower bounds is of equal interest but apparently much harder.

One can expect that realistic input models for three-dimensional data can lead to more results that
are provable and useful; it is an important area for future research.

In combinatorial geometry, two very important open problems are finding tight bounds on the num-
ber of k-sets in the plane and on the number of changes in the Voronoi diagram or Delaunay triangula-
tion of moving points. There are several other interesting open problems where better combinatorial
upper bounds lead to more efficient algorithms.

A research direction with a lot of potential is computational topology [45]. In the last years, the inter-
est in the area has been growing steadily, also because it provides new insight into many different appli-
cation areas.

Computational geometry has not been involved much in the computations necessary in various pro-
cesses or simulations. Some exceptions are forest growth simulation [1], bird flocking behavior [28,29],
and docking mechanisms in computational biology [44]. An expansion of the research in this direction
is challenging and exciting.

There are many challenges in the technology transfer of the ideas and methods developed in com-
putational geometry into practice. This goes much further than making practitioners aware of existing
ideas and methods in computational geometry. Similarly, there are challenges in the right formaliza-
tions of practical problems into versions that can be addressed by computational geometry but are still
relevant to practice.

A general concern from practice is data imprecision. It is important to know to what extent data
imprecision influences further processing, and hence a computational model of data imprecision is
needed. Such a model can be statistical or combinatorial [71]. Both offer opportunities for important
research to which computational geometry can contribute.

6.5 Summary

The area of computational geometry is a challenging and useful research area that includes both funda-
mental and applied questions. It plays a role whenever geometric data is present and methods are needed
to deal with such data. Since geometric data appears in many application areas, and new functionality
is needed in these applications, a need remains for new, advanced methods to supply this functionality.
At the same time, much research within computational geometry is motivated by curiosity from within,
and a search for the best algorithmic solution for any geometric problem.

The overview given in this chapter is just a small sample of all known results and research directions.
The Handbook of Discrete and Computational Geometry [54] provides a much more extensive list of
concepts and results, while the textbook by de Berg et al. [38] provides a good introduction in the area.
The annual Symposium on Computational Geometry is the main event where the latest trends and results
are published. Several dozens of other conferences—algorithmic and applied—regularly publish papers
on computational geometry as well.
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Key Terms

o-complex: Structure with vertices, edges, and simplicial facets of all dimensions whose adjacencies are
defined by a disk of radius 1/a.

o-shape: Structure with vertices and edges (for the planar case) defined for a point set, where the points
are the vertices and two points are connected by an edge if and only if there is a disk of radius
1/a through both points, and with no points of the set inside it.

Algebraic decision tree: Tree representing the flow of a program or algorithm where nodes represent
conditional statements or tests, which determine which branch under the node is taken next.
These tests are algebraic equations.

Backward analysis of a randomized incremental algorithm: Argument used to prove the expected
cost of an incremental step by considering the situation after that step and thinking backwards
(What could have led to this situation?).

Configuration space: Space in a robot motion planning problem that has one coordinate axis for every
degree of freedom of the robot.

Convex hull: Smallest convex set that contains a given set of points or other objects.

Davenport-Schinzel sequence: Sequence of symbols over an alphabet where no two adjacent symbols
may be equal, and any two different symbols can occur in alternation in a limited manner.

Delaunay triangulation of a set of points: Maximal planar subdivision of the plane where the points
are the vertices and all bounded faces are triangles, such that the circumcircle of the three
vertices of any triangle does not have any of the input points inside.

Doubly-connected edge list: Structure to represent planar subdivisions that allows navigation to inci-
dent features (e.g., from an edge to the incident faces and vertices).

Dynamic programming: Algorithmic design paradigm that exploits the fact that some optimization
problems have solutions that are composed of optimal solutions to smaller problems. These
optimal solutions to smaller problems are often stored in tables.

Graph embedding: Layout of a graph where the nodes and arcs are represented as geometric objects;
nodes are often points specified by their coordinates.

Greedy algorithm: Algorithmic design paradigm for optimization problems where locally optimal
choices are made repeatedly.

Hausdorff distance of two subsets of the plane: Maximum distance from any point in one subset to the
nearest point in the other subset.

Minkowski sum: Binary operator that takes two geometric objects and returns the object composed of
the union of all vectors that are the sum of a vector to a point in the one object and a vector to
a point in the other object.

NP-hardness: Informally, feature of a computational problem describing that any algorithm that solves it
requires more than polynomially many operations in the worst case. However, there is no proof
known that algorithms with polynomially many operations for NP-hard problems do not exist.

Numerical nonrobustness: Issue appearing in the design of an implementation due to the fact that
computers cannot store real numbers exactly.

Planar 3-SAT: Satisfiability expression with three literals per clause that allows a planar layout of the
graph where literals and clauses are nodes and occurrences of a literal in a clause are arcs.

Plane sweep: Algorithmic design paradigm where a computational problem is solved by imagining the
sweep of a line over the plane.

Randomized incremental construction: Algorithmic design paradigm where a problem is solved
incrementally using a randomized order.

Real RAM: Model of computation that allows the storage of any real number in a constant amount of
memory and that has random access memory.

Realistic input model: Assumption or set of assumptions that rules out pathological input situations, in
order to prove better complexity bounds.
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Simple polygon: Bounded planar shape whose boundary consists of a cyclic sequence of line segments
where adjacent line segments meet in a common endpoint, and no other line segments have
any point in common.

Simple polyhedron: Bounded solid shape in three-dimensional space with linear boundaries that is a
generalization of a simple polygon.

Simplex: Polytope in d-dimensional space that is the convex hull of d + 1 linearly independent points.
In the plane, it is a triangle and in three-dimensional space it is a tetrahedron.

Spread of a point set: Ratio of the largest and smallest point-to-point distance.

Sweep line: Imaginary line that sweeps over the plane, for instance a horizontal line that goes from top
to bottom, while computing a solution to a problem.

Upper Bound Theorem: Combinatorial result that states that the maximum number of facets of all
dimensions of a d-dimensional polytope bounded by n hyperplanes is O(nl42).
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Computational complexity is the study of the difficulty of solving computational problems, in terms of

the required computational resources, such as time and space (memory). Whereas the analysis of algo-
rithms focuses on the time or space requirements of an individual algorithm for a specific problem (such
as sorting), complexity theory focuses on the complexity class of problems solvable in the same amount
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of time or space. Most common computational problems fall into a small number of complexity classes.
Two important complexity classes are P, the set of problems that can be solved in polynomial time, and
NP, the set of problems whose solutions can be verified in polynomial time.

By quantifying the resources required to solve a problem, complexity theory has profoundly affected our
thinking about computation. Computability theory establishes the existence of undecidable problems, which
cannot be solved in principle regardless of the amount of time invested. However, computability theory fails
to find meaningful distinctions among decidable problems. In contrast, complexity theory establishes the
existence of decidable problems that, although solvable in principle, cannot be solved in practice, because
the time and space required would be larger than the age and size of the known universe (Stockmeyer and
Chandra, 1979). Thus, complexity theory characterizes the computationally feasible problems.

The quest for the boundaries of the set of feasible problems has led to the most important unsolved
question in all of computer science: Is P different from NP? Hundreds of fundamental problems, includ-
ing many ubiquitous optimization problems of operations research, are NP-complete; they are the
hardest problems in NP. If someone could find a polynomial-time algorithm for any one NP-complete
problem, then there would be polynomial-time algorithms for all of them. Despite the concerted
efforts of many scientists over several decades, no polynomial-time algorithm has been found for any
NP-complete problem. Although we do not yet know whether P is different from NP, showing that a
problem is NP-complete provides strong evidence that the problem is computationally infeasible and
justifies the use of heuristics for solving the problem.

In this chapter, we define P, NP, and related complexity classes. We illustrate the use of diagonaliza-
tion and padding techniques to prove relationships between classes. Next, we define NP-completeness,
and we show how to prove that a problem is NP-complete. Finally, we define complexity classes for
probabilistic and interactive computations.

Throughout this chapter, all numeric functions take integer arguments and produce integer values.
All logarithms are taken to base 2. In particular, log n means [log,n].

7.2 Models of Computation

To develop a theory of the difficulty of computational problems, we need to specify precisely what a problem
is, what an algorithm is, and what a measure of difficulty is. For simplicity, complexity theorists have chosen
to represent problems as languages (i.e., as sets of strings of symbols), model algorithms by off-line multi-
tape Turing machines, and measure computational difficulty by the time and space required by a Turing
machine. To justify these choices, some theorems of complexity theory show how to translate statements
about, say, the time complexity of language recognition by Turing machines into statements about com-
putational problems on more realistic models of computation. These theorems imply that the principles of
complexity theory are not artifacts of Turing machines, but instead are intrinsic properties of computation.

This section defines different kinds of Turing machines. The deterministic Turing machine models
actual computers. The nondeterministic Turing machine is not a realistic model, but it helps classify the
complexity of important computational problems. The alternating Turing machine models a form of
parallel computation, and it helps elucidate the relationship between time and space.

7.2.1 Computational Problems and Languages

Computer scientists have invented many elegant formalisms for representing data and control struc-
tures. Fundamentally, all representations are patterns of symbols. Therefore, we represent an instance of
a computational problem as a sequence of symbols.

Let X beafinite set, called the alphabet. A word over X is a finite sequence of symbols from X. Sometimes
a word is called a string. Let ¥* denote the set of all words over X. For example, if ¥ = {0, 1}, then

=" ={1, 0,1, 00,01,10,11, 000,.. }
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is the set of all binary words, including the empty word \. The length of a word w, denoted by |w/, is the
number of symbols in w. A language over X is a subset of X",

A decision problem is a computational problem whose answer is simply yes or no. For example: Is
the input graph connected? or Is the input a sorted list of integers? A decision problem can be expressed
as a membership problem for a language A: for an input x, does x belong to A? For a language A that
represents connected graphs, the input word x might represent an input graph G, and x € A if and only
if G is connected.

For every decision problem, the representation should allow for easy parsing, to determine whether
a word represents a legitimate instance of the problem. Furthermore, the representation should be con-
cise. In particular, it would be unfair to encode the answer to the problem into the representation of an
instance of the problem; for example, for the problem of deciding whether an input graph is connected,
the representation should not have an extra bit that tells whether the graph is connected. A set of inte-
gers S = {x,,..., x,,} is represented by listing the binary representation of each x;,, with the representations
of consecutive integers in S separated by a nonbinary symbol. A graph is naturally represented by giving
either its adjacency matrix or a set of adjacency lists, where the list for each vertex v specifies the vertices
adjacent to v.

Whereas the solution to a decision problem is yes or no, the solution to an optimization problem
is more complicated; for example, determine the shortest path from vertex u to vertex v in an input
graph G. Nevertheless, for every optimization (minimization) problem, with objective function g,
there is a corresponding decision problem that asks whether there exists a feasible solution z such that
g(z) <k, where k is a given target value. Clearly, if there is an algorithm that solves an optimization
problem, then that algorithm can be used to solve the corresponding decision problem. Conversely,
if algorithm solves the decision problem, then with a binary search on the range of values of g, we
can determine the optimal value. Moreover, using a decision problem as a subroutine often enables
us to construct an optimal solution; for example, if we are trying to find a shortest path, we can use
a decision problem that determines if a shortest path starting from a given vertex uses a given edge.
Therefore, there is little loss of generality in considering only decision problems, represented as lan-
guage membership problems.

7.2.2 Turing Machines

This section and the next three give precise, formal definitions of Turing machines and their variants.
These sections are intended for reference. For the rest of this chapter, the reader need not understand
these definitions in detail, but may generally substitute “program” or “computer” for each reference to
“Turing machine.”

A k-worktape Turing machine M consists of the following:

A finite set of states Q, with special states g, (initial state), g, (accept state), and gy (reject state).

o A finite alphabet X, and a special blank symbol O0 ¢ X.

o The k + 1 linear tapes, each divided into cells. Tape 0 is the input tape, and tapes 1, ..., k are
the worktapes. Each tape is infinite to the left and to the right. Each cell holds a single symbol from
X U {O}. By convention, the input tape is read only. Each tape has an access head, and at every
instant, each access head scans one cell. See Figure 7.1.

o A finite transition table §, which comprises tuples of the form

’ s ’
(q$50)51)~~-)5k)q )51)-~~)Sk’d0)d17--~)dk)

where q, ¢’ € Q, each's;,s; € £ U {00}, and each d, € {-1, 0, +1}.
A tuple specifies a step of M: if the current state is g, and s, s,, ..., s, are the symbols in the cells
scanned by the access heads, then M replaces s; by s; fori =1, ..., k simultaneously, changes state to q’, and
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FIGURE 7.1 A two-tape Turing machine.

moves the head on tape i one cell to the left (d; = 1) or right (d, = +1) or not atall (d,=0) fori=0, ..., k.
Note that M cannot write on tape 0, that is, M may write only on the worktapes, not on the input tape.

« No tuple contains g, or gy as its first component. Thus, once M enters state g, or state gy, it stops.

« Initially, M is in state q,, an input word in X" is inscribed on contiguous cells of the input tape, the
access head on the input tape is on the leftmost symbol of the input word, and all other cells of all
tapes contain the blank symbol 0.

The Turing machine M that we have defined is nondeterministic: & may have several tuples with the
same combination of state g and symbols s, s,, ..., s, as the first k + 2 components, so that M may have
several possible next steps. A machine M is deterministic if for every combination of state g and symbols
So» Sp> - S at most one tuple in & contains the combination as its first k + 2 components. A deterministic
machine always has at most one possible next step.

A configuration of a Turing machine M specifies the current state, the contents of all tapes, and the
positions of all access heads.

A computation path is a sequence of configurations C,, C,, ..., C, ..., where Cj is the initial configura-
tion of M, and each C,,, follows from C; in one step by applying the changes specified by a tuple in 8. If
no tuple is applicable to C,, then C, is terminal, and the computation path is halting. If M has no infinite
computation paths, then M always halts.

A halting computation path is accepting if the state in the last configuration C, is q,; otherwise it is
rejecting. By adding tuples to the program if needed, we can ensure that every rejecting computation
ends in state g,. This leaves the question of computation paths that do not halt. In complexity theory we
rule this out by considering only machines whose computation paths always halt. M accepts an input
word x if there exists an accepting computation path that starts from the initial configuration in which
x is on the input tape. For nondeterministic M, it does not matter if some other computation paths
end at g,. If M is deterministic, then there is at most one halting computation path, hence at most one
accepting path.

The language accepted by M, written L(M), is the set of words accepted by M. If A = L(M), and M
always halts, then M decides A.

In addition to deciding languages, deterministic Turing machines can compute functions. Designate
tape 1 to be the output tape. If M halts on input word x, then the nonblank word on tape 1 in the
final configuration is the output of M. A function fis computable if there exists a deterministic Turing
machine M that always halts such that for each input word x, the output of M is the value of f(xx).
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Almost all results in complexity theory are insensitive to minor variations in the underlying compu-
tational models. For example, we could have chosen Turing machines whose tapes are restricted to be
only one-way infinite or whose alphabet is restricted to {0, 1}. It is straightforward to simulate a Turing
machine as defined by one of these restricted Turing machines, one step at a time: each step of the origi-
nal machine can be simulated by O(1) steps of the restricted machine.

7.2.3 Universal Turing Machines

Chapter 8 states that there exists a universal Turing machine U, which takes as input a string (M, x)
that encodes a Turing machine M and a word x, and simulates the operation of M on x, and U accepts
(M, x) if and only if M accepts x. For our purposes here, we also need that U simulates M efficiently: A
theorem of Hennie and Stearns (1966) implies that the machine U can be constructed to have only two
worktapes, such that U can simulate any f steps of M in only O(f log f) steps of its own, using only O(1)
times the worktape cells used by M. The constants implicit in these big-O bounds may depend on M.
We can think of U with a fixed M as a machine Uy, and define L(U,,) = {x : U accepts (M, x)}. Then
L(U,,) = L(M). If M always halts, then U, always halts, and if M is deterministic, then U,, is deterministic.

7.2.4 Alternating Turing Machines

By definition, a nondeterministic Turing machine M accepts its input word x if there exists an accepting
computation path, starting from the initial configuration with x on the input tape. Let us call a configu-
ration C accepting if there is a computation path of M that starts in C and ends in a configuration whose
state is q,. Equivalently, a configuration C is accepting if either the state in C is g, or there exists an
accepting configuration C’ reachable from C by one step of M. Then, M accepts x if the initial configura-
tion with input word x is accepting.

The alternating Turing machine generalizes this notion of acceptance. In an alternating Turing
machine M, each state is labeled either existential or universal. (Do not confuse the universal state in
an alternating Turing machine with the universal Turing machine.) A nonterminal configuration C is
existential (respectively, universal) if the state in C is labeled existential (universal). A terminal con-
figuration is accepting if its state is q,. A nonterminal existential configuration C is accepting if there
exists an accepting configuration C’ reachable from C by one step of M. A nonterminal universal con-
figuration C is accepting if for every configuration C’ reachable from C by one step of M, the configura-
tion C’ is accepting. Finally, M accepts x if the initial configuration with input word x is an accepting
configuration.

A nondeterministic Turing machine is thus a special case of an alternating Turing machine in which
every state is existential.

The computation of an alternating Turing machine M alternates between existential states and uni-
versal states. Intuitively, from an existential configuration, M guesses a step that leads toward accep-
tance; from a universal configuration, M checks whether each possible next step leads toward
acceptance—in a sense, M checks all possible choices in parallel. An alternating computation
captures the essence of a two-player game: player 1 has a winning strategy if there exists a move
for player 1 such that for every move by player 2, there exists a subsequent move by player 1, etc., such
that player 1 eventually wins.

7.2.5 Oracle Turing Machines

Complexity theoreticians have found it very useful to have a mechanism to describe when it is helpful to
have a subroutine for some problem A, when trying to solve another problem. The language A is called
an oracle. Conceptually, an algorithm queries the oracle whether a word w is in A, and it receives the
correct answer in one step.
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An oracle Turing machine is a Turing machine M with a special oracle tape and special states QUERY,
YES, and No. The computation of the oracle Turing machine M4, with oracle language A, is the same as
that of an ordinary Turing machine, except that when M enters the QUERY state with a word w on the
oracle tape, in one step, M enters either the YEs state if w € A or the No state if w & A. Furthermore, dur-
ing this step, the oracle tape is erased, so that the time for setting up each query is accounted separately.

7.3 Resources and Complexity Classes

In this section, we define the measures of difficulty of solving computational problems. We introduce
complexity classes, which enable us to classify problems according to the difficulty of their solution.

7.3.1 Time and Space

We measure the difficulty of a computational problem by the running time and the space (memory)
requirements of an algorithm that solves the problem.

We express the complexity of a problem, in terms of the growth of the required time or space, as a
function of the length # of the input word that encodes a problem instance. We consider the worst-case
complexity, that is, for each n, the maximum time or space required among all inputs of length n.

Let M be a Turing machine that always halts. The time taken by M on input word x, denoted by
Time,(x), is defined as follows:

o If M accepts x, then Time,,(x) is the number of steps in the shortest accepting computation path
for x.
o If M rejects x, then Time,,(x) is the number of steps in the longest computation path for x.

For a deterministic machine M, for every input x, there is at most one halting computation path, and its
length is Time,,(x). For a nondeterministic machine M, if x € L(M), then M can guess the correct steps
to take toward an accepting configuration, and Time,,(x) measures the length of the path on which M
always makes the best guess.

The space used by a Turing machine M on input x, denoted Space,,(x), is defined as follows. The space
used by a halting computation path is the number of worktape cells visited by the worktape heads of M
during the computation path. Because the space occupied by the input word is not counted, a machine
can use a sublinear (o(n)) amount of space.

o If M accepts x, then Space,,(x) is the minimum space used among all accepting computation paths
for x.
o If M rejects x, then Space,,(x) is the maximum space used among all computation paths for x.

The time complexity of a machine M is the function

t(n) = max{Timey (x): | x | =n}

We assume that M reads all of its input word and the blank symbol after the right end of the input word,
so t(n) > n + 1. The space complexity of M is the function

s(n) = max{Spacey (x):| x | =n}

Because few interesting languages can be decided by machines of sublogarithmic space complexity, we
henceforth assume that s(n) > log n.

A function f(x) is computable in polynomial time if there exists a deterministic Turing machine M of
polynomial-time complexity such that for each input word x, the output of M is f(x).
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7.3.2 Complexity Classes

Having defined the time complexity and space complexity of individual Turing machines, we now
define classes of languages with particular complexity bounds. These definitions will lead to definitions
of P and NP.

Let t(n) and s(n) be numeric functions. Define the following classes of languages:

o DTIME[t(n)] is the class of languages decided by deterministic Turing machines of time complex-
ity O(t(n)).

o NTIME[t(n)] is the class of languages decided by nondeterministic Turing machines of time com-
plexity O(t(n)).

« DSPACE[s(n)] is the class of languages decided by deterministic Turing machines of space com-
plexity O(s(n)).

o NSPACE[s(n)] is the class of languages decided by nondeterministic Turing machines of space
complexity O(s(n)).

We sometimes abbreviate DTIME[{(n)] to DTIME[{] (and so on) when ¢ is understood to be a function,
and when no reference is made to the input length n.
The following are the canonical complexity classes:

o L = DSPACE[log n] (deterministic log space)

o NL = NSPACE[log n] (nondeterministic log space)

¢ P = DTIME[n°"]=|J;s, DTIME[n*] (polynomial time)

¢ NP = NTIME[n°"]=|J;s; NTIME[n"] (nondeterministic polynomial time)
¢ PSPACE = DSPACE[n°"]=|]J,,, DSPACE[n*] (polynomial space)

« E = DTIME[2°?] =|J,,; DTIME[k"]

¢ NE = NTIME[2°"] =|J,,; NTIME[k"]

o(1) k
e EXP=DTIME[2" l ] = Us1 DTIME[2" ](deterministic exponential time)
O(1) k
o NEXP=NTIME[]2" ]=J;s, NTIME[2" | (nondeterministic exponential time)

The class PSPACE is defined in terms of the DSPACE complexity measure. By Savitch’s Theorem (see
Theorem 7.2), the NSPACE measure with polynomial bounds also yields PSPACE.

The class P contains many familiar problems that can be solved efficiently, such as (decision prob-
lem versions of) finding shortest paths in networks, parsing for context-free languages, sorting, matrix
multiplication, and linear programming. Consequently, P has become accepted as representing the set
of computationally feasible problems. Although one could legitimately argue that a problem whose best
algorithm has time complexity ©(n*) is really infeasible, in practice, the time complexities of the vast
majority of natural polynomial-time problems have low degrees: they have algorithms that run in O(n*)
time or less. Moreover, P is a robust class: though defined by Turing machines, P remains the same when
defined by other models of sequential computation. For example, random-access machines (RAMs)
(a more realistic model of computation defined in Chapter 8) can be used to define P, because Turing
machines and RAMs can simulate each other with polynomial-time overhead.

The class NP can also be defined by means other than nondeterministic Turing machines. NP equals
the class of problems whose solutions can be verified quickly, by deterministic machines in polynomial
time. Equivalently, NP comprises those languages whose membership proofs can be checked quickly.

For example, one language in NP is the set of satisfiable Boolean formulas, called SAT. A Boolean
formula ¢ is satisfiable if there exists a way of assigning true or false to each variable such that
under this truth assignment, the value of ¢ is true. For example, the formula x A (x V y) is satisfiable,
but x A ¥y A (x V y) is not satisfiable. A nondeterministic Turing machine M, after checking the syntax
of ¢ and counting the number 7 of variables, can nondeterministically write down an n-bit 0-1 string
a on its tape, and then deterministically (and easily) evaluate ¢ for the truth assignment denoted by a.
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The computation path corresponding to each individual a accepts if and only if ¢(a) = true, and so M
itself accepts ¢ if and only if ¢ is satisfiable; that is, L(M) = SAT. Again, this checking of given assign-
ments differs significantly from trying to find an accepting assignment.

Another language in NP is the set of undirected graphs with a Hamiltonian circuit, that is, a path of
edges that visits each vertex exactly once and returns to the starting point. If a solution exists and is
given, its correctness can be verified quickly. Finding such a circuit, however, or proving one does not
exist, appears to be computationally difficult.

The characterization of NP as the set of problems with easily verified solutions is formalized
as follows: A € NP if and only if there exist a language A’ € P and a polynomial p such that for every
x, x € A if and only if there exists a y such that |y| < p(|x|) and (x, y) € A". Here, whenever x belongs
to A, y is interpreted as a positive solution to the problem represented by x, or equivalently, as a proof
that x belongs to A. The difference between P and NP is that between solving and checking, or between
finding a proof of a mathematical theorem and testing whether a candidate proof is correct. In essence,
NP represents all sets of theorems with proofs that are short (i.e., of polynomial length) and check-
able quickly (i.e., in polynomial time), while P represents those statements that can proved or refuted
quickly from scratch.

Further motivation for studying L, NI, and PSPACE comes from their relationships to P and NP.
Namely, L and NL are the largest space-bounded classes known to be contained in P, and PSPACE is
the smallest space-bounded class known to contain NP. (It is worth mentioning here that NP does not
stand for “nonpolynomial time”; the class P is a subclass of NP.) Similarly, EXP is of interest primarily
because it is the smallest deterministic time class known to contain NP. The closely related class E is not
known to contain NP.

7.4 Relationships between Complexity Classes

The P vs. NP question asks about the relationship between these complexity classes: Is P a proper subset
of NP, or does P = NP? Much of complexity theory focuses on the relationships between complexity
classes, because these relationships have implications for the difficulty of solving computational prob-
lems. In this section, we summarize important known relationships. We demonstrate two techniques
for proving relationships between classes: diagonalization and padding.

7.4.1 Constructibility

The most basic theorem that one should expect from complexity theory would say, “If you have more
resources, you can do more.” Unfortunately, if we are not careful with our definitions, then this claim
is false:

Theorem 7.1 (Gap Theorem)

There is a computable, strictly increasing time bound #(n) such that DTIME[t(n)]=DTIME[22M]

(Borodin, 1972).

That is, there is an empty gap between time #(n) and time doubly exponentially greater than t(n), in the
sense that anything that can be computed in the larger time bound can already be computed in the
smaller time bound. That is, even with much more time, you cannot compute more. This gap can be
made much larger than doubly exponential; for any computable r, there is a computable time bound ¢
such that DTIME[t(n)] = DTIME[r(¢(n))]. Exactly analogous statements hold for the NTIME, DSPACE,
and NSPACE measures.



Complexity Theory 7-9

Fortunately, the gap phenomenon cannot happen for time bounds ¢ that anyone would ever be inter-
ested in. Indeed, the proof of the Gap Theorem proceeds by showing that one can define a time bound ¢
such that no machine has a running time that is between #(n) and 22" This theorem indicates the need
for formulating only those time bounds that actually describe the complexity of some machine.

A function t(n) is time-constructible if there exists a deterministic Turing machine that halts after
exactly #(n) steps for every input of length n. A function s(n) is space-constructible if there exists a
deterministic Turing machine that uses exactly s(n) worktape cells for every input of length n. (Most
authors consider only functions #(n) > n + 1 to be time-constructible, and many limit attention to
s(n) > log n for space bounds. There do exist sublogarithmic space-constructible functions, but we prefer
to avoid the tricky theory of o(log n) space bounds.)

For example, #(n) = n + 1 is time-constructible. Furthermore, if t,(n) and t,(n) are time-constructible,
then so are the functions f, + t,, t,,, 1%, and ¢ for every integer ¢ > 1. Consequently, if p(n) is a polyno-
mial, then p(n) = ©(t(n)) for some time-constructible polynomial function ¢(n). Similarly, s(n) = log n is
space-constructible, and if s,(n) and s,(n) are space-constructible, then so are the functions s, + s,, s,s,,
s, and ¢ for every integer ¢ > 1. Many common functions are space-constructible: for example, 1 log n,
n3, 2", n!

Constructibility helps eliminate an arbitrary choice in the definition of the basic time and space
classes. For general time functions t, the classes DTIME[f] and NTIME[¢] may vary depending on whether
machines are required to halt within ¢ steps on all computation paths or just on those paths that accept.
If ¢ is time-constructible and s is space-constructible, however, then DTIME[t], NTIME[{], DSPACE(s],
and NSPACE([s] can be defined without loss of generality in terms of Turing machines that always halt.

As a general rule, any function ¢(n) > n + 1 and any function s(n) > log n that one is interested in as a
time or space bound is time- or space-constructible, respectively. As we have seen, little of interest can
be proved without restricting attention to constructible functions. This restriction still leaves a rich class
of resource bounds.

7.4.2 Basic Relationships

Clearly, for all time functions #(1) and space functions s(n), DTIME[#(n)] C NTIME[t(n)] and DSPACE[s(n)] C
NSPACE[s(n)], because a deterministic machine constitutes a special case of a nondeterministic
machine. Furthermore, DTIME[t(n)] C DSPACE[t(n)] and NTIME[t(n)] C NSPACE[t(n)], because at
each step, a k-tape Turing machine can write on at most k = O(1) previously unwritten cells. The next
theorem presents additional important relationships between classes.

Theorem 7.2

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function, s(n) > log .

(@) NTIME[t(n)] C DTIME[20¢M)],

(b) NSPACE[s(n)] € DTIME[206()],

() NTIME[t(n)] € DSPACE[t(n)].

(d) (Savitch’s Theorem) NSPACE([s(n)] C DSPACE[s(n)?] (Savitch, 1970).

As a consequence of the first part of this theorem, NP C EXP. No better general upper bound on
deterministic time is known for languages in NP. See Figure 7.2 for other known inclusion relationships
between canonical complexity classes.

Although we do not know whether allowing nondeterminism strictly increases the class of languages
decided in polynomial time, Savitch’s Theorem says that for space classes, nondeterminism does not
help by more than a polynomial amount.
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FIGURE 7.2 Inclusion relationships among the canonical complexity classes.

7.4.3 Complementation

For a language A over an alphabet %, define A to be the complement of A in the set of words over X: that
is, A=3" — A. For a class of languages C, define co-C = {A : A € C}. If C = co-C, then C is closed under
complementation.

In particular, co-NP is the class of languages that are complements of languages in NP. For the lan-
guage SAT of satisfiable Boolean formulas, SAT is essentially the set of unsatisfiable formulas, whose
value is false for every truth assignment, together with the syntactically incorrect formulas. A closely
related language in co-NP is the set of Boolean tautologies, namely, those formulas whose value is
true for every truth assignment. The question of whether NP equals co-NP comes down to whether
every tautology has a short (i.e., polynomial-sized) proof. The only obvious general way to prove a tau-
tology ¢ in m variables is to verify all 2 rows of the truth table for ¢, taking exponential time. Most
complexity theorists believe that there is no general way to reduce this time to polynomial, hence that
NP # co-NP.

Questions about complementation bear directly on the P vs. NP question. It is easy to show that P is
closed under complementation (see Theorem 7.3). Consequently, if NP # co-NP, then P # NP.

Theorem 7.3 (Complementation Theorems)

Let t be a time-constructible function, and let s be a space-constructible function, with s(n) > log n for
all n. Then,

1. DTIME[t] is closed under complementation.
2. DSPACE[s] is closed under complementation.
3. NSPACE][s] is closed under complementation (Immerman, 1988; Szelepcsényi, 1988).

The Complementation Theorems are used to prove the Hierarchy Theorems in the next section.
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7.4.4 Hierarchy Theorems and Diagonalization

A hierarchy theorem is a theorem that says “If you have more resources, you can compute more.” As
we saw in Section 7.4.1, this theorem is possible only if we restrict attention to constructible time and
space bounds. Next, we state hierarchy theorems for deterministic and nondeterministic time and space
classes. In the following, C denotes strict inclusion between complexity classes.

Theorem 7.4 (Hierarchy Theorems)

Let ¢, and t, be time-constructible functions, and let s, and s, be space-constructible functions, with
$,(n), s,(n) > log n for all n.

(@) Ift,(n)log t,(n) = o(t,(n)), then DTIMEt,] C DTIME[t,).

(b) Ift,(n + 1) = o(t,(n)), then NTIME[t,] C NTIMEt,] (Seiferas et al., 1978).
(©) Ifs,(n) = o(s,(n)), then DSPACE(s,] C DSPACE[s,].

(d) Ifs,(n) = o(s,(n)), then NSPACE[s,] C NSPACE([s,].

As a corollary of the Hierarchy Theorem for DTIME,
P C DTIME [n'°®"]c DTIME [2"]CE

hence we have the strict inclusion P C E. Although we do not know whether P C NP, there exists a prob-
lem in E that cannot be solved in polynomial time. Other consequences of the Hierarchy Theorems are
NE C NEXP and NL C PSPACE.

In the Hierarchy Theorem for DTIME, the hypothesis on ¢, and t, is t,(n)log t,(n) = o(t,(n)), instead of
t,(n) = o(t,(n)), for technical reasons related to the simulation of machines with multiple worktapes by a
single universal Turing machine with a fixed number of worktapes. Other computational models, such
as RAMs, enjoy tighter time hierarchy theorems.

All proofs of the Hierarchy Theorems use the technique of diagonalization. For example, the proof
for DTIME constructs a Turing machine M of time complexity ¢, that considers all machines M,, M,,...
whose time complexity is ¢; for each i, the proof finds a word x; that is accepted by M if and only if
x; € L(M,), the language decided by M,. Consequently, L(M), the language decided by M, differs from
each L(M,), hence L(M) ¢ DTIMEt,]. The diagonalization technique resembles the classic method
used to prove that the real numbers are uncountable, by constructing a number whose jth digit differs
from the jth digit of the jth number on the list. To illustrate the diagonalization technique, we outline
the proof of the Hierarchy Theorem for DSPACE. In this section, (i, x) stands for the string 0'1x, and
zeroes(y) stands for the number of 0’s that a given string y starts with. Note that zeroes((i, x)) = i.

Proof. (of the DSPACE Hierarchy Theorem)

We construct a deterministic Turing machine M that decides a language A such that A €
DSPACE([s,] —DSPACE([s,].

Let U be a deterministic universal Turing machine, as described in Section 7.2.3. On input x of
length #n, machine M performs the following:

1. Lay out s,(n) cells on a worktape.

2. Let i = zeroes(x).

3. Simulate the universal machine U on input (i, x). Accept x if U tries to use more than s, work-
tape cells. (We omit some technical details, such as the way in which the constructibility of s,
is used to ensure that this process halts.)

4. If Uaccepts (i, x), then reject; if U rejects (i, x), then accept.

Clearly, M always halts and uses space O(s,(n)). Let A = L(M).
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Suppose A € DSPACE(s,(n)]. Then there is some Turing machine M; accepting A using space at most
s1(n). Since the space used by Uis O(1) times the space used by M, there is a constant k depending only
on j (in fact, we can take k = ||), such that U, on inputs z of the form z = (j, x), uses at most ks,(|x|) space.

Since s,(n) = o(s,(n)), there is an n, such that ks,(n) < s,(n) for all n > n,. Let x be a string of length
greater than n, such that the first j + 1 symbols of x are 0/1. Note that the universal Turing machine U,
on input (j, x), simulates M; on input x and uses space at most ks, (1) < s,(). Thus, when we consider the
machine M defining A, we see that on input x the simulation does not stop in step 3 but continues on to
step 4, and thus x € A if and only if U rejects (j, x). Consequently, M; does not accept A, contrary to our
assumption. Thus A ¢ DSPACE[s,(n)]. O

Although the diagonalization technique successfully separates some pairs of complexity classes,
diagonalization does not seem strong enough to separate P from NP (see Theorem 7.11).

7.4.5 Padding Arguments

A useful technique for establishing relationships between complexity classes is the padding argument.
Let A be a language over alphabet X, and let # be a symbol not in X. Let f be a numeric function. The
f-padded version of L is the language

A ={x#™:xe Aandn=|x|}

That is, each word of A’ is a word in A concatenated with f(n) consecutive # symbols. The padded version
A’ has the same information content as A, but because each word is longer, the computational complex-
ity of A’ is smaller.

The proof of the next theorem illustrates the use of a padding argument.

Theorem 7.5

IfP = NP, thenE = NE (Book, 1974).

Proof. Since E C NE, we prove that NE C E.

Let A € NE be decided by a nondeterministic Turing machine M in at most (1) = k" time for some con-
stant integer k. Let A’ be the t(n)-padded version of A. From M, we construct a nondeterministic Turing
machine M’ that decides A" in linear time: M’ checks that its input has the correct format, using the time-
constructibility of ; then M’ runs M on the prefix of the input preceding the first # symbol. Thus, A’ € NP.

If P = NP, then there is a deterministic Turing machine D’ that decides A’ in at most p’(n) time for
some polynomial p’. From D', we construct a deterministic Turing machine D that decides A, as follows.
On input x of length n, since #(n) is time-constructible, machine D constructs x#t™, whose length is n +
t(n), in O(t(n)) time. Then D runs D’ on this input word. The time complexity of D is at most O(t(n)) +
p'(n + t(n)) = 20, Therefore, NE C E. O

A similar argument shows that the E = NE question is equivalent to the question of whether NP - P
contains a subset of 1%, that is, a language over a single-letter alphabet.

7.5 Reducibility and Completeness

In this section, we discuss relationships between problems: informally, if one problem reduces to another
problem, then, in a sense, the second problem is harder than the first. The hardest problems in NP are the
NP-complete problems. We define NP-completeness precisely, and we show how to prove that a problem is
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NP-complete. The theory of NP-completeness, together with the many known NP-complete problems, is
perhaps the best justification for interest in the classes P and NP. All of the other canonical complexity classes
listed earlier have natural and important problems that are complete for them; we give some of these as well.

7.5.1 Resource-Bounded Reducibilities

In mathematics, asin everyday life, a typical way to solve a new problem is to reduce it to a previously solved
problem. Frequently, an instance of the new problem is expressed completely in terms of an instance of
the prior problem, and the solution is then interpreted in the terms of the new problem. For example, the
maximum matching problem for bipartite graphs reduces to the network flow problem (see Chapter 5).
This kind of reduction is called many-one reducibility and is defined after the next paragraph.

A different way to solve the new problem is to use a subroutine that solves the prior problem. For
example, we can solve an optimization problem whose solution is feasible and maximizes the value of an
objective function g by repeatedly calling a subroutine that solves the corresponding decision problem
of whether there exists a feasible solution x whose value g(x) satisfies g(x) > k. This kind of reduction is
called Turing reducibility and is also defined after the next paragraph.

Let A, and A, be languages. A, is many-one reducible to A,, written A, <,, A,, if there exists a comput-
able function fsuch that for all x, x € A, if and only if f(x) € A,. The function fis called the transforma-
tion function. A, is Turing reducible to A,, written A, <; A,, if A, can be decided by a deterministic oracle
Turing machine M using A, as its oracle, that is, A, = L(M**). (Computable functions and oracle Turing
machines are defined in Section 7.2.) The oracle for A, models a hypothetical efficient subroutine for A,.

If f or M above consumes too much time or space, the reductions they compute are not helpful.
To study complexity classes defined by bounds on time and space resources, it is natural to consider
resource-bounded reducibilities. Let A, and A, be languages.

o A, is Karp reducible to A,, written A, <[, A,, if A, is many-one reducible to A, via a transforma-
tion function that is computable deterministically in polynomial time.

« A, islog-space reducible to A,, written A, <\¥ A,, if A, is many-one reducible to A, via a transfor-
mation function that is computable deterministically in O(log n) space.

o A, is Cook reducible to A,, written A, <F A,, if A, is Turing reducible to A, via a deterministic
oracle Turing machine of polynomial-time complexity.

The term “polynomial-time reducibility” usually refers to Karp reducibility. If A; <}, A,and A, <, A,, then
A, and A, are equivalent under Karp reducibility. Equivalence under Cook reducibility is defined similarly.

Karp and Cook reductions are useful for finding relationships between languages of high complexity,
but they are not useful at all for distinguishing between problems in P, because all problems in P are
equivalent under Karp (and hence Cook) reductions. (Here and later we ignore the special cases A, = @
and A, = X%, and consider them to reduce to any language.) Since there are interesting distinctions to be
made among problems in P, it is useful to have a more restrictive notion of reducibility.

Log-space reducibility (Jones, 1975) is just such a notion. Although it is not known whether log-space
reducibility is different from Karp reducibility (just as it is not known whether L is a proper subset
of P), this is widely believed to be true. (However, in practice, most problems that can be shown to be
NP-complete under Karp reductions remain complete under log-space reductions.)

Theorem 7.6

Log-space reducibility implies Karp reducibility, which implies Cook reducibility:

1. If A, < A,, then A, <5, A,.
2. If A, <P A, then A, <P A,
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Theorem 7.7

Log-space reducibility, Karp reducibility, and Cook reducibility are transitive:

1. If A, < A, and A, < A, then A, < A,
2. If A] SP Az and A2 Sﬁl A3, then Al SP A3.
3. IfA] Sp A2 and Az S; A3, then A] Séz A3.

The key property of Cook and Karp reductions is that they preserve polynomial-time feasibility.
Suppose A, <, A, via a transformation f. If M, decides A,, and M;computes f, then to decide whether an
input word x is in A,, we may use M;to compute f(x), and then run M, on input f(x). If the time com-
plexities of M, and M;are bounded by polynomials ¢, and ¢;, respectively, then on each input x of length
n = |x|, the time taken by this method of deciding A, is at most t(n) + t,(t{n)), which is also a polynomial
in n. In summary, if A, is feasible, and there is an efficient reduction from A, to A,, then A, is feasible.
Although this is a simple observation, this fact is important enough to state as a theorem (Theorem 7.8).
First, though, we need the concept of “closure.”

A class of languages C is closed under a reducibility <, if for all languages A, and A,, whenever
A, <,A,and A, € C, necessarily A, € C.

Theorem 7.8

1. P is closed under log-space reducibility, Karp reducibility, and Cook reducibility.
2. NP is closed under log-space reducibility and Karp reducibility.
3. Land NL are closed under log-space reducibility.

We shall see the importance of closure under a reducibility in conjunction with the concept of com-
pleteness, which we define in the next section.

7.5.2 Complete Languages

Let C be a class of languages that represent computational problems. A language A, is C-hard under a
reducibility <, if forall Ain C, A <, A,. Alanguage A, is C-complete under <, if A, is C-hard, and A, € C.
Informally, if A, is C-hard, then A, represents a problem that is at least as difficult to solve as any problem
in C. If A, is C-complete, then in a sense, A, is one of the most difficult problems in C.

There is another way to view completeness. Completeness provides us with tight lower bounds on the
complexity of problems. If a language A is complete for complexity class C, then we have a lower bound
on its complexity. Namely, A is as hard as the most difficult problem in C, assuming that the complexity
of the reduction itself is small enough not to matter. The lower bound is tight because A is in C; that is,
the upper bound matches the lower bound.

In the case C = NP, the reducibility <, is usually taken to be Karp reducibility unless otherwise stated.
Thus we say

o Alanguage A, is NP-hard if A, is NP-hard under Karp reducibility.
o A, is NP-complete if A is NP-complete under Karp reducibility.

Note, however, that some sources use the term “NP-hard” to refer to Cook reducibility.
Many important languages are now known to be NP-complete. Before we get to them, let us discuss
some implications of the statement “A, is NP-complete,” and also some things this statement does not mean.
The first implication is that if there exists a deterministic Turing machine that decides A, in polynomial
time—that is, if A, € P—then because P is closed under Karp reducibility (Theorem 7.8) it would follow
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that NP C P, hence P = NP. In essence, the question of whether P is the same as NP comes down to the
question of whether any particular NP-complete language is in P. Put another way, all of the NP-complete
languages stand or fall together: if one is in P, then all are in P; if one is not, then all are not. Another
implication, which follows by a similar closure argument applied to co-NP, is that if A, € co-NP then
NP = co-NP.Itisalso believed unlikely that NP = co-NP, as was noted in Section 7.4.3 in connection
with whether all tautologies have short proofs.

A common misconception is that the above property of NP-complete languages is actually their defini-
tion, namely: if A € NP, and A € P implies P = NP, then A is NP-complete. This “definition” is wrong
if P # NP. A theorem due to Ladner (1975) shows that P # NP if and only if there exists a language A’ in
NP - Psuchthat A’ isnot NP-complete. Thus, if P # NP, then A’ is a counterexample to the “definition.”

Another common misconception arises from a misunderstanding of the statement “If A, is
NP-complete, then A, is one of the most difficult problems in NP.” This statement is true on one level: if
there is any problem at all in NP that is not in P, then the NP-complete language A, is one such problem.
However, note that there are NP-complete problems in NTIME[n]—and these problems are, in some
sense, much simpler than many problems in NTIME ("]

7.5.3 Cook-Levin Theorem

Interest in NP-complete problems started with a theorem of Cook (1971), proved independently by
Levin (1973). Recall that SAT is the language of Boolean formulas ¢(z,,..., z,) such that there exists a
truth assignment to the variables z,,..., z, that makes ¢ true.

Theorem 7.9 (Cook-Levin Theorem)

SAT is NP-complete.

Proof. We know already that SAT is in NP, so to prove that SAT is NP-complete, we need to take an
arbitrary given language A in NP and show that A </, SAT. Take N to be a nondeterministic Turing
machine that decides A in polynomial time. Then the relation R(x, y) = “y is a computation path of N
that leads it to accept x” is decidable in deterministic polynomial time depending only on #n = |x|. We
can assume that the length m of possible y’s encoded as binary strings depends only on n and not on
a particular x.

It is straightforward to show that there is a polynomial p and for each 1 a Boolean circuit C} with
p(n) wires, with n + m input wires labeled x,,..., x,, y;,..., ¥,, and one output wire w,, such that C5 (x,)
outputs 1 if and only if R(x, y) holds. (We describe circuits in more detail in the following text, and state
a theorem for this principle as Part 1 of Theorem 7.15) Importantly, Cy itself can be designed in time
polynomial in #, and - by the universality of NAND - may be composed entirely of binary NAND gates.
Label the wires by variables x,,..., X,, ¥1e+es ¥y» Wo» Wisevss Wiy 1. These become the variables of our
Boolean formulas. For each NAND gate ¢ with input wires u and v, and for each output wire w of g, write
down the subformula

O =UVWIAWVVWIAUNVY VW).

This subformula is satisfied by precisely those assignments to u, v, w that give w = u NAND v. The con-
junction ¢, of ¢, over the polynomially many gates g and their output wires w thus is satisfied only by
assignments that set every gate’s output correctly given its inputs. Thus for any binary strings x and y
of lengths n, m respectively, the formula ¢, = ¢, A w, is satisfiable by a setting of the wire variables w,,
Wiseeo Wpionomot ifand only if CX(x,y)=1—that is, if and only if R(x, y) holds.
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Now given any fixed x and taking n = |x|, the Karp reduction computes ¢, as mentioned earlier and
finally outputs the Boolean formula ¢ obtained by substituting the bit-values of x into ¢,. This ¢ has
variables y,,..., ¥, Wo, Wise.s Wy a0d the computation of ¢ from x runs in deterministic polyno-
mial time. Then x € A if and only if N accepts x, if and only if there exists y such that R(x, y) holds, if
and only if there exists an assignment to the variables wy, wy,..., W _ymoi> a1d y1s..., ¥, that satisfies ¢,
if and only if ¢ € SAT. This shows A <, SAT.O

We have actually proved that SAT remains NP-complete even when the given instances ¢ are restricted
to Boolean formulas that are a conjunction of clauses, where each clause consists of (here, at most three)
disjuncted literals. Such formulas are said to be in conjunctive normal form. Theorem 7.9 is also com-
monly known as Cook’s Theorem.

7.5.4 Proving NP-Completeness

After one language has been proved complete for a class, others can be proved complete by constructing
transformations. For NP, if A is NP-complete, then to prove that another language A, is NP-complete,
it suffices to prove that A, € NP and to construct a polynomial-time transformation that estab-
lishes Ay <f, A,. Since A, is NP-complete, for every language A in NP, A <J, Ay, hence, by transitivity
(Theorem 7.7), A <P A,.

Beginning with Cook (1971) and Karp (1972), hundreds of computational problems in many fields of
science and engineering have been proved to be NP-complete, almost always by reduction from a prob-
lem that was previously known to be NP-complete. The following NP-complete decision problems are
frequently used in these reductions—the language corresponding to each problem is the set of instances
whose answers are yes.

o 3-SATISFIABILITY (3SAT)
Instance: A Boolean expression ¢ in conjunctive normal form with three literals per clause [e.g.,
WVXVYIAKXVyV2)]
Question: Is ¢ satisfiable?
e VERTEX COVER
Instance: A graph G and an integer k
Question: Does G have a set W of k vertices such that every edge in G is incident on a vertex of W?
e CLIQUE
Instance: A graph G and an integer k
Question: Does G have a set U of k vertices such that every two vertices in U are adjacent in G?
« INDEPENDENT SET
Instance: A graph G and an integer k
Question: Does G have a set U of k vertices such that no two vertices in U are adjacent in G?
o HamiLTONIAN CIRCUIT
Instance: A graph G
Question: Does G have a circuit that includes every vertex exactly once?
e THREE-DIMENSIONAL MATCHING
Instance: Sets W, X, Y with |W| = |X| =|Y| =qandasubset SC WXx X x Y
Question: Is there a subset §" C S of size q such that no two triples in §’ agree in any coordinate?
e PARTITION
Instance: A set S of positive integers
Question: Is there a subset ' C S such that the sum of the elements of S’ equals the sum of the
elements of S — §'?
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Note that our ¢ in the above proof of the Cook-Levin Theorem already meets a form of the definition
of 3SAT relaxed to allow “at most 3 literals per clause.” Padding ¢ with some extra variables to bring
up the number in each clause to exactly three, while preserving whether the formula is satisfiable or
not, is not difficult and establishes the NP-completeness of 3SAT. Below we use this in showing the
NP-completeness of INDEPENDENT SET.

Some NP-completeness proofs require only “minor adjustments” even between different-looking prob-
lems. Consider CLIQUE, INDEPENDENT SET, and VERTEX COVER. A graph G has a clique of size k if and only if
its complementary graph G has an independent set of size k. It follows that the function f defined by f(G, k) =
(G', k) is a Karp reduction from INDEPENDENT SET to CLIQUE. To forge a link to the VERTEX COVER problem,
note that all vertices not in a given vertex cover form an independent set, and vice versa. Thus a graph G on n
vertices has a vertex cover of size at most k if and only if G has an independent set of size at least n — k. Hence
the function g(G, k) = (G, n — k) is a Karp reduction from INDEPENDENT SET to VERTEX COVER.

Here is another example of an NP-completeness proof, for the following decision problem:

o TRAVELING SALESMAN PrROBLEM (TSP)
Instance: A set of m “cities” C,,..., C,,, with an integer distance d(i, j) between every pair of cities
C;and C;, and an integer D.
Question: Is there a tour of the cities whose total length is at most D, that is, a permutation c,;..., c,,
of {1,..., m}, such that

d(ci,c2) + -+ d(Cpu_1sCm) +d(Csc1) SD?

First, it is easy to see that TSP is in NP: a nondeterministic Turing machine simply guesses a tour and
checks that the total length is at most D.

Next, we construct a reduction from Hamiltonian Circuit to TSP. (The reduction goes from the
known NP-complete problem, Hamiltonian Circuit, to the new problem, TSP, not vice versa.)

From a graph G on m vertices v,,..., v,,, define the distance function d as follows:
. 1 if (v;,v;)isan edgein G
dii,j)= :
m+1  otherwise

Set D = m. Clearly, d and D can be computed in polynomial time from G. Each vertex of G corresponds
to a city in the constructed instance of TSP.

If G has a Hamiltonian circuit, then the length of the tour that corresponds to this circuit is exactly m.
Conversely, if there is a tour whose length is at most m, then each step of the tour must have distance 1,
not m + 1. Thus, each step corresponds to an edge of G, and the corresponding sequence of vertices in G
is a Hamiltonian circuit.

7.5.5 NP-Completeness by Combinatorial Transformation

The following example shows how the combinatorial mechanism of one problem (here, 3SAT) can be
transformed by a reduction into the seemingly much different mechanism of another problem.

Theorem 7.10

INDEPENDENT SET is NP-complete. Hence also CLIQUE and VERTEX COVER are NP-complete.

Proof. We have remarked already that the languages of these three problems belong to NP and shown
already that INDEPENDENT SET <, CLIQUE and INDEPENDENT SET <}, VERTEX COVER. It suffices to show
that 3SAT <? INDEPENDENT SET.
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FIGURE 7.3 Construction in the proof of NP-completeness of INDEPENDENT SET for the formula (x, V x, V x3) A
(%, V X, V x;). The independent set of size 5 corresponding to the satisfying assignment x, = false, x, = true, and
X5 = true is shown by nodes marked L.

Construction. Let the Boolean formula ¢ be a given instance of 3SAT with variables x,..., x, and clauses
Cy..., C,,. The graph G, we build consists of a “ladder” on 2n vertices labeled x,, x ..., x,, x ,, with edges
(x;, x;) for 1 < i < n forming the “rungs,” and m “clause components.” Here the component for each
clause C; has one vertex for each literal x; or x in the clause, and all pairs of vertices within each clause
component are joined by an edge. Finally, each clause-component node with a label x; is connected by a
“crossing edge” to the node with the opposite label x; in the ith “rung,” and similarly each occurrence of
x;in a clause is joined to the rung node x;. This finishes the construction of G,,. See Figure 7.3.
Also set k = n + m. Then the reduction function fis defined for all arguments ¢ by f($) = (G, k).

Complexity. It is not hard to see that fis computable in polynomial time given (a straightforward encod-
ing of) ¢.

Correctness. To complete the proof, we need to argue that ¢ is satisfiable if and only if G, has an indepen-
dent set of size n + m. To see this, first note that any independent set I of that size must contain exactly
one of the two nodes from each “rung,” and exactly one node from each clause component—because
the edges in the rungs and the clause component prevent any more nodes from being added. And if I
selects a node labeled x; in a clause component, then I must also select x; in the ith rung. If I selects x; in
a clause component, then I must also select X in the rung. In this manner I induces a truth assignment
in which x; = true and x; = false, and so on for all variables. This assignment satisfies ¢, because the
node selected from each clause component tells how the corresponding clause is satisfied by the assign-
ment. Going the other way, if ¢ has a satisfying assignment, then that assignment yields an independent
set I of size n + m in like manner. O

7.5.6 Complete Problems for Other Classes

Besides NP, the following canonical complexity classes have natural complete problems. The three prob-
lems now listed are complete for their respective classes under log-space reducibility.

e NL: GRAPH ACCESSIBILITY PROBLEM
Instance: A directed graph G with nodes 1,..., N
Question: Does G have a directed path from node 1 to node N?
e P: CIRCUIT VALUE PROBLEM
Instance: A Boolean circuit (see Section 7.9) with output node u, and an assignment I of {0, 1} to
each input node
Question: Is 1 the value of u under I?
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e PSPACE: QUANTIFIED BOOLEAN FORMULAS
Instance: A Boolean expression with all variables quantified with either V or 3 [e.g.,
VxVy3z(x A (¥ V 2))]
Question: Is the expression true?

These problems can be used to prove that other problems are NL-complete, P-complete, and PSPACE-
complete, respectively.

Stockmeyer and Meyer (1973) defined a natural decision problem that they proved to be complete for
NE. If this problem were in P, then by closure under Karp reducibility (Theorem 7.8), we would have
NE C P, a contradiction of the hierarchy theorems (Theorem 7.4). Therefore, this decision problem is
infeasible: it has no polynomial-time algorithm. In contrast, decision problems in NEXP - P that have
been constructed by diagonalization are artificial problems that nobody would want to solve anyway.
Although diagonalization produces unnatural problems by itself, the combination of diagonalization
and completeness shows that natural problems are intractable.

The next section points out some limitations of current diagonalization techniques.

7.6 Relativization of the P vs. NP Problem

Let A be a language. Define P# (respectively, NP4) to be the class of languages accepted in polynomial
time by deterministic (nondeterministic) oracle Turing machines with oracle A.

Proofs that use the diagonalization technique on Turing machines without oracles generally carry
over to oracle Turing machines. Thus, for instance, the proof of the DTIME hierarchy theorem also
shows that, for any oracle A, DTIME#[n?] is properly contained in DTIMEA[#?]. This can be seen as a
strength of the diagonalization technique, since it allows an argument to “relativize” to computation
carried out relative to an oracle. In fact, there are examples of lower bounds (for deterministic, “unrela-
tivized” circuit models) that make crucial use of the fact that the time hierarchies relativize in this sense.

But it can also be seen as a weakness of the diagonalization technique. The following important theo-
rem demonstrates why.

Theorem 7.11

There exist languages A and B such that PA = NP4, and P? # NP? (Baker et al., 1975).

This shows that resolving the P vs. NP question requires techniques that do not relativize, that is, that
do not apply to oracle Turing machines too. Thus, diagonalization as we currently know it is unlikely to
succeed in separating P from NP, because the diagonalization arguments we know (and in fact most of
the arguments we know) relativize. Important nonrelativizing proof techniques were discovered in the
early 1990s, in connection with interactive proof systems (Section 7.12.1).

7.7 The Polynomial Hierarchy

Let C be a class of languages. Define
« NP‘= LJAGCNPA
o X =II}=p
and for k > 0, define
o 3, =np
° Hfﬂ :CO‘ZII:H
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Observe that If = NP® = NP, because each of polynomially many queries to an oracle language in P
can be answered directly by a (nondeterministic) Turing machine in polynomial time. Consequently,
T} = co-NP. For each k, f UTT{  Z{,, NI}, but this inclusion is not known to be strict.

The classes X} and I} constitute the polynomial hierarchy. Define

PH =UZ£

k>0

It is straightforward to prove that PH C PSPACE, but it is not known whether the inclusion is strict. In
fact, if PH = PSPACE, then the polynomial hierarchy collapses to some level, that is, PH =X, for
some m. In the next section, we define the polynomial hierarchy in two other ways, one of which is in
terms of alternating Turing machines.

7.8 Alternating Complexity Classes

In this section, we define time and space complexity classes for alternating Turing machines, and we
show how these classes are related to the classes introduced already. The possible computations of an
alternating Turing machine M on an input word x can be represented by a tree T, in which the root is the
initial configuration, and the children of a nonterminal node C are the configurations reachable from
C by one step of M. For a word x in L(M), define an accepting subtree S of T, to be a subtree of T, with
the following properties:

 Sis finite.

o The root of § is the initial configuration with input word x.

 If Shas an existential configuration C, then S has exactly one child of Cin T;; if S has a universal
configuration C, then S has all children of Cin T,.

o Everyleafis a configuration whose state is the accepting state q,.

Observe that each node in § is an accepting configuration.

We consider only alternating Turing machines that always halt. For x € L(M), define the time taken by M
to be the height of the shortest accepting tree for x, and the space to be the maximum number of worktape
cells visited along any path in an accepting tree that minimizes this number. For x ¢ L(M), define the time to
be the height of T,, and the space to be the maximum number of worktape cells visited along any path in T,.

Let t(n) be a time-constructible function, and let s(1) be a space-constructible function. Define the
following complexity classes:

o ATIME[t(n)] is the class of languages decided by alternating Turing machines of time complexity
O(t(n)).

o ASPACE(s(n)] is the class of languages decided by alternating Turing machines of space complex-
ity O(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing machine, for
every t(n) and s(n), NTIME[t] C ATIME[f] and NSPACE[s] C ASPACE([s]. The next theorem states further
relationships between computational resources used by alternating Turing machines and resources used
by deterministic and nondeterministic Turing machines.

Theorem 7.12 (Alternation Theorems)

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function, s(n) > log n
(Chandra et al., 1981).
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(@) NSPACE[s(n)] € ATIME[s(n)].
(b) ATIME[t(n)] C DSPACE[t(n)].

(c) ASPACE[s(n)] C DTIME[206()],
(d) DTIME[t(n)] € ASPACE(log t(n)].

In other words, space on deterministic and nondeterministic Turing machines is polynomially
related to time on alternating Turing machines. Space on alternating Turing machines is exponen-
tially related to time on deterministic Turing machines. The following corollary is immediate.

Theorem 7.13

(a) ASPACE[O(log n)] = P.
(b) ATIME[n°"] = PSPACE.
(c) ASPACE[n°V] = EXP.

In Section 7.7, we defined the classes of the polynomial hierarchy in terms of oracles, but we can also
define them in terms of alternating Turing machines with restrictions on the number of alternations
between existential and universal states. Define a k-alternating Turing machine to be a machine such
that on every computation path, the number of changes from an existential state to a universal state, or
from a universal state to an existential state, is at most k — 1. Thus, a nondeterministic Turing machine,
which stays in existential states, is a 1-alternating Turing machine.

Theorem 7.14

For any language A, the following are equivalent (Stockmeyer, 1976; Wrathall, 1976):

1. Ae 3},

2. Ais decided in polynomial time by a k-alternating Turing machine that starts in an existential
state.

3. There exists a language B in P and a polynomial p such that for all x, x € A if and only if

Gy:ly[<p(x D) (Fy2:y2 [< p(lx D) - @y s ye | < p(|x D) [(6915. 1) € B]
where the quantifier Q is 3 if k is odd, V if k is even.

Alternating Turing machines are closely related to Boolean circuits, which are defined in Section 7.9.

7.9 Circuit Complexity

The hardware of electronic digital computers is based on digital logic gates, connected into combina-
tional circuits (see Chapter 17). Here, we specify a model of computation that formalizes the combi-
national circuit.

A Boolean circuit on n input variables x,,..., x,, is a directed acyclic graph with exactly n input nodes
of indegree 0 labeled x;,..., x, and other nodes of indegree 1 or 2, called gates, labeled with the Boolean
operators in {A, V, 1}. One node is designated as the output of the circuit. See Figure 7.4. Without loss of
generality, we assume that there are no extraneous nodes; there is a directed path from each node to the
output node. The indegree of a gate is also called its fan-in.

An input assignment is a function I that maps each variable x; to either 0 or 1. The value of each gate g
under I is obtained by applying the Boolean operation that labels g to the values of the immediate predeces-
sors of g The function computed by the circuit is the value of the output node for each input assignment.
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/ Output node
&) © ®

FIGURE 7.4 A Boolean circuit.

A Boolean circuit computes a finite function: a function of only # binary input variables. To decide
membership in a language, we need a circuit for each input length n.

A circuit family is an infinite set of circuits C = {c,, c,,...} in which each ¢, is a Boolean circuit on
n inputs. C decides a language A C {0, 1}* if for every n and every assignment a,..., a, of {0, 1} to the
n inputs, the value of the output node of ¢, is 1 if and only if the word a, - a, € A. The size complexity
of C is the function z(n) that specifies the number of nodes in each c,. The depth complexity of C is the
function d(n) that specifies the length of the longest directed path in c,. Clearly, since the fan-in of each
gate is at most 2, d(n) > log z(n) > log n. The class of languages decided by polynomial-size circuits is
denoted by P/poly.

With a different circuit for each input length, a circuit family could solve an undecidable problem
such as the halting problem (see Chapter 8). For each input length, a table of all answers for machine
descriptions of that length could be encoded into the circuit. Thus, we need to restrict our circuit fami-
lies. The most natural restriction is that all circuits in a family should have a concise, uniform descrip-
tion, to disallow a different answer table for each input length. Several uniformity conditions have been
studied; the following is the easiest to present:

A circuit family {c,, c,,...} of size complexity z(n) is log-space uniform if there exists a deterministic
Turing machine M such that on each input of length #, machine M produces a description of ¢,, using
space O(log z(n)).

Now we define complexity classes for uniform circuit families and relate these classes to previously
defined classes. Define the following complexity classes:

o SIZE[z(n)] is the class of languages decided by log-space uniform circuit families of size complex-
ity O(z(n)).

o DEPTH[d(n)] is the class of languages decided by log-space uniform circuit families of depth com-
plexity O(d(n)).

In our notation, SIZE[n°"] equals P, which is a proper subclass of P/poly.

Theorem 7.15

1. If t(n) is a time-constructible function, then DTIME[t(n)] C SIZE[t(n)log t(n)] (Pippenger and
Fischer, 1979).

2. SIZE[z(n)] C DTIME[z(n)°®)].

3. If s(n) is a space-constructible function and s(n) > log n, then NSPACE([s(n)] C DEPTH|[s(1)?]
(Borodin, 1977).

4. If d(n) > log n, then DEPTH[d(n)] C DSPACE[d(n)] (Borodin, 1977).

The next theorem shows that size and depth on Boolean circuits are closely related to space and time
on alternating Turing machines, provided that we permit sublinear running times for alternating Turing
machines, as follows. We augment alternating Turing machines with a random-access input capability.
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To access the cell at position j on the input tape, M writes the binary representation of j on a special tape,
in log j steps, and enters a special reading state to obtain the symbol in cell ;.

Theorem 7.16

(Ruzzo, 1979). Let t(n) > log n and s(n) > log n be such that the mapping n ~ (¢(n), s(n)) (in binary) is
computable in time s(n).

1. Every language decided by an alternating Turing machine of simultaneous space complexity
s(n) and time complexity #(n) can be decided by a log-space uniform circuit family of simulta-
neous size complexity 206" and depth complexity O(t(n)).

2. If d(n) > (log z(n))?, then every language decided by a log-space uniform circuit family of
simultaneous size complexity z(n) and depth complexity d(n) can be decided by an alternating
Turing machine of simultaneous space complexity O(log z(n)) and time complexity O(d(n)).

The correspondence between time on alternating Turing machines and depth on log-space uniform
circuits breaks down for time and depth less than log?n, primarily because L is not known to be con-
tained in ATIME(o(log?n)). This has motivated the adoption of more restrictive notions of uniformity
(see, e.g., Ruzzo, 1981; Vollmer, 1999). When researchers mention small uniform circuit classes, they
usually are referring to these more restrictive notions of uniformity. (For depths at least log n, the com-
plexity classes obtained via these different notions of uniformity coincide.)

In a sense, the Boolean circuit family is a model of parallel computation, because all gates compute
independently, in parallel. For each k > 0, NC* denotes the class of languages decided by uniform
bounded-fan-in circuits of polynomial size and depth O((log n)¥), and AC* is defined analogously for
unbounded fan-in circuits. In particular, ACK is the same as the class of languages decided by a parallel
machine model called the CRCW PRAM with polynomially many processors in parallel time O((log n)¥)
(Stockmeyer and Vishkin, 1984).

7.10 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems (see
Chapter 11), complexity theorists have placed randomized algorithms on a firm intellectual foundation.
In this section, we outline some basic concepts in this area.

A probabilistic Turing machine M can be formalized as a nondeterministic Turing machine with
exactly two choices at each step. During a computation, M chooses each possible next step with inde-
pendent probability 1/2. Intuitively, at each step, M flips a fair coin to decide what to do next. The prob-
ability of a computation path of ¢ steps is 1/2*. The probability that M accepts an input string x, denoted
by p,(x), is the sum of the probabilities of the accepting computation paths.

Throughout this section, we consider only machines whose time complexity #(n) is time-construct-
ible. Without loss of generality, we may assume that every computation path of such a machine halts in
exactly ¢ steps.

Let A be alanguage. A probabilistic Turing machine M decides A with

forallxe A forallx ¢ A
Unbounded two-sided error  if  p,(x) > 1/2 pulx) <172
Bounded two-sided error if  pul0)>12+e  pylx)<l/2-¢

for some positive constant &

One-sided error it pylx)>1/2 pu(x) =0.
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Many practical and important probabilistic algorithms make one-sided errors. For example, in the
primality testing algorithm of Solovay and Strassen (1977), when the input x is a prime number, the
algorithm always says “prime”; when x is composite, the algorithm usually says “composite,” but may
occasionally say “prime.” Using the definitions above, this means that the Solovay-Strassen algorithm
is a one-sided error algorithm for the set A of composite numbers. It also is a bounded two-sided error
algorithm for A, the set of prime numbers.

These three kinds of errors suggest three complexity classes:

o PP is the class of languages decided by probabilistic Turing machines of polynomial-time
complexity with unbounded two-sided error.

o BPP is the class of languages decided by probabilistic Turing machines of polynomial-time
complexity with bounded two-sided error.

o RP is the class of languages decided by probabilistic Turing machines of polynomial-time
complexity with one-sided error.

In the literature, RP has also sometimes been called R.

A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an RP-machine)
if M has polynomial-time complexity, and M decides with two-sided error (bounded two-sided error,
one-sided error).

Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines and
RP-machines arbitrarily small, as stated in the following theorem. (Among other things, this theorem
implies that RP C BPP.)

Theorem 7.17

If A € BPP, then for every polynomial g(n), there exists a BPP-machine M such that p,,(x) > 1 — 1/24®
for every x € A, and p,(x) < 1/24" for every x & A.

If L € RP, then for every polynomial g(n), there exists an RP-machine M such that p,,(x) > 1 — 1/24®
for every x in L.

It is important to note just how minuscule the probability of error is (provided that the coin flips
are truly random). If the probability of error is less than 1/2°0%, then it is less likely that the algorithm
produces an incorrect answer than that the computer will be struck by a meteor. An algorithm whose
probability of error is 1/2°0% is essentially as good as an algorithm that makes no errors. For this
reason, many computer scientists consider BPP to be the class of practically feasible computational
problems.

Next, we define a class of problems that have probabilistic algorithms that make no errors. Define

¢ ZPP = RPN co-RP.

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose A € ZPP. Here is
an algorithm that checks membership in A. Let M be an RP-machine that decides A, and let M’ be an
RP-machine that decides A. For an input string x, alternately run M and M’ on x, repeatedly, until a
computation path of one machine accepts x. If M accepts x, then accept x; if M’ accepts x, then reject x.
This algorithm works correctly because when an RP-machine accepts its input, it does not make a mis-
take. This algorithm might not terminate, but with very high probability, the algorithm terminates after
a few iterations.

The next theorem expresses some known relationships between probabilistic complexity classes
and other complexity classes, such as classes in the polynomial hierarchy. See Section 7.7 and
Figure 7.5.
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FIGURE 7.5 Probabilistic complexity classes.
Theorem 7.18

(a) PC zZPP CRP C BPP C PP C PSPACE (Gill, 1977).
(b) RP C NP C PP (Gill, 1977).

() BPP cX) NIT} (Lautemann, 1983; Sipser, 1983).
(d) BPP C P/poly.

(e) PH C PP? (Toda, 1991).

An important recent research area called de-randomization studies whether randomized algorithms
can be converted to deterministic ones of the same or comparable efficiency. For example, if there is a
language in E that requires Boolean circuits of size 29" to decide it, then BPP = P (Impagliazzo and
Wigderson, 1997).

7.11 Quantum Computation

A probabilistic computer enables one to sample efficiently over exponentially many possible computa-
tion paths. However, if BPP = P then the added capability is weak. A quantum computer, however, can
harness parallelism and randomness in ways that appear theoretically to be much more powerful, ways
that are able to solve problems believed not to lie in BPP. A key difference is that by quantum interfer-
ence, opening up new computation paths may cause the probabilities of some other paths to vanish,
whereas for a BPP-machine those probabilities would remain positive.

o BOQP is the class of languages decided by quantum machines of polynomial-time complexity with
bounded two-sided error.

A prime motivation for studying BQP is that it includes language versions of the integer factoring and
discrete logarithm problems, which are not known to belong to BPP. The public-key cryptosystems in
common use today rely on the presumed intractability of these problems and are theoretically breakable
by eavesdroppers armed with quantum computers. This is one of several reasons why the interplay of
quantum mechanics and computational complexity is important to cryptographers.
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In terms of the complexity classes depicted in Figure 7.5, the only inclusions that are known involving
BQP are

BPP BQP PP.

In particular, it is important to emphasize that it is not generally believed that quantum computers can
solve NP-complete problems quickly.

7.12 Interactive Models and Complexity Classes

7.12.1 Interactive Proofs

In Section 7.3.2, we characterized NP as the set of languages whose membership proofs can be
checked quickly, by a deterministic Turing machine M of polynomial-time complexity. A different
notion of proof involves interaction between two parties, a prover P and a verifier V, who exchange
messages. In an interactive proof system (Goldwasser et al., 1989), the prover is an all-powerful
machine, with unlimited computational resources, analogous to a teacher. The verifier is a computa-
tionally limited machine, analogous to a student. Interactive proof systems are also called “Arthur-
Merlin games™ the wizard Merlin corresponds to P and the impatient Arthur corresponds to V
(Babai and Moran, 1988).
Formally, an interactive proof system comprises the following:

+ A read-only input tape on which an input string x is written.

o A verifier V, which is a probabilistic Turing machine augmented with the capability to send and
receive messages. The running time of V is bounded by a polynomial in |x|.

o A prover P, which receives messages from V and sends messages to V.

+ A tape on which V writes messages to send to P, and a tape on which P writes messages to send to V.
The length of every message is bounded by a polynomial in |x|.

A computation of an interactive proof system (P, V) proceeds in rounds, as follows. For j = 1, 2,...,
in round j, V performs some steps, writes a message m;, and temporarily stops. Then P reads m; and
responds with a message m’, which V reads in round j + 1. An interactive proof system (P, V) accepts an
input string x if the probability of acceptance by V satisfies p(x) > 1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a statement with-
out exhibiting an entire proof, as the following example illustrates.

Consider the graph nonisomorphism problem: the input consists of two graphs G and H, and the
decision is yes if and only if G is not isomorphic to H. Although there is a short proof that two graphs
are isomorphic (namely: the proof consists of the isomorphism mapping G onto H), nobody has found
a general way of proving that two graphs are not isomorphic that is significantly shorter than listing all n!
permutations and showing that each fails to be an isomorphism. (That is, the graph nonisomorphism
problem is in co-NP but is not known to be in NP.) In contrast, the verifier V in an interactive proof
system is able to take statistical evidence into account, and determine “beyond all reasonable doubt”
that two graphs are nonisomorphic, using the following protocol.

In each round, V randomly chooses either G or H with equal probability; if V chooses G, then V'
computes a random permutation G’ of G, presents G’ to P, and asks P whether G’ came from G or
from H (and similarly H' if V chooses H). If G and H are nonisomorphic, then P always answers
correctly. If G and H are isomorphic, then after k consecutive rounds, the probability that P always
answers correctly is 1/2%. (To see this, it is important to understand that the prover P does not see
the coins that V flips in making its random choices; P sees only the graphs G’ and H' that V sends as
messages.) V accepts the interaction with P as “proof” that G and H are nonisomorphic if P is able to
pick the correct graph for 100 consecutive rounds. Note that V has ample grounds to accept this as a
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convincing demonstration: if the graphs are indeed isomorphic, the prover P would have to have an
incredible streak of luck to fool V.

It is important to comment that de-randomization techniques applied to these proof systems have
shown that under plausible hardness assumptions, proofs of nonisomorphism of subexponential length
(or even polynomial length) do exist (Klivans and van Melkebeek, 2002). Thus many complexity theore-
ticians now conjecture that the graph isomorphism problem lies in NP N co-NP.

The complexity class IP comprises the languages A for which there exists a verifier V and a positive
€ such that

o There exists a prover P such that for all x in A, the interactive proof system (P, V) accepts x with
probability greater than 1/2 + ¢

o For every prover P and every x ¢ A, the interactive proof system (P, V) rejects x with probability
greater than 1/2 + €

By substituting random choices for existential choices in the proof that ATIME(f) C DSPACE(t)
(Theorem 7.12), it is straightforward to show that IP C PSPACE. It was originally believed likely that
IP was a small subclass of PSPACE. Evidence supporting this belief was the construction of an oracle
language B for which co-NP? — IP? # @ (Fortnow and Sipser, 1988), so that IP? is strictly included in
PSPACES. Using a proof technique that does not relativize, however, Shamir (1992) proved that in fact,
IP and PSPACE are the same class.

Theorem 7.19

IP = PSPACE (Shamir, 1992).

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 7.19 says that interactive proof
systems can decide a larger class of languages than NP.

7.12.2 Probabilistically Checkable Proofs

In an interactive proof system, the verifier does not need a complete conventional proof to become con-
vinced about the membership of a word in a language, but uses random choices to query parts of a proof
that the prover may know. This interpretation inspired another notion of “proof™ a proof consists of a
(potentially) large amount of information that the verifier need only inspect in a few places in order to
become convinced. The following definition makes this idea more precise.

A language A has a probabilistically checkable proof if there exists an oracle BPP-machine M such
that

« Forall x € A, there exists an oracle language B, such that M ™ accepts x with probability 1.
o Forall x ¢ A, and for every language B, machine M? accepts x with probability strictly less than
1/2.

Intuitively, the oracle language B, represents a proof of membership of x in A. Notice that B, can be
finite since the length of each possible query during a computation of M™ on x is bounded by the run-
ning time of M. The oracle language takes the role of the prover in an interactive proof system—but in
contrast to an interactive proof system, the prover cannot change strategy adaptively in response to the
questions that the verifier poses. This change results in a potentially stronger system, since a machine M
that has bounded error probability relative to all languages B might not have bounded error probability
relative to some adaptive prover. Although this change to the proof system framework may seem mod-
est, it leads to a characterization of a class that seems to be much larger than PSPACE.
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Theorem 7.20

A has a probabilistically checkable proof if and only if A € NEXP (Babai et al., 1991).

Although the notion of probabilistically checkable proofs seems to lead us away from feasible com-
plexity classes, by considering natural restrictions on how the proof is accessed, we can obtain impor-
tant insights into familiar complexity classes.

Let PCP[r(n), q(n)] denote the class of languages with probabilistically checkable proofs in which the
probabilistic oracle Turing machine M makes r(n) random binary choices and queries its oracle q(rn)
times. (For this definition, we assume that M has either one or two choices for each step.) It follows from
the definitions that BPP = PCP[n°", 0],and NP = PCP[0, n°")].

Theorem 7.21 (The PCP Theorem)

NP = PCP[O(log n), O(1)] (Arora et al., 1998).

Theorem 7.21 asserts that for every language A in NP, a proof that x € A can be encoded so that the
verifier can be convinced of the correctness of the proof (or detect an incorrect proof) by using only
O(log n) random choices and inspecting only a constant number of bits of the proof.

7.13 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and space used by
Turing machines. Kolmogorov complexity is a static complexity measure that captures the difficulty
of describing a string. For example, the string consisting of three million zeroes can be described with
fewer than three million symbols (as in this sentence). In contrast, for a string consisting of three mil-
lion randomly generated bits, with high probability there is no shorter description than the string itself.

Our goal will be to equate the complexity of a string with the length of its shortest “description”—but
this raises the question of what class of “descriptions” should be considered. Given any Turing machine
M, one can define a measure C,(x) to be the length of the shortest input d (the “description”) such
that M(d) = x. At first, this might not seem to be a very promising approach, because using different
machines M, and M, will yield measures C,;, and Cy,, that differ wildly (or worse, are undefined for
those x that are never produced as output). Fortunately, the next theorem shows that if one chooses a
universal Turing machine U to define a measure Cy(x) in this way, the resulting measure is roughly the
same as that obtained by using any other universal machine.

Theorem 7.22 (Invariance Theorem)

There exists a universal Turing machine U such that for every universal Turing machine U’, there is a
constant ¢ such that for all y, Cy (y) < Cy(y) +c.

Henceforth, let C be defined by the universal Turing machine of Theorem 7.22. For every integer n
and every binary string y of length n, because y can be described by giving itself explicitly, C(y) <n + ¢’
for a constant ¢’. Call y incompressible if C(y) > n. Since there are 2" binary strings of length # and only
2" — 1 possible shorter descriptions, there exists an incompressible string for every length n.
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Kolmogorov complexity gives a precise mathematical meaning to the intuitive notion of “random-
ness.” If someone flips a coin 50 times and it comes up “heads” each time, then intuitively, the sequence
of flips is not random—although from the standpoint of probability theory the all-heads sequence is
precisely as likely as any other sequence. Probability theory does not provide the tools for calling one
sequence “more random” than another; Kolmogorov complexity theory does.

Kolmogorov complexity provides a useful framework for presenting combinatorial arguments. For
example, when one wants to prove that an object with some property P exists, then it is sufficient to
show that any object that does not have property P has a short description; thus any incompressible (or
“random”) object must have property P. This sort of argument has been useful in proving lower bounds
in complexity theory.

7.14 Research Issues and Summary

The core research questions in complexity theory are expressed in terms of separating complexity
classes:

o Is L different from NI.?
o Is P different from RP or BPP?
o Is P different from NP?
o Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the power of
nondeterminism, randomization, and interaction. In these studies, researchers have gone well beyond
the theory presented in this chapter:

« Beyond Turing machines and Boolean circuits, to restricted and specialized models in which
nontrivial lower bounds on complexity can be proved

» Beyond deterministic reducibilities, to nondeterministic and probabilistic reducibilities, and
refined versions of the reducibilities considered here

+ Beyond worst-case complexity, to average case complexity

Recent research in complexity theory has had direct applications to other areas of computer science and
mathematics. Probabilistically checkable proofs were used to show that obtaining approximate solutions
to some optimization problems is as difficult as solving them exactly. Complexity theory has provided new
tools for studying questions in finite model theory, a branch of mathematical logic. Fundamental questions
in complexity theory are intimately linked to practical questions about the use of cryptography for com-
puter security, such as the existence of one-way functions and the strength of public-key cryptosystems.

This last point illustrates the urgent practical need for progress in computational complexity theory.
Many popular cryptographic systems in current use are based on unproven assumptions about the dif-
ficulty of computing certain functions (such as the factoring and discrete logarithm problems). All of
these systems are thus based on wishful thinking and conjecture. Research is needed to resolve these
open questions and replace conjecture with mathematical certainty.

Key Terms

Complexity class: A set of languages that are decided within a particular resource bound. For
example, NTIME(n? log n) is the set of languages decided by nondeterministic Turing
machines within O(n? log n) time.

Constructibility: A function f(n) is time (respectively, space) constructible if there exists a deterministic
Turing machine that halts after exactly f(n) steps [after using exactly f(n) worktape cells] for
every input of length n.
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Diagonalization: A technique for constructing a language A that differs from every L(M,) for a list of
machines M,, M,,....

NP-complete: A language A, is NP-complete if A, € NP and A <, A, for every A in NP; that is, for every
A in NP, there exists a function f computable in polynomial time such that for every x, x € A
if and only if f(x) € A,.

Oracle: An oracle is a language A to which a machine presents queries of the form “Is w in A” and
receives each correct answer in one step.

Padding: A technique for establishing relationships between complexity classes that uses padded ver-
sions of languages, in which each word is padded out with multiple occurrences of a new
symbol—the word x is replaced by the word x#/*) for a numeric function f—in order to artifi-
cially lower the complexity of the language.

Reduction: A language A reduces to a language B if a machine that decides B can be used to decide A
efficiently.

Time and space complexity: The time (respectively, space) complexity of a deterministic Turing
machine M is the maximum number of steps taken (worktape cells visited) by M among all
input words of length .

Turing machine: A Turing machine M is a model of computation with a read-only input tape and
multiple worktapes. At each step, M reads the tape cells on which its access heads are located,
and depending on its current state and the symbols in those cells, M changes state, writes
new symbols on the worktape cells, and moves each access head one cell left or right or not
atall.
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Further Information

This chapter is a short version of three chapters written by the same authors for the Algorithms and
Theory of Computation Handbook (Allender et al., 1999).

The formal theoretical study of computational complexity began with the paper of Hartmanis and
Stearns (1965), who introduced the basic concepts and proved the first results. For historical perspectives
on complexity theory, see Stearns (1990), Sipser (1992), Hartmanis (1994), Wigderson (2006), Allender
(2009), and Fortnow (2009).

Contemporary textbooks on complexity theory are by Moore and Mertens (2011), Homer and Selman
(2011), Arora and Barak (2009), Goldreich (2008), while venerable texts include Sipser (2005), Hopcroft
etal. (2000), Hemaspaandra and Ogihara (2002), and Papadimitriou (1994). A good general reference is
the Handbook of Theoretical Computer Science (van Leeuwen, 1990), volume A.

The text by Garey and Johnson (1979) explains NP-completeness thoroughly, with examples of
NP-completeness proofs, and a collection of hundreds of NP-complete problems. Li and Vitanyi (2008)
provide a comprehensive scholarly treatment of Kolmogorov complexity, with many applications.

Five organizations and mainstay websites that promote research in computational complexity online
sources are the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT), the
European Association for Theoretical Computer Science (EATCS), the annual IEEE Conference on
Computational Complexity, the “Complexity Zoo,” and the theory section of StackExchange:

http://sigact.org/
http://www.eatcs.org/
http://www.computationalcomplexity.org/
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http://www.complexityzoo.com/
http://cstheory.stackexchange.com/

The Electronic Colloquium on Computational Complexity maintained at the University of Trier,
Germany at http://eccc.hpi-web.de/ and http://arxiv.org/ run by Cornell University include download-
able current research papers in the field, often with updates and revisions. Most individual researchers
have websites with their work, and some also write blogs where news and ideas can be found. Among
the most prominent blogs are:

Computational Complexity, http://blog.computationalcomplexity.org/, by Lance Fortnow and
William Gasarch.

Shtetl-Optimized, http://www.scottaaronson.com/blog/, by Scott Aaronson.

Godel’s Lost Letter and P=NP, http://rjlipton.wordpress.com/, by Richard Lipton and the third
author of this chapter.

Research papers on complexity theory are presented at several annual conferences, including the
ACM Symposium on Theory of Computing (STOC); the IEEE Symposium on Foundations of Computer
Science (FOCS), the International Colloquium on Automata, Languages, and Programming (ICALP)
sponsored by EATCS, and the Symposium on Theoretical Aspects of Computer Science (STACS). The
annual Conference on Computational Complexity (formerly Structure in Complexity Theory), also
sponsored by the IEEE, is entirely devoted to complexity theory. Journals in which complexity research
often appears include: Chicago Journal on Theoretical Computer Science, Computational Complexity,
Information and Computation, Journal of the ACM, Journal of Computer and System Sciences,
SIAM Journal on Computing, Theoretical Computer Science, Theory of Computing Systems (formerly
Mathematical Systems Theory), ACM Transactions on Computation Theory, and Theory of Computing.
Each issue of ACM SIGACT News and Bulletin of the EATCS contains a column on complexity theory.
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8.1 Introduction

The concept of algorithms is perhaps almost as old as human civilization. The famous Euclid algorithm
is more than 2000 years old. Angle trisection, solving Diophantine equations, and finding polyno-
mial roots in terms of radicals of coefficients are some well-known examples of algorithmic questions.
However, until the 1930s, the notion of algorithms was used informally (or rigorously but in a limited
context). It was a major triumph of logicians and mathematicians of the last century to offer a rigorous
definition of this fundamental concept. The revolution that resulted in this triumph was a collective
achievement of many mathematicians, notably Church, Godel, Kleene, Post, and Turing. Of particular
interest is a machine model proposed by Turing (1936), which has come to be known as the Turing
machine (TM).

This particular achievement had numerous significant consequences. It led to the concept of a general-
purpose computer or universal computation, a revolutionary idea originally anticipated by Babbage in
the 1800s. It is widely acknowledged that the development of a universal TM was prophetic of the mod-
ern all-purpose digital computer and played a key role in the thinking of pioneers in the development
of modern computers such as von Neumann (Davis 1980). From a mathematical point of view, however,
a more interesting consequence was that it was now possible to show the nonexistence of algorithms,
hitherto impossible due to their elusive nature. In addition, many apparently different definitions of
an algorithm proposed by different researchers in different continents turned out to be equivalent

8-1
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(in a precise technical sense, explained later). This equivalence led to the widely held hypothesis known
as the Church-Turing thesis that mechanical solvability is the same as solvability on a TM.

Formal languages are closely related to algorithms. They were introduced as a way to convey math-
ematical proofs without errors. Although the concept of a formal language dates back at least to the time
of Leibniz, a systematic study of them did not begin until the beginning of the last century. It became
a vigorous field of study when Chomsky formulated simple grammatical rules to describe the syntax of
a language (Chomsky 1956). Grammars and formal languages entered into computability theory when
Chomsky and others found ways to use them to classify algorithms.

The main theme of this chapter is about formal models, which include TMs (and their variants) as
well as grammars. In fact, the two concepts are intimately related. Formal computational models are
aimed at providing a framework for computational problem solving, much as electromagnetic theory
provides a framework for problems in electrical engineering. Thus, formal models guide the way to build
computers and the way to program them. At the same time, new models are motivated by advances in
the technology of computing machines. In this chapter, we will discuss only the most basic computa-
tional models and use these models to classify problems into some fundamental classes. In doing so, we
hope to provide the reader with a conceptual basis with which to read other chapters in this handbook.

8.2 Computability and a Universal Algorithm

Turing’s notion of mechanical computation was based on identifying the basic steps of such computations.
He reasoned that an operation such as multiplication is not primitive because it can be divided into more
basic steps such as digit-by-digit multiplication, shifting, and adding. Addition itself can be expressed in
terms of more basic steps such as add the lowest digits, compute, carry, and move to the next digit. Turing
thus reasoned that the most basic features of mechanical computation are the abilities to read and write
on a storage medium (which he chose to be a linear tape divided into cells or squares) and to make some
simple logical decisions. He also restricted each tape cell to hold only one among a finite number of sym-
bols (which we call the tape alphabet).* The decision step enables the computer to control the sequence of
actions. To make things simple, Turing restricted the next action to be performed on a cell neighboring
the one on which the current action occurred. He also introduced an instruction that told the computer
to stop. In summary, Turing proposed a model to characterize mechanical computation as being carried
out as a sequence of instructions of the following form: write a symbol (such as 0 or 1) on the tape cell,
move to the next cell, observe the symbol currently scanned and choose the next step accordingly, or stop.
These operations define a language we call the GOTO language.” Its instructions are

PRINT i (i is a tape symbol)

GO RIGHT

GO LEFT

GO TO STEP IF i IS SCANNED
STOP

A program in this language is a sequence of instructions (written one per line) numbered 1 — k. To run
a program written in this language, we should provide the input. We will assume that the input is a
string of symbols from a finite input alphabet (which is a subset of the tape alphabet), which is stored
on the tape before the computation begins. How much memory should we allow the computer to use?
Although we do not want to place any bounds on it, allowing an infinite tape is not realistic. This prob-
lem is circumvented by allowing expandable memory. In the beginning, the tape containing the input
defines its boundary. When the machine moves beyond the current boundary, a new memory cell will

* This bold step of using a discrete model was perhaps the harbinger of the digital revolution that was soon to follow.
* Turing’s original formulation is closer to our presentation in Section 8.5. But the GOTO language presents an equivalent
model.
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PRINT O

GO LEFT

GO TO STEP 2 IF 1 IS SCANNED
PRINT 1

GO RIGHT

GO TO STEP 5 IF 1 IS SCANNED
PRINT 1

GO RIGHT

GO TO STEP 1IF 1 IS SCANNED
STOP

O 0 NN Ul W N

—_
o

FIGURE 8.1 The doubling program in the GOTO language.

be attached with a special symbol B (blank) written on it. Finally, we define the result of computation as
the contents of the tape when the computer reaches the STOP instruction.

We will present an example program written in the GOTO language. This program accomplishes
the simple task of doubling the number of 1s (Figure 8.1). More precisely, on the input containing k 1s,
the program produces 2k 1s. Informally, the program achieves its goal as follows. When it reads a 1, it
changes the 1 to 0, moves left looking for a new cell, writes a 1 in the cell, returns to the starting cell and
rewrites as 1, and repeats this step for each 1. Note the way the GOTO instructions are used for repeti-
tion. This feature is the most important aspect of programming and can be found in all of the imperative
style programming languages.

The simplicity of the GOTO language is rather deceptive. There is strong reason to believe that it is pow-
erful enough that any mechanical computation can be expressed by a suitable program in the GOTO lan-
guage. Note also that the programs written in the GOTO language may not always halt, that is, on certain
inputs, the program may never reach the STOP instruction. In this case, we say that the output is undefined.

We can now give a precise definition of what an algorithm is. An algorithm is any program written
in the GOTO language with the additional property that it halts on all inputs. Such programs will be
called halting programs. Throughout this chapter, we will be interested mainly in computational prob-
lems of a special kind called decision problems that have a yes/no answer. We will modify our language
slightly when dealing with decision problems. We will augment our instruction set to include ACCEPT
and REJECT (and omit STOP). When the ACCEPT (REJECT) instruction is reached, the machine will
output yes or 1 (no or 0) and halt.

8.2.1 Some Computational Problems

We will temporarily shift our focus from the tool for problem solving (the computer) to the problems
themselves. Throughout this chapter, a computational problem refers to an input/output relationship.
For example, consider the problem of squaring an integer input. This problem assigns to each integer
(such as 22) its square (in this case 484). In technical terms, this input/output relationship defines a
function. Therefore, solving a computational problem is the same as computing the function defined
by the problem. When we say that an algorithm (or a program) solves a problem, what we mean is that,
for all inputs, the program halts and produces the correct output. We will allow inputs of arbitrary size
and place no restrictions. A reader with primary interest in software applications is apt to question the
validity (or even the meaningfulness) of allowing inputs of arbitrary size because it makes the set of all
possible inputs infinite, and thus unrealistic, in real-world programming. But there are no really good
alternatives. Any finite bound is artificial and is likely to become obsolete as the technology and our
requirements change. Also, in practice, we do not know how to take advantage of restrictions on the size
of the inputs. (See the discussion about nonuniform models in Section 8.5.) Problems (functions) that
can be solved by an algorithm (or a halting GOTO program) are called computable.
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As already remarked, we are interested mainly in decision problems. A decision problem is said to be
decidable if there is a halting GOTO program that solves it correctly on all inputs. An important class of
problems called partially decidable decision problems can be defined by relaxing our requirement a little
bit; a decision problem is partially decidable if there is a GOTO program that halts and outputs 1 on all
inputs for which the output should be 1 and either halts and outputs 0 or loops forever on the other inputs.

This means that the program may never give a wrong answer but is not required to halt on negative
inputs (i.e., inputs with 0 as output).

We now list some problems that are fundamental either because of their inherent importance or
because of their historical roles in the development of computation theory:

Problem 1 (halting problem). The input to this problem is a program P in the GOTO language and a binary
string x. The expected output is 1 (or yes) if the program P halts when run on the input x, 0 (or no) otherwise.

Problem 2 (universal computation problem). A related problem takes as input a program P and an
input x and produces as output what (if any) P would produce on input x. (Note that this is a decision
problem if P is restricted to a yes/no program.)

Problem 3 (string compression). For a string x, we want to find the shortest program in the GOTO
language that when started with the empty tape (i.e., tape containing one B symbol) halts and prints x.
Here shortest means the total number of symbols in the program is as small as possible.

Problem 4 (tiling). A tile* is a square card of unit size (i.e,, 1 x 1) divided into four quarters by two
diagonals, each quarter colored with some color (selected from a finite set of colors). The tiles have
fixed orientation and cannot be rotated. Given some finite set T of such tiles as input, the program is to
determine if finite rectangular areas of all sizes (i.e., k x m for all positive integers k and m) can be tiled
using only the given tiles such that the colors on any two touching edges are the same. It is assumed that
an unlimited number of basic tiles of each type are available. Figure 8.2b shows how the base set of tiles
given in Figure 8.2a can be used to tile a 5 x 5 square area.

Problem 5 (linear programming). Given a system of linear inequalities (called constraints), such as
3x — 4y < 13 with integer coefficients, the goal is to find if the system has a solution satisfying all of the
constraints.

()

FIGURE 8.2 An example of tiling. (a) Basic tiles and (b) 5 X 5 square composed of basic tiles.

* More precisely, a Wang tile, after Hao Wang, who wrote the first research paper on it.
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Some remarks must be made about the preceding problems. The problems in our list include non-
numerical problems and meta-problems, which are problems about other problems. The first two
problems are motivated by a quest for reliable program design. An algorithm for problem 1 (if it
exists) can be used to test if a program contains an infinite loop. Problem 2 is motivated by an attempt
to design a universal algorithm, which can simulate any other. This problem was first attempted by
Babbage, whose analytical engine had many ingredients of a modern electronic computer (although
it was based on mechanical devices). Problem 3 is an important problem in information theory and
arises in the following setting. Physical theories are aimed at creating simple laws to explain large
volumes of experimental data. A famous example is Kepler’s laws, which explained Tycho Brahe’s huge
and meticulous observational data. Problem 3 asks if this compression process can be automated.
When we allow the inference rules to be sufficiently strong, this problem becomes undecidable. We
will not discuss this problem further in this section but will refer the reader to some related formal
systems discussed in Li and Vitanyi (1993). The tiling problem is not merely an interesting puzzle. It
is an art form of great interest to architects and painters. Tiling has recently found applications in
crystallography. Linear programming is a problem of central importance in economics, game theory,
and operations research.

In the remainder of the section, we will present some basic algorithm design techniques and sketch
how these techniques can be used to solve some of the problems listed (or their special cases). The main
purpose of this discussion is to present techniques for showing the decidability (or partial decidability)
of these problems. The reader can learn more advanced techniques of algorithm design in some later
sections of this chapter as well as in many other chapters of this volume.

8.2.1.1 Table Lookup

The basic idea is to create a table for a function f, which needs to be computed by tabulating in one
column an input x and the corresponding f (x) in a second column. Then the table itself can be used as
an algorithm. This method cannot be used directly because the set of all inputs is infinite. Therefore,
it is not very useful, although it can be made to work in conjunction with the technique described
subsequently.

8.2.1.2 Bounding the Search Domain

The difficulty of establishing the decidability of a problem is usually caused by the fact that the object
we are searching for may have no known upper limit. Thus, if we can place such an upper bound (based
on the structure of the problem), then we can reduce the search to a finite domain. Then table lookup
can be used to complete the search (although there may be better methods in practice). For example,
consider the following special case of the tiling problem: Let k be a fixed integer, say 1000. Given a set
of tiles, we want to determine whether all rectangular rooms of shape k x n can be tiled for all n. (Note
the difference between this special case and the general problem. The general one allows k and #n both
to have unbounded value. But here we allow only 7 to be unbounded.) It can be shown (see Section 8.5
for details) that there are two bounds n, and n, (they depend on k) such that if there is at least one tile of
size k x t that can be tiled for some n, < t < n,, then every tile of size k x n can be tiled. If no k x t tile can
be tiled for any t between n, and n,, then obviously the answer is no. Thus, we have reduced an infinite
search domain to a finite one.

As another example, consider the linear programming problem. The set of possible solutions to
this problem is infinite, and thus a table search cannot be used. But it is possible to reduce the search
domain to a finite set using the geometric properties of the set of solutions of the linear program-
ming problem. The fact that the set of solutions is convex makes the search especially easy.

8.2.1.3 Use of Subroutines

This is more of a program design tool than a tool for algorithm design. A central concept of program-
ming is repetitive (or iterative) computation. We already observed how GOTO statements can be used
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to perform a sequence of steps repetitively. The idea of a subroutine is another central concept of pro-
gramming. The idea is to make use of a program P itself as a single step in another program Q. Building
programs from simpler programs is a natural way to deal with the complexity of programming tasks.
We will illustrate the idea with a simple example. Consider the problem of multiplying two positive
integers i and j. The input to the problem will be the form 11 ... 1011 ... 1 (i 1s followed by a 0, followed
by j 1s) and the output will be i x j 1s (with possibly some Os on either end). We will use the notation 1/ 01/
to denote the starting configuration of the tape. This just means that the tape contains i 1s followed by
a 0 followed by j 1s.

The basic idea behind a GOTO program for this problem is simple; add j 1s on the right end of tape
exactly i — 1 times and then erase the original sequence of i 1s on the left. A little thought reveals that the
subroutine we need here is to duplicate a string of 1s so that if we start with x 02% 1/ a call to the subrou-
tine will produce x 025 1/. Here x is just any sequence of symbols. Note the role played by the symbol 2.
As new Is are created on the right, the old 1s change to 2s. This will ensure that there are exactly j 1s on
the right end of the tape all of the time. This duplication subroutine is very similar to the doubling pro-
gram, and the reader should have very little difficulty writing this program. Finally, the multiplication
program can be done using the copy subroutine (i — 1) times.

8.2.2 A Universal Algorithm

We will now present in some detail a (partial) solution to problem 2 by arguing that there is a program U
written in the GOTO language, which takes as input a program P (also written using the GOTO lan-
guage) and an input x and produces as output P (x), the output of P on input x. For convenience, we will
assume that all programs written in the GOTO language use a fixed alphabet containing just 0, 1, and B.
Because we have assumed this for all programs in the GOTO language, we should first address the issue
of how an input to program U will look. We cannot directly place a program P on the tape because
the alphabet used to write the program P uses letters G, O, T, O, etc. This minor problem can be easily
circumvented by coding. The idea is to represent each instruction using only 0 and 1. One such coding
scheme is shown in Table 8.1.

To encode an entire program, we simply write down in order (without the line numbers) the code for
each instruction as given in the table. For example, here is the code for the doubling program shown in
Figure 8.1:

0001001011110110001101001111111011000110100111011100

Note that the encoded string contains all of the information about the program so that the encoding
is completely reversible. From now on, if P is a program in the GOTO language, then code(P) will
denote its binary code as just described. When there is no confusion, we will identify P and code(P).

TABLES8.1 Codingthe GOTO Instructions

Instruction Code
PRINT i 0001+t
GO LEFT 001

GO RIGHT 010

GO TOIF i IS SCANNED 01117017

STOP 100
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Before proceeding further, the reader may want to test his/her understanding of the encoding/decoding
process by decoding the following string: 010011101100.

The basic idea behind the construction of a universal algorithm is simple, although the details
involved in actually constructing one are enormous. We will present the central ideas and leave out the
actual construction. Such a construction was carried out in complete detail by Turing himself and was
simplified by others* U has as its input code(P) followed by the string x. U simulates the computational
steps of P on input x. It divides the input tape into three segments, one containing the program P, the
second one essentially containing the contents of the tape of P as it changes with successive moves, and
the third one containing the line number in program P of the instruction being currently simulated
(similar to a program counter in an actual computer).

We now describe a cycle of computation by U, which is similar to a central processing unit (CPU)
cycle in a real computer. A single instruction of P is implemented by U in one cycle. First, U should know
which location on the tape that Pis currently reading. A simple artifact can handle this as follows: U uses
in its tape alphabet two special symbols 0" and 1'. U stores the tape of P in the tape segment alluded to
in the previous paragraph exactly as it would appear when the program P is run on the input x with one
minor modification. The symbol currently being read by program P is stored as the primed version (0" is
the primed version of 0). For example, suppose after completing 12 instructions P is reading the fourth
symbol (from left) on its tape containing 01001001. Then, the tape region of U after 12 cycles looks like
0100'1001. At the beginning of a new cycle, U uses a subroutine to move to the region of the tape that
contains the ith instruction of program P where i is the value of the program counter. It then decodes
the ith instruction. Based on what type it is, U proceeds as follows: If it is a PRINT i instruction, then U
scans the tape until the unique primed symbol in the tape region is reached and rewrites it as instructed.
Ifitis a GO LEFT or GO RIGHT symbol, U locates the primed symbol, unprimes it, and primes its left
or right neighbor, as instructed. In both cases, U returns to the program counter and increments it. If
the instruction is GO TO i IF j IS SCANNED, U reads the primed symbol, and if it is j’, U changes the
program counter to i. This completes a cycle. Note that the three regions may grow and contract while U
executes the cycles of computation just described. This may result in one of them running into another.
U must then shift one of them to the left or right and make room as needed.

It is not too difficult to see that all of the steps described can be done using the instructions of the
GOTO language. The main point to remember is that these actions will have to be coded as a single
program, which has nothing whatsoever to do with program P. In fact, the program U is totally indepen-
dent of P. If we replace P with some other program Q, it should simulate Q as well. The preceding argu-
ment shows that problem 2 is partially decidable. But it does not show that this problem is decidable.
Why? It is because U may not halt on all inputs; specifically, consider an input consisting of a program P
and a string x such that P does not halt on x. Then, U will also keep executing cycle after cycle the moves
of P and will never halt. In fact, in Section 8.3, we will show that problem 2 is not decidable.

8.3 Undecidability

Recall the definition of an undecidable problem. In this section, we will establish the undecidability of
problem 2, Section 8.2. The simplest way to establish the existence of undecidable problems is as fol-
lows: There are more problems than there are programs, the former set being uncountable, whereas the
latter is countably infinite." But this argument is purely existential and does not identify any specific
problem as undecidable. In what follows, we will show that problem 2 introduced in Section 8.2 is one
such problem.

* A particularly simple exposition can be found in Robinson (1991).
* The reader who does not know what countable and uncountable infinities are can safely ignore this statement; the rest of
the section does not depend on it.
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8.3.1 Diagonalization and Self-Reference

Undecidability is inextricably tied to the concept of self-reference, and so we begin by looking at this
rather perplexing and sometimes paradoxical concept. The idea of self-reference seems to be many cen-
turies old and may have originated with a barber in ancient Greece who had a sign board that read:
“I shave all those who do not shave themselves.” When the statement is applied to the barber himself,
we get a self-contradictory statement. Does he shave himself? If the answer is yes, then he is one of
those who shaves himself, and so the barber should not shave him. The contrary answer no is equally
untenable. So neither yes nor no seems to be the correct answer to the question; this is the essence of
the paradox. The barber’s paradox has made entry into modern mathematics in various forms. We will
present some of them in the next few paragraphs.*

The first version, called Berry’s paradox, concerns English descriptions of natural numbers. For
example, the number 7 can be described by many different phrases: seven, six plus one, the fourth
smallest prime, etc. We are interested in the shortest of such descriptions, namely, the one with the few-
est letters in it. Clearly, there are (infinitely) many positive integers whose shortest descriptions exceed
100 letters. (A simple counting argument can be used to show this. The set of positive integers is infinite,
but the set of positive integers with English descriptions in fewer than or equal to 100 letters is finite.)
Let D denote the set of positive integers that do not have English descriptions with fewer than 100 letters.
Thus, D is not empty. It is a well-known fact in set theory that any nonempty subset of positive integers
has a smallest integer. Let x be the smallest integer in D. Does x have an English description with fewer
than or equal to 100 letters? By the definition of the set D and x, we have the following: x is “the small-
est positive integer that cannot be described in English in fewer than 100 letters.” This is clearly absurd
because part of the last sentence in quotes is a description of x and it contains fewer than 100 letters in it.
A similar paradox was found by the British mathematician Bertrand Russell when he considered the
set of all sets that do not include themselves as elements, that is, S = {x | x € x}. The question “Is S € §?”
leads to a similar paradox.

As a last example, we will consider a charming self-referential paradox due to mathematician William
Zwicker. Consider the collection of all two-person games (such as chess, tic-tac-toe) in which players make
alternate moves until one of them loses. Call such a game normal if it has to end in a finite number of
moves, no matter what strategies the two players use. For example, tic-tac-toe must end in at most nine
moves and so it is normal. Chess is also normal because the 50-move rule ensures that the game cannot
go forever. Now here is hypergame. In the first move of the hypergame, the first player calls out a normal
game, and then the two players go on to play the game, with the second player making the first move.
The question is: “Is hypergame normal?” Suppose it is normal. Imagine two players playing hypergame.
The first player can call out hypergame (since it is a normal game). This makes the second player call out the
name of a normal game; hypergame can be called out again and they can keep saying hypergame without
end, and this contradicts the definition of a normal game. On the other hand, suppose it is not a normal
game. But now in the first move, player 1 cannot call out hypergame and would call a normal game instead,
and so the infinite move sequence just given is not possible and so hypergame is normal after all!

In the rest of the section, we will show how these paradoxes can be modified to give nonparadoxical
but surprising conclusions about the decidability of certain problems. Recall the encoding we presented
in Section 8.2 that encodes any program written in the GOTO language as a binary string. Clearly this
encoding is reversible in the sense that if we start with a program and encode it, it is possible to decode it
back to the program. However, not every binary string corresponds to a program because there are many
strings that cannot be decoded in a meaningful way, for example, 11010011000110. For the purposes

* The most enchanting discussions of self-reference are due to the great puzzlist and mathematician R. Smullyan who
brings out the breadth and depth of this concept in such delightful books as What is the name of this book? published by
Prentice-Hall in 1978 and Satan, Cantor, and Infinity published by Alfred A. Knopf in 1992. We heartily recommend
them to anyone who wants to be amused, entertained, and, more importantly, educated on the intricacies of mathemati-
cal logic and computability.
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of this section, however, it would be convenient if we can treat every binary string as a program.
Thus, we will simply stipulate that any undecodable string be decoded to the program containing the
single statement.

1. REJECT

In the following discussion, we will identify a string x with a GOTO program to which it decodes. Now
define a function f, as follows: f;, (x) = 1 if x, decoded into a GOTO program, does not halt when started with
x itself as the input. Note the self-reference in this definition. Although the definition of f;, seems artificial,
its importance will become clear in the next section when we use it to show the undecidability of problem 2.
First, we will prove that f;, is not computable. Actually, we will prove a stronger statement, namely, that f, is
not even partially decidable. [Recall that a function is partially decidable if there is a GOTO program (not
necessarily halting) that computes it. An important distinction between computable and semicomputable
functions is that a GOTO program for the latter need not halt on inputs with output = 0.]

Theorem 8.1

Function f}, is not partially decidable

The proof is by contradiction. Suppose a GOTO program P’ computes the function f;,. We will modify
P’ into another program P in the GOTO language such that P computes the same function as P’ but has
the additional property that it will never terminate its computation by ending up in a REJECT state-
ment.* Thus, P is a program with the property that it computes f}, and halts on an input y if and only if
fp () = 1. We will complete the proof by showing that there is at least one input in which the program
produces a wrong output, that is, there is an x such that f;, (x) # P (x).

Let x be the encoding of program P. Now consider the following question: Does P halt when given
x as input? Suppose the answer is yes. Then, by the way we constructed P, here P (x) = 1. On the other
hand, the definition of fj, implies that f, (x) = 0. (This is the punch line in this proof. We urge the reader
to take a few moments and read the definition of f;, a few times and make sure that he or she is convinced
about this fact!) Similarly, if we start with the assumption that P (x) = 0, we are led to the conclusion
that f}, (x) = 1. In both cases, f;, (x) # P (x) and thus P is not the correct program for f,. Therefore, P’ is
not the correct program for f;, either because P and P’ compute the same function. This contradicts the
hypothesis that such a program exists, and the proof is complete.

Note the crucial difference between the paradoxes we presented earlier and the proof of this theorem.
Here, we do not have a paradox because our conclusion is of the form f}, (x) = 0 if and only if P (x) = 1 and
not fj, (x) = 1 ifand only if f;, (x) = 0. But in some sense, the function f;, was motivated by Russell’s para-
dox. We can similarly create another function f, (based on Zwicker’s paradox of hypergame). Let fbe any
function that maps binary strings to {0, 1}. We will describe a method to generate successive functions
fi» f>» etc., as follows: Suppose f (x) = 0 for all x. Then we cannot create any more functions, and the
sequence stops with f. On the other hand, if f (x) = 1 for some x, then choose one such x and decode itasa
GOTO program. This defines another function; call it f; and repeat the same process with f; in the place
of f. We call fa normal function if no matter how x is selected at each step the process terminates after
a finite number of steps. A simple example of a nonnormal function is as follows: Suppose P (Q) = 1 for
some program P and input Q and at the same time Q(P) = 1 (note that we are using a program and its code
interchangeably), then it is easy to see that the functions defined by both P and Q are not normal. Finally,
define f, (X) = 1 if X is a normal program, 0 if it is not. We leave it as an instructive exercise to the reader

* The modification needed to produce P from P’ is straightforward. If P’ did not have any REJECT statements at all, then
no modification would be needed. If it had, then we would have to replace each one by a looping statement, which keeps
repeating the same instruction forever.
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to show that f, is not semicomputable. A perceptive reader will note the connection between Berry’s
paradox and problem 3 in our list (string compression problem) just as f, is related to Zwicker’s paradox.
Such a reader should be able to show the undecidability of problem 3 by imitating Berry’s paradox.

8.3.2 Reductions and More Undecidable Problems

Theory of computation deals not only with the behavior of individual problems but also with relations
among them. A reduction is a simple way to relate two problems so that we can deduce the (un)decid-
ability of one from the (un)decidability of the other. Reduction is similar to using a subroutine. Consider
two problems A and B. We say that problem A can be reduced to problem B if there is an algorithm for
B provided that A has one. To define the reduction (also called a Turing reduction) precisely, it is conve-
nient to augment the instruction set of the GOTO programming language to include a new instruction
CALL X, i, j where X is a (different) GOTO program and i and j are line numbers. In detail, the execu-
tion of such augmented programs is carried out as follows: When the computer reaches the instruc-
tion CALL X, i, j, the program will simply start executing the instructions of the program from line 1,
treating whatever is on the tape currently as the input to the program X. When (if at all) X finishes the
computation by reaching the ACCEPT statement, the execution of the original program continues at
line number i and, if it finishes with REJECT, the original program continues from line number j.

We can now give a more precise definition of a reduction between two problems. Let A and B be two
computational problems. We say that A is reducible to B if there is a halting program Y in the GOTO
language for problem A in which calls can be made to a halting program X for problem B. The algorithm
for problem A described in the preceding reduction does not assume the availability of program X and
cannot use the details behind the design of this algorithm. The right way to think about a reduction is as
follows: Algorithm Y, from time to time, needs to know the solutions to different instances of problem B.
It can query an algorithm for problem B (as a black box) and use the answer to the query for making
further decisions. An important point to be noted is that the program Y actually can be implemented
even if program X was never built as long as someone can correctly answer some questions asked by
program Y about the output of problem B for certain inputs. Programs with such calls are sometimes
called oracle programs. Reduction is rather difficult to assimilate at the first attempt, and so we will try to
explain it using a puzzle. How do you play two chess games, one each with Kasparov and Anand (two of
the world’s best players), and ensure that you get at least one point? (You earn one point for a win, 0 for a
loss, and 1/2 for a draw.) Because you are a novice and are pitted against two Goliaths, you are allowed a
concession. You can choose to play white or black on either board. The well-known answer is the follow-
ing: Take white against one player, say Anand, and black against the other, namely, Kasparov. Watch the
first move of Kasparov (as he plays white) and make the same move against Anand, get his reply and play
it back to Kasparov, and keep playing back and forth like this. It takes only a moment’s thought that you
are guaranteed to win (exactly) 1 point. The point is that your game involves taking the position of one
game, applying the algorithm of one player, getting the result, and applying it to the other board, and
you do not even have to know the rules of chess to do this. This is exactly how algorithm Y is required
to use algorithm X.

We will use reductions to show the undecidability as follows: Suppose A can be reduced to B as in the
preceding definition. If there is an algorithm for problem B, it can be used to design a program for A
by essentially imitating the execution of the augmented program for A (with calls to the oracle for B) as
just described. But we will turn it into a negative argument as follows: If A is undecidable, then so is B.
Thus, a reduction from a problem known to be undecidable to problem B will prove B’s undecidability.

First we define a new problem, problem 2’, which is a special case of problem 2. Recall that in prob-
lem 2 the input is (the code of) a program P in GOTO language and a string x. The output required is
P (x). In problem 2/, the input is (only) the code of a program P and the output required is P (P), that is,
instead of requiring P to run on a given input, this problem requires that it be run on its own code. This
is clearly a special case of problem 2. The reader may readily see the self-reference in problem 2’ and
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suspect that it may be undecidable; therefore, the more general problem 2 may be undecidable as well.
We will establish these claims more rigorously as follows.

We first observe a general statement about the decidability of a function f (or problem) and its comple-
ment. The complement function is defined to take value 1 on all inputs for which the original function
value is 0 and vice versa. The statement is that a function fis decidable if and only if the complement f is
decidable. This can be easily proved as follows. Consider a program P that computes f. Change P into
P by interchanging all of the ACCEPT and REJECT statements. It is easy to see that P actually com-
putes f . The converse also is easily seen to hold. It readily follows that the function defined by problem 2’
is undecidable because it is, in fact, the complement of f;,.

Finally, we will show that problem 2 is uncomputable. The idea is to use a reduction from problem
2" to problem 2. (Note the direction of reduction. This always confuses a beginner.) Suppose there is
an algorithm for problem 2. Let X be the GOTO language program that implements this algorithm. X
takes as input code(P) (for any program P) followed by x, produces the result P (x), and halts. We want
to design a program Y that takes as input code(P) and produce the output P (P) using calls to program
X. Itis clear what needs to be done. We just create the input in proper form code(P) followed by code (P)
and call X. This requires first duplicating the input, but this is a simple programming task similar to the
one we demonstrated in our first program in Section 8.2. Then a call to X completes the task. This shows
that problem 2’ reduces to problem 2, and thus the latter is undecidable as well.

By a more elaborate reduction (from f,), it can be shown that tiling is not partially decidable. We will
not do it here and refer the interested reader to Harel (1992). But we would like to point out how the unde-
cidability result can be used to infer a result about tiling. This deduction is of interest because the result is
an important one and is hard to derive directly. We need the following definition before we can state the
result. A different way to pose the tiling problem is whether a given set of tiles can tile an entire plane in
such a way that all of the adjacent tiles have the same color on the meeting quarter. (Note that this question
is different from the way we originally posed it: Can a given set of tiles tile any finite rectangular region?
Interestingly, the two problems are identical in the sense that the answer to one version is yes if and only if
it is yes for the other version.) Call a tiling of the plane periodic if one can identify a k x k square such that
the entire tiling is made by repeating this k x k square tile. Otherwise, call it aperiodic. Consider the fol-
lowing question: Is there a (finite) set of unit tiles that can tile the plane but only aperiodically? The answer
is yes and it can be shown from the total undecidability of the tiling problem. Suppose the answer is no.
Then, for any given set of tiles, the entire plane can be tiled if and only if the plane can be tiled periodically.
But a periodic tiling can be found, if one exists, by trying to tile a k x k region for successively increasing
values of k. This process will eventually succeed (in a finite number of steps) if the tiling exists. This will
make the tiling problem partially decidable, which contradicts the total undecidability of the problem.
This means that the assumption that the entire plane can be tiled if and only if some k x k region can be
tiled is wrong. Thus, there exists a (finite) set of tiles that can tile the entire plane but only aperiodically.

8.4 Formal Languages and Grammars

The universe of strings is probably the most general medium for the representation of information.
This section is concerned with sets of strings called languages and certain systems generating these lan-
guages such as grammars. Every programming language including Pascal, C, or Fortran can be precisely
described by a grammar. Moreover, the grammar allows us to write a computer program (called the lexi-
cal analyzer in a compiler) to determine if a piece of code is syntactically correct in the programming
language. Would not it be nice to also have such a grammar for English and a corresponding computer
program that can tell us what English sentences are grammatically correct?* The focus of this brief

* Actually, English and the other natural languages have grammars; but these grammars are not precise enough to tell
apart the correct and incorrect sentences with 100% accuracy. The main problem is that there is no universal agreement
on what are grammatically correct English sentences.
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exposition is the formalism and mathematical properties of various languages and grammars. Many of
the concepts have applications in domains including natural language and computer language process-
ing and string matching. We begin with some standard definitions about languages.

Definition 8.1
An alphabet is a finite nonempty set of symbols, which are assumed to be indivisible.

For example, the alphabet for English consists of 26 uppercase letters A, B, ..., Z and 26 lowercase
letters a, b, ..., z. We usually use the symbol X to denote an alphabet.

Definition 8.2
A string over an alphabet X is a finite sequence of symbols of X.

The number of symbols in a string x is called its length, denoted |x|. It is convenient to introduce an
empty string, denoted €, which contains no symbols at all. The length of € is 0.

Definition 8.3

Letx=a,a,...a,andy=b b, ... b, be two strings. The concatenation of x and y, denoted xy, is the
stringa, a,...a, b, b,... b,

Thus, for any string x, ex = xe = x. For any string x and integer # > 0, we use x" to denote the string
formed by sequentially concatenating n copies of x.

Definition 8.4

The set of all strings over an alphabet X is denoted £* and the set of all nonempty strings over X is
denoted X°. The empty set of strings is denoted @.

Definition 8.5

For any alphabet X, a language over X is a set of strings over X. The members of a language are also called
the words of the language.

Example 8.1

The sets L, = {01, 11, 0110} and L, = {0” 1" | n > 0} are two languages over the binary alphabet
{0, 1}. The string 01 is in both languages, whereas 11 is in L, but not in L,.

Because languages are just sets, standard set operations such as union, intersection, and
complementation apply to languages. It is useful to introduce two more operations for lan-
guages: concatenation and Kleene closure.
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Definition 8.6

Let L, and L, be two languages over Z. The concatenation of L, and L,, denoted L, L,, is the language
{xy|x€L,y€L,}.

Definition 8.7

Let L be a language over . Define L° = {¢} and L' = LL"™ for i > 1. The Kleene closure of L, denoted L",
is the language

L*:UL"

i20

and the positive closure of L, denoted L*, is the language

L+=ULi

i1

In other words, the Kleene closure of language L consists of all strings that can be formed by concat-
enating some words from L. For example, if L = {0, 01}, then LL = {00, 001, 010, 0101} and L* includes all
binary strings in which every 1 is preceded by a 0. L* is the same as L* except it excludes ¢ in this case.
Note that, for any language L, L* always contains € and L* contains ¢ if and only if L does. Also note that
>* is in fact the Kleene closure of the alphabet ¥ when viewed as a language of words of length 1, and *
is just the positive closure of .

8.4.1 Representation of Languages

In general, a language over an alphabet X is a subset of £*. How can we describe a language rigorously
so that we know if a given string belongs to the language or not? As shown in the preceding paragraphs,
a finite language such as L, in Example 8.1 can be explicitly defined by enumerating its elements, and
a simple infinite language such as L, in the same example can be described using a rule characterizing
all members of L,. It is possible to define some more systematic methods to represent a wide class of
languages. In the following, we will introduce three such methods: regular expressions, pattern sys-
tems, and grammars. The languages that can be described by this kind of system are often referred to
as formal languages.

Definition 8.8

Let X be an alphabet. The regular expressions over X and the languages they represent are defined induc-
tively as follows:

1. The symbol @ is a regular expression, denoting the empty set.

2. The symbol € is a regular expression, denoting the set {e}.

3. For each a € %, a is a regular expression, denoting the set {a}.

4. If r and s are regular expressions denoting the languages R and S, then (r + s), (rs), and (r*) are
regular expressions that denote the sets RU S, RS, and R*, respectively.
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For example, ((0(0 + 1)*) + ((0 + 1)*0)) is a regular expression over {0, 1}, and it represents the language
consisting of all binary strings that begin or end with a 0. Because the set operations union and concat-
enation are both associative, many parentheses can be omitted from regular expressions if we assume
that the Kleene closure has higher precedence than concatenation and concatenation has higher pre-
cedence than union. For example, the preceding regular expression can be abbreviated as 0(0 + 1)* +
(0 + 1)*0. We will also abbreviate the expression rr* as r*. Let us look at a few more examples of regular
expressions and the languages they represent.

Example 8.2

The expression 0(0 + 1)'1 represents the set of all strings that begin with a 0 and end with a 1.

Example 8.3

The expression 0 + 1 + 0(0 + 1)'0 + 1(0 + 1)1 represents the set of all nonempty binary strings
that begin and end with the same bit.

Example 8.4

The expressions 07, 0°10", and 0°10"10" represent the languages consisting of strings that contain
no 1, exactly one 1, and exactly two 1s, respectively.

Example 8.5

The expressions (0 + 1)*1(0 + 1)*1(0 + 1)*, (0 + 1)*10¥1(0 + 1)*, 0*10*1(0 + 1)*, and (0 + 1)*10*10*
all represent the same set of strings that contain at least two 1s.

For any regular expression r, the language represented by r is denoted as L (r). Two regular
expressions representing the same language are called equivalent. It is possible to introduce
some identities to algebraically manipulate regular expressions to construct equivalent expres-
sions, by tailoring the set identities for the operations union, concatenation, and Kleene closure
to regular expressions. For more details, see Salomaa (1966). For example, it is easy to prove that
the expressions r (s + £) and rs + rt are equivalent and (r*)* is equivalent to r*.

Example 8.6

Let us construct a regular expression for the set of all strings that contain no consecutive 0s.
A string in this set may begin and end with a sequence of 1s. Because there are no consecutive
0s, every 0 that is not the last symbol of the string must be followed by at least a 1. This gives us
the expression 1*(01*)*1*(e + 0). It is not hard to see that the second 1* is redundant, and thus the
expression can in fact be simplified to 1*(01%)*(e + 0).

Regular expressions were first introduced in Kleene (1956) for studying the properties of neural nets.
The preceding examples illustrate that regular expressions often give very clear and concise representa-
tions of languages. Unfortunately, not every language can be represented by regular expressions. For
example, it will become clear that there is no regular expression for the language {0” 1* | n > 1}. The
languages represented by regular expressions are called the regular languages. Later, we will see that
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regular languages are exactly the class of languages generated by the so-called right-linear grammars.
This connection allows one to prove some interesting mathematical properties about regular languages
as well as to design an efficient algorithm to determine whether a given string belongs to the language
represented by a given regular expression.

Another way of representing languages is to use pattern systems (Angluin 1980, Jiang et al. 1995).

Definition 8.9

A pattern system is a triple (X, V; p), where X is the alphabet, V is the set of variables with X N V = @, and
pisastring over £ U V called the pattern.

An example pattern system is ({0, 1}, {v}, v,}, v, v, Ov,).

Definition 8.10

The language generated by a pattern system (X, V, p) consists of all strings over X that can be obtained
from p by replacing each variable in p with a string over Z.

For example, the language generated by ({0, 1}, {v,, v,}, v, v, Ov,) contains words 0, 00, 01, 000, 001,
010, 011, 110, etc., but does not contain strings, 1, 10, 11, 100, 101, etc. The pattern system ({0, 1}, {v}, v, v,)
generates the set of all strings, which is the concatenation of two equal substrings, that is, the set {xx | x €
{0, 1}*}. The languages generated by pattern systems are called the pattern languages.

Regular languages and pattern languages are really different. One can prove that the pattern lan-
guage {xx | x € {0, 1}*} is not a regular language and the set represented by the regular expression 0*1* is
not a pattern language. Although it is easy to write an algorithm to decide if a string is in the language
generated by a given pattern system, such an algorithm most likely would have to be very inefficient
(Angluin 1980).

Perhaps the most useful and general system for representing languages is based on grammars, which
are extensions of the pattern systems.

Definition 8.11

A grammar is a quadruple (%, N, S, P), where

1. X is a finite nonempty set called the alphabet. The elements of X are called the terminals

2. N is a finite nonempty set disjoint from Z. The elements of N are called the nonterminals or
variables

3. S € Nis a distinguished nonterminal called the start symbol

4. Pis a finite set of productions (or rules) of the form

o—f

where @ € (£ U N)* N(Z U N)* and B € (£ U N)* that is, a is a string of terminals and nonterminals
containing at least one nonterminal and a is a string of terminals and nonterminals.
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Example 8.7

Let G, = ({0, 1}, {S, T, O, I}, S, P), where P contains the following productions:
§S— 0T
§—0I
T—SI
0-0
I-1
As we shall see, the grammar G, can be used to describe the set {0 1" | n > 1}.

Example 8.8

Let G, = ({0, 1, 2}, {S, A}, S, P), where P contains the following productions:
S—>0SA2
S—e
2A > A2
0A — 01
1A —>11
This grammar G, can be used to describe the set {0” 172" | n > 0}.

Example 8.9

To construct a grammar G, to describe English sentences, the alphabet X contains all words in
English.

N would contain nonterminals, which correspond to the structural components in an
English sentence, for example, (sentence), (subject), (predicate), (noun), (verb), and (article).
The start symbol would be (sentence). Some typical productions are

(sentence) — (subject)(predicate)
(subject) — (noun)

(predicate) — (verb)(article)(noun)
(noun) — mary

(noun) — algorithm

(verb) — wrote

(article) — an

The rule (sentence) — (subject)(predicate) follows from the fact that a sentence consists of a
subject phrase and a predicate phrase. The rules (noun) — mary and (noun) — algorithm mean
that both mary and algorithms are possible nouns.

To explain how a grammar represents a language, we need the following concepts.

Definition 8.12

Let (X, N, S, P) be a grammar. A sentential form of G is any string of terminals and nonterminals, that
is, a string over £ U N.

Definition 8.13

Let (£, N, S, P) be a grammar and y, and v, two sentential forms of G. We say that y, directly derives vy,,
denoted y, = v,, if y, = 6«1, ¥, = 6P, and @ — P is a production in P.
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For example, the sentential form 00511 directly derives the sentential form 000T11 in grammar G,,
and A2A2 directly derives AA22 in grammar G,.

Definition 8.14

Let v, and y, be two sentential forms of a grammar G. We say that y, derives y,, denoted vy, ;}yz, if there
exists a sequence of (zero or more) sentential forms 6, ..., 6, such that

V1= 0,=> =>0,27,

The sequence y, = 6, = -+ = 0, = Y, is called a derivation from v, to y, . For example, in grammar G,,
$ 50011 because

§S= 0T = 0T = 0S] = 0S1 = 00I1 = 00I1 = 0011

and in grammar G,, S 001122 because

S§=0SA2 = 00SA2A2 = 00A2A2 = 0012A2 = 0011A22 = 001122

Here the left-hand side of the relevant production in each derivation step is underlined for clarity.

Definition 8.15
Let (X, N, S, P) be a grammar. The language generated by G, denoted L (G), is defined as

L(G)={x|x€ L, S5x

The words in L (G) are also called the sentences of L (G).

Clearly, L (G,) contains all strings of the form 0" 1", n > 1, and L (G,) contains all strings of the form
0" 1" 2", n > 0. Although only a partial definition of G, is given, we know that L (G;) contains sen-
tences such as “mary wrote an algorithm” and “algorithm wrote an algorithm” but does not contain
sentences such as “an wrote algorithm.”

The introduction of formal grammars dates back to the 1940s (Post 1943), although the study of
rigorous description of languages by grammars did not begin until the 1950s (Chomsky 1956). In the
Section 8.4.2, we consider various restrictions on the form of productions in a grammar and see how
these restrictions can affect the power of a grammar in representing languages. In particular, we will
know that regular languages and pattern languages can all be generated by grammars under different
restrictions.

8.4.2 Hierarchy of Grammars

Grammars can be divided into four classes by gradually increasing the restrictions on the form of
the productions. Such a classification is due to Chomsky (1956, 1963) and is called the Chomsky
hierarchy.
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Definition 8.16

LetG=(Z, N, S, P) be a grammar.

1. Gisalso called a type-0 grammar or an unrestricted grammar.

2. Gis type-1 or context sensitive if each production o — p in P either has the form S — € or satis-
fies || < |p].

3. Gistype-2 or context-freeif each production o — f in Psatisfies |a| = 1, that is, o is a nonterminal.

4. Gis type-3 or right linear or regular if each production has one of the following three forms:

A—aB, A—a, A-ce

where A and B are nonterminals and a is a terminal.

The language generated by a type-i grammar is called a type-i language, i = 0, 1, 2, 3. A type-1 lan-
guage is also called a context-sensitive language and a type-2 language is also called a context-free lan-
guage. It turns out that every type-3 language is in fact a regular language, that is, it is represented by
some regular expression and vice versa. See the Section 8.4.3 for the proof of the equivalence of type-3
(right-linear) grammars and regular expressions.

The grammars G, and G, given in the last subsection are context-free and the grammar G, is context
sensitive. Now we give some examples of unrestricted and right-linear grammars.

Example 8.10

Let G, = ({0, 1}, {S, A, O, I, T}, S, P), where P contains
S— AT
A —0AO A - 1AI
00— 00 O0O1-10
10 = 01 I1 - 11
OT - 0T IT—- 1T
A—>ce T—e
Then G, generates the set {xx | x € {0, 1}*}. For example, we can derive the word 0101 from S as follows:

S= AT = 0AOT = 01AIOT = 0110T = 0110T = 010IT = 0101T = 0101

Example 8.11

We give a right-linear grammar G, to generate the language represented by the regular expres-
sion in Example 8.3, that is, the set of all nonempty binary strings beginning and ending with
the same bit. Let G5 = ({0, 1}, {S, O, I}, S, P), where P contains

§—=-00 S-1I

§—=0 S—1

0-00 0O0-10

I-0I I-11

0-0 I—-1
The following theorem is due to Chomsky (1956, 1963).

Theorem 8.2

For each i =0, 1, 2, the class of type-i languages properly contains the class of type-(i + 1) languages.
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For example, one can prove by using a technique called pumping that the set {0” 1" | n > 1} is con-
text-free but not regular, and the sets {07 17 2" | n > 0} and {xx | x € {0, 1}*} are context sensitive but
not context-free (Hopcroft and Ullman 1979). It is, however, a bit involved to construct a language
that is of type-0 but not context sensitive. See, for example, Hopcroft and Ullman (1979) for such
alanguage.

The four classes of languages in the Chomsky hierarchy also have been completely characterized in
terms of TMs and their restricted versions. We have already defined a TM in Section 8.2. Many restricted
versions of it will be defined in the next section. It is known that type-0 languages are exactly those
recognized by TMs, context-sensitive languages are those recognized by TMs running in linear space,
context-free languages are those recognized by TMs whose work tapes operate as pushdown stacks
[called pushdown automata (PDA)], and regular languages are those recognized by TMs without any
work tapes (called finite-state machine or finite automata) (Hopcroft and Ullman 1979).

Remark 8.1

Recall our definition of a TM and the function it computes from Section 8.2. In the preceding
paragraph, we refer to a language recognized by a TM. These are two seemingly different ideas,
but they are essentially the same. The reason is that the function f, which maps the set of strings
over a finite alphabet to {0, 1}, corresponds in a natural way to the language L;over X defined as:
Ly = {x| f (x) = 1}. Instead of saying that a TM computes the function f, we say equivalently that it
recognizes L.

Because {xx | x € {0, 1}*} is a pattern language, the preceding discussion implies that the class of pat-
tern languages is not contained in the class of context-free languages. The next theorem shows that the
class of pattern languages is contained in the class of context-sensitive languages.

Theorem 8.3

Every pattern language is context sensitive.

The theorem follows from the fact that every pattern language is recognized by a TM in linear space
(Angluin 1980) and linear space-bounded TMs recognize exactly context-sensitive languages. To show
the basic idea involved, let us construct a context-sensitive grammar for the pattern language {xx |
x €10, 1}*}. The grammar G, given in Example 8.10 for this language is almost context sensitive. We just
have to get rid of the two e-productions: A — € and T — €. A careful modification of G, results in the
following grammar: G¢ = ({0, 1}, {S, A,, A, O, I, Ty, T}}, S, P), where P contains

S—e

S—>AT, S-AT

A, — 04,0 A, — 1A,

A, —0A0 A —1A]I

Ay—=0 A—-1

00—-00 O1-=10

10 - 01 In—11

OT,— 0T, IT,— 1T,

OT, - 0T, IT, = 1T,

T,— 0 T, =1,
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which is context sensitive and generates {xx | x € {0, 1}*}. For example, we can derive 011011 as
= AT, = 0A4,0T, = 01A,I0T,
=> OIIIO_Tl = 011107, > OIIOI_Tl => OllOlIl = 011011

For a class of languages, we are often interested in the so-called closure properties of the class.

Definition 8.17

A class of languages (e.g., regular languages) is said to be closed under a particular operation (e.g., union,
intersection, complementation, concatenation, Kleene closure) if each application of the operation on
language(s) of the class results in a language of the class.

These properties are often useful in constructing new languages from existing languages as well
as proving many theoretical properties of languages and grammars. The closure properties of the
four types of languages in the Chomsky hierarchy are now summarized (Gurari 1989, Harrison
1978, Hopcroft and Ullman 1979).

Theorem 8.4

1. The class of type-0 languages is closed under union, intersection, concatenation, and Kleene
closure but not under complementation.

2. The class of context-free languages is closed under union, concatenation, and Kleene closure
but not under intersection or complementation.

3. The classes of context-sensitive and regular languages are closed under all five of the operations.

For example, let L, = {0" 1" 2? |m=norn=p}, L,={0"1"2? | m = n},and L, = {0" 1" 27 | n = p}. It is easy
to see that all three are context-free languages. (In fact, L, = L, U L;.) However, intersecting L, with L,
gives the set {0 1" 2? | m = n = p}, which is not context-free.

We will look at context-free grammars more closely in the Section 8.4.3 and introduce the concept of
parsing and ambiguity.

8.4.3 Context-Free Grammars and Parsing

From a practical point of view, for each grammar G = (%, N, S, P) representing some language, the fol-
lowing two problems are important:

1. (Membership) Given a string over X, does it belong to L (G)?
2. (Parsing) Given a string in L (G), how can it be derived from §?

The importance of the membership problem is quite obvious: given an English sentence or computer
program, we wish to know if it is grammatically correct or has the right format. Parsing is important
because a derivation usually allows us to interpret the meaning of the string. For example, in the case of
a Pascal program, a derivation of the program in Pascal grammar tells the compiler how the program
should be executed. The following theorem illustrates the decidability of the membership problem for
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the four classes of grammars in the Chomsky hierarchy. The proofs can be found in Chomsky (1963),
Harrison (1978), and Hopcroft and Ullman (1979).

Theorem 8.5

The membership problem for type-0 grammars is undecidable in general and is decidable for any con-
text-sensitive grammar (and thus for any context-free or right-linear grammars).

Because context-free grammars play a very important role in describing computer programming lan-
guages, we discuss the membership and parsing problems for context-free grammars in more detail.
First, let us look at another example of context-free grammar. For convenience, let us abbreviate a set of
productions with the same left-hand side nonterminal

A-=oy, .., A=

n

as

A-oy|...|a,

Example 8.12

We construct a context-free grammar for the set of all valid Pascal real values. In general, a real
constant in Pascal has one of the following forms:

m.n, meq, m.neq,

where m and q are signed or unsigned integers and # is an unsigned integer. Let £ = {0, 1, 2, 3, 4,
5,6,7,8,9,e,+ —, .}, N={S, M, N, D}, and the set P of the productions contain

S— M.N | MeM | M.NeM

M- N|+N|-N

N—DN|D

D—0|1]2]3|4]5]7]8]9
Then the grammar generates all valid Pascal real values (including some absurd ones like
001.200€000). The value 12.3e — 4 can be derived as

S = M.NeM = N.NeM = DN.NeM = 1N.NeM = 1D.NeM

= 12.NeM = 12.DeM = 12.3eM = 12.3e-N = 12.3e-D = 12.3e—4

Perhaps the most natural representation of derivations for a context-free grammar is a derivation tree or
a parse tree. Each internal node of such a tree corresponds to a nonterminal and each leaf corresponds to
a terminal. If A is an internal node with children B,, ..., B, ordered from left to right, then A — B, ... B,
must be a production. The concatenation of all leaves from left to right yields the string being derived. For
example, the derivation tree corresponding to the preceding derivation of 12.3e—4 is given in Figure 8.3.
Such a tree also makes possible the extraction of the parts 12, 3, and —4, which are useful in the storage
of the real value in a computer memory.
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FIGURE 8.3 The derivation tree for 12.3e — 4.

Definition 8.18

A context-free grammar G is ambiguous if there is a string x € L (G), which has two distinct derivation
trees. Otherwise G is unambiguous.

Unambiguity is a very desirable property to have as it allows a unique interpretation of each
sentence in the language. It is not hard to see that the preceding grammar for Pascal real values
and the grammar G, defined in Example 8.7 are all unambiguous. The following example shows an
ambiguous grammar.

Example 8.13

Consider a grammar G, for all valid arithmetic expressions that are composed of unsigned
positive integers and symbols +, *, (,). For convenience, let us use the symbol # to denote any
unsigned positive integer.

This grammar has the productions

S—>T+S|S+T|T
T—F+T|T*F|F
F-n|(S)

Two possible different derivation trees for the expression 1 + 2 * 3 + 4 are shown in Figure 8.4.
Thus, G, is ambiguous. The left tree means that the first addition should be done before the sec-
ond addition and the right tree says the opposite.

Although in the preceding example different derivations/interpretations of any expression
always result in the same value because the operations addition and multiplication are associa-
tive, there are situations where the difference in the derivation can affect the final outcome.
Actually, the grammar G, can be made unambiguous by removing some (redundant) produc-
tions, for example, S > T+ Sand T — F* T.

This corresponds to the convention that a sequence of consecutive additions (or multi-
plications) is always evaluated from left to right and will not change the language generated
by G,. It is worth noting that there are context-free languages that cannot be generated by any
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FIGURE 8.4 Different derivation trees for the expression 1 + 2 * 3 + 4.

unambiguous context-free grammar (Hopcroft and Ullman 1979). Such languages are said to be
inherently ambiguous. An example of inherently ambiguous languages is the set

(07172737 | m, n > 0} U {0"17273" | m, n > 0}

We end this section by presenting an efficient algorithm for the membership problem for
context-free grammars. The algorithm is due to Cocke, Younger, and Kasami (Hopcroft and
Ullman 1979) and is often called the CYK algorithm. Let G = (%, N, S, P) be a context-free
grammar. For simplicity, let us assume that G does not generate the empty string € and that G is
in the so-called Chomsky normal form (Chomsky 1963), that is, every production of G is either
in the form A — BC where B and C are nonterminals, or in the form A — a where a is a terminal.
An example of such a grammar is G, given in Example 8.7. This is not a restrictive assumption
because there is a simple algorithm that can convert every context-free grammar that does not
generate € into one in the Chomsky normal form.

Suppose that x = g, ... a, is a string of n terminals. The basic idea of the CYK algorithm,
which decides if x € L (G), is dynamic programming. For each pair i, j, where 1 <i <j < n, define
asetX;;C Nas

X,={A|A>a,..a}

Thus, x € L (G) ifand only if § € X, .. The sets X; ; can be computed inductively in the ascending
order of j — i. It is easy to figure out X;; for each i because X;,; = {A | A — g, € P}. Suppose that we
have computed all X; ; where j — i < d for some d > 0. To compute a set X; ;, where j — i = d, we just
have to find all of the nonterminals A such that there exist some nonterminals B and C satisfy-
ing A —» BC € Pand for some k, i < k <j, B € X;, and C € Xy, ;- A rigorous description of the
algorithm in a Pascal-style pseudocode is given as follows.

Algorithm CYK(x=a, - a, ):

1. fori < 1tondo

2. X,«<{A|A—-aeP}
3. ford < 1ton-1do
4. fori<—1ton-ddo
5. Xi,i+d(_®

6. fort < 0tod-1do
7.

Xia < X,

1,0+

JU{A|A—>BCePforsomeBeX,, and C€ X 1.4

Table 8.2 shows the sets X;; for the grammar G, and the string x = 000111. It just so happens

that every X is either empty or a singleton. The computation proceeds from the main diagonal
toward the upper-right corner.
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TABLES8.2 An Example Execution
of the CYK Algorithm

1 O N
2 o) S T
il 3 o § T
4 I
5 I
6 1

8.5 Computational Models

In this section, we will present many restricted versions of TMs and address the question of what kinds
of problems they can solve. Such a classification is a central goal of computation theory. We have already
classified problems broadly into (totally) decidable, partially decidable, and totally undecidable. Because
the decidable problems are the ones of most practical interest, we can consider further classification of
decidable problems by placing two types of restrictions on a TM. The first one is to restrict its structure.
This way we obtain many machines of which a finite automaton and a pushdown automaton are the
most important. The other way to restrict a TM is to bound the amount of resources it uses, such as the
number of time steps or the number of tape cells it can use. The resulting machines form the basis for
complexity theory.

8.5.1 Finite Automata

The finite automaton (in its deterministic version) was first introduced by McCulloch and Pitts (1943)
as a logical model for the behavior of neural systems. Rabin and Scott (1959) introduced the nondeter-
ministic version of the finite automaton and showed the equivalence of the nondeterministic and deter-
ministic versions. Chomsky and Miller (1958) proved that the set of languages that can be recognized
by a finite automaton is precisely the regular languages introduced in Section 8.4. Kleene (1956) showed
that the languages accepted by finite automata are characterized by regular expressions as defined in
Section 8.4.

In addition to their original role in the study of neural nets, finite automata have enjoyed great
success in many fields such as sequential circuit analysis in circuit design (Kohavi 1978), asyn-
chronous circuits (Brzozowski and Seger 1994), lexical analysis in text processing (Lesk 1975), and
compiler design. They also led to the design of more efficient algorithms. One excellent example
is the development of linear-time string-matching algorithms, as described in Knuth et al. (1977).
Other applications of finite automata can be found in computational biology (Searls 1993), natural
language processing, and distributed computing.

A finite automaton, as in Figure 8.5, consists of an input tape that contains a (finite) sequence of
input symbols such as aabab -+, as shown in the figure, and a finite-state control. The tape is read by
the one-way read-only input head from left to right, one symbol at a time. Each time the input head
reads an input symbol, the finite control changes its state according to the symbol and the current
state of the machine. When the input head reaches the right end of the input tape, if the machine is
in a final state, we say that the input is accepted; if the machine is not in a final state, we say that the
input is rejected. The following is the formal definition.
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Read-only
input tape

1-way input head

Finite
control

FIGURE 8.5 A finite automaton.
Definition 8.19

A nondeterministic finite automaton (NFA) is a quintuple (Q, Z, d, q,, F), where

o Qis afinite set of states

o X isa finite set of input symbols

o, the state transition function, is a mapping from Q x X to subsets of Q
» g, € Qis the initial state of the NFA

o FC Qisthe set of final states

If & maps Q x X to singleton subsets of Q, then we call such a machine a deterministic finite automa-
ton (DFA).

When an automaton, M, is nondeterministic, then from the current state and input symbol, it may
go to one of several different states. One may imagine that the device goes to all such states in parallel.
The DFA is just a special case of the NFA; it always follows a single deterministic path. The device M
accepts an input string x if, starting with g, and the read head at the first symbol of x, one of these parallel
paths reaches an accepting state when the read head reaches the end of x. Otherwise, we say M rejects x.
A language, L, is accepted by M if M accepts all of the strings in L and nothing else, and we write L = L(M).
We will also allow the machine to make e-transitions, that is, changing state without advancing the read
head. This allows transition functions such as 8(s, €) = {s'}. It is easy to show that such a generalization
does not add more power.

Remark 8.2

The concept of a nondeterministic automaton is rather confusing for a beginner. But there is a simple
way to relate it to a concept that must be familiar to all of the readers. It is that of a solitaire game.
Imagine a game like Klondike. The game starts with a certain arrangement of cards (the input) and there
is a well-defined final position that results in success; there are also dead ends where a further move is
not possible; you lose if you reach any of them. At each step, the precise rules of the game dictate how
a new arrangement of cards can be reached from the current one. But the most important point is that
there are many possible moves at each step. (Otherwise, the game would be no fun!) Now consider the
following question: What starting positions are winnable? These are the starting positions for which
there is a winning move sequence; of course, in a typical play, a player may not achieve it. But that is
beside the point in the definition of what starting positions are winnable. The connection between such
games and a nondeterministic automaton should be clear. The multiple choices at each step are what
make it nondeterministic. Our definition of winnable positions is similar to the concept of acceptance
of a string by a nondeterministic automaton. Thus, an NFA may be viewed as a formal model to define
solitaire games.
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FIGURE 8.6 An NFA accepting 0(0 + 1)*1.
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FIGURE 8.7 A DFA accepting 0(0 + 1)*1.

Example 8.14

We design a DFA to accept the language represented by the regular expression 0(0 + 1)*1 as in
Example 8.2, that is, the set of all strings in {0, 1} that begin with a 0 and end with a 1. Itis usually
convenient to draw our solution as in Figure 8.6. As a convention, each circle represents a state;
the state a, pointed at by the initial arrow, is the initial state. The darker circle represents the
final states (state c). The transition function 8 is represented by the labeled edges. For example,
8(a, 0) = {b}. When a transition is missing, for example, on input 1 from a and on inputs 0 and
1 from c, it is assumed that all of these lead to an implicit nonaccepting trap state, which has
transitions to itself on all inputs.

The machine in Figure 8.6 is nondeterministic because from b on input 1 the machine has
two choices: stay at b or go to c.

Figure 8.7 gives an equivalent DFA, accepting the same language.

Example 8.15

The DFA in Figure 8.8 accepts the set of all strings in {0, 1}* with an even number of 1s. The cor-
responding regular expression is (0¥10*1)*0*.

Example 8.16

Asafinal example, consider the special case of the tiling problem that we discussed in Section 8.2.
This version of the problem is as follows: Let k be a fixed positive integer. Given a set of unit tiles,
we want to know if they can tile any k x n area for all n. We show how to deal with the case k =1
and leave it as an exercise to generalize our method for larger values of k. Number the quarters

0 0

FIGURE 8.8 A DFA accepting (0*10*1)*0*.
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FIGURE 8.9 Numbering the quarters of a tile.

of each tile as in Figure 8.9. The given set of tiles will tile the area if we can find a sequence of the
given tiles T}, T, ..., T,, such that (1) the third quarter of T, has the same color as the first quarter
of T, and the third quarter of T, has the same color as the first quarter of T;, etc., and (2) the third
quarter of T,, has the same color as T;. These conditions can be easily understood as follows. The
first condition states that the tiles T}, T,, etc., can be placed adjacent to each other along a row in
that order. The second condition implies that the whole sequence T; T, --- T,, can be replicated
any number of times. And a little thought reveals that this is all we need to answer yes on the
input. But if we cannot find such a sequence, then the answer must be no. Also note that in the
sequence no tile needs to be repeated and so the value of m is bounded by the number of tiles in
the input. Thus, we have reduced the problem to searching a finite number of possibilities and
we are done.

8-27

How is the preceding discussion related to finite automata? To see the connection, define an alphabet
consisting of the unit tiles and define a language L={T\ T, ... T, | T, T, ... T,, is a valid tiling, m > 0}.
We will now construct an NFA for the language L. It consists of states corresponding to distinct colors
contained in the tiles plus two states, one of them the start state and another state called the dead state.
The NFA makes transitions as follows: From the start state, there is an e-transition to each color state,
and all states except the dead state are accepting states. When in the state corresponding to color i, sup-
pose it receives input tile T. If the first quarter of this tile has color i, then it moves to the color of the
third quarter of T} otherwise, it enters the dead state. The basic idea is to remember the only relevant
piece of information after processing some input. In this case, it is the third quarter color of the last tile
seen. Having constructed this NFA, the question we are asking is if the language accepted by this NFA
is infinite. There is a simple algorithm for this problem (Hopcroft and Ullman 1979).

The next three theorems show a satisfying result that all the following language classes are identical:

The class of languages accepted by DFAs
The class of languages accepted by NFAs
The class of languages generated by regular expressions, as in Definition 8.8

The class of languages generated by the right-linear, or type-3, grammars, as in Definition 8.16

Recall that this class of languages is called the regular languages (see Section 8.4).

Theorem 8.6

For each NFA, there is an equivalent DFA.

Proof An NFA might look more powerful because it can carry out its computation in parallel with
its nondeterministic branches.
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FIGURE 8.10 An NFA accepting L;.

But because we are working with a finite number of states, we can simulate an
NFA M = (Q, %, 8, 4., F) bya DFA M’ = (Q., =, &, 4}, F'), where

« Q={S]:Scq}

* 4= [qol]

« (S a) = [8"] = [Uyes 8(g5 a)]
o F'isthe set of all subsets of Q containing a state in F

It can now be verified that L(M) = L(M’).

Example 8.17

Example 8.1 contains an NFA and an equivalent DFA accepting the same language. In fact, the
proof provides an effective procedure for converting an NFA to a DFA. Although each NFA can
be converted to an equivalent DFA, the resulting DFA might be exponentially large in terms of
the number of states, as we can see from the previous procedure. This turns out to be the best
thing one can do in the worst case. Consider the following language: L, = {x: x € {0, 1}* and the
kth letter from the right of x is a 1}. An NFA of k + 1 states (for k = 3) accepting L, is given in
Figure 8.10. A counting argument shows that any DFA accepting L, must have at least 2* states.

Theorem 8.7

L is generated by a right-linear grammar if it is accepted by an NFA.

Proof Let L be accepted by a right-linear grammar G = (%, N, S, P). We design an NFA M = (Q, X, §,
qo» F) where Q = N U {f}, g, =S, F = {f}. To define the 8 function, we have C € 8(4A, b) if A — bC. For
rules A — b, 8(4, b) = {f}. Obviously, L(M) = L(G).

Conversely, if L is accepted by an NFA M = (Q, %, 8, g, F), we define an equivalent right-linear gram-
mar G = (Z, N, S, P), where N = Q, S = q,, q; — aq; € Nif g; € 3(q;, a), and q; — e if g; € F. Again it is
easily seen that L(M) = L(G).

Theorem 8.8

L is generated by a regular expression if it is accepted by an NFA.

Proof (Idea) Part 1. We inductively convert a regular expression to an NFA that accepts the language
generated by the regular expression as follows:

o Regular expression € converts to ({4}, =, @, g, {q}).

o Regular expression @ converts to (g}, =, @, g, @).

o Regular expression a, for each a € X converts to ({g, f}, Z, 8(g, @) ={f}, ¢, {fD-

+ Ifoand pare regular expressions, converting to NFAs M, and M, respectively, then the regu-
lar expression o U  converts to an NFA M, which connects M, and M in parallel: M has an
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initial state g, and all of the states and transitions of M, and M; by e-transitions, M goes from
q, to the initial states of M, and M.

+ Ifoand p are regular expressions, converting to NFAs M, and M), respectively, then the regu-
lar expression o U 8 converts to NFA M, which connects M, and M; sequentially: M has all of
the states and transitions of M, and M, with M,s initial state as M’s initial state, e-transition
from the final states of M, to the initial state of M, and My’s final states as M’s final states.

o Ifaisaregular expression, converting to NFA M, then connecting all of the final states of M,
to its initial state with e-transitions gives a*. Union of this with the NFA for & gives the NFA
for o*.

Part 2. We now show how to convert an NFA to an equivalent regular expression. The idea used here
is based on Brzozowski and McCluskey (1963); see also Brzozowski and Seger (1994) and Wood (1987).

Given an NFA M, expand it to M’ by adding two extra states i, the initial state of M, and ¢, the only
final state of M’, with e-transitions from i to the initial state of M and from all final states of M to t.
Clearly, L(M) = L(M’). In M’, remove states other than i and f one by one as follows. To remove state p,
for each triple of states g, p, " as shown in Figure 8.11a, add the transition as shown in Figure 8.11b. If
p does not have a transition leading back to itself, then p = &. After we have considered all such triples,
delete state p and transitions related to p. Finally, we obtain Figure 8.12 and L(a) = L(M).

Apparently, DFAs cannot serve as our model for a modern computer. Many extremely simple lan-
guages cannot be accepted by DFAs. For example, L = {xx : x € {0, 1}*} cannot be accepted by a DFA. One
can prove this by counting or using the so-called pumping lemmas; one can also prove this by arguing
that x contains more information than a finite-state machine can remember. We refer the interested
readers to textbooks such as Hopcroft and Ullmann (1979), Gurari (1989), Wood (1987), and Floyd and
Beigel (1994) for traditional approaches and to Li and Vitanyi (1993) for a nontraditional approach. One
can try to generalize the DFA to allow the input head to be two way but still read only. But such machines
are not more powerful; they can be simulated by normal DFAs. The next step is apparently to add storage
space such that our machines can write information in.

8.5.2 Turing Machines

In this section, we will provide an alternative definition of a TM to make it compatible with our
definitions of a DFA, PDA, etc. This also makes it easier to define a nondeterministic TM. But
this formulation (at least the deterministic version) is essentially the same as the one presented in
Section 8.2.

A TM, as in Figure 8.13, consists of a finite control, an infinite tape divided into cells, and a read/
write head on the tape. We refer to the two directions on the tape as left and right. The finite control
can be in any one of a finite set Q of states, and each tape cell can contain a 0, a 1, or a blank B. Time is

FIGURE 8.11 Converting an NFA to a regular expression.

FIGURE 8.12 The reduced NFA.
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Tape
Head

Finite control

FIGURE 8.13 A Turing machine.

discrete and the time instants are ordered 0, 1, 2, ... with 0 the time at which the machine starts its
computation. At any time, the head is positioned over a particular cell, which it is said to scan. At
time 0, the head is situated on a distinguished cell on the tape called the start cell, and the finite
control is in the initial state g,. At time 0, all cells contain Bs, except a contiguous finite sequence
of cells, extending from the start cell to the right, which contain 0s and 1s. This binary sequence is
called the input.

The device can perform the following basic operations:

1. It can write an element from the tape alphabet X = {0, 1, B} in the cell it scans.
2. It can shift the head one cell left or right.

Also, the device executes these operations at the rate of one operation per time unit (a step). At the con-
clusion of each step, the finite control takes on a state in Q. The device operates according to a finite set
P of rules.

The rules have format (p, s, a, q) with the meaning that if the device is in state p and s is the symbol
under scan, then write a if a € {0, 1, B} or move the head according to a if a € {L, R} and the finite con-
trol changes to state g. At some point, if the device gets into a special final state g, the device stops and
accepts the input.

If every pair of distinct quadruples differs in the first two elements, then the device is deterministic.
Otherwise, the device is nondeterministic. Not every possible combination of the first two elements
has to be in the set; in this way, we permit the device to perform no operation. In this case, we say
the device halts. In this case, if the machine is not in a final state, we say that the machine rejects
the input.

Definition 8.20
A TM is a quintuple M = (Q, Z, P, q,, q,), where each of the components has been described previously.

Given an input, a deterministic TM carries out a uniquely determined succession of operations,
which may or may not terminate in a finite number of steps. If it terminates, then the nonblank symbols
left on the tape are the output. Given an input, a nondeterministic TM behaves much like an NFA. One
may imagine that it carries out its computation in parallel. Such a computation may be viewed as a (pos-
sibly infinite) tree. The root of the tree is the starting configuration of the machine. The children of each
node are all possible configurations one step away from this node. If any of the branches terminates in
the final state q,, we say the machine accepts the input. The reader may want to test understanding this
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new formulation of a TM by redoing the doubling program on a TM with states and transitions (rather
than a GOTO program).

A TM accepts a language L if L = {w : M accepts w}. Furthermore, if M halts on all inputs, then we
say that L is Turing decidable or recursive. The connection between a recursive language and a decidable
problem (function) should be clear. It is that function fis decidable if and only if L;is recursive. (Readers
who may have forgotten the connection between function fand the associated language L;should review
Remark 8.1.)

Theorem 8.9

All of the following generalizations of TMs can be simulated by a one-tape deterministic TM defined in
Definition 8.20.

o Larger tape alphabet X

o More work tapes

o More access points, read/write heads, on each tape
o 2D or more dimensional tapes

o Nondeterminism

Although these generalizations do not make a TM compute more, they do make a TM more efficient and
easier to program. Many more variants of TMs are studied and used in the literature. Of all simulations
in Theorem 8.9, the last one needs some comments. A nondeterministic computation branches like a
tree. When simulating such a computation for # steps, the obvious thing for a deterministic TM to do
is to try all possibilities; thus, this requires up to ¢” steps, where c is the maximum number of nondeter-
ministic choices at each step.

Example 8.18

A DFA is an extremely simple TM. It just reads the input symbols from left to right. TMs natu-
rally accept more languages than DFAs can. For example, a TM can accept

L = {xx: x € {0, 1}*} as follows:

o Find the middle point first: It is trivial by using two heads; with one head, one can mark
one symbol at the left and then mark another on the right and go back and forth to even-
tually find the middle point.

o Match the two parts: With two heads, this is again trivial; with one head, one can again
use the marking method matching a pair of symbols each round; if the two parts match,
accept the input by entering q.

There are types of storage media other than a tape:

o A pushdown store is a semi-infinite work tape with one head such that each time the head
moves to the left, it erases the symbol scanned previously; this is a last-in first-out storage.

o A queueis a semi-infinite work tape with two heads that move only to the right, the lead-
ing head is write only and the trailing head is read only; this is a first-in first-out storage.

o A counter is a pushdown store with a single-letter alphabet (except its one end, which
holds a special marker symbol). Thus, a counter can store a nonnegative integer and can
perform three operations.

A queue machine can simulate a normal TM, but the other two types of machines are not power-
ful enough to simulate a TM.
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Example 8.19

When the TM tape is replaced by a pushdown store, the machine is called a pushdown autom-
aton. Pushdown automata have been thoroughly studied because they accept the class of
context-free languages defined in Section 8.4. More precisely, it can be shown that if L is
a context-free language, then it is accepted by a PDA, and if L is accepted by a PDA, then there
is a CFG generating L. Various types of PDAs have fundamental applications in compiler
design.

The PDA is more restricted than a TM. For example, L = {xx : x € {0, 1}'} cannot be accepted by a
PDA, but it can be accepted by a TM as in Example 8.18. But a PDA is more powerful than a DFA. For
example, a PDA can accept the language L' = {0% 1¥: k > 0} easily. It can read the Os and push them into
the pushdown store; then, after it finishes the 0s, each time the PDA reads a 1, it removes a 0 from the
pushdown store; at the end, it accepts if the pushdown store is empty (the number of 0s matches that
of 1s). But a DFA cannot accept L', because after it has read all of the Os, it cannot remember k when k
has higher information content than the DFA’s finite control.

Two pushdown stores can be used to simulate a tape easily. For comparisons of powers of pushdown
stores, queues, counters, and tapes, see van Emde Boas (1990) and Li and Vitanyi (1993).

The idea of the universal algorithm was introduced in Section 8.2. Formally, a universal TM, U, takes
an encoding of a pair of parameters (M, x) as input and simulates M on input x . U accepts (M, x) if M
accepts x. The universal TMs have many applications. For example, the definition of the Kolmogorov
complexity (Li and Vitanyi 1993) fundamentally relies on them.

Example 8.20

Let L, = {(M, w) : M accepts w}. Then, L, can be accepted by a TM, but it is not Turing decidable.
The proof is omitted.

If a language is Turing acceptable but not Turing decidable, we call such a language recur-
sively enumerable (r.e.). Thus, L, is r.e. but not recursive. It is easily seen that if both a language
and its complement are r.e., then both of them are recursive. Thus, L, is not r.e.

8.5.2.1 Time and Space Complexity

With TMs, we can now formally define what we mean by time and space complexities. Such a formal
investigation by Hartmanis and Stearns (1965) marked the beginning of the field of computational com-
plexity. We refer the readers to Hartmanis’ Turing Award lecture (Hartmanis 1994) for an interesting
account of the history and the future of this field.

To define the space complexity properly (in the sublinear case), we need to slightly modify the TM
of Figure 8.13. We will replace the tape containing the input by a read-only input tape and give the
TM some extra work tapes.

Definition 8.21

Let M be a TM. If, for each n, for each input of length #, and for each sequence of choices of moves
when M is nondeterministic M makes at most T(n) moves, we say that M is of time complexity T(n);
similarly, if M uses at most S(n) tape cells of the work tape, we say that M is of space complexity S(n).
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Theorem 8.10

Any TM using s(n) space can be simulated by a TM, with just one work tape, using s(n) space. If a
language is accepted by a k-tape TM running in time #(n) [space s(n)], then it also can be accepted by
another k-tape TM running in time ct(n) [space cs(n)], for any constant ¢ > 0.

To avoid writing the constant ¢ everywhere, we use the standard big-O notation: we say f(n) is O(g(n))
if there is a constant ¢ such that f(n) < cg(n) for all but finitely many n. The preceding theorem is called
the linear speedup theorem; it can be proved easily by using a larger tape alphabet to encode several cells
into one and hence compress several steps into one. It leads to the following definitions.

Definition 8.22

DTIME][t(n)] is the set of languages accepted by multitape deterministic TMs in time O(¢(n)).
NTIME[t(n)] is the set of languages accepted by multitape nondeterministic TMs in time O(t(n)).
DSPACE([s(n)] is the set of languages accepted by multitape deterministic TMs in space O(s(n)).
NSPACE([s(n)] is the set of languages accepted by multitape nondeterministic TMs in space O(s(n)).
P is the complexity class U,y DTIME[#n¢].

NP is the complexity class U,y NTIME[n].

PSPACE is the complexity class U, DSPACE[n].

Example 8.21

We mentioned in Example 8.18 that L = {xx : x € {0, 1}*} can be accepted by a TM. The procedure
we have presented in Example 8.18 for a one-head one-tape TM takes O (n?) time because the
single head must go back and forth marking and matching. With two heads, or two tapes, L can
be easily accepted in O(n) time.

It should be clear that any language that can be accepted by a DFA, an NFA, or a PDA can be accepted by a
TM in O(n) time. The type-1 grammar in Definition 8.16 can be accepted by a TM in O(n) space. Languages
in P, that is, languages acceptable by TMs in polynomial time, are considered as feasibly computable. It is
important to point out that all generalizations of the TM, except the nondeterministic version, can all be
simulated by the basic one-tape deterministic TM with at most polynomial slowdown. The class NP repre-
sents the class of languages accepted in polynomial time by a nondeterministic TM. The nondeterministic
version of PSPACE turns out to be identical to PSPACE (Savitch 1970). The following relationships are true:

P C NP C PSPACE

Whether or not either of the inclusions is proper is one of the most fundamental open questions in
computer science and mathematics. Research in computational complexity theory centers around these
questions. To solve these problems, one can identify the hardest problems in NP or PSPACE. These
topics will be discussed in Chapter 8. We refer the interested reader to Gurari (1989), Hopcroft and
Ullman (1979), Wood (1987), and Floyd and Beigel (1994).

8.5.2.2 Other Computing Models

Over the years, many alternative computing models have been proposed. With reasonable complexity
measures, they can all be simulated by TMs with at most a polynomial slowdown. The reference van
Emde Boas (1990) provides a nice survey of various computing models other than TMs. Because of
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limited space, we will discuss a few such alternatives very briefly and refer our readers to van Emde Boas
(1990) for details and references.

Random Access Machines. The random access machine (RAM) (Cook and Reckhow 1973) consists of
a finite control where a program is stored, with several arithmetic registers and an infinite collection of
memory registers R[1], R[2], .... All registers have an unbounded word length. The basic instructions for
the program are LOAD, ADD, MULT, STORE, GOTO, ACCEPT, REJECT, etc. Indirect addressing is
also used. Apparently, compared to TMs, this is a closer but more complicated approximation of mod-
ern computers. There are two standard ways for measuring time complexity of the model:

o The unit-cost RAM: in this case, each instruction takes one unit of time, no matter how big the oper-
ands are. This measure is convenient for analyzing some algorithms such as sorting. But it is unre-
alistic or even meaningless for analyzing some other algorithms, such as integer multiplication.

o Thelog-cost RAM: each instruction is charged for the sum of the lengths of all data manipulated implic-
itly or explicitly by the instruction. This is a more realistic model but sometimes less convenient to use.

Log-cost RAMs and TMs can simulate each other with polynomial overheads. The unit-cost RAM
might be exponentially (but unrealistically) faster when, for example, it uses its power of multiplying
two large numbers in one step.

Pointer Machines. The pointer machines were introduced by Kolmogorov and Uspenskii (1958) (also
known as the Kolmogorov-Uspenskii machine) and by Schonhage in 1980 (also known as the stor-
age modification machine, see Schonhage [1980]). We informally describe the pointer machine here. A
pointer machine is similar to a RAM but differs in its memory structure. A pointer machine operates on a
storage structure called a A structure, where A is a finite alphabet of size greater than one. A A-structure S
is a finite directed graph (the Kolmogorov-Uspenskii version is an undirected graph) in which each node
has k = |A| outgoing edges, which are labeled by the k symbols in A. S has a distinguished node called the
center, which acts as a starting point for addressing, with words over A, other nodes in the structure. The
pointer machine has various instructions to redirect the pointers or edges and thus modify the storage
structure. It should be clear that turning machines and pointer machines can simulate each other with
at most polynomial delay if we use the log-cost model as with the RAMs. There are many interesting
studies on the efficiency of the preceding simulations. We refer the reader to van Emde Boas (1990) for
more pointers on the pointer machines.

Circuits and Nonuniform Models. A Boolean circuit is a finite, labeled, directed acyclic graph. Input
nodes are nodes without ancestors; they are labeled with input variables x,, ..., x,. The internal nodes
are labeled with functions from a finite set of Boolean operations, for example, {and, or, not} or {®}. The
number of ancestors of an internal node is precisely the number of arguments of the Boolean function
that the node is labeled with. A node without successors is an output node. The circuit is naturally evalu-
ated from input to output: at each node, the function labeling the node is evaluated using the results of
its ancestors as arguments. Two cost measures for the circuit model are the following:

o Depth: the length of a longest path from an input node to an output node
o Size: the number of nodes in the circuit

These measures are applied to a family of circuits {C, : n > 1} for a particular problem, where C, solves
the problem of size n. If C, can be computed from # (in polynomial time), then this is a uniform measure.
Such circuit families are equivalent to TMs. If C, cannot be computed from 7, then such measures are
nonuniform measures, and such classes of circuits are more powerful than TMs because they simply can
compute any function by encoding the solutions of all inputs for each n. See van Emde Boas (1990) for
more details and pointers to the literature.
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Key Terms

Algorithm: A finite sequence of instructions that is supposed to solve a particular problem.

Ambiguous context-free grammar: For some string of terminals, the grammar has two distinct deriva-
tion trees.

Chomsky normal form: Every rule of the context-free grammar has the form A — BC or A — g, where
A, B, and C are nonterminals and a is a terminal.

Computable or decidable function/problem: A function/problem that can be solved by an algorithm
(or equivalently, a TM).

Context-free grammar: A grammar whose rules have the form A — B, where A is a nonterminal and B
is a string of nonterminals and terminals.

Context-free language: A language that can be described by some context-free grammar.

Context-sensitive grammar: A grammar whose rules have the form o — f, where o and f are strings of
nonterminals and terminalsand | o | < | B |.

Context-sensitive language: A language that can be described by some context-sensitive grammar.

Derivation or parsing: An illustration of how a string of terminals is obtained from the start symbol by
successively applying the rules of the grammar.

Finite automaton or finite-state machine: A restricted TM where the head is read only and shifts only
from left to right.

(Formal) grammar: A description of some language typically consisting of a set of terminals, a set of
nonterminals with a distinguished one called the start symbol, and a set of rules (or produc-
tions) of the form o — B, depicting what string « of terminals and nonterminals can be rewrit-
ten as another string B of terminals and nonterminals.

(Formal) language: A set of strings over some fixed alphabet.

Halting problem: The problem of deciding if a given program (or TM) halts on a given input.

Nondeterministic TM: A TM that can make any one of a prescribed set of moves on a given state and
symbol read on the tape.

Partially decidable decision problem: There exists a program that always halts and outputs 1 for every
input expecting a positive answer and either halts and outputs 0 or loops forever for every
input expecting a negative answer.

Program: A sequence of instructions that is not required to terminate on every input.

Pushdown automaton: A restricted TM where the tape acts as a pushdown store (or a stack).

Reduction: A computable transformation of one problem into another.

Regular expression: A description of some language using operators union, concatenation, and Kleene
closure.

Regular language: A language that can be described by some right-linear/regular grammar (or equiva-
lently by some regular expression).

Right-linear or regular grammar: A grammar whose rules have the form A — aB or A — a, where A,
B are nonterminals and a is either a terminal or the null string.

Time/space complexity: A function describing the maximum time/space required by the machine on
any input of length n.

Turing machine: A simplest formal model of computation consisting of a finite-state control and a
semi-infinite sequential tape with a read/write head. Depending on the current state and sym-
bol read on the tape, the machine can change its state and move the head to the left or right.

Uncomputable or undecidable function/problem: A function/problem that cannot be solved by any
algorithm (or equivalently, any TM).

Universal algorithm: An algorithm that is capable of simulating any other algorithms if properly
encoded.
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Further Information

The fundamentals of the theory of computation, automata theory, and formal languages can be found
in many text books including Floyd and Beigel (1994), Gurari (1989), Harel (1992), Harrison (1978),
Hopcroft and Ullman (1979), and Wood (1987). The central focus of research in this area is to under-
stand the relationships between the different resource complexity classes. This work is motivated in part
by some major open questions about the relationships between resources (such as time and space) and
the role of control mechanisms (nondeterminism/randomness). At the same time, new computational
models are being introduced and studied. One such recent model that has led to the resolution of a num-
ber of interesting problems is the interactive proof systems. They exploit the power of randomness and
interaction. Among their applications are new ways to encrypt information as well as some unexpected
results about the difficulty of solving some difficult problems even approximately. Another new model
is the quantum computational model that incorporates quantum-mechanical effects into the basic move
of a TM. There are also attempts to use molecular or cell-level interactions as the basic operations of a
computer. Yet another research direction motivated in part by the advances in hardware technology is
the study of neural networks, which model (albeit in a simplistic manner) the brain structure of mam-
mals. The following chapters of this volume will present state-of-the-art information about many of
these developments. The following annual conferences present the leading research work in computa-
tion theory: Association of Computer Machinery (ACM) Annual Symposium on Theory of Computing;
Institute of Electrical and Electronics Engineers (IEEE) Symposium on the Foundations of Computer
Science; IEEE Conference on Structure in Complexity Theory; International Colloquium on Automata,
Languages and Programming; Symposium on Theoretical Aspects of Computer Science; Mathematical
Foundations of Computer Science; and Fundamentals of Computation Theory. There are many related
conferences such as Computational Learning Theory and ACM Symposium on Principles of Distributed
Computing, where specialized computational models are studied for a specific application area. Concrete
algorithms is another closely related area in which the focus is to develop algorithms for specific prob-
lems. A number of annual conferences are devoted to this field. We conclude with a list of major journals
whose primary focus is in theory of computation: The Journal of the Association of Computer Machinery,
SIAM Journal on Computing, Journal of Computer and System Sciences, Information and Computation,
Mathematical Systems Theory, Theoretical Computer Science, Computational Complexity, Journal of
Complexity, Information Processing Letters, International Journal of Foundations of Computer Science,
and ACTA Informatica.
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9.1 Introduction

Cryptography is a vast subject, addressing problems as diverse as e-cash, remote authentication, fault-
tolerant distributed computing, and more. We cannot hope to give a comprehensive account of the
field here. Instead, we will narrow our focus to those aspects of cryptography most relevant to the
problem of secure communication. Broadly speaking, secure communication encompasses two com-
plementary goals: the secrecy and integrity of communicated data. These terms can be illustrated
using the simple example of a user A attempting to transmit a message m to a user B over a public
channel. In the simplest sense, techniques for data secrecy ensure that an eavesdropping adversary
(i.e., an adversary who sees all communication occurring on the channel) cannot learn any informa-
tion about the underlying message m. Viewed in this way, such techniques protect against a pas-
sive adversary who listens to—but does not otherwise interfere with—the parties’ communication.
Techniques for data integrity, on the other hand, protect against an active adversary who may arbi-
trarily modify the information sent over the channel or may inject new messages of his own. Security
in this setting requires that any such modifications or insertions performed by the adversary will be
detected by the receiving party.

In the cases of both secrecy and integrity, two different assumptions regarding the initial setup of
the communicating parties can be considered. In the private-key setting (also known as the “shared-
key,” “secret-key,” or “symmetric-key” setting), which was the setting used exclusively for cryptography
until the mid-1970s, parties A and B are assumed to have shared some secret information—a key—in
advance. This key, which is completely unknown to the adversary, is then used to secure their future
communication. (We do not comment further on how such a key might be generated and shared; for
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TABLE 9.1 Overview of the Topics Covered in This Survey

Private-Key Setting Public-Key Setting

Secrecy Private-key encryption (Section 9.2) Public-key encryption (Section 9.4)
Integrity =~ Message authentication codes (Section 9.3)  Digital signature schemes (Section 9.5)

our purposes, it is simply an assumption of the model.) Techniques for secrecy in this setting are called
private-key encryption schemes, and those for data integrity are termed message authentication
codes (MACs).

In the public-key setting, one (or both) of the parties generate a pair of keys: a public key that is widely
disseminated, and an associated private key which is kept secret. The party generating these keys may
now use them as a receiver to ensure message secrecy using a public-key encryption scheme, or as a
sender to provide data integrity using a digital signature scheme. Table 9.1 gives an overview of these
different cryptographic tools.

In addition to showcasing the above primitives, and explaining how they should be used and how
they can be constructed, the treatment here will also introduce a bit of the methodology of modern
(i.e., post-1980s) cryptography. This includes an emphasis on formal definitions of security that pin down
exactly what goals a scheme is intended to achieve; precisely stated assumptions (if needed) regarding
the hardness of certain mathematical problems; and rigorous proofs of security that a cryptographic
construction meets some definition of security given a particular assumption. This approach to design-
ing and analyzing cryptosystems is much preferred to the heuristic, “ad-hoc” approach used in the past.

We warn the reader in advance that it is not the intention of this survey to cover the precise details
of schemes used in practice today, nor will the survey be comprehensive. Rather, the aim of the survey
is to provide the reader with an appreciation for the problem of secure communication along with an
explanation of the core techniques used to address it. The reader seeking further details is advised to
consult the references listed at the end of this chapter.

9.2 Private-Key Setting and Private-Key Encryption

We begin by discussing the private-key setting, where two parties share a random, secret key k that will
be used to secure their future communication. Let us jump right in by defining the syntax of private-key
encryption. Formally, a private-key encryption scheme consists of a pair of algorithms (Enc, Dec). The
encryption algorithm Enc takes as input a key k and a message m (sometimes also called the plain-
text), and outputs an encrypted version of the message called the ciphertext that will be denoted by c.
The decryption algorithm Dec takes as input a key and a ciphertext, and outputs a message. The basic
correctness requirement is that for every key k and message m (in some allowed set of messages) we
have m = Dec(Enc(m)). Since it will come up later, we mention here that Enc may be a randomized
algorithm, so that multiple ciphertexts can potentially be output when encrypting a given message with
some key, in which case the preceding correctness condition is required to hold with probability 1.
Without loss of generality, we may assume Dec is deterministic.

A private-key encryption scheme is used in the following way. Let k be the key shared by two parties
A and B. For A to send a message m to B, she first encrypts the message by computing ¢ < Enc,(m) (we
use “<” to explicitly indicate that Enc may be randomized); the ciphertext ¢ is then transmitted over
the public channel to B. Upon receiving this ciphertext, B decrypts the ciphertext to recover the message
by computing m := Dec,(c).

A private-key encryption scheme can also be used by a single party A to encrypt data (say, on a hard
drive) that will be accessed by A herself at a later point in time. Here, A encrypts the data using a key
k that she stores securely somewhere else. When A later wants to read the data, she can recover it by
decrypting using k. Here, the “channel” is the hard drive itself and, rather than being separated in space,
encryption and decryption are now separated in time. Everything we say in what follows will apply to
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either usage of private-key encryption. (Message authentication codes, discussed in Section 9.3, can also
be used for either of these canonical applications.)

The above discussion says nothing about the security provided by the encryption scheme. We con-
sider this aspect in the following sections.

9.2.1 Perfect Secrecy

The goal of a private-key encryption scheme is to ensure the secrecy of m from an eavesdropping adver-
sary A who views ¢, but does not know k. How should secrecy be defined formally?

A natural first attempt would be to say that an encryption scheme is secure if A cannot recover the
message m in its entirety (assuming, say, m is chosen uniformly). A little thought shows that such a defini-
tion is inadequate: What if the distribution of m is not uniform? And surely we would not consider secure
a scheme that always leaks the first bit of the message (without revealing anything about the rest of m)!

A better definition, introduced by Shannon [38] and termed perfect secrecy, is that the ciphertext ¢
should leak no information whatsoever about m, regardless of its distribution. This is formalized by
requiring that the a posteriori distribution of m (after A observes the ciphertext) should be equivalent
to the a priori distribution of m (reflecting the adversary’s prior knowledge about the distribution of the
message). Namely, a scheme (Enc, Dec) is perfectly secret if for any distribution M over the space of
possible messages, any message m, and any ciphertext , it holds that

Pr[M =m|C =c]=Pr[M =m],

where M (respectively, C) denotes the random variable taking the value of the actual message of the
sender (respectively, actual ciphertext transmitted).

Before giving an example of a scheme satisfying the above definition, we stress that the adversary
(implicit in the above) is assumed to know the full details of the encryption scheme being used by the
honest parties. (This is called Kerckhoffs’s principle [29].) It is a mistake to require the details of a crypto-
system scheme to be hidden in order for it to be secure, and modern schemes are designed to be secure
even when the full details of all algorithms are publicly known. The only thing unknown to the adver-
sary is the key itself. This highlights the necessity of choosing the key at random, and the importance of
keeping it completely secret.

Perfect secrecy can be achieved by the one-time pad encryption scheme, which works as follows. Let
€ be the length of the message to be transmitted, where the message is viewed as a binary string. (Note
that all potential messages are assumed to have the same length.) The parties share in advance a uni-
formly distributed, ¢-bit key k € {0, 1}*. To encrypt message m the sender computes ¢ := m @ k, where
@ represents bit-wise exclusive-or. Decryption is performed by setting m := ¢ @ k. Clearly, decryption
always recovers the original message.

To see that this scheme is perfectly secret, fix any initial distribution over messages and let K be the
random variable denoting the key. For any message m and observed ciphertext ¢, we have

=Pr[C=c|M=m]P1r[M=m]= Pr(C=c|M =m]Pr[M = m]

9.1)
Pr(C =c] 2 Pr{C=c|M=m']-Pr[M=m]

Pr(M=m|C=c]

>

where the summation is over all possible messages m’. Moreover, for any ¢, m’ (including m’=m)
we have

Pr[C=c|M=m']=Pr[K=c m']=27",

since k is a uniform ¢-bit string. Substituting into (9.1), we have Pr[M = m | C = ¢] = Pr[M = m] as desired.
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Although the one-time pad is perfectly secret, it is of limited value in practice. For one, the length of
the shared key is equal to the length of the message. Thus, the scheme becomes impractical when long
messages are to be sent. Second, it is easy to see that the scheme provides secrecy only when a given key
is used to encrypt a single message (hence the name “one-time pad”). This will not do in typical scenarios
where A and B wish to share a single key that they can use to send multiple messages. Unfortunately, it
can be shown that both these limitations are inherent for schemes achieving perfect secrecy.

9.2.2 Computational Secrecy

At the end of the previous section, we observed some fundamental limitations of perfect secrecy. To
obtain reasonable solutions, we thus need to (slightly) relax our definition of secrecy. This is not too bad,
however, since perfect secrecy may be considered to be unnecessarily strong: it requires absolutely no
information about m to be leaked, even to an all-powerful eavesdropper. Arguably, it would be sufficient
to leak a tiny amount of information and to restrict attention to eavesdroppers having some bounded
amount of computing power. To take some concrete numbers, we may be satisfied with an encryp-
tion scheme that leaks a most 27 bits of information (on average) to any eavesdropper that invests
at most 100 years of computational effort (on a standard desktop PC, for instance). Definitions of this
latter sort are termed computational, to distinguish them from notions (like perfect secrecy) that are
information-theoretic in nature. As initiated in the work of [11,36,33,35,44,9,22] and others, computa-
tional security is now the default way security is defined for cryptographic primitives.

A drawback of computational notions of security is that, given the current state of our knowledge,
proofs that a given scheme satisfies any such definition must necessarily rely on (unproven) assump-
tions regarding the computational hardness of certain problems. Our confidence in the security of a
particular scheme can be no better than our confidence in the underlying assumption(s) it is based on.

We illustrate the above by introducing a basic definition of computational secrecy. Fix some t, € > 0.
Private-key encryption scheme (Enc, Dec) is (, €)-indistinguishable if for every eavesdropper A running
in time at most f, and for all (equal-length) messages m,, m,, we have

Pr[AEncy(m,) =b] —% <e.

The probability above is taken over uniform choice of the key k and the bit b, as well as any randomness
used by Enc. In words: we choose a random key k, encrypt one of m, or m, (each with equal probability),
and give the resulting ciphertext to A; the scheme is indistinguishable if any A running in time ¢ cannot
determine which message was encrypted with probability e-better than a random guess.

Perfect secrecy can be shown to be equivalent to (e, 0)-indistinguishability, and so the above is a
natural relaxation of perfect secrecy. Taking t bounded and e strictly positive exactly corresponds to
our intuitive idea of relaxing perfect secrecy by placing a bound ¢ on the running time of \A, and being
content with possibly allowing a tiny amount ¢ of “information leakage.”

9.2.3 Security against Chosen-Plaintext Attacks

Rather than give a construction satisfying the above definition, we immediately introduce an even
stronger definition that is better suited for practical applications. Thus far, our security definitions have
been restricted to consideration of an adversary who eavesdrops on a single ciphertext and, as we have
mentioned, this restriction is essential in the context of perfect secrecy. As noted earlier, however, the
honest parties would prefer to encrypt multiple messages using the same shared key; we would like to
guarantee secrecy in this setting as well. Moreover, it may be the case that the adversary already knows
some of the messages being encrypted; in fact, the adversary might even be able to influence some of
the messages the parties send. This latter scenario, where the adversary can cause the parties to encrypt
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plaintexts of the adversary’s choice, is termed a chosen-plaintext attack. The one-time pad is trivially
insecure against a chosen-plaintext attack: given a ciphertext ¢ = k @ m for a known message m, the
adversary can easily recover the key k.

To capture the above attack scenarios, we modify the previous definition by additionally giving A
access to an encryption oracle Enc,(-). This oracle allows the adversary to obtain the encryption of
any message(s) of its choice using the key k shared by the parties. This oracle is meant to model the
real-world capabilities of an adversary who can control what messages get encrypted by the parties;
of course, if the adversary has only partial control over what messages get encrypted, then this only
makes the adversary weaker. We say that an encryption scheme (Enc, Dec) is (t, €)-indistinguishable
against a chosen-plaintext attack (or (¢, €)-CPA secure) if for every adversary A running in time at
most ¢

1

Pr[AEnck(')(Enck(mb)) :b:I_E =€

]

where the probability space is as before.

It is not entirely obvious that CPA-security implies security when multiple messages are encrypted,
but this can be shown to be the case [27].

Any easy, but important, observation is that any CPA-secure encryption scheme must have random-
ized encryption. This is true even if only security for multiple encrypted messages is desired: if the
encryption scheme is deterministic, then given any two ciphertexts the adversary can tell whether or not
they are encryptions of the same message, an undesirable leakage of information.

9.2.4 Block Ciphers

As a step toward constructing a CPA-secure private-key encryption scheme, we first introduce an
important primitive for this application. A keyed function F : {0, 1}" x {0, 1}¢ — {0, 1}¢ is an efficiently
computable function that maps two inputs to a single output; we treat the first input to F as a key that
will be chosen at random and then fixed, and define F,(x) = F(k, x). (We have assumed for simplicity
that the input and output of F, have the same length €, but this is not essential.) We call n the key length
and ¢ the block length. Informally, F is pseudorandom if the function F,, for a randomly chosen k, is
“indistinguishable” from a completely random function f with the same domain and range. That is,
consider an adversary A who can send inputs to and receive outputs from a box that contains either
F, (for a random k € {0, 1}) or f (for a random function f); the keyed function F is pseudorandom if .A
cannot tell which is the case with probability significantly better than random guessing. Formally, Fis a
(t, &)-pseudorandom function [20] if for any adversary A running in time ¢

\Pr[AFk") =1]-Pr[A’" = 1]\ <e,

where in the first case k is chosen uniformly from {0, 1}" and in the second case fis a completely random
function.

If, for all k, the function F, is a permutation (i.e., bijection) over {0, 1}* and moreover the inverse F; '
can be computed efficiently (given the key k), then F is called a keyed permutation. A pseudorandom
function that is also a keyed permutation is called a pseudorandom permutation or a block cipher.
(Technically, in this case F, should be indistinguishable from a random permutation, but for large
enough ¢ this is equivalent to being indistinguishable from a random function.)

A long sequence of theoretical results culminating in [20,24,31] shows that pseudorandom functions
and block ciphers can be constructed from rather minimal cryptographic assumptions, and thus in
particular from the cryptographic assumptions we will introduce in Section 9.4. Such constructions are
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rather inefficient. In practice, dedicated and highly efficient block ciphers are used instead; although the
security of these block ciphers cannot be cleanly reduced to a concise mathematical assumption, several
design principles used in their construction can be given theoretical justification. More importantly,
such block ciphers have been subjected to intense scrutiny by the cryptographic community for several
years, and thus it is not unreasonable to view the assumption that these block ciphers are secure as being
on par with other assumptions used in cryptography.

The most popular block cipher today is the Advanced Encryption Standard (AES) [10], which was
standardized by NIST in 2001 after a multi-year, public competition. AES supports 128-, 192-, or 256-bit
keys, and has a 128-bit block length. It superseded the Data Encryption Standard (DES) [13], which had
been standardized by the US government in 1977. DES is still in wide use, but is considered insecure due
to its relatively short key length (56 bits) and block length (64 bits). Further details and additional block
ciphers are discussed in [30].

9.2.5 A CPA-Secure Scheme

Given any pseudorandom function F : {0, 1}" x {0, 1} — {0, 1}¢ with € sufficiently long, it is possible
to construct a private-key encryption scheme (Enc, Dec) that is CPA-secure [21]. To encrypt a mes-
sage m € {0, 1}* using a key k, first choose a random string r € {0, 1}%; then output the ciphertext
(r, F,(r) @ m). Note that encryption here is randomized, and there are many possible ciphertexts asso-
ciated with a given key and message. Decryption of a ciphertext ¢ = {(c,, ¢,) using key k is performed
by computing m: = ¢, @ Fi(c,). It can be verified that correctness holds.

Intuitively, the sender and receiver are using F,(r) as a “one-time pad” to encrypt m. Although
F,(r) is not random, it is pseudorandom and one can show that this is enough for security to hold.
In a bit more detail: say the sender encrypts multiple messages m,, m,, ..., m, using random strings
Ty, Ty, ..y T, Tespectively. The facts that F is a pseudorandom function and k is unknown to the adver-
sary imply that Fi(r,), Fi(r,), ..., Fi(r,) are indistinguishable from independent, uniform strings of
length € unless r, = r; for some i # j (in which case, Fy(r;) and Fy(r) are, of course, equal). Assuming
this does not occur, then, usage of the encryption scheme is equivalent to using the one-time pad
encryption scheme with g independent keys, and is thus secure. The probability that there exist dis-
tinct 4, j with r; = r; can be bounded by ¢?/2¢, which is small for typical values of g, €. A full proof can
be found in [27, Chapter 3].

The scheme described above can be applied to messages of arbitrary length by encrypting in a block-
by-block fashion. This results in a ciphertext whose length is twice that of the original plaintext. More
efficient modes of encryption [14,27] are used in practice to encrypt long messages. As an example,
counter mode (CTR-mode) encryption of a message m = (m,, ..., m,) (with m; € {0, 1}¢) using a key k is
done by choosing a random r as above, and then computing the ciphertext

(r,F(r+1)®@m, F(r+2)®m,, ..., K(r+t)®m,).

(A proof of security for this scheme follows along similar lines as above.) The ciphertext is now only a
single block longer than the plaintext.

9.2.6 Stronger Security Notions

Even the notion of CPA security considers only a passive adversary who eavesdrops on the public chan-
nel, but not an active adversary who interferes with the communication between the parties. (Although
we will treat active attacks in the next section, there our concern will primarily be integrity rather than
secrecy.) Encryption schemes providing security against an active adversary are available; see Section
9.3.2 and Section 9.3.7 [27] for further discussion.
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9.3 Message Authentication Codes

The preceding section discussed how to achieve secrecy; we now discuss techniques for ensuring integ-
rity (sometimes also called authenticity). Here, the problem is as follows: parties A and B share a key k
in advance, and then communicate over a channel that is under the complete control of an adversary.
When B receives a message, he wants to ensure that this message indeed originated from A and was not,
for example, injected by the adversary, or generated by modifying the real message sent by A.

Secrecy and integrity are incomparable goals, and it is possible to achieve either one without the
other. In particular, the one-time pad—which achieves perfect secrecy—provides no integrity whatso-
ever since any ciphertext ¢ of the appropriate length decrypts to some valid message. Even worse, if ¢
represents the encryption of some (possibly unknown) message m, then flipping the first bit of ¢ has the
predictable effect of flipping the first bit of the resulting decrypted message. This illustrates that integrity
is not implied by secrecy, and if integrity is required then specific techniques to achieve it must be used.

In the private-key setting, the right tool in this context is a MAC. We first define the syntax. A MAC con-
sists of two algorithms (Mac, Vr£y). The tag-generation algorithm Mac takes as input a key k and a message
m, and outputs a tag tag; although it is possible for this algorithm to be randomized, there is not much loss
of generality in assuming that it is deterministic, and so we write this as tag := Mac;(m). The verification
algorithm Vr £y takes as input a key, a message, and a tag; it outputs a single bit b with the intention that b =
1 denotes “validity” and b = 0 indicates “invalidity.” (If Vr£y,(m, tag) = 1, then we say that tag is a valid
tag for message m with respect to key k.) An honestly generated tag on a message m should be accepted as
valid, and so correctness requires that for any key k and message m, we have Vrfy, (i, Mac,(m)) = 1.

Defining security for MACs is relatively simple, and there is only one widely accepted definition [3,23].
Atahigh level, the goal is to prevent an adversary from generating a valid tag on a message that was never
previously authenticated by one of the honest parties. This should hold even if the adversary observes valid
tags on several other messages of its choice. Formally, consider an adversary A who is given access to an
oracle Mac,(); the adversary can submit messages of its choice to this oracle and obtain the corresponding
valid tags. A succeeds if it can then output (m, tag) such that (1) m was not one of the messages mj,...
that A had previously submitted to its oracle, and (2) tag is a valid tag for m; that is, Ve £y,(m, tag) = 1.
A MAC is (t, €)-secure if for all A running in time at most £, the probability with which A succeeds in this
experiment (where the probability is taken over random choice of k) is at most €. This security notion is
also called existential unforgeability under adaptive chosen-message attack.

One attack not addressed in the above discussion is a replay attack, whereby an adversary resends
an honestly generated message m along with its valid tag. The receiver, in general, has no way of know-
ing whether the legitimate sender has simply sent m again, or whether this second instance of m was
injected by the adversary. MACs, as defined, are stateless and so are unable to prevent such an attack.
This is by choice: since repeated messages may be legitimate in some contexts, any handling of replay
attacks must be taken care of at a higher level.

We now show a simple construction of a secure MAC based on any pseudorandom function/block
cipher F: {0, 1}" x {0, 1}¢ — {0, 1} with ¢ sufficiently long [21]. To generate a tag on a message m € {0, 1}
using key k, simply compute tag := F,(m). Verification is done in the obvious way: Vrfy,(m, tag)
outputs 1 if and only if tag;F,< (m). We sketch the proof of security for this construction. Let m,, ...
denote those messages for which adversary A has requested a tag. Since F is a pseudorandom function,
Mac,(m) = F(m) “looks random” for any m & {m,, ...}, the probability with which A can correctly pre-
dict the value of F,(m), then, is roughly 27¢. For ¢ large enough, the probability of a successful forgery is
very small.

9.3.1 MAC:s for Long Messages

The construction in the previous section assumed that messages to be authenticated had length ¢, the
block length of the underlying pseudorandom function. Practical block ciphers have relatively short
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block length (e.g., € = 128 bits), which means that only very short messages can be authenticated by this
construction. In this section, we explore two approaches for doing better.

The first approach is a specific construction called the cipher-block chaining MAC (CBC-MAC), which
can be based on any pseudorandom function/block cipher F as before. Here, we assume that the length
of the messages to be authenticated is some fixed multiple of the block length #. The tag on a message
M = (my, m,, ..., m;) (with m; € {0, 1}¥) using key k is computed as follows:

tag, = 0¢
Fori=1to L:

tag; = F(m; ® tag, )
Output tag;

Verification of a tag tag on a message M = (m;, ..., m;) is done by recomputing tag; as above and out-
putting 1 if and only if tag = tag;.

CBC-MAC is known to be secure if F is a pseudorandom function [3]. This is true only as long
as fixed-length messages (i.e., when the number of message blocks L is fixed) are authenticated, and
there are several known attacks on the basic CBC-MAC presented above when this is not the case.
Subsequent work has shown how to extend basic CBC-MAC to allow authentication of arbitrary-length
messages [8,25,34].

A second approach to authenticating arbitrary-length messages is generic, in that it gives a way to
modify any MAC for short messages so as to handle longer messages. As we will present it here, however,
this approach requires an additional cryptographic primitive called a collision-resistant hash func-
tion. Although hash functions play an important role in cryptography, our discussion will be brief and
informal since they are used sparingly in the remainder of this survey.

A hash function H is a function that compresses an arbitrary-length input to a short, fixed-length
string. Hash functions are widely used in many areas of computer science, but cryptographic hash
functions have some special requirements that are typically not needed for other applications. The
most important such requirement, and the only one we will discuss, is collision resistance. Informally,
H is collision resistant if it is infeasible for an efficient adversary to find a collision in H, where a col-
lision is a pair of distinct inputs x, x” with H(x) = H(x"). If H is collision resistant, then the hash of
a long message serves as a “secure digest” of that message, in the following sense: for any value y
(whether produced by an adversary or not), an adversary can come up with at most one x such that
H(x) = y. The output length of a hash function fixes an upper bound on the computational difficulty
of finding a collision: if H has output length ¢, then a collision can always be found in O(2¢2) steps
(see [27]).

As in the case of block ciphers, collision-resistant hash functions can be constructed from
number-theoretic assumptions but such constructions are inefficient. (Interestingly, the precise
assumptions needed to construct collision-resistant hash functions appear to be stronger than
what is necessary to construct block ciphers.) Several dedicated, efficient constructions of hash
functions are known; the most popular ones are currently given by the SHA family of hash func-
tions [15], which have output lengths ranging from 160 to 512 bits. As of the time of this writing,
however, NIST is running a public competition to choose a replacement (see http://www.nist.gov/
hash-competition).

Returning to our discussion of MACs, let H: {0, 1}* — {0, 1}* be a collision-resistant hash function, and
let (Mac, Vrfy) be asecure MAC for messages of length €. Then we can construct a message authentica-
tion code (Mac’, Vrfy’) for arbitrary-length messages as follows. To authenticate m, first hash it to an

def
€-bit digest, and then authenticate the digest using the original MAC, that is, Mac(m) = Macy(H(m)).

def
Verification is done in the natural way, with vrfy}(m,tag) = vrfy,(H(m),tag). It is not difficult to
show that this construction is secure. The standardized HMAC message authentication code [2,17] can
be viewed as following the above paradigm.
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9.3.2 Joint Secrecy and Integrity

When communicating over a public channel, it is usually the case that both secrecy and integrity are
required. Schemes achieving both these properties are called authenticated encryption schemes [4,28].
The natural way to achieve both these properties is to combine a private-key encryption scheme with a
MAG; there are a number of subtleties in doing so, and the reader is referred elsewhere for a more in-
depth treatment [4,27]. More efficient constructions of authenticated encryption schemes are also known.

9.4 Public-Key Setting and Public-Key Encryption

The private-key setting we have been considering until now requires the honest parties to share a secret
key in advance in order to secure their communication. Historically, the private-key setting was the only
one considered in cryptography. In the mid-1970s [11,33,35,36], however, the field of cryptography was
revolutionized by the development of public-key cryptography which can enable secure communication
between parties who share no secret information in advance and carry out all their communication over
a public channel. The only requirement is that there is a way for one party to reliably send a copy of their
public key to the other.

In the setting of public-key cryptography, any party A generates a pair of keys (pk, sk) on its
own; the private key sk is held privately by A, while the public key pk must be obtained by any other
party B who wishes to communicate with A. The first party can either send a copy of its public key
directly to B, if an authenticated (but not necessarily private!) channel is available between A and
B; alternately, A can place a copy of its public key in a public directory (or on her webpage) and B
can then obtain pk when needed. Regardless of which method is used, when we analyze security of
public-key cryptosystems we simply assume that parties are able to obtain authentic copies of each
others’ public keys. (In practice, certification authorities and a public-key infrastructure are used
to reliably distribute public keys; a discussion is outside the scope of this chapter.) We assume the
adversary also knows all parties’ public keys; this makes sense since parties make no effort to keep
their public keys secret.

Public-key cryptography has a number of advantages relative to private-key cryptography. As we have
already discussed, the use of public-key cryptography can potentially simplify key distribution since
a private channel between the communicating users is not needed (as it is in the private-key setting).
Public-key cryptography can also simplify key management in large systems. For example, consider
a company with N employees where each employee should be able to communicate securely with any
other employee. Using a private-key solution would require each user to share a (unique) key with every
other user, requiring each employee to store N — 1 secret keys. In contrast, with a public-key solution,
each user would need to know their own private key and the N — 1 public keys of the other employees;
these public keys, however, could be stored in a public directory or other nonprivate storage. Finally,
public-key cryptography is more suitable for “open systems” such as the Internet where the parties who
need to communicate securely may have no prior trust relationship, as is the case when a (new) customer
wants to encrypt their credit card prior to sending it to an online merchant.

The primary disadvantage of public-key cryptography is that it is less efficient than private-key cryp-
tography. An exact comparison depends on many factors, but as a rough estimate, when encrypting
“short” messages (say, less than 10 kB) public-key cryptosystems are 500-1000 times slower than com-
parable private-key cryptosystems and use roughly a factor of 10 more bandwidth. The power con-
sumption needed to use public-key cryptography can also be an issue when cryptography is used in
low-power devices (sensors, RFID tags, etc.). Thus, when private-key cryptography is an option, it is
preferable to use it.

Let us formalize the syntax of public-key encryption. A public-key encryption scheme is composed
of three algorithms (Gen, Enc, Dec). The key-generation algorithm Gen is a randomized algorithm
that outputs a pair of keys (pk, sk) as described earlier. The encryption algorithm Enc takes as input a



9-10 Algorithms and Complexity

public key pk and a message m, and outputs a ciphertext c. The decryption algorithm Dec takes as input a
private key sk and a ciphertext ¢, and outputs a message m. (We highlight here that the decryption algo-
rithm and the encryption algorithm use different keys.) Correctness requires that for all (pk, sk) output
by Gen, and any message m, we have Dec (Enc ,(m)) = m.

Our definition of security is patterned on the earlier definition given for private-key encryption
schemes; in fact, the only difference is that the adversary is given the public key. That is, public-key
encryption scheme (Gen, Enc, Dec) is (t, €)-indistinguishable if for every (probabilistic) eavesdropper
A running in time at most ¢, and for all (equal-length) messages m,, m,, we have

e[ A(pk, Bacy (mi)=b] - <€,

where the probability is taken over random generation of (pk, sk) by Gen, uniform choice of b, and any
randomness used by the encryption algorithm itself.

Interestingly, in the public-key setting, the above definition implies security against chosen-
plaintext attacks (and hence also security when multiple messages are encrypted) and for this reason
we will also use the above as our definition of CPA-security; this is in contrast to the private-key
setting where security against chosen-plaintext attacks is stronger than indistinguishability. A bit of
reflection shows why: in the public-key setting access to an encryption oracle is superfluous, since an
adversary who is given the public key can encrypt any messages it likes by itself. A consequence is
that, in order to meet even a minimal notion of security in the public-key setting, encryption must
be randomized.

In contrast to the private-key setting, public-key cryptography seems to inherently rely on number-
theoretic techniques. The two most commonly used techniques are explored in the following two sub-
sections. These sections assume some basic mathematical background on the part of the reader; the
necessary background is covered in [27].

9.4.1 RSA Encryption

We discuss the general case of RSA cryptography, followed by its application to the particular case of
public-key encryption.

Rivest et al. [36] introduced the concept of RSA-based cryptography in 1978. Security here is ulti-
mately based on (though not equivalent to) the assumption that factoring large numbers is hard, even
though multiplying large numbers is easy. This, in turn, gives rise to problems that are easy if the fac-
torization of some modulus N is known, but that are believed to be hard when the factors of N are
unknown. This asymmetry can be exploited to construct public-key cryptosystems.

Specifically, let N = pq be the product of two large primes p and q. (For concreteness, one may take p
and g to be 1000-bit integers.) Let Zy denote the set of integers between 1 and N — 1 that are invertible
modulo N; that is, x € Zy if there exists an integer x! such that x - x™! = 1 mod N. It is known that ij,
consists precisely of those integers between 1 and N — 1 that are relatively prime to (i.e., have no factor in
common with) N. Using this, one can show that

|Zx = (p=D)-(q 1)

def
Define ¢(N) = | Zy |. Basic group theory implies that for any integers e, d with ed = 1 mod @(N) and any
x € Zx, it holds that

(x°)" =x mod N; 9.2)
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in particular, this means that the function fy, : Zn — 7 defined by

fne(x)=x° mod N

is a bijection. Anyone given N, e, and x can easily compute f (x) using standard algorithms for efficient
modular exponentiation. The RSA problem is the problem of inverting this function: namely, given N, e,
y with y € Zy, to find a value x € Zy, such that x* = y mod N.

If the factors of N are known, then it is easy to compute @(NN) and hence for any e relatively prime to

@(N) the value d d:e" mod @(N) can be efficiently computed. This value d can then be used to invert f,
using Equation 9.2, and so in this case the RSA problem is easily solved. On the other hand, there is no
known efficient algorithm for inverting f,, given only N and e (and, in particular, without the factoriza-
tion of N). The RSA assumption formalizes the apparent computational difficulty of solving the RSA
problem. Let RSAGen be a randomized algorithm that outputs (N, e, d) where N is a product of two ran-
dom, large primes and ed = 1 mod @(N). (We do not discuss how such an algorithm can be constructed;
suffice it to say that efficient algorithms with the required behavior are known.) We say the RSA problem
is (t, €)-hard for RSAGen if, for all algorithms A running in time at most ¢,

Pr[A(N,e, y)=xs.t.x° =y mod N]<g,

where the probability is taken over the randomness of RSAGen as well as uniform choice of y € Zy. It is
clear that if the RSA problem is hard for RSAGen, then factoring moduli N output by RSAGen must be
hard; the converse is not known, but hardness of the RSA problem for moduli generated appropriately
(i.e., the RSA assumption) is widely believed to hold.

The above discussion should naturally motivate our first candidate public-key encryption scheme
that we call “textbook RSA encryption.” For this scheme, the key-generation algorithm runs RSAGen
to obtain (N, e, d); the public key consists of (N, e), while the private key contains (N, d). To encrypt a
message m € Zy using the public key (N, ¢), the sender computes ¢ := m¢ mod N. Given a ciphertext ¢ thus
computed, the message can be recovered by using the corresponding private key to compute

¢ mod N =(m°) =m mod N.

It follows directly from the RSA assumption that if  is chosen uniformly from Zy, then an adversary
who observes the ciphertext ¢ cannot compute m in its entirety. But this, alone, is not a very satisfying
guarantee! For one thing, a real-life message is unlikely to be random; in particular, it may very well
correspond to some structured text. Furthermore, even in the case that m is random, the textbook RSA
scheme provides no assurance that an adversary cannot deduce some partial information about m (and
in fact, recovering some partial information about m is known to be possible). Finally, this scheme does
not have randomized encryption; textbook RSA encryption thus cannot possibly be CPA-secure.

Randomized variants of textbook RSA, however, are used extensively in practice. For simplicity, we
describe here a variant that roughly corresponds to the RSA PKCS #1 v1.5 standard [37]. (This stan-
dard has since been superseded by a later version which should be used instead.) Here, the message is
randomly padded during encryption. That is, if N is a 2000-bit modulus, then encryption of an 800-bit
message m can be done by choosing a random 200-bit string r and then computing

c¢=(r||m)° mod N;

decryption is done in the natural way. It is conjectured that this scheme is CPA-secure, though no proof
based on the RSA assumption is known.
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9.4.2 El Gamal Encryption

A second class of problems that can be used for public-key cryptography is related to the presumed
hardness of the discrete logarithm problem in certain groups. This idea was introduced, in somewhat dif-
ferent form, by Diffie and Hellman in 1976 [11]. Our treatment will be abstract, though after introducing
the basic ideas we will discuss some concrete instantiations.

Let G be a finite, cyclic group of large prime order g, and let ¢ € G be a generator of G. The fact that g
is a generator implies that for any element h € G there exists an x € {0,..., ¢ — 1} = Z, such that g = h. By
analogy with logarithms over the real numbers, in this case we write x = log, h. The discrete logarithm
problem in G is to compute log, h given h. For many groups (see below), this problem appears to be
computationally infeasible. We may formalize this, the discrete logarithm assumption in G, as follows:
the discrete logarithm problem in G is (f, €)-hard if for all algorithms A running in time at most ¢ it
holds that

Pr[A(h)=xs.t.g" =h]<e,

where the probability is taken over uniform choice of h € G.

For cryptographic applications, a stronger assumption is often needed. The decisional Diffie-Hellman
problem is to distinguish tuples of the form (g%, ¢’, g¥) (where x, y are chosen uniformly from Z,) from
tuples of the form (g%, g, g°) (where x, y, z are chosen uniformly from Z,). We say the decisional Diffie-
Hellman problem is (t, €)-hard in G if for all algorithms A running in time at most t we have

PrlA(g*, g", g7 )=1]-Pr[A(g", ¢g’,g") =1] <e,

where the probability space in each case is as described earlier. One way to solve the decisional Diffie-
Hellman problem given a candidate tuple (g, g,, g;) is to compute x = log, g, and then check whether
g3 ;gf. We thus see that the decisional Diffie-Hellman problem in some group G is no harder than the
discrete logarithm problem in the same group. The converse is not, in general, true as there are candi-
date groups in which the discrete logarithm problem is hard but the decisional Diffie-Hellman problem
is not. Nevertheless, for the groups discussed below, the stronger decisional Diffie-Hellman problem is
widely believed to hold.

A classical example of a class of groups for which the above assumptions are believed to hold is given
by large prime-order subgroups of Z; for p prime. As one concrete example, let p = 2q + 1, where both p
and q are prime. Then the set of quadratic residues modulo p (namely, elements of Z, that can be writte