Matrix Theory and Applications with MATLAB[®]

Darald J. Hartfiel

CRC Press Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-PublicationData

Hartfiel, D.J.
Matrix theory and applications with MATLAB / Darald J. Hartfiel.
p. cm.
Includes bibliographical references and index.
ISBN 1-58488-108-9(alk. paper)
1. Matrices—Data processing. 2. MATLAB. I. Title.

QA188 .H37 2000 512.9'434—dc21

00-046817

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources **are** indicated. A wide variety of references **are** listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither **this** book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any infoxmation storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W.Corporate Blvd., Boca Raton, Florida 33431

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC

No claim to original U.S. Government works International Standard Book Number 1-58488-108-9 Library of Congress Card Number 00-046817 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper

Preface

This text is intended for a basic course in matrix theory and applications. "Basic" here means that the material chosen is what is most often seen in these courses, and the presentation stresses insight and understanding.

There is no common definition of "understanding"; however, there is some agreement of its consequences. A person that understands material should be able to do the following:

- fill in any missing pieces of the material that were not given,
- adjust the material to cover like problems,
- extend the material beyond what was seen, and perhaps
- create by adding new work to the material.

In this text, there are some places where results are given for special cases, e.g., 2×2 matrices rather than $n \times n$ matrices. This was done so that the notation required was simple and the idea of the proof was easier to glean. Of course, understanding this case should mean that the general proof can be seen as well. Still, writing out the proof can take some time in dealing with subscripts and such. There are also a few places where the first two consequences come into play. Understanding is important, and it seems that when students don't understand, they resort to memorization of material that means nothing to them.

There are some special features of the text, which are described as follows:

- 1. *Optional subsections*. At the end of each section, a subsection entitled Optional covers applications of the material in the section. Its intent is to show how the material in the subsection is used.
- 2. *MATLAB* subsections*. Also at the end of most sections, there is a subsection entitled MATLAB. These subsections discuss the various commands we use in MATLAB to do the computations described in the sections. Of course, learning requires that some problems be done by hand. However, for larger problems, some kind of software

^{*}MATLAB is a registered trademark of The Mathworks, Inc. For product information, please contact:

The Mathworks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 Tel: 508 647-7000 Fax: 508-647-7001 E-mail: infoOmathworks.com Web: www.mathworks.com

is required (as it saves considerable time). We used MATLAB since it is the software of choice in this area.

Code for the pictures and other graphics used in the text are also given in these subsections. Code for some algorithms used are given **as** well. This is important for several reasons. First, the code can be **used** to get color pictures rather than the black and whites shown in the text. Second, with a little effort, code can be adjusted or extended to handle other problems. Third, this code is important since not everyone uses MATLAB on a daily basis. It is nice to be able to review code a bit to bring the work back to mind.

Actually, the students can work through the Optional and MATLAB subsections themselves.

- **3.** *Visuals.* Many professors believe that pictures are important to learning, and studies on the hemispheres of the brain support that view. This text supports much of the verbal material with pictures. In fact, there are **129** pictures or drawings in this text. Exercises involving drawing and pictures are also given.
- 4. Examples. Much of the theory given in the text is supported by examples, 115 in fact. This serves several purposes. Some students learn better by looking at examples, although there is always the problem of mimicking here rather than working from basic ideas. And, some professors may choose to cover some of the material by discussing and showing examples rather than by discussing and proving.
- 5. *Exercises.* There are 450 exercises in the text designed to help students learn the material in the sections: practice calculations, applying results, completing proofs, and such.
- **6.** Order. The first **7** chapters of this text represent basic matrix theory. Beyond that, the chapters *can* be taken in any order. These latter chapters are short and perhaps a bit more advanced.

In conclusion, I would like to thank those students who, over the years, provided feedback on how they felt they learned material. It was helpful.

In addition, I would like to thank my wife, Faye, for typing and working with me on this manuscript. Both of us thank John MacKendrick from MacKichan Software for his help in typesetting problems.

And, I would like to thank my editor, Bob Stern, for his advice and help on producing this text.

Darald J. Hartfiel

Ç,

Author's Page

Darald **J.** Hartfiel received his Ph.D. degree in mathematics from the University of Houston in 1969. Since then, he has been on the faculty of Texas A&M University.

Professor Hartfiel has written 97 research papers, mostly in matrix theory and related areas. He is the author of two **books**, one of which is a monograph.

Contents

1	Rev	iew of	Matrix Algebra	1					
	1.1	Matric	es. Systems of Linear Equations. Determinants	1					
		1.1.1	Matrix Algebra	3					
		1.1.2	Systems of Linear Equations	12					
		1.1.3	Determinant	15					
		1.1.4	Optional (Ranking)	20					
		1.1.5	MATLAB (Solving $As = b$)	22					
2	Intr	oducti	on to Vector Spaces	29					
	2.1	Vector	Spaces	29					
		2.1.1	Optional (Geometrical Description of the Solutions						
			to $Ax = b$	39					
		2.1.2	MATLAB (Graphics)	40					
	2.2	Dimen	nsion						
		2.2.1	Optional (Dimension of Convex sets)	53					
	2.3	Linear	Transformations	58					
		2.3.1	Optional (Graphics of Polygonal Shapes)	67					
		2.3.2	MATLAB (Codes, including Picture of the Singular						
			Matrices in Matrix Space)	69					
3	Sim	ilarity		75					
	3.1 Nonsingular Matrices								
		3.1.1	Optional (Interpolation and Pictures)	82					
		3.1.2	MATLAB (Polyfit and Polyval)	84					

	3.2	Diagonalization	87
		3.2.1 Optional (Buckling Beam)	93
		3.2.2 MATLAB (Eig and $[P, D]$)	96
	3.3	Conditions for Diagonalization	99
		3.3.1 Optional (Picture of Multiple Eigenvalue Matrices in	
		Matrix Space)	105
		3.3.2 MATLAB (Code for Picture)	106
	3.4	Jordan Forms	108
		3.4.1 Optional (Numerical Problems in Finding the Jordan	
		Form)	113
		3.4.2 MATLAB ($[P, D]$ and Defective A)	114
4	Ma	trix Calculus	117
	4.1	Calculus of Matrices	117
		4.1.1 Optional (Modeling Spring-Mass Problems)	124
		4.1.2 MATLAB (Code for Graph of Function)	126
	4.2	Difference Equations	128
		4.2.1 Optional (Long-Run Prediction)	135
		4.2.2 MATLAB (Code for Viewing Solution to Difference	
		Equations; Handling Large Matrices)	137
	4.3	Differential Equations	142
		4.3.1 Optional (Modeling Motions of a Building)	151
		4.3.2 MATLAB (Code for Viewing Solutions of Differential	
		Equations Using expm)	152
5	Nor	med Vector Spaces	157
	5.1	Vector Norms	157
		5.1.1 Optional (Evaluating Models)	162
		5.1.2 MATLAB (Vector Norms)	164
	5.2	Induced Matrix Norms	166
		5.2.1 Optional (Error in Solving $Ax = b$)	173
		5.2.2 MATLAB (Matrix Norms and Condition Numbers)	176
	5.3	Some Special Norms	180
		5.3.1 Optional (Splitting Techniques)	185
	- 4	5.3.2 MATLAB (Code for Iterative Solutions)	187
	5.4	Inner Product Norms and Orthogonality	191
		5.4.1 Optional (Closest Matrix from Symmetric Matrices)	200
		5.4.2 MAILAB (Orth and the Projection Matrix)	200
6	Uni	tary Similarity	205
	6.1	Unitary Matrices	205
		6.1.1 Optional (Symmetry)	213
		6.1.2 MATLAB (Code for Picture of Orthogonal Matrices	017
		in 2 x 2 Matrix Space)	215
	~ ^ ^		

		6.2.1 6.2.2	Optional (Motion in Principal Axes) MATLAB (Schur)	228 231		
7	Sing 7.1	gular V Singul	Value Decomposition ar Value Decomposition Theorem	235 236		
	7.2	7.1.1 7.1.2 Applic 7.2.1	Solutions)	245 248 252 260		
8	LU 8.1	and Q The L	R Decompositions U Decomposition	265 265		
	8.2	8.1.1 8.1.2 The Q 8.2.1	Optional (Iterative Improvement in Solving $Ax = b$) MATLAB (lu , [L, U] and [L, U , F])	272 273 275 283		
		8.2.2	MATLAB ($Ax = b$. QR. Householder. and Givens).	285		
9	Proj 9.1	perties Contin	of Eigenvalues and Eigenvectors	291 291		
	9.2	9.1.1 Pertur	Optional (Eigenvectors and Multiple Eigenvalues) . bation of Eigenvalues and Eigenvectors	297 299		
		9.2.1 9.2.2	Optional (Pictures of Eigenvalue and Eigenvector Sen- sitivity)	304 306		
10	Her: 10.1	mitian Positiv	and Positive Definite Matrices re Definite Matrices	309 309		
		$\begin{array}{c} 10.1.1\\ 10.1.2\end{array}$	Optional (Solving the Motion of a Building Problem) MATLAB (Code for Computing P)	315 318		
	10.2	Special 10.2.1	l Eigenvalue Results on Hermitian Matrices Optional (Optimization)	320 326		
11	Gra	phics a	and Topology	331		
	11.1 11.2	Two P 11.1.1 Manifo 11.2.1	rojection Matrices	331 337 340 344		
Ap	pend	dix A:	MATLAB	346		
An	Answers to Selected Exercises 35					
Bil	Bibliography 365					

In this book we will assume some basic background in matrices, linear equations, and determinants as this material is usually studied in previous courses.

What is assumed is reviewed in this chapter. In reviewing, a few remarks and examples are usually enough to bring the work back to mind. Observing the technical notations used in the book and working through a few problems will also help.

Almost all of the work in this book can be done using either the set \mathcal{R} of real numbers or the set C of complex numbers. Any exceptions (when we work only in \mathcal{R} or in C) will be stated.

In linear algebra and matrix theory, it is traditional to refer to numbers as *scalars* (real or complex). We will use Greek letters α, β, \ldots to denote scalars.

1.1 Matrices, Systems of Linear Equations, Determinants

Since we use complex numbers in this book, it may be helpful to give a brief review of them. A complex number is written in the form a + bi where a (the real part) and b (the imaginary part) are real numbers and $i = \sqrt{-1}$. If the complex number has imaginary part 0, we simply write a for a + 0i. Since complex numbers commute, bi = ib, so we can also write complex numbers as a + ib.

Complex numbers *can* be plotted in the complex plane by finding *a* on the real **axis** (*x*-axis) and *b* on the imaginary axis (y-axis) and plotting a + bi at (a,b). (See Figure 1.1.)

ŝ

i.

ł

The computing rules are as those for real numbers, using $i^2 = -1$ to simplify. For example,

$$(2+32) (4+5i) =$$

2.4+2.5i+3i.4+3i.5i =
8+10i+12i - 15 = -7+22i

If

z = a + bi

its conjugate is

 $\overline{z} = a - bi.$

Calculation shows that if w = c + di, then

$$\overline{z + w} = \overline{z} + \overline{w}$$
 and $\overline{zw} = \overline{z} \overline{w}$.

Since $z\overline{z} = a^2 + b^2$ is a real number, we **can** simplify a fraction by multiplying its numerator and its denominator by the conjugate of the denominator. For example,

$$\frac{3+2i}{4+5i} \frac{-3+2i}{4+5i} \frac{-4-5i}{4-5i} \frac{22-7i}{41} \frac{-22}{41} \frac{-7}{E} \frac{2}{41} \frac{2}{E} \frac{-7}{41} \frac{-7}{E} \frac{-7}{41} \frac{-7}{4$$

We also use that the absolute value (also called the modulus) of z is

$$|z| = \sqrt{a^2 + b^2}.$$

Viewed in the complex plane, it is seen (Figure 1.2) that |z| is the distance between z and 0.

FIGURE 1.2.

By direct calculation, it can be seen that

$$|z+w| \le |z|+|w|\,, \ |zw|=|z|\,|w|\,, \ {
m and} \ |z|=(z\overline{z})^{rac{1}{2}}\,.$$

Finally, recall that

$$e^{ib} = \cos b + i \sin b$$
,

and

$$e^{a+ib} = e^a e^{ib}.$$

For example, $e^{2+i\frac{\pi}{3}} = e^2 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = e^2 \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 3.69 + 6.40i$ (rounded to the hundredths decimal place).

1.1.1 Matrix Algebra

A matrix is an $m \ge n$ array of numbers placed in m rows and n columns. In general, we exhibit a matrix **as**

```
\left[\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & \ddots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}\right]
```

or more compactly as $[a_{ij}]$, depicting the entry a_{ij} in row *i* and column *j*.

The size of this matrix is $m \ge n$. If m = n, the matrix is often called square.

We use capital letters to denote matrices and the corresponding **lower** case letters for entries. Thus, we write

$$A = [a_{ij}], B = [b_{ij}],$$
 etc.

If a matrix is $1 \times n$ or $m \times 1$, we call it **a** vector **and** simply write

$$x = [x_i]$$
.

The $m \ge 1$ vector, e_i , called a unit vector, defined by

$$e_i = \begin{bmatrix} 0\\ \cdots\\ 0\\ 1\\ 0\\ \cdots\\ 0 \end{bmatrix} \leftarrow i\text{-th row,}$$

appears throughout the text.

Recall that the arithmetic of matrices is like the arithmetic of numbers, except

- i. Matrices do not necessarily commute under multiplication.
- ii. Matrices need not have multiplicative inverses.

We will again *see* this **as** we give a brief review of the algebra (arithmetic) of matrices.

Developing the algebra of matrices, for $m \times n$ matrices A and B, define addition as

$$A+B=\left[a_{ij}+b_{ij}\right].$$

And if α is a scalar, define scalar multiplication as

$$\alpha A = [\alpha a_{ij}] \, .$$

Thus,

$$\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 0 & -1 \end{bmatrix}$$

and

$$2\left[\begin{array}{cc} 0 & 1 \\ -2 & 3 \end{array}\right] = \left[\begin{array}{cc} 0 & 2 \\ -4 & 6 \end{array}\right].$$

Recall that equality between matrices of the same size means that all corresponding entries are equal. Using this, the following properties for $m \times n$ matrices and scalars are easily seen.

- (a) A + B = B + A
- (b) (A+B) + C = A + (B+C)
- (c) The matrix 0, all of whose entries are 0, satisfies

$$A + O = 0 + A = A.$$

(d) For each matrix A, the matrix $-A = [-a_{ij}]$ satisfies

$$A + (-A) = (-A) + A = 0.$$

- (e) $\alpha (A + B) = \alpha A + \alpha B$ (f) $(a + \beta)A = \alpha A + \beta A$ (g) $(\alpha \beta)A = \alpha (\beta A)$
- (h) $\mathbf{l}\mathbf{A} = \mathbf{A}$

It may be helpful to demonstrate one of these results.

Proof (e). By direct computation,

$$\alpha (A+B) = \alpha ([a_{ij}] + [b_{ij}])$$

$$= a[a_{ij} + b_{ij}]$$

$$= [\alpha a_{ij} + b_{ij}]$$

$$= [\alpha a_{ij} + \alpha b_{ij}]$$

$$= [\alpha a_{ij}] + [\alpha b_{ij}]$$

$$= \alpha [a_{ij}] + \alpha [b_{ij}]$$

$$= \alpha A + \alpha B.$$

This verifies (e).

Let A be an m x r matrix and B an r x n matrix. The product AB is defined entrywise as the m x n matrix C where

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ir}b_{rj}$$
$$= \sum_{k=1}^{r} a_{ik}b_{kj}$$

for $1 \le i \le m$ and $1 \le j \le n$.

Computing this product in terms of the rows of **A**, called forward *mul*tiplication, yields the rows of AB; e.g., to compute the i-th row of AB, we multiply the i-th row of **A** and the matrix **B** as in

$$a_i \left[\begin{array}{c} b_1 \\ \cdots \\ b_r \end{array}
ight] = a_{i1}b_1 + \cdots + a_{ir}b_r$$

where a_i is the *i*-th row of **A** and b_1, \ldots, b_r the rows of **B**. (Here we can think of taking row a_i , tilting it forward or vertically, so its entries are against the corresponding rows of **B**, and multiplying through.)

Computing columns of the product, called backward multiplication, yields for the j-th column of AB,

$$[a_1 \cdot \ldots a_n] b_j = b_{1j}a_1 + \ldots + b_{rj}a_r$$

where b_j is the j-th column of B and a_1, \ldots, a_j , are the columns of A. (Here we can think of taking a column bj of B, tilting it **backward**, or **horizontally**, so its entries are against the corresponding columns of B, and multiplying through.) Viewing a product as a **backward** multiplication will allow us to see (as obvious) many matrix results. It is useful.

An example may help.

Example 1.1 Let $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. We show that IA = A for any 2 x 2 matrix A. Here, if a_1 and a_2 are the rows of A, then by forward multiplication

$$IA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = A.$$

To see this, note that multiplying A by the first row of I, we tilt vertically and *multiply* through

$$\begin{bmatrix} 1 & \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

(do mentally)
$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \end{bmatrix}$$

7

obtaining the first row of A. Doing the same for the second row of I, we have

$$\begin{bmatrix} 0 & \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$(do mentally)$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = [a_2]$$

obtaining the second row of A.

We now show AI = A by using backward multiplication. Here, if a_1 and a_2 denote the columns of A, we have

$$\begin{bmatrix} 1 & 0 \\ [a_1 & a_2] \end{bmatrix}$$

$$\begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = [a_1]$$

and

$$\begin{bmatrix} a_1 & a_2 \end{bmatrix} \xrightarrow{0} \\ (do \ mentally) \\ \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_2 \end{bmatrix}$$

Thus,

$$\begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \end{bmatrix}.$$

A square matrix T is upper triangular if $t_{ij} = 0$ whenever i > j. It is lower triangular if $t_{ij} = 0$ when i < j. When we say that T is triangular, T can be either upper triangular of lower triangular. If T_1 and T_2 are $n \times n$ upper triangular matrices, then, using forward multiplication, we see that T_1T_2 is upper triangular. (Observe that if r is the i-th row of T_1 and cthe j-th column of T_2 and i > j, then the nonzero entries of r correspond to 0 entries in c and so rc = 0. The companion result for lower triangular matrices is also true.

A square matrix D is a *diagonal* matrix if D is both upper triangular and lower triangular. A diagonal matrix is often written $D = diag(d_{11}, \ldots, d_n)$, simply identifying the main diagonal entries d_{11}, \ldots, d_n of D. An *identity matrix* I is a diagonal matrix with 1's on the main diagonal. Note that, if the products are defined, IA = A by forward multiplication and AI = Aby backward multiplication.

If A is an $n \ge n$ matrix, then

$$A'' = 1$$

and if k is a positive integer,

$$A^k = A \cdots A$$

where A appears here as a factor k times.

Additional properties of the product, for all matrices in which the expressed sums and products are defined, follow.

- (i) (AB)C = A(BC)
- (j) A(B+C) = AB + AC
- (k) (B+C)A = BA + CA
- A (αB) = a (AB) (Often in computing, a scalar a is caught between matrices. This property assures a can be pulled out and placed in front of the product.)

An additional computation may be helpful.

Proof (1). Suppose A is an $m \ge r$ matrix and B is an $r \ge n$ matrix. Then

_

$$A(\alpha B) = [a_{ij}](\alpha [b_{ij}]) = [a_{ij}][\alpha b_{ij}] = \left[\sum_{k=1}^{r} a_{ik} (\alpha b_{kj})\right]$$
$$= \left[\sum_{k=1}^{r} \alpha (a_{ik} b_{kj})\right] = \alpha \left[\sum_{k=1}^{r} a_{ik} b_{kj}\right] = \alpha (AB).$$

This verifies the result. ■

 $\overline{\tau}$

The definition of matrix multiplication allows the writing of systems of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

...

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

1

in compact form as the matrix equation

where
$$A = [a_{ij}], x = \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix}$$
, and $b = \begin{bmatrix} b_1 \\ \cdots \\ b_m \end{bmatrix}$

If A is a square matrix and there is a square matrix B which satisfies the *inverse equation*

$$AX = XA = I$$

then B is an *inverse* of A and A is *nonsingular*. (Some books use the word *invertible.*) If A has no inverse, it is *singular*. If B and C are inverses for A, then

$$B = BI = B(AC) = (BA)C = IC = C$$

so there can be at most one inverse for A. (There may be none.) We denote this inverse, when it exists, as A^{-1} .

Properties of the inverse are

- (m) T^{-1} is upper triangular when T is upper triangular and nonsingular. The companion result for lower triangular matrices also holds.
- (n) $(A^{-1})^{-1} = A$, when A is nonsingular.
- (o) $(AB)^{-1} = B^{-1}A^{-1}$, when both A and B are nonsingular. This can be extended, by induction, to $(A \cdots A_k)^{-1} = A_k^{-1} \cdots A_1^{-1}$. Thus, $(A^m)^{-1} = (A^{-1})^m$, or simply A^{-m} , when A is nonsingular and m a positive integer.

In problems involving inverses, the inverse equation is often used. We show this in the following computation.

Proof (o). Note that by replacing parentheses

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A^{-1}IA = I$$

and similarly $(B^{-1}A^{-1})(AB) = I$. Since $B^{-1}A^{-1}$ satisfies the inverse equation for AB, $(AB)^{-1} = B^{-1}A^{-1}$.

Finally, for an m x n matrix A, we define

$$\bar{A} = \begin{bmatrix} \overline{a_{11}} & \overline{al2} & \cdots & \overline{a_{1n}} \\ \overline{a_{21}} & \overline{a_{22}} & \cdots & \overline{a_{2n}} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \overline{a_{m1}} & \overline{a_{m2}} & \cdots & \overline{a_{mn}} \end{bmatrix} \text{ and } A^t = \begin{bmatrix} all & a_{21} & \cdots & a_{12} & a_{22} & \cdots & a_{12} \\ a_{12} & a_{22} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

called the *conjugate* and the *transpose* of A, respectively. Using these, we define

$$A^H = \left(\bar{A}\right)^t,$$

called the *conjugate transpose* of A.

Example 1.2 If
$$A = \begin{bmatrix} 1+i & 2-3i \\ 2 & 4+2i \end{bmatrix}$$
, then

$$A^{H} = \bar{A}^{t} = \begin{bmatrix} \overline{1+i} & \overline{2-3i} \\ \overline{2} & \overline{4+2i} \end{bmatrix}^{t}$$

$$= \begin{bmatrix} 1-i & 2+3i \\ 2 & 4-2i \end{bmatrix}^{t} = \begin{bmatrix} 1-i & 2 \\ 2+3i & 4-2i \end{bmatrix}$$

Matrices which satisfy

 $A = A^H$

1.5

ł

Ì

, >

are called *Hermitian*, or **symmetric** if A has real entries. (In the latter case, $A^H = A^t$.)

Properties of the conjugate transpose are

- (p) $(A^H)^H = A$ for any $m \times n$ matrix A.
- (q) $(A^H)^{-1} = (A^{-1})^H$ if A is nonsingular.
- (r) $(A+B)^H = A^H + B^H$ for any m x n matrices A and B.
- (s) $(AB)^{H} = B^{H}A^{H}$ for any $m \times r$ matrix A and $r \times n$ matrix B. This can be extended to $(A_{1} \cdots A_{k})^{H} = A_{k}^{H} \cdots A_{1}^{H}$, so, in terms of reversing the order of the products, it is like the inverse of a product.

Another demonstration of a computation shows how to use this notation.

Proof (r). By direct computation,

$$(A+B)^{H} = ([a_{ij}] + [b_{ij}])^{H} = [a_{ij} + b_{ij}]^{H} = [\overline{a_{ij} + b_{ij}}]^{t}$$
$$= [\overline{a}_{ij} + \overline{b}_{ij}]^{t} = [\overline{a}_{ji} + \overline{b}_{ji}] \quad (ij\text{-th entry is } \overline{a}_{ji} + \overline{b}_{ji})$$
$$= [\overline{a}_{ji}] + [\overline{b}_{ji}] = [\overline{a}_{ij}]^{t} + [\overline{b}_{ij}]^{t} = A^{H} + B^{H}.$$

Thus the result is established. \blacksquare

It is sometimes useful to do matrix arithmetic on submatrices which make up the matrix. By partitioning the **rows** and columns, a matrix A can be partitioned into **submatrices** A_{ij} (sometimes called **blocks**) say

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ & & \ddots & \\ A_{p1} & A_{p2} & \cdots & A_{pr} \end{bmatrix}.$$

ξ.

For example, if we partition

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & | & -5 & 13 \\ 7 & 4 & | & 2 & 0 \\ \hline - & - & - & - & - \\ 5 & 16 & | & -2 & 8 \end{bmatrix},$$

then we can write $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ where $A_{11} = \begin{bmatrix} 2 & 3 \\ 7 & 4 \end{bmatrix}, A_{12} = \begin{bmatrix} -5 & 13 \\ 2 & 0 \end{bmatrix}, A_{21} = \begin{bmatrix} 5 & 16 \end{bmatrix},$ and $A_{22} = \begin{bmatrix} -2 & 8 \end{bmatrix}.$

If B is a matrix, partitioned as is A, then addition can be done using the submatrices, that is,

$$A + B = [A_{ij} + B_{ij}].$$

And, if the expressed matrix sums and products of the blocks are defined,

$$AB = \left[\sum_{k=1}^{r} A_{ik} B_{kj}\right]$$

Note that this partitioned arithmetic is exactly like that for the entry arithmetic previously described.

Example 1.3 Some examples of partitioned arithmetic follow.

(a) Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{2} & A_{2} \end{bmatrix}$$
, $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{2} & B_{22} \end{bmatrix}$ where A and B are 4×4
matrices and ull submatrices are 2×2 matrices. Then
 $A + B = \begin{bmatrix} A II + B_{11} & A_{12} + B_{12} \\ A2I + B_{21} & A22 + B_{22} \end{bmatrix}$

and

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

(b) Let A be m x r matrix and B an r x n matrix. If $B = [b_1 b_2 \dots b_n]$, where b_k is the k-th column of B, then

$$AB = [Ab_1Ab_2\dots Ab_n] \quad .$$

$$If A = \begin{bmatrix} a_1 \\ a_2 \\ \cdots \\ a_m \end{bmatrix}, where a_k is the k-th row of A, then AB = \begin{bmatrix} a_1B \\ a_2B \\ \cdots \\ a_mB \end{bmatrix}.$$

1.1.2 Systems of Linear Equations

To solve a system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

ļ

ļ

Constant - Constant - April

ŀ.

we simplify it to a system in row echelon form (staggered rows), such as

Here the \mathfrak{F} 's are nonzero scalars and the *'s are arbitrary scalars. Using this form, the scalars \mathfrak{F} are called *pivots* and the variables corresponding to them are called *pivot variables*. All other variables are called *free variables*.

To solve the simplified system, we set each free variable equal to **an** arbitrary scalar. We then solve for the pivot variables, starting with the last equation and working up, in terms of the free variables. The solutions are then expressed using only the free variables. This method is called **back** *substitution*.

To simplify a system we can use the following elementary operations.

- a. Interchange: $R_i \leftrightarrow R_j$, interchange equations *i* and *j*.
- b. Scale: αR_i , multiply equation *i* by a nonzero scalar **a**.
- c. Add: $\alpha R_i + R_i$, add **a** times equation j to equation *i*.

It can be shown that applying an elementary operation to a system of linear equations will not change its solution set.

Operation (a) can be applied to a system to obtain a nonzero coefficient of x_1 in equation 1. Then operation (c) can be applied to eliminate x_1 from equations 2 through *m*. And, this method can then be applied to the system with the 1-st equation deleted. Continuing, we obtain a row echelon form.

An example will help recall the method, called *Gaussian elimination*.

Example 1.4 Solve

 $1x_1 + 1x_2 + 1x_3 + 1x_4 = 10$ $2x_1 + 2x_2 + 0x_3 + 4x_4 = 44$ $3x_1 + 3x_2 + 7x_3 - 1x_4 = -18.$ Since the arithmetic will only take place on the constants, we do the operations on the corresponding augmented matrix

x_1	52	53	54		
[1]	1	1	1	10]
2	2	0	4	44	•
3	3	7	-1	-18	

Applying $-2R_1 + R_2$ and $-3R_1 + R_3$ yields

Г	x_1	52	x_3	x_4	
	1	1	1	1	10]
	0	0	- 2	2	24
L	0	0	4	-4	-48

Now we use $2R_2 + R_3$ to get

3	c_1	x_2	53	54		
Γ	1	1	1	1	10]	
	0	0	-2	2	24	
L	0	0	0	0	0	

This says that x_1 and x_3 are pivot variables while x_2 and x_4 are free. Set

$$x_2 = \mathbf{q}$$

 $x_4 = \beta$, arbitrary constants.

Solving for the pivot variables, in terms of the free variables, we have, from the second equation $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty}$

$$-2x_3 + 2\beta = 24$$

so

$$x_3 = -12 + p$$
.

And, from the first equation,

$$x_1 + \alpha + x_3 + \beta = 10$$

SO

$$x_1 = 22 - \alpha - 2\beta.$$

Thus

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 22 - \alpha - 2\beta \\ \alpha \\ -12 + \beta \\ \beta \end{bmatrix}$$
$$= \begin{bmatrix} 22 \\ 0 \\ -12 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Since α and β can be any scalars, there are infinitely many solutions.

If, while applying Gaussian elimination, we scale each pivot so it is 1 and then apply add operations to obtain 0's below and above the pivot, the method is called *Gauss-Jordan*. This method requires about $\frac{1}{6}$ more arithmetic operations than does Gaussian elimination, so it isn't used for large problems.

The row echelon form obtained by using Gauss-Jordan is called the reduced row echelon form (rref), and rref does appear as a command on most calculators and in computer software.

If A is a nonsingular matrix, its inverse can be found by solving

$$AX = I. \tag{1.1}$$

COMPANY OF LONG

a series a constraint a series a

ŧ

a state a construction of the second

Note the solution is $X = A^{-1}$. (To solve, multiply the equation through A^{-1} .)

If $X = [x_1 \dots x_n]$, where x_j is the *j*-th column of X, then by partitioned arithmetic,

$$Ax_1 = e_1, \dots, Ax_n = e_n. \tag{1.2}$$

These equations can be solved simultaneously, using the augmented matrix

 $[A \mid I]$.

If in the process of applying Gaussian elimination, or Gauss-Jordan, to this matrix, a row of 0's is encountered in the first block, then, as given in the exercises, A is singular.

An example will help bring the method back to mind.

Example 1.5 Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$. The augmented matrix for AX = I is $[A \mid I]$. Applying Gauss-Jordan, we start with

$$\left[\begin{array}{ccc|c}1 & 1 & 1 & 0\\1 & 3 & 0 & 1\end{array}\right].$$

Using $-R_1 + R_2$, we have

$$\left[\begin{array}{ccc|c} 1 & 1 & | & 1 & 0 \\ 0 & 2 & | & -1 & 1 \end{array}\right].$$

To obtain 1's on the pivots, we apply $\frac{1}{2}R_2$, yielding

$$\begin{bmatrix} 1 & 1 & | & 1 & \mathbf{0} \\ 0 & 1 & | & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Getting 0's above the second pivot, we use $-R_2 + R_1$. So we have

$$\begin{bmatrix} \cdot \cdot \\ \cdot \\ \cdot \\ \cdot \end{bmatrix} = \begin{cases} 3 & -\frac{1}{2} \\ & \frac{1}{2} \end{bmatrix}.$$

Thus, solving (1.1) or equivalently (1.2), we get

$$A^{-1} = \left[\begin{array}{cc} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{array} \right].$$

As can be seen, this matrix is in the second block of the augmented matrix above.

1.1.3 Determinant

Recall that if A is a 1×1 matrix, say A = [all], then

$$\det A = a_{11}$$

If A is an n x n matrix, with n > 1, we use the following inductive definition.

- i. Let A_{ij} denote the matrix obtained from A by deleting row i and column j.
- ii. Set $c_{ij} = (-1)^{i+j} \det A_{ij}$. This number is called the *ij-th* cofactor of A. (The det A_{ij} is called the ij-th minor of A.)

Using this notation, we define

$$\det A = a_{11}c_{11} + a_{12}c_{12} + \dots + a_{1n}c_{1n}$$

= $a_{11} \left[(-1)^{1+1} \det A_{11} \right]$
+ $a_{12} \left[(-1)^{1+2} \det A_{12} \right] + \dots + a_{1n} \left[(-1)^{1+n} \det A_{I,I} \right]$

Example 1.6 Applying the definition,

(a) det
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \left[(-1)^{1+1} \det A_{11} \right] + b \left[(-1)^{1+2} \det A_{12} \right]$$

= ad - bc.

(b) det
$$\begin{bmatrix} 2 & 3 & -1 \\ 0 & 4 & -2 \\ -3 & 1 & 0 \end{bmatrix} = 2 \left[(-1)^{1+1} \det \begin{bmatrix} 4 & -2 \\ 1 & 0 \end{bmatrix} \right] + 3 \left[(-1)^{1+2} \det \begin{bmatrix} 0 & -2 \\ -3 & 0 \end{bmatrix} \right] + (-1) \left[(-1)^{1+3} \det \begin{bmatrix} 0 & 4 \\ -3 & 1 \end{bmatrix} \right] = 2 \cdot 1 \cdot 2 + 3 \cdot (-1) \cdot (-6) + (-1) \cdot 1 \cdot 12 = 10.$$

Actually, the determinant can be expanded along any row or column as given below. The proof, a bit intricate, is outlined in the exercises.

(a) det
$$A = \sum_{k=1}^{n} a_{ik} c_{ik}$$
 (the i-th row expansion)
(b) det $A = \sum_{k=1}^{n} a_{kj} c_{kj}$ (the j-th column expansion)
Example 1.7 Let $A = \begin{bmatrix} 1 & 4 & 3 \\ -2 & 0 & 0 \\ 3 & -1 & 0 \end{bmatrix}$. Expanding the determinant along the third column, to make use of the numerous 0's there, we have

$$\det A = 3 \left[(-1)^{1+3} \det \begin{bmatrix} -2 & 0 \\ 3 & -1 \end{bmatrix} \right] + 0 \cdot c_{23} + 0 \cdot c_{33}$$

= 6.

Some easy consequences of (a) and (b) follow.

(c) If T is a triangular matrix, then det $T = t_{11}t_{22} \cdots t$ As an example, expanding along the first columns,

$$\det \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ 0 & t_{22} & t_{23} \\ 0 & 0 & t_{33} \end{bmatrix} = t_{11} \det \begin{bmatrix} t_{22} & t_{23} \\ 0 & t_{33} \end{bmatrix} = t_{11} t_{22} t_{33}.$$

(d) If a row of A is a scalar multiple of another row of A, then det A = 0. For example,

$$\det \left[\begin{array}{cc} a & b \\ \alpha a & a \end{array} \right] = a\alpha b - b\alpha a = 0.$$

(e) If b_1, b_2, \ldots, b_r are $n \ge 1$ vectors, then

$$\det\left[\left(\sum_{k=1}^r b_k\right)a_2\ldots a_n\right] = \sum_{k=1}^r \det\left[b_k a_2\ldots a_n\right]$$

ŝ

ļ

s.

ŧ

ł

1

ŧ

12

where a_k is the k-th column of A. (The result also holds when $k=1b_k$

is the j-th column instead of the first one.) As an example, expanding along the first column,

$$\det \begin{bmatrix} a \\ c \end{bmatrix} + \begin{bmatrix} b \\ d \end{bmatrix} \begin{bmatrix} e \\ f \end{bmatrix}$$
$$= \det \begin{bmatrix} a+b & e \\ c+d & f \end{bmatrix}$$
$$= (a+b) f - (c+d) e$$
$$= af - ce + bf - de$$
$$= \det \begin{bmatrix} a & e \\ c & f \end{bmatrix} + \det \begin{bmatrix} b & e \\ d & f \end{bmatrix}$$

.

.

The next property shows that all determinant results about rows hold equally for columns.

(f) det
$$A = \det A^t$$
, det $A^H = \overline{\det A}$ Observe that
det $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^t = \det \begin{bmatrix} a & c \\ b & d \end{bmatrix} = ad - bc = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

A group of results, showing how the determinant behaves when elementary operations are performed on the matrix, follows.

(g) If two rows of A are interchanged, obtaining B, then det $B = -\det A$. For example,

_

$$det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a d - bc while$$
$$det \begin{bmatrix} c & d \\ a & b \end{bmatrix} = bc - ad.$$

(h) If any row of A is multiplied by a scalar a, obtaining B, then det B = adet A. (So we can pull out a scalar if it appears as a factor in all of the entries of a row.) Observe that in the 2×2 case,

$$\det \begin{bmatrix} a & b \\ \alpha c & \alpha d \end{bmatrix} = a\alpha d - b\alpha c$$
$$= a (ad - bc)$$
$$= \alpha \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

(i) If a scalar multiple of a row of A is added to another row, obtaining B, then det B = det A. For example, expanding along the last row, using the transpose of (e),

$$\det \begin{bmatrix} a & b \\ c+a & d+b \end{bmatrix} = \det \begin{bmatrix} a & b \\ c & d \\ a & b \\ d & b \\ c & d \end{bmatrix} + \det \begin{bmatrix} a & b \\ a & b \\ d & b \\ c & d \end{bmatrix}.$$

ł

ţ

(j) If interchange and add operations are applied to A to obtain a row echelon form E, then det $A = (-1)^t$ det E where t is the number of times the interchange operation was used. An example will demonstrate the result.

Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & -1 \\ -1 & 1 & 2 \end{bmatrix}$$
. Applying $-2R_1 + R_2$ and $R_1 + R_3$,
det $A = \det \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & -3 \\ 0 & 1 & 3 \end{bmatrix}$.

Applying $R_2 \leftrightarrow R_3$ yields

$$\det A = -\det \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & -3 \end{bmatrix}$$
$$= -(-3)$$
$$= 3.$$

One of the strongest results about determinants concerns the product of matrices. It *can* be used to derive several useful results about matrices.

(k) If B is also an $n \times n$ matrix, then det(AB) = (detA)(detB).

The key ideas for the proofs follow.

Proof. For (c), if T is upper triangular, expand the determinant along column 1, and continue this on the subsequent cofactors. The lower triangular case is handled similarly.

Property (d) is proved by induction on *n*. For n = 2, the property can be checked directly. Assuming the property for $n = \tau$, to show the property for n = r + 1, expand det B about a **row** other than the two which are scalar multiples and use the induction hypothesis on the cofactors.

Property (e) is proved by expanding the determinant along the first column and rearranging. Property (g) is proved as was (d).

For property (h), if row i was multiplied by **a**, then expanding det B along row i yields

$$\det B = \alpha a_{i1}c_{i1} + \dots + \alpha a_{in}c_{in}$$
$$= a (a_{i1}c_{i1} + \dots + a_{in}c_{in})$$
$$= \alpha \det A.$$

To prove property (i), use (e) and (d). For property (j), use (g) and (i). And, the proof of (k) is outline in the exercises. \blacksquare

The *adjoint* of A is defined, by using cofactors, as

$$\operatorname{adj} A = [c_{ij}]t$$
.

Example 1.8 Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
. Then
adj $A = \begin{bmatrix} c_{11} & c_{12} & c_{13} & t \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$

$$= \begin{bmatrix} ei - fh & -(di - fg) & dh - eg \\ -(bi - ch) & ai - cg & -(ah - bg) \\ bf - ce & -(af - cd) & ae - bd \end{bmatrix}$$

$$= \begin{bmatrix} ei - fh & -bi + ch & bf - ce \\ -di + fg & ai - cg & -af + cd \\ dh - eg & -ah + bg & ae - bd \end{bmatrix}$$
.

Three properties of the adjoint are listed below:

(1) $A (\operatorname{adj} A) = (\operatorname{adj} A)A = (\operatorname{det} A)I$

Thus if det $A \neq 0$, from the inverse equation,

(m)
$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$
. For example, let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $\operatorname{adj} A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and $A^{-1} = \frac{1}{\det A} \operatorname{adj} A = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{d}{ad-bc} & \frac{-b}{ad-bc} \end{bmatrix}$. Checking, we see that $AA^{-1} = I$.

If A is nonsingular and b is an $n \times 1$ vector, we have Cramer's Rule.

(n) The solution to Ax = b has as its i-th entry, $x_i = \frac{\det A_i}{\det A}$, where A_i is the matrix obtained from A by replacing column *i* by *b*. As an

example, if $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we have

$$x_{1} = \frac{1}{\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}} = \frac{2}{-2} = -1$$
$$x_{2} = \frac{\det \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}}{\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}} = \frac{-2}{-2} = 1.$$

Finally, the determinant determines nonsingularity.

(o) A is nonsingular if and only if det $A \neq 0$.

Proof. We argue a few of these results leaving the others **as** exercises.

For (l), we do the 2×2 case which can be extended to the $n \times n$ case. Here

$$A \operatorname{adj} A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}c_{11} + a_{12}c_{12} & a_{11}c_{21} + a_{12}c_{22} \\ a_{21}c_{11} + a_{22}c_{12} & a_{21}c_{21} + a_{22}c_{22} \end{bmatrix}$$
$$= \begin{bmatrix} \det A & 0 \\ 0 & \det A \end{bmatrix}$$

noting that the \mathbf{df} diagonal entries are determinants of matrices with duplicate rows. For example, the 1, 2-entry is an expansion along the 2nd row of the matrix obtained from A by replacing the 2nd row with the 1st row,

Ř

3

$$a_{11}c_{21} + a_{12}c_{22} = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} = 0.$$

Similarly, (adjA)A = (det A)I.

For (m), if A is nonsingular, $AA^{-1} = I$. Thus, det Adet $A^{-1} = 1$, and so det $A \neq 0$. Now, by (l), A(& adjA) = $\left(\frac{1}{\det A} \operatorname{adj} A\right) A = I$. So $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$.

In (o), if det A \neq 0, from (m), $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$. So A is nonsingular. On the other hand, if A is nonsingular, det A \neq 0 as argued in part (m).

This concludes the proof. \blacksquare

1.1.4 Optional (Ranking)

Suppose, in a tournament, four tennis players, named 1, 2, 3, and 4, play each other exactly once. We draw a directed graph with vertices 1, 2, 3, 4

and arcs from *i* to j if *i* beats j. Define $A = [a_{ij}]$ where

$$a_{ij} = \begin{cases} 1 \text{ if there is an arc from i to j} \\ 0 \text{ otherwise.} \end{cases}$$

If $A^2 = \begin{bmatrix} a_{ij}^{(2)} \end{bmatrix}$, then we can show that

 $a_{ij}^{(2)}$ = number of secondary wins from i to j

i.e., the number of players k where i

beats \mathbf{k} and \mathbf{k} beats \mathbf{j} .

To rank the players, set $B = A + A^2$. The sum of the i-th row entries in *B* gives that player's total wins and secondary wins. This total is used to rank the players.

For example, if the outcome of the tournament, in digraph form, is given in Figure 1.3,

FIGURE 1.3. then $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Thus $B = A + A^2 = \begin{bmatrix} 0 & 1 & 3 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. Summing the rows of *B* yields $\begin{bmatrix} 6 \\ 3 \\ 0 \\ 1 \end{bmatrix}$. Thus, the ranking is 1: Player 1; 2: Player 2; 3: Player 4; and 4: Player 3.

Expressions such as $A + A^2$, with some refinements, have been used to determine the power of pro football teams. What has **been** shown above should be considered as a starting point rather than a finished product.

1.1.5 MATLAB (Solving Ax = b)

Some of the basics of the MATLAB package are given in Appendix A. These basics include how to calculate answers to the computations in this section. We will add to this some additional remarks about solving Ax = b.

1. Solving Az = b: If A is n x n and nonsingular, Ab will provide a solution to Ax = b or indicate it is having a problem. When this occurs, sometimes the mathematics problem can be redescribed to eliminate the difficulty.

If A is $m \times n$, we can solve Az = b using the augmented matrix B = [A] b and finding the reduced row echelon form. An example follows.

$$B = \begin{bmatrix} 1 & 1 & 1; & 1 & 1 & 1; & 1 & 1 & 1 \end{bmatrix};$$

rref(B)
ans =
$$\begin{bmatrix} 1 & 1 & | & 1 \\ 0 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Now, we can write out the solution, $x = \begin{bmatrix} 1 & -\alpha \\ \alpha \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

2. Least squares solving Ax = b If A is $m \times n$ with $m \neq n, A$ b provides a least-squares solution to Az = b. A least-squares solution is not always a solution. (We study least-squares solutions in Chapter 7 and Chapter 8.) An example follows.

$$A = \begin{bmatrix} 1 & 1; & 1 & 1; & 1 & 1 \\ b = \begin{bmatrix} 1; & 2; & 3 \end{bmatrix};$$

$$Ab,$$

$$ans = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

If MATLAB $\dot{\mathbf{s}}$ having a solving problem, a warning is given. Warnings here usually indicate that in computing, some 'small' number **was** assumed to be 0. The 0 didn't occur due to rounding and consequently was set to 0. And had it not been set to 0, the answer may be very different.

For more, type in *help mldivide*.

Exercises

1. Express in the form a + bi.

(a)
$$(3-22)(-4+5i)$$
 (b) $(2-3i)^2$
(c) $\frac{2\pm5i}{e^{(2+3i)t}}$, where t is
a real parameter
(b) $(2-3i)^2$
(c) $\frac{1}{2}\pm5i}{e^{(2+3i)t}}$, where t is

÷

ŝ

÷.

2. Prove that if z = a + bi and w = c + di, then (a) $\overline{z + w} = \overline{z} + \overline{w}$. (b) $\overline{zw} = \overline{z} \overline{w}$. (c) $|z + w| \le |z| + |w|$. (d) |zw| = |z| |w|. (e) $|z| = (z\overline{z})^{\frac{1}{2}}$.

3. Let A, B be m x n matrices and α, β scalars. Prove the following.

(a)
$$A + B = B + A$$
 (b) $(A + B) + C = A + (B + C)$
(c) $A + 0 = A$ (d) $A + (-A) = 0$
(e) $(\alpha\beta)A = \alpha(PA)$ (f) $(a + \beta)A = \alpha A + PA$

4. Compute expressions for the following.

- (a) $\begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ by forward multiplication. (Here b_1 and b_2 are (b) $\begin{bmatrix} a_1a_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$ by backward multiplication. (Here a_1 and a_2 are $2 \ge 1$ vectors.)
- 5. Compute by backward multiplication.

$$[p_1 \ p_2 \ p_3] \left[\begin{array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{array} \right]$$

- 6. Two parts:
 - (a) Let $T = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ 0 & t_{22} & t_{23} \\ 0 & 0 & t_{33} \end{bmatrix}$. If T is nonsingular, use the inverse

equation (XT = I) and forward multiplication to show that T^{-1} is upper triangular and that its main diagonal is t_{11}^{-1} , t_{22}^{-1} , t_{33}^{-1} .

- (b) Extend this result to nonsingular upper triangular matrices in general. (Hint: Start with the last row of X.)
- 7. Let A, B, and C be $n \ge n$ matrices.
 - (a) If AB = AC, then B need not be C. Give an example of this where none of A, B, or C is 0. Also, explain what arithmetic property, for real numbers, is missing from the arithmetic of matrices that causes this to occur.
 - (b) Do the same for: AB = 0 doesn't imply A = 0 or B = 0.
- 8. Let *A*, *B*, and *C* be matrices. Assuming all multiplications are defined, prove the following.

- (a) (AB)C = A (BC)(b) A (B+C) = AB + AC(c) (B+C)A = BA + CA
- 9. Compute A^{-1} , if it exists, by solving AX = I, using the augmented matrix.

(a)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

- 10. Prove that if A and B are $n \times n$ matrices and AB = I, then $B = A^{-1}$.
- 11. Let A be an $n \times n$ nonsingular matrix. Prove the following.

(a)
$$(A^{-1})^{-1} = A$$

(b) $(A^{m})^{-1} = (A^{-1})^{m}$, *m* a positive integer
(c) $(A^{H})^{-1} = (A^{-1})^{H}$

- 12. Let A be an $m \ge n$ matrix. Prove that $(A^H)^H = A$.
- 13. Let A be an m x r matrix and B an r x n matrix. Prove that $(AB)^{H} = B^{H}A^{H}$.
- 14. Solve the following.

$$x_1 - x_2 + x_3 + x_4 = 6$$
$$2x_1 + x_2 + 323 - 24 = 5$$

Indicate, **as** in Example **1.4**, all operations done in solving. Also identify all free variables and pivot variables. Use

- (a) Gaussian elimination.
- (b) Gauss-Jordan.
- 15. Consider the system of linear equations

$$ax_1 + bx_2 = e \tag{1.3}$$
$$cx_1 + dx_2 = f$$

where a, b, c, d, e, and fare constants.

(a) Apply $\delta R_1 + R_2$ to (1.3) to obtain

ı

$$ax_1 + bx_2 = e$$
(1.4)
(c + \delta a)x_1 + (d + Sb)x_2 = f + \delta e.

Show that if (α, β) is a solution to (1.3), it is a solution to (1.4) and vice versa.

ê

ź

ł,

(b) Repeat (a) for δR_1 , where $6 \neq 0$.

16. Consider the matrix equation

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\left[\begin{array}{cc}x_1&y_1\\x_2&y_2\end{array}\right]=\left[\begin{array}{cc}e&g\\f&h\end{array}\right]$$

where a, b, c, d, e, f, g, and h are constants. To solve, we equate the corresponding columns to get

$$ax_1 + bx_2 = e \qquad ay_1 + by_2 = g cx_1 + dx_2 = f \quad \text{and} \quad cy_1 + dy_2 = h.$$

$$(1.5)$$

Explain how to solve these equations simultaneously.

17. Write out the expression for

$$\det \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right].$$

18. Compute $\det A$ for

(a)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & -1 & -1 \\ 3 & 1 & 4 \end{bmatrix}$$
 by expanding along the 2nd column.
(b) $A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ -2 & 1 & 2 & 5 \\ 1 & 3 & 0 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}$ by any row or column expansion.

19. Let A be an $n \ge n$ matrix. Prove by induction.

- (a) $\det A = \det A^t$
- (b) If A has two rows that are scalar multiples of each other, then $\det A = 0$.

20. Let
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & 3 \\ 2 & 3 & 0 \end{bmatrix}$$
. Compute adj A .

- **21.** If A has entries which are rational numbers, are the entries in adjA rational numbers? Explain.
- 22. Prove that if A is a 3×3 nonsingular matrix, then Ax = b has as its solution x where $x_i = \frac{\det A_i}{\det A}$. (Hint: Use that $x = A^{-1}b = \frac{1}{\det A}$ (adjA)b and write out the expressions for x_1, x_2 , and x_3 .)

- 23. Let A be an n x n matrix. Prove by induction that expanding the determinant along any row yields the same result as expanding about the first row. (Hint: For the general step, expand the determinant along the i-th row and then those cofactors along the 1st row. Show this is the same as expanding about the first row and then those cofactors along the i-th row of A.)
- 24. Let A be an $n \times n$ matrix and E a row echelon form for A. Prove that if A is singular, E has a row of 0's and vice versa.
- **25.** Let A and **B** be a 3×3 matrices. Prove that det $(AB) = \det A \det B$ using the following outline.
 - (a) Prove that if an elementary operation is done on A and on AB, obtaining A and \widehat{AB} , then $AB = \widehat{AB}$. (Hint: Write $AB = \begin{bmatrix} a_1 & B \\ a_2 & B \\ a_3 & B \end{bmatrix}$.)
 - (b) Apply interchange and add operations to A and AB to obtain E and \widehat{AB} , respectively, where E is a row echelon form. Then, by (a), $EB = \widehat{AB}$. If t interchange operations were used, then

$$\det (AB) = (-1)^{t} \det (EB)$$

= $(-1)^{t} \det \begin{bmatrix} e_{11}b_{1} + & e_{12}b_{2} + & e_{13}b_{3} \\ & & e_{22}b_{2} + & e_{23}b_{3} \\ & & & e_{33}b_{3} \end{bmatrix}$

Using properties (d) and (e), continue to get

$$\det (AB) = (-1)^t \det \begin{bmatrix} e_{11} & b_1 \\ e_{22} & b_2 \\ e_{33} & b_3 \end{bmatrix}$$
$$= (-1)^t e_{11} e_{22} e_{33} \det B$$
$$= (-1)^t \det E \det B.$$

Now use that $\det A = (-1)^t \det E$ to finish the work.

- 26. Let $A = \begin{bmatrix} B & c \\ d & \alpha \end{bmatrix}$ where *B* is a square matrix and α a scalar. Using partitioned arithmetic, compute A^2 . (Be sure all multiplications used are defined.)
- 27. Let $A = \begin{bmatrix} I & B \\ 0 & I \end{bmatrix}$ be a partitioned matrix where both *I*'s are $n \times n$. Using partition arithmetic, and the inverse equation, find the corresponding partitioned form of A^{-1} .
28. The equation

$$.26x_1 + .35x_2 = .09$$
$$.54x_1 + .70x_2 = .16$$

has solution $\mathbf{x} = (-1,1)^t$. Show that $\hat{x} = (-1.51, 1.38)^t$ nearly solves the equation by showing that $b - A\mathbf{x}$ is small.

29. (Optional) **Rank** the players for the tournament graph given in Figure **1.4**.

FIGURE 1.4.

30. (MATLAB) Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 3 & 1 \\ 2 & 1 & 1 \end{bmatrix}$. Com-

pute the following.

- (a) A + B (b) A B(c) AB (d) 3A(e) $A^{-1}B$ (f) BA^{-1} (g) A^{-1} (h) A^{6}
- (i) det A (j) rref A

31. (MATLAB) Let A and B be as in Exercise **30** and $b = (1,0,1)^t$.

- (a) Solve Ax = b.
- (b) Solve Ax = b using *format long.* (To extend the display of the answer on the screen type in *format long.* This will provide answers to about 15 digits. To return to standard format, type in *format short.*)

32. (MATLAB) Solve

 $1x_1 + 1x_2 + 0x_3 + 1x_4 = 7$ $1x_1 + 0x_2 + 1x_3 + 0x_4 = 4$ $0x_1 + 1x_2 + 1x_3 + 1x_4 = 10$

:

(a) By using the reduced row echelon form.(b) By using (1) b

(b) By using
$$A \setminus b$$
.
33. (MATLAB) solve $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} X = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 1 & 3 \end{bmatrix}$ for X.

\$

AND CONTROLS

ł

Strange 12

13

t

2 Introduction to Vector Spaces

It has been observed that there are many algebraic systems which, in terms of arithmetic properties, are just like R^2 and R^3 . These systems often arise in mathematical work. In this chapter, we give a general study of these systems.

As we go through this chapter, we will see very little direct application (for example model building) of **it**. The reason for this is that this chapter introduces concepts and techniques (tools, so to speak) which are then used throughout matrix theory and applications. These tools are important to learn.

2.1 Vector Spaces

In this section, we study algebraic systems having arithmetic properties like those of R^2 and R^3 . These algebraic systems are called vector spaces. The general (abstract) definition of a vector space follows.

Definition 2.1 A vector space is a nonempty set V with elements called vectors, together with a set of numbers, called scalars. The set of numbers can be \mathcal{R} or \mathcal{Q} . (When we need emphasis, we can use the words real vector space or complex vector space to distinguish the two cases.)

(a) On V there is an operation, called vector addition, that combines any pair of vectors x and y into a vector, denoted by x + y, called their sum. This addition must satisfy the following properties.

- *i.* x + y = y + x for all vectors x and y.
- ii. (x+y)+z = x + (y+z) for all vectors x, y and z.
- iii. There is a unique vector, denoted by 0, such that 0 + x = x for all vectors x.

ŧ

ł

ł

ŧ

3

÷.

Ι

I

- iv. For any vector x, there corresponds a unique vector, denoted by -x, such that x + (-x) = 0.
- (b) On V there is an opemtzon, called scalar multiplication, that combines a scalar a and a vector x into a vector, denoted by ax, called their product. This scalar multiplication must satisfy the properties below.
 - v. a(x+y) = ax + ay for all vectors x and y and scalars α .
 - vi. $(a + \beta)x = ax + \beta x$ for all vectors x and scalars a and β .
 - vii. $a(\beta x) = (\alpha \beta) x$ for all vectors x and scalars α and β .
 - viii. lx = x or all vectors x.

We should remark for clarity that when we talk about scalars, we mean the scalars (from either \mathcal{R} or \mathcal{C}) of the vector space. (The properties given above can be recalled since they are the basic arithmetic properties of \mathcal{R}^2 and \mathcal{R}^3 , four involving +, and four involving a mix of + and scalar multiplication.)

We intend to develop a theory (a collection of results) about vector spaces. Results will be stated about vector spaces, in general, and thus **proofs** can only use the properties listed in the definition of a vector space. To show how this is done, we provide **a** proof of **a** lemma extending the properties of a vector space.

Lemma 2.1 The following are also properties of a vector space.

- (a) 0x = 0
- (b) $\alpha 0 = 0$

1

- (c) -1x = -x
- (d) ax = 0 implies a = 0 or x = 0

Proof (a). Using that the scalar 0 satisfies 0 + 0 = 0, we have

$$02 = (0 + 0)_2 = o_X + o_X. \tag{2.1}$$

Now, Ox is a vector and thus has an additive inverse, -(Ox). Adding this vector to the left and right sides of (2.1) and simplifying using the properties

FIGURE 2.1.

of a vector space, yields

$$-(0x)+0x = -(02)+(0x+0x) -(0x)+0x = (-(0x)+0x) + 0x 0 = 0 + 0x 0 = 0x$$

the desired result. ■

As mentioned previously, there are many vector spaces. A few of these follow.

Example 2.1 Trivial Space: Let $V = \{0\}$ with addition and scalar multiplication defined by the tables

$$+$$
 0 and $-$ 0 α 0

for all scalars a. This is a vector space.

Example 2.2 Vector spaces \mathbb{R}^2 and \mathbb{R}^3 (This example is helpful in developing a geometric view of vector calculations.): We will develop this material an \mathbb{R}^2 . The generalization to \mathbb{R}^3 should be clear.

Recall from calculus, a geometric vector from a point $\mathbf{x} = (x_1, x_2)^t$ to a point $\mathbf{y} = (y_1, y_2)^t$, written \overrightarrow{xy} , is a directed line segment from x to y. The inclination of such a vector is $(y_1 - x_1, y_2 - x_2)^t$. Two geometric vectors are equal (equivalent) if they have the same inclination. For example, in the diagram (Figure 2.1), the geometric vectors are equal.

Two geometric vectors can be added by finding any two equivalent vectors with the same initial point and adding those vectors by the parallelogram

32 2. Introduction to Vector Spaces

law. Alternately we can take equivalent vectors that are appended at end and initial points and complete the triangle **for** the sum.

Any point x in \mathbb{R}^2 can be associated with the geometric vector from the origin to x. With this association, arithmetic in \mathbb{R}^2 can be envisioned in terms of geometric vectors. For example,

1. Scalar multiplication: $2\begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix}$ can be seen by drawing the geometric vector from $\begin{bmatrix} 0\\0 \end{bmatrix}$ to $\begin{bmatrix} 2\\1 \end{bmatrix}$ and by scaling this corresponding geometric vector by 2. (See Figure 2.2.)

FIGURE 2.2.

2. Addition: $\begin{bmatrix} 1\\4 \end{bmatrix} + \begin{bmatrix} 4\\1 \end{bmatrix} = \begin{bmatrix} 5\\5 \end{bmatrix}$ can be seen by adding the geometric vectors corresponding to $\begin{bmatrix} 1\\4 \end{bmatrix}$ and $\begin{bmatrix} 4\\1 \end{bmatrix}$ by the parallelogram rule, or appending (an end to an initial) and completing the triangle. (See Figure 2.3.)

Appending is also useful in seeing subtraction. Note in Figure 2.4, that a geometric vector equivalent to x - p can be seen by beginning at the point p, going to 0 (to obtain a geometric vector equivalent to -p), then proceeding to the point x as diagrammed (adding x to -p). Completing the triangle gives a geometric vector for x - p. Note that to find the corresponding point

$$\left[egin{array}{c} x_1-p_1 \ x_2-p_2 \end{array}
ight]$$

in \mathbb{R}^2 , we need to start this vector at the origin.

r S

Ì

ŝ

FIGURE 2.3.

FIGURE 2.4.

We also use the following parametric descriptions from calculus.

1. Line: The line through points a and b, $a \neq b$, is given by

$$x = ta + (1 - t)b$$
, where $-\infty < t < \infty$. (2.2)

2. Segment: The segment between points a and b, $a \neq b$, is given by

$$x = ta + (1 - t)b$$
, where $0 \le t \le 1$. (2.3)

We use (2.2) and (2.3) as the equations of lines through, and segments between, vectors a and b, $a \neq b$, in any vector space V.

Example 2.3 Matrix Space and Euclidean Space: Let

$$R^{m \times n} = \{A : A \text{ is an } m \times n \text{ matrix with entries in } R\}.$$

Using real scalars, matrix addition, and scalar multiplication, $\mathbb{R}^{m \times n}$ is a vector space. (Since the vectors are matrices, we can call $\mathbb{R}^{m \times n}$ a matrix

34 2. Introduction to Vector Spaces

space.) $C^{m \times n}$ is defined similarly, using complex numbers in vectors as well as for the scalars.

For simplicity of notation, set

$$R^m = R^{m \times 1}$$
 and $C^m = C^{m \times 1}$.

These are the classical real or complex Euclidean m-spaces, respectively. We use the words Euclidean m-space, or simply the symbol E'', to denote either \mathbb{R}^m or C''.

Example 2.4 Polynomial space: Let

 $P_n = \left\{ \begin{array}{l} p: p(t) = a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \dots + a_0 \\ where \ a_{n-1}, a_{n-2}, \dots, a_0 \ are \ real \ scalars \\ and \ t \ a \ real \ variable \end{array} \right\} .$

Using real scalars, the usual addition (adding coefficients of like terms) and scalar multiplication (multiplying the coefficients by the scalar), P_n is a vector space.

We should also recall here that two polynomials are equal if and only if the coefficients of their corresponding terms are equal, e.g., if

$$a_2t^2 + a_1t + a_0 = b_2t^2 + b_1t + b_0,$$

ļ

ŝ

ŧ

Ì

then $a_2 = b_2$, $a_1 = b_1$, and $a_0 = b_0$.

Example 2.5 Function space: Let [a,b] be an interval of real numbers and

 $C[ab] = \{f : f \text{ is } a \text{ real continuous function on } [ab]\}.$

Using real scalars, the usual definition of addition and scalar multiplication, namely

$$(f+g)(t) = f(t) + g(t) \text{ and} (\alpha f)(t) = \alpha(f(t)),$$

C[a,b] is a vector space.

It is also helpful to recall that two functions, f and g, are equal (written f = g) if and only if

$$f(t) = g(t)$$

for all t.

For the open interval (a,b), C(a,b) is defined similarly.

Most vector spaces arise inside the larger vector spaces given in the examples above. The definition below describes such sets.

Definition 2.2 Let V be a vector space and W a nonempty subset of V. Then W is a subspace of V provided that W is

- *i.* Closed under addition: if $x, y \in W$ then $x + y \in W$.
- ii. Closed under scalar multiplication: if $x \in W$ and a any scalar, then $ax \in W$.

(The addition and scalar multiplication is as that in V.)

We leave it as an exercise to show that, using this definition, geometrically a subspace in R^3 must be one of the following:

- (a) The set $\{0\}$.
- (b) A line through the origin.
- (c) A plane through the origin.
- (d) R^3 itself.

(See illustrations of each in Figure 2.5.)

FIGURE 2.5.

We now show that sets which are subspaces are actually vector spaces.

Theorem 2.1 Every subspace is a vector space.

Proof. Suppose $W \subseteq V$ and satisfies the definition of a subspace. We show that W satisfies the definition of a vector space.

By the definition of a subspace, $W \neq \emptyset$ and properties (a) and (b) of the definition of a vector space hold. Thus, we need only verify properties (i) through (viii) of the definition of a vector space. We do a sample of these.

Property i. Let $x, y \in W$. Then x + y = y + x since this is true in V. (The addition table for W is **a** subtable of the addition table for V.)

Property iv. Let $x \in W$. By Lemma 2.1, -1x = -x. Thus by (b) of the definition of a subspace, we know that $-x \in W$. Hence, this verifies property (iv).

An example showing how to apply this theorem follows.

Example 2.6 We show that the set $W \subseteq \mathbb{R}^{2 \times 2}$ of symmetric matrices is a vector space.

Here we simply check the properties of the definition of a subspace. Clearly, $W \neq \emptyset$.

Closure of addition: Let $\begin{bmatrix} a & b \\ b & c \end{bmatrix}, \begin{bmatrix} d & e \\ e & f \end{bmatrix} \in W.$ Then $\begin{bmatrix} a & b \\ b & c \end{bmatrix} + \begin{bmatrix} a+d & b+e \\ b+e & c+f \end{bmatrix}$. Since this sum is symmetric, the sum is an W.

Closure of scalar multiplication: Let a be a scalar and

$$\left[\begin{array}{cc}a&b\\b&c\end{array}\right]\in W.$$

ţ.

ŝ

Then

$$\alpha \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] = \left[\begin{array}{cc} \alpha a & \alpha b \\ \alpha b & \alpha c \end{array} \right].$$

Thus, the product is symmetric and hence in W.

Having verified the properties of a subspace, it follows that W is a subspace and thus a vector space.

In the remaining work, we will show how axes can be put in a vector space. (This goal will help unify the work.) To get the idea of how this is done, note that R^3 has axes determined by $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,

 $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. In some sense (which we describe later), these vectors point out different dimensions. And, any $x \in \mathbb{R}^3$ can be reached using them.

For example, if $x = (2, 3, 4)^t$, then

 $x = 2e_1 + 3e_2 + 4e_3,$

and the coordinates 2, 3, 4 tell how x is reached; i.e., go 2 units on the axis determined by e_1 , then 3 units in the direction of the axis determined by e_2 , etc.

To obtain axes in **an** arbitrary vector space, we **look** for vectors with two special properties. (i) We must **be** able to reach any vector using them, and (ii) these vectors must point out different dimensions. The first property is mathematically described below.

Definition 2.3 Let $S = \{x_1, \ldots, x_m\}$ be a nonempty subset of a vector space V. If

 $x = \alpha_1 x_1 + \dots + \alpha_m x_m$

for some scalars $\alpha_1, \ldots, \alpha_m$, then x is a linear combination of x_1, \ldots, x_m . (So x can be reached by going α_1 units on the **axis** determined by x_1 , etc.) The set of all linear combinations of x_1, \ldots, x_m , the set that S spans, is called the span of S. That is,

span
$$S = \left\{ \begin{array}{l} \boldsymbol{x} : \boldsymbol{x} = \alpha_1 \boldsymbol{x}_1 + \dots + \alpha_m \boldsymbol{x}_m \\ for some \ scalars \ \alpha_1, \dots, \alpha_m \end{array} \right\}$$

(So S is the set of all reachable vectors.)

Example 2.7 If we view \mathbb{R}^3 , the span of a nonzero vector, say x_1 , is a line. (See Figure 2.6.) The span of the two noncollinear vectors, say x_1

FIGURE 2.6.

and x_2 illustrated on Figure 2.7, is a plane. And if we have three noncoplanar vectors, they span \mathbb{R}^3 .

As we might expect, spans provide subspaces.

Theorem 2.2 Let V be a vector space and $S = \{x_1, \ldots, x\}$ a nonempty subset of V. Then span S is a subspace of V.

Proof. To show span S is a subspace, we need to verify each property of the definition of a subspace.

FIGURE 2.7.

ł

t

Closure of addition: Let $x, y \in \text{span } S$. Then

$$x = \alpha_1 x_1 + \dots + \alpha_m x_m$$
 and
 $y = \beta_1 x_1 + \dots + \beta_m x_m$

for some scalars $\alpha_1, \ldots, \alpha_m$ and β_1, \ldots, β_m . Adding we get

$$x+y=(\alpha_1+\beta_1)x_1+\cdots+(\alpha_m+\beta_m)x_m$$

a linear combination of x_1, \ldots, x_m . Thus, $x + y \in \text{span } S$. Closure of scalar multiplication: left as an exercise.

We conclude this section by demonstrating that **just** a few vectors can span $R^{2\times 2}$.

Example2.8 Let
$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $E_{21} = \begin{bmatrix} q & 0 \\ 1 & 0 \end{bmatrix}$, and $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. We show these matrices $\operatorname{span} R^{2 \times 2}$.

To do this, we take an arbitrary matrix A in $\mathbb{R}^{2\times 2}$, say $A = \begin{bmatrix} -0 \\ -d \end{bmatrix}$. We need to show that A is a linear combination of E_{11} , E_{12} , E_{21} , and E_{22} . Thus, set

$$\alpha_1 E_{11} + \alpha_2 E_{12} + \alpha_3 E_{21} + \alpha_4 E_{22} = A.$$

Equating corresponding entries, we have a solution, namely

$$\alpha_1 = a, \alpha_2 = b, \alpha_3 = c, and \alpha_4 = d.$$

Hence, $A \in \text{span}_{\{EII, E_{12}, E_{21}, E_{22}\}}$ and since A was arbitrarily chosen,

span $\{E_{11}, E_{12}, E_{21}, E_{22}\} = R^{2 \times 2}$.

2.1.1 Optional (Geometrical Description of the Solutions to Ax = b)

In this optional, we give a geometrical view of the solution set of Ax = b. To see this, we consider a small system,

As a matrix equation we can write this system as

$$\begin{bmatrix} 2 & 4 & -6 \\ -3 & -6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}.$$

To solve, we apply Gaussian elimination to get

$$\left[\begin{array}{c} x\\ y\\ z\end{array}\right] = \left[\begin{array}{c} 1-2\beta+3\alpha\\ \beta\\ \alpha\end{array}\right]$$

where a and β are arbitrary. Thus, there are infinitely many solutions, one for each pair of chosen a and β .

Actually, the solution set is more than an infinite set, it has shape. Note that we can pull out α and β from the vector and write it as

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} + \alpha \begin{bmatrix} 3\\0\\1 \end{bmatrix} + \beta \begin{bmatrix} -2\\1\\0 \end{bmatrix}.$$

If we graph all vectors of the form $\alpha \begin{bmatrix} 0\\1 \end{bmatrix} + \beta \begin{bmatrix} -2\\1\\0 \end{bmatrix}$, we get
$$\operatorname{span}\left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\},$$

a plane through the origin. The graph of the solution set then is a translation, by $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, of that plane, as depicted in Figure 2.8.

Although Ax = b is a more general equation than that just studied, its solutions (providing there are any) can be described in the form

$$x = x_0 + \alpha_1 x_1 + \dots + \alpha_m x_m$$

where x_0, \ldots, x_m are vectors and $\alpha_1, \ldots, \alpha_m$ the free variables. Thus, if $W = \text{span} \{x_1, \ldots, x_m\}$, then the solution set is

$$x_0 + W = \{x : x = x_0 + w \text{ where } w \in W\},\$$

a translation by x_0 of the subspace W. Such sets are called *affine spaces* (or linear manifolds). Thus, the set of solutions to a system of linear equations has that kind of shape.

FIGURE 2.8.

2.1.2 MATLAB (Graphics)

The basics of graphing a function can be found in Appendix A.

Code for Graphing x = 1 - 2y + 3z

y = linspace (-20, 20, 20); z = linspace (-20, 20, 20); [y, z] = meshgrid (y, z); mesh (1 - 2 * y + 3 * z, y, z)xlabel('x-axis'), ylabel('y-axis'), % Labels axes. zlabel('z-axis')
title ('Graph of the solution set') % Gives graph a title.

For more information on graphing, type in help mesh.

Exercises

- 1. Prove (b), (c), and (d) of Lemma 2.1.
- 2. Two parts.
 - (a) Draw geometric vectors corresponding to $(1,2)^t$, $(2,1)^t$, $-2(1,2)^t$, and $2(1,2)^t (2,1)^t$.

£٦

(b) Using Figure 2.9, show (i) a vector equivalent to a - b using a and b and (ii) a - b originating at the origin.

FIGURE 2.9.

- 3. Four parts.
 - (a) Give the 0 vector for each of the following vector spaces.
 i. R⁴ ii. R^{2×3}
 iii. P₃ iv. C [0,1]
 - (b) Give the form of an arbitrary vector in the following.
 i. R³ ii. R^{2×3}
 iii. P₃
 - (c) Give -x for the following x's.

i.
$$x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

ii. $x = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}$
iii. $x = t^2 + 2t - 1$
iy. $x = sint$

(d) Identify, by context, which symbols are vectors and which are scalars.

i. $0\mathbf{x} = 0$ ii. $\mathbf{x} + (-\mathbf{x})$ iii. $\mathbf{A} + 0 = 0$ iv. $\alpha f(\mathbf{t}) + \beta g(\mathbf{t}) = 0$

4. Let $f, g, h \in C$ (a,b,] and α, β scalars. Prove the following.

(a)
$$(f+g) + h = f + (g+h)$$

(b) $\alpha(f+g) = \alpha f + \alpha g$

5. Find the parametric equation of the line determined by the following.

(a)
$$x = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, y = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, B = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$

42 2. Introduction to Vector Spaces

6. Prove that each of the following is a subspace.

- (a) $W = \left\{ x : x = (x_1, x_2, x_3) \text{t and } x_1 + x_2 = x_3 \right\}$ (b) $W = \{ p : p(t) = at^2 + bt + c^t \text{ and } a + b + c = 0 \}$
- (c) $W = \{A : A \in \mathbb{R}^{2 \times 2} \text{ and } A \text{ is upper triangular} \}$
- (d) $W = \{f : f \in C[-1, 1] \text{ and } f(0) = 0\}$
- (e) W = {A : A $\in \mathbb{R}^{2 \times 2}$ and $a_{11} + a_{12} = 0$, $a_{21} + a_{22} = 0$ }
- (f) $C_1(-\infty,\infty) = \{ f : f \in C(-\infty,\infty) \text{ and } f \text{ is differentiable} \}$ (Use known calculus results.)

A CONTRACT OF A CARL

States - States - States

- (g) W = { $f : f \in C_1(-\infty, \infty)$ and f' f = 0}
- (h) W = {x : x is a function on the nonnegative integers and x(k+1)+x(k)=0 for all k.} (Use that the set of functions defined on the nonnegative integers is a vector space.)
- 7. Show that the following subsets of $R^{2\times 2}$ are not subspaces.
 - (a) $W = \{A : A \text{ is the singular matrix}\}$
 - (b) $W = \{A : A \text{ is the nonsingular matrix}\}$
- 8. Prove that if W is a subspace of a vector space V, then $0 \in W$.
- 9. Prove Theorem 2.1, property (ii).
- 10. Graph the solution set of $y = x^2$ in \mathbb{R}^2 . Is the solution set, namely $\{(x,y) : y = x^2\}$ a vector space?
- 11. Explain why, geometrically, a subspace in \mathbb{R}^3 must be $\{0\}$, a line through the origin, a plane through the origin, or \mathbb{R}^3 . (The explanation may be a bit rough, so support it with drawings.)
- 12. Decide if \mathbf{x} is a linear combination of \mathbf{y} and \mathbf{z} .

(a)
$$x = (1, -1, 2)^t$$
. $u = (2, 0, -1)^t$. $z = (1, 0, 1)^t$
(b) $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $y = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $z = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
(c) $x = t + 1$, $y = 2t - 3$, $z = 4$

- 13. Three parts. Prove the following.
 - (a) $S = \{(1,1,0)^t, (1,-2,-1)^t, (-1,2,2)^t\}$ spans R^3 . (b) $S = \{\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ matrices in R^{2\times}2 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\}$ spans the symmetric

- (c) $S = \{t 1, t + 1\}$ spans P2.
- 14. Decide if the given set spans the given vector space.
 - (a) $\left\{ (1,1,1)^{t}, (-1,1,0)^{t}, (0,1,1)^{t} \right\}, R^{3}$ (b) $\left\{ 1 + t, t + t^{2} \right\}, F_{2}$ (c) $\left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}, R^{2 \times 2}$
- 15. Draw span $\{(1,1,0)^t, (1,1,1)^t\}$ in \mathbb{R}^3 . Find two other vectors that span the same space.
- 16. Prove Theorem 2.2, part b.
- Let V and W be vector spaces with the same set of scalars. Define on V x W,

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and
 $\alpha(v_1, w_1) = (\alpha v_1, \alpha w_1)$

where $v_1, v_2 \in V$; $w_1, w_2 \in W$, and α a scalar. Prove that $V \times W$ with this + and scalar multiplication is a vector space.

- 18. Let V be a vector space and U, W subspaces of V. Prove that each of the following is a subspace of V.
 - (a) $U \cap W$ (b) $U + W, U + W = \{x = u + w \text{ where } u \in U, w \in W\}$
- 19. (MATLAB) Solve

$$\begin{array}{rcl} x_1 + x_2 + x_3 &=& 3 \\ x_1 & -& 23 &=& 0 \end{array}$$

by using the rref command. Graph the solution set as done in the example in Optional.

2.2 Dimension

In this section we continue the study, started in the last section, of finding vectors that form axes in a vector space. We now mathematically describe the second special property (vectors pointing out different dimensions) needed for such sets.

We first describe the property algebraically, so we can calculate. Later in this section, we will show that our algebraic description is what we want geometrically. **Definition 2.4** Let V be a vector space and $S = \{x_1, \dots, x\}$ a nonempty subset of V. If the pendent equation

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0$$

has only the trivial solution, $\alpha_1 = \dots = a$, = 0, then S is linearly independent. The set S is linearly dependent if the pendent equation has a nontrivial solution.

Alternately (as often used in other books), we say that vectors x_1, \ldots, x_m are linearly independent or linearly dependent if the "set" of these vectors is linearly independent or linearly dependent.

The following example shows how decisions about linearly independent and linearly dependent sets are made.

Example 2.9 Decide if

$$\left[\begin{array}{rrr}1 & 1\\1 & 0\end{array}\right], \left[\begin{array}{rrr}1 & 1\\0 & 1\end{array}\right], \left[\begin{array}{rrr}1 & 0\\1 & 1\end{array}\right]$$

are linearly independent or linearly dependent.

To do this, we solve the corresponding pendent equation,

$$\alpha_1 \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 \end{bmatrix}$$

Equating corresponding entries, we have

Solving, by say Gaussian elimination, yields only

$$\alpha_1 = 0, \ \alpha_2 = 0, \ \alpha_3 = 0.$$

Thus, $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ are linearly independent.

We now attach some geometry to **our** definition. First, let x be a vector. Observe that if x = 0, then $\alpha 0 = 0$ has nontrivial solutions (Any $a \neq 0$ will do.), so $\{0\}$ is linearly dependent. If $x \neq 0$, then $\alpha x = 0$ implies $\alpha = 0$ by Lemma 2.1 (d), so $\{x\}$ is linearly independent. (Actually, a single such vector generates an **axis.**)

Now consider a set of vectors $S = \{x_1, \dots, x_m\}$ where $m \ge 2$. If

$$x_k \notin \operatorname{span} S \setminus \{x_k\},\$$

シンタイト・ションション 二十二十二十二

and the state of the second second

ŧ

Ì

then x_k is not reachable using the vectors in $S \setminus \{x_k\}$. (Recall that $S \setminus \{x_k\}$ is the set S with the vector x_k removed.) Thus, we say x_k is *independent* in S. If

$$x_k \in \operatorname{span} S \setminus \{x_k\},\$$

 x_k is reachable using the vectors in $S \setminus \{x_k\}$, and so we say x_k is *dependent* in S.

We intend to show that S is a linearly independent set if and only if each vector in S is independent in S. Thus in \mathbb{R}^3 such sets would appear as shown in Figure 2.10.

FIGURE 2.10.

We need the following lemma.

Lemma 2.2 Let V be a vector space and $S = \{x_1, \ldots, x_j\}$ a subset of V containing at least two vectors. Then S is linearly dependent if and only if S contains a dependent vector.

Proof. We need to argue two parts for the biconditional.

Part a. Suppose S contains a dependent vector. Without loss of generality (the vectors in S can be reindexed), we suppose x_1 is dependent in S. Thus

$$x_1 = \beta_2 x_2 + \dots + \beta_m x_m$$

for some scalars β_2, \ldots, β_m . Now by rearranging,

$$1x_1 - \beta_2 x_2 - \dots - \beta_m x_m = 0$$

and so the pendent equation has a nontrivial solution, namely

$$(1,-\beta_2,\ldots,-\beta_m).$$

Thus, S is linearly dependent.

Part b. The converse implication is left as an exercise.

Another form (actually the contrapositive) of this lemma says that $S = \{x_1, \ldots, x_m\}$ is linearly independent if and only if each $x_k \in S$ is independent in S.

As we expect, dependent vectors can be removed from a set without affecting the span.

Theorem 2.3 Let $S = \{x_1, \ldots, x_m\}$ be a subset of a vector space V. If x_k is dependent in S, then

$$\operatorname{span} \mathbf{S} = \operatorname{span} S \setminus \{x_k\} \, .$$

Proof. For simplicity of notation, we re-index the vectors in S so that x_k becomes x_1 .

We show that span $S = \operatorname{span} S \setminus \{x_1\}$, which is an equality of sets argument. Thus, let $x \in \operatorname{span} S$. Then

$$x = \beta_1 x_1 + \ldots + \beta_m x_m \tag{2.4}$$

ł

3

,

ŧ

ŧ

ł

, >

for some scalars β_1, \ldots, β_m . Since x_1 is dependent in S, we can write

$$x_1 = \gamma_2 x_2 + \ldots + \gamma_m x_m. \tag{2.5}$$

for some scalars $\gamma_2, \ldots, \gamma_m$.

Substituting (2.5) into (2.4), we have

$$x = (\beta_1 \gamma_2 + \beta_2) x_2 + \dots + (\beta_1 \gamma_m + \beta_m) x_m$$

which says that $x \in \operatorname{span} S \setminus \{x_1\}$. Thus $\operatorname{span} S \subseteq \operatorname{span} S \setminus \{x_1\}$. Now let $x \in \operatorname{span} S \setminus \{x_1\}$. Then

$$x = \beta_2 x_2 + \ldots + \beta_m x_m$$

for some scalars β_2, \ldots, β_m Writing

$$z = 0x_1 + \beta_2 x_2 + \ldots + \beta_m x_m$$

shows that $x \in \text{span } S$. Thus $\text{span } S \setminus \{x_1\} \subseteq \text{span } S$.

We give an example showing how we can use this theorem.

Example 2.10 Identify the shape of span S where $S = \{x_1, x_2, x_3, x_4\}$ and

$$x_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, x_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, x_3 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, x_4 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}.$$

To find dependent vectors an S, we consider the pendent equation

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + {}_{a 4 2 4} = 0. \tag{2.6}$$

Putting this into an augmented matrix and finding a row echelon form yields

$$\begin{bmatrix} 1 & 1 & 2 & 0 & | & 0 \\ 0 & 1 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus α_3 and α_4 are free. Setting $\alpha_3 = 0$, $\alpha_4 = -1$ and solving, we get (1,-1,0,-1), and by plugging into (2.6),

$$x_1 - x_2 = x_4.$$

Similarly, setting $\alpha_3 = -1$, $\alpha_4 = 0$ yields the solution (1, 1, -1, 0), so by (2.6)

$$x_1 + x_2 = 23$$

(In general, if all free variables α_k are set to 0, except, say α_i , which is set to -1, then we see that x_i is a linear combination of the vectors corresponding to pivot variables.)

Thus

$$\operatorname{span} S = \operatorname{span} S \setminus \{x_4\} = \operatorname{span} S \setminus \{x_3, x_4\}.$$

Now, if all free variables are set to 0, the resulting equation (2.6) contains only vectors corresponding to pivot variables, namely

$$\alpha_1 x_1 + \alpha_2 x_2 = 0.$$

1

$$\begin{bmatrix} 1 & 1 & 0 \\ \theta & \Phi & \theta \\ 0 & 0 \end{bmatrix}.$$
span $S = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\},$

which is a plane.

As demonstrated in the example, we have the following.

Corollary 2.1 Let A be an $m \times n$ matrix and E a row echelon form of A. Let $S = \{a_1, \ldots, a_n\}$ where a; is the i-th column of A. (a) The columns of A corresponding to the columns of E that don't contain pivots are dependent in S. And, they can be removed from S without affecting the span.

ţ

1

ŧ

ţ

Ĵ

ŧ

ŧ

3

ч.?_.

2

(b) The columns of A corresponding to the columns of E that contain pivots are linearly independent vectors.

We now describe those sets which can be used to form axes.

Definition 2.5 Let V be a vector space and S, $S = \{x_1, ..., x_n\}$, a nonempty subset of V. The set S is a basis for V ij

- *i.* S is linearly independent and
- *ii.* span S = V.

In addition, we consider the set S as ordered, so x_1 is the first vector, x_2 the second vector, etc. in S. (Now each vector, say x_i , in S determines an axis in V, namely span $\{x_i\}$.)

Example 2.11 Some vector spaces with bases follow.

- (a) \mathbb{R}^n has as a basis $\{e_1, \dots, e_n\}$. (There are others.)
- (b) $\mathbb{R}^{m \times n}$ has as a basis $\{E_{ij} | 1 \leq i \leq m \text{ and } 1 \leq j \leq n\}$ where E_{ij} is the matrix having a 1 in the ij-th position and 0's elsewhere. (There are others.)
- (c) P_n has as a basis $(1, t, \dots, t^{n-1})$. (There are others.)

Let V be a vector space that has a basis, say $S = \{x_1, \ldots, x_n\}$. We now show how coordinates **are** attached to vectors in V. (This is somewhat like the calculus problem of attaching of polar coordinates to points in \mathbb{R}^2 .)

For any $x \in V$ we can write

$$\mathbf{z} = \alpha_1 x_1 + \dots + \alpha_n x_n \tag{2.7}$$

for some scalars $\alpha_1, \ldots, \alpha_n$. Note that these scalars must be unique since if

$$\boldsymbol{x} = \beta_1 \boldsymbol{x}_1 + \dots + \beta_n \boldsymbol{x}_n \tag{2.8}$$

for some scalars β_1, \ldots, β_n , then by subtracting (2.8) from (2.7), we have

$$0 = (\alpha_1 - \beta_1) x_1 + \cdots + (\alpha_n - \beta_n) x_n$$

Since S is linearly independent,

$$\alpha_1 - \beta_1 = 0, \dots, \alpha_n - \beta_n = 0$$
 or
 $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n.$

Thus, we can define the S-coordinates for **x** as

$$[x]_S = \left[\begin{array}{c} \alpha_1 \\ \cdots \\ \alpha_n \end{array}\right].$$

(Of course, the coordinates depend on S.) We see that a basis gives a coordinate system, which we **call** the S-coordinate system, with axes **de**-termined x_1, \ldots, x_n . The vector \boldsymbol{x} is located by proceeding *al* units along the axis determined by x_1 to get $\alpha_1 x_1$, then α_2 units parallel to the axis determined by \boldsymbol{x}_2 to get $\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2$, etc. (Geometrically we would add by appending.) We label the axes as y_1, \ldots, y_n , respectively. (See Figure 2.11.)

FIGURE 2.11.

A particular example follows.

Example 2.12 Note that R^2 has $S = \{(1,1)^t, (-1,1)^t\}$ as a basis. To find the coordinates of $(1,3)^t$ with respect to this basis, we set

$$\begin{bmatrix} 1\\3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1\\1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -1\\-1 \end{bmatrix}$$

and solve for α_1, α_2 . This gives $\alpha_1 = 2, \alpha_2 = 1$. Thus,

$$\left[\left[\begin{array}{c} 1\\3 \end{array} \right] \right]_{S} = \left[\begin{array}{c} 2\\1 \end{array} \right]$$

To locate $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ with respect to S, we move 2 units along the y_1 -axis followed by 1 unit in the direction of the y_2 -axis, as shown in Figure 2.12.

The number of axes, or vectors in a basis, gives the dimension of **a** vector space. To show this, we need a technical result.

Lemma 2.3 Let V be a vector space having a basis of n vectors. The number of vectors in any linearly independent set of V cannot exceed n.

FIGURE 2.12.

Proof. We will prove this lemma for Euclidean n-space, which is more insightful, leaving the general argument **as** an exercise.

Let $S = \{y_1, \dots, y_m\}$ be any set of vectors in E^n where m > n. We show that S must be linearly dependent. For this, consider the pendent equation

$$\alpha_1 y_1 + \dots + \alpha_m y_m = 0. \tag{2.9}$$

I

f

1 1

Using backward multiplication, write (2.9) as the matrix equation

$$\begin{bmatrix} y_1 \dots y_m \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_m \end{bmatrix} = 0.$$

Note that the coefficient matrix is $n \times m$, and thus if we compute a row echelon form (say by Gaussian elimination) for the augmented matrix $[y_1 \dots y_m \mid 0]$, there is a **free** variable. From this it follows that there are ∞ -many solutions to (2.9) and hence S is linearly dependent.

A consequence of the lemma follows.

Theorem 2.4 Let V be a vector space having a basis. Then all bases of V wntain the same number of vectors.

Proof. Let $B_1 = \{x_1, \ldots, x_p\}$ and $B_2 = \{y_1, \ldots, y_q\}$ be bases for V. Using Lemma 2.3, noting the B_1 is linearly independent, it follows that $p \leq q$. Using Lemma 2.3, with B_2 linearly independent, yields $g \leq p$. Thus, p = q, the desired result.

By using this theorem, we can define the dimension of a vector space **as** we intended, counting vectors in a basis.

Definition 2.6 Let V be a vector space.

i. If $V = \{0\}$, then dim V = 0.

ii. If V has a basis, say $\{x_1, \ldots, x_r\}$, then dim V = r.

iii. In all other cases, dim $V = \infty$.

Example 2.13 Applying the definition, we can see that

- (a) dim R'' = n, dim $C^n = n$.
- (b) dim $\mathbb{R}^{m \times n} = mn$, dim $\mathbb{C}^{m \times n} = mn$.
- $(c) \dim P_n = n.$

And, interestingly, as given in an exercise

(d) dim $C(+\infty,\infty) = \infty$.

A more complicated example follows.

Example 2.14 Let A be an m x n matrix. Define the null space of A as

$$N(A) = \{x : Ax = 0\}.$$

It is left as an exercise to show that N(A) is a subspace.

We compute the dimension of N(A) for a small example. For this, let $A = \begin{bmatrix} 2 & 2 \\ -3 & 6 & -3 \end{bmatrix}$. To find the null space we solve

$$\mathbf{A}\mathbf{x} = 0$$

This yields

$$x = \left[\begin{array}{c} 2\beta - \alpha \\ \beta \\ \alpha \end{array} \right]$$

where α , β are free variables. Factoring these scalars out of x yields

$$x = \alpha \begin{bmatrix} -1\\0\\1 \end{bmatrix} + \beta \begin{bmatrix} 2\\1\\0 \end{bmatrix}$$

and so $N(A) = \operatorname{span}\left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}.$
If we set $\mathbf{r} = 0$ and observe the last two entries

If we set x = 0 and observe the last two entries of the vectors in the equation

$$0 = \alpha \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix},$$

it is clear that
$$\mathbf{q} = \mathbf{\beta} = 0$$
, so $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ are linearly independent.
Hence, $\left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$ is a basis for $N(A)$ and so $\dim N(A) = 2$.

In general,

$$\dim N(A) =$$
number of free variables
in the solution of $Ax = 0.$ (2.10)

And, a basis for this subspace can be found from the solution, **as** in the example, by **using** the vectors which are coefficients of the free variables.

Finally, we point out a result useful in establishing when linearly independent sets actually form bases.

Corollary 2.2 Let V be a vector space with dim V = n. Then, any set of n linearly independent vectors in V is a basis of V.

Proof. Suppose x_1, \ldots, x_n are linearly independent vectors in V. To show x_1, \ldots, x_n forms a basis for V, we need only show that

$$\operatorname{span} \{x_1, \ldots, x_n\} = V.$$

Let $x \in V$. Then by Lemma 2.3, x_1, \ldots, x_n , x are linearly dependent. Thus there is a nontrivial solution $(\beta_1, \ldots, \beta_n, \beta)$ to the pendent equation

$$\alpha_1 x_1 + \cdots + \alpha_n x_n + \alpha x = 0.$$

Note that $\beta = 0$ implies that

$$\alpha_1 x_1 + \dots + \alpha_n x_n = 0$$

has a nontrivial solution, namely $(\beta_1, \ldots, \beta_n)$, which contradicts that x_1, \ldots, x_n are linearly independent. Thus, $\beta \neq 0$.

Since $\beta \neq 0$, we can solve

$$\beta_1 x_1 + \dots + \beta_n x_n + \beta x = 0$$

for x, yielding

$$z = \frac{-\beta_1}{\beta} x_1 + \dots + \frac{-\beta_n}{\beta} x_n.$$

Thus $x \in \text{span}\{x_1, \ldots, x_n\}$. And, since x was chosen arbitrarily,

$$\operatorname{span} \{x_1, \ldots, x_n\} = \mathbf{V}_{\mathbf{I}}$$

which is what we wanted to prove.

An example showing how this corollary can be used follows.

.

Shirt of the state

Example 2.15 Can we write any polynomial in P_3 in the form

$$a + b(t-1) + c(t-1)^2?$$

Note that $1, t-1, (t-1)^2$ are linearly independent in P_3 . Since dim $P_3 = 3$, these vectors also form a basis for P3. Hence, the answer is yes.

2.2.1 Optional (Dimension of Convex sets)

Using vector space notions, we can describe basic geometrical objects in \mathbb{R}^n .

1. *Parallelepiped:* To describe a parallelogram in \mathbb{R}^2 , let x, y be linearly independent vectors. (See Figure 2.13.) Then $\{ax + \beta y \text{ where } 0 \leq a \leq 1, 0 \leq \beta \leq 1\}$ describes all points in the parallelogram with sides x and y. For a parallelepiped in \mathbb{R}^3 , let x, y, z be linearly independent. Then the description is $\{\alpha x + \beta y + \gamma z \text{ where } 0 \leq a \leq 1, 0 \leq \beta \leq 1, 0 \leq \gamma \leq 1\}$.

FIGURE 2.13.

In \mathbb{R}^n a parallelepiped determined from linearly independent vectors x_1, \ldots, x_n is $\{\alpha_1 x_1 + \ldots + \alpha_n x_n \text{ where } 0 \le \alpha_1 \le 1, \ldots, 0 \le a, \le 1\}$.

2. *Pyramid:* Using the same technique as in 1, we have that if x and y are linearly independent in R^2 then $\{ax + \beta y \text{ where } 0 \le a, 0 \le \beta, and \alpha + \beta \le 1\}$ is a triangle with vertices 0, x, and y. (See Figure 2.15.)

In **R**'', for x_1, x_2, \ldots, x_n linearly independent, $\{\alpha x_1 + \alpha_2 x_x + \cdots + \alpha_n x_n \text{ where } 0 \leq \alpha_1, \ 0 \leq \alpha_2, \ldots, 0 \leq \alpha_n \text{ and } \alpha_1 + \alpha_2 + \cdots + \alpha_n \leq 1\}$ describes a pyramid.

A nonempty set S in a vector space V is *convex* if for each $x, y \in S$, the segment between **x** and **y**, namely

$$\alpha x + (1 - a)y$$

1

1 2

FIGURE 2.15.

where $0 \le \alpha \le 1$, is in S. The disc in Figure 2.16 is convex, and the L is not.

A subspace W of V is clearly convex and **so** are its translations. And, parallelepipeds and pyramids are convex.

For any convex set S, define the dimension of S as follows:

- i. dim S = 0 if $S = \{x_0\}$, i.e., S contains a single point.
- ii. dim S = r if r > 0 is the largest integer such that S contains r + 1 vectors x_0, x_1, \ldots, x_r for which $x_1 x_0, x_2 x_0, \ldots, x_r x_0$ are linearly independent. Note in Figure 2.17 that a line has dimension 1, a disc dimension 2, and a pyramid dimension 3.
- iii. dim $S = \infty$ otherwise.

Since a vector space V itself is convex, it has **a** dimension **as** described above. If the vector space dimension of V is n, then V has n linearly independent vectors, say x_1, \ldots, x_n . Taking $x_0 = 0$, we have that the

FIGURE 2.17.

convex dimension of V is at least n. And since no larger set of vectors in V can be linearly independent, the convex dimension of V is n also.

Exercises

- 1. Decide if the following sets of vectors are linearly independent.
 - (a) $(1,1,1)^{t}$, $(-1,1,-1)^{t}$, $(0,1,0)^{t}$ (b) $(1,0,1,0)^{t}$, $(0,1,1,0)^{t}$, $(0,0,1,1)^{t}$ (c) $\left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ (d) 1+t, $1+t^{2}$, 1-t
- 2. Let V be a vector space and $x, y \in V$. Prove that x, y are linearly dependent if and only if one of these vectors is a scalar multiple of the other. (Thus, deciding if two vectors are linearly independent is often **a** matter of looking.)
- 3. Let u, v, w be linearly independent vectors in a vector space V. Prove that u, u + v, u + v + w are linearly independent.
- 4. Prove Lemma 2.2, part b.
- **5.** Prove that every nonempty subset of a linearly independent set is linearly independent.
- 6. Two parts:

56 2. Introduction to Vector Spaces

(a) Let f and g be differentiable functions. The Wronskian of f and g is

$$W(f(t),g(t)) = \det \begin{bmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{bmatrix}$$

Prove that if $W(f(t), g(t)) \neq 0$ for some t, then f and g are linearly independent.

- (b) State and prove the generalization of this result to the n functions.
- 7. Using Exercise 6, decide which sets of functions are linearly independent.

(a) e^t, e^{-t} (b) t - 1, t + 1, t(c) sint, cost

- 8. Let A be an m x n matrix. Prove that N(A) is a subspace.
- 9. In \mathbb{R}^2 , find the coordinates of $(3,3)^t$ if the **basis** is $S = \{(2,1)^t, (1,2)^t\}$. Draw the axes and the corresponding grid, and geometrically find $(3,3)^t$ in terms of them.
- 10. Find the coordinates of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ if the basis is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}.$
- 11. Find a basis for each of the following.

(a) span
$$\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1 \end{bmatrix} \right\}$$
 Give its dimension
and draw the shape.
(b) span $\left\{ \begin{bmatrix} 1&1\\1&0 \end{bmatrix}, \begin{bmatrix} 0&1\\1&0 \end{bmatrix}, \begin{bmatrix} 1&0\\0&0 \end{bmatrix}, \begin{bmatrix} 0&0\\0&1 \end{bmatrix} \right\}$
(c) span $\{t-1, t+1, 2t-1, t-2\}$
12. Prove that $\begin{bmatrix} a\\b \end{bmatrix}, \begin{bmatrix} c\\d \end{bmatrix}, \begin{bmatrix} e\\f \end{bmatrix}$ are linearly dependent in \mathbb{R}^2 .

- **13.** Prove Lemma **2.3** for a vector space *V*.
- **14.** Find a basis for each of the subspaces given below. Give the dimension of each.

d

(a) $W = \{A : A \in \mathbb{R}^{2 \times 2} \text{ and } A \text{ is upper triangular}\}$

- (b) $W = \{A : A \in \mathbb{R}^{2 \times 2} \text{ and diagonal}\}$ (c) $W = \{A : A \in \mathbb{R}^{2 \times 2} \text{ and symmetric}\}$
- 15. Prove that $C(-\infty,\infty) = \infty$.

(Hint. Assume that dim $C(-\infty,\infty) = n$ and consider $1, t, \ldots, t^n$.)

- 16. The solution set to y''+3y'+2y = 0 is a subspace of $C(-\infty,\infty)$. From differential equations, we know that the dimension of this subspace is 2. Thus, if we can guess two linearly independent solutions to this equation, we have a basis for it. Solve the differential equation by guessing.
- 17. The solution set S to x(l(l+2) 52(k+1) + 6x(l(l)) = 0 is a subspace. (See Exercise 6 in Section 1). It is known that dim S = 2. By guessing, find a basis for S and thus S itself. (Hint: Try $x(k) = r^k$ for some scalar r. Plug it in and determine which r's work.)
- **18.** Let V be a vector space, $V \neq \{0\}$, and $x_1, \ldots, x_n \in V$. Prove that if span $\{x_1, \ldots, x_n\} = V$, then some subset of $\{x_1, \ldots, x_n\}$ is a basis for V.
- 19. Let V be a vector space and x_1, x_2, x_3 in V. If $x_1 \neq 0$, show that
 - (a) If $x_2 \notin \text{span} \{x_1\}$, then x_1, x_2 are linearly independent.
 - (b) If in addition to (a), $x_3 \notin \text{span}\{x_1, x_2\}$, then x_1, x_2, x_3 are linearly independent.
- **20.** Let V be a vector space with dim V = n. If $x_1, \ldots, x_n \in V$ and span $\{x_1, \ldots, x_n\} = V$, prove that x_1, \ldots, x_n are linearly independent.
- **21.** (Optional) Find, by making a drawing, the dimensions of the following convex sets in \mathbb{R}^3 ,
 - (a) A parallelepiped
 - (b) A ball, i.e., $\{x : x_1^2 + x_2^2 + x_3^2 \le 1\}$

Prove the following are convex and find their dimensions.

- (c) A parallelepiped in \mathbb{R}^n
- (d) A pyramid in \mathbb{R}^n
- (e) An affine space in R''
- 22. (MATLAB) Using MATLAB, rref, Theorem 2.3, and Corollary 2.1,

58 2. Introduction to Vector Spaces

(a) Decide if
$$\begin{bmatrix} 1\\ 0\\ -1\\ 0 \end{bmatrix} \begin{bmatrix} 0\\ 1\\ 1\\ -1 \end{bmatrix} \begin{bmatrix} -1\\ 1\\ 1\\ -1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 0\\ -1 \end{bmatrix}$$
 are linearly independent.
(b) Find a **basis** for

$$span \left\{ \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} \right\}.$$
(c) Find a **basis** for span $\{2t + 1, t^2 + t - 1, t + 1, 4\}.$
(d) Find a basis for span $\left\{ \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} \right\}.$

(On (c) **and** (d), use the augmented matrix obtained from the pendent equation.)

2.3 Linear Transformations

Functions from vector spaces to vector spaces are called transformations (or maps, operators). As in **calculus**, they arise in mathematically describing phenomenon.

An example may be helpful.

Example 2.16 Let $a \in \mathbb{R}^2$ and define $L : \mathbb{R}^2 \to \mathbb{R}^2$ by

L(x) = x + a.

This transformation is called a translation. If $a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, then $L \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + a_1 \\ x_2 + a_2 \end{bmatrix}$. So L shifts \mathbb{R}^2 a_1 units in the direction of the x_1 -axis and a_2 units in the direction of the x_2 -axis. For example, if $a = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, this shift can be seen in Figure 2.18.

In this section we give a study of transformations that behave like the derivative and the integral that we saw in calculus.

Definition 2.7 Let V and W be vector spaces. A transformation $L : V \rightarrow W$ is called linear *iffor* all vectors and scalars,

FIGURE 2.18.

- i. L(x + y) = L(x) + L(y) (L goes across sums.)
- ii. L ($ax \models \alpha L(x)$ (Scalars can be pulled out.)

By (ii), L(Ox) = OL(x) so linear transformations also satisfy

$$L(0) = 0.$$

Thus, if L(0) # 0, then L is not linear. Notice that the transformation in Example 2.16 is not linear.

Putting (i) and (ii) together, we have that

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$$
.

So, L maps lines as + (1 - a)y into lines $\alpha L(x) + (1 - a)L(y)$ as well as line segments into line segments. (Here we assume $L(x) \neq L(y)$; otherwise L maps the line into a point.)

A matrix map, say L(x) = Ax, is a linear transformation. Using this transformation, we demonstrate the line property.

Example 2.17 Let $L(x) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} x$ and ℓ the line described by $a \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (1-a) \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Then the image of ℓ is determined by $a \begin{bmatrix} 2 \\ 0 \end{bmatrix} + (1-a) \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. The graphs are shown an Figure 2.19.

An interesting linear transformation, which we will use later to **look** at pictures of various sets of matrices, follows.

Example 2.18 (Transformation from $\mathbb{R}^{2\times 2}$ into \mathbb{R}^4). Define L by

$$L\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\left[\begin{array}{cc}a\\b\\c\\d\end{array}\right].$$

FIGURE 2.19.

To show that L is linear, we need to verify properties (i) and (ii) of the

definition of linear transformation. L goes across sums: Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$. Then

$$L(A+B) = L\left(\begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22} \end{bmatrix}\right)$$
$$= \begin{bmatrix} a_{11}+b_{11} \\ a_{12}+b_{12} \\ a_{21}+b_{21} \\ a_{22}+b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{12} \\ b_{21} \\ b_{22} \end{bmatrix} = L(A) + L(B).$$

Scalars can be pulled out: Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and a scalar. Then

$$L(\alpha A) = L\left(\left[\begin{array}{cc} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{array}\right]\right) = \left[\begin{array}{c} \alpha a_{11} \\ \alpha a_{12} \\ \alpha a_{21} \\ \alpha a_{22} \end{array}\right] = \alpha \left[\begin{array}{c} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \end{array}\right] = \alpha L(A).$$

In this section we will be concerned with matrix maps; however, some of the theorems will be proved for linear transformations in general.

The following theorem lets us see a picture, the grid view, of a linear transformation. These pictures help provide insight into some of the work that follows.

Theorem 2.5 Let V and W be vector spaces with V having as a basis $\{x_1,\ldots,x_n\}$. Let **L** be a linear transformation from V to W. Then

$$L(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 L(x_1) + \dots + \alpha_n L(x_n)$$
(2.11)

for all scalars $\alpha_1, \ldots, \alpha_n$.

Ŷ.

03

Š.

)

Proof, This can be seen by sequentially applying the properties of a linear transformation,

$$L((\alpha_1x_1 + \dots + \alpha_{n-1}x_{n-1}) + \alpha_nx_n)$$

= $L(\alpha_1x_1 + \dots + \alpha_{n-1}x_{n-1}) + L(\alpha_nx_n)$

and by continuing,

$$= L(\alpha_1 x_1) + \ldots + L(\alpha_{n-1} x_{n-1}) + L(\alpha_n x_n)$$

= $\alpha_1 L(2I) + \ldots + a_{n-1} L(x_{n-1}) + \alpha_n L(x_n)$

More formally, the proof can be done by induction.

The following example shows how we get a grid view of a linear transformation.

Example 2.19 Let

$$L\left(x\right) = \left[\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right] x.$$

To describe L, note that $\{eI, e_2\}$ is a basis for R^2 and that $L(eI) = \begin{bmatrix} 2\\1 \end{bmatrix}$ and $L(e_2) = \begin{bmatrix} 1\\2 \end{bmatrix}$. And, since $L(\alpha_1e_1 + \alpha_2e_2) = \alpha_1L(eI) + \alpha_2L(e_2) = \alpha_1\begin{bmatrix} 2\\1 \end{bmatrix} + \alpha_2\begin{bmatrix} 1\\2 \end{bmatrix}$, we see that $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$ form axes for a grid in R^2 as shown in Figure 2.20.

FIGURE 2.20.

Observe that the image of a square in the grid for \mathbb{R}^2 is a pamllelogmm in the image grid. And that the grid view gives a picture of where all points in \mathbb{R}^2 go in the map. Note that (2.11) also assures that the range of L, denoted R(L), is the span of $L(x_1), \ldots, L(x_n)$, and this is a subspace. (Recall that a basis can be found for R(L) by removing dependent vectors from among $L(x_1), \ldots, L(x_n)$.)

Another example may be helpful.

Example 2.20 Let

Getting a

$$L(x) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} x.$$

grid view of L, we plot $L(e_1) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $L(e_2) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ in

1

1

t

Ι.

 \mathbb{R}^3 . Now, drawing the image grid shows where the grid of \mathbb{R}^2 goes under L. (See Figure 2.21.) Note that the image is a subspace spanned by L (el),

FIGURE 2.21.

 $L(e_2).$

The grid view is often helpful in determining the matrix that does what we want to R^2 . For example, if we want to skew the plane by moving the points on the x_2 -axis parallel to the x_1 -axis so that $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ends up at $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we would use $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ since we want $L(el) = e_1$ and $L(e_2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. And $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ reflects R^2 about the x_2 -axis; $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ rotates the plane $\frac{\pi}{4}$ radians, etc.

An example will show how this can be **used** in graphics.
Example 2.21 Given a sequence of points

$$\left[\begin{array}{c} x_1 \\ y_1 \end{array}\right], \left[\begin{array}{c} x_2 \\ y_2 \end{array}\right], \dots, \left[\begin{array}{c} x_n \\ y_n \end{array}\right]$$

in \mathbb{R}^2 , we form the matrix $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix}$. The command plot X will sequentially connect the points with line segments as shown in Figure 2.22. Thus, if $S = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$, then plot S gives a square.

FIGURE 2.22.

And if $E = \begin{bmatrix} 2 & 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 \end{bmatrix}$, then plot E gives the letter E. Now to rotate S by $\frac{\pi}{4}$ radians, we let $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ and plot AS. And to shear E, we let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and plot AE. See Figure 2.23. (If

FIGURE 2.23.

it is not eye appealing, it can be adjusted.)

We now give a rather easy way of showing that a linear transformation is one-to-one.

Theorem 2.6 Let V and W be vector spaces with $L : V \rightarrow W$ a linear transformation. Then L is one-to-one if and only if L(x) = 0 implies x = 0.

Proof. We argue the parts of the biconditional.

Part a. Suppose L is one-to-one and L(x) = 0. Since we know that L(0) = 0, one-to-one implies that x = 0, which is what we need to show.

Part b. Suppose L(x) = 0 implies x = 0. To show that L is one-to-one, let $x, y \in V$ and set

$$L(x) = L(y).$$

á,

2

į,

) à

Rearranging yields

$$L(x) - L(y) = 0 \quad \text{or} \\ L(x - y) = 0.$$

By hypothesis, this says that x - y = 0 and thus x = y. Hence L is one-to-one.

An example of how the theorem can be used follows.

Example 2.22 Let S be set of 2×2 symmetric matrices. It can be seen that S is a subspace and dim S = 3. Define $L : S \to R^3$ by

$$L\left[\begin{array}{cc}a&b\\b&c\end{array}\right] = \left(a,\sqrt{2}b,c\right)^t$$

The $\sqrt{2}_{a}$ occurs since we want to preserve distance. The distance between $\begin{bmatrix} \hat{a} & \hat{b} \\ \hat{b} & c \end{bmatrix}$ and $\begin{bmatrix} \hat{a} & \hat{b} \\ \hat{b} & \hat{c} \end{bmatrix}$ is

$$\left((a-\hat{a})^2+2\left(b-\hat{b}\right)^2+(c-\hat{c})^2\right)^{\frac{1}{2}}$$

The distance between $(a,\sqrt{2}b,c)^t$ and $(\hat{a},\sqrt{2}\hat{b},\hat{c})^t$ is

$$((a-\hat{a})^2 + (fib - \sqrt{2}\hat{b})^2 + (c-\hat{c})^2)^{\frac{1}{2}}$$

Note also that L is linear and one-to-one. So \mathbb{R}^3 gives a model of S.

The singular matrices in S have determinant 0, i.e.,

$$\det \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] = 0$$

or

7

$$ac - b^2 = 0$$

Thus, we can get a view of this set by graphing in \mathbb{R}^3 those vectors $(a, \sqrt{2b}, c)t$ that satisfy $ac-b^2 = 0$. Replacing b by \sqrt{ac} , we can then graph $(a, \sqrt{2ac}, c)''$

This graph is shown in Figure 2.24.

FIGURE 2.24.

It is interesting that special sets of matrices are often not simply infinite sets but actually have some shape.

Not **all** linear transformations are one-to-one. Some transformations actually collapse the space. To see how collapsing takes place, let

 $N(L) = \{y : y \text{ is a solution to } L(x) = 0\}$

called the *null space* or *kernel* of L. As given in an exercise, N(L) is a subspace.

Let

$$z + N(L) = \{w : w = z + y \text{ for some y } \in N(L)\},\$$

called a translate by z of the null space of L. Using translates, we can describe how a linear transformation collapses space.

Theorem 2.7 Let V and W be vector spaces and $L: V \to W$, a linear transformation. If $z \in V$ and L(z) = b, then the solution to L(x) = b is z + N(L). (Thus L collapses z + N(L) into b.)

Proof. We prove two parts. And, we use that

 $S = \{w : w \text{ is a solution to } L(x) = b\}.$

Part a. We show that $z + N(L) \subseteq S$. For this, let $v \in z + N(L)$. Then v = z + y for some $y \in N(L)$. Thus, L(v) = L(z + y) = L(z) + L(y) = L(z) = b. Hence, $v \in S$ and so $z + N(L) \subseteq S$.

Part b. We show that $S \subseteq z + N(L)$. For this, let $w \in S$. Then, set y = w - z. Since L(y) = L(w) - L(z) = 0, $y \in N(L)$. And since w = z + y, $w \in z + N(L)$. Thus, $S \subseteq z + N(L)$.

Since *L* collapses z + N(L) into b(b = L(z)) and the dimension of the affine space z + N(L) is dim N(L), we see that *L* collapses dim N(L) affine spaces in *V* to each vector in R(L). Thus, intuitively only dim $V - \dim N(L)$ is left, and we would expect that

$$\dim \mathbf{R}(L) = \dim V - \dim N(L)$$

which is correct. However, we will only show this for matrix maps.

Theorem 2.8 Let A be an $m \times n$ matrix and L(x) = Ax. Then

 $\dim N(A) + \dim R(A) = n.$

Proof. The pendent equation

$$\alpha_1 a_1 + \cdots + \alpha_n a_n = 0,$$

for the columns of A, can be written as

Ax = 0

where $x = (\alpha_1, \dots, \alpha_n)^t$. Let [E|0] be a row echelon form of [A|0].

From (2.10), dim N(A) = number of free variables determined by [E|0]. From Corollary 2.1, the columns of A corresponding to the pivot variables are a basis for R(A). Thus,

 $\dim N(A) + \dim R(A) =$ total number of variables

=n,

the **desired** result.

At the beginning of the chapter we said that we would study spaces which were like \mathbb{R}^2 and \mathbb{R}^3 . We conclude the chapter by showing that a finite dimensional vector space V is like E", where $\mathbb{E}^n = \mathbb{R}^n$ if V is a real vector space and $\mathbb{E}^n = \mathbb{Q}^n$ if V is a complex vector space.

e si

1

Theorem 2.9 Let V be a vector space with basis $\{x_1, \ldots, x_n\}$. Define $L : V \to E^n$ by $L(\alpha_1 x_1 + \cdots + \alpha_n x_n) = (\alpha_1, \ldots, \alpha_n)^t$. Then L is a one-to-one linear transformation.

Proof. We show that L satisfies the two defining properties of a linear transformation.

L goes across sums: Let $x, y \in V$ and write $x = \alpha_1 x_1 + \dots + \alpha_n x_n$, $y = \beta_1 x_1 + \dots + \beta_n x_n$, where the α_i 's and β_i 's are scalars. Then $x + y = (\alpha_1 + \beta_1) x_1 + \dots + (\alpha_n + \beta_n) x_n$. So,

$$L(x+y) = (\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n)^t$$

= $(\alpha_1, \dots, \alpha_n)^t + (\beta_1, \dots, \beta_n)^t$
= $L(x) + L(y)$.

Scalars can be pulled out: left **as** an exercise. Finally, *L* is one-to-one since, if L(x)=(0,...,0),

$$\begin{aligned} x &= 0x_1 + \cdots 0x_n \\ &= 0 \end{aligned}$$

This **proves** the theorem. \blacksquare

A way to view this theorem is that if we express vectors as $x = \alpha_1 x_1 + \cdots + \alpha_n x_n$, then the arithmetic of these vectors is done on the coefficients. So the arithmetic is like that done on vectors $(\alpha_1, \ldots, \alpha_n)^t$ in E".

2.3.1 Optional (Graphics of Polygonal Shapes)

Graphics concerns drawing pictures or making movies on a computer screen. In this optional, we want to show how linear transformations play a part in that work.

We look at two problems.

Example 2.23 (A house in a strong wind.) We can start with a house made by drawing a few line segments as in Figure 2.25. If we shear the house

FIGURE 2.25.

a bit, say by multiplying by

$$\left[\begin{array}{cc} 1 & .2 \\ 0 & .1 \end{array} \right],$$

we have the second picture, Figure 2.26. Of course, if this is a technical drawing, we wouldn't want this roof, since it appears to elongate on the left and contract on the right. We can fix the drawing by shearing the sides of the house and translating the roof by

$$L(x) = x + \begin{bmatrix} .4\\ 0 \end{bmatrix}.$$

And yes, the lengths of the walls in Figure 2.27 (now of length 2.01) are a bit elongated, but that would not be discernible with the eye.

FIGURE 2.26.

FIGURE 2.27.

Example 2.24 (*A falling bowling pin.*) We find a basic shape of a bowling *pin by using a polygonal shape.* (See Figure 2.28.) We translate the pin

FIGURE 2.28.

(See Figure 2.29.), so its right lower point (the point at which the rotation for falling takes place) is at the origin by using

$$L(x) = x + \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

Now for falling, we show the pin under rotations by various angles. For example, for $-\frac{\pi}{4}$ and $-\frac{\pi}{2}$ we have Figure 2.30.

ŧ

ł

t

2.3.2 MATLAB (Codes, including Picture of the Singular Matrices in Matrix Space)

For the polygonal shape obtained by connecting points $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_n \\ y_n \end{bmatrix}$

sequentially **by** segments, we define the vector of x-values and the vector of corresponding y-values:

$$\begin{aligned} z &= [x_1 \dots x_n]; \\ y &= [y_1 \dots y_n]; \end{aligned}$$

To connect the points with line segments, we use the command *plot* (x, y).

1. Code for Original House

$wx = \begin{bmatrix} 1 & 1 & 3 & 3 \\ 2 & 0 & 0 & 2 \end{bmatrix};$ $wy = \begin{bmatrix} 2 & 0 & 0 & 2 \end{bmatrix};$	% Determines the points for the walls.
$rx = \begin{bmatrix} .5 & 2 & 3.5 \end{bmatrix}; ry = \begin{bmatrix} 1.5 & 3 & 1.5 \end{bmatrix};$	% Determines the points for the roof.
plot $(wx wy)$ hold	% Keeps the first plot from being erased.
plot (rx, ry) .	2

70 2. Introduction to Vector Spaces

2. Code for Sheared Walls House

Using wx, wy, rx, ry from 1, we add the following. $wx1 = wx + .2^{*}wy;$ wy1 = wy; $rx1 = rx + [.2^{*}ry];$ ry1 = ry;plot (wz1, wy1) hold plot (rx1, ry1)

3. Code for Picture of Singular Matrices

 $\begin{array}{l} a = \text{linspace}(0, 10, 20); \\ c = \text{linspace}(0, 10, 20); \\ [a,c] = \text{meshgrid}(a, c); \\ y = (2*a.*c), A(.5); \\ \text{mesh}(a, y, c) \end{array}$

Exercises

- 1. Decide which of the following transformations are linear.
 - (a) $L(x_1, x_2) = (x_1 + 2x_2, 2x_1 x_2)^t$
 - (b) $L(A) = A + A^t$ for all $k \times k$ matrices A
 - (c) $L(f(t)) = \mathbf{f}(t) + f(t)$ for all $f \in C_1(-\infty,\infty)$
 - (d) L(x(k)) = x(k+1) + x(k) for function x defined on the nonnegative integers
- **2.** Which of the following transformations $L : \mathbb{R}^{n \times n} \to \mathbb{R}$ axe linear?
 - (a) L(A) = trace A, where trace $A = a_{11} + \cdots + a_{nn}$ (b) $L(A) = \det A$
- 3. Draw the grid map of $L(x) = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix} z$, and tell what L does to R^2 .

4. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Find the range and the null space in \mathbb{R}^3 for L(z) = Az. Sketch both.

5. Graph the range of L where $L(x) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} x$. Show the grid of R^2 and its image R^3 .

.

ŧ

ł,

÷.

- 54

ŧ

ł

ļ

- 6. Draw the line $x = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Compute the image of this line for $L(z) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} x$ and draw it.
- 7. For the given L_1 and L_2 , find $L_1 \circ L_2$ for the following.

(a)
$$L_1((x_1, x_2)^t) = (x_1 + x_2, x_1 - x_2)^t$$
,
 $L_2((x_1, x_2)^t) = (x_1 - x_2, x_2 + 1)^t$
(b) $L_1((x_1, x_2)^t) = (2x_1 - 3x_2, x_1 + 2x_2)^t$,
 $L_2((x_1, x_2)^t) = (x_1 - x_2, x_2)^t$
(c) $L_1((x_1, x_2)^t) = (x_1, 0)^t$,
 $L_2((x_1, x_2)^t) = (x_2, x_1)^t + (2, -3)^t$

- 8. Let $L: V \rightarrow W$ be a linear transformation. Prove that N(L) is a subspace.
- 9. Find A if L(z) = Ax is such that

(a)
$$L(e_1) = \begin{bmatrix} 2\\1 \end{bmatrix}, L(e_2) = \begin{bmatrix} 1\\2 \end{bmatrix}$$
 and A is 2×2 .
(b) $L(e_1) = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, L(e_2) = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$ and A is 3×2 .

- 10. Solve the following polygonal graphics problems.
 - (a) Find the matrix X for the equilateral triangle with base from $(-2,0)^t$ to $(2,0)^t$. Find the matrix A so that L shrinks the x_1 -axis (and the corresponding space) by $\frac{1}{2}$. Plot AX.
 - (b) Find the matrix X for a tower (4 points should do it) with base from $(-1,0)^t$ to $(1,0)^t$ and height 10. Find the matrix A that leans the tower to the right by $\frac{\pi}{6}$ radians. Plot AX.
 - (c) Move the flag $F = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 & 2 & 1 \end{bmatrix}$ so its base is at $(1,1)^t$ and it is tilted to the left by $\frac{\pi}{4}$ radian. What transformation L (not linear) is such that plot LF (L applied to each vector in F) produces the flag in this position?

72 2. Introduction to Vector Spaces

- 11. Let A be an $m \times n$ matrix. Suppose a row echelon form for Ax = 0 has r free variables. In writing x in terms of the free variables, we can pull out the free variables so x is a linear combination of vectors which are coefficients the free variables. Explain why those vectors form a basis for the null space of A. (Assume that the last r variables are free and that the rest pivot variables. Look at the last r entries in the coefficient vectors.)
- **12.** Find a basis for the following subspaces.

(a)
$$W = \{at^2 + bt + a + b : a, b, \in R\}$$
 (So a and b are free.)
(b) $W = \left\{ \begin{bmatrix} a+b & a \\ c & b \end{bmatrix} : a, b, c \in R \right\}$

13. Let L be defined on the functions having 2nd derivatives by

$$L(\mathbf{y}) = y'' - 3y' + 2y$$

×

á.

. .

Solve y'' - 3y' + 2y = t using Exercise 16 of the previous section, and guessing some y such that the solution set is y + N(L)

14. Using Exercise 17 of the previous section, solve

$$x(k+2) - 5x(k+1) + 6x(k) = 2$$

by guessing a solution.

- 15. Prove that if $L: V \to W$ is a **one-to-one** linear transformation and x_1, \ldots, x_n are linearly independent in V, then $L(x_1), \ldots, L(x_n)$ are linearly independent in W.
- 16. Let V be a vector space and V^* the set of all linear transformation from V to V. With the usual definition of addition and scalar multiplication of functions, show that V^* is a vector space. (Just show closure of addition and scalar multiplication.)
- 17. Use that the set of all functions of two variables, on which the partial derivatives exist, is a vector space. Then using Exercise 16, decide if $\frac{\delta}{\delta x}$ and $\frac{\delta}{\delta u}$ are linearly independent.
- 18. Complete the proof of Theorem 2.9.
- **19.** (Optional) Write the MATLAB code for the third picture of the house with a strong wind sequence.
- **20.** (Optional) Write the MATLAB code that gives **all** three pictures of the falling pin problem.

21. (MATLAB) Let
$$L(x) = As$$
 where $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Using the rref command,

(a) Find the kernel of L.

(b) Find the range of L.

The null and orth commands provide matrices whose columns are (orthonormal) bases for the kernel of L and the range of L, respectively. Do (a) and (b) using these commands.

1 į 4 Ś i

e.,

1

3 Similarity

As shown Figure 3.1, a classical method for solving problems involving a

Problem involving A	Substitute PDP'' for A	Problem involving D	
		V Solve	
Solution to problem involving A	Convert	Solution to problem involving D	

FIGURE 3.1.

matrix, say, A, is to first factor the matrix as

$$A = PDP^{-1}$$

where P is a nonsingular matrix and D a diagonal matrix. The expression PDP^{-1} is then substituted into the problem for A, thus reducing the problem to one involving D. This problem is then solved and its solution converted into the solution of the original problem.

This chapter explains when and how a matrix A can be factored as $A = PDF^{-1}$ and then shows how this factorization is used in problem solving.

3.1 Nonsingular Matrices

Nonsingular matrices constitute almost all of the space of $n \times n$ matrices. In this section, we give some of the basic results about nonsingular matrices, describing nonsingular matrices in terms of their rows and columns.

Theorem 3.1 Let A be an $n \times n$ matrix. Then A is nonsingular if and only if A has linearly independent columns.

Proof. The biconditional is **argued** in two parts.

Part **a.** Suppose A is nonsingular. To show that the columns of A form a linearly independent set, we solve the pendent equation

$$\alpha_1 a_1 + \cdots + \alpha_n a_n = 0$$

where a_1, \ldots, a_n are the columns of A. By back multiplication, this can be written as

$$A\left[\begin{array}{c}\alpha_1\\\ldots\\\alpha_n\end{array}\right]=0.$$

Since A is nonsingular, it has an inverse. Multiplying through by this inverse yields $\alpha_1 = \cdots = a_r = 0$. Thus, the columns of A form a linearly independent set.

Part b. Suppose A has linearly independent columns. Then, using that the columns form a basis,

$$Ax = e$$

has a solution, say, b_i for each i. Set $B = [b_1 \dots b_n]$. Then by partitioned multiplication, AB = I. Now, calculating the determinant of both sides, we have det A det B = 1. Thus det $A \neq 0$, and so A is nonsingular.

Since det $A^t = \det A$, A is nonsingular if and only if A has linearly independent rows. Thus, interestingly, A has linearly independent rows if and only if it has linearly independent columns. We now extend this result.

A word used for the maximum number of linearly independent columns follows. Let A be an m x n matrix. Define the rank of A as

rank A = largest integer r such that A has r linearly independent columns.

1

l

ŝ

I

If E is a row echelon form of A, from Corollary 2.1, the columns of A corresponding to pivots in E form a basis for the span of the columns of A, and so provide the largest number of linearly independent columns in A. Thus,

rank A = number of pivots in E.

Further, the number of pivots in E is exactly the number of nonzero rows of E, e.g., in

both are 2. Thus,

 $\operatorname{rank} A = \operatorname{number} \operatorname{of} \operatorname{nonzero} \operatorname{rows} \operatorname{of} E.$

Example 3.1 Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix}$$
, A row echelon form of A is

$$E = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Thus, rank $A = 2$. (Columns 1 and 2 of A form

a basis for the span of the columns oj A.)

The determinant is rarely used in computational work. However, it is a useful tool in developing matrix results. The next theorem, though a bit intricate is worth the effort to learn. It links rank, determinant, and linearly independent rows, linearly independent columns. We show its use in several places in this text.

Theorem 3.2 Let A be an $m \ge n$ matrix, $A \ne 0$. Let B be an $r \ge r$ submatrix of A such that det $B \ne 0$ and such that for any $(r+1) \ge (r+1)$ submatrix C containing B, det C = 0. Then rank A = r.

Proof. We will argue a particular case leaving the general proof **as** an exercise.

Let A be a 3×4 matrix and suppose B is the 2×2 submatrix in the upper left corner of A. We use the notation

$$A = \begin{bmatrix} B & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ \hline a_{31}a_{32} & a_{33}a_{34} \end{bmatrix} = [a_1a_2a_3a_4]$$

where the b_1, b_2 and a_1, a_2, a_3, a_4 are column vectors of B and A, respectively.

Since det $B \neq 0$, by Theorem 3.1, b_1, b_2 are linearly independent and thus a_1, a_2 are linearly independent. By deleting dependent vectors, we will show that

$$\operatorname{span} \{a_1, a_2\} = \operatorname{span} \{a_1, \ldots, a_4\}.$$

Thus dim span $\{a_1, \ldots, a_4\} = 2$ so A has at most 2 linearly independent columns. This assures us that rank A = 2.

To prove that a_3 is a linear combination of a_1 and a_2 , we proceed as follows. Note that b_1, b_2 is a basis, and so we can write

$$b3 = \alpha_1 b_1 + \alpha_2 b_2$$

for some scalars α_1, α_2 . Define

$$\ell = a_3 - \alpha_1 a_1 - \alpha_2 a_2 \tag{3.1}$$

and note that

$$\ell = \left[\begin{array}{c} 0\\ 0\\ \ell_3 \end{array} \right]$$

Solving for a_3 yields

$$a_3 = \ell + \alpha_1 a_1 + \alpha_2 a_2.$$

By substituting, we have

$$\begin{aligned} \det \left[a_1, a_2, a_3 \right] &= \det \left[a_1, a_2, \ell + \alpha_1 a_1 + \alpha_2 a_2 \right] \\ &= \det \left[a_1, a_2, \ell \right] + \det \left[a_1, a_2, \alpha_1 a_1 \right] \\ &+ \det \left[a_1, a_2, \alpha_2 a_2 \right] \\ &= \det \left[a_1, a_2, \ell \right] + 0 + 0 = \det B \cdot \ell_3. \end{aligned}$$

Since the hypothesis assures det $[a_1, a_2, a_3] = 0$, it follows that $\ell_3 = 0$. Thus, using (3.1),

$$a_3 = \alpha_1 a_1 + \alpha_2 a_2.$$

Similarly a_4 is a linear combination of a_1, a_2 and so rank A = 2.

An example may be helpful.

Example 3.2 Let $A = \begin{bmatrix} 1 & -1 & 3 & -1 \\ -1 & 1 & 0 & 1 \\ 2 & -2 & 3 & -2 \end{bmatrix}$. The submatrix $B = \begin{bmatrix} 1 & 3 \\ -1 & 0 \end{bmatrix}$, in rows 1, 2 and columns 1, 3 is such that det B = 3. All 3 x 3 submatrices C containing B are such that det C = 0. Thus, by the theorem, rank A = 2.

17

Three corollaries follow from the theorem.

Corollary 3.1 Let A be an $m \times n$ matrix. Then

(a) rank A = rank A^t and

(b) rank $A = \operatorname{rank} A^H$.

Proof. We prove Part (a), leaving Part (b) as an exercise.

Suppose rank A = r and let B be an $r \times r$ submatrix of A as described in the theorem. Since det $B^t = \det B \neq 0$, A^t contains an $r \times r$ submatrix having a non-zero determinant. Hence, rank $A^t \ge \operatorname{rank} A$. Applying the same argument to A^t yields that rank $A \ge \operatorname{rank} A^t$. Thus, rank $A = \operatorname{rank} A^t$.

Note that this corollary says that the maximum number of linearly independent rows equals precisely the maximum number of linearly independent columns in any matrix.

The next corollary shows that the rank doesn't change when multiplying by nonsingular matrices.

Corollary 3.2 Let A be an $m \times n$ matrix, P and Q nonsingular $m \times m$ and $n \times n$ matrices, respectively. Then rank PAQ = rank A.

Proof. We outline the proof, leaving the write up as an exercise.

First prove that $a_{i_1}, a_{i_2}, \ldots, a_{i_s}$ are linearly independent columns of A if and only if $Pa_{i_1}, Pa_{i_2}, \ldots, Pa_{i_s}$ are linearly independent columns of PA. (This is a matter of checking the pendent equations.) Thus, rank $PA = \operatorname{rank} A$.

Now, set B = PA. Then, using the first part of this proof,

rank
$$B = \operatorname{rank} B^t = \operatorname{rank} Q^t B^t = \operatorname{rank} (BQ)^t$$

= rank BQ = rank PAQ.

And putting together,

$$\operatorname{rank} A = \operatorname{rank} B = \operatorname{rank} PAQ$$
,

which is what we want.

The last corollary shows how to extend a linearly independent set to a basis.

Corollary 3.3 Let a_1, \ldots, a_n be linearly independent vectors in Euclidean *n*-space. Then there are vectors a_{r+1}, \ldots, a_n such that a_1, \ldots, a_n forms a basis for this vector space.

Proof. Let $A = [a_1 \dots a_r]$. Since rank A = r, by Theorem 3.2, there is an $r \times r$ submatrix B of A such that det $B \neq 0$.

Suppose i_1, \ldots, i_{n-r} are rows of A which contain no entries of B. Sup pose further that our indexing is such that $i_1 > \cdots > i_{n-r}$. Then set

$$C = [e; \dots e_{i_{n-r}}A]$$

an *n x n* matrix. Now, by expanding along the 1-st columns,

$$\det C = (-1)^{i_1+1} \dots (-1)^{i_{n-r}+1} \det B$$

Thus, det $C \neq 0$ and so the columns of C are linearly independent. Setting $a_{r+1} = e_{i_n-r}$ yields the result.

The following example demonstrates the corollary.

Example 3.3 Let $a_1 = (1,1,1,1)^t$ and $a_2 = (1,1,-1,1)^t$. We extend these vectors to a basis. For this let

$$A = [a_1 a_2] = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Note that the 2×2 submatrix, in rows 2 and 3 of A, is nonsingular. So, we add e_1 and e_4 to get

$$C = [e_4 e_1 a_1 a_2]$$

$$= \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1^1 - 1 \\ 0 & & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

Then, by the proof of the corollary, C is nonsingular and thus $\{a_1, a_2, e_4, e_1\}$ is a basis.

A useful tool in showing that a matrix is nonsingular follows.

Lemma 3.1 Let A be an $n \times n$ matrix. If Ax = 0 has only the solution x = 0, then A is nonsingular.

Proof. By backward multiplication, write

$$Ax = 0$$

æ

$$x_1a_1 + \cdots + x_na_n = 0$$

where a_1, \ldots, a_n are the columns of A. Since this is a pendence equation, and x = 0 is its only solution, the columns of A are linearly independent. Hence, A is nonsingular.

A theorem useful in **polynomial** interpolation follows.

Theorem 3.3 Let x_1, \ldots, x_n be *n* distinct real scalars. Then, the Vandermonde matrix

$$A = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ & & \ddots & \\ 1 & x_n & \cdots & x_n^{n-1} \end{bmatrix}$$

is nonsingular.

Proof. By Lemma 3.1, we can show that A is nonsingular by showing that Ax = 0 has only the solution x = 0. For simplicity we will do this for the case n = 3, leaving the general argument as an exercise.

Let
$$x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 be a vector such that

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
(3.2)

We show that x = 0.

Define $p(t) = a + bt + ct^2$. Equation (3.2) can be rewritten as

$$p(x_1) = 0$$

$$p(x_2) = 0$$

$$p(x_3) = 0.$$

This means that p, a polynomial of at most degree 2, has 3 distinct roots. The Fundamental Theorem of Algebra assures that nonzero polynomials of degree at most 2 cannot have 3 distinct roots. Thus, p(x) must be the zero polynomial and so a = b = c = 0. But, this means that x = 0 and thus A is nonsingular.

To see where this theorem is useful, suppose we want a polynomial to pass through the data

where x_1, x_2, \ldots, x_n are distinct. We need a polynomial p such that

$$p(x_1) = y_1$$
 (3.3)
 $p(x_2) = y_2$
 $p(x_n) = y_n.$

82 3. Similarity

To find p, we set $p(t) = a_0 + a_1 t + \dots + a_{n-1} t^{n-1}$ and calculate its coefficients. Note that (3.3) can be written as

$$\begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ & & \cdots & \\ 1 & x_n & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \cdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{bmatrix}$$

By the theorem, the coefficient matrix is nonsingular, which shows that the system has precisely one solution. This solution determines the coefficients of p. Note that we also **see** that there is precisely one polynomial of degree n - 1 or less that passes through these points.

3.1.1 Optional (Interpolation and Pictures)

In this optional, we show how to estimate populations and how to use MATLAB to view this work.

Censuses are taken every 10 years, e.g.,

Year	1950	1960	1970	1980
Population in millions	150.7	179.3	203.2	226.5

FIGURE 3.2.

Suppose we are preparing a report that requires some estimate of the population in **1965.** To get this estimate, we find the polynomial of de*gree 3* or less that passes through the data points. Using MATLAB, this polynomial is

 $p(x) = 0.0007x^3 - 0.1465x^2 + 12.7567 - 206.3000.$

I

To get a sense of how well this polynomial will estimate the population in **1965**, it is helpful to view the polynomial. The graph of this is shown in Figure **3.3**.

FIGURE 3.3.

Finally, we find the value of p at 65,

$$p(65) = 192.0125$$

computed to 4 decimal places

And, if we want to plot everything, we have the result, which is shown in Figure 3.4

FIGURE 3.4.

Notice that this problem was done with $x = [50\ 60\ 70\ 80]$ rather than $x = [1950\ 1960\ 1970\ 1980]$. Using the latter x, MATLAB indicated it was having a problem giving polyfit (x, y, 3). So, we redescribed our problem.

3.1.2 MATLAB (Polyfit and Polyval)

Given data $x = [x_1 x_2 x_3 \dots x_{n+1}];$

 $\mathbf{y} = [y_1 \, y_2 \, y_3 \dots y_{n+1}];$

the command *polyfit* (x, y, n) finds the coefficients of a polynomial of degree n which passes through the data. And, given a polynomial p, polyval (p, xi) gives $[p(x_1) P(x_2) \dots P(x_{n+1})]$.

1. Code for Plotting Data

$x = [50\ 60\ 70\ 80];$		
$y = [150.7 \ 179.3 \ 203.2 \ 226.51;$		
$\operatorname{plot}(x,y,'O')$	%	Plots data with an O
axis([40 90 100 260])	%	Takes data points off edges
		of the picture by changing
		the size of the box to [40, 90]
		by [100, 260]

2. Code for Plotting Polynomial

Using lines 1 and 2 from 1	, we	add the following.
$\mathbf{P} = \operatorname{polyfit}(x, y, 3)$		
ans: 0.0007 -0.1465	%	These are the coefficients
		of the polynomial.
12.7567 - 206.3000.		
xi = linspace(40, 90, 50);		
z = polyval(p, xi);		
plot (<i>x</i> , y, ' <i>O</i> ', <i>xi</i> , <i>z</i> , ':')	%	Plots the data (x, y, O')
		and the 'curve' $(xi, z, ':')$

In the last line above, the symbol 'O' indicates only points are plotted, while ':' indicates points are to be connected by line segments.

e m

- 4

....

3. Code for Plotting Point.

Using all but the last line of 2, we add the following for the last code. polyval (p, 65)ans = 191.5812 plot (z,y, 'O', xi,z, ':', 65, 191.5812, 'x ')

For more information, type in help polyval, help polyfit, and help plot.

Exercises

1. Use Theorem 3.2 to find the rank of

$$A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 1 & 1 & -1 & 3 \\ 1 & 2 & 1 & -2 \end{bmatrix}$$

- 2. Prove that if A is an $n \times n$ singular matrix, then $A \times = 0$ has infinitely many solutions.
- 3. Extend the given vectors to a basis for \mathbb{R}^3 .

	1		1	1	[1]
(a)	1	(b)	1	,	1
	1]		1		[0]

- **4.** Let V be a vector space. To extend a linearly independent set in V to a basis, we can proceed a follows. Let u_1, \ldots, u_n be a basis for a vector space V and x_1, \ldots, x_r linearly independent vectors in V.
 - (a) Show that if r < n then x_1, \ldots, x_i , u_i are linearly independent for some *i*. (Some u_i provides a new dimension.)
 - (b) If x_1, \ldots, x_r, u_i are linearly independent, set $x_{r+1} = u_i$ and repeat (a) for r + 1.

Prove (a).

5. Apply the algorithm of Exercise 4 to the following.

(a)
$$t + 1, t - 1$$
 and basis $1, t, t^2$
(b) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$ and basis
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

- 6. Give a general proof for
 - (a) Theorem **3.2** (b) Theorem **3.3**.
- 7. Prove Part (b) of Corollary 3.1.
- 8. Provide the details for the proof of Corollary 3.2.
- 9. Is $L(A) = \operatorname{rank} A$ a linear transformation from $\mathbb{R}^{"} \to \mathbb{R}$?
- 10. Find two matrices of rank 2 whose product is rank 1.
- 11. Prove

FIGURE 3.5.

- (a) That rank $AB \leq \operatorname{rank} B$. (Hint: Show AB cannot have more linearly independent columns than B.)
- (b) That rank $AB \leq \text{rank } A$. (Hint: Use the transpose.)
- (c) That rank (AB) = rank B if A is nonsingular.
- 12. Let $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. Explain why we can't find a sequence A_1, A_2, \ldots of 2 x 2 matrices, having rank 1, which converge to A. (Hint: Use that the determinant is continuous.)
- 13. We will assume that the temperature at an interior point on the plate in Figure 3.5 is the average of the temperatures of the four closest surrounding points. (We are assuming steady-state temperatures and using that each grid point gives an estimate of the temperature there with those estimates getting better when the square has more grid points.)
 - (a) Write out the system of linear equations the solution of which gives the unknown temperatures.
 - (b) Solve this system. Explain why it is important for there to be precisely one solution.
 - (c) Label the points with their temperatures and check to see if it looks right.
 - (d) If there were 100 interior points, how **marry** equations would there be?
- 14. Find a quadratic which passes through the data (0,0), (1,1), (2,0). Graph the quadratic **and** the data.
- 15. (Optional) Use the data for 1960, 1970, 1980 to estimate the population in 1977. (This figure has been given in reports as 218.4. But, the figure is actually unknown.)

I

16. (MATLAB) Let
$$A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & -2 \\ 1 & 0 & 0 & 1 \\ 2 & 2 & 0 & 0 \end{bmatrix}$$

(a) Find rank A by using the command rank (A).

(b) Find rank A by using the command rref (A).

17. (MATLAB) Let
$$x = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$
, $y = \begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}$. Extend x, y to a basis by applying rref to $[x \ y \ I]$.

3.2 Diagonalization

Let A be an $n \times n$ matrix. If A can be factored as

$$A = PDP^{-1}$$

for some nonsingular matrix P and diagonal matrix D, we say that A is *diagonalizable*. Not all matrices are diagonalizable. However, when they are, we show how this factorization can be done. Before starting this **work**, we need a few preliminaries.

The function

$$\varphi(\lambda) = \det(A - XI),$$

where X is a scalar, is called the *characteristic polynomial* of A and

$$\varphi(\lambda) = 0$$

its characteristic equation. (Some books use $\hat{\varphi}(\lambda) = \det(XI - A)$ as the characteristic polynomial. Note that $\det(XI - A) = (-1)^n \det(A - XI)$, so the solutions to $\varphi(\lambda) = 0$ and $\hat{\varphi}(\lambda) = 0$ are the same.)

The lemma below shows that the characteristic polynomial has, counting multiplicities, n roots.

Lemma 3.2 The characteristic polynomial of A is a polynomial of degree n.

Proof. Let B = A - XI. Expanding det *B* along row 1 eliminates row 1 from all submatrices in the cofactors of the expansion. (Recall $c_{i3} = (-1)^{i+j} \det A_{ij}$.) Expanding these minors along row 1 eliminates row 2 of *A* from all submatrices in the new cofactors. Continuing, we see that

det $B = (a_{11} - A) (a_{22} - A) \cdots (a, -\lambda) + p(A)$, where p(A) is a polynomial in A of degree at most n-1. Since $(a_{11} - A) \cdots (a_{nn} - A) = (-1)^n \lambda^n + q(A)$, where the degree of q is smaller than n, by putting together, the result follows. ļ

Ì

ł

Using the Fundamental Theorem of Algebra, we can factor

$$\varphi(\mathsf{A}) = (\mathsf{A}' - \mathsf{A}) (\lambda_2 - \mathsf{A}) \cdots (\mathsf{A}, -\mathsf{A})$$

(or $\hat{\varphi}(\lambda) = (A - \lambda_1)(\lambda - \lambda_2) \cdots (A - \lambda_n)$ if we like). The roots, namely $\lambda_1, \lambda_2, \cdots \lambda_n$, are called the *eigenvalues* (or, sometimes the latent roots or characteristic values) of A. We should recall from previous studies of polynomials, that the roots of $\varphi(A)$ are the solutions to $\varphi(\lambda) = 0$. Thus, eigenvalues could be complex numbers even when the entries of A are real numbers. In this case, we must work in φ .

An example of finding eigenvalues follows.

Example 3.4 To find the eigenvalues of $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{bmatrix}$, we solve

$$\varphi$$
 (A) = 0.

This gives

$$(3 - A) (3 - A) (4 - A) = 0.$$

Thus, the eigenvalues are $\lambda_1 = 3$, $\lambda_2 = 3$, and $\lambda_3 = 4$. Note that the eigenvalue 3 has multiplicity 2.

We now link the eigenvalues of A to D in any factorization $A = PDP^{-1}$. This requires the following notion: two n x n matrices A and B are similar if there is an n x n nonsingular matrix P such that

$$A = PBP^{-1}$$
.

This equation can be written as $A = S^{-1}BS$ where $S = P^{-1}$. So actually it doesn't matter if the superscript $^{-1}$ is on the first or third factor of PBP^{-1} . And, since $P^{-1}AP = B$, B and A are similar so the order of A and B (A and B similar or B and A similar) doesn't matter.

As given below, similar matrices have the same eigenvalues.

Lemma 3.3 Let A and B be $n \times n$ matrices. If A and B are similar, their characteristic polynomials are identical. Thus, A and B have precisely the same eigenvalues.

Proof. If A and B are similar, there is a nonsingular matrix P such that

$$A = PBP^{-1}$$
.

7

Thus,

$$det (A - XI) = det (PBP^{-1} - XI)$$

= det [P(B - XI)P^{-1}]
= det P det(B - XI) det P^{-1}
= det (B - XI)

since det P det $P^{-1} = \det(PP^{-1}) = \det I = 1$.

When A is similar to a diagonal matrix D, this lemma assures us that A and D have the same eigenvalues. We now show that the eigenvalues of D are precisely those scalars that are on the main diagonal of D. A bit more general result follows.

Lemma 3.4 If T is an $n \times n$ triangular matrix, then its characteristic polynomial is

$$\varphi_T(\lambda) = (t_{11} - \lambda) (t_{22} - \lambda) \cdots (t_{nn} - \lambda)$$

Thus, the eigenvalues of T are exactly the main diagonal entries of T.

Proof. Suppose T is upper triangular. Then, expanding the determinant along the first column, we have

$$\varphi(\lambda) = (t_{11} - \lambda) \det \begin{bmatrix} t_{22} - \lambda & t_{23} & \cdots & t_{2n} \\ 0 & t_{33} - \lambda & \cdots & t_{3n} \\ & & \ddots & \\ 0 & 0 & \cdots & t_{nn} - \lambda \end{bmatrix}$$

Continuing to expand along the first columns, we have

$$\varphi(\lambda) = (t_{11} - \lambda) (t_{22} - \lambda) \cdots (t_{nn} - \lambda),$$

the desired result. \blacksquare

Putting the results above together, what we now know is that if A is similar to a diagonal matrix D, then the main diagonal entries of D are the eigenvalues of A, in some arrangement.

Example 3.5 Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. The eigenvalues of A are $\lambda_1 = 3$ and $\lambda_2 = 1$. So if A is similar to a diagonal matrix D, then

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \text{ or } D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}.$$

Thus, when a matrix A is diagonalizable, we can calculate D,

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

where λ_1, \ldots, A are the eigenvalues of A in some order.

We now try to find an $n \ge n$ nonsingular matrix P such that

A = PDF-'.

To find P, rearrange this equation to

AP = PD.

Equating corresponding columns, we have

$$\begin{array}{l} Ap_1 = \lambda_1 p_1 \\ \cdots \\ Ap_n = \lambda_n p_n, \end{array} \tag{3.4}$$

where p_i is the i-th column of **P**.

For an eigenvalue λ , any nonzero vector p such that

$$Ap = \lambda p \tag{3.5}$$

12

is called **an** eigenvector belonging to λ . Thus, in (3.4), p_1 is **an** eigenvector belonging to λ_1, \ldots, p_n is **an** eigenvector for λ_n . And, our problem now is to find linearly independent eigenvectors p_1, \ldots, p_n that satisfy (3.4). That these vectors are linearly independent **assures** that **P** is nonsingular.

To find an eigenvector p, belonging to eigenvalue A, we solve the equation

$$Ap = \lambda p$$

or, by rearranging to a better form

$$Ap - \lambda p = 0$$
$$Ap - \lambda Ip = 0$$
$$(A - \lambda I) p = 0,$$

a system of linear equations.

The next lemma shows this equation has a nonzero solution p.

Lemma 3.5 If λ is an eigenvalue of A, then there is an eigenvector p belonging to λ .

Proof. Note that since X is an eigenvalue of A,

$$\varphi(\mathbf{A}) = 0.$$

Thus,

$$\det(A - AI) = 0$$

and so A - XI is singular. Hence, from Lemma 3.1, we see that there is a nonzero vector p such that

$$(A - \lambda I) p = 0.$$

Thus, Ap = Ap and p is an eigenvector belonging to A.

We call the null space of A - AI, the *eigenspace* for the eigenvalue A. Note this is a subspace, whose dimension is positive, and that all vectors in N(A - AI), except 0, are eigenvectors belonging to A. So there are lots of eigenvectors belonging to any eigenvalue.

To find P, we only need to find a linearly independent set of eigenvectors, say, p_1, p_2, \ldots, p_n belonging to λ_1, \ldots, A , respectively. Then $P = [p_1 \ldots p_n]$ is nonsingular and $A = PDP^{-1}$. Note also from (3.4), that the order of the eigenvalues in D is determined by the order of eigenvectors in P or vice versa.

Example 3.6 Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. We find *D* and *P* such that $A = B \cap B^{-1}$

 PDP^{-1}

(a) Computing D: We solve

$$\det\left(A-XI\right)=0,$$

which is

$$(A - 1)^{2} (A - 4) = 0.$$

Thus, $\lambda_1 = 1, \lambda_2 = 1$, and $\lambda_3 = 4$, are the eigenvalues of A. This yields

$$D = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ \mathbf{0} & \mathbf{1} & 0 \\ 0 & 0 & 3 \end{array} \right].$$

(b) Computing P: We find corresponding eigenvectors.

92 3. Similarity

i. Eigenvectors for $\lambda_1 = \lambda_2 = 1$. Here we solve

$$(A - \lambda_1 I) x = 0$$

to find p_1 and p_2 . Solving $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = 0$ by Gaussian elimination, we get the row echelon form

$$x_{1} \quad x_{2} \quad x_{3}$$

$$1$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Note x_{2}, x_{3} are free so $x_{2} = a$

 $x_2 = P$

where a, β are arbitrarily chosen. Then

$$x_1 = -a - \rho.$$

Thw

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\alpha - \beta \\ \beta \\ \alpha \end{bmatrix}$$
$$= \alpha \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.$$

Since $\lambda_1 = \lambda_2 = 1$, we need two solutions p_1 and p_2 , which form a linearly independent set. We take $\alpha = 1$, $\beta = 0$ for $p_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ and a = 0, $\beta = 1$ for $p_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$. (Different choices for a and β could have been made.) Observe, by looking at the last 2 entries of each vector, that p_1 and p_2 are linearly independent.

ii. Eigenvector for $\lambda_3 = 4$. Solving

$$(A - \lambda_3 I) x = 0 \text{ we get}$$

$$x = \alpha \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \text{ where } a \text{ is arbitrary.}$$
Let $a = 1$ and so $p_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$

It can be shown that p_1 , p_2 , and p_3 are linearly independent, and so

$$P = [p_1 \ p_2 \ p_3] = \begin{bmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

(To check, we can always compute PDF^{-1} to see if we actually get A.)

It might also be interesting to see the eigenspaces. Observe in Figure 3.6 that they intersect only at the origin and that p_1 , p_2 , and p_3 are linearly independent.

FIGURE 3.6.

3.2.1 Optional (Buckling Beam)

A uniform column of length 1 compressed by a load (force) F at its top is shown in Figure 3.7. We let y(x) be the deflection of the column at x, as given in Figure 3.8. The mathematical equations for this deflection are

$$\frac{d^2y}{dx} - -ky,$$

$$y(0) = 0, \ y(\ell) = 0$$

where *k* is a positive constant depending on the force and the composition of the column. $(k = \frac{F}{EI}$ where *E* is the modulus of elasticity of the beam and *I* is the moment of inertia of the cross-sectional area by the column.) Actually, this differential equation is not difficult to solve directly. However, we will use it to show how differential equations can be solved numerically.

FIGURE 3.8.

This differential equation can be converted into a system of linear equations by approximating $\frac{d^2y}{dx^2}$ at equally spaced points x_0, x_1, \ldots, x_n in [0,1]. We use the usual approximation

$$\frac{d^{2}y(x_{i})}{dx^{2}} \approx \frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}}$$

where $\mathbf{h} = \frac{\ell}{n}$ and $y_i(y_i = y(x_i))$ the deflection shown in Figure 3.9 of the column at x_i .

Then we have, for five points (Actually, more points would lead to a better approximation and a better description of the deflection of the column.)

$$\frac{\frac{y_2 - 2y_1 + y_0}{\left(\frac{l}{4}\right)^2} = -ky_1}{\frac{y_3 - 2y_2 + y_1}{\left(\frac{l}{4}\right)^2}} = -ky_2.$$

ð

FIGURE 3.9.

To keep the problem small, we will assume the column's deflection is symmetric about x_2 , the center of the beam, and so $y_3 = y_1$. Thus we have, using that $y_0 = 0$,

$$2Y1 - y_2 = \frac{kl^2}{16}y_1$$
$$-2y_1 + 2y_2 = \frac{kl^2}{16}y_2$$

or

$$\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \lambda \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
(3.6)

where $\lambda = \frac{kl^2}{16}$. Observe that if $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, by (3.6), λ must be an eigenvalue of $\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}$ and so $\lambda = 2 - \sqrt{2}$ or $\lambda = 2 + \sqrt{2}$. Plugging $\lambda_1 = 2 - \sqrt{2}$ (the smallest eigenvalue) into (3.6), and rearrangements

ing, we have

$$\left[\begin{array}{cc}\sqrt{2} & -1\\ -2 & \sqrt{2}\end{array}\right] \left[\begin{array}{c}y_1\\ y_2\end{array}\right] = \left[\begin{array}{c}0\\ 0\end{array}\right].$$

Thus $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$, where cy is free. So $y_1 = c_y$, $y_2 = \sqrt{2}\alpha$, and consequently the column could appear in any of the buckling shapes in Figure 3.10.

Buckling theory indicates that if the force is small, so that $\lambda < 2$ – $\sqrt{2}$ (approximately, since our equations approximate the solution to the

96 3. Similarity

FIGURE 3.10. differential equation), then $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and if small deflections occur, the column returns to this position. When $\lambda = 2 - \sqrt{2}$, the column can buckle a bit and stand **as** the one of the shapes described. When $\lambda > 2 - \sqrt{2}$, and not at other eigenvalues, slight deflections can collapse the column. At the remaining eigenvalue, at least in theory, buckling can occur with shapes different from that given.

3.2.2 MATLAB (Eag and [P,D])

The matrix function eig(A) computes the eigenvalues and corresponding eigenvectors of the matrix A. As a single command, *eig* will provide a list of these eigenvalues. If we want corresponding eigenvectors, in particular P and D so that $A = PDP^{-1}$, we must **ask** for those matrices using the command [P,D] = eig(A). For example,

$$A = [1 2; 3 0];$$

$$eig(A) = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$[P,D] = eig(A)$$

ans:
$$P = \begin{bmatrix} 0.7071 & -0.5547 \\ 0.7071 & 0.8321 \end{bmatrix}$$

ans:
$$D = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$

For more, type in help eig.

Exercises

1. Diagonalize (find P and D such that $A = PDF^{-1}$) each of the following matrices.

(a)	A =	$\begin{bmatrix} 0\\1 \end{bmatrix}$	1 Ø.	J	(b)	A =	$\begin{bmatrix} 3\\ -1 \end{bmatrix}$	$^{-1}_{3}$]
(c)	A =	- 4 1	ð 1	l	(d)	A =	0 -1	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	-
(e)	A =	$\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	1 1 1	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	(f)	A =	1 -1 0	$-\overline{1}$ 1 0	0 0 2

- Draw the eigenspaces for each of (a), (b), (c), (e), and (f) of Exercise
 1.
- 3. Find a matrix with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$ and eigenvectors $p_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $p_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, respectively. 4. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then A is similar to $D = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. Find two

4. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then A is similar to $D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Find tw matrices for P such that A = PDF-'.

- 5. Give an example of a 2×2 matrix which is not similar to a diagonal matrix. Draw the eigenspaces for the example. (Hint: Look at triangular matrices with multiple eigenvalues.)
- 6. Find 2 x 2 matrices A and B such that the eigenvalues of A + B are not, in any order, the sums of the eigenvalues of A and B.
- Let A be a 3 x 3 diagonalizable matrix with A an eigenvalue of multiplicity 2. Prove that rank (A AI) = 1.
- 8. Let $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ where $\theta \neq 0$ or π . Explain, using $Ap = \lambda p$, why A has no real eigenvalues.
- 9. If A is similar to a diagonal matrix, and a a scalar, what are the eigenvalues of $A \alpha I$ in terms of a and the eigenvalues of A?
- 10. Suppose $A = PDF^{-1}$ where $D = diag(\lambda_1, \ldots, \lambda_n)$. Prove

(a) If A is 2 x 2, then
$$A^2 = P\begin{bmatrix} \lambda_1^2 & 0\\ 0 & \lambda_2^2 \end{bmatrix} P^{-1}$$

(b) $A^k = P \text{ diag}(At, \dots, \lambda_n^k) P^{-1}$ for any positive integer k

11. Let A be an 3×3 matrix with linearly independent eigenvectors p_1 , p_2 , and p_3 . Let $P = [p_1 p_2 p_3]$. What is $P^{-1}AF$?

- 12. Two parts: Let A be an $n \times n$ real matrix.
 - (a) Show that if λ is an eigenvalue of A, then λ is an eigenvalue of A. (Complex eigenvalues come in conjugate pairs.)
 - (b) Show that if p is an eigenvector of A belonging to λ , then \overline{p} is an eigenvector for A belonging to $\overline{\lambda}$.
- 13. Prove that
 - (a) A is similar to A.
 - (b) If A is similar to B and B is similar to C, then A is similar to C.
- **14.** Give an example of two matrices that have the same eigenvalues but are not similar.
- 15. Find (using, say, CRC Standard Math Tables) formulas for the solution to quadratic, cubic, and quartic equations. (For polynomial equations of degree 5 or more, no such formulas exist. Thus, for $k \times k$ matrices with $k \ge 5$, approximation techniques are used to find eigenvalues.)

16. (MATLAB) Let
$$p(t) = t^n - a_{n-1}t^{n-1} - \dots - a_0 1$$
. Set

$$C = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & \\ & & \dots & & 1 \\ a_0 & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \end{bmatrix}.$$

- (a) Show that $\varphi(t) = (-1)^n p(t)$ so $\varphi(t)$ and p(t) have the same roots ($\varphi(t)$ is the characteristic polynomial of C).
- (b) Use MATLAB and (a), to solve $t^4 3t^3 + 2t^2 3t + 1 = 0$.
- 17. (MATLAB) Find **P** and *D* for each of the matrices in Exercise 1. Use rank to check *P* to see if it is nonsingular.
- 18. (Optional) Repeat the Optional work using m = 6.
- **19.** (Optional) The boundary valve problem

Ŧ

$$y'' + y' + y = x^2 + 4x + 6$$

 $y(0) = 2, y(1) = 5$
has solution $y = x^2 + 2x + 2$. To approximate the solution by finite difference methods, we set $x_0 = 0, x_1 = \frac{1}{n}, x_2 = \frac{2}{n}, \dots, x_n = 1$ and use the approximations

$$y''(x_i) = \frac{y(x_{i+1}) - 2y(x_i) + y(x_{i-1})}{h^2}$$
$$y'(x_i) = \frac{y(x_{i+1}) - y(x_{i-1})}{2h}$$

where $h = \frac{1}{n}$ (the step size for this problem).

Use the approximation above to convert the boundary value problem into **a** system of linear equations and solve that system. Using MATLAB, plot $y = x^2 + 22 + 2$ and the approximations. Use

(a) n = 4

(b)
$$n = 8$$

3.3 Conditions for Diagonalization

In this section, we describe when there are *n* linearly independent eigenvectors p_1, \ldots, p_n for the *n* eigenvalues $\lambda_1, \ldots, \lambda_n$ of an $n \times n$ matrix *A*. Of course, in this case, since *P* can be constructed from these eigenvectors, *P* is nonsingular and *A* is similar to a diagonal matrix.

We need a lemma.

Lemma 3.6 Let A be an $n \times n$ matrix with distinct eigenvalues λ_1, \ldots, A . Then any corresponding eigenvectors p_1, \ldots, p_r , to these eigenvalues, respectively, form a linearly independent set.

Proof. Consider the pendent equation

$$\alpha_1 p_1 + \ldots + \alpha_r p_r = 0.$$

Multiplying both sides of this equation by **A**, then A^2, \ldots yields

$$\alpha_1 \lambda_1 p_1 + \dots + \alpha_r \lambda_r p_r = 0$$

...
$$\alpha_1 \lambda_1^{r-1} p_1 + \dots + \alpha_r \lambda_r^{r-1} p_r = 0$$

Writing these equations in matrix form yields, by backward multiplication,

$$\begin{bmatrix} \alpha_1 p_1 \dots \alpha_r p_r \end{bmatrix} \begin{bmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{r-1} \\ & \ddots & \\ 1 & A & & \lambda_r^{r-1} \end{bmatrix} = 0.$$

Since the Vandermonde matrix is nonsingular, we can multiply though by its inverse to get

$$[\alpha_1 p_1 \ldots \alpha_r p_r] = 0.$$

So

$$\alpha_1 p_1 = 0$$
$$\dots$$
$$\alpha_r p_r = 0$$

Ì

Ì

I

1 m

and thus $\alpha_1 = \cdots = \alpha_r = 0$. Hence we see that the eigenvectors form a linearly independent set.

As a consequence of this theorem, we have one of the most important results in matrix theory.

Corollary 3.4 Let A be an $n \times n$ matrix with n distinct eigenvalues. Then A is similar to a diagonal matrix.

Proof. By the lemma, A has, corresponding to the n distinct eigenvalues, a set of *n* linearly independent eigenvectors. These eigenvectors form a nonsingular matrix *P* such that $A = PDP^{-1}$, *D* the diagonal matrix made up of eigenvalues corresponding to the eigenvectors in *P*.

Of course, matrices don't always have distinct eigenvalues. In those cases, to diagonalize, we need some further information about eigenvectors.

Lemma 3.7 Let A be any $n \times n$ matrix. If X is an eigenvalue of A of multiplicity m, then A cannot have more than m linearly independent eigenvectors belong to λ . (Thus, dim $N(A - XI) \le m$.)

Proof. We will argue a special case of the lemma, using proof by contradiction, leaving the general case **as** an exercise.

Let A be a 3×3 matrix and suppose m = 1 and x, y linearly independent eigenvectors for A. Extend x, y to x, y, z a **basis** for Eucidean 3-space and set $P = [x \ y \ z]$. Then

$$AP = [\lambda x Xy w]$$

where w = Az. Factoring yields

$$AP = P \begin{bmatrix} \lambda & 0 & \alpha \\ 0 & \lambda & \beta \\ 0 & 0 & \gamma \end{bmatrix}$$

where a,β , and γ are chosen to satisfy $w = \alpha x + \beta y + \gamma z$. Now

$$A = P \left[\begin{array}{ccc} \lambda & 0 & \alpha \\ 0 & \lambda & \beta \\ 0 & 0 & \gamma \end{array} \right] P^{-1}$$

and so the eigenvalues of A are A, A, γ . This yields the contradiction.

This lemma assures that if **an** eigenvalue of A has fewer linearly independent eigenvectors than its multiplicity, then we simply cannot get enough linearly independent eigenvectors to form P. For example, if the eigenvalues are $\lambda_1 = \lambda_2 = \lambda_3 = 2$, $\lambda_4 = \lambda_5 = 3$ and dim $(A - \lambda_1 I) = 2$, then we cannot get three linearly independent eigenvectors for the eigenvalue 2. And, thus A is not diagonalizable. An example of such a matrix follows.

Example 3.7 Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $\lambda_1 = \lambda_2 = 0$. Computing the corresponding eigenspace, we solve, in augmented matrix form

$$\left[\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Thus,

$$x_1 = \alpha$$
, *Q* is arbitrary
 $x_2 = 0$

and so

$$x = \alpha \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

(The eigenspace is the x_1 -axis.) Thus, there are not two linearly independent vectors belonging to the eigenvalue 0, and so A is not diagonalizable. Note also, that if A were diagonalizable then

$$A = P \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] P^{-1}$$

since both eigenvalues of A are 0. But this means that A = 0, not the given A.

The following theorem gives necessary and sufficient conditions for a matrix to be diagonalizable.

Theorem 3.4 Let A be ann xn matrix with distinct eigenvalues λ_1, \ldots, A , having multiplicities m_1, \ldots, m_{τ} , respectively. Then A is similar to a diagonal matrix if and only if each λ_i has a linearly independent set of m_i eigenvectors (i.e., the dimension of its eigenspace is m_i).

Proof. We prove this result for a 3×3 matrix A with eigenvalues $\lambda_1 = \lambda_2, \lambda_3$ and corresponding eigenvectors p_1, p_2, p_3 where p_1 and p_2 are linearly independent. We need to show that p_1, p_2, p_3 are linearly independent.

Arguing now by contradiction, we suppose $(\beta_1, \beta_2, \beta_3)$ is a nontrivial solution to the pendent equation for p_1, p_2, p_3 . Thus,

$$\beta_1 p_1 + \beta_2 p_2 + \beta_3 p_3 = 0. \tag{3.7}$$

ġ

1

13

We suppose that $\beta_1 \neq 0$. (The same line of reasoning that follows applies to any choice of $\beta_i \neq 0$.) Then $\beta_1 p_1 + \beta_2 p_2$ is an eigenvector belonging to λ_1 . And $\beta_3 p_3$ is either an eigenvector belonging to λ_3 or it is 0. Regardless, by rearranging (3.7), we have

$$1(\beta_1 p_1 + \beta_2 p_2) + 1(\beta_3 p_3) = 0.$$

But this says that we have some eigenvectors, belonging to distinct eigenvalues, which are linearly dependent. However, this remark contradicts Lemma 3.6. \blacksquare

It is interesting that an alternate approach, using row vectors, could have been taken to diagonalize a matrix. To see this, let λ be an eigenvalue for an n x n matrix A. Then det (A - XI) = 0 and so, taking the transpose of the matrix (A - XI), det $(A^t - XI) = 0$. Thus, there is a nonzero row vector y such that

$$(A^t - XI) y^t = 0$$

or, taking the transpose

$$y\left(A-\lambda I\right)=0$$

and so

$$yA = \lambda y$$

Such a nonzero row vector is called a *left eigenvector*, belonging to λ , for A. When emphasis is desired, we call **an** eigenvector, **as** previously defined, a *right eigenvector* for A.

Using left eigenvectors, we could have formed a matrix R, whose rows are left eigenvectors. Then

RA = DR

where $D = diag(\lambda_1, ..., \lambda_n)$ where $\lambda_1, ..., \lambda_n$ are the eigenvalues of A. If R is nonsingular, $A = R^{-1}DR$.

There is a useful relationship, called the Principle of Biorthogonality, between left and right eigenvectors, which we give below.

Theorem 3.5 Let A be an n x n matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding left and right eigenvectors y_1, \ldots, y_n and x_1, \ldots, x_n , respectively.

2

- (a) If $i \neq j$, then $y_i x_j = 0$.
- (b) Otherwise, $y_i x_i \neq 0$.

Proof. There are two parts. Parta. Since

$$y_i A = \lambda_i y_i$$
 and $A x_j = \lambda_j x_j$,

we have

$$y_i A x_j = \lambda_i y_i x_j$$
 and $y_i A x_j = \lambda_j y_i x_j$.

Thus,

$$\lambda_i y_i x_j = \lambda_j y_i x_j$$

or

$$(\lambda_i - \lambda_j) y_i x_j = 0.$$

Since $\lambda_i \neq \lambda_j$, it follows that $y_i x_j = 0$.

Part b. Since $\lambda_1, \ldots, \lambda_n$ are distinct, x_1, \ldots, x_n forms a **basis** for Eucidean n-space. Thus,

$$y_i^H = \alpha_1 x_1 + \ldots + \alpha_n x_n$$

for some scalars $\alpha_1, \ldots, \alpha_n$. Multiplying through by y_i yields, using that $y_i x_j = 0$ for $i \neq j$,

$$\|y_i\|_2^2 = \alpha_i y_i x_i$$

Since $||y_i||_2^2 \neq 0, y_i x_i \neq 0.$

The following example numerically demonstrates the property.

Example 3.8 Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$. The eigenvalues of A are $\lambda_1 = 4$, $\lambda_2 = -1$ with corresponding right and left eigenvectors $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, and $y_1 = (2,3)$, $y_2 = (1, -1)$. Note that $y_1x_1 = 5$, $y_1x_2 = 0$, $y_2x_1 = 0$, and $y_2x_2 = 5$.

To conclude this section, we show how to use diagonalization in helping understand linear transformation geometrically. To do this, we let A be an $n \ge n$ diagonalizable matrix, with real eigenvalues. So, we can factor $A = PDP^{-1}$ using real numbers.

The columns of **P** form a basis, say, $Y = \{p_1, \dots, p_n\}$. Thus given any x,

$$x = y_1 p_1 + \cdots + y_n p_n$$

for some scalars y_1, \ldots, y_n . And $y = (y_1, \ldots, y_n)^t$ gives the Y-coordinates of x. Note that

$$x = Py$$

so P converts Y-coordinates of x into the vector x.

Now, we describe the linear transformation L(x) = Ax in Y-coordinates. We do this in two steps.

1. Converting L(x) into Y-coordinates, we have

$$P^{-1}L(x) = P^{-1}Ax.$$

2. Converting x into Y-coordinates, we have

$$P^{-1}L(Py) = P^{-1}APy.$$

Thus, if we set

$$L_Y(y) = P^{-1}APy$$
$$= Dy,$$

we have described the transformation L(x) = Ax in terms of Y-coordinates. And, with respect to these coordinates, L stretches, shrinks, reflects the axes, etc. (and thus the corresponding space) in the Y-coordinate system.

We show a particular example.

Example 3.9 For
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$, and $P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$.

÷

1

1 nus,

$$Y = \left\{ \left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right], \left[\begin{array}{c} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right] \right\}$$

and L(x) = Ax is described by $L_Y(y) = Dy$ on the Y-coordinate system.

Looking ut L through the Y-coordinates, we see in Figure 3.11 that L leaves the y_2 -axis alone but stretched the y_1 -axis (and corresponding space) by **3**.

FIGURE 3.11.

Optional (Picture of Multiple Eigenvalue Matrices an 3.3.1 *Matrix Space*)

Matrices with distinct eigenvalues can be diagonalized. These matrices make up most all of matrix space. To view this, we give a picture.

Let

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

The characteristic equation for A is

$$\lambda^2 - (a + d)\lambda + ad - bc = 0$$

so

$$\lambda = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)}}{2}$$

Thus, A has a multiple eigenvalue if and only if $(a + d)^2 - 4(ad - bc) = 0$. Expanding and rearranging yields $(a-d)^2 + 4bc = 0$. If b and c are 0, then a = d, and we have a diagonal matrix. Thus, we will suppose $c \neq 0$. Now

$$b = \frac{-\left(a-d\right)^2}{4c}$$

Thus,

$$A = \begin{bmatrix} a & \frac{-(a-d)^2}{4c} \\ c & d \end{bmatrix}$$

has multiple eigenvalues for all $\mathbf{c} \neq 0$.

To get some picture of this set, we set c = d. Define

$$L\left(\left[\begin{array}{cc}a&b\\d&d\end{array}\right]\right) = \left[\begin{array}{cc}a\\b\\\sqrt{2}d\end{array}\right]$$

3

ŝ

a linear map which preserves distances **as** shown in Optional, Chapter 2, Section **3**. Since

$$L\left(\left[egin{array}{c} a & rac{-(a-d)^2}{4d} \ d & d \end{array}
ight]
ight)=\left[egin{array}{c} a \ rac{-(a-d)^2}{4d} \ \sqrt{2d} \end{array}
ight],$$

we have a picture of the multiple eigenvalue matrices in a piece of the space of 2×2 matrices. To draw this picture, we graph $(a, \frac{-(a-d)^2}{4d})$, Notice in Figure 3.12 that this set of matrices has shape. And, notice that

it does not take up much of the matrix space.

3.3.2 MATLAB (Code for Picture) Code for Picture of Multiple Eigenvalue Matrices a = linspace (-10, 10, 20); d = linspace (1, 10, 20); [a,d] = meshgrid (a,d); $y = -((a - d) \cdot A 2) \cdot / (4 * d);$ $z = sqrt(2)^* d;$ mesh (a, y, z)

Exercises

1. If possible, diagonalize (find D and P) the given matrix. If not, draw the eigenspaces and explain why the matrix cannot be diagonalized.

(a)	$\left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right]$	(b)	$\left[\begin{array}{c}1\\0\end{array}\right]$	$1 \\ 2 \\ \cdot$]
(c)	$\left[\begin{array}{rrrr} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right]$	(d)	$\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	1 1 1	0 0 2

2. Prove

(a) Lemma **3.7.** (b) Theorem **3.4.**

3. Find left and right eigenvectors for each eigenvalue of the matrices below.

(a)
$$A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

- 4. If A = PDF-', how can we find n linearly independent left eigenvectors for A, by using P?
- 5. Let A be an $n \times n$ matrix and E a row echelon form of A. Are the eigenvalues of A on the main diagonal of E?
- 6. Let L(x) = Ax. As in Example 3.9, describe L in the Y-coordinate system for the matrices given below.

(a)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 (b) $a = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$

- 7. Prove that if A is an $n \times n$ matrix, then A and A^t have the same eigenvalues.
- 8. Two parts.
 - (a) Provedet $\begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = (\det A) (\det C)$, where A and C are square matrices. (Use induction on the number of rows of A.)
 - (b) Tell how to find the eigenvalues of $\begin{bmatrix} A & 0 \\ B & C \end{bmatrix}$ in terms of A and C.
- 9. If $Ax = \lambda x, x \neq 0$, and $B = PAF^{-1}$, show how to find an eigenvector for B belonging to λ by using x and P.
- 10. Prove that A is singular if and only if 0 is an eigenvalue of A.

11. Let A be an m x n matrix and B an n x m matrix. Prove that the m x m matrix AB and the n x n matrix BA have the same nonzero eigenvalues.

$$(\text{Hint:} \begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix} \begin{bmatrix} I & A \\ 0 & I \end{bmatrix} = \begin{bmatrix} I & A \\ 0 & I \end{bmatrix} \begin{bmatrix} 0 & 0 \\ B & BA \end{bmatrix}.)$$

- 12. Two parts:
 - (a) Prove that if A is diagonalizable, then so is A^2 .
 - (b) Find a matrix **A** which is not diagonalizable, but A^2 is diagonalizable.
- 13. Let A be an n x n matrix with linearly independent right eigenvectors x_1, \ldots, x_n and left eigenvectors y_1, \ldots, y_n . If

$$x = \alpha_1 x_1 + \cdots + \alpha_n x_n,$$

prove that $a_i = \frac{y_i x}{y_i x_i}$ for all *i*.

- 14. (Optional) View the 2 x 2 matrices, with multiple eigenvalues, in R^3 by setting d = 0 and graphing $(a, \frac{-a^2}{4c}, c)^t$ over $1 \le a \le 10$, $1 \le c \le 10$.
- 15. (MATLAB) Let $S = \begin{bmatrix} 1 & -1 & -1 \\ & -1 \end{bmatrix}$, the matrix for a square. Find the linear transformation L(z) = Ax that stretches the square (and corresponding space), along the line y = x, by 2. Plot S and plot (AS). (Hint: Find $L_Y(y) = Dy$ that does this and then contruct L(x) = Ax from it.)

3.4 Jordan Forms

As we saw in the last section, not all matrices are diagonalizable. Those matrices which are not diagonalizable are often called *defective*. In this section, we describe another $n \times n$ matrix J, quite close to a diagonal matrix, except the superdiagonal entries $j_{12}, j_{23}, \ldots, j_{n-1,n}$ need not be 0. This matrix is called a Jordan form. It can be shown that every square matrix, diagonalizable or defective, is similar to a Jordan form.

The proof of the Jordan form result is much more intricate than what we saw in Sections 2 and 3. However, the use of the Jordan form is not much beyond that for diagonal matrices, and so there is no reason not to use it.

The Jordan form is described below.

Į

والمعالية والمعالية والمعالية

Definition 3.1 Let J be an upper triangular matrix with a super diagonal of 0's and 1's and all entries above the superdiagonal 0's $(j_{rs} = 0 \text{ for } s > r+1)$. If a 1 appearing on the superdiagonal implies the diagonal entries in its row and column are identical $(j_{r,r+1} = 1 \Rightarrow j_{rr} = j_{r+1,r+1})$, then J is called a Jordan form.

Thus, Jordan forms appear as

$$\begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \\ 0 & \lambda_{2} \end{bmatrix}, \begin{bmatrix} \lambda_{1} & 1 \\ 0 & \lambda_{1} \\ 0 & \lambda_{1} \end{bmatrix}, \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}, \begin{bmatrix} \lambda_{1} & 1 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}, \begin{bmatrix} \lambda_{1} & 1 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}, \begin{bmatrix} \lambda_{1} & 1 & 0 \\ 0 & \lambda_{3} \\ 0 & 0 & \lambda_{3} \end{bmatrix}, \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}, \begin{bmatrix} \lambda_{1} & 1 & 0 \\ 0 & \lambda_{1} & 1 \\ 0 & 0 & \lambda_{1} \end{bmatrix}, \cdots$$

From these remarks we can state Jordan's theorem.

Theorem 3.6 Any $n \times n$ matrix A is similar to a Jordan form.

Notice that since J is upper triangular, by Lemma 3.4, the eigenvalues of A are the main diagonal entries of J. And we can partition J so that all main diagonal blocks are square. Each main diagonal block contains the same eigenvalue and has a super diagonal of 1's. All other blocks have entries 0. For example,

$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \text{ or } \begin{bmatrix} 3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

These main diagonal blocks are called Jordan blocks. If the Jordan blocks are J_1, \ldots, J_r , we can write this **as**

$$J = \operatorname{diag}(J_1, \ldots, J_r)$$
.

Except for the arrangement of the Jordan blocks, it is known that the Jordan form is unique. A general method to find J, as well as the nonsingular matrix P, can be found in the theory books in the Bibliography. In this text, for 2×2 and 3×3 matrices, we will simply try to solve AP = PJ for both P and J. We show how in the example below.

Example 3.10 Let $A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$. Here, the eigenvalues of A are given by $\lambda_1 = 2$, $\lambda_2 = 2$, and $\lambda_3 = 4$. It is clear that the Jordan block for

 $\lambda_3 = 4$ is 1×1 . We need to decide, however, if there are two 1×1 Jordan blocks for the eigenvalues λ_1 and λ_2 or only one 2×2 Jordan block. We solve

$$\mathbf{A} = PJP^{-1}$$

or, obtaining a better form,

$$AP = \mathbf{RJ}$$
$$A [p_1 p_2 p_3] = [p_1 p_2 p_3] J$$

where p_1 , p_2 , p_3 are the columns of P.

Placing λ_3 as the last Jordan block in J, we have

$$A[p_1p_2p_3] = [p_1p_2p_3] \left[\begin{array}{cc} \hat{J} & 0\\ 0 & 4 \end{array} \right].$$

SO

$$AP3 = 4p_3,$$

(We use backward multiplication to get $4p_3$.) an eigenvector problem which we solve to get

$$p_3 = \left[\begin{array}{c} 0\\ 0\\ 1 \end{array} \right].$$

(Other choices could have been made for p_3 .) Now

$$A[p_1p_2] = [p_1p_2]\hat{J}$$
(3.8)

ŝ.

ŗ.

ļ

Ż

where \hat{J} has two Jordan blocks of size 1×1 or one 2×2 Jordan block. Thus,

$$\hat{J} = \left[\begin{array}{cc} 2 & \beta \\ 0 & 2 \end{array} \right]$$

where $\beta = 0$ or 1. Using (3.8), we **know** that

$$Ap_1 = 2p_1$$

So we solve

$$(A-2I)\,p_1=0.$$

This yields

$$p_1 = \alpha \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$$
, α arbitrary.

We let $\alpha = 1$, so

$$p_1 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$

Thus, the eigenspace for the eigenvalue **2** has dimension 1. This assures us that \hat{J} is not a diagonal matrix. So

$$\hat{J} = \left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array} \right].$$

Now by (3.8) and backward multiplication, we need to solve

 $Ap_2 = p_1 + 2p_2$

or

$$(A - 2I) p_2 = p_1$$

for p_2 . Since $p_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, we solve
$$(A - 2I) p_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

By Gaussian elimination and choosing one solution, we get

$$p_2 = \begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \end{bmatrix}.$$

Thus,
$$P = [p_1 p_2 p_3] = \begin{bmatrix} 0 & \frac{1}{3} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$.

The 1's on the super diagonal of J are there by choice. Other numbers could also have been chosen as shown below.

Theorem 3.7 Let A be an $n \times n$ matrix. Then A is similar to a Jordan form with the 1's on the superdiagonal replaced by any $E \neq 0$.

Proof. Let $A = PJF^{-1}$ where **J** is a Jordan form of A. Let $D = \text{diag}(\epsilon^{-1}, \epsilon^{-2}, \dots, \epsilon^{-n})$. Then DJD^{-1} is **J** with the 1's on the superdiagonal replaced by ϵ 's. This occurs since premultiplying **J** by **D** multiplies the i-th row of **J** by ϵ^{-i} and postmultiplying by D^{-1} multiplies the j-th column by ϵ^{j} . For example,

ł

ż

I

.

ì

$$DJD^{-1} = \begin{bmatrix} \epsilon^{-1} & 0 & 0 \\ 0 & \epsilon^{-2} & 0 \\ 0 & 0 & \epsilon^{-3} \end{bmatrix} \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} \epsilon & 0 & 0 \\ 0 & \epsilon^{2} & 0 \\ 0 & 0 & \epsilon^{3} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & \epsilon & 0 \\ 0 & 3 & \epsilon \\ 0 & 0 & 3 \end{bmatrix}.$$

Now, if we set $R = PD^{-1}$, then

$$A = PJF^{-1}$$

= (PD⁻¹) DJD⁻¹ (DF⁻¹)
= RJ, R⁻¹

where J_{ϵ} is J with **all 1's** on the superdiagonal of J replaced by ϵ . This yields the result.

Mostly, the Jordan form (for the defective case) is used for theoretical purposes. However, it is important to have some kind of diagonal-like form for any matrix. The Jordan form is such a form. We conclude by showing some uses of the form.

Theorem 3.8 Let A be an $n \ge n$ matrix having eigenvalues λ_1, \ldots, A , Then

- (a) det A = $\lambda_1 \dots A$,
- (b) trace $A = \lambda_1 + \ldots + \lambda_n$.
- (c) αA has eigenvalues $\alpha \lambda_1, \ldots, \alpha \lambda_n$ for any scalar α .
- (d) A^k has eigenvalues $\lambda_1^k, \ldots, \lambda_n^k$ for any natural number k.

Proof. We argue parts (a) and (c), leaving part (b) and (d) **as** exercises. In both parts we let $A = PJP^{-1}$ where J is a Jordan form of A.

Part a. Since $A = PJP^{-1}$,

$$\det A = \det P \det J \det P^{-1}$$
$$= \det P \det P^{-1} \det J$$
$$= \det \mathbf{J} = \lambda_1 \cdots \mathbf{A}$$

Part c. Since $A = PJP^{-1}$,

$$\alpha A = P[\alpha J]P^{-1}.$$

Thus, αA and αJ are similar and thus have the same eigenvalues. Since αJ is upper triangular, its eigenvalues are the entries on its main diagonal. These eigenvalues are $\alpha \lambda_1, \ldots, \alpha \lambda_n$.

Other uses of the Jordan form will be seen in the remainder of the text.

3.4.1 Optional (Numerical Problems in Finding the Jordan Form)

Let

$$A_{\epsilon} = \left[\begin{array}{cc} \frac{7+\epsilon}{2} & \frac{-1+\epsilon}{2} \\ \frac{1+\epsilon}{2} & \frac{5+\epsilon}{2} \end{array} \right].$$

where E is a scalar. We can factor

$$A_{\epsilon} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3+\epsilon & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}^{-1}$$

Thus, the eigenvalues of A, are $\lambda_1 = 3 + \epsilon$ and $\lambda_2 = 3$. Note that the Jordan form of A_0 is

$$J_0 = \left[\begin{array}{cc} 3 & 1 \\ 0 & 3 \end{array} \right].$$

But, if $\varepsilon \neq 0$, then A, has distinct eigenvalues and so it has Jordan form

$$J_{\epsilon} = \left[\begin{array}{cc} 3+\epsilon & 0\\ 0 & 3 \end{array} \right]$$

If $E \to 0, A, \to A_0$; however, $J, \to \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ which isn't the Jordan form of A_0 .

In numerical computations involving a matrix, the answer obtained is not necessarily accurate. However, it usually can be proved that it is correct for a matrix \hat{A} which is close to A. (\hat{A} is obtained from the numerical calculation on A by adjusting for round off.) Thus, loosely speaking, if close matrices have close exact answers, then a numerical calculation provides a good approximation to the desired answer.

However, note that this isn't the case for Jordan forms. Round off errors on defective matrices can produce close matrices which are diagonalizable.

3.4.2 MATLAB ([PD] and Defective A)

MATLAB does not calculate Jordan forms for defective matrices. If there are close or multiple eigenvalues, there may be a problem in computing **P**. Type in help *eig* and carefully read any information about this. (We will look at this problem mathematically in Chapter 9.)

When A is defective, instead of using the Jordan form, it is sometimes possible to use the Schur form in its place. This form can be calculated numerically. (MATLAB does it.) We will cover this in Chapter 6.

ł

Exercises

1. If the eigenvalues of **A** are given by

- (a) $\lambda_1 = 2, \lambda_2 = 2$, and A3 = 3; what are the possible Jordan forms?
- (b) Do the same for $\lambda_1 = \lambda_2 = A3 = 4$.
- (c) Do the same for $\lambda_1 = 12, \lambda_2 = 2$.
- **2.** Find P and J for the following A's.

(a)
$$A = \begin{bmatrix} 3 & 0 \\ 2 & 3 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
(e) $A = \begin{bmatrix} 4 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$
(f) $A = \begin{bmatrix} 4 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$

3. If the Jordan form for **A** is

$$\left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array}\right]$$

what is the dimension of the eigenspace for A?

4. Let
$$\mathbf{A} = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$$
. Find P such that $P^{-1}AF = \begin{bmatrix} 4 & 0 \\ 1 & 4 \end{bmatrix}$.

5. Is the set of all diagonalizable matrices a subspace?

6. Let $\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 3 & 4 \end{bmatrix}$. Then $\lambda_1 = \lambda_2 = A3 = 4$. The eigenspace for

4 is dimension 2. Find two linearly independent eigenvectors p_1, p_2 for 4. Now, p_3 must satisfy $(A - 4I) p_3 = p$ for some eigenvector p belonging to 4. Try p_1 and then p_2 for p. Is there always a solution? (So, P can be a bit difficult to find.)

- 7. Let P be an $n \times n$ nonsingular matrix. Prove that $L : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ defined by $L(A) = \mathbb{P}^{-1}AF$ is linear.
- 8. Suppose

$$Ap_1 = \lambda p_1$$
$$Ap_2 = \lambda p_2 + p_1.$$

Prove that $p_2 \in N((A - \lambda I)^2)$.

9. Let $A = \begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}$. Find P such that A = P. P^{-1} where $J = \begin{bmatrix} 2 & \epsilon \\ 0 & 2 \end{bmatrix}$, $\epsilon > 0$.

10. Let A be a 3 x 3 matrix which has
$$\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$
 as a Jordan form.
Prove that A is similar to $\begin{bmatrix} \lambda & a & 0 \\ 0 & \lambda & b \\ 0 & 0 & \lambda \end{bmatrix}$ where $a \neq 0$ and $b \neq 0$.

- 11. Prove that if A and B are n x n matrices then trace AB = trace BA.
- 12. For Theorem 3.8, prove (b) and (d). (Hint: On (b), use Exercise 11.)
- 13. Let A be a nonsingular matrix. If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$ prove that the eigenvalues of A^{-1} are $\lambda_1^{-1}, \ldots, \lambda_n^{-1}$.
- **14.** (Optional) For the given matrices, using MATLAB, decide which of the following matrices are diagonalizable.

(a)
$$A = \begin{bmatrix} -1 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ -1 & 1 & 0 & 1 \\ 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

1 4.8.1 · · · ŧ L 3 20 ÷ -# 1. . 1. .

1

<u>.</u>

4 Matrix Calculus

In previous courses we studied calculus for functions of one variable and calculus for functions of several variables. In this chapter we extend these studies to a calculus for matrices.

4.1 Calculus of Matrices

To develop a calculus for matrices, we need a way to measure distance between matrices. We use the standard definition of Euclidean distance.

Definition 4.1 Let A and B be $m \times n$ matrices. Define

$$d_E(A,B) = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij} - b_{ij}|^2\right)^{\frac{1}{2}}$$

which we call the Euclidean distance between A and B. (Thus, if A and B are close, then all of their corresponding entries are close and vice versa.)

The calculus for matrices extends, a bit, the calculus for functions of several variables. The work will be familiar (even duplicative), and thus we need only give a sampling of the results. We begin with sequences.

Definition 4.2 Let A_1, A_2, \ldots be a sequence of $m \times n$ matrices. If there is an $m \times n$ matrix A such that

$$\lim_{k\to\infty}d_E\left(A_k,A\right)=0$$

118 4. Matrix Calculus

we say that the sequence converges to A_0 and write

$$\lim_{k+m} A_k = A_k$$

We now show that limits can be calculated entrywise, thus allowing **us** to use the results from calculus in our work. In doing this we use the notation $A_k = \begin{bmatrix} a_{ij}^{(k)} \end{bmatrix}$.

Theorem 4.1 In the set of $m \times n$ matrices, $\lim_{k \to \infty} A_k = A$ if and only if $\lim_{k \to \infty} a_{ij}^{(k)} = a_{ij}$ for all i, j.

Proof. We argue the two parts of the biconditional. **Part** a. Suppose $\lim_{k\to\infty} A_k = A$. Since for any i, j

$$0 \le \left| a_{ij}^{(k)} - a_{ij} \right| \le d_E \left(A_k, A \right)$$

it follows from the Squeeze Theorem in calculus that $\lim_{k\to\infty} a_{ij}^{(k)} = a_{ij}$ for any i, j.

Part b. Suppose $\lim_{k\to\infty} a_{ij}^{(k)} = a_{ij}$ for each i, j. Using that the square root and the absolute value functions are continuous and properties of the limit from calculus,

$$\lim_{k\to\infty}\left(\sum_{i,j}\left|a_{ij}^{(k)}-a_{ij}\right|^2\right)^{\frac{1}{2}}=0.$$

SO

$$\lim_{k\to\infty}d_E\left(A_k,A\right)=0$$

or $\lim_{k \to \infty} A_k = A$.

As an example, we have the following.

Example 4.1 Let $A_k = \begin{bmatrix} 1 & \frac{1}{k} \\ -\frac{1}{k^2} & -1 \end{bmatrix}$ for $k = 1, 2, \ldots$ Then, using the theorem,

$$\lim_{k \to \infty} A_k = \begin{bmatrix} \lim_{k \to \infty} 1 & \lim_{k \to \infty} \frac{1}{k} \\ \lim_{k \to \infty} -\frac{1}{k^2} & \lim_{k \to \infty} -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Although there are many results about sequences **of** matrices, we will consider only two. This is enough to show how these kinds of results are developed.

. . .

ş

ŧ

ł

÷

2

Theorem 4.2 Let A_1, A_2, \ldots and B_1, B_2, \ldots be sequences of $m \times s$ matrices and $s \times n$ matrices, which converge to A and B, respectively. Then

$$\lim_{k\to\infty}A_kB_k=AB.$$

Proof. By Theorem 4.1, we can prove this result by an entrywise argument. For this, note that the ij-th entry of the k-th term, $A_k B_k$, of the sequence, is $\sum_{r=1}^{s} a_{k}^{(k)} b_{r}^{(k)}$. By the sum and product rule in calculus,

$$\lim_{k \to \infty} \sum_{r=1}^{s} a_{ir}^{(k)} b_{rj}^{(k)} = \sum_{r=1}^{s} a_{ir} b_{rj}$$

the ij-th entry in AB.

The following corollary shows a bit more about how we obtain these limit results.

Corollary 4.1 Let A_1, A_2, \ldots be a sequence of $m \times n$ matrices that converge to A. Let P and Q be $p \times m$ and $n \times q$ matrices, respectively. Then

$$\lim_{k\to\infty} PA_kQ = PAQ.$$

Proof. Consider the sequences P, P, \ldots and A_1, A_2, \ldots Then by the Theorem 4.2

$$\lim_{k\to\infty} PA_k = PA.$$

Now consider the sequences PA_1, PA_2, \ldots and Q, Q, \ldots Again using the theorem,

$$\lim_{k\to\infty} PA_kQ = (PA)Q$$

which yields the result. \blacksquare

Series of matrices are defined by sequences as shown in the following.

Definition 4.3 Let A_1, A_2, \ldots be a sequence of $m \times n$ matrices. Construct the sequence of partial sums $A_1, A_1 + A_2, A_1 + A_2 + A_3, \ldots$ If this sequence of matrices converges to A, we write

$$\sum_{k=l}^{\infty} A_k = A$$

and say that the series $\sum_{k=l}^{\infty} A_k$ converges to A.

120 4. Matrix Calculus

We show two basic series results. Other such results are derived in the same way.

,

١.

Theorem 4.3 Let P and Q be $p \times m$ and $n \times q$ matrices, respectively. Let $\sum_{k=1}^{\infty} A_k$ be a series of $m \times n$ matrices that converges to A. Then

$$\sum_{k=1}^{\infty} PA_k Q = PAQ.$$

Proof. To keep our notation simple, we first show that $\sum_{k=l}^{\infty} PA_k = PA$. We can do this by an entrywise argument.

The ij-th entry in the t-th partial sum, $\sum_{k=l}^{t} PA_k$, is

$$\sum_{k=1}^t \left(\sum_{s=1}^m p_{is} a_{sj}^{(k)} \right).$$

And, by the sum and product rule of calculus

$$\lim_{t \to \infty} \sum_{k=1}^{t} \left(\sum_{s=1}^{m} p_{is} a_{sj}^{(k)} \right) =$$
$$\lim_{t \to \infty} \left[\left(\sum_{k=1}^{t} p_{i1} a_{1j}^{(k)} \right) + \dots + \left(\sum_{k=1}^{t} p_{im} a_{mj}^{(k)} \right) \right] =$$
$$\lim_{t \to \infty} \left(p_{i1} \sum_{k=1}^{t} a_{1j}^{(k)} \right) + \dots + \lim_{t \to \infty} \left(p_{im} \sum_{k=1}^{t} a_{mj}^{(k)} \right) =$$
$$p_{i1} a_{1j} + \dots + p_{im} a_{mj} = \sum_{k=1}^{m} p_{ik} a_{k}$$

the ij-th entry of PA.

Similarly, setting $B_k = PA_k$ for k = 1, 2, ... and noting that $\sum_{k=1}^{\infty} B_k = PA_k$, we can show that $\sum_{k=l}^{\infty} B_k Q = (PA)Q_k$. Thus, $\sum_{k=l}^{\infty} PA_k Q = PAQ_k$,

the intended result.

For the second result, we give Neumann's formula for the **sum** of a particular series. **Theorem 4.4** Let A be an $n \times n$ matrix such that $\lim_{k \to \infty} A^k = 0$. Then

$$I + A + A^2 + \ldots = (I - A)^{-1}.$$

Proof. We prove this in two parts.

Part **a**. We show I - A is nonsingular. Arguing by contradiction, suppose that I - A is singular. Then there is a nonzero solution to

$$(I-A)x=0,$$

say, 2. Thus,

$$A\hat{x} = 2.$$

Multiplying through by A yields

$$A^2\hat{x} = A\left(A\hat{x}\right) = A\hat{x} = \hat{x}$$

and in general

 $A^k \hat{x} = 2.$

Thus, taking the limit as $k \to \infty$, we have

$$0 = \hat{x}$$

a contradiction from which Part a follows.

Part b. We show $I + A + A^2 + \cdots = (I - A)^{-1}$. To do this, note that

$$(I-A)(I+A+\cdots+A^{k-1})=I-A^k.$$

so

$$I + A + \dots + A^{k-1} = (I - A)^{-1} (I - A^k)$$

Taking the limit on $k \to \infty$, we see that the partial sums converge, and

$$I + A + A^2 + \ldots = (I - A)^{-1},$$

the desired result.

Let f be a function from a set of $m \ge n$ matrices to a set of $p \ge q$ matrices. An example may help.

Example 4.2 Define $S = \left\{ \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} : a, b \in R \right\}$. Define $f\left(\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} \right) = \det \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = ab - 1.$

122 4. Matrix Calculus

This is a function of a subset of $R^{2\times 2}$ into $R^{1\times 1}$. (Recall that the braces about a matrix are cosmetic, so $R^{1\times 1} = R$.) Identifying

$$\left[egin{array}{cc} a & 1 \ 1 & b \end{array}
ight] \leftrightarrow \left(a,b
ight)^t,$$

we graph f by graphing (a,b,ab-1). This is done in Figure 4.1.

ŝ

, i

Let B and L be $m \ge n$ matrices. As in calculus,

 $\lim_{A \to B} f(A) = L \text{ means } \lim_{A \to B} d_E(f(A), L) = 0.$

(In terms of $\epsilon - 6$, given $\epsilon > 0$, there is a $\delta > 0$ such that if $d_E(A,B) < 6$, then $d_E(f(A),L) < \epsilon$.)

Writing

$$\underline{f}(A) = [f_{ij}(A)],$$

where f_{ij} (A) is the ij-th entry of f (A), we can show that

$$\lim_{A \to B} f(A) = L \text{ if and only if } \left[\lim_{A \to B} f_{ij}(A) \right] = L.$$

The limit properties can be derived as well.

The function f is continuous at B means $\lim_{A \to B} f(A) = f(B)$, and f is continuous on a set means f is continuous at each matrix of the set. And, f is continuous at B or on a set if and only if this is also true for each f_{ij} .

From calculus we know that $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$ is continuous (ad - bc is a polynomial in a, b, c, d, and more generally, $f(A) = \det A$ is continuous on the set of all $n \times n$ matrices.

As seen in Chapter 1, there are determinantal formulas for the entries in A^{-1} and $x = A^{-1}b$. For example, if

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

then

$$A^{-1} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}.$$

Note that the entries are rational functions of a, b, c, and d, which are continuous where the denominator is not 0. From this, we see that, for nonsingular matrices,

$$f(A) = A^{-1}$$

and

$$f(A,b) = A^{-1}b$$
 (the solution to $Ax = b$)

are continuous functions, as well.

Now we look at matrices whose entries are functions of a real variable t, say,

$$A(t) = \left[a_{ij}(t)\right]$$

Then

$$\lim_{t \to t_0} A(t) = \left[\lim_{t \to t_0} a_{ij}(t) \right]$$

assuming that the limits of the entries exist. (Note that $a_{ij}(t)$ is a scalar function, and we know the calculus results for such functions.) The limit properties are **as** those in calculus.

Continuing, A(t) is continuous at to, or on **an** interval for t, if and only if the same is true for **all** entries $a_{ij}(t)$ of A(t).

For the derivative, if A(t) is such that its *ij*-th entry $a_{ij}(t)$ is differentiable for all i, j, then

$$\frac{d}{dt}A\left(t\right) = \left[\frac{d}{dt}a_{ij}\left(t\right)\right].$$

The following theorem shows a result about the derivative of matrix products. Recall, for this work, matrices don't commute.

Theorem 4.5 Let A(t) be m x s and let B(t) be s x n, both matrices with entries differentiable on (a,b). Then

$$\frac{d}{dt}(A(t)B(t)) = \left(\frac{d}{dt}A(t)\right)B(t) + A(t)\left(\frac{d}{dt}B(t)\right).$$

Proof. Note that

$$\frac{d}{dt} (A(t) B(t)) = \left[\frac{d}{dt} \left(\sum_{k=1}^{s} a_{ik}(t) b_{kj}(t) \right) \right] \\ = \left[\sum_{k=1}^{s} \left(a'_{ik}(t) b_{kj}(t) + a_{ik}(t) b'_{kj}(t) \right) \right] \\ = \left[\sum_{k=1}^{s} a'_{ik}(t) b_{kj}(t) \right] + \left[\sum_{k=1}^{s} a_{ik}(t) b'_{kj}(t) \right] \\ = \left(\frac{d}{dt} A(t) \right) B(t) + A(t) \left(\frac{d}{dt} B(t) \right),$$

as desired.

Finally, for the integral, we define

$$\int_{a}^{b} A(t) dt = \left[\int_{a}^{b} a_{ij}(t) dt \right]$$

ì

ì

-

provided the integrals of the entries are defined. Properties of the integral can also be proved by entrywise arguments.

4.1.1 Optional (Modeling Spring-Mass Problems)

We give **an** example showing how the calculus just described can be **used** in mathematical modeling.

Two particles of masses m_1 and m_2 are attached to springs in the configuration shown in Figure 4.2. The particles move on a frictionless floor in **a** horizontal line. If the spring constants are k_1 and k_2 , respectively, we want to find the mathematical model that describes the motion of the particles.

FIGURE 4.2.

When the masses are not in motion (equilibrium position), we associate an x_1 -axis and an x_2 -axis so that their origins are at the positions of particle 1 and particle 2, respectively. Now, if the particles have been put in motion, let

$$x_1(t) =$$
 position of particle 1 at time t on the x₁-axis and $x_2(t) =$ position of particle 2 at time t on the x₂-axis.

Hooke's law implies that the restoring force on a particle due to a spring is the product of the spring constant **and** the displacement of the particle from the equilibrium position. Using Hooke's law and applying Newton's law, that mass times acceleration is equal to force (See Figure 4.3.), we have

 $m_1 \frac{d^2}{dt^2} x_1(t) =$ force on particle 1 due to the springs.

FIGURE 4.3.

There are two forces on particle 1, namely

$$F_1 \equiv -k_1 x_1(t) ,$$

and

$$F_{2} = k_{2} \left[x_{2} \left(t \right) - x_{1} \left(t \right) \right].$$

Thus

$$m_1 \frac{d^2}{dt^2} x_1(t) = -k_1 x_1(t) + k_2 [x_2(t) - x_1(t)]$$

= -(k_1 + k_2) x_1(t) + k_2 x_2(t).

For particle 2 we have

$$m_2 \frac{d^2}{dt^2} x_2(t) = -k_2 [x_2(t) - x_1(t)].$$

Putting these into a matrix equation we have

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \frac{d^2}{dt^2} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} (k_1+k_2) & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = 0.$$

Solving this equation for $x_1(t)$ and $x_2(t)$ gives the positions of the particles at any time t.

4.1.2 MATLAB (Code for Graph of Function)

Code for Figure 4.1

a =linspace(-5, 5, 10); b = a; [a,b] =meshgrid(a, b); mesh(a, b, a. *b - 1) view([1,-1,1]) % View with (1,-1,1)^t pointing toward us.

ì

Ì

4

Exercises

1. Find $d_E(A, B)$ for the given A and B.

(a)
$$A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$

(b) $A = \begin{bmatrix} i & 0 \\ 1-i & 2+i \end{bmatrix}, B = \begin{bmatrix} 0 & 1-i \\ i & 1+i \end{bmatrix}$

2. Compute

(a)
$$\lim_{k \to \infty} \left[\frac{\frac{1}{k}}{\frac{-k}{k+1}} \frac{\frac{k+1}{k}}{e^{-k}} \right].$$

(b)
$$\lim_{t \to 0} \left[\frac{\frac{t}{t+1}}{e^t} \frac{\sin t}{t} \right].$$

- 3. Prove that if A_k and B_k are $m \times n$ matrices for all k and $\lim_{k \to \infty} A_k = A$, $\lim_{k \to \infty} B_k = B$ then $\lim_{k \to \infty} (A_k + B_k) = A + B$.
- 4. Let α (t) is a real valued function and A (t) a matrix α functions. If $\lim_{t \to a} \alpha$ (t) = α_0 and $\lim_{t \to a} A$ (t) = A, prove the result that $\lim_{t \to a} \alpha_0$ (t) A (t) = $\alpha_0 A$.
- 5. Let A_1, A_2, \ldots be a sequence of matrices that converge to A. If A is nonsingular, show that $A_1^{-1}, A_2^{-1}, \ldots$ converge to A^{-1} .
- 6. Let $A_k = \begin{bmatrix} \frac{1}{2^k} & \frac{1}{3^k} \\ 0 & \frac{1}{4^k} \end{bmatrix}$ for $k = 1, 2, \dots$ Find $A_1 + A_2 + \dots$ (Recall that $1 + r + r^2 + \dots = \frac{1}{1 r}$ for any r, |r| < 1.)
- 7. Let $A(t) = \begin{bmatrix} t & 1 \\ 1 & t \end{bmatrix}$. Calculate and graph each of the following. (a) det A(t)

(b) The 1,2-entry of $A(t)^{-1}$ (c) The first entry of $A(t)^{-1}b$, where $b = \begin{bmatrix} 1\\1 \end{bmatrix}$ 8. Let $f : R^{2\times 2} \to R^2$. Set $f(A) = \begin{bmatrix} f_1(A)\\f_2(A) \end{bmatrix}$ where $f_i(A)$ is the i-th entry of f(A). Prove that f is continuous if and only if both f_1 and f_2 are continuous. 9. Let $A(t) = \begin{bmatrix} 2t - 1 & e^t\\ \frac{t}{t-1} & 0 \end{bmatrix}$. Show that (a) A(t) is continuous at t = 0. (b) A(t) is not continuous at t = 1. 10. Let $A = \begin{bmatrix} \cos t & \sin t\\ t+2 & 0 \end{bmatrix}$. Find (a) $\begin{pmatrix} d\\ l \end{pmatrix} = \begin{pmatrix} d\\ l \end{pmatrix} = \begin{pmatrix} 0 \\ l \end{pmatrix}$.

(b)
$$\int_0^{\pi} A(t) dt$$
.

11. Suppose A(t), B(t) are differentiable n **x** n matrices. Prove that

$$\frac{d}{dt}\left[A\left(t\right)+B\left(t\right)\right]=\frac{d}{dt}A\left(t\right)+\frac{d}{dt}B\left(t\right)$$

12. Suppose P and A(t) are n x n matrices with A(t) differentiable. Prove that

$$\frac{d}{dt} \boldsymbol{P} \boldsymbol{A}(t) = \boldsymbol{P} \frac{d}{dt} \boldsymbol{A}(t).$$

- 13. Suppose A(t) and B(t) are integrable n x n matrices. Prove that $\int_{a}^{b} (A(t) + B(t)) dt = \int_{a}^{b} A(t) dt + \int_{a}^{b} B(t) dt$.
- 14. (Optional) Attach a third spring to m_2 and to a wall as diagramed in Figure 4.4. Find the mathematical model for this system.

FIGURE 4.4.

FIGURE 4.5.

15. (Optional) Derive the mathematical model for the spring-mass system shown in Figure **4.5**.

16. (MATLAB) Let
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
 and $c = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. In the square [0, 4] x [5, 9] graph

- (a) The 1,1-entry and the 1,2-entry of A^{-1} .
- (b) Both x_1 and x_2 of $x = A^{-1}c$.

4.2 Difference Equations

In this section, we show how to solve systems of difference equations, **as** well **as** show that eigenvalues determine the solution'sbehavior. We demonstrate the technique to solve systems with a small example. Extensions of the technique should be clear.

Let $x_1(l\ell)$ and $x_2(l\ell)$ be functions defined on the nonnegative integers that satisfy

$$x_1(k+1) = a_{11}x_1(k) + a_{12}x_2(k)$$

$$x_2(k+1) = a_{2151}(k) + a_{2252}(k)$$

where a_{11} , a_{12} , a_{21} , and a_{22} are scalars. We can write these equations **as** a matrix equation

$$x\left(k+1\right) = Ax\left(k\right) \tag{4.1}$$

where $x(k) = \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$ and $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{21} \end{bmatrix}$. (The equation in (4.1) is called a difference equation.)

7

If x(0) is a given vector then (4.1) determines a sequence

$$x(0), x(1), x(2), \ldots$$

We intend to find a formula for x(k) in terms of the eigenvalues and eigenvectors of A. To get this, note that

$$x (1) = Ax (0), (4.2)$$

$$x (2) = Ax (1) = A^{2}x (0)$$

$$x (k) = A^{k}x (0)$$

...

Observe that if A and x (0) are real, so is x (10) for all 10.

We now assume that A is diagonalizable, say,

A = PDF⁻¹
where
$$P = [p_1 p_2]$$
 and $D = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$. We substitute PDF⁻¹ for A in
(4.2) to obtain

$$x(ll) = PD^k P^{-1}x(0).$$

Set

$$P^{-1}x(0) = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}.$$
 (4.3)

(Note that $\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ can be computed by solving $P\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = x$ (0) or $\alpha_1 p_1 + \alpha_2 p_2 = x$ (0). So P^{-1} need not be calculated.) Thus, we have

$$x(k) = [p_1 \ p_2] \begin{bmatrix} \lambda_1^k & 0\\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} \alpha_1\\ \alpha_2 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1^k p_1 \ \lambda_2^k p_2 \end{bmatrix} \begin{bmatrix} \alpha_1\\ \alpha_2 \end{bmatrix}$$

$$= \alpha_1 \lambda_1^k p_1 + \alpha_2 \lambda_2^k p_2$$
(4.4)

the desired formula involving eigenvalues and eigenvectors. More generally, if A is $n \ge n$ and diagonalizable, we would get

$$x(ll) = \alpha_1 \lambda_1^k p_1 + \cdots + \alpha_n \lambda_n^k p_n.$$

An example showing how to use the formula to solve a difference equation follows.

Example 4.3 Let $x(0) = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$. We solve $x(k+1) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} x(k)$.

Here $\lambda_1 = 3$, $\lambda_2 = 1$ with corresponding eigenvectors $p_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $p_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, respectively. Thus, using our formula,

$$x(k) = \alpha_1 \lambda_1^k p_1 + \alpha_2 \lambda_2^k p_2$$

$$= \alpha_1 3^k \begin{bmatrix} 1\\1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -1\\1 \end{bmatrix}.$$

$$(4.5)$$

ţ

÷

Ċ,

2

13

Now, since $x(0) = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$, wing (4.5) and plugging in k = 0, we have $\begin{bmatrix} 6 \\ -2 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -1 \\ -1 \end{bmatrix}.$

Solving for α_1 ana! α_2 yields $\alpha_1 = 2$ ana! $\alpha_2 = -4$. Thus, our solution is

$$\begin{aligned} x\left(k\right) &= \alpha_1 3^k \begin{bmatrix} 1\\1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -1\\1 \end{bmatrix} \\ &= 2 \cdot 3^k \begin{bmatrix} 1\\1 \end{bmatrix} - 4 \begin{bmatrix} -1\\1 \end{bmatrix}. \end{aligned}$$

Note that as $k \to \infty$, the entries in $x(k) \to \infty$ tend to ∞ .

We now extend *our* work a bit to defective matrices. Observe that if $A = PJF^{-1}$, where $J = \text{diag}(J_1, \ldots, J_r)$ is a Jordan form of A,

$$\lim_{k \to \infty} A^{k} = \lim_{k \to \infty} P J^{k} P^{-1}$$

$$= P \left(\lim_{k \to \infty} J^{k} \right) P^{-}$$

$$= P \begin{bmatrix} \lim_{k \to c} J_{1}^{k} & 0 & \dots & 0 \\ & & \lim_{k \to \infty} J_{2}^{k} & \dots & 0 \\ & & & \dots & \\ 0 & 0 & \dots & \lim_{k \to \infty} J_{r}^{k} \end{bmatrix} P^{-1}.$$
(4.6)

Thus, convergence of A, A^2, \ldots depends on the Jordan blocks of A. Formulas for their powers follows.

If
$$J_i = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}$$
, an s x s Jordan block, then
$$J_i^2 = \begin{bmatrix} \lambda^2 & 2\lambda & 1 & \cdots & 0 \\ 0 & \lambda^2 & 2\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda^2 \end{bmatrix}$$
,
$$J_i^3 = \begin{bmatrix} \theta & \mathbf{x}_3 & \mathbf{3x}_2 & \mathbf{3x} & 1 & \cdots & 0 \\ 0 & \theta & \mathbf{x}_3 & \mathbf{3x}_2 & \mathbf{3x} & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \mathbf{x}^3 \end{bmatrix}$$

and in general (We leave it as an exercise.),

$$J_{i}^{k} = \begin{bmatrix} \lambda^{k} & k\lambda^{k-1} & \binom{k}{2}\lambda^{k-2} & \cdots & \binom{k}{s-1}\lambda^{k-s+1} \\ 0 & \lambda^{k} & k\lambda^{k-1} & \cdots & \binom{k}{s-2}\lambda^{k-s} \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda^{k} \end{bmatrix}$$
(4.7)

where $\binom{k}{r} = 0$ if k < r and $\binom{k}{r} = \frac{k!}{(k-r)!r!}$, otherwise. Using these formulas, we can solve difference equations even when A is

defective.

Example 4.4 Solve

$$x(k+1) = \begin{bmatrix} 1 & .5\\ -.5 & 0 \end{bmatrix} x(k).$$

Factoring, we have

$$\begin{bmatrix} 1 & .5 \\ -.5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} .5 & 1 \\ 0 & .5 \end{bmatrix} \begin{bmatrix} .5 & -.5 \\ .5 & .5 \end{bmatrix}$$

By direct calculation,

$$\begin{aligned} \boldsymbol{x}(k) &= PJ^{k}P^{-1}\boldsymbol{x}(0) \\ &= \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{vmatrix} .5^{k} & \boldsymbol{k}(.5)^{k-1} \\ 0 & 5^{k} \end{vmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{vmatrix} \end{aligned}$$

where
$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = P^{-1}x(0)$$
. And by backward multiplication, we have
 $x(k) = \left((.5)^k \begin{bmatrix} 1 \\ -1 \end{bmatrix}, k(.5)^{k-1} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + .5^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$
 $= \alpha_1 (.5)^k \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \alpha_2 \left(k(.5)^{k-1} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + .5^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right).$

132 4. Matrix Calculus

Note that, as a consequence of the eigenvalues,

$$\lim_{k\to\infty} x(k) = 0.$$

By observing (4.6) and the formulas for the Jordan blocks in (4.7), we have the following.

Theorem 4.6 Let \mathbf{A} be an $n \times n$ matrix. Then

- (a) $\lim_{k \to \infty} A^k$ converges if each eigenvalue X of A is such that $|\lambda| < 1$ or if $|\lambda| = 1$, then $\lambda = 1$ and it is on 1×1 Jordan blocks.
- (b) And for all other cases, $\lim_{k \to \infty} A^k$ doesn't exist.

An example demonstrating the theorem follows.

Example 4.5 Let $\mathbf{A} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Then \mathbf{A} is diagonalizable with $\mathbf{P} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix}$. Thus $\lim_{k \to \infty} A^k = P\left(\lim_{k \to \infty} \begin{bmatrix} 1^k & 0 \\ 0 & (\frac{1}{3})^k \end{bmatrix}\right) P^{-1}$ $= P\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} P^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

If $\lim_{k \to \infty} A^k$ doesn't exist, often we can still say something about the behavior of $x(l\ell)$. A small example can show this.

Example 4.6 If we solve

$$x(k+1) = \begin{bmatrix} .3 & .9 \\ .9 & 0 \end{bmatrix} x(k),$$

we get (using **5** digits in our answers)

$$x(k) = \alpha_1 (1.0624)^k \begin{bmatrix} 0.7630 \\ 0.6464 \end{bmatrix}$$

$$+ \alpha_2 (-0.7624)^k \begin{bmatrix} 0.6464 \\ -0.7630 \end{bmatrix}.$$
(4.8)

We find the dominant term (the term having the largest eigenvalue, in absolute value, in $\mathbf{x}(\mathbf{k})$). This is $\alpha_1 (1.0624)^k \begin{bmatrix} 0.7630 \\ 0.6464 \end{bmatrix}$. Note that by factoring out this coefficient in (4.8), we have (assuming $\alpha_1 \neq 0$)

$$x(k) = \alpha_1 (1.0624)^k \left(\begin{bmatrix} 0.7630 \\ 0.6464 \end{bmatrix} - \frac{\alpha_2 (-0.7624)^k}{\alpha_1 (1.0624)^k} \begin{bmatrix} 0.6464 \\ -0.7630 \end{bmatrix} \right).$$

4.2 Difference Equations 133

Now, since the second term, within the parentheses, approaches 0 as $k \rightarrow 0$, we see that the contribution of

$$\alpha_2 \left(-0.7624\right)^k \left[\begin{array}{c} 0.6464\\ -0.7630 \end{array} \right]$$

to the size of $\mathbf{x}(k)$ is small compared to that of

$$\alpha_1 (1.0624)^k \left[\begin{array}{c} 0.7630\\ 0.6464 \end{array} \right].$$

We indicate this by writing

$$x(k) \sim \alpha_1 (1.0624)^k \begin{bmatrix} 0.7630\\ 0.6464 \end{bmatrix}$$

and say that x(k) has dominant term $\alpha_1 (1.0624)^k \begin{bmatrix} 0.7630\\ 0.6464 \end{bmatrix}$.

For $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, in Figure 4.6, we can see a picture of the iterates from $\mathbf{k} = 0$ to $\mathbf{k} = 20$. In this picture 0 indicates the initial vector and each * a following vector, $\mathbf{x}(1), \mathbf{x}(2), \dots, \mathbf{x}(20)$. The polygonal line indicates the order of occurrence of these vectors. Notice that the vectors look like the dominant term as \mathbf{k} increases.

Since

$$x(k) \sim \alpha_1 (1.0624)^k \begin{bmatrix} 0.7630\\ 0.6464 \end{bmatrix},$$

we see that $\mathbf{x}(\mathbf{k})$ increases by about 6% on each iteration.

As a final consequence of Theorem 4.6, we consider the nonhomogeneous difference equation

$$x (k+1) = Az(k)+b$$

where A is an $n \times n$ matrix and b an $n \times 1$ vector.

Writing out a few iterates, we have

$$x (1) = Ax (0) + b$$

$$x (2) = Ax (1) + b$$

$$= A^{2}x (0) + Ab + b$$

$$\dots$$

$$x (k+1) = A^{k}x (0) + A^{k-1}b + A^{k-2}b + \dots + b$$

$$= A^{k}x (0) + (A^{k-1} + A^{k-2} + \dots + I) b.$$
(4.9)

FIGURE 4.6.

Now, if each eigenvalue, say, λ , σA satisfies $|\lambda| < 1$, then by Theorem 4.6, $\lim_{k \to \infty} A^k = 0$. And by Neumann's formula,

$$I + A + A^2 + \cdots = (I - A)^{-1}$$
.

Thus, calculating the limit in (4.9), we have

$$\lim_{k \to \infty} x (k+1) = (I-A)^{-1} b.$$
 (4.10)

Ì.

1

1

Ì

(x(k+1)) here *can* be replaced by x(k) since we are talking about the convergence of a sequence.)

We can *see* some use of the result in the following example of a production **process.**

Example 4.7 We consider a two-grade school (7th and 8th grades). Each year, 1000 new students enter the 7th grade. Of those currently in the school, 80% of the students are promoted, 10% retained for another year and 10% of each class drops out. A diagram of the situation follows in Figure 4.7.

Let $x_1(k)$ and $x_2(k)$ denote the number of students in the 7th and 8th grades in the k-th year, respectively. Then

FIGURE 4.7.

or

$$x(k+1) = Ax(k)+b$$

where $x(k) = \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$, $A = \begin{bmatrix} .1 & 0 \\ .8 & .1 \end{bmatrix}$, and $b = \begin{bmatrix} 1000 \\ 0 \end{bmatrix}$. Since the eigenvalues of the matrix are .1 and .1, we have by (4.10)

$$\lim_{k \to \infty} x(k) = (I - A)^{-1} b$$

$$= \begin{bmatrix} 1.111 \\ 0.988 & 1.011 \\ 0.988 \end{bmatrix} \begin{bmatrix} 1000 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1111. \\ 988 \end{bmatrix}$$

Thus, as \mathbf{k} increases, we expect to see about 1111 students in the 7th grade and 988 students in the 8th grade.

4.2.1 Optional (Long-Run Prediction)

Being able to see what is going to happen if trends continue is important in many areas. We **look** at one such problem.

An important social science (demographic) problem is to predict the population of a region or country in future years. Such information is used in planning (roads, water, schools, food, etc.) for that area.

To describe the technique in general, suppose that some population is divided into three age groups: young, adult, and older, where the number of years in each group, called the period, is the same. Survival rates (% of those in one group that live to be in the next) are computed. These rates, s_1 for young to adult, s_2 for adult to older, can be obtained from official records. Birth rates (number of offsprings per member in each group per period) say, b_1 , b_2 , b_3 , for the groups, respectively, can be obtained in the

136 4. Matrix Calculus

same way. Using this data we form the matrix

$$P = \left[\begin{array}{rrrr} b_1 & b_2 & b_3 \\ s_1 & 0 & 0 \\ 0 & s_2 & 0 \end{array} \right],$$

÷.

į.

1 - 1

which is **called** a Leslie (or population) matrix.

Suppose we compute populations in each group every period. Let x_1 (IC), $x_2(k), 23(k)$ denote the number of people in groups 1, 2, and 3, respectively, at period \mathbb{C} . Then at period $\mathbf{k} + 1$ we have

$$egin{aligned} &x_1\,(k+1) = b_1 x_1\,(k) + b_2 x_2\,(k) + b_3 x_3\,(k) \ &x_2\,(k+1) = s_1 x_1\,(k) \ &x_3\,(k+1) = s_2 x_2\,(k) \end{aligned}$$

or in matrix form

$$2(k+1) = Px(k)$$

where

$$x\left(k
ight)=\left[egin{array}{c} x_{1}\left(k
ight)\ x_{2}\left(k
ight)\ x_{3}\left(k
ight)\end{array}
ight]$$

The Leslie matrix given below was obtained (taking some liberties with the data) from a third world country. The age groupings were 0-4, 5-9, 10-14, ..., 45-49.

	0	0	0	.83	.83	.50	.50	.11	.11	0
	. 94	0	0	0	0	0	0	0	0	0
	0.	9	80	0	0	0	0	0	0	0
	0	0	. 9	80	0	0	0	0	0	0
4	0	0	0	. 9	8 0	0	0	0	0	0
A =	0	0	0	0	. 9	80	0	0	0	0
	0	0	0	0	0	. 9	80	0	0	0
	0	0	0	0	0	0	. 9	80	0	0
	0	0	0	0	0	0	0	. 9	70	0
	0	0	0	0	0	0	0	0.	97	0

The largest eigenvalue for A is $\lambda_1 = 1.1903$, with corresponding eigenvector

$$p_1 = \begin{bmatrix} 0.5897\\ 0.4657\\ 0.3834\\ 0.3157\\ 0.2599\\ 0.2140\\ 0.1762\\ 0.1451\\ 0.1182\\ 0.0964 \end{bmatrix}$$

$$\hat{p} = \begin{bmatrix} 0.2133\\ 0.1685\\ 0.1387\\ 0.1142\\ 0.0940\\ 0.0774\\ 0.0637\\ 0.0525\\ 0.0428\\ 0.0349 \end{bmatrix}$$

4.2.2 MATLAB (Code for Viewing Solution to Difference Equations; Handling Large Matrices)

There are some useful commands when working with population matrices. The command A = zeros(n, n) provides an $n \times n$ matrix, all entries of which are 0's. Now to obtain a population matrix, we can change some entries in A, using say, A(1,4) = .83, which changes the 1,4-th entry in A to .83.

Also, if the command [V,D] = eig(A) is used, the columns of V are eigenvectors. To get an individual column of V, say, the second, use V(:,2). Of course, for a row, the companion command is V(2,:). If we want to

138 4. Matrix Calculus

sum the entries in say, V (:, 2) and divide V (:, 2) by that sum, we can use e = ones(1,10) which provides a 1×10 vector having 1's as its entries. Then we use $(e * V (:, 2)) \land (-1) * V (:, 2)$. (Exponents are done before multiplication. Type in *help precedence* for more.) An exercise will be provided on which these commands can be helpful.

1. Code for Computing Limits

A = [.2.8; .6.4];[PD] = eig(A)D(1,1) = 0;

% The 1,1-entry of D was -.4. We set it to 0.

ę.

```
limit = P * D * inv(P)
```

2. Code for Computing Limits

 $\begin{array}{l} A = [.3.7; .4.6];\\ L = zero(2,2);\\ \text{while norm } (A - L, 'fro') & \% \\ & > 10 \wedge (-7) \\ & > 10 \wedge (-7) \\ & & between A and L \leq 10^{-7}.\\ & & This condition can change \\ & & with different problems. \\ L = A;\\ A = A * A;\\ end, A \\ & \% \\ & \text{If distance} \leq 10^{-7}, \text{ prints} \\ & \text{out } A. \end{array}$

3. Code for Viewing Solution to Difference Equation

z = [1; 1]; A = [.3.9; .90];		
for $k = 1:21$ $p(\mathbb{C}) = x(1);$ q(k) = x(2); r = 4 * r:	%	Generates x-values $[p(1) \dots p(21)]$ and y-values $[q(1) \dots q(21)]$ for the $(p(k), q(k))$ to be plotted. Gets to the next point in
$\omega = 21 + \omega$,	70	the iteration.
end plot (1, 1, 'O') hold	%	Plots starting point with O.
plot (p, q, '')	%	Plots points $(p(k), q(\mathbb{IC}))$ with *.
plot(p,q)	%	Draws 'curve' through points.
In iterationa like this	it	is helpful to include a stopping cri

In iterations like this, it is helpful to include a stopping criteria so that the iteration won't run forever. For example, insert c = 1 between the 2nd and 3rd lines, and

т

c = c + 1if c > 1000break end between the 6th and 7th lines.

Exercises

1. Compute $\lim_{k\to\infty} A^k$ for the given A, if possible. If not possible, explain why the sequence does not converge.

(a)	$A = \left[\begin{array}{cc} .2 & .4 \\ .3 & .3 \end{array} \right]$	(b) $A = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 3\\4\\1\\2 \end{bmatrix}$
(c)	$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$	(d) $A = \begin{bmatrix} 3\\4 \end{bmatrix}$	$\begin{bmatrix} 5\\4 \end{bmatrix}$
(e)	$A = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & .2 & .3 \\ 0 & .3 & .2 \end{array} \right]$	(f) $A = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$	

2. Solve

(a)
$$\begin{aligned} x_{1}(k+1) &= & 3x_{1}(k) & -x_{2}(k) \\ x_{2}(k+1) &= & -x_{1}(k) & +3x_{2}(k) \\ x_{1}(k+1) &= & 3x_{1}(k) & +2x_{2}(k) \\ x_{2}(k+1) &= & x_{1}(k) & +2x_{2}(k) \\ x_{1}(0) &= & 9 \\ x_{2}(0) &= & 3 \end{aligned}$$
(b)
$$\begin{aligned} x_{1}(k+1) &= & 3x_{1}(k) \\ x_{2}(k+1) &= & x_{1}(k) & +3x_{2}(k) \end{aligned}$$

3. For the given matrices, compute J^2 , J^3 , J^7 , and J^k .

(a)
$$J = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
 (b) $J = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$

4. Find the dominant term in (a) and (b) of the solutions of Exercise 2.5. Let

$$\begin{aligned} x(k+1) &= \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} x(k) \\ x(0) &= \mathbf{c}. \end{aligned}$$

Find a vector c such that x(k) is constant for all k.

6. The solution to
$$y(k+1) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} y(k), y(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 is $Y(k) = (1+i)^k \begin{bmatrix} 1 \\ -i \end{bmatrix} + (1-i)^k \begin{bmatrix} 1 \\ i \end{bmatrix}.$

(a) Show that y (k) = y (k)so y (k) is real. (The imaginary part is 0.)

]

3

1.25

ł.

- (b) Find y (k) as an expression involving real numbers. (Hint: Use $(a+ib)^k = r^k (\cos k\theta + i \sin k\theta)$ where $a+ib = r (\cos \theta + i \sin \theta)$.)
- 7. Let A be an $n \ge n$ matrix. Prove that if $\lim_{k \to \infty} A^k$ exists, then so does $\lim_{k \to \infty} J^k$. (Hint: Write $J^k = P^{-1}A^kP$ and compute the limit.)
- 8. To solve the scalar difference equation

$$x(k+2) - 3x(k+1) + 2x(k) = 0$$

set

$$y_1(k) = x(k)$$

 $y_2(k) = x(k+1)$

Then, using the three equations above, we have

$$y_1(k+1) = y_2(k)$$

 $y_2(k+1) = 3y_2(k) - 2y_1(k)$.

Solve this system for y_1 , to find x_1 .

9. Company *A* has machines that periodically break down. When a machine does break, it costs about \$1,000 to fix it. (We will assume at most one machine breaks per month.) In monthly intervals, the probability that if a machine broke the previous month, one will break this month **is .1**, while if no machine broke the previous month, the probably that one will break this month **is .15**. (See Figure **4.8**.) Let

$$y_1(k) =$$
 probability that a machine breaks in month k ,
 $y_2(k) =$ probability that a machine doesn't break
in month k .

Then

$$y_1(k+1) = .1y_1(k) + .15y_2(k)$$

$$y_2(k+1) = .9y_1(k) + .85y_2(k)$$

FIGURE 4.8.

or

$$y\left(k+1\right) = \left[\begin{array}{rr} .1 & .15\\ .9 & .85 \end{array}\right] y\left(k\right)$$

where $y(k) = \begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix}$.

- (a) Compute y(k) and $\lim_{k \to \infty} y(k)$. (Use $y(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.)
- (b) We estimate the average cost of fixing the machine as follows: the first entry in lim y (k) is the long-run probability of the machine breaking in any month. So that number times \$1,000 will give us an estimate of the monthly cost of fixing machines. Compute this number.
- 10. For the 3-class school diagramed in Figure 4.9, find kline y(k) and interpret this vector.

FIGURE 4.9.

11. Let A be a 2×2 diagonalizable matrix and b a 2×1 vector. Find, by using the eigenvalue-eigenvector approach, a formula for the solution to

$$x(k+1) = Ax(k)+b.$$

12. Let A be an n x n matrix. Prove that if x(k+1) = Ax(k) for all nonnegative integers k, then $x(0), x(1), \ldots$ converges, for all x(0), if and only if A, A^2, \ldots converges. (Hint: Use $x(0) = e_1, e_2, \ldots, e_n$.)

142 4. Matrix Calculus

13. (MATLAB) By computing eigenvalues, eigenvectors, and solving a system of linear equations for the scalars, solve

$$x_{1} (k+1) = 221 (k) + x_{2} (k)$$

$$x_{2} (k+1) = x_{1} (k) + 2x_{2} (k)$$

$$23 (k+1) = x_{2} (k) + 2x_{3} (k)$$

$$x_{1} (0) = 1$$

$$x_{2} (0) = 2$$

$$x_{3} (0) = 4.$$

14. (MATLAB) Find $\lim_{k \to \infty} A^k$ for $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & .3 & .7 & 0 \\ .2 & 0 & 0 & .8 \end{bmatrix}$.

- (a) Use the diagonalization approach.
- (b) Use the iteration approach.
- 15. (MATLAB) As in Example 4.6, graph the solution to Example 4.7, where $\boldsymbol{x}(0) = \begin{bmatrix} 400\\500 \end{bmatrix}$.

Ì

16. (Optional) The following population matrix, with age groups **as** in Optional, is for a small county.

0	0	0	0	.14	.34	.26	.14	.08	.06
.94	0	0	0	0	0	0	0	0	0
0.	98	0	0	0	0	0	0	0	0
0	0.	99	0	0	0	0	0	0	0
0	0	0.	99	0	0	0	0	0	0
0	0	0	0.	99	0	0	0	0	0
0	0	0	0	0.	99	0	0	0	0
0	0	0	0	0	0.	98	0	0	0
0	0	0	0	0	0	0.	97	0	0
0	0	0	0	0	0	0	0.	97	0

Analyze this matrix as was done in Optional. Use commands described in MATLAB.

4.3 Differential Equations

In this section, we show how to solve systems of differential equations. We start with a small example which can be generalized.

Let $x_1(t)$ and $x_2(t)$ be differentiable functions that satisfy

$$\begin{aligned} x_1'(t) &= a_{11}x_1(t) + a_{12}x_2(t) \\ x_2'(t) &= a_{21}x_1(t) + a_{22}x_2(t) \,. \end{aligned}$$

where a_{11}, a_{12}, a_{21} , and a_{22} are scalars. Putting these equations into a matrix equation yields

$$\frac{d}{dt}x(t) = Ax(t) \tag{4.11}$$

where $x = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$ and $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. We assume that A is diagonalizable and that $A = PDP^{-1}$, where $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$.

To find the function x(t), we substitute PDP^{-1} for A in (4.11), obtaining

$$\frac{d}{dt}x(t) = PDP^{-1}x(t).$$

Rearrangement yields

$$P^{-1}\frac{d}{dt}x(t) = DP^{-1}x(t)$$

or

$$\frac{d}{dt}\left(P^{-1}x\left(t\right)\right) = D\left(P^{-1}x\left(t\right)\right). \tag{4.12}$$

Now define

$$y(t) = P^{-1}x(t)$$
 (4.13)

and substitute this expression into (4.12) to obtain

$$\frac{d}{dt}y\left(t\right)=Dy\left(t\right).$$

In terms of entries, we now have

$$\frac{d}{dt}y_1(t) = \lambda_1 y_1(t)$$

$$\frac{d}{dt}y_2(t) = \lambda_2 y_2(t) .$$
(4.14)

Since, in general, the scalar differential equation

$$\frac{d}{dt} \cdot z(t) = \lambda z(t)$$

has solution $z(t) = \alpha e^{\lambda t}$, where α is an arbitrary constant, the solution to (4.14) is

$$y_1(t) = \alpha_1 e^{\lambda_1 t}$$
$$y_2(t) = \alpha_2 e^{\lambda_2 t}$$

where α_1 and α_2 are arbitrary scalars. Thus

$$y(t) = \begin{bmatrix} \alpha_1 e^{\lambda_1 t} \\ \alpha_2 e^{\lambda_2 t} \end{bmatrix}$$

and so by (4.13), and backward multiplication,

$$x(t) = Py(t)$$

$$= \alpha_1 e^{\lambda_1 t} p_1 + \alpha_2 e^{\lambda_2 t} p_2.$$
(4.15)

If A is n x n and diagonalizable, this extends to

$$x(t) = \alpha_1 e^{\lambda_1 t} p_1 + \dots + \alpha_n e^{\lambda_n t} p_n.$$

Thus to solve (4.11), we need only find the eigenvalues λ_1, λ_2 and corresponding eigenvectors p_1, p_2 of A, respectively, and write out the solution using them.

The following example shows how to use the formula to solve systems of differential equations.

Example 4.8 Solve

$$\begin{array}{rcl} x_1'(t) &=& -3x_1(t) + x_2(t) \\ x_2'(t) &=& x_1(t) - 3x_2(t) \, . \end{array}$$

Here $A = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}$. The eigenvalues of A are $\lambda_1 = -2$ and $\lambda_2 = -4$ with corresponding eigenvectors $p_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $p_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, respectively.

Thus,

$$x(t) = \alpha_1 e^{\lambda_1 t} p_1 + \alpha_2 e^{\lambda_2 t} p_2$$

= $\alpha_1 e^{-2t} \begin{bmatrix} 1\\1 \end{bmatrix} + \alpha_2 e^{-4t} \begin{bmatrix} -1\\1 \end{bmatrix}$

is the solution.

Note that because the eigenvalues of A are negative, $\lim x(t)=0$. t→∞

ł

all in the second s

1È

Similarly, if A is diagonalizable and has positive eigenvalues, we can show that

$$\frac{d^2}{dt^2} \boldsymbol{x}(t) + \boldsymbol{A} \boldsymbol{x}(t) = 0$$

has solution

$$x(t) = \left(\alpha_1 \sin\left(\sqrt{\lambda_1} t\right) + \beta_1 \cos\left(\sqrt{\lambda_1} t\right)\right) p_1 \qquad (4.16)$$
$$+ \left(\alpha_2 \sin\left(\sqrt{\lambda_2} t\right) + \beta_2 \cos\left(\sqrt{\lambda_2} t\right)\right) p_2$$

where the α'_{is} and β'_{is} are arbitrary constants. (The extension to $n \times n$ diagonalizable matrices should be clear.)

Another way to solve differential equations is by using functions. Functions will give neat, compact expressions for solutions which don't depend on the Jordan form. However, they can be difficult to compute.

To see how to develop functions of matrices, let $f(\tau)$ be a scalar function with Maclaurin series

f
$$(\tau) = a_0 + a_1 \tau + a_2 \tau^2 + \cdots$$
 (4.17)

where τ is a variable and a_0, a_1, \ldots constants. We assume that this series converges for all τ and thus converges absolutely for all τ .

For an $n \times n$ matrix A, define correspondingly

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \dots$$
 (4.18)

As given in the exercises, if $m = \max_{i,j} |a_{ij}|$ (the largest entry, in absolute value, in A), then

$$|a_{ij}| \le m, \ \left|a_{ij}^{(2)}\right| \le nm^2, \le \left|a_{ij}^{(3)}\right| \le n^2m^3, \dots$$

So since (4.17) converges absolutely, using $\tau = nm$,

 $|a_0| + |a_1|_{nm} + |a_2|_{(nm)}^2 + \cdots$

converges. Thus by the comparison test, using δ_{ij} as the Kronecker 6, $|a_0| \delta_{ij} + |a_1| |a_{ij}| + |a_2| |a_{ij}^{(2)}| + \cdots$ converges and so $a_0 \delta_{ij} + a_1 a_{ij} + a_2 a_{ij}^{(2)} + \cdots$ converges. So the series in (4.18) converges. (Thus, f(A) can be computed without knowing the Jordan form.)

An example may be helpful.

Example 4.9 Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then $A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ for all k. Now let $f(\tau) = e^{\tau}$. Since

$$e^{\tau} = 1 + \frac{\tau}{1!} + \frac{\tau^2}{2!} + \dots$$
$$e^A = I + \frac{1}{1!}A + \frac{\tau}{2!}A^2 + \dots$$
$$1! \qquad 2!$$

$$= \begin{bmatrix} 1 + \frac{1}{1!} + \frac{1^2}{2!} + \cdots & \frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + \cdots \\ 0 & 1 + \frac{1}{1!} + \frac{1^2}{2!} + \cdots \end{bmatrix}$$
$$= \begin{bmatrix} e & e \\ 0 & e \end{bmatrix}.$$

It should be mentioned that this matrix was chosen so that the series that occurred could be summed. In general, we can't find f(A) so easily.

We now obtain formulas for f(A) in terms of the Jordan form of A. Note that if

$$A = PJP^{-1}$$

where J is the Jordan form of A, then by substitution,

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \dots$$

= $a_0 P P^{-1} + a_1 P J P^{-1} + a_2 P J^2 P^{-1} +$
= $P(a_0 I + a_1 J + a_2 J^2 + \dots) P^{-1}$

which yields

$$f(A) = Pf(J) P^{-1}.$$
 (4.19)

ŋ

ł

ł

And, if $J = \text{diag}(J_1, \ldots, J_r)$, where each J_k is a Jordan block,

$$f(J) = a_0 I_1 + a_1 \operatorname{diag} (J_1, \dots, J_r) + a_2 \operatorname{diag} (J_1^2, \dots, J_r^2) + \dots$$

= diag($a_0 I_1 + a_1 J_1 + a_2 J_1^2 + \dots, \dots, a_0 I + a_1 J_r + \dots$)

where $I = \text{diag}(I_1, \dots, I_n)$ is partitioned as is J. So

$$f(J) = \operatorname{diag}(f(J_1), \ldots, f(J_r)).$$

Thus, to compute f(A), we need only find a formula for $f(J_i)$, where J_i is some Jordan block.

Lemma 4.1 If J_i is an $n \ge 1$ Jordan block, say, $J_i = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & \\ & & & \ddots & \lambda \end{bmatrix}$ $0 \quad 0 \quad 0 \quad \cdots$

then

$$f(J_i) = \begin{bmatrix} f(\lambda) & \frac{f^{(1)}(\lambda)}{1!} & \frac{f^{(2)}(\lambda)}{2!} & \dots & \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ 0 & f(\lambda) & \frac{f^{(1)}(\lambda)}{1!} & \dots & \frac{f^{(n-2)}(\lambda)}{(n-2)!} \\ & & \dots & \\ 0 & 0 & 0 & \dots & f(\lambda) \end{bmatrix}$$
(4.20)

where $f^{(k)}$ denotes the k-th derivative of **f**. (Recall here that $f^{(k)}(\lambda)$ means that f(r) is differentiated **k** tames and then τ is replaced by X.)

Proof. We sum the series $a_0I + a_1J_i + a_2J_i^2 + \cdots$. This yields, as the 1,1-entry of the sum,

$$a_0 + a_1 \lambda + a_2 \lambda^2 + \cdots = f(\lambda).$$

For the 1, r + 1 entry, we have

$$a_{r} \begin{pmatrix} r \\ r \end{pmatrix} + a_{r+1} \begin{pmatrix} r+1 \\ r \end{pmatrix} \lambda + a_{r+2} \begin{pmatrix} r+2 \\ r \end{pmatrix} \lambda^{2} + \cdots$$

$$= \frac{r!}{r!} a_{r} + \frac{(r+1)!}{r!1!} a_{r+1} \lambda + \frac{(r+2)!}{r!2!} a_{r+2} \lambda^{2} + \cdots$$

$$= \frac{1}{r!} \left(r!a_{r} + \frac{(r+1)!}{1!} !a_{r+1} \lambda + \frac{(r+2)!}{2!} a_{r+2} \lambda^{2} + \cdots \right)$$

$$= \frac{1}{r!} f^{(r)}(\lambda).$$

These expressions yield the entries of $f(J_i)$ that appear in the formula of the lemma.

An example follows.

Example 4.10 Let $f(\tau) = \sin \tau$ and $A = \begin{bmatrix} 1 & 0 \\ \frac{\pi}{6} & \frac{\pi}{6} & 1 \\ 0 & \frac{\pi}{6} \end{bmatrix}$. Then by using (4.20), we have

$$\sin A = \begin{bmatrix} f(\lambda) & \frac{f^{(1)}(\lambda)}{1!} & \frac{f^{(2)}(\lambda)}{2!} \\ 0 & f(\lambda) & \frac{f^{(1)}(\lambda)}{1!} \\ 0 & 0 & f(\lambda) \end{bmatrix}$$
$$= \begin{bmatrix} \sin \frac{\pi}{6} & \frac{\cos \frac{\pi}{6}}{1!} & \frac{-\sin \frac{\pi}{6}}{2!} \\ 0 & \sin \frac{\pi}{6} & \frac{\cos \frac{\pi}{6}}{1!} \\ 0 & 0 & \sin \frac{\pi}{6} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{4} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & \frac{1}{2} \end{bmatrix}.$$

More generally, we need to look at an example of the type f(At) where t is a real variable. (Scalars usually precede matrices; however, in this setting, by tradition, the roles are reversed.)

As shown previously for A, we can show that

$$f(At) = Pf(Jt)P^{-1}$$

However, we cannot use the formulas for f(Jt) since, for example, $Jt = \begin{bmatrix} \lambda t \\ 0 & \lambda t \end{bmatrix}$, the super diagonal is composed of 0's and t's, not 0's and 1's. Simply put, Jt is not a Jordan form. This, however, is easily remedied. For example, we can write

$$Jt = \begin{vmatrix} At & t & 0 \\ 0 & At & t \\ 0 & 0 & At \end{vmatrix}$$
$$- \begin{vmatrix} 1 & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & t^{-2} \end{vmatrix} \int \begin{bmatrix} 4t & 1 & 0 \\ \neg t & 1 \\ 0 & \lambda t \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t^2 \end{bmatrix}.$$
And since
$$\begin{bmatrix} At & 1 & 0 \\ 0 & At & 1 \\ 0 & 0 & At \end{bmatrix}$$
 is a Jordan block, we have
$$e^{Jt} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & t^{-2} \end{bmatrix} \begin{bmatrix} e^{\lambda t} & \frac{e^{\lambda t}}{1!} & \frac{e^{\lambda t}}{2!} \\ 0 & e^{\lambda t} & \frac{e^{\lambda t}}{1!} \\ 0 & 0 & e^{\lambda t} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t^2 \end{bmatrix}$$
$$= \begin{bmatrix} e^{\lambda t} & \frac{te^{\lambda t}}{1!} & \frac{t^2 e^{\lambda t}}{2!} \\ 0 & e^{\lambda t} & \frac{te^{\lambda t}}{1!} \\ 0 & 0 & e^{\lambda t} \end{bmatrix}.$$

More generally, for an $n \times n$ Jordan block J, we have

$$e^{Jt} = \begin{bmatrix} e^{\lambda t} & \frac{te^{\lambda t}}{1!} & \frac{t^2 e^{\lambda t}}{2!} & \cdots & \frac{tillet = 1eRi}{(n-1)!} \\ 0 & e^{\lambda t} & \frac{te^{\lambda t}}{1!} & \cdots & \frac{t^{n-2} e^{\lambda t}}{(n-2)!} \\ & & \ddots & \\ 0 & 0 & 0 & \cdots & e^{\lambda t} \end{bmatrix}.$$
 (4.21)

÷

In the example below, we show how to compute e^{At} .

Example 4.11 Let
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$
. Then $J = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ and $P = \begin{bmatrix} 0 \\ 1 & 1 \\ 0 \end{bmatrix}$.
Thus, using (4.21),
 $e^{At} = Pe^{Jt}P^{-1} = P\begin{bmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{bmatrix} P^{-1}$
 $= \begin{bmatrix} e^{2t} & 0 \\ te^{2t} & e^{2t} \end{bmatrix}$.

The remainder of the section concerns e^{At} and $\lim_{t \to \infty} e^{At}$. We use that if $\lambda = a + ib$, then $e^{\lambda t} = e^{at}e^{ibt}$ where $e^{ibt} = \cos(bt) + i\sin(bt)$. Thus, $|e^{ibt}| = 1$ for all t. In addition, we use that $\lim_{t \to \infty} e^{at} = \begin{cases} 0 \text{ if } a < 0\\ 1 \text{ if } a = 0\\ \infty \text{ if } a > 0 \end{cases}$. We now describe when $\lim_{t \to \infty} e^{At}$ exists.

Theorem 4.7 Let A be an $n \times n$ matrix. Then

- (a) $\lim_{t \to \infty} e^{At} = 0$ if and only if all eigenvalues $\lambda = a + bi$ of A satisfy a < 0.
- (b) $\lim_{t\to\infty} e^{At}$ exists if all eigenvalues $\lambda = a + bi$ of A satisfy $a \le 0$, and when a = 0, then $\lambda = 0$ and its corresponding Jordan blocks are $1 \ge 1$.

Proof. This follows by using L'Hospital's Rule on the entries of e^{Jt} .

We now solve the differential equation, with initial condition

$$y'(t) = Ay(t)$$
 (4.22)
 $y(0) = c,$

by using functions of matrices. We know that the scalar differential equation

$$\begin{aligned} \mathbf{x}'(t) &= ax(t) \\ \mathbf{z}(0) &= \mathbf{x_0} \end{aligned}$$

has solution

 $x(t) = e^{at} x_0.$

Using functions of matrices, we mimic this solution.

Note that, **æ** in the scalar case,

$$\frac{d}{dt}e^{At} = A + \frac{2A^2t}{2!} - \frac{3A^3t^2}{3!} + \cdots$$
$$= A\left(I + At + \frac{A^2t^2}{2!} + \cdots\right)$$
$$= Ae^{At}.$$

Hence by direct computation, we can show that

$$\mathbf{y}(t) = e^{At}c$$

is the solution to (4.22). Thus, if A is real, since e^{At} is a series in At, it is real and so is y(t), provided c is real.

An example follows.

150 4. Matrix Calculus

Example 4.12 Solve

$$\frac{d}{dt}x(t) = \begin{bmatrix} 2 & 0\\ 1 & 2 \end{bmatrix} x(t)$$
$$x(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}.$$

Using the data for the previous example,

$$\begin{aligned} \mathbf{x}(t) &= e^{\begin{bmatrix} \mathbf{2} & \mathbf{0} \end{bmatrix} \mathbf{t}} \begin{bmatrix} 1\\ 1 \end{bmatrix} \\ &= \begin{bmatrix} e^{2t} & \mathbf{0} \\ te^{2t} & e^{2t} \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} \\ &= \begin{bmatrix} e^{2t} \\ te^{2t} + e^{2t} \end{bmatrix}. \end{aligned}$$

We can get a view of the solution x(t) by graphing the vector x(t), or by using the exponential. The latter method does not require our knowing the Jordan form, so we will demonstrate this technique. We graph

$$x\left(t\right)=e^{At}\left[\begin{array}{c}1\\1\end{array}\right]$$

on [0, 2] in increments of .1. So, we plot

$$e^{0}\begin{bmatrix}1\\1\end{bmatrix}, e^{A(.1)}\begin{bmatrix}1\\1\end{bmatrix}, e^{A(.2)}\begin{bmatrix}1\\1\end{bmatrix}, \dots, e^{A(2)}\begin{bmatrix}1\\1\end{bmatrix}$$

to achieve the *'s in Figure 4.10. Again, 0 indicates the position of the initial

FIGURE 4.10.

vector and the segments connecting *'s indicate the order of occurrence of the x(t)s. Observe that as t increases, the x(t)s cover more distance so there is some acceleration.

4.3.1 Optional (Modeling Motions of a Building)

The two walls of a building, sketched in Figure 4.11, provide a restoring force on the floor above them. This force is equal to the stiffness constant

k of the walls times the displacement of the floor from equilibrium.

We now model the two story building in Figure 4.12 with floor masses m_1, m_2 and stiffness constants k_1, k_2 .

Let

 $y_1(t)$ = displacement of floor 1 from equilibrium at time t, and $y_2(t)$ = displacement of floor 2 from equilibrium at time t.

(Positive values indicate the building is to the right of equilibrium.)

The restoring force on floor 2 is $-k_2(y_2(t) - y_1(t))$ and thus, by Newton's law,

$$m_2 y_2''(t) = -k_2 (y_2(t) - y_1(t))$$

The restoring force on floor 1 is $-k_1y_1(t) + k_2(y_2(t) - y_1(t))$, so we have

$$m_{1}y_{1}''(t) = -k_{1}y_{1}(t) + k_{2}(y_{2}(t) - y_{1}(t))$$

Or, in matrix form,

$$\begin{bmatrix} m_1 & 0\\ 0 & m_2 \end{bmatrix} y''(t) + \begin{bmatrix} k_1 + k_2 & -k_2\\ -k_2 & k_2 \end{bmatrix} y(t) = 0$$

where $y(t) = \begin{bmatrix} y_1(t)\\ y_2(t) \end{bmatrix}$.

4.3.2 MATLAB (Code for Viewing Solutions of Differential Equations Using expm)

MATLAB does not provide a command for e^{At} ; however, we can use $expm(At_k)$, for values t_1, t_2, \ldots instead. We demonstrated this in Example 4.12.

) A

į

į,

For more information, type in help expm.

Code for Viewing Solution of Differential Equations

```
x = [1;1]; y = 2;
A = [2 0; 2 1];
t = .1;
for k = 1 : 21
                                % Generates e^{t_k A} x for
    p(k) = y(1);
                                    t = 0, .1, ..., 2.
    q(k) = y(2);
    y = \exp m \left( t \ast A \right) \ast x;
    t = t + .1;
end
plot (1,1,'0')
                                % Plots starting point with O.
hold
plot (p,q,'*')
                                % Plots points (p(k), p(k))
                                    for k = 1, ..., 20 with *.
                                % Plots 'curve.'
plot (p,q)
```

Exercises

1. Solve, using the eigenvalue-eigenvector formula (4.15).

(a)
$$x'_{1}(t) = -2x_{1}(t) + x_{2}(t)$$

 $x'_{2}(t) = x_{1}(t) - 2x_{2}(t)$
(b) $x'_{1}(t) = 2x_{1}(t) + x_{2}(t)$
 $x'_{2}(t) = 221(t) + x_{2}(t)$
 $x_{1}(0) = -1$
 $x_{2}(0) = 5$
(c) $x'_{1}(t) = x_{1}(t) + x_{2}(t) + x_{3}(t)$
 $x'_{2}(t) = x_{1}(t) + x_{2}(t) + x_{3}(t)$

$$\begin{aligned} x'_3(t) &= x_1(t) + x_2(t) + x_3(t) \\ x_1(0) &= 3 \\ x_2(0) &= 0 \\ x_3(0) &= 0. \end{aligned}$$

2. Solve, using the eigenvalue-eigenvector formula (4.16).

(a)
$$x_1''(t) + 2x_1(t) + 22(t) = 0$$

 $x_2''(t) + x_1(t) + 2x_2(t) = 0$
 $x_1(0) = 2$
 $x_2(0) = 0$
 $x_1'(0) = -4$
 $x_2'(0) = -2$
(b) $x_1''(t) + 3x_1(t) + 1x_2(t) = 0$
 $x_2''(t) + 2x_1(t) + 2x_2(t) = 0$
 $x_1(0) = 0$
 $x_2(0) = 3$
 $x_1'(0) = 3$
 $x_2'(0) = 2$

- 3. Solve the spring-mass problem in Optional of Section 1, for $m_1 = m_2 = 1, k_1 = 3, k_2 = 2$.
- **4.** Solve the two-floor building problem for $m_1 = m_2 = 1, k_1 = 3, k_2 = 4$ in Optional. Also use $y_1(0) = 1, y_2(0) = 2, y'_1(0) = y'_2(0) = 0$.
- 5. Let A = $\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$. Compute each of the following, using formulas (4.20)

(a)
$$e^A$$
 (b) $\sin A$
(c) e^{At} (d) $\sin At$

6. Let $f(t) = a_0 + a_1 t + a_2 t^2 + \cdots$. Assume that the series converges absolutely. Calculate each of the following.

(a)
$$f'(t)$$
 (b) $f''(t)$
(c) $f^{(k)}(t)$

- 7. Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$.
 - (a) Find e^A by summing the series.
 - (b) Find e^{At} .

154 4. Matrix Calculus

- 8. Solve $y'(t) = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} y$, by using (4.21), where $y(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Compute $\lim_{t \to \infty} y(t)$. Does the limit depend on y(0)?
- 9. Compute a formula for $\frac{d}{dt}\sin At$ and for $\frac{d}{dt}\cos At$.
- 10. (Cayley-Hamilton Theorem) Prove if $\varphi(\lambda)$ is the characteristic polynomial for A, $\varphi(A) = 0$. (Hint: Break this down to $P\varphi(J)P^{-1} = 0$ and use the formulas.)
- 11. Explain why $\frac{d}{dt}e^{At}$ can be computed termwise.
- 12. Let A be a 2×2 matrix with positive eigenvalues. By using functions, find the solution to y'' + Ay = 0. (Hint: Look at the corresponding scalar problem for ideas.)
- 13. Let A be an n x n matrix with $\max_{i,j} |a_{ij}| \le m$. Show that $|a_{ij}^{(k)}| \le n^k m^k$ for all $k \ge 1$.
- 14. To solve the differential equation

$$x^{(n)} + a_{n-1}x^{(n-1)} + \ldots + a_1x = 0$$
,

Ì

set $y_1 = x, y_2 = x^{(1)}, \dots, y_{n-1} = x^{(n-2)}, y_n = x^{(n-1)}$. Then, using the n + 1 equations, we have

$$y'_1 = y_2$$

 $y'_2 = y_3$
...
 $y'_{n-1} = y_n$
 $y'_1 = -a_{n-1}y_n - \dots - a_1y_1$.

This system can be solved by matrix techniques and y_1 gives the solution x. Do this technique to solve

$$x'' - 3x' + 22 = 0.$$

15. Two tanks of solution are linked as in Figure 4.13.

Initially, there are 100 gallons of solution in each tank. The solution in tank A contains 50 grams of salt, while there is no salt in tank B. Water is pumped into tank A at 20 gallons/min from an outside source. Solution is pumped as shown in the diagram.

Let $y_1(t)$ and $y_2(t)$ denote the grams of salt in tanks A and B, respectively, at time t.

(a) Model this problem with a system of differential equations.

FIGURE 4.13.

- (b) Solve the equations in (a).
- (c) Compute $\lim_{t\to\infty} y(t)$.
- (d) Explain what the calculation in (c) says about the amount of salt in the tanks as t increases.

16. Let f be a function with a Maclaurin series that converges for all τ . Let $J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$. Show, by summing the series, that $f(Jt) = \begin{bmatrix} f(\lambda t) & \frac{tf^{(1)}(\lambda t)}{1!} & \frac{t^2f^{(2)}(\lambda t)}{2!} \\ 0 & f(\lambda t) & \frac{tf^{(1)}(\lambda t)}{1!} & \frac{tf^{(1)}(\lambda t)}{2!} \\ 0 & 0 & f(\lambda t) \end{bmatrix}$.

17. The equation

$$y' = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} y, \ y(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

has solution $y = e^{(1+i)t} \begin{bmatrix} 1 \\ -i \end{bmatrix} + e^{(1-i)t} \begin{bmatrix} 1 \\ i \end{bmatrix}$.

- (a) Show that the imaginary part of y is 0.
- (b) Find the solution in terms of real numbers.
- 18. Let **A** be an **n** x n matrix and b(t) **an** n x 1 vector of continuous functions.
 - (a) Show that the solution to

$$y'(t) = Ay(t) + b(t)$$
$$y(0) = c$$

is

$$y(t) = e^{At}c + \int_0^t e^{A(t-\tau)}b(\tau)d\tau.$$

(Hint: Mimic the variation of parameter technique of scalar differential equations.)

(b) Solve
$$y'(t) = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} y(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

19. (Optional) Find the mathematical model for the three-story building diagrammed in Figure **4.14**.

i

Ì

FIGURE 4.14.

20. (MATLAB). Graph the solution to

$$\frac{d}{dt}x(t) = \begin{bmatrix} 0 & .9\\ -.9 & 0 \end{bmatrix} x(t)$$
$$x(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}.$$

- (a) By solving and then graphing the solution \boldsymbol{x} (t).
- (b) In steps t = 0, .1, 2, ..., as in Example 4.12.
- 21. (MATLAB) Solve using the eigenvalue-eigenvector formula.

$$\begin{array}{rcl} x_1'(t) &= x_1(t) &+ 2x_2(t) \\ x_2'(t) &= 221(t) &+ x_2(t) \\ x_3'(t) &= & x_2(t) &+ 2x_3(t) \\ x_1(0) &= 10 \\ x_2(0) &= -8 \\ x_3(0) &= & 0 \end{array}$$

5 Normed Vector Spaces

In previous chapters we used the standard definition of distance, d_E , on Euclidean *n*-space. In this chapter, we extend this work by defining various distances on Euclidean n-space and by defining distance on more general vector spaces, as well. Why we use various different ways to measure distance in a vector space will also be explained and shown in various examples.

5.1 Vector Norms

In this section we show how to define distance in vector spaces in general. As in Euclidean n-space, this is done by first defining the length of a vector.

Recall that the length of a vector x in \mathbb{R}^2 is

$$||x|| = (x_1^2 + x_2^2)^{\frac{1}{2}}$$

To get the general definition of length of a vector (called a norm in this setting), we use the properties of this length, **as** given in calculus.

Definition 5.1 Let V be a vector space. Suppose there is a way of assigning to each x in V, a nonnegative number, written ||x||. We call the assignment function a norm (or vector norm when we want to distinguish it from other norms that appear later in this book), provided that it satisfies the following properties for all x, y in V and scalars cr.

i. ||x|| > 0 *if* $x \neq 0$ *and* ||0|| = 0

- $ii. \|\alpha x\| = |\alpha| \|x\|$
- *iii.* $||x + y|| \le ||x|| + ||y||$ (This property, called the triangular inequality, generalizes by induction to $||x_1 + \cdots + x_r|| \le ||x_1|| + \cdots + ||x_r||$.)

A vector space that has a norm defined on it is called a normed vector space.

In a normed vector space V we can define distance d between a **pair** of vectors (Points may be a better word when talking about distance.) x and y as the norm of x - y. (See Figure 5.1.)

FIGURE 5.1

In this setting, the distance d is called a *metric*. This metric is translation invariant, that is, if $a \in V$,

$$d(x+a, y+a) = d(x, y).$$

Thus, d(x,0) = d(x + a, a), i.e., the distance from x to 0 is the same as the distance from x + a to a.

The *classical norms* on Euclidean *n*-space follow. Others are included in the exercises.

Theorem 5.1 Defined for all vectors x in Euclidean n-space, the following are $n \circ m$.

(a) $||x||_1 = \sum_{k=1}^n |x_k|$, called the 1-norm (b) $||x||_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{\frac{1}{2}}$, called the 2-norm Note that $||x||_2 = d_E(x,0)$. (c) $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$, called the 00-nom

Proof. We prove (a), leaving (b) and (c) as exercises. Since the first two properties of the definition of a norm are easily verified, we only show

the third property. For it,

$$|x + y||_{1} = \sum_{k=1}^{n} |x_{k} + y_{k}|$$

$$\leq \sum_{k=1}^{n} (|x_{k}| + |y_{k}|)$$

$$= \sum_{k=1}^{n} |x_{k}| + \sum_{k=1}^{n} |y_{k}|$$

$$= ||x||_{1} + ||y||_{1}$$

as required.

Example 5.1 Let $x = (1, -2, 2)^t$. Then

$$||x||_{1} = |1| + |-2| + |2| = 5$$

$$||x||_{2} = (1^{2} + (-2)^{2} + 2^{2}) = 3$$

$$||x||_{\infty} = \max\{|1|, |-2|, |3|\} = 3.$$

It is interesting to graph the unit "circles" of these norms in \mathbb{R}^2 .

(a) To graph $C_0 = \{x \in \mathbb{R}^2 : ||x||_1 = 1\}$, we graph $||x||_1 = 1$, or $|x_1| + |x_2| = 1$. To do this, in the first quadrant we graph $x_1 + x_2 = 1$, in the second quadrant $-x_1 + x_2 = 1$, etc.

The graph of $C_a = \{x \in \mathbb{R}^2 : ||x - a||_1 = 1\}$, where $a = \begin{bmatrix} 2\\ 2 \end{bmatrix}$, is a translation of the graph C_0 . Both graphs are shown in Figure 5.2, and they are congruent.

FIGURE 5.2.

(b) The graph of $C_0 = \{x \in \mathbb{R}^2 : ||x||_2 = 1\}$ is shown in Figure 5.3.

FIGURE 5.3.

(c) The graph of $C_0 = \{x \in \mathbb{R}^2 : ||x||_{\infty} = 1\}$ is given in Figure 5.4.

FIGURE 5.4.

Note that only the 2-norm is orientation invariant. That is, if we measure the length of a stick, with one end at the origin, we get the same result regardless of how the stick is placed. The length of the stick, however, will change in the 1-norm, and the ∞ -norm if, say, we tilt it a bit.

It is also interesting to graph the norms as functions of the entries of the vectors. The graphs of f(x) = ||x||, for the various classical norms, are given in Figure 5.5.

Observe that the only norm showing a smooth surface (*sopartial deriva*tives can be taken everywhere) is the 2-norm. We will show the importance of this when we **look** at least-squares problems. **Also**, note that the graphs in the previous examples are level curves of these functions.

We might wonder about the necessity of various norms and, thus, various metrics. To provide **an** answer we can recall that angles can be measured by using degrees or radians. However, in calculus, derivative formulas involving the trigonometric functions are given in radians. If they were done for degrees, those formulas would be more complicated. In the same way, often calculations are more easily done when choosing **an** appropriate no m.

FIGURE 5.5.

And, in some problems, the information obtained by using one norm can be better than that obtained **by** another.

Still, all norms are equivalent in the following sense. Given any norm $\|\cdot\|_{1}$, there are positive scalars α and β such that

$$\alpha d_{E}\left(x,0\right) \leq \left\|x\right\| \leq \beta d_{E}\left(x,0\right)$$

for all x. Thus ||x|| is small if and only if the entries of x are small. We will show this for our classical norms.

Theorem 5.2 For all vectors x,

- (a) $d_E(x,0) \le ||x||_1 \le \sqrt{n} d_E(x,0)$.
- (b) $d_E(x,0) = ||x||_2$.
- (c) $\frac{1}{\sqrt{n}} d_E(x,0) \le ||x||_{\infty} \le d_E(x,0)$.

Proof. We prove (a), leaving (c) for the reader. For this note that

$$\sum_{k=1}^n |x_k|^2 \le \left(\sum_{k=1}^n |x_k|\right)^2.$$

Thus, taking square roots

$$d_E\left(x,0\right) \le \left\|x\right\|_1.$$

And, since by the Cauchy-Schwarz inequality, as given in the exercises,

$$\sum_{k=1}^{n} 1 |x_k| \le \left(\sum_{k=1}^{n} 1^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} |x_k|^2\right)^{\frac{1}{2}},$$
$$||x||_1 \le \sqrt{n} d_E(x, 0)$$

162 5. Normed Vector Spaces

which yields (a). \blacksquare

Since $d_E(x_k, x_0) = d_E(x_k - x_0, 0)$, we see that if $x_1, x_2 \dots$ is a sequence of vectors and x_0 a vector, then for any norm $\|\cdot\|$, and corresponding α and β ,

$$\alpha d_E(x_k, x_0) \leq \|x_k - x_0\| \leq \beta d_E(x_k, x_0).$$

Thus, if we establish convergence to x_0 in any of our norms, we equivalently have established convergence in the Euclidean distance, and vice versa. Figure 5.6 and **5.7** shows the convergence of x_1, x_2, \ldots to x_0 using Euclidean distance and the ∞ -norm.

FIGURE 5.6.

FIGURE 5.7.

5.1.1 Optional (Evaluating Models)

Mathematical models are often built to predict or describe some phenomenon. Such models should, when possible, be evaluated. We show how this can be done on a small social science problem.

Social scientists study people: numbers of people in each age group, job category, sex, etc. And they study movements of people in various categories.

Professional	15	10	3	28
Supervisory	9	35	44	88
Labor	8	55	221	284

$$A = \begin{bmatrix} \frac{15}{32} & \frac{10}{100} & \frac{3}{268} \\ \frac{9}{32} & \frac{35}{100} & \frac{44}{268} \\ \frac{8}{32} & \frac{55}{100} & \frac{221}{268} \end{bmatrix}$$

Note that the first row of A gives the percentage of each categories' sons that end up as professionals. The second and third row of A have corresponding interpretations. Thus, if f is a distribution of fathers in the categories, then

$$s = Af$$

gives the distribution of their sons in the categories. For example in our data

$$f = \begin{bmatrix} 32\\100\\268 \end{bmatrix}, s = \begin{bmatrix} 28\\88\\284 \end{bmatrix}$$

and $\mathbf{A}\mathbf{f} = \mathbf{s}$.

What we now do is use this transition matrix to compute the distribution of the sons' sons in the categories. For this, we calculate

sons' sons
$$=As$$

= $\begin{bmatrix} 25.1\\ 85.3\\ 289.6 \end{bmatrix} \approx \begin{bmatrix} 25\\ 85\\ 290 \end{bmatrix}$.

5.1.2 MATLAB (Vector Nom)

The commands to obtain vector norms are natural: norm(x, 1) provides $||x||_1$, norm(x, 2) provides $||x||_2$, and norm (x, \inf) provides $||x||_{\infty}$. For more, type in *help* nom.

Exercises

- 1. Let $x = (1, 1, 1)^t$. Compute $||x||_1$, $||x||_2$, and $||x||_{\infty}$.
- 2. Find the distance between $(1, 0, 1, 1)^t$ and $(1, 1, 2, 0)^t$ using the
 - (a) 1-norm.
 (b) 2-norm.
 (c) ∞-norm.
- 3. Let $x = (3 4i, 4 + 3i)^t$. Find the length of x in the
 - (a) 1-norm.
 (b) 2-norm.
 (c) ∞-norm.
- 4. Let $x = (1+2i, 2+i)^t$ and $y = (1+i, 1-2i)^t$. Find the distance between x and y in the
 - (a) 1-norm. (b) 2-norm.
 - (c) 00-norm.
- 5. Draw the unit 'circles' of the 1-norm, 2-norm, and 00-norm in \mathbb{R}^2 , superimposing one upon the others. Using these pictures, decide the following.

- (a) If $||x||_1 \le 1$ is $||x||_2$
- (b) If $||x||_{\infty} \le 1$ is $||x||_2 \le 1$
- 6. Graph the unit 'circles' of the 1-norm and the ∞ -norm in \mathbb{R}^3 . Is the 'circle' for the 1-norm similar to a rotation of that of the 00-norm, as it is in \mathbb{R}^2 ? (Hint: Count vertices.)
- 7. Prove that if $\|\cdot\|$ is a vector norm,

(a) ||-x|| = ||x||. (b) ||x - y|| = ||y - x||.

- 8. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x_1, x_2) = ||x||_2$ where $x = (x_1, x_2)^t$. Find $\frac{\delta f}{\delta x_1}(x_1, x_2)$ and $\frac{\delta f}{\delta x_2}(x_1, x_2)$.
- 9. Place a stick in R^2 so that one end is at the origin and the other at $(0,1)^t$. Tilt the stick by $\frac{\pi}{4}$ radian. Find the length of the tilted stick in each of the following.
 - (a) 1-norm (b) 2-norm (c) ∞ -norm
- 10. (Cauchy-Schwarz inequality) Let $x, y \in \mathbb{R}^n$. Prove that $\sum_{k=1}^n x_k y_k \leq ||x||_2 ||y||_2$ as follows. (This inequality can be recalled from the calculus result $\cos \theta = \frac{x \cdot y}{||x||_2 ||y||_2}$ by noting that $|\cos \theta| \leq 1$.)
 - (a) Show $0 \le \|x + ty\|_2^2 = \|x\|_2^2 + 2t \sum_{k=1}^n x_k y_k + t^2 \|y\|_2^2$ where t is scalar.
 - (b) Plug $t = ||x||_2^2 / \sum_{k=1}^n x_k y_k$.
 - (c) Extend the result to complex scalars showing $|x^H y| \le ||x||_2 ||y||_2$.
- 11. Prove Theorem 5.1
 - (a) Part (b). Hint: Use the Cauchy-Schwarz inequality.
 - (b) Part (c).
- Let x and y be in Euclidean n-space. Use Theorem 5.2 in the following.
 - (a) If $||x||_1 < .001$, find bounds on $||x||_2$ and $||x||_{\infty}$.
 - (b) If $||x y||_{\infty} < .001$, find bounds on $||x y||_1$ and $||x y||_2$.

13. Define

$$||x||_{p} = (|x_{1}|^{p} + \ldots + |x_{n}|^{p})^{\frac{1}{p}}.$$

where p is a positive integer. Prove that $||x||_p$, called the *p*-norm, is a vector norm on Euclidean n-space. (Just verify norm properties (i) and (ii)).

- 14. Let $d_1 > 0$ and $d_2 > 0$. Show that $||x|| = (d_1 |x_1|^2 + d_2 |x_2|^2)^{\frac{1}{2}}$, called a weighted norm, is a norm on Euclidean n-space.
- 15. Prove part (c) of Theorem 5.2.
- 16. (Optional) Using MATLAB and eigenvalues and eigenvectors, compute $\lim_{k\to\infty} A^k f$. Explain what this vector tells us about the long-run behavior of the sons' occupations.
- 17. (MATLAB) The population of a small country is placed in categories
 0-9 years old, 10-19 years old, . . . The population in the categories in 1970 was

 $(82, 330, 506, 525, 425, 431)^t$.

The Leslie matrix was found to be

0	0	.2	32	.207	.036	0
.98	6 0	0		0	0	0
0	.99	0		0	0	0
0	0.	9	9	0	0	0
0	0	0		.99	0	0
0	0	0		0	.99	0

- (a) Compute the population, in the categories in 1980 and 1990.
- (b) The actual population in 1990 is given by

 $(187, 81, 330, 506, 524, 424)^t$.

Find the relative (percentage) error between the estimate computed in (a) and the actual population.

5.2 Induced Matrix Norms

In various calculating situations, involving vectors and matrices, we need to pull out A in ||Ax||, similar to pulling out a scalar, $||\alpha x|| = |\alpha| ||x||$. The matrix norm of this section is designed to have that property.

Definition 5.2 Let $\|\cdot\|$ be a vector norm on Euclidean n-space. Define the induced matrix norm for an $n \times n$ matrix **A** as

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}.$$
(5.1)

(It can be proved that there is a maximum, as well as a minimum value of $f(x) = \frac{\|Ax\|}{\|x\|}$ when f is evaluated over all $x \neq 0$. Later we wall prove this for the classical vector norms.)

If A is $m \times n$ and we use the same classical vector norm on ||x|| and ||Ax||, ||A|| is also defined by (5.1). (Note that if $m \neq n$ then x and Ax are in different vector spaces.)

By the way we defined ||A||, we see that

$$||Ax|| \le ||A|| \, ||x||$$

for all x, precisely the property that allows us to pull out A in ||Ax||. On some problems, the following method to calculate ||A|| is useful.

Theorem 5.3 $||A|| = \max_{||u||=1} ||Au||.$

Proof. Let $f(\mathbf{x}) = \frac{\|Ax\|}{\|x\|}$ for all $x \neq 0$. Then $f(z) = \frac{\|Ax\|}{\|x\|} = \frac{1}{\|x\|} \|Ax\| = \left\|A\frac{x}{\|x\|}\right\|$ and setting $u = \frac{x}{\|x\|}$

$$f(x) = ||Au||$$
$$= f(u).$$

Thus, we see that every value off is achieved by some u, ||u|| = 1.

Furthermore, if ||u|| = 1, then setting x = u, we have f(x) = f(u). So every value achieved by u, ||u|| = 1, is also achieved by an $x, x \neq 0$. Thus,

$$\max_{x \neq 0} f(x) = \max_{\|u\|=1} f(u) = \|A\|$$

the desired result.

An example calculating the induced matrix norm may now be helpful.

Example 5.2 Let
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
. Then, using the vector 2-norm
 $f(x) = ||Ax||_2$ (5.2)
 $= \sqrt{5x_1^2 - 8x_1x_2 + 5x_2^2}$.

If $||x||_2 = 1$, $x_1^2 + x_2^2 = 1$, so $x_1 = \pm \sqrt{1 - x_2^2}$. Plugging this into (5.2) and using calculus, we can show that $\max f(\mathbf{x}) = 3$. So $||A||_2 = 3$.

We now need to show that an induced matrix norm is in fact a norm.

Theorem 5.4 Any induced matrix norm is a norm. That is, for any $m \times n$ matrices A and B and for any scalar a,

- 1. ||A|| > 0 if $A \neq 0$ and ||0|| = 0,
- 2. $\|\alpha A\| = |\alpha| \|A\|$ for any scalar a, and

3.
$$||A + B|| \le ||A|| + ||B||$$
.

In addition, every induced matrix norm has the following properties:

- (a) ||I|| = 1.
- (b) $||Ax|| \leq ||A|| ||x||$, with equality for some $x \neq 0$.
- (c) $||AB|| \leq ||A|| ||B||$, assuming the product is defined.
- (d) $\min_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\| = \frac{\mathbf{A}^{\perp}}{\|\boldsymbol{A}^{-1}\|}, \ \text{is nonsingular.}$
- (e) $||Ax|| \geq \frac{1}{||A^{-1}||} ||x||$, provided A is nonsingular.

Proof. We first prove that the induced matrix norm is actually a norm. For this, we prove properties (2) and (3), leaving property (1)as an exercise.

ŝ

ŝ

Eart 1. For (2), using vector norm properties, we have that

$$\|\alpha A\| = \max_{\|u\|=1} \|(\alpha A) u\|$$

= $\max_{\|u\|=1} |\alpha| \|Au\|$
= $|\alpha| \max_{\|u\|=1} \|Au\|$
= $|\alpha| \|A\|$

For (3), we have that

$$||A + B|| = \max_{||u||=1} ||(A + B) u||$$

= $\max_{||u||=1} ||Au + Bu||$
 $\leq \max_{||u||=1} (||Au|| + ||Bu||)$
 $\leq \max_{||u||=1} ||Au|| + \max_{||u||=1} ||Bu||$
 $= ||A|| + ||B||.$

Part 2. We now prove three of the remaining properties of the theorem. For (b), by definition

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

Thus, for any $x \neq 0$,

$$\|A\| \geq \frac{\|Ax\|}{\|x\|}$$

or

 $||A|| ||x|| \ge ||Ax||$.

And, the latter inequality holds for all x. Further, equality holds for some $x \neq 0$ since $f(x) = \frac{\|Ax\|}{\|x\|}$ achieves a maximum at some $x \neq 0$. For (c), since

$$||AB|| = \max_{x\neq 0} \frac{||ABx||}{||x||},$$

we have by (b)

$$||AB|| \le \max_{x \ne 0} \frac{||A|| \, ||Bx||}{||x||},$$

and again by (b)

$$||AB|| \le \max_{x \ne 0} \frac{||A|| ||B|| ||x||}{||x||} = ||A|| ||B||.$$

For (d), for any ||x|| = 1,

$$1 = ||x|| = ||A^{-1}Ax|| \le ||A^{-1}|| \, ||Ax||$$

where equality holds for some x by (b). Thus $\frac{1}{\|A^{-1}\|} \leq \|Ax\|$ and since equality holds for some x,

$$\frac{1}{\|A^{-1}\|} = \min_{\|x\|=1} \|Ax\|$$

which is the result desired. \blacksquare

Since induced matrix norms are **norms**, the equivalence of norms result holds. That is, for any induced matrix norm $\|\cdot\|$, there are positive scalars α and β such that

$$\alpha d_{E}\left(A,0\right) \leq \left\|A\right\| \leq \beta d_{E}\left(A,0\right)$$

where d_E is the Euclidean distance on matrices. The consequences of this result are **as** those for vector norms. For example, if a sequence of matrices A_1, A_2, \ldots is such that

$$||A_k - A|| \to 0 \text{ as } k \to 0,$$

for some matrix A, then

$$\alpha d_E(A_k, A) \to 0 \text{ as } k \to 0.$$

So, A_k tends to A entrywise.

As you might suspect, computing ||A|| by definition can be rather challenging. Remarkably, however, we can find formulas for a few of the induced matrix norms.

Theorem 5.5 Let A be an $m \times n$ matrix. Using the classical vector norms, we have the following.

- (a) For the vector norm $\|\cdot\|_1$, $\|A\|_1 = \max_j \sum_{k=1}^m |a_{kj}|$, the maximum absolute column sum.
- (b) For the vector norm $\|\cdot\|_{\infty}$, $\|A\|_{\infty} = \max \sum_{k=1}^{n} |a_{ik}|$, the maximum absolute row sum.
- (c) For the vector norm $\|\cdot\|_2$, $\|A\|_2 = \max [A(A^H A)]^{\frac{1}{2}}$ where the maximum is taken over the square root of all eigenvalues $\lambda(A^H A)$ of $A^H A$. (For completeness we included this formula here. It is proved in Chapter 7.)

Proof. We prove (a). There are two parts.

Part 1. We show $||A||_1 \le \max_j \sum_{k=1}^m |a_{kj}|$. For this,

$$\|A\|_{1} = \max_{\|u\|_{1}=1} \|Au\|_{1} = \max_{\|u\|_{1}=1} \left(\left| \sum_{j=1}^{n} a_{1j}u_{j} \right| + \dots + \left| \sum_{j=1}^{n} a_{mj}u_{j} \right| \right)$$
$$\leq \max_{\|u\|_{1}=1} \left(\sum_{j=1}^{n} |a_{1j}| |u_{j}| + \dots + \sum_{j=1}^{n} |a_{mj}| |u_{j}| \right)$$
$$= \max_{\|u\|_{1}=1} \left(\sum_{j=1}^{n} (|a_{1j}| + \dots + |a_{mj}|) |u_{j}| \right)$$

$$\leq \max_{j} (|a_{1j}| + \dots + |a_{mj}|) \left(\sum_{j=1}^{n} |u_j| \right)$$
$$= \max_{j} (|a_{1j}| + \dots + |a_{mj}|) = \max_{j} \sum_{k=1}^{m} |a_{kj}|$$

	100
× .	- 4
Part 2. We show there is a u, $||u||_1 = 1$, where $||Au|| = \max_j \sum_{k=1}^m |a_{kj}|$. For this suppose $\max_j \sum_{k=1}^m |a_{kj}| = \sum_{k=1}^m |a_{kr}|$. Then set $u = e_{j}$. Using this u, since $||u||_1 = 1$,

$$||A||_1 \ge ||Au||_1 = |a_{1r}| + \dots + |a_{mr}| = \sum_{k=1}^m |a_{kr}| = \max_j \sum_{k=1}^m |a_{kj}|.$$

Putting the parts together yields the result.

Example 5.3 Let
$$A = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$
. Then
 $||A||_1 = \max\{|3| + |-2|, |-1| + |2|\}$
 $= \max\{5, 3\} = 5$
 $||A||_{\infty} = \max\{|3| + |-1|, |-2| + |2|\}$
 $= \max\{4, 4\} = 4$
 $||A||_2 = \max[\lambda (A^t A)]^{\frac{1}{2}}$
 $= \max(4.13, .97)$ rounded to the hundreths place
 $= 4.13.$

We conclude this section by showing what induced matrix norms tell us about a linear transformation,

$$L(x) = Ax$$

If we look at the image of the unit circle,

- 1. $\max_{\substack{\|x\|=1\\\|A\|}} \|L(x)\| = \|A\|$ says that the longest vector there has length $\|A\|$.
- 2. $\min_{\|x\|=1} \|L(x)\| = \frac{1}{\|A^{-1}\|}$ says that the shortest vector there has length $\frac{1}{\|A^{-1}\|}$. (We assume here that A is nonsingular.)

Thus

3. $\frac{\max_{\|\boldsymbol{L}\|=1}\|\boldsymbol{L}(\boldsymbol{z})\|}{\min_{\|\boldsymbol{U}\|=1}\|\boldsymbol{L}(\boldsymbol{y})\|} = \|\boldsymbol{A}\| \|\boldsymbol{A}^{-1}\|.$ This number gives us some indication of how much the image of the circle is distorted.

Example 5.4 Let $\mathbf{L}(x) = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} x$. As indicated in the Figure 5.8 and shown in Chapter 10, the image of the unit circle is an ellipse.

FIGURE 5.8.

The major axis is an line with the vector $\begin{bmatrix} 1\\1 \end{bmatrix}$ and the minor axis in line with $\begin{bmatrix} -1\\1 \end{bmatrix}$. We now find the maximum and minimum lengths among the image vectors. Since $L\left(\begin{bmatrix} \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} \end{bmatrix}\right) = 4\begin{bmatrix} \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} \end{bmatrix}$, the maximum length is 4, which agrees with

$$\|A\|_{2} = 4.$$
And, since $L\left(\begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}\right) = 2\begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$, the minimum length is 2. This is the same as

 $\frac{1}{\|A^{-1}\|_2} - 2.$

We can convert these remarks into results about approximations. For this, let w be given and z an approximation of w. Then

$$\|L(w) - L(z)\| \le \|A\| \|w - z\|$$
(5.3)

l

l

I

which say that the error between image vectors, ||L(w) - L(z)||, is no more than ||A|| times the error between w and z, ||w - z||.

Should we want to bound the error independent of scaling, we would **use** relative error. The error between w and z, relative to w, is defined as

$$RE = \frac{\|w - z\|}{\|w\|}.$$

Independence of scaling can be seen in the calculation

$$\frac{\|100w - 100z\|}{\|100w\|} = \frac{\|w - z\|}{\|w\|}.$$

Note that if

$$\frac{\|w-z\|}{\|w\|} \le 10^{-s},$$

where s is a positive integer, then

 $||w - z|| \le 10^{-s} ||w||$.

Now, $10^{-s} ||w||$ moves the decimal in ||w|| to the left *s* places. Thus, the first digit of ||w - z|| begins (in the worst case) at the (s + 1) - st digit of ||w||. For example, $10^{-3} (12345) = 12.345$, whose first digit begins in the 4-th digit of 12345. So *z* approximates *w* to within the s-th digit of ||w||, the size of *w*. We will say here that ϵ is an s digit approximation of *w*.

Using Theorem 5.4,

$$\frac{\|L(w) - L(z)\|}{\|L\|(w)\|} < \frac{\|A\| \|w - z\|}{\|A\|^{-1}} \|w\|$$

$$= c(A) \frac{\|w - z\|}{\|w\|}$$
(5.4)

where

$$c\left(A\right) = \left\|A\right\| \left\|A^{-1}\right\|,$$

c(A) called the *condition number* of A. Thus the relative error between image vectors is no greater than c(A) times that of the relative error between the vectors themselves. So c(A) is somewhat like the derivative in calculus. (The derivative indicates how much change in function values we might expect from a change in values.)

As given in the exercises, $c(A) \ge 1$ for all A. In addition, although c(A) can be computed using any induced matrix norm, the sizes of the corresponding c(A)'s are about the same. For example, it can be shown that

$$\frac{1}{n} \leq \frac{c_{\infty}(A)}{c_{2}(A)} \leq n$$
$$\frac{1}{n} \leq \frac{c_{1}(A)}{c_{2}(A)} \leq n,$$

where $c_1(A), c_2(A)$, and $c_{\infty}(A)$ are the condition numbers of A with respect to the induced 1, induced 2, and induced ∞ matrix norms, respectively.

5.2.1 Optional (Error in Solving Ax = b)

For us, a t-digit computer is a computer which rounds or truncates all numbers to the first t digits of the number. For example, using rounding,

a 3-digit computer gives

$$64872 = 64900$$

and

$$329 \pm 2.67 = 331.67 = 332.$$

Thus, if **a** problem is solved on **a** t-digit computer, the numerical t-digit solution is in error. For example, suppose we solve, using **a** 2-digit computer,

$$\begin{bmatrix} 2 & -1 \\ -2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 410 \\ 250 \end{bmatrix}.$$

Applying $R_1 + R_2$, we get

$$\left[\begin{array}{cc|c} 2 & -1 & | & \mathbf{410} \\ 0 & 5 & | & \mathbf{660} \end{array}\right]$$

Thus, $x_2 = \frac{66'}{5} = 132 = 130$ and by back substituting

$$2x_1 - (130) = 410$$
$$2x_1 = 540$$
$$x_1 = 270.$$

The computed solution (270, 130) can be compared to the actual solution (271, 132), and we can see that we computed the first 2 digits of the entries of the actual solution accurately. Unfortunately, such accuracy is not always the case.

Let A be an $n \ge n$ nonsingular matrix and b an $n \ge 1$ vector. Consider

$$\mathbf{A}\mathbf{X} = b. \tag{5.5}$$

It can be reasoned that if (5.5) is solved by, say, Gaussian elimination with partial pivoting, on a t-digit computer, then the obtained answer \hat{x} , satisfies

$$(A + E)\hat{x} = b \tag{5.6}$$

for some $n \ge n$ matrix E where

$$\frac{\|E\|_{\infty}}{\|A\|_{\infty}} \approx 10^{-t}$$

(\approx denotes approximately). Actually, E depends on *n* and so for small problems, the approximation can be better, while on larger problems, it can be worse. Furthermore, if *x* is the solution to (5.5),

$$\frac{\|x - \hat{x}\|_{\infty}}{\|x\|_{\infty}} \approx c_{\infty} \left(A\right) \frac{\|E\|_{\infty}}{\|A\|_{\infty}}.$$

ļ

l

I

Ì

So the condition number shows how much affect the change E in (5.6) has on the solution in (5.5). For example, if t = 7 and $c(A) = 10^2$ then

$$\frac{\|x - \hat{x}\|_{\infty}}{\|x\|_{\infty}} \approx 10^5$$

So \hat{x} need not be a 7 digit approximation of x. We may have lost 2 digits because of the condition of the problem.

Loosely, if c(A) is small (error magnification is not significant), then A is called well conditioned. If, on the other hand, c(A) is large (error magnification is beyond what is desired), then A is called *ill-conditioned*. In between, A is called moderately conditioned. (What is significant and what is tolerable depends on the problem at hand.)

We now look at an example which puts some of the discussion together.

Example 5.5 Let
$$A = \begin{bmatrix} \frac{10}{3} & \frac{5}{3} & \frac{10}{7} \\ \frac{10}{3} & \frac{30}{7} & \frac{50}{9} \\ \frac{20}{9} & 5 & \frac{50}{7} \end{bmatrix}$$
 and $b = \begin{bmatrix} \frac{5}{3} \\ \frac{9}{7} \\ \frac{2}{3} \end{bmatrix}$. We solve $Ax =$

b using MATLAB.

Using format long to get about 15 digits (MATLAB calculates in about 15 digits.). we get

$$\hat{x} = \begin{vmatrix} 1.26923076923075 \\ -3.1999999999993 \\ 1.93846153846149 \end{vmatrix},$$

while

$$x = \begin{bmatrix} \frac{\frac{33}{33}}{\frac{26}{5}} \\ \frac{-16}{5} \\ \frac{126}{65} \end{bmatrix} \approx \begin{bmatrix} 1.26923076923079 \\ -3.200000000000 \\ 1.93846153846154 \end{bmatrix}$$

So we can see there is some error. Now

$$cond(A, inf) = 1.2066666666666643 \times 10^3$$

All but the leading digit or so of these digits are unimportant (so even if this computation has lots of its last digits in error, it still gives us what we want). We note that

$$c(A) \approx 10^3$$
.

So, we might expect to lose a few digits. Now,

$$\frac{\|x - \hat{x}\|_{\infty}}{\|x\|_{\infty}} = 2.1926 \times 10^{-14}$$

\$\approx 10^{-14}\$.

So we lost about 1 digit. (Our answer was not exactly obtained as a 15-digit computation.)

ļ

ŧ

I

ŧ

I

I

I

Since MATLAB calculations are done in about 15 digits, and normally only the first 5 digits are displayed, unless c(A) is very large, we should have the answer we want.

From the above, we see that computing c(A), and getting, say, 10^s , tells us about our answer \hat{x} . If s is large, it is a red flag that the computed answer may not be a sufficiently close digit approximation of x. (In such a case, using iterative improvement, as discussed in Chapter 8 can provide more digits of accuracy.)

5.2.2 MATLAB (Matrix Norms and Condition Numbers)

The commands for computing matrix norms are like those for vector norms, namely: norm(A, 1) for $||A||_1$, norm(A, 2) for $||A||_2$, norm(A, inf) for $||A||_{\infty}$, norm(A, fro') for $||A||_F = d_E(A, 0)$. For more type in help nom.

In addition, we can compute the various condition numbers: cond (A,1) for $c_1(A)$, cond (A,2) for $c_2(A)$, cond (A,inf) for $c_{\infty}(A)$. For more type in help cond.

Exercises

1. Let $\{m_1, \ldots, m_n\}$ be a set of real numbers.

- (a) If c is a positive number, prove that $\max \{cm_1, \ldots, cm_r\} = c \max \{m_1, \ldots, m_r\}.$
- (b) If $\{n_1, \ldots, n_n\}$ is also a set of numbers, prove that

$$\max \{m_1 + n_1, \dots, m_r + n_r\} \\ \leq \max \{m_1, \dots, m_r\} + \max \{n_1, \dots, n_r\}.$$

- 2. Prove Theorem 5.4,
 - (a) Property 1. (b) Property a.(c) Property e.
- 3. Prove Theorem 5.5, part b.
- **4.** Let $A = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$. Prove that $||A||_2 = 5$ by maximizing $f(x) = ||Ax||_2$ over all x, $||x||_2 = 1$.
- 5. Using the formulas in Theorem 5.5, compute both $||A||_1$ and $||A||_{\infty}$ for

(a)
$$A = \begin{bmatrix} 1 & -1 & -3 \\ 2 & 0 & -5 \\ 1 & 4 & -2 \end{bmatrix}$$
. (b) $A = \begin{bmatrix} i & 1+2i \\ 3-4i & 6 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 4 & -1 & 0 & -3 \end{bmatrix}$.

6. Using the formula for Theorem 5.5, compute $||A||_2$ for

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
. (b) $A = \begin{bmatrix} 1-i & 1+i \\ 1+i & 1+i \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
7. Let $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

- (a) Graph C_0 in the 1-norm.
- (b) Graph the image of C_0 under L(x) = Az. (Note that L maps edges to edges.)
- (c) Compute $||A||_1$ from your sketch.
- (d) Compute $||A||_1$ by the formula in Theorem 5.5.

8. Repeat Exercise 7 for A =
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 and the ∞ -norm.

9. Let $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

(a) Find the grid view of L(z) = Az.

(b) Using the 1-norm, find the distance between $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\2 \end{bmatrix}$ and the distance between $L\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}\right)$ and $L\left(\begin{bmatrix} 2\\2\\2 \end{bmatrix}\right)$.

- (c) Compute $||A||_1$ and verify (5.3).
- (d) Compute c_1 (A) and verify (5.4).
- 10. Let A be an n x n matrix and $\|\cdot\|$ an induced matrix norm. Prove that

$$||A^k|| \le ||A||^k \text{ for all } k.$$

11. Let A be an n x n matrix. Prove that

$$\frac{1}{n} \|A\|_F \le \|A\|_1 \le \sqrt{n} \|A\|_F$$

Also prove that

$$\frac{1}{n} \|A\|_F \le \|A\|_{\infty} \le \sqrt{n} \|A\|_F.$$

12. Prove using any induced matrix norm, that for nonsingular matrices,

(a)
$$c(A) \ge 1$$
.
(b) $c(I) = 1$.
(c) $c(A) = c(A^{-1})$.
(d) $c(AB) \le c(A) c(B)$.

- 13. Let A be a nonsingular matrix and suppose that As = b.
 - (a) If Ay = c, show that

$$\frac{\|x-y\|}{\|x\|} \le c(A) \frac{\|b-c\|}{\|b\|}.$$

1

I

(b) If 4 is the computed solution and $r = b - A\hat{x}$, show that

$$\frac{\|\hat{x} - y\|}{\|x\|} \le c(A) \frac{\|r\|}{\|b\|}.$$

Explain what this means.

14. Find s and y in \mathbb{R}^2 such that $||x - y||_2 > 100$ but $\frac{||x - y||_2}{||y||} < .01$. (Hint: It may help to work from drawings.)

15. Let
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. If $||x - y||_{\infty} < 10^{-t}$, then $|x_i - y_i| < 10^{-t}$ for $i = 1, 2$. If $\frac{||x - y||_{\infty}}{||x||_{\infty}} < 10^{-t}$, is it true that $\frac{|x_i - y_i|}{||x_i|} < 10^{-t}$ for all i?

- 16. Concerning relative error,
 - (a) Suppose $\frac{|123.4-x|}{123.4} \le 10^{-3}$ for some scalar x. Prove that x differs from 123.4 in the 4th digit of 123.4 (counting digits from the left).
 - (b) Sometimes we say 'loosely' that **123.4** and s agree in the first **3** digits. To see why this can be wrong, note that

$$\frac{|1.000 - .999|}{1} \le 10^{-3}.$$

Does .999 'differ' from 1.000 in the 4th digit? (Remember there are 2 representations of 1 in decimal notation, namely, 1 and .999...)

(c) If

$$\frac{\left\| \begin{bmatrix} 2\\3 \end{bmatrix} - x \right\|}{\left\| \begin{bmatrix} 2\\3 \end{bmatrix} \right\|} \le 10^{-3},$$

show that
$$\begin{bmatrix} 2\\3 \end{bmatrix}$$
 and x differ in the 4th digit of $\left\| \begin{bmatrix} 2\\3 \end{bmatrix} \right\|$

17. Let A be a 2 x 2 matrix and L(x) = Az. How should w and E be placed in \mathbb{R}^2 so that

(a)
$$||L(w) - L(z)||_2 = ||A||_2 ||w - z||_2$$
.
(b) $\frac{||L(w) - L(z)||_2}{||L(w)||_2} = c_2 (A) \frac{||w - z||_2}{||w||_2}$.

18. (Optional) Sometimes, in getting data for a mathematical model, we can only get 3 or 4 digits (with reasonable accuracy). Suppose the model is

$$Ax = b$$

where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \text{ and } b = \begin{bmatrix} 123 \\ \$59 \\ \$69 \end{bmatrix}.$$

In the following problems, use MATLAB.

- (a) Solve Ax = b.
- (b) Set

$$\hat{A} = \left[\begin{array}{cccc} 1.004 & 0.999 & \mathbf{1.003} \\ 0.998 & \mathbf{2.004} & 3.995 \\ 0.995 & 3.004 & 8.995 \end{array} \right] \,.$$

(Perhaps \hat{A} is the actual data and A the rounded data.) Solve $\hat{A}x = b$ and compare to the answer in (a).

- (c) If our mathematical model is a 3-digit approximation, should we accept the 15-digit answer given by MATLAB?
- 19. (MATLAB) Let $z = (-1,1)^t$ and $y = (1,1)^t$. Then $||z y||_2 = 2$. Let $L(z) = \begin{bmatrix} 1 & 1 \\ 0 & \epsilon \end{bmatrix} x$ where $\epsilon = .4$. The grid view of L is below.Note in Figure 5.9 that $\frac{||L(z) L(y)||_2}{||L(z)||_2}$ increases as $\epsilon \to 0$. Since

$$\frac{\|L(z) - L(y)\|_{2}}{\|L(z)\|_{2}} \le c_{2}(A) \frac{\|z - y\|_{2}}{\|z\|_{2}},$$

it follows that $c_2(A)$ is increasing **as** well. (That $c_2(A)$ is large and that A is close to being singular are linked, **as** we will show in Chapter 7.)

Using the idea above, and MATLAB, find a 2×2 positive matrix with c_2 (A) > 1000.

I

FIGURE 5.9.

5.3 Some Special Norms

In this section, we give two special matrix norms that axe **also** useful. For the first of these, recall that the formula for the matrix norm induced from the vector 2-norm is a bit complicated to compute (by hand). However, when we need it (pulling A out of the 2-norm), we can usually use the *Frobenius nom*,

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}.$$

Note that $||A||_F = d_E(A, 0)$. Example 5.6 Let $A = \begin{bmatrix} -1 & 3 \\ 2 & -4 \end{bmatrix}$. Then $||A||_F = (|-1|^2 + |3|^2 + |2|^2 - |3|^2)$

$$A\|_{F} = \left(|-1|^{2} + |3|^{2} + |2|^{2} + |-4|^{2}\right)^{\frac{1}{2}}$$
$$= (30)^{\frac{1}{2}} = 5.48 \text{ rounded to } 3 \text{ digits.}$$

The proof that this is a norm is exactly the same **as** that of the vector 2-norm.

We link the Frobenius norm to the induced matrix norm $\|\cdot\|_2$ as follows.

• **Theorem 5.6** Let A be an $m \times n$ matrix. Then

- (a) $||Ax||_2 \leq ||A||_F ||x||_2$.
- (b) $||A||_2 \leq ||A||_F$.

Further, if B is an $n \times r$ matrix, then

(c) $||AB||_F \leq ||A||_F ||B||_F$.

Proof. We prove (a) leaving (b) and (c) **as** exercises. By direct calculation,

$$\|Ax\|_{2} = \left\| \left[\sum_{k=1}^{n} a_{ik} x_{k} \right] \right\|_{2} = \left(\sum_{i=1}^{m} \left| \sum_{k=1}^{n} a_{ik} x_{k} \right|^{2} \right)^{\frac{1}{2}}$$

and by the Cauchy-Schwarz inequality, applied to $\sum_{k=1}^{n} a_{ik}x_k$,

$$\leq \left(\sum_{i=1}^{m} \left(\sum_{k=1}^{n} |a_{ik}|^{2}\right) \left(\sum_{k=1}^{n} |x_{k}|^{2}\right)\right)^{\frac{1}{2}} = \left(\sum_{i=1}^{m} \sum_{k=1}^{n} |a_{ik}|^{2} ||x||_{2}^{2}\right)^{\frac{1}{2}} \\ \leq \left(\sum_{i=1}^{m} \sum_{k=1}^{n} |a_{ik}|^{2}\right)^{\frac{1}{2}} ||x||_{2} \leq ||A||_{F} ||x||_{2}$$

which verifies (a). \blacksquare

Concluding, the Frobenius norm is not an induced matrix norm for any vector norm. For square matrices, all such norms have the property that ||I|| = 1; however, $||I||_F = n^{\frac{1}{2}}$. Still, it is easy to calculate and useful.

The second norm we give is another induced matrix norm and also turns out to very useful. To define it, let R be an $n \times n$ nonsingular matrix. For any vector norm $\|\cdot\|$ on Euclidean n-space, define the vector R-norm as

$$||x||_{R} = ||Rx||.$$

The proof that $\|\cdot\|_{R}$ is a vector norm is left **as** an exercise.

.

Example 5.7 Let
$$R = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$
. using the vector 1-norm,
 $\|x\|_{R} = \|Rx\|_{1} = \left\| \begin{bmatrix} x_{1} + x_{2} \\ 2x_{2} \end{bmatrix} \right\|_{1} = |x_{1} + x_{2}| + |2x_{2}|.$

So,

$$\left\| \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\|_{R} = (1+2) + |2 \cdot 2| = 7.$$

Now the matrix norm induced by vector norm $\|\cdot\|_{R}$ is, by definition,

$$||A||_R = \max_{x \neq 0} \frac{||Ax||_R}{||x||_R}.$$

This matrix norm can be computed from the matrix norm induced by $\|\cdot\|$.

182 5. Normed Vector Spaces

Theorem 5.7 If $\|\cdot\|$ is a vector norm and $\|\cdot\|_R$ the corresponding vector *R*-norm, then the induced matrix norm satisfies

$$||A||_{R} = ||RAR^{-1}||$$

for any $n \times n$ matrix A.

Proof. By definition,

$$\|A\|_{R} = \max_{x \neq 0} \frac{\|Ax\|_{R}}{\|x\|_{R}}$$
$$= \max_{x \neq 0} \frac{\|RAx\|}{\|Rx\|}.$$

ŝ

ł

Setting y = Rx and noting that $||RAx|| = ||RAR^{-1}y||$, we have

$$\|A\|_{R} = \max_{y \neq 0} \frac{\|RAR^{-1}y\|}{\|y\|}$$
$$= \|RAR^{-1}\|,$$

the desired result.

An example follows.

Example 5.8 Given the ∞ -vector norm and $\mathbf{R} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, then

$$\|A\|_{R} = \|RAR^{-1}\|_{\infty}$$
Thus, if $A = \begin{bmatrix} 1 & -\frac{1}{2} \end{bmatrix}$, then
$$\|A\|_{R} = \|\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \|_{\infty}$$

$$= \|\begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} \|_{\infty} = 4.$$

To conclude this section, we show how norms can be used to bound eigenvalues.

For any $n \times n$ matrix A, we define the spectral radius of A, denoted $\rho(A)$, by

$$\rho(A) = \max |\lambda|$$

where the maximum is over **all** eigenvalues λ of A.

As shown below, any induced matrix norm bounds the spectral radius.

Theorem 5.8 Let A be an $n \times n$ matrix and $\|\cdot\|$ any vector norm. Then

 $\rho(A) \mathbf{I} \|A\|$

where $\|A\|$ is the induced matrix norm of A.

Proof. Let λ be **an** eigenvalue of A. Then

 $Ax = \lambda x$

for some eigenvector x. Thus,

 $\|\lambda x\| = \|Ax\|$

and by using the properties,

 $|\lambda| \|x\| \mathbf{I} \|A\| \|x\|.$

And since $x \neq 0$,

1

 $|\lambda| \leq ||A||.$

Thus, since λ was arbitrary,

 $\rho(A) \leq \|A\|.$

The result follows. ■

We demonstate the theorem with an example.

Example 5.9 Let $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. Then the eigenvalues of A are 1+i and 1-i. Further, $||A||_1 = ||A||_{\infty} = 2$, while $||A||_2 = 1.4142$. So $||A||_2$ provides the best estimate of p(A) here. (See Figure 5.10)

Actually, as can be seen in Figure 5.9, for a given $n \times n$ matrix, and any positive scalar *E*, there is 'some' norm equal to, or close to, the spectral radius.

Theorem 5.9 Let A be an $n \times n$ matrix and E a positive scalar. Then there is an induced matrix norm $\|\cdot\|$ such that

$$ho\left(A
ight)\leq\left\|A
ight\|\leq
ho\left(A
ight)+arepsilon.$$

Proof. The first inequality has already been shown, so we need only argue the second. By Theorem 3.7, there is a nonsingular matrix P such that

$$P^{-1}AP = J_{\epsilon}$$

FIGURE 5.10.

where J_{ε} is the Jordan form of A with the 1's on the superdiagonal replaced by ε . Now,

$$\|A\|_{P^{-1}} = \|P^{-1}AP\|_{\infty}$$
$$= \|J_{\varepsilon}\|_{\infty}$$
$$\leq \rho(A) + \varepsilon,$$

the required bound. ■

A special case of the theorem follows.

Corollary 5.1 Let A be an $n \times n$ matrix where all eigenvalues λ , $|\lambda| = \rho(A)$, are on 1×1 Jordan blocks of the Jordan form of A. Then there exists an induced matrix n on $\|\cdot\|$ such that

$$\|A\| = \rho(A).$$

Proof. Note that in the proof of Theorem 3.7, ϵ 's in J_{ϵ} only occur in rows containing eigenvalues X where $|\lambda| < \rho(A)$. Thus ϵ can be chosen sufficiently small such that $||J_{\epsilon}||_{\infty} = \rho(A)$. Hence $||A||_{P^{-1}} = \rho(A)$.

And, as a consequence, we have a norm proof of the following.

Corollary 5.2 If A is an $n \times n$ matrix and $\rho(A) < 1$, then $\lim_{k \to \infty} A^k = 0$.

Proof. Choose E > 0 such that $\rho(A) + E < 1$. Then, using the theorem, let $\|\cdot\|$ be an induced matrix norm such that $\|A\| \le \rho(A) + E$.

Since

$$\left\|A^{k}\right\| \leq \left\|A\right\|^{k},$$

for all k, $\lim_{k \to \infty} ||A^k|| = 0$. Thus, by the equivalence of norms, we have that $\lim_{k \to \infty} A^k = 0$.

One of the important uses for norms is that they provide rates of convergence for sequences of vectors. For example, consider the sequence generated by

$$x (k+1) = Ax (k) + b$$
 (5.7)

where A is an $n \ge n$ matrix and b an $n \ge 1$ vector. We know that if $\|\cdot\|$ is an induced matrix norm and $\|A\| < 1$, then $\rho(A) < 1$, so by Neumann's formula $x(0), x(1), \dots$ converges to, say, x. Thus, calculating the limit of the sides of (5.7), we get

$$x = Ax + b. \tag{5.8}$$

Subtracting (5.8) from (5.7), we get

$$x(k+1) - x = A(x(k) - x).$$

Thus,

$$||x(k+1) - x|| \le ||A|| ||x(k) - x||$$
.

(So, if, for example ||A|| = .9, then ||x(k+1) - x|| is no more than .9 of ||x(k) - x||, the previous calculation.) And, so the convergence rate of x(0), x(1), ... to x is, using the norm, ||A|| per iterate or, overall, using this norm, the convergence rate is $||A||^k$ after k iterations. Note that by Theorem 5.9 and Corollary 5.1, we can get this rate to be either $\rho(A)$ or slightly more.

5.3.1 Optional (Splitting Techniques)

In this optional, we see how to convert the problem of solving a system of linear equations into a difference equation.

To see this, let A be an $n \ge n$ matrix and b an $n \ge 1$ vector. To solve

$$Ax = b \tag{5.9}$$

we can use the direct method of Gaussian elimination with partial pivoting. Of course, due to round off, the numerical answer, say, \hat{x} , may be incorrect in the last few digits, an perhaps more, depending on c(A).

Another way to solve (5.9) is by converting it into a difference equation. To do this, let $D = \text{diag}(a_{11}, ..., a_{nn})$ and B = A - D. (Thus A is split into D and B.) Then (5.9) becomes

$$(B+D)x = b$$

or by rearranging

$$Dx = -Bx + b.$$

If D is nonsingular,

$$x = -D^{-1}Bx + D^{-1}b.$$

The difference equation arises by setting x(0) as some constant vector and inductively defining $x(1), x(2), \dots$ by

$$x(k+1) = -D^{-1}Bx(k) + D^{-1}b.$$
 (5.10)

Now, if A is diagonally dominant $(|a_{ii}| > |a_{i1}| + \dots + |a_{i,i-1}| + |a_{i,i+1}| + \dots + |a_{in}|$ for all *i*, a situation which often occurs when numerically solving differential and partial differential equations), then $||D^{-1}B||_{\infty} < 1$. Thus, the sequence converges to, say, x. Calculating the limit of the sides of (5.10), we get

$$x = -D^{-1}Bx + D^{-1}b.$$

Rearranging, we have

Ax = b.

So x is the solution to (5.9).

Note that

$$||x(k+1) - x|| \le ||A|| \, ||x(k) - x||.$$

Thus, if a numerically computed $\hat{x}(k)$ is in error, then the next $\hat{x}(k+1) = A2(k) + b$ satisfies

$$\|\hat{x}(k+1) - x\| \le \|A\| \|\hat{x}(k) - x\|$$

and so the difference $\|\hat{x}(k+1) - x\|$ is no more than $\|A\| \|\hat{x}(k) - x\|$. Thus, even if small errors are made in computing the iterates, x continues to convergence.

Another feature about iterative methods is that we can continue to compute x(k)'s until we have the desired number of digits of accuracy. To help understand this remark, we provide an example.

Example 5.10 Let
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. We solve $Ax = b$ by splitting.
Here, $D = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$. So $D^{-1}B = \begin{bmatrix} 0 & 2 \\ \frac{1}{4} & 0 \end{bmatrix}$ and $D^{-1}b = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{4} \end{bmatrix}$. Since, $\rho(D^{-1}B) = .4082$
 $x(k+1) = -D^{-1}Bx(k) + D^{-1}b$

converges at the rate of $(4082)^k$ to the solution to Ax = b. Starting with $x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, we have

$x\left(1 ight)$	x(2)	$x\left(3 ight)$
-0.3333	0.1667	0.0556
0.2500	0.5833 J	0.4583

0.0278	-0.0093	0.0046	
0.5139	0.4931	0.5023	
	•		

$x\left(7 ight)$	x(8)	x(9)
-0.0015	0.0008	-0.0003
0.4988	0.5004	0.5001

$x\left(10 ight)_{$	x(11)
0.0001	0.0000
0.5001	0.5000

And, after the 11-th iterate, all entries have the same digits and so $x = \begin{bmatrix} 0.0000 \\ 0.5000 \end{bmatrix}$ as can be checked.

• On larger problems, it may be that the last digit doesn't converge, e.g., when the amount of convergence and the amount of error balance. In that case, we take as the approximate solution the answer to those digits that do agree.

There are many well-known splitting methods. For example, the point Jacobi and the Gauss-Seidel methods are two of the better known splitting methods.

5.3.2 MATLAB (Code for Iterative Solutions)

The MATLAB codes for the calculations in this section follow.

1. Code for Example 5.10

$$b = \begin{bmatrix} \frac{1}{3}; \frac{1}{2} \end{bmatrix};$$

$$B = \begin{bmatrix} 0 & -\frac{2}{3}; & -\frac{1}{4} & 0 \end{bmatrix};$$

$$x = \begin{bmatrix} 1; & 1 \end{bmatrix};$$

for $k = 1 : 12$

$$x = B * x + b$$

end

2. A More General Code for Iterative Solutions

% This is x(0).

% Used as a counter.

- % Continues until 14 digit approximation is reached.
- % This keeps x(k).
- % This calculates x(k+1).
- % Updates the counter.
- % If we can't get a 14 digit approximation, we need to stop somewhere.

4

end

Exercises

1. Find the Frobenius norm for each matrix.

(a)
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -2 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} i & 2-i \\ 1+2i & 2 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1-i \\ 2+3i \end{bmatrix}$

2. Prove Theorem 5.6.

(a) Part b. (Hint: Use Part (a) and consider the ratios $\frac{\|Ax\|_2}{\|x\|_2}$.)

- (b) Part c.
- 3. Let **R** be a nonsingular matrix. Prove that for any vector norm $\|\cdot\|$, $\|\cdot\|_{R}$ is a vector norm.
- 4. Find $||x||_R$ for

(a)
$$x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $R = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and the vector 1-norm.
(b) $x = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$, and the vector ∞ -norm.

5. Find $||A||_R$ for

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $R = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, and the vector 1-norm.
(b) $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$, $R = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, and the vector ∞ -norm.
6. Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$.

- (a) Find the eigenvalues of A. Plot these in \mathbb{R}^2 .
- (b) Using the l-norm and the ∞ -norms, find bounds on the eigenvalues. Draw circles of radii $||A||_1$ and $||A||_{\infty}$ about the origin, and observe that these circles contain the eigenvalues of A. What norm gives the better result?

7. Let
$$A = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$
. Find $\rho(A)$, $||A||_1$, and $\lim_{t \to \infty} (||A||_1 - \rho(A))$.

(a) Is the bound
$$\rho(A) \le ||A||_1$$
 always a good one?

(b) Let $R = \begin{bmatrix} 1 & 0 \\ 0 & t^2 \end{bmatrix}$. Calculate, using the l-norm to define $\|\cdot\|_R$, time $(\|A\|_R - \rho(A))$.

(c) Can you improve on the bound $||A||_R$ of (b) by using $R = \begin{bmatrix} 1 & 0 \\ 0 & t \end{bmatrix}$?

- 8. Give an example of a 2 x 2 matrix A such that p(A) = 1 and
 - (a) $\lim_{k \to \infty} A^k$ exists.
 - (b) $\lim_{k \to \infty} A^k$ doesn't exist.
- **9.** Let **A** be an $n \ge n$ matrix. Prove
 - (a) $\frac{1}{n} \|A\|_{\infty} \le \|A\|_F \le n \|A\|_{\infty}$.
 - (b) $\frac{1}{n} \|A\|_1 \le \|A\|_F \le n \|A\|_1$.
 - (c) $||e^{At}|| \leq e^{||A||t}$ for any induced matrix norm $||\cdot||$.
- 10. For the following difference equations, find x such that x(1), x(2), ... converges to x. What is the rate of convergence, using $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$, for the following?

(a)
$$x(k+1) = \begin{bmatrix} .1 & .2 \\ .2 & .1 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

190 5. Normed Vector Spaces

(b)
$$x(k+1) = \begin{bmatrix} .6 & .1 & 0 \\ 0 & .5 & 1 \\ 0 & 0 & .4 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

11. Let $D = \begin{bmatrix} 1 & 0 \\ 0 & t \end{bmatrix}$. Find a t so that $||A||_{D^{-1}} = ||D^{-1}AD||_{\infty} < 1$.
(a) $A = \begin{bmatrix} .9 & 1 \\ 0 & .9 \end{bmatrix}$ (b) $A \begin{bmatrix} .7 & .3 \\ .1 & .7 \end{bmatrix}$

12. (MATLAB) Consider the school problem diagrammed in Figure 5.11. Provide the mathematical model, x(ll + 1) = Ax(ll) + b, for this process.

FIGURE 5.11.

- (a) Provide the mathematical model, $\mathbf{x} (ll + 1) = \mathbf{A}\mathbf{x} (ll) + b$, for this process.
- (b) Find the steady state vector $x, x = \lim_{k \to \infty} x (l\ell)$, and explain what the entries in this vector mean.
- (c) Using the convergence rate, and x(0) = 0, find the smallest \mathcal{X} such that $||x x(k)||_{\infty} \leq (.1) ||x||_{\infty}$, so the process is within 10% of steady state.

13. (MATLAB) Consider x(k + 1) = Az(k) where

$$A = \left[\begin{array}{rrr} 0 & 0 & .99 \\ 0 & 0 & .99 \\ .99 & 0 & 0 \end{array} \right].$$

Find

(a)
$$||A||_1$$
 (b) $||A||_{\infty}$.
(c) $||A||_1$

$$(0) \|A\|_{2}$$

Which of these norms gives the convergence at the best rate?

14. (MATLAB) Solve
$$\begin{bmatrix} 3 & 1 & -1 \\ -1 & 4 & 2 \\ 0 & 2 & 5 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 by splitting as described in Optional.

7

ŧ....

15. (MATLAB) Find, by tinkering, a matrix A such that $||A||_1 < ||A||_2$.

5.4 Inner Product Norms and Orthogonality

In this section we define a dot-product, called an inner product in this setting, on vector spaces. We show how to use inner products to define norms. As with dot products, inner products can also be used to define orthogonality, and orthogonality can be used as it was in calculus.

To define an inner product, we use the properties of a dot product in Euclidean 2-space. Recall that for vectors x and y in this space,

$$x \cdot y = x_1 \bar{y}_1 + x_2 \bar{y}_2,$$

or perhaps in different notation

$$(x,y) \equiv x_1\bar{y}_1 + x_2\bar{y}_2.$$

Definition 5.3 Let V be a vector space. Suppose that there is a way of assigning to each pair of vectors \mathbf{x} and \mathbf{y} in V a scalar, written $(\mathbf{x} \mathbf{y})$. This function, (\cdot, \cdot) , is an inner product on V provided it satisfies the following properties for all vectors and all scalars.

i. (x, x) > 0 *if* $x \neq 0$ *and* (0, 0) = 0

ii.
$$(x,y) \equiv (y,x)$$

iii.
$$(\alpha x, y) = \varrho(x, y)$$
 and $(z, cry) = \overline{\alpha}(x, y)$

iv. (x, y + z) = (x, y) + (x, z) and (x + y, z) = (x, z) + (y, z)

A vector space V that has an inner product defined on it is called an inner product space.

Actually the second properties in (iii) and (iv) can be proved from the remaining given properties. We include them since they are companions to the first properties.

Some classical inner products and inner product spaces follow.

Example 5.11 On Euclidean n-space, an inner product is

$$(x,y) = \sum_{i=1}^{n} x_i \overline{y}_i. \ (In \ the \ real \ case, \ \overline{y_i} = y_i.)$$
(5.11)

Example 5.12 On m x n matrix space, an inner product is

$$(A,B) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{b_{ij}}.$$
 (5.12)

192 5. Normed Vector Spaces

Example 5.13 On C [a,b], define

$$(f,g) = \int_{a}^{b} f(t) g(t) dt.$$
 (5.13)

This is an inner product.

Note that **all** of these inner products arise, like the dot product, by multiplying corresponding entries (second entries conjugated) and summing those products.

As with dot products, an inner product can be used to determine lengths of vectors, that is,

$$||x|| = (x,x)^{\frac{1}{2}}$$

And, mimicking the proof for the vector 2-norm, we *can* show that $\|\cdot\|$ is a norm.

The following example will show how to use this norm in calculating.

Example 5.14 Let $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. Then, using the inner product of Example 5.12,

$$\|A\| = (A, A)^{\frac{1}{2}}$$

= (1.1+(-1)(-1)+0.0+1.1)^{\frac{1}{2}}
= \sqrt{3}.

And if
$$B = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}$$
,
 $d(A, B) = ||A - B|| = \left\| \begin{bmatrix} -1 & -2 \\ -3 & 3 \end{bmatrix} \right\|$
 $= \left(\begin{bmatrix} -1 & -2 \\ -3 & 3 \end{bmatrix}, \begin{bmatrix} -1 & -2 \\ -3 & 3 \end{bmatrix} \right)^{\frac{1}{2}}$
 $= \left((-1)^2 + (-2)^2 + (-3)^2 + 3^2 \right)^{\frac{1}{2}}$
 $= \sqrt{23}.$

Orthogonality of two vectors x and y is defined in the natural way, namely, if

$$(x,y)\equiv 0$$

then x and y are *orthogonal.* (Note that if (x, y) = 0, then (y, x) = 0, so the order of x and y isn't important.)

Using orthogonality, we have the Pythagorean theorem for any inner product space.

ţ

Lemma 5.1 Let V be an inner product space and $x, y \in V$. If (x, y) = 0, then $||x + y||^2 = ||x||^2 + ||y||^2$, as depicted in Figure 5.12.

FIGURE 5.12.

Proof. Since

$$||x + y||^{2} = (x + y, x + y)$$

= $||x||^{2} + (x, y) + (y, x) + ||y||^{2}$
= $||x||^{2} + ||y||^{2}$,

we have the result. \blacksquare

A major use of orthogonality is in calculating coefficients of linear combinations of pair-wise orthogonal nonzero vectors. An example of how follows.

Lemma 5.2 Let q_1, \ldots, q_n be pairwise orthogonal nonzero vectors an Euclidean n-space. Then q_1, \ldots, q_n are linearly independent.

Proof. Let $(\beta_1, \ldots, \beta_n)$ be a solution to the pendent equation for the vectors q_1, \ldots, q_n . Thus,

$$\beta_1 q_1 + \ldots + \beta_n q_n = 0.$$

Now,

$$(q_k,\beta_1q_1)+\cdots+(q_k,\beta_nq_n)=(q_k,0)$$

As given in the exercises, $(q_k, 0) = 0$, so we have

$$\beta_k(q_k, q_k) \equiv 0.$$

Since $(q_k, q_k) > 0$, $\beta_k = 0$. And, since k was arbitrary, $\beta_1 = \cdots = \beta_n = 0$. Thus q_1, \ldots, q_n are linearly independent.

194 5. Normed Vector Spaces

Any set of pair-wise orthogonal vectors is called **an** *orthogonal set*; while if, in addition, each vector has length, or norm, 1, the set is called an *orthonormal set*.

Orthogonality is often used in closest point (approximation) work. To **show** how, we provide a brief review of calculus.

In calculus, we use dot products to find the component of a vector x on a vector u. (See Figure 5.13.) If c is that component, as given in calculus, $c = \frac{x \circ u}{u \circ u}$. Observe that x - cu is orthogonal to u and that cu is the closest-

FIGURE 5.13.

point in span $\{u\}$ to x.

Using components, if u_1 and u_2 are Orthogonal in \mathbb{R}^3 and $x \in \mathbb{R}^3$, then $x - c_1u_1 - c_2u_2$ is orthogonal to u_1 and u_2 ; it is orthogonal to span $\{u_1, u_2\}$. Here $c_1 = \frac{xou_1}{u_1ou_1}$ and $c_2 = \frac{xou_2}{u_2ou_2}$ are the components of x on u_1 and u_2 , respectively. Thus, $c_1u_1 + c_2u_2$ is the closest point in span $\{u_1, u_2\}$ to x. (Perhaps making a small 3-D model, Figure 5.14, will help.)

FIGURE 5.14.

We now give this result for any inner product space.

Theorem 5.10 Let V be an inner product space and u_1, \ldots, u_m pairwise orthogonal nonzero vectors in V. Let x E V and from it define the corre-

spondang Fourier sum, using u_1, \ldots, u_m , as

$$x_f = c_1 u_1 + \ldots + c_m u_m$$

where the component c_k of x on u_k as $c_k = \frac{(x_1 u_k)}{(u_k, u_k)}$. Then $x - x_f$ is orthogonal to each of u_1, \ldots, u_m . (See Figure 5.15.)

FIGURE 5.15.

Proof. To prove that $x - x_f$ is orthogonal to u_k , show by direct calculation that $(x - x_f, u_k) = 0$.

We now apply this theorem to find orthogonal vectors u_1, u_2, \ldots, u_m , which span the same space **as** given linearly independent vectors x_1, \ldots, x_m . To do this, set

$$u_{1} = x_{1}$$

$$u_{2} = x_{2} - x_{f} = x_{2} - c_{1}u_{1}$$
where
$$c_{1} = \frac{(x_{2}, u_{1})}{(u_{1}, u_{1})}$$

$$u_{3} = x_{3} - x_{f} = x_{3} - c_{1}u_{1} - c_{2}u_{2}$$
where
$$c_{1} = \frac{(x_{3}, u_{1})}{(u_{1}, u_{1})}, c_{2} = \frac{(x_{3}, u_{2})}{(u_{2}, u_{2})}.$$

In general

$$u_{k} = x_{k} - x_{f}$$

= $x_{k} - c_{1}u_{1} - c_{2}u_{2} - \dots - c_{k-1}u_{k-1}$

where $c_1 = \frac{(x_k, u_1)}{(u_1, u_1)}, \dots, c_{k-1} = \frac{(x_k, u_{k-1})}{(u_{k-1}, u_{k-1})}$. (So we can compute all u_k 's by formula.)

That span $\{u_1, \ldots, u_m\} = \{x_1, \ldots, x_m\}$ is left as an exercise.

196 5. Normed Vector Spaces

As you may recall from linear algebra, this method is called the Gram-Schmidt process. An example demonstrating the Gram-Schmidt process follows.

Example 5.15 Let
$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, and $x_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Then
i. $u_1 = x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

ii. For u_2 we need to calculate the corresponding x_f . Here

$$x_f = c_1 u_1 = \frac{(x_2, u_1)}{(u_1, u_1)} u_1 = \frac{2}{3} u_1$$

and so

is

$$u_{2} = x_{2} - x_{f} = x_{2} - \frac{2}{3}u_{1} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}.$$
 (We can visually check to see if $(u_{1}, u_{2}) = 0.$)

iii. To get u_3 , we need to find the corresponding x_f . So

$$\begin{aligned} x_{f} &= c_{1}u_{1} + c_{2}u_{2} = \frac{(x_{3}, u_{1})}{(u_{1}, u_{1})}u_{1} + \frac{(x_{3}, u_{2})}{(u_{2}, u_{2})}u_{2} \\ &= \frac{1}{4}u_{1} + \frac{1}{4}u_{2} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}. \end{aligned}$$

Hence $u_{3} &= x_{3} - x_{7} = x_{3} - \frac{1}{3}u_{1} - \frac{1}{2}u_{2} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix}. Observe that u_{3}
is orthogonal to u_{1} and u_{2} .$

If $A = [x \dots x_n]$, then applying the Gram-Schmidt process to the columns of A leads to an important factorization of A, called the QR-factorization, namely

$$A = QR \tag{5.14}$$

where the columns of Q form an orthonormal set and R is an upper triangular matrix. We show how this can be done in an example.

Example 5.16 Let $A = [x_1x_2x_3]$ where the x_i 's are given in the previous example. We use the calculations of the previous example,

$$u_{1} = x_{1}$$

$$u_{2} = x_{2} - \frac{2}{3}u_{1}$$

$$u_{3} = 23 - \frac{1}{3}u_{1} - \frac{1}{2}u_{2}$$

Solving for the x_k 's yields

$$u_1 = x_1$$

$$\frac{2}{3}u_1 + u_2 = x_2$$

$$\frac{1}{3}u_1 + \frac{1}{2}u_2 + u_3 = 23.$$

Writing these equations as a matrix equation, using backward multiplication on columns, yields

$$[u_1u_2u_3]\left[\begin{array}{rrrr}1 & \frac{2}{3} & \frac{1}{3}\\0 & 1 & \frac{1}{2}\\0 & 0 & 1\end{array}\right] = [x_1x_2x_3].$$

Now, normalizing the u_i 's, we have on the left side

$$\begin{bmatrix} u_1 u_2 u_3 \end{bmatrix} \begin{bmatrix} \frac{1}{\|u_1\|} & 0 & 0 \\ 0 & \frac{1}{\|u_2\|} & 0 \\ 0 & 0 & \frac{1}{\|u_3\|} \end{bmatrix} \begin{bmatrix} \|u_1\| & 0 & 0 \\ 0 & \|u_2\| & 0 \\ 0 & 0 & \|u_3\| \end{bmatrix} \begin{bmatrix} 1 & \frac{2}{3} & \frac{1}{3} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

or

$$\begin{bmatrix} \frac{u_1}{\|u_1\|} \frac{u_2}{\|u_2\|} \frac{u_3}{\|u_3\|} \end{bmatrix} \begin{bmatrix} \|u_1\| & \frac{2}{3} \|u_1\| & \frac{1}{3} \|u_1\| \\ 0 & \|u_2\| & \frac{1}{2} \|u_2\| \\ 0 & 0 & \|u_3\| \end{bmatrix} = [x_1 x_2 x_3].$$

Finally, plugging in the numbers, we get the QR-factorization,

$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{3} & \frac{2}{3}\sqrt{3} & \frac{1}{3}\sqrt{3} \\ 0 & \frac{\sqrt{6}}{3} & \frac{1}{3}\sqrt{6} \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

(The method of factoring A = QR given here is not good in numerical computations involving rounding. In Chapter 8, we give a good method.)

Using components, we **now** give the closest point (approximation) theorem.

Theorem 5.11 Let V be an inner product space and u_1, \ldots, u_m pairwise orthogonal vectors an V. Let $\mathbf{x} \in V$. Then the closest vector in the subspace $W = span\{u_1, \ldots, u_m\}$ to \mathbf{x} is precisely \mathbf{x}_f , the Fourier sum using u_1, \ldots, u_m .

Proof. Let $v \in W$. Since $x_f \in W$ so is $x_f - v$. (See Figure 5.16.) Thus, we can write

$$x_f - v = \alpha_1 u_1 + \ldots + \alpha_m u_m$$

for some scalars $\alpha_1, \ldots, \alpha_m$. Since, by the lemma, $\mathbf{x} - \mathbf{x}_f$ is orthogonal to

FIGURE 5.16.

 u_1, \ldots, u_m , by direct calculation we can show it is orthogonal to $x_f - v$. Thus by the Pythagorean Theorem,

$$||x - v||^2 = ||x - x_f||^2 + ||x_f - v||^2$$

Rearranging leads to

$$||x - x_f||^2 = ||x - v||^2 - ||x_f - v||^2$$
 and so $||x - x_f||^2 \le ||x - v||^2$

where equality can hold only if $v = x_f$. Since this inequality holds for all $v \in W, x_f$ is precisely the closest vector in W to x.

Given a subspace W of Euclidean n-space, Theorem 5.11 can be used to find a matrix P such that Px is the closest point in W to x, for any x. This P is called an *orthogonal projection matrix*.

We find P in \mathbb{R}^n since this is the matrix we use most often. (\mathbb{C}^n is done in exactly the same way.) To find P_r let u_1, \ldots, u_r be an orthonormal basis (a **basis** of orthogonal vectors each having length one) for W and $U = [u_1, \ldots, u_r]$. Then, we need P to satisfy $P\mathbf{x} = \mathbf{x}_f$ Recall that

$$x_f = (x, u_1) u_1 + \cdots + (x, u_r) u_r.$$

Thus by backward multiplication,

$$x_f = [u_1, \ldots, u_r] \left[egin{array}{c} (x, u_1) \ \cdots \ (x, u_r) \end{array}
ight].$$

£

1.

Noting $(x, u_i) = u_i^t x$, we have

$$= [u_1, \dots, u_r] \begin{bmatrix} u_1^t \\ \cdots \\ u_r^t \end{bmatrix} \times U U^t x.$$

Thus,

$$P = UU^t$$

is the orthogonal projection matrix desired. An example can help.

Example 5.17 Let W be the plane given by z = 0. Since $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ satisfy this equation, $W = span \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$. Note that the basis for W is not an orthonormal basis. Applying Gram-Schmidt to $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, we have the orthogonal basis given below. $v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -\frac{1}{2} \\ 0 \end{bmatrix}$.

These vectors can be normalized to obtain an orthonormal basis, namely

$$u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$$
$$u_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}.$$

Now

$$U = [u_1 u_2] = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & 0 \end{bmatrix}$$

and

$$P = UU^{t} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

And, since $P\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$, at is geometrically clear that P projects R^3 onto the plane W.

5.4.1 Optional (Closest Matrix from Symmetric Matrices)

Sometimes in work we have data which is not precise, perhaps obtained by measurement or experiment. If it is known that the actual problem involves a symmetric matrix, the data may only give some close approximation to it. When this occurs, we can replace the approximate matrix by the closest symmetric matrix by using Fourier sums. We show how this is done for 2×2 matrices.

The 2 x 2 symmetric matrices form a subspace of $R^{2 \times 2}$ of dimension 3. An orthogonal basis for subspace is

$$\left[\begin{array}{rrr}1&0\\0&0\end{array}\right],\left[\begin{array}{rrr}0&0\\0&1\end{array}\right],\left[\begin{array}{rrr}0&1\\1&0\end{array}\right].$$

For any $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, we compute its closest symmetric matrix by applying Theorem 5.11. **This** matrix is

$$A_f = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + \frac{b+c}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} a & \frac{b+c}{2} \\ \frac{b+c}{2} & d \end{bmatrix}$$

Of course this result can be extended to $n \times n$ matrices.

5.4.2 MATLAB (Orth and the Projection Matrix)

MATLAB can be used to find an orthonormal basis for a vector space spanned by given vectors. And, the orthogonal projection matrix can be computed from it.

We do Example 5.17 in MATLAB. Recall,
$$W = \text{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$
.
We use the spanning vectors to form a matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$

ł

For the orthonormal basis, use the command orth (A) which gives an orthonormal basis for the span of the columns of A.

orth(A)

$$ans = \begin{bmatrix} 0.8507 & 0.5257 \\ 0.5257 & -0.8507 \\ 0 & 0 \end{bmatrix}$$

The first two columns of this matrix form an orthonormal basis. Note, however, it is not the basis obtained by Gram-Schmidt. This kind of computation is usually done with a QR decomposition or a singular value decomposition. (See Chapters 7 and 8.)

Now, for the orthogonal projection matrix we use, Q = orth(A); P = Q * Q' (Q' is the transpose of Q.) ans $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

This is, as expected, what we obtained in Example 5.17. For more, type in *help orth*.

Exercises

1. Find the inner product of each of the following:

(a)
$$x = (1, -1, 1)^{t}, y = (2, 0, -1)^{t}$$
.
(b) $x = (i, 1, 1 - i)^{t}, y = (2 - 3i, 2i, 1 + i)^{t}$.
(c) $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 0 & 1 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & -3 \\ 1 & 4 & -2 \\ 1 & 4 & -2 \end{bmatrix}$
(d) $f(t) = t, g(t) = 1$, where $a = -1$ and $b = 1$.

- 2. Find the distance between the vectors in Exercise 1, parts (a), (b), (c), and (d).
- 3. Decide which pair of vectors are orthogonal.

(a)
$$x = (1, -1)^{t}$$
, $Y = (1, 1)^{t}$
(b) $x = (1, i, 1 - i)^{t}$, $u = (i, -1 + i)^{t}$
(c) $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}^{t}$

(d) $f(t) = \cot \theta (t) = \sin t$, where $a = -\pi$ and $b = \pi$

- 4. Prove that the expressions in (a) Example 5.11, (b) Example 5.12, and (c) Example 5.13 are inner products.
- **5.** In the definition of inner product, prove that the second properties of (iii) and (iv) can be proved from the remaining properties.

202 5. Normed Vector Spaces

- 6. For any inner product space V, prove that (0, x) = 0 for any $x \in V$.
- 7. In an inner product space, the **angle** θ , $0 \le \theta < \pi$, between two nonzero vectors \boldsymbol{x} and \boldsymbol{y} satisfies the equation

$$\cos \theta = \frac{(x,y)}{\|x\| \|y\|}$$

(Recall here that $||x|| = (x, x)^{\frac{1}{2}}$, and $||y|| = (y, y)^{\frac{1}{2}}$.) Find the angles between the following vectors.

(a)
$$x = (1,0)^t$$
, $y = (1,1)^t$ Check your answer geometrically.
(b) $x = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}^t$, $y = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}^t$
(c) $x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$, $y = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$

8. Normalize the following vectors.

(a)
$$(1,1,1)^t$$
 (b) $(1+i,2-3i)^t$
(c) $A = \begin{bmatrix} 1 & -1 & 2 \\ -3 & 0 & 4 \end{bmatrix}$ (d) $f(t) = t$ where $a = -1, b = 1$

9. Let u_1, \ldots, u_m be an orthonormal set. Prove that

$$\|\alpha_1 u_1 + \cdots + \alpha_m u_m\|_2^2 = |\alpha_1|^2 + \cdots + |\alpha_m|^2.$$

10. Apply the Gram-Schmidt process to

(a)
$$x_1 = (1, 1, 1)^t$$
, $x_2 = (1, 1, 0)^t$, $x_3 = (1, -1, 2)^t$.
(b) $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$
(c) $f(t) = 1$, $g(t) = t$, $h(t) = t^2$, where $a = 0$, $b = 1$.

11. In the Gram-Schmidt process, prove that

- (a) span $\{x_1, x_2, x_3\} =$ span $\{u_1, u_2, u_3\}.$
- (b) span $\{x_1, \ldots, x_m\} = \text{span} \{u_1, \ldots, u_m\}.$
- 12. Find the orthogonal projection matrix that orthogonally projects
 - (a) R^2 onto the line parametrically described by $x_1 = t$, $x_2 = t$ where $-\infty < t < \infty$. (Check your work geometrically.)
 - (b) R^3 onto the plane given by $x_1 + x_2 + x_3 = 0$.
- **13.** Apply the Gram-Schmidt process to $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Explain geometrically why $u_3 = 0$.

14. In *span*
$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
, find the closest vector to $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

- 15. Find the polynomial of degree 1 (or less) closest to $1+t+t^2$, on [0, 1].
- 16. Consider the line parametrically described by $x_1 = t$, $x_2 = 2t$ where $-ca < t < \infty$.
 - (a) Find the orthogonal projection matrix from R^2 onto this line.
 - (b) Use the orthogonal projection matrix to compute the closest point on this line to $\begin{bmatrix} 1\\1 \end{bmatrix}$. (Check your answer geometrically.)
- 17. Let P be an orthogonal projection matrix. Show that $P^2 = P$.
- 18. Find the formula for the orthogonal projection matrix from C^n to W where W has u_1, \ldots, u_r as an orthonormal basis.
- 19. Does the set of orthogonal projection matrices, defined on R^2 , form a subspace of $R^{2\times 2}$?
- 20. (Optional) Using Fourier sums, find the closest upper triangular matrix to $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- 21. (MATLAB). Use MATLAB to solve the following problem. Let $W \subseteq \mathbb{R}^3$ be the vectors in the solution to

$$x_1 + 2x_2 - x_3 = 0.$$

- (a) Find an orthonormal basis for W. (Find null(A), $A = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$.)
- (b) Find the corresponding orthogonal projection matrix P.
- (c) Use P to find the closest point in W to $[1,1,1]^t$.
- (d) How close is $[1, 1, 1]^t$ to W?

22. (MATLAB). Let
$$L(x) = Ax$$
 where $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

- (a) Find an orthogonal basis for range L.
- (b) Find the orthogonal projection matrix of R^3 onto range L.

6 Unitary Similarity

A unitary matrix U is a special matrix, which as a linear transformation L(x) = Ux, preserves figures in the space. The grid view of these transformations shows no shearing nor scaling. They appear as rotations or reflections of the space. And, since these matrices do not distort figures, they are excellent for obtaining simple coordinate views of curves, surfaces, and other geometrical objects. In addition, since these matrices do not magnify error, they are also important in developing numerical algorithms which provide good answers.

6.1 Unitary Matrices

This section concerns the Euclidean n-space with inner product

$$(\mathbf{x} \mathbf{y}) = \mathbf{x}_1 \overline{\mathbf{y}}_1 + \ldots + \mathbf{x}_n \overline{\mathbf{y}}_n$$

(Recall for real numbers, $\bar{y}_i = y_i$.) It is often helpful to write this inner product as a matrix product,

$$(x,y) = y^H x. \tag{6.1}$$

In fact, much of what we do in this section can be directly observed by using (6.1).

We study n **x** n matrices U such that L(x) = Ux preserves figures (including lengths and orthogonality). Thinking in terms of the grid view,

since the columns of U form the axes for the new grid in the range of L, those columns should form an orthonormal set (as e_1 and e_2 did in \mathbb{R}^2). Otherwise the geometry is distorted. See Figure 6.1.

FIGURE 6.1.

Definition 6.1 An $n \ge n$ matrix U is unitary if the columns of U are pair-wise orthogonal and length one. If the entries in the matrix are real numbers, we call the matrix orthogonal, and, as is customary, use Q instead of U.

Two examples demonstrate what $L(x) = Qx_{r}$ or simply Q_{r} does to R^{2} .

Example 6.1 (Rotation) Let $Q = \begin{bmatrix} \cos 8 & -\sin \theta \\ \sin 8 & \cos 8 \end{bmatrix}$. By definition, this matrix is orthogonal. The grid view of $L(\mathbf{x}) = Q\mathbf{x}$ is given in Figure 6.2. This transformation rotates the plane 8 degrees. More generally, the $n \ge n$

FIGURE 6.2.
matrix

$$Q = \begin{bmatrix} 1 & 0 & \cdots & & & \cdots & 0 \\ 0 & 1 & \cdots & & & & \cdots & 0 \\ 0 & 0 & \cdots & & \cos \theta & -\sin \theta & \cdots & 0 \\ & & & & & & \\ 0 & 0 & \cdots & & \sin \theta & \cos \theta & \cdots & 0 \\ & & & & & & \\ 0 & 0 & \cdots & & & & & \ddots & 1 \end{bmatrix} , r ,$$

called a Givens matrix or plane rotation, rotates the $x_r x_s$ -plane in R'', leaving all other coordinates alone. (In \mathbb{R}^3 , rotating in the $x_1 x_2$ -plane keeps the x_3 -axis fixed and rotates \mathbb{R}^3 about it. In higher dimensions, this may be a bit hard to imagine.)

Example 6.2 (Reflection) Let $H = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$, the only orthogonal matrix, other than that in Example 6.1, with first column $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$. The grid view of L(x) = Qx is given in Figure 6.3. It is clear that L is not

FIGURE 6.3.

a rotation. However, this transformation **can** be seen as a reflection (flip) of the plane about the line ℓ bisecting the x_1 -axis and the y_1 -axis. (Perhaps overlaying a transparency, drawing the axes on it and then reflecting as described will help.)

Alternately, L can be described as inverting the plane through ℓ so that each x ends up at its mirror image x' as shown in Figure 6.4. We use this latter view to find the matrix for this transformation on R''.

FIGURE 6.4.

For this, let $u \in R''$ be such that $||u||_2 = 1$. (In analogy, u will be the direction of the inversion.) Define

$$W = \{x : x \in \mathbb{R}^n \text{ and } (ux) = 0\}.$$

(W generalizes ℓ . \mathbb{R}^n will be inverted through W.) As given in the exercises, W is a subspace.

We show how to reflect \mathbb{R}^n through W parallel to u. To do this, let P be the orthogonal projection matrix from \mathbb{R}^n onto the line, span $\{u\}$. Thus,

$$P = u u^t$$
.

(Note that P is $n \ge n$.) Given $x \in \mathbb{R}^n$, $\mathbb{P} \ge is$ the projection of $\ge n$ onto the line determined by u. Thus, the inversion of $\ge through W$ parallel to u is the vector x' where x' = x - 2Px as shown in an Figure 6.5. From this, we

FIGURE 6.5.

have that

$$L$$
 (**z**)= Hz ,

where

$$H = I - 2u u^t \tag{6.2}$$

Г

1 1

reflects R" through W parallel to u.

For example, if we want to reflect
$$\mathbb{R}^2$$
 parallel to $u = \begin{bmatrix} -\frac{\sqrt{2}}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, through
 $W = \{\mathbf{z} : (x, u) = 0\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$, we would use
 $H = I - 2 \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}^{\begin{bmatrix} -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \end{bmatrix}}_{= I - 2 \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}}_{= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}.$

The matrix H, as defined in (6.2), is called a Householder matrix .

To see how much of matrix space orthogonal matrices comprise, we can graph a piece of this space from $R^{2\times 2}$, which contains the plane rotations. For this, we look at the 3-dimensional subspace of matrices of the form $\begin{bmatrix} a & b \\ a & a \end{bmatrix}$ and graph the matrices $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, $0 \le \theta < 2\pi$, in this space. The graph appears in Figure 6.6.

Actually the orthogonal matrices are on the sphere of radius $\sqrt{2}$ about the origin. But interestingly, they do not constitute all of this space since $(1,1,0,0)^t$ (which corresponds to $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$) is also on this sphere. However, what we need to see is that the orthogonal matrices cover only a small part of matrix space.

Definition 6.1 can be formulated as a matrix equation.

Lemma 6.1 Let U be an $n \times n$ matrix. Then U as unitary \sharp and only if U satisfies the unitary equation,

$$U^H U = I$$
.

Proof. We argue both implications of the biconditional.

Part a. For the direct implication, suppose U is unitary. Then

$$U^{H}U = \left[\begin{array}{c} u_{1}^{H}u_{1}\cdots u_{1}^{H}u_{n} \\ \cdots \\ u_{n}^{H}u_{1}\cdots u_{n}^{H}u_{n} \end{array}\right]$$

FIGURE 6.6.

where the columns of U are u_1, \ldots, u_n . Using (6.1), $U^H U = I$.

Past b. For the converse, suppose U satisfies the unitary equation $U^H U = \mathbf{I}$. In terms of entries, the equation is

$$\begin{bmatrix} u_1^H u_1 \cdots u_1^H u_n \\ u_1 \cdots u_n^{L^{(2)}} \\ u_n^H u_1 \cdots u_n^H u_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$
(6.3)

where u_1, \ldots, u_n are the columns of U. Thus, by (6.1), the columns of U are pair-wise orthogonal and of length one, and so U is unitary.

An immediate consequence of this theorem is that if U is unitary, then $U^{-1} = U^H$.

This lemma is usually used to develop results about unitary matrices rather than to decide if a particular matrix is unitary. We show this in the results below.

Theorem 6.1 Let T be a triangular matrix that is unitary. Then T is a diagonal matrix with $|t_{kk}| = 1$ for all k.

Proof. Since T is unitary (and so $T^{-1} = T^H$), T satisfies the equation,

$$TT^H = T^H T. (6.4)$$

We now argue the 3×3 case, since that argument is easily extended to the general case. We suppose T is lower triangular.

I

ł

Writing out (6.4) entrywise, we have

$$\begin{bmatrix} t_{11} & 0 & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \begin{bmatrix} \overline{t}_{11} & \overline{t}_{21} & \overline{t}_{31} \\ 0 & \overline{t}_{22} & \overline{t}_{32} \\ 0 & 0 & \overline{t}_{33} \end{bmatrix} = \begin{bmatrix} t_{11} & \overline{t}_{21} & t_{31} \\ 0 & \overline{t}_{22} & \overline{t}_{32} \\ 0 & 0 & \overline{t}_{33} \end{bmatrix} \begin{bmatrix} t_{11} & 0 & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & t_{33} \end{bmatrix}.$$

Comparing the 1,1-entries in the products, we get

$$\begin{aligned} t_{11}\overline{t}_{11} &= \overline{t}_{11}t_{11} + \overline{t}_{21}t_{21} + \overline{t}_{31}t_{31} \text{ or} \\ |t_{11}|^2 &= |t_{11}|^2 + |t_{21}|^2 + |t_{31}|^2 . \end{aligned}$$

Thus, $t_{21} = t_{31} = 0$. Comparing the 2,2-entries, then the 3,3-entries establishes that *T* is a diagonal matrix. Finally, since *T* is unitary, the columns of *T* must be length 1 and so each $|t_{kk}| = 1$.

For the arithmetic of unitary matrices, we have the following.

Theorem 6.2 Two properties of unitary matrices follow.

- (a) If U_1 and U_2 are unitary, so is U_1U_2 .
- (b) If U is unitary, so is U^H .

Proof. We argue Part (a), leaving Part (b) as an exercise. Let U_1, U_2 be unitary. Then, checking the unitary equation,

$$(U_1U_2)^H (U_1U_2) = U_2^H U_1^H U_1 U_2 = U_2^H U_2 = I.$$

Thus, by Lemma 6.1, U_1U_2 is unitary.

Considering the grid view of L(x)=Ux, we would expect the following geometric properties.

Theorem 6.3 Let U be an $n \times n$ unitary matrix. Then for all x and y, in Euclidean n-space,

- (a) $||Ux||_2 = ||x||_2$. (Length is unchanged.)
- (b) (Ux, Uy) = (x, y). (If U is an orthogonal matrix then using (a) and (b), we leave it as an exercise to show that U preserves angles.)

In addition,

(c) $|\det U| = 1$. (It is known that for a polygonal shape X, the uolume of AX is $|\det A|$ times the volume of X. Thus, under L(x) = Ux, L preserves volume.)

Proof. We argue two parts. **Part** a. **Using** Lemma **6.1**,

$$||Ux||_{2}^{2} = (Ux)^{H} (Ux) = x^{H}U^{H}Uz = x^{H}x = ||x||_{2}^{2}.$$

Thus, $||Ux||_2 = ||x||_2$.

Part b. **This** is done as in Part (a).

Concerning calculation, the norm **and** condition number of **a** unitary matrix are **as** expected from the **grid** view. The unit circle is not distorted.

Theorem 6.4 Let U be a unitary matrix. Then $||U||_2 = 1$ and $c_2(U) = 1$.

Proof. Both parts are calculations.

$$\begin{split} \|U\|_{2} &= \max_{\|x\|_{2}=1} \|Ux\|_{2} \\ &= \max_{\|x\|_{2}=1} \|x\|_{2} = 1 \\ c_{2}(U) &= \|U\|_{2} \|U^{-1}\|_{2} = \|U\|_{2} \|U^{H}\|_{2} = \|U^{H}\|_{2} = 1 \end{split}$$

using the first calculation and that U^H is unitary.

Recalling Section 2 of Chapter 5, and the Optional there, we see that U neither magnifies error nor relative error. So, unitary matrices are ideal for use in numerical computations (where rounding error occurs). An **ad**-ditional norm result follows.

Theorem 6.5 Let A be an $m \times n$ matrix. Let U_1 and U_2 be $m \times m$ and $n \times n$ unitary matrices, respectively. Then

- (a) $||U_1AU_2||_2 = ||A||_2$.
- (b) $||U_1 A U_2||_F = ||A||_F$.

Proof. We argue both parts. Part a. By definition,

$$\begin{aligned} \|U_1 A U_2\|_2 &= \max_{\|x\|_2 = 1} \|U_1 A U_2 x\|_2 \\ &= \max_{\|x\|_2 = 1} \left[(U_1 A U_2 x)^H (U_1 A U_2 x) \right]^{\frac{1}{2}} \\ &= \max_{\|x\|_2 = 1} \left[x^H U_2^H A^H A U_2 x \right]^{\frac{1}{2}} \end{aligned}$$

¥

f

11

4

I

11

I

and setting $y = U_2 x$ and noting that $||y||_2 = ||U_2 x||_2 = ||x||_2$

$$= \max_{\|y\|_{2}=1} \left[y^{H} A^{H} A y \right]^{\frac{1}{2}}$$
$$= \max_{\|y\|_{2}=1} \|Ay\|_{2}$$
$$= \|A\|_{2}.$$

Part b. Note that for any $m \times n$ matrix $B = [b_1 \dots b_n]$, where b_i is the *i*-th column of B,

$$||U_1B||_F^2 = ||[U_1b_1\dots U_1b_n]||_F^2 = ||U_1b_1||_2^2 + \dots + ||U_1b_m||_2^2$$

= $||b_1||_2^2 + \dots + ||b_m||_2^2 = ||[b_1\dots b_m]||_F^2 = ||B||_F^2$.

Similarly, looking at rows, $||BU_2||_F = ||B||_F$. So putting together,

$$||U_1AU_2||_F = ||AU_2||_F = ||A||_F,$$

the desired result.

6.1.1 Optional (Symmetry)

Orthogonal matrices can be used to describe symmetry in designs. (See Figure 6.7.)

FIGURE 6.7

For example, the letter H has rotational symmetry (rotate 180°) and reflectional symmetry (about the x-axis and about the y-axis). The letter T has reflectional symmetry (about the y -axis). Such symmetries are sometimes discussed on Sesame Street (a syndicated television series for children).

Symmetries can be classified using orthogonal matrices. To see this, consider a square in the plane, **as** shown in Figure 6.8. Note that the **4** rotations $\begin{bmatrix} \cos 6 & -\sin \theta \\ \sin 6 & \cos 6 \end{bmatrix}$ for $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ leave this figure fixed. And

FIGURE 6.8.

the 4 reflections

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix}$$

also leave it fixed. We call this set of rotations and reflections D_4 (the dihedral group of the square). Note that the star in Figure 6.9 has precisely the same symmetry, namely D_4 . (It can be shown that if a figure has k

FIGURE 6.9.

reflections of symmetry, then it has k rotations of symmetry, counting the identity, and we say the symmetry is D_k .)

Not **all** figures have reflectional symmetry. For example, the letter Z, in Figure 6.10, has only rotational symmetry $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} \cos \tau & -\sin \pi \\ \sin \pi & \cos \tau \end{bmatrix}$. Here, we say the symmetry is C_2 , indicating there are only **2** rotations from Z onto Z. C_k is defined similarly.

In nature, symmetry is **all** over. **As** an example, a daisy has lots of **ro**tational and reflectional symmetry (in applications, mathematics need not fit precisely, so there may be some variation from the precise mathematical description of symmetry.)

In computer graphics, noticing symmetry can save time. For example, if the Mandelbrot set is graphed, only that part above the x-axis is required,

FIGURE 6.10.

since the set has reflectional symmetry about the x-axis. (Changing the sign of the second entries of the computed vectors gets the bottom half.) Thus, the amount of time to graph this set is cut in half. (It could be many minutes, depending on the computer.)

6.1.2 MATLAB (Code for Picture of Orthogonal Matrices an 2×2 Matrix Space)

We graph $\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$, which is in the 2-dimensional subspace of matrices having the form $\begin{bmatrix} a & -b\\ b & a \end{bmatrix}$ in the 3-dimensional subspace of matrices having the form $\begin{bmatrix} a & c\\ d & a \end{bmatrix}$. We identify this subspace with $\begin{bmatrix} \sqrt{2}a\\ c\\ d \end{bmatrix}$ and graph $\begin{bmatrix} \sqrt{2}\cos\theta\\ -\sin\theta\\ \sin\theta \end{bmatrix}$ for $0 \le \theta \le 2\pi$.

Code for Picture of Orthogonal Matrices

theta = linspace(0, 2 * pi, 100); **plot3**(sqrt(2)*cos(theta), % Plot3 draws -sin(theta), sin (theta)) % Curves in \mathbb{R}^3

Exercises

1. Compute (x, y), using $y^H x$, for the following.

(a)
$$x = \begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}, y = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}$$

(b) $x = \begin{bmatrix} i\\ 1\frac{i}{t}i\\ 2i \end{bmatrix}, y = \begin{bmatrix} 2i \\ 1+2i \end{bmatrix}$

216 6. Unitary Similarity

2. Give the grid view of each.

(a)
$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

(b)
$$Q = I - 2uu^t$$
 where $u = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

<u>*</u>4

ł

11

Letter - Letter

.

I

I

j

d 🐒

3. Give a 2 x 2 orthogonal matrix that does the following.

- (a) Rotates the plane 30°
- (b) Reflects the plane about the axis y = 2x
- 4. Find the 3 x 3 Householder matrix that reflects R^3 parallel to $u = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. What is W?
- 5. Reflect the clock given in Figure 6.11 about the x_1 -axis. Is the orientation (1-2-3-1 clockwise) still the same?

FIGURE 6.11.

6. Prove that if U is unitary, then

(a) U is nonsingular and (b) $U^{-1} = U^H$.

- 7. Prove Theorem 6.2, part (b).
- 8. Prove Theorem 6.3, part (c).
- 9. Let *H* be a Householder matrix. Prove **each of** the following.
 - (a) H is orthogonal
 - (b) $H = H^t$

- 10. Let A be an n x n matrix and U_1, U_2 be n x n unitary matrices. Prove $c(U_1AU_2) = c(A)$ for the induced 2-norm and the Frobenius norm.
 - 11. Let Q be an $n \times n$ orthogonal matrix, and $x, \hat{x} \in \mathbb{R}^n$. Prove that if $y = Q \mathbf{x}_{,} \hat{y} = Q \hat{x}$, then the angle between y and \hat{y} is the same as that between x and \hat{x} .
 - 12. Find 8 such that

$$\begin{bmatrix} \cos 8 & -\sin \theta \\ \sin e & \cos \theta \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}.$$

13. Find $u(||u||_2 = 1)$ so that

$$(I-2uu^t)\begin{bmatrix}3\\4\end{bmatrix}=\begin{bmatrix}5\\0\end{bmatrix}.$$

- 14. Let U be a unitary matrix. Is it true that $||U||_2 = ||U||_F$? (Give an example if it is false.)
- 15. Let Q be the rotation matrix of Example 6.1. Let $\mathbf{x} = \begin{bmatrix} r \cos \phi \\ r \sin \phi \end{bmatrix}$, expressed in polar coordinates. Show that $Q\mathbf{x} = \begin{bmatrix} r \cos (\theta + \phi) \\ r \sin (\theta + \phi) \end{bmatrix}$. (Use trigonometry identities.) What does this say that Q does to R^2 ?
- 16. Find the matrix F for each flag on the left of Figure 6.12 and Figure 6.13. Then, find an orthogonal matrix Q, if possible, which rotates or reflects the plane, bringing the flag on the left to that on the right. Show your answer is correct by showing plot (QF).

17. Prove that if Q is orthogonal, then L(x) = Qx maps a sphere S of radius r about z (S = { $x : ||x - z||_2 = r$ }) into a sphere of radius r about L(z).

!

Ì

Ì

FIGURE 6.13.

- 18. Prove that the matrices in Example 6.1 and 6.2 are the only 2 x 2 orthogonal matrices.
- 19. (Optional) Classify the symmetries as C_k or D_k for the figures in Figure 6.14.

FIGURE 6.14.

- (b) What symmetry do you see in a kaleidoscope?
- 20. (MATLAB) Two parts.
 - (a) Let P be the matrix for the propeller shown in Figure 6.15. Find the matrix Q that rotates the propeller $\frac{\pi}{4}$ radian. Plot QP to see the new configuration.

FIGURE 6.15.

Find the matrix C for the cube, of side 2, shown in Figure 6.16. (The center of the cube is at the origin, and the faces are parallel to the planes determined by the axes.) Rotate the cube $\frac{\pi}{4}$ radian in the x_1x_2 -plane and then $\frac{\pi}{4}$ radian in the 2223-plane. Find the matrix Q that provides this motion and plot QC.

FIGURE 6.16.

6.2 Schur Decompositions

In Chapter 3, we factored $A = PJP^{-1}$, where J is a Jordan form, and in the following chapter we saw some of its uses. In this section we look at another version of this factorization, the case where we require P to be unitary.

As shown in the picture in Section 1, unitary matrices comprise a small part of matrix space so we expect that in such a factorization, we will not achieve a form as simple as J. To see what we might be able to do, we can use the QR factorization (Gram-Schmidt process) to write P = UR where U is unitary and R upper triangular. Then, substituting,

$$A = PJP^{-1} = URJR^{-1}U^H.$$

Since R, J, and R^{-1} are upper triangular, so is the product RJR^{-1} . Hence, we can write

$$A = UTU^H$$

where U is unitary and $T = RJR^{-1}$ is upper triangular. Thus, A is not only similar to an upper triangular matrix T, it is unitarily similar to T. And **as** a consequence of similarity, the eigenvalues of A are on the main diagonal of T.

In general, if A and B are n x n matrices such that $A = UBU^H$ for some unitary matrix U, we say that A and B are *unitarily similar*. (And if A, B, and U have real entries, we say A and B are *orthogonally* similar.)

We intend to show a direct way (without resorting to the Jordan form) of proving that every square matrix is unitarily similar to an upper triangular

matrix. To develop this unitary matrix version of Jordan's theorem, we need the following lemma, which **gives** a simple way to extend an orthogonal set to an orthogonal basis.

Lemma 6.2 Let u_1, \ldots, u_r be pair-vise orthogonal nonzero vectors in Euclidean n-space. Then there are vectors u_{r+1}, \ldots, u_n such that u_1, \ldots, u_r , u_{r+1}, \ldots, u_n are pair-wise nonzero orthogonal vectors, and thus these vectors form a basis for Euclidean n-space.

Proof. We intend to solve for u_{r+1}, \ldots, u_n one at a time. Consider

$$\begin{bmatrix} u_1^H\\ \cdots\\ u_r^H \end{bmatrix} x = 0.$$
 (6.5)

Since u_1, \ldots, u_r are pair-wise orthogonal nonzero vectors, and thus are linearly independent, $[u_1 \ldots u_r]$ has rank r and hence so does

$$\left[u_1\ldots u_r
ight]^H = \left[egin{array}{c} u_1^H \ \cdots \ u_r^H \end{array}
ight].$$

If $r < n_r$, any echelon form of (6.5) has a free variable, and so there is a nonzero solution, $\sup_{u_{r+1}} u_{r+1}$, to (6.5). Note that since $u_k^H u_{r+1} = 0$ ($u_k^H u_{r+1} = (u_{r+1}, u_k)$), u_k is orthogonal to

 u_{r+1} for all $k \leq r$. Thus $u_1, \ldots, u_r, u_{r+1}$ are pair-wise orthogonal nonzero vectors.

Now we continue the procedure to find u_{r+2} and then u_{r+3} until u_n is found. Thus we obtain n pair-wise orthogonal nonzero vectors. By Lemma 5.2, these vectors give a basis for Euclidean n-space.

An example of the technique follows.

Example 6.3 Let $u_1 = (1, 1, 1)^t$. To extend u_1 to an orthogonal basis, we solve

$$u_1^t x = 0.$$

The augmented matrix as

$$\left[\begin{array}{rrrr}1 & 1 & 1 & 0\end{array}\right]$$

There are two free variables, and a solution is $u_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$. Now solve

$$\left[\begin{array}{c} u_1^t\\ u_2^t \end{array}\right] x = 0.$$

The augmented matrix as

$$\left[\begin{array}{rrrr|rrr} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{array}\right].$$

Applying $-R_1 + R_2$, we have

$$\left[\begin{array}{rrrr|rrr} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 0 \end{array} \right] \cdot$$

Thus with α an arbitrary scalar,

$$53 = a$$
$$x_2 = -\frac{1}{2}a$$
$$x_1 = -\frac{1}{2}a.$$

For a = 2 (We can choose any nonzero a.), we have

$$u_3 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}.$$

Thus u_1, u_2, u_3 forms an orthogonal basis. **I**f we normalize these vectors, we have

$$\begin{aligned} \frac{u_1}{\|u_1\|_2} &= \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} \\ \frac{u_2}{\|u_2\|} &= \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix} \\ \frac{u_3}{\|u_3\|} &= \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{bmatrix}, \end{aligned}$$

an orthonormal basis.

Now, to get the idea of how to find a unitary matrix U such that $A = UTU^H$ where T is upper triangular, we look at a small case.

Let A be a 3×3 matrix. Let λ be an eigenvalue for A with corresponding eigenvector u_1 , of unit length. Extend u_1 to u_1 , u_2 , u_3 an orthonormal

basis. Then, by partitioned and backward multiplication

$$A [u_1 u_2 u_3] = [\lambda_1 u_1 \ A u_2 \ A u_3] \\ = [u_1 u_2 u_3] \begin{bmatrix} \lambda_1 & \alpha_1 & \alpha_2 \\ 0 & \beta_1 & \beta_2 \\ 0 & \gamma_1 & \gamma_2 \end{bmatrix}$$

where the α_i 's, β_i 's, and γ_i 's satisfy $Au_2 = \alpha_1 u_1 + \beta_1 u_2 + \gamma_1 u_3$ and $Au_3 = \alpha_2 u_1 + \beta_2 u_2 + \gamma_2 u_3$. Thus, setting $U_1 = [u_1 u_2 u_3]$, $b = [\alpha_1 \alpha_2]$, and $B = \begin{bmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{bmatrix}$, we have

$$U_1^H A U_1 = \left[\begin{array}{cc} \lambda_1 & b \\ 0 & B \end{array} \right],$$

a start toward the triangular matrix.

Now, we continue with **B**. Let λ_2 be an eigenvalue of **B** with v_1 a corresponding eigenvector of unit length. Extend v_1 to an orthonormal basis, say v_1 , v_2 . Then

$$B[v_1v_2] = [\lambda_2v_1 Bv_2]$$
$$= [v_1v_2] \left[\lambda_2 \beta \right]$$

where α and β are determined by $Bv_2 = \alpha v_1 + \beta v_2$. Setting $V = [v_1v_2]$, we have

$$V^H B V = \left[\begin{array}{cc} \lambda_2 & \alpha \\ 0 & \beta \end{array} \right].$$

Now, to get this back to 3×3 matrices, set $U_2 = \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$. Then

$$U_2^H U_1^H A U_1 U_2 = U_2^H \begin{bmatrix} \lambda_1 & b \\ 0 & B \end{bmatrix} U_2$$
$$= \begin{bmatrix} \lambda_1 & bV \\ \hline 0 & V^H BV \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 & bV \\ \hline 0 & \lambda_2 & \alpha \\ 0 & 0 & \beta \end{bmatrix}.$$

Setting $U = U_1 U_2$, a unitary matrix, we have

$$U^H B U = \begin{bmatrix} \lambda_1 & bV \\ 0 & \lambda_2 & \alpha \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

where we set $\beta = \lambda_3$. Using similarity, λ_1 , λ_2 , and λ_3 are the eigenvalues of A.

More formally, we have Schur's Theorem.

Theorem 6.6 Let A be an $n \times n$ matrix. Then there is an $n \times n$ unitary matrix U such that

$$A = UTU^H$$
,

where T is an upper triangular matrix.

Proof. The proof is done in steps showing how.

Step 1. (Finding U_1) Let λ be an eigenvalue of A with x a corresponding eigenvector. Set $u_1 = \frac{x}{\|x\|_2}$ and extend u_1 to an orthonormal basis, u_1, u_2, \ldots, u_n by Lemma 6.2. Set $U_1 = [u_1 \ldots u_n]$. Then

$$AU_1 = U_1 \left[\begin{array}{cc} \lambda \\ 0 & c_2 \dots c_n \\ \dots \\ 0 \end{array} \right]$$

where the entries in column c_k , are found by solving

$$Au_k = U_1c_k.$$

So, deflating,

$$U_1^H A U_1 = \left[\begin{array}{cc} \lambda & b \\ 0 & B \end{array} \right]$$

where B is an (n-1)x(n-1) matrix. Thus, we have the first row staggered.

Step 2. (Finding U_k) Suppose

$$U_{k-1}^H \cdots U_1^H A U_1 \cdots U_{k-1} = \begin{bmatrix} C_1 & C_2 \\ 0 & C \end{bmatrix}$$

where C_1 is a $(\mathbb{C} - 1) \times (\mathbb{C} - 1)$ upper triangular matrix. Now, repeating step 1 on C, we obtain a unitary matrix W, such that

$$W^H C W = \left[\begin{array}{cc} \beta & \widehat{b} \\ 0 & \widehat{B} \end{array} \right]$$

where β is a scalar. Set

$$U_k = \left[\begin{array}{cc} I & 0 \\ 0 & W \end{array} \right]$$

an $n \times n$ unitary matrix. Then, deflating (to get a smaller matrix in the lower right corner),

$$U_k^H \left(U_{k-1}^H \cdots U_1^H A U_1 \cdots U_{k-1} \right) U_k = \begin{bmatrix} C_1 & C_2 W \\ 0 & W^H C W \end{bmatrix}$$

which has k staggered rows.

Step 3. (Finding U) Set

$$U = U_1 \cdots U_{n-1}.$$

-

Т

Then, U is unitary and

$$U^H A U = T$$

an upper triangular matrix.

A numerical example follows.

Example 6.4 Let $A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. We find U and T in steps. Step 1. (Finding U₁) The eigenvalues of A are 1, i, -i. Let $\lambda = 1$. A corresponding eigenvector is $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, so $u_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$. Extending to an orthogonal basis, we have

$$u_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, u_3 = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \end{bmatrix}$$

and so

$$U_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}.$$

Deflating we have

$$U_1^H A U_1 = \begin{bmatrix} 1 & \frac{\sqrt{6}}{3} & -\sqrt{2} \\ 0 & 0 & -\sqrt{3} \\ 0 & \frac{\sqrt{3}}{3} & 0 \end{bmatrix}$$

Step 2. (Finding U_2) Now

$$C = \left[\begin{array}{cc} 0 & -\sqrt{3} \\ \frac{\sqrt{3}}{3} & 0 \end{array} \right]$$

Note that
$$\lambda_{1} = i$$
 is an eigenvalue $\frac{7}{3} = 1$ and has a corresponding eigenvector $x = \begin{bmatrix} -\frac{\sqrt{3}}{2} & -\frac{i}{2} \\ \frac{i}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$. Thus $v_{1} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{i}{2} \\ \frac{i}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$. Thus $U_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ W \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{i}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$. Then $U_{2}^{H}U_{1}^{H}AU_{1}U_{2} = \begin{bmatrix} 2 & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}i & -\frac{\sqrt{6}}{2} & -\frac{\sqrt{6}}{6}i \\ 0 & i & \frac{2\sqrt{3}}{2} \\ 0 & 0 & -ii \end{bmatrix} = T.$

Step 3. (Finding U) Set

$$U = U_1 U_2 = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-\sqrt{6}}{4} + \frac{\sqrt{6}}{12}i & \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4}i \\ \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{8} + \frac{\sqrt{6}}{12}i & \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4}i \\ \frac{1}{\sqrt{3}} & \frac{-\sqrt{6}}{6}i & \frac{-\sqrt{2}}{2} \end{bmatrix}.$$

The proof of Schur's theorem also shows that if A has real entries **and** real eigenvalues, then A is orthogonally similar to a triangular matrix. Even without the real eigenvalues hypothesis, a real version of Schur's Theorem can be given.

Corollary 6.1 Let A be an $n \times n$ matrix with real entries. Then there is an orthogonal matrix Q, such that

$$A = Q \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1r} \\ 0 & T_{22} & \cdots & T_{2r} \\ & & \ddots & \\ 0 & 0 & \cdots & T_{rr} \end{bmatrix} Q^t$$

where each T_{kk} is 1×1 or 2×2 .

- (a) If T_{kk} is $1 \times 1, T_{kk} = [\lambda]$ where λ is a real eigenvalue of A.
- (b) If T_{kk} is 2×2 , then its eigenvalues are nonreal, complex conjugate eigenvalues (λ and $\overline{\lambda}$) of A.

Proof. Exercise.

As we have seen, calculations involving a diagonal matrix are much easier than those involving a triangular matrix. Thus we now show when a matrix is unitarily diagonalizable (unitarily similar to a diagonal matrix).

Let **A** be an $n \times n$ matrix. If

$$A^H A = A A^H$$

then **A** is called a *normal* matrix. (Examples of normal matrices include Hermitian matrices and symmetric matrices.) The simple condition given above determines precisely those matrices that are unitarily diagonalizable.

Corollary 6.2 Let A be an $n \times n$ matrix and $A = U^H T U$ a Schur decomposition. Then A is normal if and only if T is diagonal.

Proof. The proof is **as** in Theorem 6.1, and so it is left **as** an exercise. ■

If A is normal, then we know, by the previous corollary, that A is similar to a diagonal matrix D. Thus,

$$A = PDP^{-1}$$

where D must be formed from the eigenvalues of A and P the corresponding eigenvectors, a calculation simpler than the Schur form technique. Actually, this P can be adjusted to form a unitary matrix U where

$$\mathbf{A} = UDU^H$$

To do this, suppose $p_r, p_{r+1}, \ldots, p_s$ are those columns in P that are eigenvectors for the eigenvalue λ_i . Apply the Gram-Schmidt process to these eigenvectors to obtain $u_r, u_{r+1}, \ldots, u_s$, an orthonormal set of eigenvectors for λ_i . Replace $p_r, p_{r+1}, \ldots, p_s$ in P with $u_r, u_{r+1}, \ldots, u_s$. Doing this for all eigenvalues of A yields a matrix U. To prove that this U is unitary, we need only show that if u_i and u_j belong to different eigenvalues then $(u_i, u_j) = 0$.

Lemma 6.3 Let **A** be an $n \times n$ normal matrix. Let λ and β be eigenvalues of **A** with corresponding eigenvectors \times and y, respectively. If $\lambda \neq \beta$, then (x, y) = 0.

Proof. Since *A* is normal, we can factor $A = U^H DU$ as assured by Corollary 6.2. For simplicity, we will now assume n = 3 and $D = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \beta \end{bmatrix}$.

(The general argument is **an** extension of this case.)

Now, if x and y are eigenvectors belonging to λ and β respectively,

$$Ax = \lambda x, \quad Ay = \beta y.$$

Thus

$$U^H D U x = A x, \quad U^H D U y = \beta y$$

or, rearranging

$$DUx = \lambda Ux, \quad DUy = \beta Uy.$$

Set

$$w = Ux, \quad z = uy.$$

So we have

$$Dw = Xw, \quad Dz = \beta z.$$

This says that the eigenspace (See D above.) for λ is span $\{el, e_2\}$ and for β is span $\{e_3\}$. Thus, we have that

$$(w,z) = z^H w = 0.$$

Now,

$$(xy) = \left(U^H w, U^H z\right) = (w, z) = 0$$

which is the desired result.

Below, we give an example of unitarily diagonalizing a symmetric matrix, using the eigenvalue eigenvector approach.

Example 6.5 We unitarily diagonalize $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Here $\lambda_1 = 3$, $\lambda_2 = 0, \ \lambda_3 = 0$. Corresponding eigenvectors are $p_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, p_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, and p_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, respectively.$ So $P = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} di$ agonalizes A. Adjusting P to an orthogonal matrix, we apply the Gram-

Schmidt process to the eigenvectors for
$$\lambda_1$$
, and then to those for λ_2 . This
gives $q_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$, $q_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$, and $q_3 = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \end{bmatrix}$, respectively. So
 $Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$. And $A = QDQ^t$ where $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

228 6. Unitary Similarity

We now show that, **as** seen in the example, symmetric matrices are always orthogonally similar to a diagonal matrix. (Complex numbers are not necessary for the factorization.) To do this, we need to show that symmetric matrices have real eigenvalues so that the previous work can be done using only real numbers. Actually, we can show a bit stronger result.

Lemma 6.4 Let A be an $n \times n$ Hermitian matrix. Then each eigenvalue of A is real.

Proof. Let λ be an eigenvalue, and x a corresponding eigenvector, of A. Then

$$Ax = \lambda x$$

Multiplying through by x^H yields

$$x^H A x = \lambda x^H x. \tag{6.6}$$

Taking the conjugate transpose of both sides, we have

$$x^H A^H x = \overline{\lambda} x^H x. \tag{6.7}$$

Since $A^H = A$, (6.7) can be written as

$$x^H A x = \overline{\lambda} x^H x. \tag{6.8}$$

Now equating the right sides of (6.6) and (6.8) yields

$$\lambda x^H x = \overline{\lambda} x^H x$$

Recall that $x^H x = ||x||_2^2 > 0$. Thus,

$$\lambda = \overline{\lambda}.$$

This implies λ is a real scalar.

So, we have the desired result below.

Corollary 6.3 Let A be a symmetric matrix. Then A is orthogonally similar to a diagonal matrix.

Proof. Apply Corollary 6.2 and Lemma 6.4. ■

6.2.1 Optional (Motion in Principal Axes)

If we take a spring-mass system, as shown in Figure 6.17, where $m_1 = m_2 =$

``

FIGURE 6.17.

1, as given in Chapter 4, the positions $x_1(t)$ and $x_2(t)$ of the two particles satisfy

$$x''(t) + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} x(t) = 0.$$
 (6.9)

Notice that the matrix $K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ \hline -k_2 & k_2 \end{bmatrix}$ is symmetric due to the springs exerting the same force to the left **as** to the right.

To solve (6.9), we orthogonally diagonalize K, say $K = QDQ^t$ where $D = \text{diag}(\lambda_1, \lambda_2)$ and $Q = [q_1q_2]$. Plugging QDQ^t into (6.9) and rearranging, we have

$$\boldsymbol{y}^{\prime\prime}(t) + \boldsymbol{D} \boldsymbol{y}(t) = 0 \tag{6.10}$$

where $y(t) = Q^t x(t)$ or

$$QY(t) = x(t) . \tag{6.11}$$

Equation (6.11) can be interpreted **as** a change **of** coordinates from those determined from the basis $Y = \{q_1, q_2\}$ to the original vectors. Traditionally, the vectors q_1 and q_2 are called principal axes for the Y-coordinate system.

Equation (6.10) describes the motion of the particles with respect to the Y-coordinates. In this coordinate system we have, from (6.10),

$$y_1''(t) + \lambda_1 y_1 = 0 y_2''(t) + \lambda_2 y_2 = 0.$$

Solving these equations, we get

$$y_{1}(t) = \alpha_{1} \cos\left(\sqrt{\lambda_{1}}t\right) + \beta_{1} \sin\left(\sqrt{\lambda_{1}}t\right)$$
$$y_{2}(t) = \alpha_{2} \cos\left(\sqrt{\lambda_{2}}t\right) + \beta_{2} \sin\left(\sqrt{\lambda_{2}}t\right)$$

Using that

$$\boldsymbol{a}\cos\left(\sqrt{\lambda}t\right) + \beta\sin\left(\sqrt{\lambda}t\right) = r\cos\left(\sqrt{\lambda}t + \delta\right)$$

230 6. Unitary Similarity

where $r = \sqrt{\alpha^2 + \beta^2}$ and δ satisfies

$$\cos 6 = \frac{\alpha}{r}, \quad \sin \delta = \frac{-\beta}{r}, \tag{6.12}$$

we have

$$y_1(t) = r_1 \cos\left(\sqrt{\lambda_1}t + \delta_1\right)$$
$$y_2(t) = r_2 \cos\left(\sqrt{\lambda_1}t + \delta_2\right)$$

where r_1 , δ_1 and r_2 , δ_2 are given by (6.12). And we see that with respect to the y_1 -axis (determined from q_1) the motion is like cos (amplitude $= r_1$, period $= 2\pi/\sqrt{\lambda_1}$) as it is with the y_2 -axis. Understanding the motion with respect to these axes gives us some view of y (t), and thus x (t).

To firm up the discussion, we **look** at **an** example.

Example 6.6 Let
$$K = \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix}$$
. Then
 $x'' + Kx = 0$

can be described, in terms of the principal axes as

$$y'' + Dy = 0$$

where $\lambda_1 = 4.5616$ and $\lambda_2 = 0.4384$. For simplicity, suppose $\mathbf{y}(0) = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and y'(0) = 0. Then

$$y_{1}(t) = \cos(\sqrt{\lambda_{1}}t)$$

= cos(2.1358t) (period = 2.9419)
$$y_{2}(t) = \cos(\sqrt{\lambda_{2}}t)$$

= cos(0.6621t) (period = 9.4895).

Thus, if we graph $(y_1(t), y_2(t))^t$, which is the same as graphing $(x_1(t), x_2(t))^t$, we can see its shadow on the y_1 -axis as $y_1(t)$ and on the y_2 -axis as $y_2(t)$.

In looking at Figure 6.18, we see that $y_1(t)$ achieves 1 about three times from its initial position while $y_2(t)$ achieves it about once (agreeing with their periods). So, we have some view of what is going on.

To see how intricate the graph is, we **look** at it for t = 0 to t = 300. (See Figure 6.19.)

FIGURE 6.18.

FIGURE 6.19.

6.2.2 MATLAB (Schur)

For a given n x n matrix A the command for the Schur form T is given by schur (A). To obtain U and T, use [U,T] = schur(A). If A is normal, T will be diagonal.

Since **MATLAB** doesn't provide Jordan forms, if A is defective (or nearly so), the Shur factorization can often be used in its place. Numerically, this factorization can be found rather accurately. We provide an exercise solving systems of differential equations in this manner.

To see more, type in help schur.

Code for Graphics of Example 6.5

t = linspace(0, 4 * pi, 100);plot (cos (2.1358 * t), cos (0.6621 * t)) hold plot (1, 1, 'O') axis([-1.5 1.5 - 1.51.5]) % To get the graph off the edges of the picture.

The second picture changes line 1 to t = linspace(0, 300, 600);

Exercises

1. Find a unitary matrix U such that $U^H A U$ is upper triangular.

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
(c) $A = \begin{bmatrix} -2 & 4 & 2 \\ 1 & -2 & 1 \\ -3 & 6 & -3 \end{bmatrix}$

2. Which matrices are normal?

(a)	$\left[\begin{array}{rrr}1&2\\2&1\end{array}\right]$	(b) $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$	
(c)	$\left[egin{array}{cc} 1 & i \\ -i & 2 \end{array} ight]$	(d) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 \end{bmatrix}$	

3. Prove Corollary 6.1 for **4 x** 4 matrices. Assume A has no real eigenvalues.

4. Prove

- (a) Corollary 6.2.
- (b) Lemma 6.3.

5. Unitarily diagonaliz₁ (a) $A = \begin{bmatrix} \mathbf{2} & \mathbf{2} & \mathbf{1} \\ 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$ using eigenvalues and eigenvectors. (b) $A = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$

6. Prove that a unitary matrix is normal.

7. Let A =
$$\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$$
. Find two different Schur decompositions of A.

- 8. Find a matrix that is diagonalizable but not unitarily diagonalizable.
- 9. Prove that if A is normal, so are the following.
 - (a) A^H
 (b) U^HAU where U is unitary
- 10. Is the product of two symmetric matrices symmetric?
- **11.** Let T be a triangular matrix which is not diagonal. Show that T is not normal.
- 12. Give a direct proof, using the proof of Schur's theorem as a guide, that A is unitarily similar to a lower triangular matrix.
- 13. Prove A is unitarily similar to a lower triangular matrix by using Schur's Theorem on A^H .
- 14. For the spring-mass system of Chapter 4, Section 1, let the masses be $m_1 = 1, m_2 = 1$ and the spring constants $k_1 = 1, k_2 = 1$. So the equation is

$$x'' + Kx = 0.$$
 (6.13)

where
$$K = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$.

- (a) Find the solution to (6.13).
- (b) Adjust the solution so that $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $x'(0) = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$.
- (c) Draw the position of the masses at time t = 1, 2, and 3.
- **15.** (Optional) The graph of the orthogonal matrices $\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$ (the reflections) is a circle as was the graph of the rotations. Do these circles intersect in $R^{2\times 2}$?
- 16. (MATLAB) Solve

$$x' = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} x$$
(6.14)
$$x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

(a) Try the eigenvalue-eigenvector approach.

234 6. Unitary Similarity

(b) Use the Shur form and solve

$$y' = Ty$$

where $y = Q^t x$. Thus

$$y(0) = Q^t x(0)$$
.

(Recall, $z'(t) = \lambda z(t) + f(t)$ has solution $z(t) = z(0)e^{\lambda t} + e^{\lambda t} \int_0^t e^{-\lambda \tau} f(\tau) d\tau$.) Convert this solution back to that of (6.14).

a,

÷

Ì

ļ

7 Singular Value Decomposition

In this chapter we show a decomposition of a matrix \boldsymbol{A} (called a singular value decomposition),

$A = U\Sigma V^H$

where U and V are unitary and Σ a diagonal matrix. The way this decomposition is used (See Figure 7.1.) is often like that for the previous decompositions. However, the kinds of problems on which a singular value

decomposition is used are different from those solved by previous decompo-

sitions. The problems solved here usually involve maximizing or minimizing lengths α distances (which includes approximations), or involve shapes or figures in geometry.

7.1 Singular Value Decomposition Theorem

In this section, we show how to obtain a singular value decomposition \mathbf{c} a matrix A. To get the idea of how this is done, we first look at the special case where A is nonsingular.

Since $A^H A$ is Hermitian, using Schur's theorem,

$$V^H A^H A V = D$$

for some unitary matrix $V = [VI...IJ_i]$, where v_i is the i-th column of V, and diagonal matrix D. Recall that $D = \text{diag}(\lambda_1, ..., \lambda_n)$ where the λ_i 's are the eigenvalues of $A^H A$. Rearranging we have

$$(AV)^{H}(AV) = D. (7.1)$$

}

ŧ

ł

The key idea for the decomposition comes from making the appropriate observations in (7.1). To do this, recall that for vectors \mathbf{x} and \mathbf{y} ,

$$y^H x = (x, y) \, .$$

Thus, (7.1) tells us that the columns of AV are orthogonal, and so AV is almost orthogonal. And, it says that the square of the length of the *i*-th column Av_i , is Xi and so its length is $\sqrt{\lambda_i}$. Thus setting $\sigma_i = \sqrt{\lambda_i}$ for all *i* and scaling the columns of AV, we have that

$$U = \left[\frac{Av_1}{\sigma_1} \dots \frac{Av_n}{\sigma_n}\right]$$

is unitary. And, we have

ŝ

$$AV = [Av_1 \dots Av_n]$$
$$= \left[\frac{Av_1}{\sigma_1} \dots \frac{Av_n}{\sigma_n}\right] \left[\begin{array}{cccc} \sigma_1 & 0 & \cdots & 0\\ & & \ddots & \\ 0 & 0 & \cdots & \sigma_n \end{array}\right]$$
$$= UC.$$

where $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$. Thus, we have the decomposition,

$$\mathbf{A} = U\Sigma V^{H}$$
.

To develop this work more generally, we proceed **as** follows. Let $\Sigma = [\sigma_{ij}]$ be an m x n matrix. If $\sigma_{ij} = 0$ for $i \neq j$, we call Σ a *rectangular diagonal* matrix and write

$$\Sigma = diag(\sigma_1, \ldots, \sigma_s)$$

where $s = \min \{m, n\}$ and $\sigma_i = \sigma_{ii}$ for all *i*.

Example 7.1 As examples of rectangular diagonal matrices, we have the following.

(a)
$$\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \end{bmatrix}$$
 (b) $\Sigma = \begin{bmatrix} -1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$
(c) $\Sigma = \begin{bmatrix} -6 & 0 \\ 0 & 2 \end{bmatrix}$

The major theorem in this section describes a singular value decomposition (SVD) of an arbitrary matrix.

Theorem 7.1 Let A be an m x n matrix and $s = \min\{m, n\}$. If A has rank r, then

(a) There is an $m \times m$ unitary matrix U, an $n \times n$ unitary matrix V, and an $m \times n$ diagonal matrix $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_s)$, such that

$$A = U\Sigma V^{H}$$

where

$$\sigma_1 \geq \cdots \geq \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_s,$$

The scalars $\sigma_1, \ldots, \sigma_s$ are called singular values and are the square roots of the nonzero eigenvalues of $A^H A$, ordered by size.

(b) The decomposition can be expanded as

$$A = \sigma_1 u_1 v_1^H + \dots + \sigma_r u_r v_{\mathcal{H}}$$

where, expressed in terms of their columns, $U = [u_1 \dots u_m]$ and $V = [v_1 \dots v_n]$.

Proof. We prove both parts.

Part a. We give the proof in steps, showing how U, V, and Σ are found. Step 1. (Finding V) Note that $A^H A$ is an $n \times n$ Hermitian matrix. Let V be an $n \times n$ unitary matrix that diagonalizes the $n \times n$ matrix $A^H A$, i.e.,

$$V^H \left(A^H A \right) \mathbf{V} = D \tag{7.2}$$

where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ and $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$. (Recall Hermitian matrices have real eigenvalues.) Observe that (7.2) can be written as

$$(AV)^{H}(AV) = D$$

or setting W = AV,

$$W^H W = D$$
.

Step 2. (Finding Σ) Using that w_i is the i-th column of W, we have $A_i = w_r^H w_i = (w_i, w_i) \ge 0$. Thus, $\lambda_1 \ge \cdots \ge A_r > 0 = \lambda_{r+1} = \cdots = \lambda_n$ for some integer τ . Now, let Σ be the $m \ge n$ rectangular diagonal matrix, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_s)$ where

$$\sigma_i = \begin{cases} \sqrt{\lambda_i} & \text{if } \mathbf{A}, > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Note that these σ_i are completely determined by the eigenvalues of $A^H A$ and thus from A.

Step 3. (Finding U) By (7.2), the columns of AV are pairwise orthogonal. (Some of the last columns could be 0.) And the i-th column of AV has length σ_i . Normalizing the nonzero columns, we have

$$u_i = \frac{1}{\sigma_i} A v_i$$

for all $i, i \leq \tau$. Extend u_1, \ldots, u_r to an orthonormal basis, say,

$$u_1,\ldots,u_r,\ldots,u_r$$

and set

$$U = [u_1 \dots u_m].$$

Then, using that $Av_i = \sigma_i u_i$ for $i \leq r$ and that $\sigma_{r+1} = \cdots = \sigma_s = 0$, and backward multiplication,

$$AV = U\Sigma$$

and so

$$A = U\Sigma V^{H}$$

Finally, $r = \operatorname{rank} \Sigma = \operatorname{rank} A$. Part b. Write

$$A = U\Sigma V^{H} = U\left((\sigma_{1}E_{1}) + \dots + (\sigma_{s}E_{s})\right)V^{H}$$

where E_i is the $m \ge n$ matrix having a 1 in the *ii*-th position and 0's elsewhere. So

$$A = U(\sigma_1 E_1) V^H + \dots + U(\sigma_s E_s) V^H$$

= $\sigma_1 u_1 v_1^H + \dots + \sigma_s u_s v_s^H$
= $\sigma_1 u_1 v_1^H + \dots + \sigma_r u_r v_r^H$.

This is the desired result. ■

An example may help.

Example 7.2 Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. We find an SVD of A and its expansion. We do this in steps. Step 1. (Finding V) Orthogonally diagonalize $A^{t}A$. Since $A^{t}A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$, we find $V = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{10}{\sqrt{2}} & -\frac{4}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{10}{\sqrt{2}} & -\frac{4}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{bmatrix}$ and $D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Step 2. (Finding Σ) Since $\lambda_1 = 6$, $\lambda_2 = \lambda_3 = 0$ and A is 2 x 3, we have $\sigma_1 = \sqrt{6}$, $\sigma_2 = 0$, and $\Sigma = \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Step 3. (Finding U) To do this, compute

$$AV = \begin{bmatrix} \frac{3}{\sqrt{3}} & 0 & 0\\ \frac{3}{\sqrt{3}} & 0 & 0 \end{bmatrix}.$$

Set $u_1 = \frac{1}{2T}Av_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$. Extend to an orthonormal basis by setting $u_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$. Then $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$. Since

$$\begin{aligned} AV &= U\Sigma, \quad A = U\Sigma V^{t} = \\ \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}^{t}. \end{aligned}$$

240 7. Singular Value Decomposition

Step 4. For the expansion, we have

$$\begin{aligned} A &= U\Sigma V^t = \sqrt{6} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \\ &+ 0 \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix} \\ &= \sqrt{6} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}. \end{aligned}$$

In Chapter 3 we gave an expression for $||A||_2$ mentioning that we would prove this later. This proof can now be given.

Corollary 7.1 Let \mathbf{A} be an $\mathbf{m} \times \mathbf{n}$ matrix. Then

(a)
$$||A||_2 = \sigma_1$$
,
(b) $c_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{\sigma_1}{\sigma_n}$, when A is $n \ge n$ and nonsingular.

Proof. We prove both parts.

Part **a**. We prove this part for $n \times n$ matrices leaving the general case as an exercise.

Let $A = U\Sigma V^H$ be a singular value decomposition of A. Recall that $||A||_2 = ||U\Sigma V^H||_2 = ||\Sigma||_2$ since U and V^H are unitary. Now,

$$\begin{split} |\Sigma||_{2} &= \max_{\|x\|_{2}=1} \|\Sigma x\|_{2} \\ &= \max_{\|x\|_{2}=1} \left(\sum_{k=1}^{n} |\sigma_{i} x_{i}|^{2} \right)^{\frac{1}{2}} \leq \max_{\|x\|_{2}=1} \left(\sum_{k=1}^{n} |\sigma_{1}|^{2} |x_{i}|^{2} \right)^{\frac{1}{2}} \\ &= |\sigma_{1}| \max_{\|x\|_{2}=1} \left(\sum_{k=1}^{n} |x_{i}|^{2} \right)^{\frac{1}{2}} = |\sigma_{1}| \,. \end{split}$$

So, $\|\Sigma\|_2 \leq \sigma_1$. Further, since $\|e_1\|_2 = 1$, $\|\Sigma\|_2 \geq \|\Sigma e_1\|_2 = \sigma_1$. Thus $\|\Sigma\|_2 = \sigma_1$.

Fart b. As in **Fart** (a), we can show that $||A^{-1}||_2 = \frac{1}{\sigma_n}$. Thus, putting together, $c_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{\sigma_1}{\sigma_n}$.

Perhaps the best known use of singular value decompositions is that they can be used to least-squares solve problems. To see how, let A be an $m \times n$ matrix and b an $m \times 1$ vector, and consider the system of linear equations

$$Ax = b. \tag{7.3}$$

In many problem, it is known that (7.3) has no solution. In any case, we can look for a 'least square' solution, that is, a vector x such that

$$\|Ax - b\|_2 \tag{7.4}$$

ì

i

ł

ì

is the smallest possible. (Thus, the left and right side of (7.3) are as close as they can be.)

To find a least-squares solution, since multiplying by unitary matrices doesn't change lengths, $||Ax - b||_2 = ||\Sigma V^H x - U^H b||_2$ for all x, so (7.4) has the same least-squares solution as

$$\Sigma V^H x = U^H b$$

Thus, simplifying $V^H x = y$ and $U^H b = c$, we least-squares solve

$$\Sigma y = c$$

or

$$\sigma_1 y_1 = c_1$$

$$\cdots$$

$$\sigma_r y_r = c_r$$

$$0 = c_{r+1}$$

$$\cdots$$

$$0 = c_m.$$

To get the left and right sides as close as possible, we need

$$y_1 = c_1 / \sigma_1$$
$$\dots$$
$$y_r = c_r / \sigma_r$$

and we assign

$$y_{r+1} = 0$$

$$\vdots$$

$$y_n = 0.$$

(Actually, y_{r+1}, \ldots, y_n could be assigned any values. They are free variables.)

Thus,

$$V^{H}x = \begin{bmatrix} c_{1}/\sigma_{1} \\ \cdots \\ c_{r}/\sigma_{r} \\ 0 \\ \cdots \\ 0 \end{bmatrix}$$

and

$$x = v \begin{bmatrix} c_1/\sigma_1 \\ \cdots \\ c_r/\sigma_r \\ 0 \\ \cdots \\ 0 \end{bmatrix}$$

Example 7.3 Consider

h = bwhere $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Note that $\mathbf{A}\mathbf{x} = \mathbf{x}_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \mathbf{x}_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ over all \mathbf{x} yields span $\{\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}\}$, and observe in Figure 7.2 that \mathbf{b} is not in this span. So there is no solution to the equation

FIGURE 7.2.

$$\begin{aligned} \mathbf{Ax} &= \mathbf{b}. \\ \mathbf{I} & \mathbf{To} \text{ least-squares solve this equation, we factor } \mathbf{A} &= U\Sigma V^{H}, \text{ yielding } U = \\ \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -75 & \frac{1}{\sqrt{2}} \end{bmatrix}, \ \Sigma &= \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \text{ and } V^{H} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}. \end{aligned}$$
 We multiply
$$\mathbf{h} = \mathbf{b}$$

through by U^H to get

$$\Sigma V^H x = U^H b.$$
Simplifying, set $\mathbf{y} = \mathbf{V}^{\mathbf{H}} \mathbf{x}$ and solve

$$Cy = U^H b$$

от

$$\left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array}\right] y = \left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{3}{\sqrt{2}} \end{array}\right],$$

which yields

$$2y_1 = \frac{1}{\sqrt{2}}$$
$$0y_2 = \frac{3}{\sqrt{2}}.$$

We set
$$y_2 = 0$$
 and by solving, $y_1 = \frac{1}{2\sqrt{2}} \begin{bmatrix} Hence, y = \begin{bmatrix} \frac{1}{2\sqrt{2}} \\ 0 \end{bmatrix}^2$. Thus,
 $V^H x = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}^a$ and so $x = V \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}^a = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{4} \end{bmatrix}^a$.
Checking visually, since

$$Ax = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix},$$

we see that Ax, marked with an o in the graph, is the closest vector.

Although the SVD approach is a very accurate method (in terms of computer computations) for finding least-squares solutions, other methods, such **as** the QR-decompositions, are often used instead. (They are faster.)

Concluding this section, we show that least-squares solutions can be obtained by solving the classical normal equations.

Theorem 7.2 Let A be an $m \times n$ matrix and b an $m \times 1$ vector. The least-square solutions to

$$Ax = b$$

can be found by solving the normal equations

$$A^H A x = A^H b.$$

Proof. Let $U\Sigma V^H$ be a singular value decomposition of **A**. Then, the least-squares solutions to

Ax = b

244 7. Singular Value Decomposition

are the least-squares solutions to

$$\Sigma V^H x = U^H b. \tag{7.5}$$

Multiplying through by Σ^{H} yields

$$\Sigma^H \Sigma V^H x = \Sigma^H U^H b. \tag{7.6}$$

We now need to make an observation. For it, let $\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and

$$U^{H}v = \begin{bmatrix} 4\\7\\5 \end{bmatrix}. \text{ Then (7.5) is} \\ \begin{bmatrix} 3 & 0 & 0\\ \mathbf{0} & \mathbf{0} & 0\\ 0 & 0 & 0 \end{bmatrix} V^{H}x = \begin{bmatrix} 4\\7\\5 \end{bmatrix}$$

and (7.6) is

$$\left[\begin{array}{ccc} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{array}\right] V^H x = \left[\begin{array}{c} 12 \\ 14 \\ 0 \end{array}\right].$$

Now getting the sides **as** close **as** possible, we observe that the 'solutions' to **(7.6)** are precisely the 'least-squares solutions' to **(7.5)**.

Now, multiplying (7.6) through by V, which won't change the solutions, yields,

$$V\Sigma^{H}\Sigma V^{H}x = V\Sigma^{H}U^{H}b \tag{7.7}$$

ì

and inserting $U^H U$ yields

$$V\Sigma^{H}U^{H}U\Sigma V^{H}x = V\Sigma^{H}U^{H}b$$

or

$$A^H A x = A^H b.$$

Thus, the solutions to these normal equations are the least-squares solutions to Ax = b. m

Example 7.4 Using the data of the previous example, Example 7.3, we have

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

To least-squares solve

Ax = b,

we look at the normal equations

$$A^t A x = A^t b,$$

or

$$\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

which has solutions. Using Gaussian elimination, we get

$$x = \begin{bmatrix} \frac{1}{2} + \alpha \\ \alpha \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

where *at* is an arbitr**e**ry scalar, as the least-squares solutions to Ax = b. Fora! = $-\frac{1}{4}$, $x = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{4} \end{bmatrix}$ our least-squares solution, with smallest norm, found in the previous example.

temperature	t_1	t_2		t_m
chirps	c_1	c_2	• • •	cm

or in matrix form

$$\begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ & \cdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \cdots \\ c_m \end{bmatrix}$$

(Here, some of the t_i 's could be the same.) Now, we want α and β so that the difference between the two sides is as small as possible. Thus, we want $(\alpha + \beta t_1 - c_1)^2 + \ldots + (a + \beta t_m - c_m)^2$ as small as possible. (Recall that the minimum of a square root can be found by finding the minimum of the radicand.) This assures us that we are getting the minimum of the sum of the squared distances between the line points $(t_i, \alpha + \beta t_i)$ and the data points (t_i, c_i) . (See Figure 7.4.) From this we see that we want a least-squares solution to the

FIGURE 7.4.

equation.

2. Least-squares fitting *curves*: Here we extend the work given in 1 by looking at data. For this **recall** that in Chapter 3, Section 1, we saw how to find a polynomial that fits through data. For example, if the data is

we can find a polynomial p, of degree at most 4, which passes through the data. The data and this polynomial are shown in Figure 7.5, the graph of the polynomial being shown with the dashed curve.

In looking at this polynomial, especially at the ends, we might wonder if the polynomial describes the relationship of this data. Perhaps, by just looking at the data, we might feel that the data, which probably has some error, is more like a quadratic. Thus, we least-squares fit a polynomial of degree 2 to this data. Since $q(x) = ax^2 + bx + c$ is the general form for a quadratic, we can least-squares solve for the coefficients by solving

ax^2	+bx	+c =	y
а	+b	+c =	0.9
4a	+2b	+c =	4.2
9a	+3b	+c =	8.7
16a	+4b	+c =	16.2
25a	+5b	+c =	24.5

MATLAB gives this function by using the command polyfit(x, y, 2), and using this we find

 $q(x) = 0.9286x^2 + 0.33486 - 0.3600$.

The graph of this polynomial is also in Figure 7.5, and we probably would agree that this fits the data better than does p. Of course, in making such a decision, knowing where the data is from, and a sense or feel for that problem is helpful.

FIGURE 7.5.

3. Space problem: Note that

x + y + z = 1

is a subspace of dimension 2 in \mathbb{R}^3 . And, note that $(1,1,1)^t$ is not on this subspace. We want to find the closest point on the subspace to $(1,1,1)^t$. Observe in Figure 7.6 that $(1,-1,0)^t$ and $(1,0,-1)^t$ span

FIGURE 7.6.

the subspace. Thus, we want to find those scalars x_1 and x_2 , which cause the left side of

$$x_1 \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$

to be **as** close to the right side **as** possible. So, we need to find the least-squares solution to

1	1 0	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$	$\begin{bmatrix} 1\\1 \end{bmatrix}$
0	-1	$\begin{bmatrix} x_2 \end{bmatrix} =$	

Of course, this problem could **also** be solved by Fourier sums **or** by using the orthogonal projection matrix.

-

7.1.2 MATLAB (Least-Squares Solutions to Ax = b)

For the computations used in this section, we can use the following.

- 1. Least-squares solution to Ax = b where A is $m \times n$ and $m \neq n$: to produce a least-squares solution, we can use $A \setminus b$. We would like to describe our problems here so that the columns of A are linearly independent.
- 2. Singular Value Decomposition: To compute the SVD of a matrix A, use the command [U, S, V] = svd(A). Recall $A = U\Sigma V^t$. The S given is Σ . If all we need is Σ , the command is svd(A), which gives the singular values for A.

Type in *help mldivide*, *help svd* for further information. It may also be interesting to check documentation on how SVD is computed. See Bibliography.

Code for Picture in Optional

```
 \begin{aligned} x &= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}; \\ y &\equiv \begin{bmatrix} .9 & 4.2 & 8.7 & 16.2 & 24.5 \end{bmatrix}; \\ p &= \text{polyfit}(x, y, 4); \\ q &= \text{polyfit}(x, y, 2); \\ \text{xi} &= \text{linspace}(0, 6, 50); \\ z &= \text{polyval}(p, \text{xi}); \\ \text{w} &= \text{polyval}(q, \text{xi}); \\ \text{plot}(x, y, 'O', xi, z, ':', xi, w) \end{aligned}
```

Exercises

1. Solve
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 by using the

- (a) SVD approach.
- (b) Normal equations approach.
- 2. Least-squares fit a line through

3. Write out the system of linear equations whose least-squares solutions gives the quadratic ($y = ax^2 + bx + c$) which least-squares fits

- 4. Find the point on the line y = x closest to the point $\begin{bmatrix} 2\\1 \end{bmatrix}$ using
 - (a) The least-squares approach.
 - (b) The orthogonal projection matrix.
 - (c) The Fourier sum approach.
- **5.** Find an SVD for the following.

(a)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

250 7. Singular Value Decomposition

6. Derive the **SVD** theorem starting with

$$U(AA^H)U^H = \Sigma$$

and proceed to find V.

7. Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Let $z = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\mathbf{f}(x_1, x_2) = \|Ax - b\|_2$.

(a) To find the critical points of f, we would solve

$$\frac{\delta f}{\delta x_1} (x_1, x_2) = 0$$
$$\frac{\delta f}{\delta x_2} (x_1, x_2) = 0.$$

Show that the solutions \mathbf{x} to these equations satisfy

$$A^t A x = A^t b.$$

- (b) Can we do the same thing with $\|\cdot\|_1$? Explain.
- 8. Let A be an $m \times n$ matrix. Suppose $U_1 \Sigma V_1^H$ and $U_2 \Sigma V_2^H$ are singular value decompositions of A. Is $U_1 = U_2$, $V_1 = V_2$?
- 9. Let A be an n x n symmetric matrix with eigenvalues λ_1, \ldots, A , Prove that the singular values of A are $|\lambda_1|, \ldots, |\lambda_n|$.
- 10. Let A be a Hermitian matrix. Suppose $A = UDU^H$ is a unitary diagonalization of A. Is UDU^H an SVD of A?
- 11. If $U\Sigma V^H$ is a singular value decomposition of **A**, prove that $V\Sigma^H U^H$ is one for A^H . (Thus, we can convert **an** $m \times n$ problem into $n \times m$ problem.)
- 12. Explain when we can get an SVD using only real numbers.
- 13. Prove Corollary 7.1,
 - (a) Part (a) for $m \times n$ matrices.
 - (b) Part (b).
- 14. Rewrite $A = U\Sigma V^H$ into $\hat{U}D\hat{V}^H$ by truncating columns of U and rows of V^H , where $D = diag(\sigma_1, \ldots, \sigma_r)$ is $r \times r$. Here $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$.

- 15. Prove that the least-squares solution computed, from (7.3) on, is the least-squares solution of smallest norm.
- 16. Let $A = U\Sigma V^H$ be an SVD of A.
 - (a) Prove the columns of V (called right singular vectors) are eigenvectors for $A^H A$.
 - (b) Prove the columns of U (called the left singular vectors) are eigenvectors of AA^{H} .
 - (c) Show by an example, that if left and right singular vectors of **A** are found, U and V^H formed from these singular vectors, then $U\Sigma V^H$ need not be A.
- 17. (MATLAB) Two parts:
 - (a) Compute the least-squares solutions to

i.
$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} x = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}.$$

ii.
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x = \begin{bmatrix} .9 \\ 1.1 \end{bmatrix}.$$

(b) Find the SVD of
i.
$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \\ -2 & 3 \end{bmatrix}$$
ii.
$$\begin{bmatrix} .1 & -.3 & 2 \\ 4 & 3.1 & 0 \end{bmatrix}$$

18. (MATLAB) Consider the data given below.

- (a) Find the polynomial that passes through this data.
- (b) Find the quadratic polynomial that least-squares fits this data.
- (c) Plot the graph of both polynomials and the data.
- 19. (MATLAB) Suppose we want to estimate the value of a spring constant, say, for one of our spring-mass problems. By stretching the spring and recording the force to do so, we collect the following data.

Using Hooke's Law: Force = spring constant times displacement, use least-squares and the data above to estimate the value of the spring constant. (Recall measurements can be in error.)

7.2 Applications of the SVD Theorem

The SVD theorem is a remarkably strong tool in matrix theory. In this section, we look at a few additional uses of this theorem. In these applications we assume that the matrix **A** has SVD **as** described in Theorem **7.1.**

1. Distance to the closest rank **k** *m* x *n* **matrix**

Given *m* and *n*, define

Rank $k = \{B : B \text{ is an } m \ge n \text{ matrix having rankk}\}.$

(Note that Rank k is not a subspace.) Define the distance and relative distance from an $m \ge n$ matrix A to Rank k as

$$d(A, \operatorname{Rank} k) = \min ||A - B||_2$$

$$d_{re1}(A, \operatorname{Rank} k) = \min \frac{||A - B||_2}{||A||_2}$$

where the minimums are over all $B \in \text{Rank } k$. (We will show minimums exist.) The result we want follows.

Theorem 7.3 Let A be an $m \times n$ matrix of rank r. Then, if k < r,

- (a) $d(A, \operatorname{Rank} k) = \sigma_{k+1}$.
- (b) $d_{rel}(A, \operatorname{Rank} k) = \frac{\sigma_{k+1}}{\sigma_1}$.

Proof. We prove both parts.

Part a. Note that if $B \in \text{Rank } k$, since multiplying by unitary matrices doesn't change distance,

$$\|A - B\|_{2} = \|U\Sigma V^{H} - B\|_{2}$$
$$= \|\Sigma - U^{H}BV\|_{2}$$
$$= \|\Sigma - C\|_{2}$$

where $C = U^H B V$ and $C \in \text{Rank } k$. Thus

$$d(A, \operatorname{Rank} k) = d(\Sigma, \operatorname{Rank} k).$$

We now break Part (a) into two parts.

i. $d(\Sigma, C) \ge \sigma_{k+1}$ for all $C \in \text{Rank } k$. To see this, let $C \in \text{Rank } k$. For simplicity of notation, we will assume that first k columns of C are linearly independent. Define an $(n - k - 1) \times n$ matrix E in partitioned form, as

$$E = \begin{bmatrix} 0 & I \end{bmatrix}$$

where I is the $(n - k - 1) \times (n - k - 1)$ identity matrix. (If n - k - 1 = 0, E is $0 \times n$, i.e., it won't appear in what follows.) Then, since rank C = k,

rank
$$\begin{bmatrix} C\\ E \end{bmatrix} = k + (n-k-1) = n-1.$$

Thus there is an x, $||x||_2 = 1$, such that $\begin{bmatrix} C \\ E \end{bmatrix} x = 0$. Note that, since $Ex = 0, x_{k+2} = \cdots = x_n = 0$. Now

$$\begin{split} \|\Sigma - C\|_{2} &= \max_{\|y\|_{2}=1} \|(\Sigma - C) \, y\|_{2} \ge \|(\Sigma - C) \, x\|_{2} \\ &= \|\Sigma x\|_{2} = \left(\sigma_{1}^{2} |x_{1}|^{2} + \dots + \sigma_{k+1}^{2} |x_{k+1}|^{2}\right)^{\frac{1}{2}} \\ &\ge \sigma_{k+1} \, \|x\|_{2} = \sigma_{k+1}. \end{split}$$

Thus, since C was chosen arbitrarily, (i) follows.

ii. $d(\Sigma, C) = \sigma_{k+1}$. To show this, by (i), we need to find only one $C \in \text{Rank } k$ such that $\|(\Sigma - C)\|_2 = \sigma_{k+1}$. For this C, set $C = diag(\sigma_1, \ldots, \sigma_k, 0, \ldots, 0)$. Then, as in the exercises, $\|(\Sigma - C)\|_2 = \sigma_{k+1}$.

Part b. Apply Corollary 7.1, and (a) of this theorem.

Using the theorem, if A is nonsingular, then by (a) the closest singular matrix to A has rank n - 1 and the distance is σ_n . Also by (b)

$$\frac{1}{c_2(A)} = \frac{\sigma_n}{\sigma_1}$$
$$= \min \frac{\|A - B\|_2}{\|A\|_2}$$

where the minimum is over all singular matrices B. Thus

$$\frac{1}{c_2(A)} \|A\|_2 = \min \|A - B\|_2.$$

This says that over all nonsingular matrices A, such that , say, $||A||_2 = c$, c is a constant, the matrices which have the larger condition numbers are closer to being singular, and vice versa.

2. Moore-Penrose Pseudo-inverse of A

We know that the inverse exists **for** all nonsingular matrices. Actually, however, the notion **of** inverse has been extended to all inatrices (even 0). We will show how.

The Moore-Penrose pseudo-inverse of an $m \times n$ matrix A is an $n \times m$ matrix X such that

i. AXA = A.

ii. XAX = X.

iii. AX is Hermitian.

iv. XA is Hermitian.

As we now show, each matrix has precisely one pseudo-inverse.

Lemma 7.1 Let A be an $m \times n$ matrix. Then there is a unique $n \times m$ matrix X which satisfies (i) through (iv).

Proof. We prove two parts. Part **a**. For the existence, set

$$X = \operatorname{Vdiag}\left(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, \theta\right) U^H.$$

Then **X** satisfies (i) through (iv).

Part b. For the uniqueness, suppose X and Y are solutions to (i) through (iv). Then

$$X = XAX = XX^{H}A^{H} = XX^{H}A^{H}Y^{H}A = XAXAY$$
$$= XAY = XAYAY = A^{H}X^{H}A^{H}Y^{H}Y = A^{H}Y^{H}Y$$
$$= YAY = Y.$$

Thus X = Y.

Since A has precisely one pseudo-inverse, we can denote it by $_{-}^{+}$. And since, if A is nonsingular, A^{-1} satisfies properties (i) through (iv), we have that $A^{+} = A^{-1}$. So the pseudo-inverse extends the notion of the inverse to all matrices.

To see some use for this generalization, recall that if A is nonsingular, then

$$Ax = b$$

has a solution $x = A^{-1}b$. We show an extended such result for all matrices.

Corollary 7.2 Let Ax = b be a system of linear equations where A is an m x n matrix and b is m x 1 vector. Then $x = A^+b$ is the least-squares solution to this equation that has the smallest 2-norm.

Proof. To least-squares solve Ax = b, we least squares solve $\Sigma V^H x = U^H b \alpha$ Cy $= U^H b$ where $y = V^H x$. Now note that the least-squares solutions to Cy $= U^H b$ are precisely the solutions to

$$\Sigma^+ \Sigma y = \Sigma^+ U^H b \tag{7.8}$$

where

$$\Sigma^{+} = \text{diag} \left(\sigma_{1}^{-1}, \dots, \sigma_{r}^{-1}, 0, \dots, 0 \right).$$

For example, if $\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $U^{H}b = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$, then $\Sigma y = U^{H}b$ is

$$3y_1 = 4$$

2y2 = 7
 $0 = 5$,

while $\Sigma^+ \Sigma y = \Sigma^+ U^H b$ is

$$y_1 = \frac{4}{3}$$
$$y_2 = \frac{7}{2}$$
$$0 = 0.$$

Let \hat{y} be the solution to (7.8) where all free variables are set to 0. Then $\Sigma^+ \Sigma \hat{y} = \mathbf{y}$ so (7.8) becomes

$$\hat{y} = \Sigma^+ U^H b$$

Since $\hat{y} = V^H \hat{x}$ (\hat{x} defined by $\hat{x} = V \hat{y}$)

$$V^H \hat{x} = \Sigma^+ U^H b$$

or

$$\hat{x} = V\Sigma^+ U^H b = A^+ b.$$

Finally, since $\|\hat{y}\|_2$ is the **smallest** possible solution to (7.8), and $\|\hat{x}\|_2 = \|\hat{y}\|_2$, $\|\hat{x}\|_2$ is the smallest least-squares solutions to Ax = b, the desired result.

There are many other uses of the psuedo-inverse.

3. Computing range and null space

To compute the range and null space for A, recall that

$$AV = U\Sigma.$$

By partitioned multiplication on the left and backward multiplying on the right, we have

$$Av_i = \sigma_i u_i$$

for $i = 1, \ldots, r$ and

$$Av_i = 0$$
, otherwise. (7.9)

_

Both of our results will be obtained from (7.9). To see this, recall from Section 3 of Chapter 2 that, if v_1, \ldots, v_n is a basis for E^n then Av_1, \ldots, Av_n form a spanning set for the range of A. Thus, the vectors $\alpha_1 u_1, \ldots, \alpha_r u_r$, and thus u_1, \ldots, u_r span the range of A, i. e.,

$$R(A) = \operatorname{span} \{u_1, \ldots, u_r\}$$

For N(A), suppose Ax = 0. Then by writing $x = \alpha_1 v_1 + \ldots + \alpha_n v_n$, and noting (7.9), we see that

$$Ax = \alpha_1 (\sigma_1 u_1) + \dots + \alpha_r (\sigma_r u_r)$$

= $(\alpha_1 \sigma_1) u_1 + \dots + (\alpha_r \sigma_r) u_r$
= 0.

Since u_1, \ldots, u_r are linearly independent, $\alpha_1 \sigma_1 = 0, \ldots, \alpha_r \sigma_r = 0$ or $\alpha_1 = 0, \dots, \alpha_r = 0$. Thus, $x = \alpha_{r+1}v_{r+1} + \dots + \alpha_n v_n$. And any vector in this form is in N(A), so

$$N(A) = \operatorname{span} \{ v_{r+1}, \ldots, v_n \} .$$

(Numerically, this is a good way to compute R(A) and N(A).)

As given in Chapter 5, Section 4, if we set $U_1 = [u_1 \dots u_r]$ and $V_2 =$ $[v_{r+1}, \ldots, v_r]$, then $U_1U_1^t$ and $V_2V_2^t$ are orthogonal projection matrices onto R(A) and N(A), respectively.

Example 7.5 In Example 7.2 we showed for
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 that $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$, $V = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$, and $\Sigma = \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

inus, we nave

$$R(A) = \operatorname{span} \left\{ u_1 \right\} = \operatorname{span} \left\{ \left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right] \right\}$$

a lane in \mathbb{R}^2 , and

$$N(A) = \operatorname{span} \left\{ v_2, v_3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \end{bmatrix} \right\},$$

a plane in \mathbb{R}^3 .

4. Computing numerical rank

Note that rank A is not a continuous function of the entries of A. For example, let $A(\epsilon) = \begin{bmatrix} 1 & 1+\epsilon \\ 1 & 2 \end{bmatrix}$ and $r(\epsilon) = \operatorname{rank} A(\epsilon)$. The graph of $r(\epsilon)$ is given in Figure 7.7. Thus r is discontinuous at $\epsilon = 1$.

FIGURE 7.7.

Because of discontinuity, it can be difficult to compute *rank*. For example, **MATLAB** says it will 'approximate' the rank of a matrix.

The singular value decomposition,

$$A = U\Sigma V^H$$

is often used to estimate rank; a tolerance δ (estimating what singular values may actually be 0 but do not appear so due to rounding) is given. If

$$\sigma_1 \geq \cdots \geq \sigma_r > \delta \geq \sigma_{r+1} \geq \cdots \geq \sigma_s,$$

then the numerical rank is set equal to r. MATLAB uses

$$\delta = \operatorname{tol} = \max(m, n) \cdot \|A\|_2 \cdot eps,$$

where our $eps = 2.2204 \times 10^{-16}$ (a MATLAB number which indicates computations are done in about 15 digits.)

As an example, if we define
$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
, $\Sigma = \text{diag} (100, 10^{-14})$,
and $A = Q\Sigma Q^t$, then MATLAB gives rank $A = 1$. Note that

$$\delta = 2 \times 100 \times 2.2204 \times 10^{-16}$$

= 4.4408 × 10⁻¹⁴ > $\sigma_2 = 10^{-14}$.

So, rank A was estimated at 1. (Here, we are looking at a rigged problem.)

5. Data compacting

Suppose, for simplicity, we have a 3×3 array of pixels which can be lit to form pictures. (**Pixels**could be in different colors, but we will use black and white.) We associate a 3×3 matrix A with $a_{ij} = 1$ if the ij-th pixel is to be lit and 0's otherwise. An example is below.

$$\mathbf{L} \qquad A = \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{1} & \mathbf{0} & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Note, to represent " $L_{,}$ " or any figure in our 3×3 array of pixels, we need to store 9 entries in the array.

The singular value decomposition of A can be written as

$$A = \sigma_1 u_1 u_1^H + \sigma_2 u_2 v_2^H$$

= $1.85 \begin{bmatrix} -.5 \\ -.5 \\ -.707 \end{bmatrix} \begin{bmatrix} -.924, -.384, 0 \end{bmatrix} + .715 \begin{bmatrix} -.5 \\ -.5 \\ -.707 \end{bmatrix} \begin{bmatrix} -.384, -.924, 0 \end{bmatrix}$
= $\begin{bmatrix} .855 & .355 & 0 \\ .855 & .355 & 0 \\ 1.21 & .523 & 0 \end{bmatrix} + \begin{bmatrix} .137 & -.330 & 0 \\ .137 & -.330 & 0 \\ -.194 & .467 & 0 \end{bmatrix}$.

If we use a simple rounding rule on $\sigma_1 u_1 v_1^H$ that entries of .5 and above are 1's and that those less than .5 are 0's, $\sigma_1 u_1 v_1^H$ determines the picture. (It can be that on larger problems, $n \times n$ rather than 3×3 , $\sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H$ may be required to produce the picture, or we may need even more terms. However, it should be observed that $\sigma_1 \ge \sigma_2 \ge \cdots$ and $||u_i||_2 = 1, ||v_j||_2 =$ 1 for all *i* and *j*, so we expect to **add** matrices of smaller size each time.)

Thus to keep L we need only retain σ_1 , u_1 , and v_1 . Counting entries which we **need** to form L, we have

$$1(\text{for } \sigma_1) + 3(\text{for } u^1) + 3(\text{for } v_1^H) = 7$$

Of course, this is a reduction of 2 from the original 9 entries we needed to keep. (Perhaps 22% would be a better view.) However in larger problems, the savings can be great.

6. Representations of linear transformations

The SVD gives an interesting view of the linear transformation L(x) = Ax, where A is an $m \times n$ real matrix. To see this, set $A = U\Sigma V^H$. Using the columns of U and V, define $Z = \{u_1, ..., u_m\}$ and $Y = \{v_1, ..., v_n\}$. Then Z and Y are orthonormal bases for the codomain \mathbb{R}^m and the domain \mathbb{R}^n of L, respectively. And, if $z = [x]_Z$ and $y = [x]_Y$, we have that

$$Uz = x$$
 and $Vy = x$

are the change of coordinates from these bases, respectively, to the given vectors.

We now convert L(x) = Ax, so the domain is given in terms of the coordinates using Y and the codomain given in terms of the coordinates using Z. To do this, change the coordinates of Ax into those for the basis Z by multiplying them by U^{H} . Thus we have

$$U^H A x$$
.

And we change the coordinates of x to those for the basis Y by replacing x by Vy, getting

$$U^H A V y$$
.

Thus,

$$U^H A V y = U^H U \Sigma V^H V y = C y.$$

Hence, in terms of new coordinates in the domain and codomain, (See Figure 7.8.)

$$L(y)=\Sigma y.$$

FIGURE 7.8.

An example may help.

Example 7.6 (Collapsing of space) Let $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. An SVD of A is $\begin{bmatrix} 0.7071 & -0.7071 \\ 0.7071 & 0.7071 \end{bmatrix} \begin{bmatrix} 0 \\ 3.1623 & 0 \end{bmatrix} \begin{bmatrix} 0.4472 & 0.8944 \\ -0.8944 & 0.4472 \end{bmatrix}$. From this, $Y = \{v_1, v_2\} = \{\begin{bmatrix} 0.4472 \\ 0.4472 \\ 0.4472 \end{bmatrix}, \begin{bmatrix} -0.8944 \\ 0.4472 \end{bmatrix}\}$ and $Z = \{u_1, u_2\} = \{\begin{bmatrix} 0.7071 \\ 0.7071 \\ 0.7071 \end{bmatrix}, \begin{bmatrix} -0.7071 \\ 0.7071 \end{bmatrix}\}$ are bases for the domain and codomain, respectively. (See Figure 7.9.)

FIGURE 7.9.

In terms of the coordinates of these bases, the transformation is described as $\$

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = L(y) = \begin{bmatrix} 3.1623 & 0 \\ 0 & 0 \end{bmatrix} y$$
$$= \begin{bmatrix} 3.1623y_1 \\ 0 \end{bmatrix}.$$

Thus, the y_2 -axis is collapsed (orthogonally projecting all points in \mathbb{R}^2 onto the y_1 -axis), and the y_1 -axis is then stretched by 3.1623 and laid on the el-axis. (Note $L \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 3.1626 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.)

7.2.1 MATLAB (pinv, null, orth, and rank)

The computations discussed in this section can be done using MATLAB.

Use pinv(A) for the psuedo-inverse of A, null(A) for an orthonormal basis for the null space of A, and orth(A) for an orthonormal basis for the range of A.

.

Exercises

- **1.** What is 0+?
- 2. In proof of Lemma 7.1, Part b, tell why each statement is true.
- 3. Compute A^+ where A is given below.

(a)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$
where σ_1 and σ_2 are positive

- 4. Prove:
 - (a) If $\sum = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ where $\sigma_1 \ge \cdots \ge \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_n$, then $\sum^+ = \operatorname{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0)$.
 - (b) If A is nonsingular, then $A^+ = A^{-1}$.
 - (c) If $A = U\Sigma V^H$, an SVD, then $A^+ = V\Sigma^+ U^H$.

5. How near are the following matrices to a singular matrix?

(a)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

- 6. For each of the following matrices,
 - (a) Find an orthonormal basis for R(A) and N(A), and
 - (b) Find orthogonal projections on R(A) and V(A).

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, \qquad A = \begin{bmatrix} 2 & 0 & \bullet \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \\ 0 & 1 & \bullet \end{bmatrix}$$

- 7. Let $A = \begin{bmatrix} .501 & .499 \\ .499 & .501 \end{bmatrix}$. If 6, as given in application 4, is .03, what is the numerical rank of A?
- 8. Use an SVD approach to represent T in a 3×3 array, as done in application 5.
- 9. As in application **6**, describe what L does.

262 7. Singular Value Decomposition

(a)
$$L(x) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x$$

(b) $L(x) = \begin{bmatrix} 2 & -1 & -1 \\ 2 & 1 & 1 \end{bmatrix} x$

- 10. Let *A* be a 2×2 matrix. Prove that in the F'robenius norm the closest unitary matrix to *A* is $Q = UV^H$ where $A = U\Sigma V^H$ is a singular value decomposition of *A*. (Note that the proof can be extended to the $n \times n$ case.)
- 11. Prove $||A||_2^2 = ||A^tA||_2$ and that $c_2(A^tA) = ||A^tA||_2 ||A^{-1}(A^{-1})^t||_2 = ||A||_2^2 ||A^{-1}||_2^2 = c_2(A)^2$. What does this say about solving normal equations numerically?
- 12. Prove that if $\Sigma = \text{diag}(\sigma, 0, \dots, 0)$, then $\|\Sigma\|_2 = |\sigma|$.
- 13. Prove that if $\sigma_1 > 0, \ldots, \sigma_s > 0$ and x_1, \ldots, x_s vectors in E", then span $\{\sigma_1 x_1, \ldots, \sigma_s x_s\} = \text{span} \{x_1, \ldots, x_n\}.$

14. (MATLAB) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$
.

- (a) Find the distance from A to the rank 1, rank 2, and rank 3 matrices.
- (b) Find the pseudo-inverse of A by using the singular value decomposition of A. Compare your results to that obtained using pinv(A).
- (c) Compute the range and null space of *A*, using an SVD and using the command orth and null.
- (d) Compute rank (A) and rank (A^t) .
- (e) Solve Ax = b where $b = [1, -1, 0, 1, 1, -1]^t$.
- 15. (MATLAB) Is there a matrix A so that rank $A \neq \operatorname{rank} A^t$ in MAT-LAB?
- 16. (MATLAB) A 'house' is shown below.

Using the expansion $A = \sigma_1 u_1 v_1^t + \cdots + \sigma_5 u_5 v_5^t$, show what the house looks like for

- (a) $\sigma_1 u_1 v_1^t$.
- (b) $\sigma_1 u_1 v_1^t + \sigma_2 u_2 v_2^t$.
- (c) $\sigma_1 u_1 v_1^t + \sigma_2 u_2 v_2^t + \sigma_3 u_3 v_3^t$.

é

8 LU and QR Decompositions

We have already seen that factoring matrices into simpler ones is important in developing and applying matrix theory. In this chapter we look at fatoring an m x n matrix either as LU (where L is a lower triangular matrix and U a row echelon form) or as QR (where Q is an orthogonal matrix and R a row echelon form). Both factorizations involve a kind of Gaussian elimination approach and are highly used in numerical algorithms and software, such as MATLAB. Knowing this material also helps us understand the occasional warnings given with a MATLAB computation.

8.1 The LU Decomposition

Let A be an m x n matrix. An m x m elementary matrix E, belonging to an elementary operation, is the matrix that produces by premultiplication, the elementary operation applied to A. Thus

$$EA = B$$

where B is obtained by applying the elementary operation directly to A. For example if m = 2, we have the following.

$$R_1 \leftrightarrow R_2 \qquad E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$\alpha R \qquad E = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$$

8. LU and QR Decompositions 266

$$\alpha R_1 + R_2 \qquad E = \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix}.$$

Observe that each elementary matrix is nonsingular and its inverse reverses the elementary operation defining it. We will show this using the previous examples.

$$R_{1} \leftrightarrow R_{2} \quad E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad E^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad R_{1} \leftrightarrow R_{2}$$
$$\alpha R_{1} \qquad E = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix} \qquad E^{-1} = \begin{bmatrix} \alpha^{-1} & 0 \\ 0 & 1 \end{bmatrix} \qquad \alpha^{-1} R_{1}$$
$$\alpha R_{1} + R_{2} \quad E = \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix} \qquad E^{-1} = \begin{bmatrix} 1 & 0 \\ -\alpha & 1 \end{bmatrix} \qquad -\alpha R_{1} + R_{2}.$$

Thus, if Gaussian elimination is applied to A to obtain a row echelon form U, then elementary matrices corresponding to the elementary operations used, say, E_1, \ldots, E_r , are such that

Example 8.1 Let
$$A = \begin{bmatrix} E, & & E_1A = U. \\ 1 & -1 & 2 \\ 2 & 0 & 5 \\ 3 & 5 & 13 \end{bmatrix}$$
. Applying Gaussian elimination,

we have

$$A \xrightarrow{-2R_{1} + R_{2}}, \qquad \begin{bmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 0 & -1 \\ 3 & 3 & I3 \end{bmatrix}$$
$$\xrightarrow{-3R_{1} + R_{3}}, \qquad \begin{bmatrix} -3R_{1} + R_{3} \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}, \qquad \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 0 & 8 & 7 \end{bmatrix}$$
$$\xrightarrow{-4R_{2} + R_{3}}, \qquad \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 0 & 8 & 7 \end{bmatrix}$$
$$\xrightarrow{-4R_{2} + R_{3}}, \qquad \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} = U$$

Now

2

$$E_3 E_2 E_1 A = U.$$

If no interchange operations are used, then each E, is lower triangular, so $E, \ldots E_1$ is lower triangular and so is $L = (E, \ldots E_1)^{-1}$. Thus from (8.1),

$$A = LU$$
.

If no scaling was applied (and there need not be) then, remarkably, L can be computed easily from the multipliers used. (If $-\alpha R_i + R_j$ is applied, α is the multiplier.) For example, to compute L, note that if

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\gamma & 1 \end{bmatrix}, E_{2} = \begin{bmatrix} 0 & 0 & 0 \\ -\beta & 0 & 1 \end{bmatrix}, E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -d & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

then

$$\begin{split} L &= E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} & & 0 \\ d & 0 & \mathbf{0} \\ & & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} & & 0 \\ 0 & \mathbf{0} & \mathbf{0} \\ & & 1 \\ \beta & 0 & 1 \end{bmatrix} \begin{bmatrix} & & 0 \\ 0 & \mathbf{0} & \mathbf{0} \\ & & 1 \\ 0 & \gamma & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ \beta & \gamma & 1 \end{bmatrix}. \end{split}$$

Thus L can be computed by placing the multipliers used in their corresponding positions in L, so there is no need to keep track of the corresponding elementary matrices. (The order here, namely $E_1^{-1}E_2^{-1}E_3^{-1}$ is important. The computation of $E_3^{-1}E_2^{-1}E_1^{-1}$ cannot be done in the same way.) Thus, as shown in the following example, computing LU is as efficient as finding U by Gaussian elimination.

Example 8.2 Using the data from Example 8.1 and forming L directly from the multipliers, we have

$$L = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{array} \right].$$

so

$$A = LU$$

= $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$

Interchanges, however, may be required. We give two ways in which this can happen.

i. We obtain a form such as

۲	*	*	*	*	۱
0	۲	*	*	*	l
0	0	0	*	*	ł
0	0	۲	*	*	l

Now we would need to interchange rows 3 and 4 to continue toward a row echelon form.

ii. We have, say,

$$\begin{bmatrix} \textcircled{(*)} & \ast & \ast & \ast & \ast \\ 0 & 1 & \ast & \ast & \ast \\ 0 & 1000 & \ast & \ast & \ast \\ 0 & & & & & \ast & \ast \\ \end{bmatrix}$$

In numerical calculation, it is known that choosing large pivots, in general, leads to better results. **Thus,** at this step we would apply $R_2 \leftrightarrow R3$, obtaining a larger pivot.

To see how to proceed when interchanges are used, we make an observation. Suppose

$$A = \left[\begin{array}{rrrr} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right]$$

We apply $\frac{-x_2}{x_1}R_1 + R_2$, $\frac{-x_3}{x_1}R_1 + R_3$ to get **1 0**

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \\ \frac{-x_3}{x_1} & 1 & 0 \\ \frac{-x_2}{x_1} & 1 & 0 \\ 0 & \frac{-x_2}{x_1} & 0 & 0 \\ 0 & \frac$$

Now we would use ${}^{1}R_{2} \rightarrow R3$, whose corresponding elementary matrix is $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, which is not lower triangular. Note, however, if we

apply \overline{C} first, we have

$$CA = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_3 & y_3 & z_3 \\ x_2 & y_2 & z_2 \end{bmatrix}$$

and our corresponding elementary operations, eliminating x_2 first, would then be $\frac{-x_2}{x_1}R_1 + R_3$, $\frac{-x_3}{x_1}R_1 + R_2$. Using the corresponding elementary matrices, we would now have

$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{-x_3}{x_1} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-x_2}{x_1} & 0 & 1 \end{bmatrix} CA = \begin{bmatrix} x_1 & y_1 & z_1 \\ 0 & v_3 & w_3 \\ 0 & 0 & w_2 \end{bmatrix}$$

Comparing this result to that of (8.2), we can see that interchange operations, and their corresponding elementary matrices, can be moved **up** in the list of elementary operations done on A. To commute the elementary matrices, observe that applying $cR_i + R_j$ and $R_j \leftrightarrow R_k$ is the same as applying $R_j \leftrightarrow R_k$ and $cR_i + R_k$ (i < j < k). Thus, we need only change the c's in the row positions that might be in row j or row k according to the interchange. For example, for $\alpha R_1 + R_2$ and $R_2 \leftrightarrow R_3$ we have

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & \mathbf{0} \\ \alpha & 1 & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{\hat{\alpha}} & \mathbf{0} & \mathbf{0} \\ \alpha & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 \end{bmatrix}$$

or $R_2 \leftrightarrow R3$ and $\alpha R_1 + R_3$.

So, if P, called a permutation matrix, is the product of elementary matrices corresponding to interchange operations (It accumulates all interchanges of rows into a single permutation of rows.), we see the following result.

Theorem 8.1 Let A be an $m \times n$ matrix. Then there is a permutation matrix P such that

$$PA = LU$$

where L is lower triangular with 1's on the main diagonal and U is an echelon form.

Proof. In applying Gaussian elimination, commute the elementary matrices corresponding to the interchange operation so they are nearest A. Then we have

where C_s, \ldots, C_1 are the elementary matrices corresponding to interchange operations and $\hat{E}_r, \ldots, \hat{E}_{s+1}$ those corresponding to add operations. Set $P = C_s \cdots C_1$, a permutation matrix. Using this

$$PA = (E_{s}, \cdots, \hat{E}_{s+1})^{-1} U$$
$$= LU$$

where $L = (\underbrace{E_{s+1}}_{\bullet})^{-1}$ is lower triangular. Finally, since each \hat{E}_i has 1's on the main diagonal, so does $E_T \cdots E_a + \text{-and} (E_s \cdots E_a + \text{-})^1$.

The form of Gaussian elimination we used to obtain L and U is called the *Doolittle method*. (In this method the main diagonal of L consists of 1's.) If we scale rows to obtain pivots which are 1, the technique is called the *Crout method*. (This method produces pivots in U which are 1's.)

Example 8.3 Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & 1 \\ -3 & 1 & 3 \end{bmatrix}$$
. Then

$$A \xrightarrow{\begin{array}{c} 2R_1 + R_2 \\ \hline E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 5 \\ -3 & 1 & 3 \end{bmatrix}$$

$$\xrightarrow{\begin{array}{c} 3R_1 + R_3 \\ \hline E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 5 \\ 0 & -2 & 9 \end{bmatrix}$$

$$\xrightarrow{\begin{array}{c} R_2 \leftrightarrow R_3 \\ \hline C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 5 \\ 0 & -2 & 9 \end{bmatrix} = U$$

SO

 $CE_2E_1A = U.$

Now we need to move C so it is next to A. Here

 $CE2 = \hat{E}_2C$

where \hat{E}_2 is $3R_1 + R_2$. (Rows 2 and 3 were interchanged by C so the elementary matrix is adjusted to show that.) And

$$CE_1 = \hat{E}_1C$$

where \hat{E}_1 corresponds to $2R_1 + R_3$. (Rows 2 and 3 were interchanged by C, and \hat{E}_1 now needs to apply the addition to row 3.) So we have

$$\hat{E}_2\hat{E}_1CA = U$$

and setting P = C,

$$PA = LU$$

where $L = \left(\hat{E}_2 \hat{E}_1\right)^{-1}$ which can also be computed using multipliers, so

$$L = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right].$$

1

We now show how the factorization can be used to solve a system of linear equation, say,

$$Ax = b.$$

To do this, factor PA = LU. Substitution yields

$$LUx = Pb.$$

i. We first find $L^{-1}Pb$. For this we solve

$$Ly = Pb$$

which can be solved by forward substitution. (Solve for y_1 first, then y_2 , etc.) This gives $y = L^{-1}Pb$.

ii. Now we solve $Ux = L^{-1}Pb$. Knowing y, we can solve for x by solving

$$Ux = y$$

by back substitution.

Example 8.4 Solve

$$\begin{bmatrix} 1 & \bullet & x_1 \\ 1 & \bullet & x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

We factor A = LU to get

$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	=	1 1	0 1		1 1 0 -2]
_				-	_		-

i. Solve Ly = b by forward substitution. Here

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} y = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

we get $y = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$.

ii. Now solve Ux = y by back substitution. Here

$$\left[\begin{array}{rrr}1 & 1\\0 & -2\end{array}\right]x = \left[\begin{array}{rrr}3\\-4\end{array}\right]$$

and we get

and

$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

8.1.1 Optional (Iterative Improvement in Solving Ax = b)

Let A be a nonsingular matrix. We can solve

$$Ax = b \tag{8.3}$$

by Gaussian elimination applied to the augmented matrix [A|b] or by using the *LU* method. (Both use the same amount of arithmetic.) The *LU* method has an advantage, however, when (8.3) needs to be solved for several different right sides. To show how this can occur, we describe the iterative improvement method which can be used to solve (8.3).

Suppose we numerically solve (8.3), obtaining *E*. Thus, we might expect some nonzero residual

$$r_1 = b - Ax_{-}$$

(For accuracy, the residual should be computed in double precision, i.e. using twice **as** many digits **as** normal.) We now try to improve our solution by solving

$$Ax = r_1 \tag{8.4}$$

for a_1 and adjusting the numerical solution to $\hat{x} + a_1$. Note that if a_1 is the exact solution to (8.4), then

$$A(\hat{x} + a_1) = A\hat{x} + Aa_1 = b - r_1 + r_1 = b.$$

So $E + a_1$ would be the exact solution to (8.3). However, we may again expect some error, say, we get \hat{a}_1 instead of a_1 .

We compute the residual

$$r_2 = b - A\left(\hat{x} + \hat{a}_1\right).$$

If r_2 is not 0, then we would solve

$$Ax = r_2$$

for a_2 and adjust to $\hat{x} + \hat{a}_1 + \hat{a}_2$.

It can be shown that, unless c(A) is very large, the sequence $E, \hat{x} + \hat{a}_1, E + \hat{a}_1 + \hat{a}_2, \ldots$ converges to the solution to (8.3). And, usually, only a few iterations are required for desired results.

Note that in this process, we solve

$$Ax = b \tag{8.5}$$
$$Ax = r_1$$

If A is factored into LU, each solution can be computed by a forward, and then a backward substitution, which involves far fewer arithmetic operations than solving each equation in (8.5) by Gaussian elimination. So here, the *LU* method has a distinct advantage.

An example follows.

Example 8.5 Let
$$A = \begin{bmatrix} .982 & .573 \\ .402 & .321 \end{bmatrix}$$
 and $b = \begin{bmatrix} -.245 \\ .159 \end{bmatrix}$. Solving $Ax = b$ in 3-digit arithmetic, by iterative improvement, we get $L = \begin{bmatrix} 1 & 0 \\ .409 & 1 \end{bmatrix}$
and $U = \begin{bmatrix} .982 & .573 \\ 0 & .087 \end{bmatrix}$.

On the first iteration, we have

$$\hat{x} = \begin{bmatrix} -2\\ 2.98 \end{bmatrix}.$$

The second iteration gives

$$\hat{x} + \hat{a}_1 = \left[egin{array}{c} -2 \\ 3 \end{array}
ight]$$

which is the exact solution.

We should also add that there is a similar iterative improvement method for solving least-squares problems.

8.1.2 MATLAB (lu, [L,U] and [L,U,F])

MATLAB uses the LU decomposition to solve Ax = b.

The MATLAB command for the LU decomposition for any square matrix A is lu(A). To obtain L, U, and P such that PA = LU, use [L, U, F] = lu(A). Using [L,U] = lu(A) produces P^tL (not L) and U. MATLAB calls P^tL a 'psychologically triangular matrix', i.e., L with the rows permuted. An example follows.

$$A = \begin{bmatrix} 1 & I; & 2 & 3 \\ [L,U] = lu(A) \\ ans: L = \begin{bmatrix} .5 & 1 \\ 1 & 0 \end{bmatrix}, U = \begin{bmatrix} 2 & 3 \\ 0 & -.5 \end{bmatrix}$$

Type in *help lu* for more information.

Exercises

1. Let $A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ where a_k is the k-th row of A. Find the $3 \ge 3$ permutation matrix P such that $\begin{bmatrix} a_2 \\ a_3 \end{bmatrix}$

(a)
$$PA = \begin{bmatrix} a_3 \\ a_1 \\ a_2 \end{bmatrix}$$
. (b) $PA = \begin{bmatrix} a_2 \\ a_1 \\ a_3 \end{bmatrix}$.
(c) $PA = \begin{bmatrix} a_2 \\ a_3 \\ a_1 \end{bmatrix}$. (d) $PA = \begin{bmatrix} a_3 \\ a_2 \\ a_1 \end{bmatrix}$.

274 8. LU and QR Decompositions

2. Let $A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ where a_k is the k-th row of A. Find the elementary matrix E such that

(a)
$$EA = \begin{bmatrix} a_1 \\ a_2 \\ 3a_3 \end{bmatrix}$$
. (b) $EA = \begin{bmatrix} a_1 \\ a_2 - 2a_1 \\ a_3 \end{bmatrix}$.
(c) $EA = \begin{bmatrix} a_1 \\ a_2 \\ a_3 - 3a_1 \end{bmatrix}$.

- 3. For the given matrix A, find the *LU* decomposition $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (a) $A = \begin{bmatrix} 1 & 2 & 4 \\ 9 \end{bmatrix}$ (b) $A = \begin{bmatrix} 2 & 0 & -0 & -1 \\ 1 & 1 \end{bmatrix}$ 1 3 9 3 2 -2
- 4. For the given matrix A, find the *LU* decomposition with partial pivoting.

(a)
$$A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 1 & 2 & 0 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 1 \\ 1 & 2 & 4 & 1 \end{bmatrix}$

- **5.** Give an example of an elementary matrix for add operation which is not lower triangular.
- 6. Suppose we know that A has an LU decompositon. Solve for L and U by first finding the first row of U, then l_{21} , then the second row of U, etc.

(a)
$$A = \begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 4 \\ 2 & 6 & 12 \end{bmatrix}$

- 7. Show that the two 3×3 elementary matrices Corresponding to $2R_1 + R_2$ and $3R_2 + R_3$, don't commute.
- 8. Show that the two 3×3 elementary matrices corresponding to $\alpha R_1 + R_2$ and $\beta R_1 + R_3$ do commute. (Actually, for a given *i*, all elementary matrices corresponding to $\alpha_k R_i + R_k$ commute.)
- 9. Let L_1 and L_2 be two 3x 3 lower triangular matrices with 1's on their main diagonals.

. . .

- (a) Prove that L_1L_2 has 1's on its main diagonal.
- (b) Prove the result for $n \ge n$ matrices.

10. Let A be a nonsingular matrix. Suppose LU and $\hat{L}\hat{U}$ are two LU decompositons of A. Prove that $L = \hat{L}$ and $U = \hat{U}$.

11. Let
$$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$$
 be a nonsingular matrix. By solving

$$LX = I$$
,

find formulas for the entries of L^{-1} in terms of those of L.

- 12. Let *E* be an $m \times m$ elementary matrix corresponding to an elementary operation. Let \hat{E} be the matrix obtained from the $m \times m$ identity matrix by applying the elementary operation to it. Prove that E = E.
- 13. Let *E* be a nonsingular $m \times m$ matrix. Let **A** be an $m \times n$ matrix and *b* an $m \times 1$ vector. Prove that $\mathbf{A}\mathbf{x} = \mathbf{b}$ and EAx = Eb have the same solution set. (Loosely, this shows that most any kind of operation, e.g., $\alpha R_i + \beta R_j$ ($\beta \neq 0$) can be applied to a [**A** b].)

14. (MATLAB) Let
$$A = \begin{bmatrix} 3 & 1 & \bullet \\ -2 & 4 & \bullet 1 \\ 0 & 2 & \bullet \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

- (a) Find the LU decomposition of **A**.
- (b) Solve Ax = b by using this decomposition.
- (c) Solve Ax = b by using the command $A \setminus b$.
- (d) Compare results.

8.2 The QR Decomposition

We can do with Householder matrices what we just did wit, elementary matrices. Although this work can be done with either real or complex numbers, we will do the work with real numbers, *so* we **can** give geometrical views.

Recall that a Householder matrix is defined by

$$H = I - 2u u^t$$

where u is a vector such that $||u||_2 = 1$. Thus, if u is not of length 1, we would use the vector $\frac{u}{||u||_2}$ and obtain

$$H = I - \frac{2}{\|u\|_2^2} u \, u^t$$

As shown in Figure 8.1, what H does is reflect (or invert) \mathbb{R}^n parallel to u and through the subspace

$$W = \{y : (uy) = 0\}$$

For a given vector x, we now need to find a Householder matrix H such that $Hx = \pm ||x||_2 el$. (Recall that H is orthogonal and orthogonal matrices don't change the length of vectors.) How such an H can be determined is shown in the following example.

Example 0.6 Let x be a nonzero vector in \mathbb{R}^2 . Notice in Figure 8.2 that two different choices, $\|x\|_2 e_1$ and $-\|x\|_2 e_1$, are possible.

FIGURE 8.2.

1. For $Hx = ||x||_2 el$, we use the vector $u = x - ||x||_2 e_1$ (equivalent to the arrow from $||x||_2 e_1$ to x).

2. For $Hx = -\|x\|_2 e_1$, we use the vector u, $u = x + \|x\|_2 e_1$ (equivalent to the arrow from $-\|x\|_2 e_1$ to x in Figure 8.3).

Actually in software, the choice changes depending on x. For numerical reasons (to obtain better answers), whichever of $||x||_2 e_1$ or $-||x||_2 e_1$ is farthest from x, is chosen. For example, in our picture, $-||x||_2 e_1$ would be chosen. However, for our work, we will simply choose $||x||_2 e_1$.

To help recall the expression for u, observe in Figure 8.4 that

$$\frac{x + \|x\|_2 e_1}{2}$$

is the average of x and $||x||_2 e_1$, and $x - ||x||_2 e_1$ (a change of sign) provides the orthogonal vector. (Their dot product is 0.)

FIGURE 8.4.

From these remarks we have the following.

Theorem 8.2 Let x be a nonzero n x 1 vector. If $x \neq ||x||_2 e_1$, set $u = x - ||x||_2 e_1$. Then

$$H = I - \frac{2}{\left\|u\right\|_2^2} u u^t$$

and

$$Hx = \left\|x\right\|_2 e_1.$$

ŀ

Proof. A direct calculation.

We show a numerical example below. Example 8.7 Let $x = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$. Then $u = x - ||x||_2 e_1 = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix}$. Thus $H = \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix}$. Thus $H = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & -\frac{3}{5} \end{bmatrix}$ and $Hx = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$.

Now, to see how to do a Gaussian elimination process using Householder matrices, we let

$$A = \left[\begin{array}{ccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right].$$

We find the Householder matrix H_1 such that

$$H_1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \ell_1 \\ 0 \\ 0 \end{bmatrix}$$
where
$$\ell_1 = \left\| \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right\|_2$$
. Then
$$H_1 A = \left[\begin{array}{ccc} \ell_1 & v_1 & w_1 \\ 0 & v_2 & w_2 \\ 0 & v_3 & w_3 \end{bmatrix} .$$

We now find the Householder matrix H such that

$$H\left[\begin{array}{c}v_2\\v_3\end{array}\right] = \left[\begin{array}{c}\ell_2\\0\end{array}\right]$$

where $\ell_2 = \left\| \begin{bmatrix} v_2 \\ v_3 \end{bmatrix} \right\|_2$. Set $H_2 = \begin{bmatrix} 1 & 0 \\ 0 & H \end{bmatrix}.$

Then by partitioned multiplication,

$$H_{2}H_{1}A = H_{2} \begin{bmatrix} \ell_{1} & v_{1} & w_{1} \\ 0 & v_{2} & w_{2} \\ 0 & v_{3} & w_{3} \end{bmatrix}$$

$$= \begin{bmatrix} \ell_{1} & v_{1} & w_{1} \\ 0 & \ell_{2} & z_{2} \\ 0 & 0 & z_{3} \end{bmatrix}$$
(8.6)

which is a row echelon form.

So, if we let *R* denote the row echelon form and set $Q = (H_2H_1)^{-1}$, we have from (8.6) that

$$A = QR$$

where Q is an orthogonal matrix.

More generally, we have the following theorem.

Theorem 8.3 Let A be an $m \times n$ matrix. Then, there exists a sequence of Householder matrices H_1, \ldots, H_n , such that

$$H_s \cdots H_1 A = R$$

where R is a row echelon form. Thus, setting $Q = (H_s \dots H_1)^{-1}$, A = QR.

Proof. If A = 0, there is nothing to argue; thus, we assume $A \neq 0$. The proof is now given in steps.

Step 1. (Finding H_1) Let b denote the first nonzero column of A. If $b = ||b||_2 e_1$, the first row is staggered and we set $A_1 = A$. Otherwise, using

Theorem 8.2, let H_1 be the Householder matrix such that $H_1b = ||b||_2 e_1$. Then H_1A has its first row staggered. Set $A_1 = H_1A$.

Step 2. (Finding H_k) Suppose A_k has its first k rows staggered. Then

$$A_k = \begin{bmatrix} C_1 & C_2 \\ 0 & B \end{bmatrix}$$

where C_1 has k staggered rows. If **B** has all 0 columns, we are through. Otherwise, let **b** denote the first nonzero column of **B**. If $b = ||b||e_1$, the (k+1)st row is staggered, and we set $A_{k+1} = A_k$. If $b \neq ||b||e_1$, let H be the Householder transformation such that

$$Hb = \|b\|_2 e_1.$$

Setting $H_{k+1} = \begin{bmatrix} I & 0 \\ 0 & H \end{bmatrix}$, an $m \times m$ matrix, we have a Householder transformation such that if we set

$$H_{k+1}A_k = A_{k+1}$$

ł

é

then A_{k+1} has k + 1 staggered rows.

Step 3. (Finding Q) **Thus** all rows can be staggered and a row echelon form R achieved. Putting together, if s Householder matrices were used, then $H_s \cdots H_1 A = R$ and $Q = (H_s \cdots H_1)^{-1}$.

Example 8.8 Let
$$A = \begin{bmatrix} 3 & 10 & 0 \\ 0 & 0 & 9 \\ 4 & 10 & -5 \end{bmatrix}$$
.
Step 1. (Finding H₁) To find H₁, we use the first column of A. So,
 $x = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$ and by Example 8.7, $H_1 = \begin{bmatrix} 3 & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & -\frac{3}{5} \end{bmatrix}$. Now $H_1A = A_1 = \begin{bmatrix} 5 & 14 & -4 \\ 0 & 0 & 9 \\ 0 & 2 & 3 \end{bmatrix}$.
Step 2. (Finding H₂) For H₂ we use $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$. We obtain a Householder matrix H where $H \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. We get $H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and so $H_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ \vdots \\ \text{Step}_1 & 3_0(Finding \ Q) & Putting \ together, \ we \ have \ H_2H_1A = H_2A_1 = \\ 5 & 14 & -4 \\ 0 & 2 & 3 \\ 0 & 0 & 9 \end{bmatrix} = R, \ the \ row \ echelon \ form.$

Finally,

SO

$$H_2H_1 = \begin{bmatrix} \frac{3}{5} & 0 & \frac{4}{5} \\ \frac{4}{5} & 0 & -\frac{3}{5} \\ 0 & 1 & 0 \end{bmatrix},$$

$$Q = (H_2 H_1)^t = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} & 0\\ 0 & 0 & 1\\ \frac{4}{5} & -\frac{3}{5} & 0 \end{bmatrix}$$

and A = QR.

Recall, pivoting was used in the LU decomposition to get large pivots. The same can be done in the QR decomposition. For example, if

$$H_{1}A = \begin{bmatrix} \ell_{1} & v_{1} & w_{1} \\ 0 & v_{2} & w_{2} \\ 0 & v_{3} & w_{3} \end{bmatrix},$$

we can check the columns $\begin{bmatrix} v_{2} \\ v_{3} \\ w_{3} \end{bmatrix}$ and $\begin{bmatrix} w_{2} \\ w_{3} \end{bmatrix}$ to see which **has** the greater
length. If $\left\| \begin{bmatrix} w_{2} \\ w_{3} \end{bmatrix} \right\|_{2} > \left\| \begin{bmatrix} v_{2} \\ v_{3} \\ v_{3} \end{bmatrix} \right\|_{2}$, then columns 2 and 3 of $H_{1}A$ are inter-
changed. If C is the elementary matrix corresponding to that elementary
operation, then

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \text{ and } H_1AC = \begin{bmatrix} \ell_1 & w_1 & v_1 \\ 0 & w_2 & v_2 \\ 0 & w_3 & v_3 \end{bmatrix}.$$

(When multiplying by C, we *can* use backward multiplication to see the result.) Now, we determine our next Householder matrix H_2 so that

$$H_2 H_1 A C = \begin{bmatrix} x_1 & z_1 & v_1 \\ 0 & \ell_2 & q_2 \\ 0 & 0 & g_3 \end{bmatrix} = R$$
(8.7)

where $\ell_2 = \left\| \begin{bmatrix} w_2 \\ w_3 \end{bmatrix} \right\|_2$. (Had we not interchanged the columns, we would have **had** a smaller pivot, namely $\left\| \begin{bmatrix} v_2 \\ v_3 \end{bmatrix} \right\|_2$)

Thus, from (8.7) we have

$$AP = QR$$

where $Q = (H_2H_1)^{-1}$ and P = C, a permutation matrix. (In general, P is the product of the accumulated C_i 's.)

The QR decomposition is often used in least-squares solving a system of linear equations, say,

$$Ax = b. \tag{8.8}$$

To find a least-squares solution \mathbf{x} , we use the factorization $\mathbf{A} = \mathbf{QR}$ (or QRF^t) and substitute this into (8.8). We have

$$QRx = b.$$

As shown in Chapter **7**, this is equivalent to finding least-squares solutions to

$$Rx = Q^t b. \tag{8.9}$$

ĺ

Now we need to find vectors \hat{x} so the left side is as close to the right side of (8.9) as possible. For example, if

$$R = \begin{bmatrix} r_{11} & r_{22} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

and $c = Q^t b$, we would find x_i 's so the left and right sides of

$$r_{11}x_1 + r_{12}x_2 = c_1$$

$$r_{22}x_2 = c_2$$

$$0 = c_3$$

are **as** close **as** we can make them.

We can't do anything about the last equation; however, we can get x's so that the first two equations are satisfied. And any such x will be a least-squares solution to (8.8).

Example 8.9 Find the least-squares solutions to

$$3x_{1} - 3x_{2} = 1$$

$$5x_{2} = 1$$

$$4x_{1} - 4x_{2} = 1.$$
Here, $A = \begin{bmatrix} 3 & -3 \\ 0 & 5 \\ 4 & -4 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Now, wing Example 8.7,
$$H_{1} = \begin{bmatrix} \frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & -\frac{3}{5} \\ \frac{4}{5} & 0 & 5 \end{bmatrix}$$
 so $H_{1}A = \begin{bmatrix} 5 & 5 \\ 6 & -5 \\ 0 & 0 \end{bmatrix} = R.$

Further,

$$Q = H_1^{-1} = \begin{bmatrix} \frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & -\frac{3}{5} \end{bmatrix} \text{ and } Q^t b = \begin{bmatrix} \frac{7}{5} \\ 1 \\ \frac{1}{5} \end{bmatrix}.$$

So the equation we need to least-squares solve is $Rx = Q^t b$ or

$$5x_1 - 5x_2 = \frac{7}{5}$$
$$5x_2 = 1$$
$$0 = \frac{1}{5}$$

The least-squares solution is

$$x_2 = \frac{1}{5}$$
$$x_1 = \frac{\mathbf{i}2}{25}$$

or $x = \begin{bmatrix} \frac{12}{25} \\ \frac{1}{5} \end{bmatrix}$.

Note that, for this x, $||Ax - b||_2 = \frac{1}{5}$ since we could do nothing with the last equation.

In finding a QR decomposition, we could also use Givens matrices. The basic idea for this approach is covered in the exercises.

8.2.1 Optional (QR Algorithm)

The numerical computation of Q and T of the real Schur form is usually done by the QR algorithm. This algorithm is **as** important to eigenvalues and eigenvectors **as** Gaussian elimination is to systems of linear equations.

The algorithm sets $A_1 = A$ and iterative factors

$$A_k = Q_k R_k$$

Then sets

$$A_{k+1} = R_k Q_k.$$

Under reasonable conditions A_1, A_2, \ldots converges. Since

$$A_{k+1} = R_k Q_k$$
$$= Q_k^t Q_k R_k Q_k$$
$$= Q_k^t A_k Q_k.$$

we see that

$$A_{k+1} = Q_k^t \cdots Q_1^t A Q_1 \cdots Q_k$$

so, setting

Thus A_{k+1} is orthogonally similar to A. For sufficiently large k, A_{k+1} is close to a block triangular matrix. Replacing those entries in A_{k+1} below the blocks, which are sufficiently close to 0 by 0 yields the computed Schur form T of A.

The QR algorithm *can* be used to compute eigenvalues, and corresponding eigenvectors of A. (This is the best general such method.) We describe how this is done.

If T is a real Schur form, its eigenvalues are the eigenvalues of the 1×1 or 2×2 matrices on the main diagonal, which are easy to compute. Thus, the eigenvalues of T and hence A are calculated.

Corresponding eigenvectors can be computed **as** follows. For **an** eigenvalue **A**, solve

$$Ty = \lambda y, \quad y \neq 0$$

or

$$(T-AI)y = 0$$

for corresponding eigenvectors. Then, for each such eigenvector, since

$$T = Q^{t} A Q$$
$$Q^{t} A Q y = \lambda y$$
$$A Q y = \lambda Q y,$$

Qy is an eigenvector for A corresponding to A.

As we might expect, this algorithm has been improved (using Hessenberg matrices and an implicit shift, etc.)

It may be helpful to look at some data. We use the MATLAB program. A = [12; 34]

for
$$n = 1$$
:5
 $[Q, R] = qr(A);$
 $A = R * Q$

end

Notice in the iterates, the 2,1-entries tend to 0, thus we get T_{\bullet}

1. 5.2000 1.6000 0.6000 -0.2000

$$\begin{array}{cccccccc} 2. & \begin{bmatrix} 5.3796 & -0.9562 \\ 0.0438 & -0.3796 \end{bmatrix} \\ 3. & \begin{bmatrix} 5.3718 & 1.0030 \\ 0.0030 & -0.718 \end{bmatrix} \\ 4. & \begin{bmatrix} 5.3723 & -0.998 \\ 0.0002 & -0.3723 \end{bmatrix} \\ 5. & \begin{bmatrix} 5.3723 & 1.0000 \\ 0.0000 & -0.3723 \end{bmatrix} \end{array}$$

We can compare our result to the MATLAB result obtained by using the command

shur(A) = $\begin{bmatrix} -0.3723 & -1.0000 \\ 0.0000 & 5.3723 \end{bmatrix}$.

This is a little different; however, recall that MATLAB uses a more sophisticated QR-alogrithm (implicit shifts, etc.), and that Q and R, in the QR decomposition, are not unique.

8.2.2 MATLAB (Ax = b, QR, Householder, and Givens)

MATLAB uses the QR decomposition to least-squares solve Ax = b.

Comparing the LU decomposition and the QR decomposition, it is known that the latter requires about twice as much arithmetic to compute. And, to solve Ax = b, LU with partial pivoting is known to be very satisfactory.

In comparing Householder and Givens, using Givens matrices requires about twice **as** much arithmetic as using Householder matrices.

The MATLAB commands for the QR decomposition and Householder matrices follow.

QR decomposition: The MATLAB command for the QR decomposition of A is qr (A). To obtain the Q and R, use [Q,R] = qr (A). For the QR decomposition with column pivoting, use [Q, R, F] = qr (A). The P here is as in AF = QR. An example follows.

$$A = \begin{bmatrix} 1 & 2; & 1 & 1 \end{bmatrix}; [Q, R, F] = qr(A) ans: O = \begin{bmatrix} -0.8944 & -0.4472 \\ 0 & 0.8944 \end{bmatrix}, R = \begin{bmatrix} -2.2361 & -1.3416 \\ 0 & 0.4472 \end{bmatrix} and P = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

2. Householder matrix: Given a vector $x \neq 0$, the command [H, r] = qr(z) provides a Householder matrix H such that $Ha: = \pm ||x||_2 e_1$. The r gives $\pm ||x||_2 e_1$ as shown in the following example.

$$z = \begin{bmatrix} 1; & 2 \end{bmatrix}; \\ \begin{bmatrix} H, r \end{bmatrix} = qr(x) \\ ans: H = \begin{bmatrix} -0.4472 & -0.8944 \\ -0.8944 & 0.4472 \end{bmatrix} \\ r = \begin{bmatrix} 2.2361 \\ 0 \end{bmatrix}.$$

3. Givens matrix: Given a vector $x \in \mathbb{R}^2$, we can get a Givens matrix G such that $Gx = \pm ||x||_2 e_1$ by using [G,r] = planerot(x). For example

$$z = [1; 2];$$

$$[G,r] = plinerot (z)$$

ans: G = $\begin{bmatrix} 0.4472 & 0.8944 \\ -0.8944 & 0.4472 \end{bmatrix}$

$$r = \begin{bmatrix} 2.2361 \\ 0 \end{bmatrix}.$$

Type in help qr for more information.

Exercises

1. For the given A, find the QR decomposition.

(a)
$$A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 0 & 3 & 1 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 4 & 1 & 1 \end{bmatrix}$

- 2. For the given A, find the QR decomposition with column pivoting. (a) $A = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & -0 & 4 & 0 \\ 1 & 4 \end{bmatrix}$ 1 0 4
- 3. Given $x \neq -||x||_2 e_1$, show, using sketches, how to find a Householder matrix H such that

$$Hx = - \|x\|_2 e_1.$$

4. Solve
$$\begin{bmatrix} 3 & 1 \\ 0 & 1 \\ 4 & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 using the QR decomposition.
5. Solve $\begin{bmatrix} 1 & 0 \\ 1 & 4 \\ 1 & 3 \\ column pivoting. \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ by using the QR decomposition with

6. Let u be a nonzero vector in \mathbb{R}^n . Define $W = \{w : (wy) = 0\}$. Prove that W is a subspace of dimension n - 1.

- 7. Explain why a permutation matrix is orthogonal.
- 8. Let H be a Householder matrix. Prove that

(a)
$$H^t = H$$
.
(b) $HH^t = H^tH = I$.
(c) $H^2 = I$.
(d) $\begin{bmatrix} I & 0\\ 0 & H \end{bmatrix}$ is a Householder matrix.
(e) det $H = -1$.

- 9. Let A be an $m \ge n$ matrix having rank τ .
 - (a) Prove that A can be factored

$$A = Q_0 R_0$$

where Q_0 is an $m \ge r$ matrix with orthonormal columns and R_0 a row echelon form.

- (b) Prove that Q_0 is an orthonormal basis for span $\{a_1, \ldots, a_n\}$ where a_i is the i-th column of A.
- 10. Prove that the QR decomposition, with column pivoting assures that in **R**,

$$|r_{11}| \ge |r_{22}| \ge \dots$$

11. Using Exercise 10, prove that if rank A = r, then in partitioned form,

$$R = \left[\begin{array}{cc} R_{11} & R_{12} \\ 0 & 0 \end{array} \right]$$

where R_{11} is a nonsingular $r \ge r$ upper triangular matrix.

- 12. Let *H* be a Householder matrix. Prove that *H* has one eigenvalue which is -1, all others being 1.
- 13. Let A be a nonsingular matrix. Prove that if *QR* and QR are QR decompositions of A, then *QQ* is a diagonal matrix with main diagonal composed of 1's and -1's.
- 14. Let A be an $n \ge n$ real matrix. Using the **QR** decomposition, prove Hadamard's inequality.

$$\det A \leq \|a_1\|_2 \cdot \cdot \|a_n\|_2$$

Describe what this inequality says about the volume of a parallelepiped in \mathbb{R}^3 determined from edges a_1, a_2, a_3 . (A sketch can help support the description.)

- 15. Let A = QR, a QR decomposition. Prove that $|r_{ii}| =$ distance from a_i to span $\{a_1, \ldots, a_{i-1}\}$ where a_1, \ldots, a_i are the columns of A. (So, the r_{ii} 's give some idea of how close the vectors are to being linearly independent.)
- 16. Twoparts.
 - (a) Let $G = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, a Givens matrix, and $x = \begin{bmatrix} a \\ b \end{bmatrix}$. Show what trigonometric equation should be solved to find θ such that $GA = \begin{bmatrix} \|x\|_2 \\ 0 \end{bmatrix}$.
 - (b) Explain, for a 3×3 matrix **A**, how to find **Q** and **R** using Givens matrices. (Use as a guide the parallel result for Householder matrices shown in this section.)
- 17. Let Q be an orthogonal matrix. Prove that Q is a product of Givens matrices (plane rotations) if and only if det Q = 1.
- 18. Let $x \in C^n$, $x \neq 0$. Choose 8 such that $x_1 = |x_1| e^{i\theta}$. Define $u = x + e^{i\theta} ||x||_2 e_1$ and

$$H = I - \frac{2}{u^H u} u \, u^H$$

Prove that H is unitary and $Hx = -e^{i\theta} ||x||_2 e_1$. (This is the House-holder matrix for complex numbers.)

19. (MATLAB) Factor the following matrices as QR.

(a)
$$A = \begin{bmatrix} -2 & 4 & 3 \\ 0 & 5 & 2 \\ 7 & -1 & 6 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 2 - 3i & i & 4 + 2i \\ 0 & 3 - 2i & -5 \\ -3 + 4i & 2 & 62 \end{bmatrix}$
20. (MATLAB) Let $A = \begin{bmatrix} 4 & -1 & 2 \\ 3 & 6 \\ 0 & 2 & 1 \end{bmatrix}$. Find
(a) The *QR* decomposition of *A*.
(b) orth (*A*).

Compare (b) and the Q from (a) in light of exercise 9(b).

21. (MATLAB) Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$
. Find the distance from $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ to W

- (a) Using the QR decomposition and Exercise 15.
- (b) Using *orth* to find the orthogonal projection matrix P from \mathbb{R}^3 to W, and computing $||e_1 Pe_1||_2$.
- (c) Using least-squares on $Ax = e_1$ where $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$, to find x, and computing $||Ax e_1||_2$.
- 22. (MATLAB) Adjust the program in the MATLAB section and apply the *QR* algorithm to $A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.

.1

9 Properties of Eigenvalues and Eigenvectors

In this chapter we study how small changes in the entries of a matrix affect the eigenvalues and eigenvectors of that matrix. Such changes occur in modeling since the matrix in the model is often only **an** approximation of the actual one. Further, in numerical computations, usually the answer we get is (due to rounding) actually the exact answer to a matrix which is close to the given matrix. So, if matrices close to a given matrix have close eigenvalues and eigenvectors, we would have an ideal situation. Unfortunately, this is not always the case.

9.1 Continuity of Eigenvalues and Eigenvectors

We have seen that eigenvalues and eigenvectors are important to calculating $\lim_{k\to\infty} A^k$, solving systems of differential and difference equations, graphics, etc. Understanding about eigenvalues and eigenvectors also allows us to interact with software, such as MATLAB, knowing how to interpret answers.

In this section, we show that eigenvalues are continuous (in some sense), and, under certain hypotheses, so are corresponding eigenvectors.

Eigenvalues are roots of $\varphi(A) = \det(A - AI)$, the characteristic polynomial of A. To study these roots will require our obtaining formulas for the coefficients in $\varphi(A)$. For this, let A be an $n \times n$ matrix and i_1, \ldots, i_r any r integers between 1 and n where $i_1 < \cdots < i_r$. Define

$$\mathbf{A}(i_1,\ldots,i_r)$$

292 9. Properties of Eigenvalues and Eigenvectors

as the determinant of the submatrix found in rows i_1, \ldots, i_r and columns i_1, \ldots, i_r in A. For example, if

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

then

A (2) = det [5] = 5,

$$\Delta (1,3) = det \begin{bmatrix} 1 & 3 \\ 7 & 9 \end{bmatrix} = 9 - 21 = -12 \text{ and}$$
A (1,2,3) = det [A] = 0.

These A's can be used to calculate the coefficients in $\varphi(\lambda)$, as shown below.

Lemma 9.1 Let A be an n x n matrix and $\varphi(\lambda) = c_n \lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_0$. Then

$$c_n = (-1)^n$$
 and
 $c_k = (-1)^k \sum \Delta(i_1, \dots, i_{n-k})$

for all k < n, where the sum Σ is over all i_1, \ldots, i_{n-k} where $i_1 < \cdots < i_{n-k}$.

Proof. We prove this result for a 3 x 3 matrix leaving the general **argu**ment **as** an exercise. For a 3 x 3 matrix A, with columns a_1 , a_2 , and a_3 , observe that $\varphi(\lambda) = \det(A - \lambda I) = \det[a_1 - \lambda e_1, a_2 - \lambda e_2, a_3 - Xes]$. By using properties of the determinant, we have

$$\begin{split} \varphi\left(\lambda\right) &= \det\left[-\lambda e_{1}, -\lambda e_{2}, -\lambda e_{3}\right] + \left(\det\left[a_{1}, -\lambda e_{2}, -\lambda e_{3}, \right]\right) \\ &+ \det\left[-\lambda e_{1}, a_{2}, -\lambda e_{3}, \right] + \det\left[-\lambda e_{1}, -\lambda e_{2}, a_{3}\right]\right) \\ &+ \det\left[-\lambda e_{1}, a_{2}, a_{3}\right] + \det\left[a_{1}, -\lambda e_{2}, a_{3}\right] \\ &+ \det\left[a_{1}, a_{2}, -\lambda e_{3}\right] + \det\left[a_{1}, a_{2}, a_{3}\right] \\ &= -\lambda^{3} + \left(A\left(1\right)\lambda^{2} + A\left(2\right)\lambda^{2} + A\left(3\right)\lambda^{2}\right) \\ &- \left(A\left(2, 3\right)\lambda + \Delta\left(1, 3\right)\lambda + \Delta\left(1, 2\right)\lambda\right) + A\left(1, 2, 3\right) \\ &= -\lambda^{3} + \sum \Delta\left(i\right)\lambda^{2} - \sum \Delta\left(i_{1}, i_{2}\right)\lambda + A\left(1, 2, 3\right), \end{split}$$

.

which is the desired result. \blacksquare

An example follows.

Example 9.1 Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Then
 $A(1) = 1, A(2) = 5, A(3) = 9$ so
 $c_2 = (-1)^2 (1 + 5 + 9) = 15$
 $\Delta(1, 2) = -3, \Delta(1, 3) = -12, \Delta(2, 3) = -3$ so
 $c_1 = (-1)^3 (-3 - 12 - 3) = 18$
 $\Delta(1, 2, 3) = 0$, so $c_0 = 0$. Thus,
 $\varphi(\lambda) = c_3 \lambda^3 + c_2 \lambda^2 + c_1 \lambda + c_0$
 $= -\lambda_3^3 + 15\lambda^2 + 18X + 0$.

Note that from Lemma 9.1 and Theorem 3.8

$$c_0 = \det A = \lambda_1 \cdots \lambda_n$$
 and
 $c_{n-1} = (-1)^{n-1} \operatorname{trace} A = (-1)^{n-1} (\lambda_1 + \cdots + \lambda_n)$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A.

We now use this lemma to prove a type of continuity of eigenvalues result, the Continuous Dependence Theorem.

Theorem 9.1 Let A be an $n \times n$ matrix with eignenvalues $\lambda_1, \ldots, \lambda_n$. Given $\varepsilon > 0$, there as a $\delta > 0$, such that if B is an $n \times n$ matrix and $||B - A||_F < 6$ the eigenvalues of B can be arranged, say, β_1, \ldots, β_n , such that

$$|\lambda_i - \beta_i| < \varepsilon$$
 for all i.

 $(\|\cdot\|_{F} \text{ can be replaced by any matrix nom.})$

Proof. We apply the following theorem from mathematical analysis: Let $p(t) = a_n t^n + \dots + a_0$, have roots $\lambda_1, \dots, \lambda_n$. Given $\varepsilon > 0$, there is a $\delta_1 > 0$, such that if $q(t) = b_n t^n + \dots + b_0$ and $|a_i - b_i| < \delta_1$ for all *i*, then the roots of q(t) can be arranged, say, β_1, \dots, β_n , such that $|\lambda_i - \beta_i| < \varepsilon$ for all *i*.

To apply this result to **our** theorem, given $\varepsilon > 0$, take $\delta > 0$ such that if $||B - A||_F < \delta$, then

$$\left|\sum \Delta_A\left(i_1,\ldots,i_k
ight)-\sum \Delta_B\left(i_1,\ldots,i_k
ight)
ight|<\delta_1 ext{ for all } k.$$

(Since the determinant is continuous, such a δ exists.)

This theorem **assures**, in numerical calculations, that if A is given and if we calculate the eigenvalues of a sequence of matrices A_1, A_2, \ldots , where $\lim_{k\to\infty} A_k = A$, then A_1, A_2, \ldots have eigenvalues that tend to those of A.

A useful application of this theorem is Gershgorin's theorem, which gives a region in the complex plane that includes all eigenvalues of A. This theorem follows.

Corollary 9.1 Let A be an $n \times n$ matrix. Consider the disks D_i in the complex plane determined by graphing the inequalities, involving the variable λ ,

$$|\lambda-a_{ii}|\leq \sum_{k=1\atop k
eq i}^n |a_{ik}|$$

 $\left(\sum_{\substack{k=1\\k\neq i}}^{n} |a_{ik}| \text{ being the } i\text{-th off-diagonal absolute row sum}\right)$ for $i = 1, \ldots, n$.

- (a) If $\hat{\lambda}$ is an eigenvalue of A, then $\hat{\lambda}$ is in D_i for some i.
- (b) If K is a union of m disks and K is disjoint from all other disks, then K contains m eigenvalues of A. (See Figure 9.1.)

FIGURE 9.1.

Proof. There are two parts.

Part a. Since $\hat{\lambda}$ is an eigenvalue of A, there is a eigenvector x such that

$$Ax = \mathbf{Ax}.\tag{9.1}$$

Let x_i denote the largest, in absolute d u e, entry in x. Then, equating the i-th entries in (9.1), we have

$$\sum_{k=l}^n a_{ik} x_k = \hat{\lambda} x_i.$$

Bringing the $a_{ii}x_i$ term to the right side yields

$$\sum_{\substack{k=1\\k\neq i}}^{n} a_{ik} x_k = \left(\hat{\lambda} - a_{ii}\right) x_i.$$

Taking absolute values, we have

$$\sum_{k=1\atop k\neq i}^{n} \left|a_{ik}\right| \left|x_{k}\right| \geq \left|\hat{\lambda} - a_{ii}\right| \left|x_{i}\right|$$

and dividing by $|x_i|$,

$$\sum_{k=1\atop k\neq i}^{n} |a_{ik}| \frac{|x_k|}{|x_i|} \ge \left| \hat{\lambda} - a_{ii} \right|.$$

And since $\frac{|x_k|}{|x_1|} \leq 1$, for all k, we have

$$\sum_{\substack{k=1\\k\neq i}}^{n} |a_{ik}| \ge \left|\hat{\lambda} - a_{ii}\right|,$$

so $\hat{\lambda} \in D_i$.

Part b. Consider

$$B_t = diag(a_{11}, \ldots, a_{nn}) + t(A - diag(a_{11}, \ldots, a_{nn})).$$

Note that $B_0 = diag(a_{11}, \ldots, a_{nn})$ and that $B_1 = A$.

Define g(t) = the number of eigenvalues of B_t in K. Note that the disks for B_t lie in the corresponding disks for A.

Now suppose g(t) is not continuous on [0,1], say, not at to. Thus, there is a sequence t_1, t_2, \ldots converging to t_0 such that $g(t_k) \neq g(t_0)$ for all k. But this implies that the eigenvalues of B_{t_k} can't approach those of B_{t_0} , providing a contradiction. (See Figure 9.1.) Thus g(t) is constant, which says that g(0) = g(1). Since B_0 has exactly m eigenvalues in K, so does B_1 , which is A.

Example 9.2 Let $A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 5 & 0 \\ -1 & 1 & 6 \end{bmatrix}$. Then $D_1 : |\lambda - 0| \le |1| + |0| = 1$ $D_2 : |\lambda - 5| \le |-2| + |0| = 2$ $D_3 : |\lambda - 6| \le |-1| + |1| = 2.$

FIGURE 9.2.

The graphs are in Figure 9.2.

The eigenvalues of A are $\lambda_1 = 0.4384, \lambda_2 = 4.5616$ (to 5 digits), and $\lambda_3 = 6$. We see in the figure that these eigenvalues are covered by D_1 and $D_2 \cup D_3$.

A corollary defining the radius of the disks by norms follows.

Corollary 9.2 Let A = D + B where $D = diag(d_1, \ldots, d_k)$ and B an $n \times n$ matrix. Using any of the induced norms $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_{\infty}$, consider the disks D_i defined by

$$|\lambda - d_i| \le \|B\|$$

for i = 1, ..., n. Then both (a) and (b) of Gershgorin's Theorem hold.

Proof. The proof of this corollary, for induced matrix norms $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$, is like that of Geshgorin's Theorem. For the induced matrix norm $\|\cdot\|_2$, the proof is more complicated.

Note that Theorem 9.1 does not imply that eigenvalues axe functions of the entries of their matrices. (As the entries of a matrix change, so do the multiplicities of the eigenvalues. A way to describe these eigenvalues as functions isn't known.)

For us to obtain a result of this type requires that there be no multiple eigenvalues. Thus to show eigenvalues as functions, we let A be an $n \times n$ matrix with distinct eigenvalues λ_1, \ldots, A . Let r be a radius which produces non-intersecting disks D_1, \ldots, D_n about these eigenvalues respectively.

Now we let the entries of A vary, forming the matrix B. Then from results in function theory, if B is sufficiently close to A (say, $||B - A||_F < e$), then the eigenvalues β_1, \ldots, β_n of B remain in the disks D_1, \ldots, D_n . (See Figure 9.3.) Further, these eigenvalues are both continuous and differentiable.

Continuing, for each eigenvalue β_i , there is an eigenvector x_i , of length 1, that is continuous and differentiable.

FIGURE 9.3.

9.1.1 Optional (Eigenvectors and Multiple Eigenvalues)

The eigenvalues of A are continuously dependent on the entries of A (as given in Theorem 9.1) even when those eigenvalues aren't described as functions. There is no such general result for eigenvectors.

Eigenvectors are continuous about matrices that have distinct eigenvalues. In the following we show an interesting example, a varient of one given by J. W. Givens, of what can happen when matrices are close to a matrix with multiple eigenvalues.

Example 9.3 Let

$$A_{\epsilon} = \begin{bmatrix} \epsilon \cos \frac{2}{\epsilon} & -\epsilon \sin \frac{2}{\epsilon} \\ -\epsilon \sin \frac{2}{\epsilon} & -\epsilon \cos \frac{2}{\epsilon} \end{bmatrix}$$

where \mathbf{E} is a positive scalar. This matrix has the form

$$\left[\begin{array}{cc} a & b \\ b & -a \end{array}
ight]$$

whose eigenvalues are $\lambda = \pm \sqrt{a^2 + b^2}$. Thus the eigenvalues of A, are

$$\lambda = \pm \varepsilon.$$

Taking $\lambda = E$, a corresponding eigenvector (when $\frac{2}{\epsilon}$ is not a multiple of 2π) is

$$x_{\epsilon} = \left[\begin{array}{c} \sin\frac{2}{\epsilon} \\ \cos\frac{2}{\epsilon} - 1 \end{array}\right].$$

(This vector can be normalized, but for simplicity, we leave it as is.) Now, as $\varepsilon \to 0$, the vectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$ occur infinitely often. Thus, the eigenvectors 'wobble' and do not tend to any vector. So, even though the eigenvectors are continuous, they are very sensitive to change in the matrix.

Exercises

1. Compute the characteristic polynomial for

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & 0 \end{bmatrix}$$

by using Lemma 9.1.

- 2. Write out the general proof of Lemma 9.1.
- 3. The eigenvalues of A = $\begin{bmatrix} 1 & 1 & & 11 \\ 2 & -1 & 1 & 2 \\ 3 & 0 & 2 & 1 \\ 1 & 5 & 2 & 4 \end{bmatrix}$ were calculated as, $\lambda_1 =$

1.02, $\lambda_2 = 3.14$, $\lambda_3 = 2.15$., $\lambda_4 = .73$. Is this correct? (Do not calculate the eigenvalues of A and compare.)

4. Give one eigenvalue for

$$\begin{bmatrix} \pi & e & \sqrt{2} \\ 0 & 0 & 0 \\ i & \tan \delta & 200! \end{bmatrix}$$

5. Apply Gershgorin's Theorem to

$$A = \left[\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 22 & 0 \\ 2 & 1 & 4 \end{array} \right].$$

Is A nonsingular?

- 6. Let A be **an** *n* x n matrix.
 - (a) Show that the eigenvalues of A and A^t are the same.
 - (b) State Gershgorin's theorem for eigenvalues *d* A in terms of column sums.
 - (c) Determine the eigenvalues of A = $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{bmatrix}$, using Ger-

schgorin's Theorem. Check A and $A^{t_{-}}$

(d) Estimate the eigenvalues of $\begin{bmatrix} .2 & .2 & .2 \\ .1 & .5 & .1 \\ .1 & .1 & 6 \end{bmatrix}$, using Gerschgorin's disks. Use both **row and** column sums.

£°

- (e) Compute the eigenvalues of the matrix in (d) using MATLAB. Plot these in the disks determined by (d).
- 7. Apply Gershgorin's theorem to $A = \begin{bmatrix} 1 & 1 \\ 16 & 1 \end{bmatrix}$. Note that one of the disks contains no eigenvalues. Does this contradict the theorem?
- 8. Prove Corollary 9.2 for $\|\cdot\|_{\infty}$.

9.2 Perturbation of Eigenvalues and Eigenvectors

To perturb means to change slightly. Thus, in this section, we study how much eigenvalues and corresponding eigenvectors of an $n \times n$ matrix, say, A, change under small perturbations of the entries of A obtaining, say, A + E. We should recall from calculus that even if a function (like eigenvalue or eigenvector functions) is continuous, small changes in the variables can yield huge changes in the corresponding functional values.

Our first theorem is an eigenvalue result.

Theorem 9.2 Let A be an $n \times n$ diagonalizable matrix, say, $A = PDP^{-1}$. Let E be an $n \times n$ matrix and $\|\cdot\|$ the induced matrix norm $\|\cdot\|_1$, $\|\cdot\|_2$, or $\|\cdot\|_{\infty}$.

(a) If λ is an eigenvalue of A + E,

$$|\lambda - \lambda_i| \le c(P) ||E||$$

for some eigenvalue λ_i of A.

(b) If K is the union of m of the disks described in (a), and K is disjoint from all other disks, then K contains m eigenvalues of A.

Proof. Since the proof of (b) is as that in Gershgorin's Theorem, we only prove part (a).

By hypothesis,

$$P^{-1}AF = D$$

where $D = diag(X_1, \ldots, \lambda_n)$ and $\lambda_1, \ldots, \lambda_n$ the eigenvalues of A. Thus

$$P^{-1}(A+E)P = D + P^{-1}EP$$

Now, if λ is an eigenvalue of A + E, using similarity, it is an eigenvalue of $D + P^{-1}EF$. Applying the Corollary 9.2 to $D + P^{-1}EF$ yields that, for some λ_i ,

$$\begin{aligned} |\lambda - \lambda_i| &\le \|P^{-1}EF\| \\ &\le \|P^{-1}\| \|P\| \|E\| \\ &= c(P) \|E\|, \end{aligned}$$

the desired result.

We can think of c(P) here as somewhat like a derivative. Setting $\lambda = \lambda_i (A + E)$ and $\lambda_i = \lambda_i (A)$ we have

$$|\lambda_i(A+E) - \lambda_i(A)| \le c(P) ||E||,$$

somewhat similar to the Mean Value Theorem that we studied in calculus.

Note that if we change the entries in A a bit, say, by adding E where ||E|| < .01, then we can't assume the eigenvalues of A + E are within .01 of those of A. This would be true if A is normal since in this case we would have P unitary and then using the induced matrix norm, $||\cdot||_2$, c(P) = 1. However, if c(P) is larger, the eigenvalues of A + E may be farther away from those of A than ||E||.

Example 9.4 Let $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ Then $\lambda_1 = 1$, $\lambda_2 = 2$, $P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $P^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ and $c_{\infty}(P) = 2^2 = 4$. Now let $E = \begin{bmatrix} 0.01 & 0.02 \\ 0.01 & 0.03 \end{bmatrix}$, so A + E is a change in \mathbf{A} of .04 ($||E||_{\infty} = .04$). What we know now is that the eigenvalues of $\mathbf{A} + \mathbf{E}$ are within $c_{\infty}(P) ||\mathbf{E}||_{\infty} = .16$ of those of A. Calculating the eigenvalues of $\mathbf{A} + \mathbf{E}$, we have $\hat{\lambda}_1 = 1.0001$, $\hat{\lambda}_2 = 2.0399$, well within out bound.

We now give another perturbation result. This result, concerning both eigenvalues and eigenvectors, is obtained by differentiation of the eigenvalue and eigenvector functions which we described in the previous section. So, we assume that the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A are distinct.

For this work, we let y_1, \ldots, y_n be left eigenvectors of A, corresponding to λ_1, \ldots, A , respectively. We assume these eigenvectors have been normalized so that their lengths are 1.

In addition, let *E* be an n x n matrix, $||E||_2 = 1$, and B = A + tE where *t* is a real variable. We take *t* sufficiently small so that the eigenvalues of *B* remain in the disks described in the previous section. It **can** be shown from function theory, that for each *i*, there is a differentiable eigenvector $x_i(t), x_i(0) = x_i$, and a differentiable eigenvalue $\lambda_i(t), \lambda_i(0) = \lambda_i$, such that for sufficiently small *t*,

$$(A+tE)x_i(t) = \lambda_i(t)x_i(t)$$

where $||x_i(t)||_2 = 1$. (Note $\lambda_i(t) = \beta_i$ of the previous section.)

The idea now is to compute $\lambda'_i(0)$, to see how small changes in t affect $\lambda_i(t)$.

ş

.

Theorem 9.3 Using the above notations,

(a)
$$\lambda'_i(0) = \frac{y_i E x_i}{y_i x_i}$$
 and
(b) If $x_i(t) = \delta_1(t) x_1 + \dots + \delta_n(t) x$, $(\delta_i(t) = 1)$, then
 $\delta'_j(0) = \frac{y_j E x_i}{(\lambda_i - \lambda_j) y_j x_j}$

for all $j \neq a$.

Proof. We prove both parts. Part a. Expanding

$$(A + tE) x_i(t) = \lambda_i(t) x_i(t)$$

we have

$$Ax_{i}(t) + tEx_{i}(t) = \lambda_{i}(t)x_{i}(t).$$

Differentiating

$$Ax!,(t) + Ex_i(t) + tEx'_i(t) = \lambda'_i(t)x_i(t) + \lambda_i(t)x'_i(t)$$

Setting t = 0 yields

$$A_{X}!,(0) + E_{x_i} = \lambda'_i(0)x_i(0) + \lambda_i(0)x'_i(0).$$

Rearranging leads to

$$(A - \lambda_i I) x'_i(0) = \lambda'_i(0) x_i - E x_i.$$

$$(9.2)$$

Multiplying through by y_i , we have

$$0 = \lambda_i'(0)y_ix_i - y_iEx_i.$$

Thus

$$\lambda_{i}^{\prime}\left(0\right)=\frac{y_{i}Ex_{i}}{y_{i}x_{i}}.$$

Part b. Now, note that for any j,

$$y_j x_i(t) = \delta_j(t)_{j \neq j \neq j}$$

SO

$$\delta_{j}\left(t
ight)=rac{y_{j}x_{i}\left(t
ight)}{y_{j}x_{j}}.$$

Since $x_i(t)$ is differentiable, so is $\delta_j(t)$.

Multiplying (9.2) through by y_j , using the Principle of Biothogonality, and that

$$x'_{i}(0) = \delta'_{1}(0) x_{1} + \dots + \delta'_{n}(0) x_{n}$$

yields

$$(\lambda_j - \lambda_i) y_j \delta'_j (0) x_j = -y_j E x_i$$
 when $j \neq i$.

SO

$$\delta_j'(0) = \frac{y_j E x_i}{(\mathsf{A}, -\lambda_j) \, \mathrm{yjxj}},$$

the result desired.

Note that

$$\left|\lambda_{i}'\left(0\right)\right|=\frac{\left|y_{i}Ex_{i}\right|}{\left|y_{i}x_{i}\right|}.$$

Then by the Cauchy-Schwarz inequality,

$$\begin{aligned} |\lambda_{i}'(0)| &\leq \frac{\|y_{i}\|_{2} \|Ex_{i}\|_{2}}{|y_{i}x_{i}|} \\ &\leq \frac{\|y_{i}\|_{2} \|E\|_{2} \|x_{i}\|_{2}}{|y_{i}x_{i}|} \\ &\leq \frac{1}{s_{i}} \end{aligned}$$
(9.3)

÷

where

$$\mathbf{s} = |y_i x_i|$$
.

(Observe that since $|y_i x_i| \le ||x_i||_2 ||y_i||_2 = 1, 0 < s_i \le 1.$) We call $\frac{1}{s_i}$ the condition number for λ_i . Using (9.3), we interpret $\frac{1}{s_i}$ like the derivative in calculus, if s_i is close to 0, λ_i is ill-conditioned. (Small changes in A can lead to much larger changes in Xi.) And if s_i is close to $1, \lambda_i$ is well conditioned. (Small changes in A lead to small changes in A_r)

Geometry can help us see when $\frac{1}{s_i}$ is large. (λ_i is ill-conditioned.) Note from Figure 9.4 that

$$\begin{aligned} |\cos\theta| &= |y_i x_i| \\ &= s_i. \end{aligned}$$

FIGURE 9.4.

FIGURE 9.5.

So s_i is the absolute value of the cosine of the angle between x_i and y_i^t . Thus if the left and right eigenvectors (left eigenvector transposed) of λ_i are nearly orthogonal (s_i is near 0), then $\frac{1}{s_i}$ is large, and the condition number is large. If the left and right eigenvectors of λ_i are nearly parallel (s_i is near 1), then $\frac{1}{s_i}$ is near 1, 1 being the best possible condition number.

Since a normal matrix (This includes symmetric and Hermitian matrices.) is orthogonally diagonalizable, as given in the exercises, $x_i = y_i^t$ for all *i* and so its eigenvalues are well conditioned. (This sometimes prompts the remark that matrices which have ill-conditioned eigenvalues are non-normal.) (See Figure 9.5.)

Similar to our analysis of eigenvalues, the numbers

$$\frac{1}{|\lambda_1 - \lambda_i| s_i}, \frac{1}{|\lambda_2 - \lambda_i| s_i}, \dots, \frac{1}{|\lambda_n - \lambda_i| s_i}$$
(9.4)

(where the expression $\frac{1}{|\lambda_i - \lambda_i|s_i}$ is omitted) indicate the sensitivity of the coefficients of $x_i(t)$ to small changes in t in A + tE. Thus, if A has distinct, well-separated eigenvalues and $\frac{1}{s_i}$ is not too large, then the eigenvectors $x_i(t)$ have well-conditioned coefficients.

Example 9.5 Let $\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$. Then $\lambda_1 = 5, \lambda_2 = 1$ with corresponding right eigenvectors, normalized, $\mathbf{x}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$ and left eigenvectors $y_1 = \begin{bmatrix} \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \end{bmatrix}$, $y_2 = \begin{bmatrix} \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \end{bmatrix}$.

(a) The condition numbers for the eigenvalues are

i. $\lambda_1 = 5; \frac{1}{s_1} = \frac{1}{|y_1x_1|} = 1.$ *ii.* $\lambda_2 = 2; \frac{1}{s_2} = \frac{1}{|y_2x_2|} = 1.$

Thus for a small t, the eigenvalues of A + tE will differ from those of A by about t, at most. (Note that A is symmetric.)

(b) For the condition of eigenvectors, we look at two parts. Note that

i.
$$\frac{1}{s_1} = 1$$
 and $\frac{1}{s_2} = 1$.
ii. $\frac{1}{|\lambda_1 - \lambda_2|} = \frac{1}{3}$.

So the eigenvectors have well-conditioned coefficients.

9.2.1 Optional (Pictures of Eigenvalue and Eigenvector Sensitivity)

In this optional, we show the sensitivity of eigenvalues and eigenvectors in terms of pictures. To do this, we need some preliminary work.

It is known that if a matrix A has an ill-conditioned eigenvalue $(\frac{1}{s_i}$ is large for some *i*), then A is close to a matrix having multiple eigenvalues. (The converse is not true.) So if a matrix has close eigenvalues, it is a signal that eigenvalues and eigenvectors could be ill conditioned.

We now look at two examples showing this, one for eigenvalues and the other for eigenvectors.

Example 9.6 For eigenvalues we let $A = \begin{bmatrix} 1 & b \\ c & 1 \end{bmatrix}$. Then $\lambda_1 = 1 + \sqrt{bc}$ and $\lambda_2 = 1 - \sqrt{bc}$ give the eigenvalues of A. As a function of b and c, the graph of λ_1 is shown in Figure 9.6. We use the Frobenius norm on $\mathbb{R}^{2\times 2}$ so the matching $\begin{bmatrix} 1 & b \\ c & 1 \end{bmatrix} \leftrightarrow (b,c)^t$ preserves distance. Note that near the b and c axes (b or c is small), the partial derivatives of A are very large. So we know that small changes in b or c (near the axes) can cause much larger changes in λ_1 . For example, for $A = \begin{bmatrix} 1 & 0 \\ 1000 & 1 \end{bmatrix}$, the eigenvalues

FIGURE 9.6.

are $\lambda_1 = 1.0000$, $\lambda_2 = 1.0000$. But for $A = \begin{bmatrix} 1 & .0001 \\ 1000 & 1 \end{bmatrix}$, we have $\lambda_1 = 1.3162$, $\lambda_2 = 0.6838$. So a change of .0001 in A ($||E||_2 = .0001$), changed λ_1 from 1.000 to 1.3162 and λ_2 from 1.0000 to 0.6838. (This was somewhat predictable since the eigenvalues were close. Close eigenvalues are a red flag.)

Observe also that when b = c, λ_1 doesn't change much for changes in, say, **b**. As we know, this is true for symmetric matrices an general (even when eigenvalues are close).

Example 9.7 For eigenvectors, we let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1.1 \end{bmatrix}$ and $A(t) = \begin{bmatrix} 1 & t \\ t & 1.1 \end{bmatrix}$, so $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The eigenvalues of A(t) are given by

$$\lambda_1 = \frac{2.1 + \sqrt{.01 + 4t^2}}{2} \qquad \lambda_2 = \frac{2.1 - \sqrt{.01 + 4t^2}}{2}$$

The corresponding eigenvector, normalized to length 1, for λ_1 is

$$x = \left[\begin{array}{c} \frac{2t}{d} \\ \frac{1+\sqrt{.01+4t^2}}{d} \end{array} \right]$$

where $d = (8t^2 + .02 + .2\sqrt{.01 + 4t^2})^{\frac{1}{2}}$ We let x = t, $y = \frac{1 + \sqrt{.01 + 4t^2}}{d}$ and graph $(x, y, z)^t$ for $-1 \le t \le 1$

1. In the graph, the eigenvector is $(y, z)^t$. Observe in Figure 9.7 that about t = 0 the eigenvector shows a lot of change for small changes in t. This is

306 9. Properties of Eigenvalues and Eigenvectors

FIGURE 9.7.

confirmed numerically by computing the eigenvector for several values of t.

(Note that A has close eigenvalues when t is small, a red flag that indicates eigenvectors could be ill conditioned.)

9.2.2 MATLAB (Condeig)

MATLAB provides condition numbers for eigenvalues. The command is *condeig.* An example follows.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 \\ 2.5958 \\ ans = \begin{bmatrix} 2.5958 \\ -2.5071 \\ 7.9475 \end{bmatrix}$$

condeig(A)
ans =
$$\begin{bmatrix} 1.5766 \\ 1.4399 \\ 1.1994 \end{bmatrix}$$

If we want eigenvectors (recorded as columns in a matrix), eigenvalues, and their condition numbers, we use

$$[V, D, s] = condeig (A)$$

1. Code for eigenvalue picture

b = linspace(0, 10, 30); c = linspace(0, 10, 30); [b,c] = meshgrid(b,c); s = 1 + sqrt(b, *c); mesh(b, c, s)grid on

2. Code for eigenvector pictures

 $\begin{array}{l} t = \mathrm{linspace}(-1, 1, 50) ; \\ \mathrm{d} = 8*(t.\mathrm{A}\ 2) + .02 + .2*\mathrm{sqrt}(.01 + 4*(t.\mathrm{A}\ 2)); \\ \mathrm{y} = 2*t./d; \\ z = .1 + \mathrm{sqrt}(.01 + 4*(t.\mathrm{A}\ 2)))./d; \\ \mathrm{plot}3(t, y, z) \\ \mathrm{grid} \ \mathrm{on} \end{array}$

For more information, type in *help condeig*. Also for the graphs, type in *help plot3*.

Exercises

1. Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
.
(a) Factor $A = PDF^{-1}$ and compute $c_{\infty}(P)$.
(b) If $E = \begin{bmatrix} .1 & .1 \\ .1 & .1 \end{bmatrix}$, find $c_{\infty}(P) ||E||_{\infty}$.
(c) Plot the eigenvalues of A in R^2 . Draw circles of radius $c_{\infty}(P) ||E||_{\infty}$
about the eigenvalues.
(d) Find, and plot in (c), the eigenvalues of $A + E$.
2. Repeat Exercise 1 for $A = \begin{bmatrix} 1 & 0 \\ 1000 & 1.1 \end{bmatrix}$ and $E = \begin{bmatrix} .1 & .1 \\ .1 & .1 \end{bmatrix}$.
3. Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$
(a) Using $E = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, compute $\lambda'_i(0)$, for $i = 1, 2$, using Theorem 9.3 (a).
(b) Repeat (a) for $E = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.
4. Repeat Exercise 3 for $A = \begin{bmatrix} 1 & 1000 \\ 0 & 4 \end{bmatrix}$.

- 5. For the matrix given in Exercise 3,
 - (a) Find $\frac{1}{s_1}$ for λ_1 . Explain what this means in terms (9.3).
 - (b) Find $|\lambda_1 \lambda_2|$. Using (9.4), explain what $\frac{1}{|\lambda_1 \lambda_2|s_1}$ means in terms of the condition of the coefficients of x_1 .
 - (c) Repeat (a) for λ_2 .
 - (d) Repeat (b) for x_2 .
- 6. Repeat Exercise 5 for the matrix in Example 4.
- 7. Let A be an n x n normal matrix with distinct eigenvalues. Prove that if y_i is a left eigenvector, for the eigenvalue λ_i of A, then y_i^t is a right eigenvector belonging to that eigenvalue.
- 8. (MATLAB) Let

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 & -2 \\ 2 & -5 & 3 \end{bmatrix}.$$

- (a) Find the eigenvalues of A.
- (b) Find $\frac{1}{s_1}$ for i = 1, 2, and 3.
- (c) Make some conclusion from (b).
- 9. (MKTLAB) Find a 3 x 3 matrix, with $\frac{1}{s_i} > 100$, for some *i*. (Use theory to see where to look.)

10 Hermitian and Positive Definite Matrices

As we will see, Hermitian matrices (In the real case we are talking about symmetric matrices.) arise in mathematical models of mechanical systems, in Hermitian forms, and in optimization. (There are many other areas as well.) In this chapter we look at several results about Hermitian matrices which are useful in these areas.

10.1 Positive Definite Matrices

As we have seen, a Hermitian can be diagonalized by a unitary matrix. By using a special class of Hermitian matrices, the positive definite Hermitian matrices, we show in this section how two matrices can be simultaneously diagonalized in a special way.

A Hermitian matrix A is *positive definite* if all of the eigenvalues of A are positive. And if A has all nonnegative eigenvalues, we use the words *positive semidefinite*. (If – A is positive definite, we call A negative definite and if – A is positive semidefinite, we call A negative semidefinite.) Positive definite matrices can be factored in a special way.

Lemma 10.1 Let A be an $n \times n$ matrix. Then A is Hermitian and positive definite if and only if there is an $n \times n$ nonsingular matrix R such that

$$A = RR^{H}$$

(If A is symmetric, R is real, and we have $A = RR^{t}$.)

Proof. We prove the biconditional in two parts.

Part a. If A is Hermitian and positive definite, we can factor

$$A = UDU^H$$

where U is a unitary matrix and $D = \text{diag}(X_1, \ldots, \lambda_n)$ where each $\lambda_i > 0$. Define $D^{\frac{1}{2}} = \text{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$ and set $R = UD^{\frac{1}{2}}$, a nonsingular matrix. Then

$$A = RR^{H}$$

Part b. If $A = RR^{H}$, then A is clearly Hermitian. To show that A is positive definite, we proceed as follows.

Suppose λ is an eigenvalue of A. Then $Ax = \lambda x$ for some eigenvector x. Since $A = RR^{H}$,

$$RR^{H}x = \lambda x$$

Thus

$$x^{H}RR^{H}x = \lambda x^{H}x$$
$$\left\|R^{H}x\right\|_{2}^{2} = \lambda \left\|x\right\|_{2}^{2}.$$

Since **R** is nonsingular, so is R^H (det $R^H = \overline{\det R} \neq 0$) and thus $R^H x \neq 0$. Hence $||R^H x||_2^2 > 0$. Since $||x||_2^2 > 0$, it follows that $\lambda > 0$. As λ was an arbitrarily chosen eigenvalue, A is positive definite.

Example 10.1 Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, a symmetric matrix. The eigenvalues and corresponding eigenvectors (of length 1) are given by $\lambda_1 = 4$, $\lambda_2 = 2$, and $u_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$, $u_2 = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$. Thus, A is positive definite. Now $A = UDU^t = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$ $= \left(\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & \sqrt{2} \end{bmatrix} \right) \left(\begin{bmatrix} 2 & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \right)$ $= \begin{bmatrix} \sqrt{2} & -1 \\ \sqrt{2} & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ -1 & 1 \end{bmatrix}$ $= RR^t$ where $R = \begin{bmatrix} \sqrt{2} & -1 \\ \sqrt{2} & 1 \end{bmatrix}$.

ſ

Adjusting the proof slightly, we can show that an $n \ge n$ matrix A is Hermitian and positive semidefinite if and only if $A = RR^H$ for some $n \ge n$ matrix R.

Note that if $S = R^H$, then

$$A = S^H S$$

so which matrix in the factorization has the superscript H doesn't matter.

From this lemma we can produce a simpler factorization, the Choleski's decomposition.

Corollary 10.1 Let A be an n x n matrix which is Hermitian and positive definite. Then

$$A = T^H T$$

where T is an upper triangular matrix.

Proof. Using Lemma 10.1, factor

1

$$A = S^H S.$$

Now factor S = UT, where U is unitary and T upper triangular. (UT found from the Gram-Schmidt process, i.e. the QR factorization.) By substitution

$$A = (UT)^H (UT)$$
$$= T^H T,$$

which is Choleski's decomposition.

Note that the lemma (or corollary)**also** implies that **if** A is Hermitian and positive definite, and B is a nonsingular matrix, then $B^H A B$ is Hermitian and positive definite. (To see this, factor $A = R^H R$ and substitute to get $B^H A B = B^H R^H R B = (RB)^H (RB)$.)

We can now show how two Hermitian matrices can be simultaneously factored into diagonal matrices.

Theorem 10.1 Let A and B be $n \times n$ Hermitian matrices with B positive definite. Then there is an $n \times n$ nonsingular matrix P such that

$$P^H B P = I$$
 and $P^H A P = D$

where $D = \text{diag}(\lambda_1, \dots, A)$. Further, if A is also positive definite, D has a positive main diagonal.

Finally, if A and B are real, so is P.

Proof. The proof outlines the method to find *P*.

312 10. Hermitian and Positive Definite Matrices

Step 1. (Find R.) As in Lemma 10.1, find R such that

$$B = RR^{H}$$
.

Note that $R^{-1}B(R^H)^{-1} = I$. Step **2.** (Find *U*.) Set

$$C = R^{-1} A \left(R^H \right)^{-1}$$

a Hermitian matrix. Thus, we can find a unitary matrix U such that

$$U^{H}CU = D, \text{ or}$$
$$U^{H}R^{-1}A(R^{H})^{-1}U = D.$$

Step 3. (Find P.) Set

$$P = \left(R^H\right)^{-1} U.$$

ţ

1

Then

$$P^{H}BF = U^{H}R^{-1}\left(RR^{H}\right)\left(R^{H}\right)^{-1}U = I$$

and

$$P^{H}AF = U^{H}R^{-1}A(R^{H})^{-1}U = U^{H}CU = D.$$

Thus, *P* has the **required** properties.

Finally, if A is positive definite, so is $P^H A P$, so D has a positive main diagonal.

Example 10.2 Let $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$. We follow the steps of the proof of the theorem. Step 1. (Finding R) Factoring $B = RR^t = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, so $R = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. Step 2. (Finding U) Set $C = R^{-1}A(R^t)^{-1}$ $= \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} -\frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix}$. Orthogonally diagonalizing C, we have

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} and D = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{3}{4} \end{bmatrix}$$

Step 3. (Finding P) Set

$$P = (R^{t})^{-1} U = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4}\\ \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \end{bmatrix}$$

Simultaneous diagonalization of positive definite Hermitian matrices arises in simplifying quadratic forms, say, $q_1(x) = x^t A x$ and $q_2(x) = x^t B x$ (which represent, say, kinetic and potential energies). It is also sometimes used to solve systems of differential equations of the form

$$Mx''(t) + \mathbf{K}\mathbf{x}(t) = 0 \tag{10.1}$$

as in the spring-mass, building, etc. problems. The simultaneous reduction here (using $y(t) = P^{-1}x(t)$)yields

$$y''(t) + \mathbf{D} \mathbf{y}(t) = \mathbf{0}.$$

These equations are easily solved for y(t) and then

$$\begin{aligned} x(t) &= Py(t) \\ &= y_1(t)p_1 + \cdots + y_n(t)p_n \end{aligned}$$

where $y(t) = (y_1(t), \ldots, y_n(t))$ and p_i is the *i*-th column of **P**. We will show such an approach in Optional. Now, however, we want to observe that (10.1) is equivalent to

$$x''(t) + M^{-1}Kx(t) = 0.$$

If $M^{-1}K$ is diagonalizable, we can solve this problem **as** described in Chapter **4**.

We need the following.

Corollary 10.2 Let **A** and *B* be $n \times n$ Hermitian matrices with *B* positive definite. Then $B^{-1}A$ is diagonalizable. And if **A** is positive definite, $B^{-1}A$ has positive eigenvalues.

Proof. From the theorem, there is a nonsingular matrix *P* such that

$$P^H B P = I \tag{10.2}$$

314 10. Hermitian and Positive Definite Matrices

$$P^H A F = D. (10.3)$$

Taking the inverse of the matrices in (10.2) and multiplying sides to those of the equation in (10.3), we have

$$P^{-1}B^{-1}\left(P^{H}\right)^{-1}P^{H}AF = ID$$

or

$$P^{-1}B^{-1}AP = D.$$

Thus, $B^{-1}A$ is diagonalizable.

Finally, if A is positive definite, then so is $P^H A F$ and thus by (10.3), D has a positive diagonal. And using similarity, $B^{-1}A$ has positive eigenvalues.

In Chapter 4, we derived a formula for the solutions to

$$x''(t) + Ax(t) = 0$$
 (10.4)

where A is a 2 x 2 diagonalizable matrix with positive eigenvalues.

The formula is

$$\mathbf{x}(t) = \left(\alpha_1 \cos\sqrt{\lambda_1}t + \beta_1 \sin\sqrt{\lambda_1}t\right) p_1 \qquad (10.5)$$
$$+ \left(\alpha_2 \cos\sqrt{\lambda_2}t + \beta_2 \sin\sqrt{\lambda_2}t\right) p_2$$

where λ_1 and λ_2 are the eigenvalues of A having corresponding eigenvectors p_1 and p_2 , respectively.

An example applying this formula follows.

Example 10.3 We solve the spring-mass problem given by the equation

$$\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{bmatrix} x'' + \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} x = 0$$

This system is equivalent to

$$x'' + \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} x = 0.$$
Now $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -4 & 4 \end{bmatrix}$ is diagonalizable with $D = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 1 \\ -2 & 2 \end{bmatrix}$. Thus
$$x(t) = \left(\alpha_1 \cos A \ t + \beta_1 \sin A t > \begin{bmatrix} -1 \\ -2 \end{bmatrix} + \left(\alpha_2 \cos f i \ t + \beta_2 \sin f i \ t\right) \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
If the problem has initial conditions, say,

$$\begin{aligned} x\left(0\right) &= \left[\begin{array}{c} 5\\2\end{array}\right] \\ x'\left(0\right) &= \left[\begin{array}{c} 8\\-8\end{array}\right], \end{aligned}$$

we compute coefficients to satisfy these. From

$$x(0) = \alpha_1 \left[\begin{array}{c} 1 \\ -2 \end{array}
ight] + \alpha_2 \left[\begin{array}{c} 1 \\ 2 \end{array}
ight],$$

we get $\alpha_1 = 2$, $\alpha_2 = 3$. And from

$$x'(0) = \sqrt{6}\beta_1 \begin{bmatrix} 1\\ -2 \end{bmatrix} + \sqrt{2}\beta_2 \begin{bmatrix} 1\\ 2 \end{bmatrix}.$$

We find $\beta_1 = \sqrt{6}$ and $\beta_2 = \sqrt{2}$. So

$$x(t) = \left(2\cos\sqrt{6} + \sqrt{6}\sin\sqrt{6}t\right) \begin{bmatrix} 1\\ -2 \end{bmatrix} + \left(3\cos\sqrt{2}t + \sqrt{2}\sin\sqrt{2}t\right) \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

10.1.1 Optional (Solving the Motion of a Building Problem)

A building **as** diagramed in Figure 10.1, can show some motion if displaced from vertical.

FIGURE 10.1.

The mathematical model for this building was derived in Chapter 4 as

$$M\frac{d^2}{dt^2}y(t) + Ky(t) = 0$$

where $M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$ and $K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$. It can be shown that M and K are symmetric and positive definite.

We now demonstrate how to use Theorem 10.1 to solve this equation. A particular example follows.

Example 10.4 Consider the building dram in Figure 10.2. Then M =

FIGURE 10.2.

 $\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \\ he & MA_T LAB \text{ section, we found} \end{bmatrix}$. Using MATLAB and the algorithm in

$$P = \left[\begin{array}{rrr} -0.7071 & -0.7070 \\ 1.4142 & -1.4142 \end{array} \right]$$

and

$$D = \left[\begin{array}{cc} 6 & 0 \\ 0 & 2 \end{array} \right].$$

Thus using (10.5),

$$\begin{aligned} x(t) &= \left(\alpha_1 \cos \sqrt{\lambda_1} t + \beta_1 \sin \sqrt{\lambda_1} t\right) p_1 \\ &+ \left(\sigma_2 \cos \sqrt{\lambda_2} t + \beta_2 \sin \sqrt{\lambda_2} t\right) p_2 \\ &= \left(\alpha_1 \cos \left(\sqrt{2} t\right) + \beta_1 \sin \left(\sqrt{6} t\right)\right) \begin{bmatrix} -0.7071 \\ 1.4142 \end{bmatrix} \\ &+ \left(\alpha_2 \cos \left(\sqrt{2} t\right) + \beta_2 \sin \left(\sqrt{2} t\right)\right) \begin{bmatrix} -0.7071 \\ -1.4142 \end{bmatrix} \end{aligned}$$

Now suppose at t = 0 the building is erect, so $x_1(0) = 0$ and $x_2(0) = 0$. With a gust of wind, we have $x'_1(0) = 1$ and $x'_2(0) = 1$. Plugging in t = 0, we have

$$x\left(0\right)=\alpha_1p_1+\alpha_2p_2$$

or

$$0 = \alpha_1 \rho_1 + \alpha_2 \rho_2.$$

Solving yields $\alpha_1 = \alpha_2 = 0$. Now

$$x'(0) = \beta_1 \sqrt{\lambda_1} p_1 + \beta_2 \sqrt{\lambda_2} p_2.$$

Solving

$$\begin{bmatrix} 1\\1 \end{bmatrix} = \beta_1 \sqrt{\lambda_1} p_1 + \beta_2 \sqrt{\lambda_2} p_2,$$

we get $\beta_1 = -.01443$ and $\beta_2 = -0.7500$. Thus, the subsequent motion of the building is

$$\begin{aligned} x\left(t\right) &= \beta_{1}\sqrt{\lambda_{1}}p_{1} + \sqrt{\beta_{2}}p_{2} \\ &= -0.1443\sin\left(\sqrt{6}t\right) \begin{bmatrix} -0.7071 \\ 1.4142 \end{bmatrix} \\ &- 0.7500\sin\left(\sqrt{2}t\right) \begin{bmatrix} -0.7071 \\ -1.4142 \end{bmatrix}. \end{aligned}$$

A graph depicting the building when t = 1 can be obtained by calculating

$$x\left(1\right) = \left[\begin{array}{c} 0.5890\\ \mathbf{0.9175} \end{array}\right].$$

Thus we have the shape shown in Figure 10.3.

FIGURE 10.3.

10.1.2 MATLAB (Code for Computing P)

The commands for finding P, such that $P^tBF = I$ and $P^tAF = D$, as described in Theorem 10.1, follow.

 $L = \operatorname{chol}(B)$; % Gives the Cholesky decomposition of B as LL^t where L is lower triangular.

C = inv (L) * A * inv (L'); $[Q, \bullet \blacksquare = schur (C);$ P = inv (L') * QD = P' * A * P

(MATLAB calculations may not agree entrywise with hand calculations since the factorizations RR^t and QDQ^t are not unique.)

See the exercises for **a** few problems on which to use this algorithm.

Exercises

1. Factor A as RR^H

	-	-		2	1	1	
(a)	5	2	(b)	1	2	1	
. ,		5		1	1	3	

- 2. Prove that A is Hermitian and positive semidefinite if and only if $A = RR^{H}$ for some matrix R.
- **3.** Using Exercise 2, factor $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ as RR^H .
- 4. Prove that if A is an $n \ge n$ positive semidefinite Hermitian matrix, then so is $B^H A B$ where B is an n $\ge n$ matrix.
- 5. Find a matrix P that diagonalized "both"

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right], B = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array} \right].$$

Is P an orthogonal matrix? Are the columns of P orthogonal?

6. Solve $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} x'' \neq \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = 0$ where $x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $x'(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. (Use the results of Exercise **5**.) 7. Solve $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} x'' + \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = 0$ using Corollary 10.2.

8. Solve the spring-mass problem in Figure 10.4 using Corollary 10.2.

9. Twoparts.

```
k_{1} = \frac{1}{4}
m_{1} = 8 \text{ grams}
k_{2} = \frac{1}{4}
m_{2} = 4 \text{ grams}
```

FIGURE 10.4.

- (a) Prove that λ_1, \ldots, A , (called generalized eigenvalues) of Theorem 10.1 can be found by solving det (AB A) = 0.
- (b) Prove that the columns p_i of P in Theorem 10.1, called generalized eigenvectors, can be computed by solving

$$\left(\lambda_i B - A\right) x = 0$$

for m_i linearly independent vectors, where λ_i has multiplicity m_i , and then by applying Gram-Schmidt to these using the inner product $(z,y) = y_1^H B x$.

10. (MATLAB) Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 2 & 2 & -1 \\ 1 & -1 & 0 \end{bmatrix}$.

Use the algorithm in Optional to find the matrix P described in Theorem 10.1.

11. (MATLAB) Solve the building problem for the building in Figure 10.5 where initially $x_1(0) = 1$, $x'_1(0) = 0$, $x_2(0) = 1$, $x'_2(0) = 0$. Draw the building when t = 5.

FIGURE 10.5.

10.2 Special Eigenvalue Results on Hermitian Matrices

In this section, we look at several eigenvalue results about Hermitian matrices. To do this, we define a special function called a Hermitian form.

Let A be an $n \ge n$ Hermitian matrix. Define a Hermitian form h as

$$h: C^n \to C$$

where

$$h(x) = x^H A x.$$

If $a = x^H A x$, then $\bar{\alpha} = \alpha^H = (x^H A x)^H = x^H A x = a$. Thus the value of a Hermitian form is always real. If A is symmetric and we let q denote h restricted to \mathbb{R}^n , that is

$$q: R^n \to R$$
$$q(x) = x^t A x,$$

we call q a quadratic form.

Hermitian and quadratic forms arise in representations of potential and kinetic energy in a system. Using Lagrange's equation and energy expressions, mathematical models of the system can be derived. In addition, these forms are used to develop numerical methods for computing eigenvalues, **as** well as in solving optimization problems for functions of several variables.

We first give a description of Hermitian forms, obtaining some view of the shapes of their graphs. To do this, let A be an $n \times n$ Hermitian matrix. Then we can factor A as

 $A = UDU^H$

for some unitary matrix $U = [u_1 \dots u_n]$ where u_k is the k-th column of U, and diagonal matrix $D = daag(\lambda_1, \dots, A)$ We assume these eigenvalues are arranged in D so that

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge A \tag{10.6}$$

Now

$$h(x) = x^{H}Ax = x^{H} (UDU^{H}) x = (U^{H}x)^{H} D (U^{H}x).$$

Setting $y = U^{H}x$, and defining $h_{Y}(y) = y^{H}Dy$, we have

$$h(x) = y^{H} Dy$$

$$= \lambda_{1} |y_{1}|^{2} + \dots + \lambda_{n} |y_{n}|^{2}$$

$$= h_{Y}(y).$$
(10.7)

ŧ

To see what this equation means geometrically in \mathbb{R}^n , set $Y = \{u_1, \dots, u_n\}$. Then the equation

$$x = Uy$$

converts the y coordinates of x into x. Thus

$$q\left(x\right) = q_{Y}\left(y\right)$$

says that q(x) can be graphed by graphing $q_Y(y)$ in the Y-coordinate system.

We show an example.

Example 10.5 Let
$$A = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$

Then $D = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}, U = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$. So
 $Y = \left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right\}$

The graph of

$$q(x) = x^{t}Ax = 3x_{1}^{2} + 2x_{1}x_{2} + 3x_{2}^{2},$$

is an Figure 10.6. The graph of

FIGURE 10.6.

322 10. Hermitian and Positive Definite Matrices

$$q_Y(y) = y^t D y = 4y_1^2 + 2y_2^2,$$

using the Y-coordinate system is in Figure 10.7.

Note that both graphs are identical when the axes of the Y-coordinate systems are rotated $-\frac{\pi}{4}$ radian, showing them relative to the axes in \mathbb{R}^2 .

The use of $h_Y(y)$ to derive information about h(x) can be seen in the following theorem.

FIGURE 10.7.

Theorem 10.2 Let $h(x) = x^H A x$ be a Hermitian form. Then A is a positive definite Hermitian matrix if and only if h(x) > 0, for all x, except at x = 0.

Proof. Follows from (10.7). ■

We now give a sequence of results about the eigenvalues of Hermitian matrices. In Rayleigh's Principle, we show how the smallest and largest eigenvalues of a Hermitian matrix can be found from Hermitian form.

Theorem 10.3 Let $h(x) = x^H A x$ be a Hermitian form. Then

$$\max_{\|x\|_{2}=1} h(x) = \lambda_{1}, \ \min_{\|x\|_{2}=1} h(x) = \lambda_{n}$$

where λ_1 and A are the largest and smallest, respectively, eigenvalues of A. Further, the maximum and minimum values of h are achieved at u_1 and u_n , the eigenvectors of length 1 corresponding to λ_1 and A respectively.

Proof. We prove the maximum result.

Part a. We show that if $||x||_2 = 1$, then $h(z) \le \lambda_1$. To see this, by (10.7),

$$h(x) = h_Y(y),$$

x and y related by x = Uy. Thus

$$h(x) = y^{H} Dy$$

= $\lambda_{1} |y_{1}|^{2} + \dots + \lambda_{n} |y_{n}|^{2}$
 $\leq \lambda_{1} (|y_{1}|^{2} + \dots + |y_{n}|^{2})$
= $\lambda_{1} ||y||_{2}^{2}.$

Since $||x||_2 = 1$ and U is unitary, $||y||_2 = ||Ux||_2 = ||x||_2 = 1$. So

$$h(x) \leq \lambda_1.$$

Part b. We show there is an x, $||x||_2 = 1$, such that $h(z) = \lambda_1$. For this, let $y = e_1$. Then $x = Ue_1(z = u_1)$ and

$$h\left(x\right)=h_{Y}\left(y\right)=\lambda_{1},$$

the desired result

A result extending Rayleigh's Principle, namely Courant's Minimax Theorem, shows how each eigenvalue of a Hermitian matrix can be found using expressions like those of Rayleigh. This work is rather intricate, a bit more than what is intended in this text. However, we will state a useful consequence of Courant's work, the Inclusion Principle, without proof.

Theorem 10.4 Let A be an $n \times n$ Hermitian matrix and B the $(n-1) \times (n-1)$ submatrix of A obtained by deleting its last row and last column. If the eigenvalues of A and B are indexed such that, $\lambda_1 \geq \cdots \geq A$, and $\beta_1 \geq \ldots \geq \beta_{n-1}$, respectively, then

$$\lambda_1 \geq \beta_1 \geq \lambda_2 \geq \beta_2 \geq \ldots \geq \beta_{n-1} \geq \lambda_n$$

An example demonstrating the Inclusion Principle follows.

Example 10.6 Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 3 & 0 \end{bmatrix}$. Then, the eigenvalues of A are given by $\lambda_1 = 6$, $\lambda_2 = 1$, $\lambda_3 = -3$, while the eigenvalues of B are given by $\beta_1 = 3$, $\beta_2 = 1$. Observe that

$$\lambda_1 \geq \beta_1 \geq \lambda_2 \ L \ \beta_2 \geq \lambda_3.$$

Using the Inclusion Principle, we can give a test for positive definite Hermitian matrices.

Theorem 10.5 Let A be an $n \times n$ Hermitian matrix. Let A_k be the submatrix in the first k rows and columns of A. Then A is positive definite if and only if det $A_k > 0$ for all k.

Proof. We prove both parts of this biconditional.

Part a. We show that if A is positive definite, then det $A_k > 0$ for all k. For this, let $x = (x_1, \ldots, x_k, 0, \ldots, 0) \in \mathbb{C}^{"}$. Then, since A is positive definite

$$(\bar{x}_1,\ldots,\bar{x}_k)A_k\begin{bmatrix}x_1\\\cdots\\x_k\end{bmatrix}=x^HAx\geq 0.$$

Since this holds for all such x's, with equality only when x = 0, A_k is positive definite, and thus **all** its eigenvalues are positive. Since det A_k is the product of the eigenvalues of A_k , det $A_k > 0$.

Part **b.** We show that if det $A_k > 0$ for all k, then A is positive definite. Here, we use induction on n. If A is 1x 1, then the result is obvious. Thus, suppose the result holds for all n, n < k. Now let A be an $k \ge k$ Hermitian matrix satisfying the hypothesis of this part.

Since A_{k-1} is Hermitian and satisfies the hypothesis of this part, we have by the induction hypothesis that A_{k-1} is positive definite and thus its eigenvalues, say, $\beta_1, \ldots, \beta_{k-1}$ are all positive. Now, by the Inclusion Principle, if $\lambda_1, \ldots, \lambda_k$ are the eigenvalues of A, then using the notation of (10.6),

$$\lambda_1 \geq \beta_1 \geq \cdots \geq \beta_{k-1} \geq \lambda_k.$$

Thus, $\lambda_{k-1}, \ldots, \lambda_1$ are positive. Since det A > 0 and det $A = \lambda_1 \cdots \lambda_{k-1} \lambda_k$, it follows that $\lambda_k > 0$ as well. Thus, A is positive definite.

We demonstrate the theorem with an example.

Example 10.7 Let $K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$ where $k_1 > 0$ and $k_2 > 0$. Then det $K_1 = k_1 + k_2 > 0$ and det $K = k_1 k_2 > 0$. Thus, K is positive definite.

The final result of this section is **an** interesting result about linear transformations. For this result, we work with real numbers.

Recall that if A is symmetric, then we can factor A as

$$A = QDQ^t$$

where $Q = [q_1 \dots q_n]$ is orthogonal and $D = \text{diag}(\lambda_1, \dots, A)$ And

$$x^t A x = c$$

can be graphed by graphing

$$y^t D y = \mathbf{c},$$

where Qy = x, in the coordinates determined by the basis $Y = \{q_1, \dots, q_n\}$. The graph in these coordinates is

$$\lambda_1 y_1^2 + \ldots + \lambda_n y_n^2 = c.$$

If $\lambda_1 > 0, \dots, \lambda_n > 0$ and c > 0, the graph of this equation is an ellipsoid. Thus, if A is positive definite symmetric and c > 0, then the graph of

$$x^t A x = c$$

is an ellipsoid.

Our theorem now follows.

Theorem 10.6 Let A be an $n \ge n$ nonsingular matrix. Then L(x) = Ax maps ellipsoids to ellipsoids.

Proof. We argue this theorem in two parts.

Part a. We show that the image of an ellipsoid is on **an** ellipsoid. To do this, let *E* be an ellipsoid. Then *E* is the graph of $x^t B x = c$ where *B* is a positive definite symmetric matrix and *c* **a** positive scalar. Since *B* is positive definite, $B = R^t R$ for some nonsingular matrix *R*.

Let $x \in E$. Then

$$x^t R^t R x = c. (10.8)$$

Now let L(x) = y. Then $A^{-1}y = x$. Substitution into (10.8) leads to

$$y^{t} \left(A^{-1}\right)^{t} R^{t} R A^{-1} y = c.$$
 (10.9)

Since $(A^{-1})^t R^t R A^{-1} = (R A^{-1})^t (R A^{-1})$, this matrix **is** positive definite symmetric. Thus, y is on the ellipsoid defined by (10.9).

Part b. We show the image of the ellipsoid E is all of the ellipsoid defined by (10.9). For this let y be on the ellipsoid defined by (10.9). We need to show there is an $x \in E$ such that L(x) = y. This part will be left **as** an exercise.

An example showing a consequence of this theorem follows.

Example 10.8 Let L(x) = Ax where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Then L maps the unit circle into an ellipse. By Rayleigh's Principle,

$$\max_{\|x\|_{2}=1} \|L(x)\|_{2} = \max_{\|x\|_{2}=1} (x^{t}A^{t}Ax)^{\frac{1}{2}}$$
$$= \left(\max_{\|x\|_{2}=1} x^{t}A^{2}x\right)^{\frac{1}{2}}$$
$$= \lambda_{1}, \text{ the largest eigenvalue of } A.$$

And the value is achieved at u_1 , a corresponding eigenvector of unit length. Thus, $L(u_1)$ is the major axis of the image ellipse.

Similarly, the length of the minor axis is λ_2 , the smallest eigenvalue of A and is achieved at $L(u_2)$, u_2 a corresponding eigenvector of unit length. Thus, $L(u_2)$ is the minor axis of the ellipse.

Since
$$\lambda_1 = 3$$
, $u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $L(u_1) = 3\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and since $\lambda_2 = 1$,
 $u_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $L(u_2) = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, we see the image ellipse in Figure

FIGURE 10.8.

10.2.1 Optional (Optimization)

In elementary calculus, we saw that if f(x) was a function of one variable, and x_0 a critical point, then $f''(x_0) > 0$ implied the critical point was at a local minimum while $f''(x_0) < 0$ assured a local maximum. We outline a corresponding such test for a function f(x, y) of two variables. (It can be extended to more variables.)

If (x_0, y_0) is a critical point of f(x, y), then

$$\frac{\partial}{\partial x} f(x_{0}, y_{0}) = 0$$
$$\frac{\partial}{\partial y} f(x_{0}, y_{0}) = 0.$$

ŝ

Thus writing
$$f(x, y)$$
 in a series about (x_0, y_0) , we have $f(x, y) = f(x_0, y_0) + \frac{1}{2}(x - x_0, y - y_0) H \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix} + R(x, y)$ where
$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{bmatrix}$$

is called the *Hessian* of f(x, y) at (x_0, y_0) . Under rather mild conditions on f, H is symmetric.

If H is positive definite, which we can easily check by Theorem 10.5, then

$$q(x,y) = (x - x_0, y - y_0) H \begin{bmatrix} x - x_0, \\ y - y_0 \end{bmatrix} > 0$$

except when $x = x_0$ and $y = y_0$. And it can be shown that q(x,y) > R(z,y) for (z,y) close to (not equal) (x_0, y_0) . So $f(x,y) - f(x_0, y_0) = q(x,y) + R(x,y) > 0$ for all such (x,y), and thus $f(x_0, y_0)$ is a local minimum of f. (See Figure 10.9.)

FIGURE 10.9.

If *H* is negative definite, then $f(x_0, y_0)$ is a local maximum. We give an example.

Example 10.9 Let $f(x, y) = 2x^2 + xy + 3y^2 - 6x - 13y + 6$.

i. We find the critical points off.

Setting the partial derivatives off equal to 0, we have

or

$$4x + y = 6$$
$$x + 6y = 13.$$

The solution to these equations is $(1,2)^t$.

328 10. Hermitian and Positive Definite Matrices

al. We decide if f has a local maximum or local minimum at $(1,2)^t$. To do this, we calculate the Hessian of f at $(1,2)^t$. We get

$$H = \begin{bmatrix} \delta \frac{\delta^2 f}{\delta x^2} & (1,2) & \delta \frac{\delta^2 f}{\delta y \delta x^2} & (1,2) \\ \frac{\delta^2 f}{\delta x \delta y} & (1,2) & \frac{\delta^2 f}{\delta y^2} & (1,2) \end{bmatrix} \\ = \begin{bmatrix} 4 & 1 \\ 1 & 6 \end{bmatrix},$$

which is positive definite. Thus, there is a local minimum ut $(1,2)^t$

Exercises

5.

3

- 1. Graph by changing coordinates using the basis **Y** that provides the eigenvalue description.
 - (a) $5x_1^2 + 2x_1x_2 + 5x_2^2 = 5$ (b) $x_1^2 + 2x_1x_2 + x_2^2 = 1$
- 2. Graph by using the basis Y that provides the eigenvalue description. Describe each shape.

(a)
$$q(x_1, x_2) = 4x_1^2 + 2x_1x_2 + 4x_2^2$$

(b) $q(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2$

- 3. Using the hypothesis of Rayleigh's Principle, prove that $\min_{\|x\|_2=1} h(x) = \lambda_n$.
- 4. Decide which matrices are positive definite.

(a)
$$\begin{bmatrix} -1 & 2\\ 2 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 2 & 1\\ 2 & 1 & 1\\ 1 & 1 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 1 & 2\\ 1 & 3 & 2\\ 2 & 2 & 2 \end{bmatrix}$
Demonstrate the Inclusion Principle for $\begin{bmatrix} 3 & 1 & 2\\ 1 & 3 & 2 \end{bmatrix}$

- 6. Let $L(x) = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} x$. Then *L* maps the unit circle in \mathbb{R}^2 into an ellipse in \mathbb{R}^2 . Find the ellipse as in Example 10.8.
- 7. Prove that the sum of two $n \ge n$ positive definite matrices is positive definite.
- **8.** Give the details for the proof of Theorem **10.2**.
- 9. Let A be a 3×3 Hermitian matrix where $a_{11} = 0$. Prove that A has a nonnegative and a nonpositive eigenvalue. (Hint: Apply the Inclusion Principle to A_1, A_2 , and A where A_k is the submatrix of A in the first k rows and k columns of A.)

f

- 10. Let A be an n x n positive definite Hermitian matrix. Prove that the submatrix in rows 2,...,n 1 and columns 2,...,n 1 is positive definite. (Actually, any submatrix sharing the same rows and columns of A is positive definite.)
- 11. Let A be an $n \ge n$ positive definite Hermitian matrix. Suppose we can obtain an echelon form E by only applying the add operation $\alpha R_i + R_j$ where i < j. Prove that A is positive definite if and only if the entries on the main diagonal of E are positive.
- 12. (Optional) Let

$$f(x,y) = 4x^2 + 2x + 4y^2 + 4y + 2x$$

- (a) Find the critical points of f.
- (b) Analyze the critical points to see if they yield local maximum or local minimum values \mathbf{c} f.
- 13. (Optional) Repeat Exercise 12(b) for

$$f(z,y) = \sin z + \cos y + xy$$

. .

for the critical point (0,0).

14. (MATLAB) Graph and describe each shape.

(a)
$$q(z) = x^{t}Ax$$
 where $A = \begin{bmatrix} 2 & | \\ 1 & 2 \end{bmatrix}$
(b) $q(z) = x^{t}Ax$ where $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$
(c) $q(x) = x^{t}Ax$ where $A = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}$

11 Graphics and Topology

In this chapter we will show how matrices can be used in computer graphics and, to some extent, how special pieces (nonsingular matrices, diagonalizable matrices, etc.) of matrix space can be viewed. So in some sense, both topics deal with pictures.

11.1 Two Projection Matrices

In this section we study two special maps: the projection map and the perspective projection map, which are maps from \mathbb{R}^n into \mathbb{R}'' . We first develop the projection map.

Recall that we have defined and used the orthogonal projection matrix. This matrix projected Euclidean n-space orthogonally onto a subspace of itself. We now extend this notion to allow projections at various angles.

Definition 11.1 Let P be an $n \times n$ matrix. If P is similar to a diagonal matrix D (thus, $P = RDR^{-1}$ for some $n \times n$ matrix R) whose main diagonal consists of 0's and 1's, then P is called a projection (or idempotent) matrix.

To give a grid view of L(x) = Px, we start by letting $Y = \{r_1, \ldots, r_n\}$, where r_1, \ldots, r_n are the columns of R, a basis for Euclidean n-space. Recall that Y determines axes for the Y-coordinate system and that $R = [r_1 \ldots r_n]$ converts coordinates,

 $\mathbf{R} = x,$

where y is the coordinate vector of \mathbf{x} in the Y-coordinate system.

Now, in the Y-coordinate system $L_Y(y) = Dy$ is easily seen as a projection of the space. For example, $L_Y(y) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ projects R^2 onto the y_1 -axis, parallel to the y_2 -axis; while $L_Y(y) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ projects R^3 into the y_1y_2 -plane parallel to y_3 . (See Figure 11.1.)

FIGURE 11.1.

To link L(x) = Px and $L_Y(y) = Dy$, we need a theorem whose proof is described in Chapter 3, Section 3.

Theorem 11.1 Let P be a projection matrix with $P = RDR^{-1}$ and $R = [r_1 \dots r_n]$. If $Y = \{r_1, \dots, r_n\}$, then $L_Y(y) = Dy$ in the Y-coordinate system gives the same map as L(x) = Px.

The theorem *makes* clear that a projection matrix P behaves as does D, using axes determined from Y. To help clarify the theorem, we give an example.

Example 11.1 Let $P = \begin{bmatrix} \frac{4}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$. Then we can factor $P = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$. So $D = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Now $L(\mathbf{x}) = P\mathbf{x}$, described naturally, is the same as $L_y(y) = Dy$ in the Y-coordinate system, where $Y = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$. Note L_Y projects onto the y_1 -axis (determined from $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$) parallel to the y_2 -axis (determined from $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$). See Figure 11.2. Another example may help.

Example 11.2 Suppose we want to construct a projection that collapses R^2 into the line y = x parallel to $\begin{bmatrix} 0\\1 \end{bmatrix}$. We take a vector on the line, say, $\begin{bmatrix} 1\\1 \end{bmatrix}$. Then set $Y = \left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ and

$$Y = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \text{ and } D = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$
Now $R = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $P = RDR^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$. And, $L(x) = Px$ is the desired projection. See Figure 11.3.

FIGURE 11.3.

It is possible to tell if P is a projection matrix without factoring.

Theorem 11.2 P as a projection matrix if and only if $P^2 = P$. (This says L(L(x)) = P(Px) = Px = L(x).)

Proof. The direct implication is proved by setting $P = RDR^{-1}$ and showing $P^2 = P$. Thus we need only argue the converse.

Suppose

*

$$P^2 = \mathbf{P}.\tag{11.1}$$

Factor P, by Jordan's theorem, so

$$P = RJR^{-1}$$

where J is a Jordan form for P. Substituting into (11.1), and simplifying yields

$$J^2 = \mathbf{J}$$

Since J is block diagonal,

$$J_k^2 = J_k \tag{11.2}$$

for each Jordan block J_k of **J**. Viewing the main diagonals of these blocks, we see from (11.2) that any eigenvalue λ must satisfy

$$\lambda^2 = \lambda$$

so $\lambda = 1$ or 0. And, all Jordan blocks must be 1×1 . (If not, view the 1,2-entry for a contradiction) Thus P is similar to a diagonal matrix with main diagonal entries 0's and 1's.

Notice in the examples that the projections there are "slanted." As you might expect, "orthogonal" projections require the basis Y, and thus the matrix R, to be orthogonal.

Definition 11.2 A projection matrix P is an orthogonal projection if $P = QDQ^t$ for some orthogonal matrix Q and D a diagonal matrix whose main diagonal consists of 0's and 1's.

We can also tell, without factoring, if P is an orthogonal projection.

Theorem 11.3 Let P be a projection matrix. Then P is an orthogonal projection if and only if $P^t = P$.

Proof. The proof is left as an exercise with the following hint: If $P^t = P$, **Pis** normal.

The second kind of projection map we consider is the perspective projection map. In this kind of map, Euclidean n-space is projected toward a 'point at infinity.' (Think of looking at railroad tracks to see how lines are intended to go.) **Definition 11.3** An $(n+1) \times (n+1)$ matrix A is called a perspective projection matrix if it can be partitioned

$$A = \begin{bmatrix} B & Q \\ b & 1 \end{bmatrix} \text{ or } A = \begin{bmatrix} B & b \\ 0 & 1 \end{bmatrix}$$

where B is an $n \times n$ matrix.

As a use for this matrix, note that the difference equation

$$x_{k+1} = Bx_k + b (11.3)$$

can be written

$$\begin{bmatrix} x_{k+1} \\ 1 \end{bmatrix} = \begin{bmatrix} B & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_k \\ 1 \end{bmatrix}.$$
(11.4)

The convergence of (11.4) depends on the eigenvalues and Jordan blocks of $A = \begin{bmatrix} B & b \\ 0 & 1 \end{bmatrix}$. Concerning the eigenvalues of A, we use the notion of the *spectrum of a matrix C*, namely,

 $\sigma(C) = \{\lambda : \lambda \text{ is an eigenvalue of } C\}$.

The following lemma is easily proved.

Lemma 11.1 If A is a perspective projection matrix then

$$\sigma(A) = \sigma(B) \cup \{1\}$$

Perspective projection matrices also arise in graphics. In **art**, **a** painter might hold up his thumb to help envision **a** vanishing point behind the canvas. The drawing diminishes the back (top, bottom, and sides) to provide perspective. A draftsman will do this **by** perhaps initially establishing a vanishing point for a drawing, perhaps putting **a** point in the upper right corner of the drafting paper. (See Figure 11.4.)

The same results can be achieved in computer graphics using mathematics. We project to the xy-plane (our canvas). However, since we are projecting, rather than drawing, the point we need is in front of the object. (So we get the eye view.) We label the axes as in Figure 11.5.

We choose a vanishing point e, $e = (0,0,d)^t$ on the z-axis and use it to obtain perspective. To calculate where e places the point p, $p = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, in the xy-plane, say, at $\begin{bmatrix} x^* \\ y^* \end{bmatrix}$, we use the line determined by e and p, namely

$$\alpha p + (1 - \alpha) e \tag{11.5}$$

FIGURE 11.4.

FIGURE 11.5.

where $-\infty < \alpha < \infty$. We choose α so that z = 0, i.e.

$$\alpha z + (1 - \alpha) d = 0.$$

Solving yields

$$\alpha = \frac{d}{d-z} \; .$$

Now, using this α in (11.5), we have that

$$x^* = \frac{d}{d-z}x$$
$$y^* = \frac{d}{d-z}y.$$

Note that

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & -\frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ \frac{d-z}{d} \end{bmatrix}.$$
 (11.6)

(* T)

Thus, if we define π on those vectors in \mathbb{R}^4 with nonzero last entry, such that π normalizes the vector to have last entry 1, then we have

$$\pi \begin{bmatrix} x \\ y \\ 0 \\ \frac{d-z}{d} \end{bmatrix} = \begin{bmatrix} \frac{dx}{d-z} \\ d-z \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x^* \\ y^* \\ 0 \\ 1 \end{bmatrix}.$$

(Vectors that are scalar multiples of each other are said to have homogeneous coordinates. Hence, π maps vectors into vectors with homogeneous coordinates and having last entry 1.)Putting together, if

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{d} & 1 \end{array} \right],$$

then the perspective projection map $\pi \circ \mathbf{A}$ maps vectors into the *xy*-plane with the perspective of a vanishing point at e, a distance d from the origin.

11.1.1 Optional (Drawing Pictures Using Projection Maps)

In this optional we will draw a box to be viewed on a computer screen. We do this with a perspective projection map and a projection map.

Part a. Perspective projection.

The eye view we take of the box is from a vertex, say, f, to the farthest vertex, say, h, from f. Thus we place the line through h and f on the z-axis so that f is at $(0,0,3)^t$ and h at $(0,0,1)^t$. So the vertices of the box that we view are

$$a = (-2, 0, 3)^{t}$$

$$b = (-2, -2, 3)^{t}$$

$$c = (0, -2, 3)^{t}$$

$$d = (2, 0, 1)^{t}$$

$$e = (2, 2, 1)^{t}$$

$$f = (0, 0, 3)^{t}$$

$$g = (0, 2, 1)^{t}.$$

(This box is not a cube.) To outline the **box**, we intend to draw the edges in the following sequence:

$$a - b - c - d - e \neq -c - f - a - g - e$$
.

Listing the \mathbf{x} , \mathbf{y} , and \mathbf{z} coordinates of this sequence, we have the following. x = [-2, -2, 0, 2, 2, 0, 0, 0, -2, 0, 2];y = [0, -2, -2, 0, 2, 0, -2, 0, 0, 2, 2];z = [3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1];Now we position our eye at e = (0, 0, 10), so d = 10. d = 10: Computing our perspective projection on the zy-plane, we have s = d* ones(1, 11);x1 = d * x./(s - z);y1 = d * y./(s-z);Now, plotting in the xy-plane w = zeros(1, 11);plot3(x1, y1, w)To view the picture from the z-axis, we use the following. % Tilts axes so that the **z-axis** points view (0,90) toward us. axis equal % Puts tick marks so they are equal. axis off % Removes appearence of axes. The picture is below in Figure 11.6.

FIGURE 11.6.

Of course, if we increase d, the back square will appear to increase in size, so this can be **adjusted** to suit the viewer.

Part b. Projection.

To contrast, suppose we simply project our box on the xy-plane. We use x, y, and w from the previous program. And, we add plot3(x, y, w) view (0, 90) axis equal axis off The picture is in Figure 11.7. 1.00

t -

Notice that in this picture, the **back** square appears larger than the front square. However, measurement shows they are the same.

Perspective is important in drawing. Our eyes expect it. And when it is missing, we see (perceive) a distortion.

Exercises

- 1. Find P that projects R^2 onto the line y = 2x parallel to $(1,1)^t$.
- 2. Find P that projects R^3 onto the plane x + y + z = 0 parallel to $(1,1,0)^t$.
- 3. Find the orthogonal projection of R^3 onto plane x + y + z = 0.
- **4.** Is $P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ a projection matrix?
- 5. Find *P* that projects R^3 onto the line $x = t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (parametrically described), and parallel to the xy-plane. (All points project parallel to the xy-plane.)
- 6. Find the projection of R^4 onto the x_1x_2 -plane parallel to the plane $x_1 + x_2 + x_3 + x_4 = 0$.
- 7. Prove that if $Q = [q_1 \dots q_r]$ is an $n \times r$ matrix whose columns form an orthonormal set, then QQ^t is an orthogonal projection of R^n onto span $\{q_1, \dots, q_r\}$. (Write in the form RDR^{-1} .)
- 8. Prove Theorem 11.3.
- 9. Prove Lemma 11.1.
- 10. Find the perspective projection map into R^2 using the vanishing point $(0,0,6)^t$.

- 11. Let d be the vanishing point of a projective projection map into R^2 . If d increases, what would happen to the picture of a house?
- 12. (MATLAB)
 - (a) Find the perspective projection matrix **P** that projects R^3 into R^2 with vanishing point $e = (0, 0, 20)^t$.
 - (b) Change the box in Optional into a cube. Use P to project the cube into \mathbb{R}^2 .
 - (c) Does the picture "look right"? If not, how should the vanishing point be changed? (Art, even on computers requires experience and sense.)

11.2 Manifolds and Topological Sets

In working with matrices, it is very helpful to have some sense or feel for the special sets of matrices: the nonsingular matrices as well as the matrices that have distinct eigenvalues. As shown in Chapter 5, Section 2, a matrix relatively close to singular matrices has a large condition number, c(A). And, as given in Chapter 9, Section 2, if a matrix is close to matrices with multiple eigenvalues, that matrix might have large eigenvalue and eigenvector condition numbers. In this section, we provide results intended to give that sense. Most of the work is based on the following definition.

Definition 11.4 The concepts described below concern the set of $m \times n$ matrices with matrix norm $\|\cdot\|$. Let $\varepsilon > 0$ and A an $m \times n$ matrix. A ball B about A of radius ε is defined as

 $\mathbf{B} = \{B : B \text{ is an } m x \text{ n matrix and } \|B - A\| < \epsilon \}.$

Let K be a set of $m \times n$ matrices.

ī

- i. K is open if for each $A \in K$ there is some ball B about A such that $B \subseteq K$.
- ii. K is *closed* if whenever A₁, $A_{2...}$ are in K and the sequence converges to some A, called a *limit point* of K, then A $\in K$.

It is left an exercise to show that the compliment of an open set is closed and vice versa.

Open sets K are important since sufficiently small errors made in estimating or calculating an AEK results in a matrix in K. Not always so in closed sets. However, in closed **sets** K, limits of convergent sequences in K must be in K.

Two special closed and open sets of matrices follow.

Theorem 11.4 In the space of $n \times n$ matrices,

- (a) The set of singular matrices is closed.
- (b) The set of nonsingular matrices is open.

Proof. There are two parts.

Part a. The determinant is a continuous function. Hence if A_1, A_2, \ldots is a sequence of singular matrices which converge to A, then det $A = \lim_{k \to \infty} \det A_k = \lim_{k \to \infty} 0 = 0$. Thus A is singular. Hence, the set of singular matrices is closed.

Part b. Since the set of nonsingular matrices is the compliment of the set of singular matrices, the result follows. ■

Results concerning diagonalizable matrices follow.

Theorem 11.5 In the space of $n \times n$ matrices,

- (a) The set of matrices that have multiple eigenvalues (at least one eigenvalue of multiplicity 2 or more) is closed.
- (b) The set of matrices that have distinct eigenvalues is open.

Proof. There two parts.

Part a. Let A_1, A_2, \ldots be a sequence of matrices which have multiple eigenvalues. Suppose the sequence converges to A. By the continuous dependence of eigenvalues, A cannot have distinct eigenvalues since if A had distinct eigenvalues, we could find small nonintersecting disks, say, of radius E, about them. But then, for some δ , if $||A_k - A||_{\infty} < \delta$, the eigenvalues of A_k would have to be within e of those of A. Thus, the set of matrices that have multiple eigenvalues is closed.

Part b. Left as exercise.

Continuing with the definition,

iii. K is *dense* if for each matrix A in the space, and each scalar $\mathbf{E} > 0$, the ball about A of radius E contains a matrix from K.

Thus, any matrix can be approximated arbitrarily close using matrices in a dense set. Two such sets of matrices follow.

Theorem 11.6 In the space of $n \times n$ matrices,

(a) The set of matrices with distinct eigenvalues is dense.

(b) The set of nonsingular matrices is dense.

342 11. Graphics and Topology

Proof. There are two parts.

Part a. Let A be an n x n matrix. Write

$$A = PJP^{-1}$$

where J is the Jordan form of A. Let

$$\delta = \min |\lambda_i - \lambda_j|$$

where the minimum is over all distinct eigenvalues λ_i, λ_j of A. Let ε be a variable, $0 < \epsilon < \frac{\delta}{n}$. Define

$$D = diag(\epsilon, 2\epsilon, \ldots, n\epsilon)$$
.

And set

$$B = P\left(J + D\right)P^{-1}.$$

Note that B has distinct eigenvalues for all E and that

$$\lim_{\epsilon \to 0} B = A.$$

Thus, there are matrices with distinct eigenvalues arbitrarily close to A.

Part b. This part is similar to Part a. (Note, nonsingular is equivalent to nonzero eigenvalues.)

We might mention that neither the nonsingular matrices nor the matrices with distinct eigenvalues are convex sets, so they don't have a convex set dimension. Intuitively, however, it is nice to have some notion of dimension of the sets we studied. Thus, we will need **an** extended definition for dimension. And, we will do this only for the real numbers.

For some intuition on this, let X be a nonempty subset of $m \times n$ matrices. We will say the X has dimension k if at each $A \in X$, there is an open set containing A which looks something like an open set in \mathbb{R}^k . (Say we can lay an open set in \mathbb{R}^k one-to-one, on the open set containing A.) So around any point in X, it looks like \mathbb{R}^k . (See Figure 11.8.)

For a mathematical description, let X be a nonempty subset of $m \ge n$ matrices. Using the matrix norm $\|\cdot\|_F$, we can define ball, open and closed sets in X (rather than in the whole set of $m \ge n$ matrices) as we did in the space of $m \ge n$ matrices. And using the vector norm $\|\cdot\|_2$, we can define those same notions in \mathbb{R}^k .

Now suppose that at each $A \in X$ there is an open set W (open in X) containing A, an open set V in \mathbb{R}^k , and a function f.

$$f: V \to W$$

which is

FIGURE 11.8.

- 1. One-to-one and onto, and such that both
- 2. f and f^{-1} are continuous.

Then we say that X is a k-manifold. And, we add, all k-manifolds are assigned the dimension k.

Giving some dimension to nonsingular matrices, we have the following.

Theorem 11.7 Let U be the set of $n \times n$ nonsingular matrices. Then U is an n^2 -manifold.

Proof. Define $f : \mathbb{R}^{n^2} \to \mathbb{R}^{n \times n}$ by $f(a_{11}, \dots, a_{1n}, a_{21}, \dots, a_{2n}, \dots, a_{n1}, \dots, a_{nn}) = \begin{bmatrix} a_{11} \dots a_{1n} \\ \dots \\ a_{n1} \dots a_{nn} \end{bmatrix}$.

Then f is one-to-one and onto.

調べ

Let $V = f^{-1}(U)$. (That is, $V = \{x : f(x) \in U\}$.) To show that V is open, let $x \in V$. Then $f(x) \in U$. Since U is open, there is a ball **B**(f(z),r) about f(z) of radius r such that

$$\mathbf{B}\left(f\left(x\right),r\right)\subseteq U.$$

If $\mathbf{B}(x,r)$ is the ball about x of radius r in \mathbb{R}^{n^2} , then $f : \mathbf{B}(x,r) \to \mathbf{B}(f(x),r)$. Thus, it follows that $\mathbf{B}(x,r) \subseteq \mathbf{V}$. As x was arbitrarily chosen, V is open.

Finally, it is clear (checking to see if $x_k \to x$, then $f(x_k) \to f(x)$ and if $B_k \to B$, then $f^{-1}(B_k) \to f^{-1}(B)$) that f and f^{-1} are continuous. Thus, U is an n^2 -manifold.

As an additional result we have the following.

Theorem 11.8 The set of $n \times n$ matrices, having distinct eigenvalues, is an n^2 -manifold.

Proof. Exercise.

344 11. Graphics and Topology

11.2.1 Optional (Rank k Matrices)

In this optional we look at special subsets of $m \times n$ matrices having various rank conditions. The first of these is Rank $\geq k$ defined by

Rank
$$\geq k = \{A : \operatorname{rank} A \geq k\}$$
.

We show two properties about the set.

Theorem 11.9 In the space of $m \times n$ matrices,

- (a) **Rank** \geq k is an open set, and
- (b) Rank $\geq k$ is an mn-manifold.

Proof. There are two parts.

Part a. Let $A \in \text{Rank} \geq k$. Then A has a $k \times k$ submatrix C such that C is nonsingular. To simplify the argument, we will suppose that C is in the upper left corner of A.

Let U denote the set of the $k \times k$ nonsingular matrices. Since U is open, there is a ball about C of radius r such that

$$\mathbf{B}(C,r) \subseteq U.$$

Now note that if R is an $n \times n$ matrix and S the submatrix in the $k \times k$ upper left corner of R_{r} then

$$\|A - R\|_F < r$$

implies that

$$\|C - S\|_F < r.$$

Thus, if

 $\mathbf{R} \in \mathbf{B}(A, r)$

then S E B(C, r), and so S is nonsingular. From this it follows that all matrices in B(A,r) have rank at least k. Thus

$$\mathbf{B}(A,r) \subseteq \operatorname{Rank} \geq k$$

and *so*, **Rank** \geq k is open.

Part b. Mimicking the proof of Theorem 12.7 yields this result.

From this theorem it follows that, using that the compliment of **an** open set **is** closed,

$$\mathbf{Rank} \le \mathbf{k} = \{ A : \mathrm{rank} A \le \mathbf{k} \}$$

is a closed set.

An additional result concerns

$$\operatorname{Rank} k = \{A : \operatorname{rank} A = l\ell\}.$$

This set is neither open nor closed in $\mathbb{R}^{m \times n}$. However, Rank k is a manifold.

Theorem 11.10 Rank k is a $k^2 + l(n - l(1) + k (m - l(1)))$ manifold.

Proof. We will prove this theorem for l = 2 and 3×3 matrices. The extension to the general case will be clear.

Let $A \in \text{Rank2}$ and suppose that the 2×2 nonsingular submatrix **C** in A is in the upper left corner. Then, partitioning A, we have

$$A = \begin{bmatrix} C & y \\ \hline x & \alpha \end{bmatrix}$$

where x is a 1 x 2 vector, y a 2 x 1 vector, and a scalar. If $C = [c_1c_2], c_1$ and c_2 the columns of C, then

$$\mathbf{y} = \alpha_1 c_1 + \alpha_2 c_2$$

for some scalars α_1 and α_2 . And, if $A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$, where a_1, a_2 , and a_3 are

the rows of A, then $a_3 = \gamma_1 a_1 + \gamma_2 a_2$ for some scalars γ_1 and γ_2 . Now, set $f : \mathbb{R}^8 \to \mathbb{R}^{3 \times 3}$ by

$$\begin{bmatrix} c_{11}, c_{12}, c_{21}, c_{22}, \alpha_1, \alpha_2, \gamma_1, \gamma_2 \end{pmatrix} = \\ \begin{bmatrix} c_{11} & c_{12} & \alpha_1 c_{11} + \alpha_2 c_{12} \\ c_{21} & c_{22} & \alpha_1 c_{21} + \alpha_2 c_{22} \\ \left(\begin{array}{c} \gamma_1 c_{11} + \\ \gamma_2 c_{21} \end{array} \right) & \left(\begin{array}{c} \gamma_1 c_{12} + \\ \gamma_2 c_{22} \end{array} \right) & \left(\begin{array}{c} \gamma_1 (\alpha_1 c_{11} + \alpha_2 c_{12}) + \\ \gamma_2 (\alpha_1 c_{21} + \alpha_2 c_{22}) \end{array} \right) \end{bmatrix}$$

Let $V = f^{-1}$ (Rank 2). Then

. .

$$f: V \to \operatorname{Rank} 2$$

is one-to-one and continuous. Also, f^{-1} is continuous. Thus, Rank2 is a 4+2(3-2)+2(3-2)-manifold.

From this theorem, we get a view of the $n \times n$ singular matrices. This set can be seen as the union of Rank k sets for k < n. And, since Rank k is a $k^2 + 2k(n-k)$ -manifold, we see the singular matrices as a union of manifolds, the largest dimension of which is $n^2 - 1$ obtained by the set Rank (n-1).

Exercises

- 1. Write out the definitions for ball, open, close, and dense sets in
 - (a) X , a subset of m x n matrices.
 (b) R^k.
- 2. Show that the set of 2×2 matrices is a 4-manifold.
- 3. Show that the set of 2×2 symmetric matrices is a 3-manifold.
- **4.** Show that the orthogonal matrices in the 2 x 2 matrices form a manifold of dim **1**.
- 5. Prove that the compliment of an open set in $\mathbb{R}^{m \times n}$ is closed and vice versa.
- 6. Explain why Theorem 11.5, part (b) is true.
- 7. Show that $k^2 + 2k$ $(n \mathbb{C})$, where $1 \le \mathbb{C} \le n 1$ is largest when k = n 1. And, at k = n 1, this value is $n^2 1$. (Hint: Use $f(x) = x^2 2x(n x)$ and apply calculus techniques.)
- 8. Prove that the set of $n \ge n$ orthogonal matrices is closed.
- 9. Prove Theorem 11.6, part b.
- 10. Prove Theorem 11.8.

11. (MATLAB) Let $\mathbf{S} = \left\{ A : A = \begin{bmatrix} a & b \\ c & \frac{bc}{a} \end{bmatrix}$ where $a, b, c \in \mathbb{R} \right\}$. Graph all rank 1 matrices in \mathbf{S} such that a > 0 and b = a + c over $1 \le a \le 10$, $1 \le c \le 10$.

Appendix A: MATLAB

In this appendix, we go over some of the basics of the MATLAB software package. More appears, **as** it is needed, in the text.

Numbers: The arithmetic operations for numbers, as with calculators, are +, -, *, and /.

Matrices: To enter a matrix, say $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, type in $A = \begin{bmatrix} 1 & 2 & 3; 4 & 5 & 6 \end{bmatrix}$

The semicolon indicates the beginning of a new row. If we don't want the matrix to appear on the screen, we can use a semicolon at the end of the command, as in

 $A = \begin{bmatrix} 1 & 2 & 3; & 4 & 5 & 6 \end{bmatrix};$

Arithmetic: If A and B have been entered, we can do *arithmetic* with them by using the commands

A + B, A - B	
A*B	for the matrix product
$\alpha * A$	for the scalar product
inv(A)	for A^{-1}
$A \setminus b$	for the solution to $\mathbf{A}\mathbf{x} = b$
A A 2	for A^2
A'	for A transpose
~ .	

Sometimes we **need** an element-wise operation. Placing **a** period in front of the operation provides that result.

$$\begin{array}{c} A \setminus B & \text{gives} \begin{bmatrix} \mathbf{a}_{ij} \\ \mathbf{h}_{2} \\ \mathbf{a}_{ij} \end{bmatrix} \\ A \wedge 2 & \text{gives} \begin{bmatrix} \mathbf{a}_{ij} \\ \mathbf{h}_{2} \\ \mathbf{a}_{ij} \end{bmatrix} \end{array}$$

Functions: MATLAB provides a large list of functions of matrices. These functions provide **us** with numerical calculations that would require a great deal of time if done by hand. For example, if A **has** been entered, we can **get**

 $\operatorname{rref}(A)$ for the reduced row echelon form

det (A), rank (A),...

Probably, some good advice is, if we want something, say rank A, type in what **seems** natural. Usually, this is correct.

Graphics: We break this up into two parts.

Part 1. 2-D Graphics. To plot a function, say f(t), it is required that we decide at what points we want to see the graph. We enter these points by indicating where the interval is to start, where it is to end, and the number of points desired in the interval. For example, since the variable is t,

t = linspace(0, 1, 5) gives $t = [0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1]$

Now to plot f(t), we use

plot(t, f(t)).

MATLAB will connect the points

 $(0, f(0)) \quad \left(\frac{1}{4}, f\left(\frac{1}{4}\right)\right) \quad \left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right) \quad \left(\frac{3}{4}, f\left(\frac{3}{4}\right)\right) \quad (1, f(1))$

with segments. (Remember, t is a matrix so if $f(t) = t^2$, we would write plot(t, t, A 2).)

Curves described parametrically can be graphed in the same way. For example

graphs (t^2, t^5) over our interval.

Part 2. 3-D Graphics. To plot a function, say $f(\mathbf{s},t)$, we need two intervals

s =linspace(-1, 3, 100); t =linspace(2, 6, 100); Now to get the grid on which we will plot $f(\mathbf{s}, t)$, we use

[s,t] = meshgrid(s,t);

Thus, [s,t] provides the matrix of points in s x t, all ordered pairs (s_i, t_j) where s_i is in s and t_j is in t.

To graph $f(\mathbf{s},t)$, we can use

 $\operatorname{mesh}(s,t,f(s,t))$

which plots (s,t, f(s,t)) and connects with rectangular-like sheets.

Curves can be graphed using plot3 as in

plot3(*t*, *t*. A 2, *t*. A 5)

Sometimes we need to put more than one graph on the **screen**. To superimpose graphs, use the command *hold* after the first graphing command **has** been entered.

Programming: Calculations which are iterative (a sequence of calculations) can done using *for loops, while loops* and perhaps incorporating *it* statements. We briefly go over each of these.

Part 1. For loop. If a calculation needs to be done for say n = 1, 2, ..., r, we can do them by using a program such as

for n = 1: rcalculation end As an example, to add the first ten natural numbers, we would use S = 0; for n = 1: 10

$$S = S + n$$

end

(If you do not want S printed on each pass through the loop, end it with a semicolon. Then add S after end as in end, S.

Part 2. While loop. The *whale loop* works with a relation, such as > or \geq , which is a bit different from the *for loop*. In general, we use while (relation) calculation end For example, to add the first ten natural numbers, we might have S = 0; c = 1; while c < 11S = S + c; c = c + 1; end, S

Part 3. If and else. Sometimes, a decision needs to be made which determines our next calculation. And, often this occurs within a loop. For example, if we want an upper triangular matrix of 1's we can use

```
A = zeros(3,3);
for i = 1 : 3
for j = 1 : 3
if i < j
A(i,j) = 1;
end
end
```

A bit more complicated example use *else* as well.

350 MATLAB

Help: If assistance is needed with a command, type in *help* and the name of the command as in *help det*.

?
Answers to Selected Exercises

Chapter 1

- 2. (a) $\overline{z+w} = \overline{(a+c)+(b+d)i} = (a+c)-(b+d)i = a-bi+c-di = \overline{z+w}$
- 4. (b) $[-a_2 \ a_1 + a_2]$
- 5. $\begin{bmatrix} \lambda_1 p_1 & \lambda_2 p_2 & \lambda_3 p_3 \end{bmatrix}$
- 6. (a) Using the first column of T, and backward multiplication, show that the first column of X is $(t_{11}^{-1}, 0, 0)^t$. Continue to the second column.
- 7. (a) In arithmetic, if ab = ac, then a(b-c) = 0. So if $a \neq 0, b-c = 0$ or b = c. The missing arithmetic property is: nonzero constants have inverses.
- 10. Note that det Adet B = 1, (Show this.) so det $A \neq 0$. Thus, A^{-1} exists. Solve for B.
- 11. (a) Show $(A^{-1})^{-1}$ satisfies the inverse equation for A^{-1} so it's the inverse of A^{-1} .
 - (b) Use induction on m.
- 21. If B = adj A, then $b_{ij} = c_{ji} = (-1)^{i+j} \det A_{ji}$. Now argue that $\det A_{ji}$ is rational.

22.
$$x = \frac{1}{\det A} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 so
$$x_1 = \frac{1}{\det A} (b_1 c_{11} + b_2 c_{21} + b_3 c_{31})$$
$$= \frac{1}{\det A} \det \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \\ b_3 & a_{32} \end{bmatrix} \begin{bmatrix} b_{13} \\ b_{13} \end{bmatrix}$$

24. det $A = (-1)^t \alpha_1 \dots \alpha_\tau$ det E where t =number of interchanges used and where $\alpha_i R_i$ was used τ times. Explain why the last row of E is 0. (Note: The determinant section follows the section on systems. However, the determinant results used here could have preceded that section. And thus our use of determinant results here to prove a systems result is legitimate.)

Chapter 2, Section 1

- 1. (c) Use the identity (-1+1) = 0 and so (-1+1)x = Cs. Now simplify.
- 3. (a) (iii) $0t^2 + 0t + 0$ which can also be written as 0.

(iv) z where z(t)=0 for all t.

- 8. Let $x \in W$. Since W is closed under scalar multiplication, $0x \in W$. Since $0x = 0, 0 \in W$.
- 11. Let S be the subspace. If $S \neq \{0\}$, let $x \in S, x \neq 0$. Then $\alpha x \in S$ for all scalars **a**. So S contains a line through the origin. If S contains nothing else, S is that line. Continue.
- 13. (a) Choose an arbitrary vector, say $(a, b, c,)^t$ in \mathbb{R}^3 . Show that $\alpha_1 (1, 1, 0)^t + \alpha_2 (1, -2, -1)^t + \alpha_3 (-1, 2, 2)^t = (a, b, c)^t$ has a solution
- 18. (a) Let $x, y \in U \cap W$. Then $x \in U$ and $y \in U$. Since U is a subspace, $s + y \in U$. Similarly, $x + y \in W$. Thus, $x + y \in U \cap W$.

Chapter 2, Section 2

- 3. Rearrange the pendent equation $\alpha_1 u + \alpha_2 (u + v) + \alpha_3 (u + v + w) = 0$ and set the coefficients of u, v, and w to 0. (Explain why this can be done.) Now solve that system of equations for $\alpha_{1,\alpha_{2},\alpha_{3}}$. Give the conclusion.
- 5. Let $S = \{x_1, \ldots, x_n\}$ be linearly independent. By reindexing, if necessary, let $S = \{x_1, \ldots, x_r\}$ be the chosen subset of S. Now suppose \hat{S} is linearly dependent and $(\beta_1, \ldots, \beta_r)$ a nontrivial solution to its pendent equation. Extend to a nontrivial solution to the pendent equation for S.

ź

6. Consider $\alpha f(t) + \beta g(t) = 0$. Differentiation yields $af'(t) + \beta g'(t) = 0$. Thus,

$$\begin{bmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So if there is a single t such that $W(f(t),g(t)) \neq 0$, for that t, $\begin{bmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{bmatrix}$ is nonsingular. That is enough to show $a = \beta = 0$.

- 8. If $x, y \in N(A)$, then Ax = 0 and Ay = 0. Thus, A(x + y) = 0 and so $x + y \in N(A)$.
- 13. Let $\{x_1, \ldots, x_n\}$ be a basis for V. Consider $\alpha_1 y_1 + \ldots + \alpha_m y_m = 0$. Write each y_i as a linear combination of x_1, \ldots, x_n and substitute these into the equation. Rearrange, set coefficients of the x_i 's to 0. Note the number of solutions here.
- **14.** (a) dim W = 3
- 16. Try $\mathbf{y} = e^{rt}$ and determine r so y works.
- **18.** Remove vectors, one at a time, from the set until no dependent vectors are left. Explain why this set is a basis.
- 19. (a) Let (β_1, β_2) be a solution to the pendent equation. So $\beta_1 x_1 + \beta_2 x_2 = 0$. If $\beta_2 \neq 0$, we can solve for x_2 showing x_2 E span $\{x_1\}$. Thus $\beta_2 = 0$. Now we have $\beta_1 x_1 = 0$. Since x_1 is linearly independent $\beta_1 = 0$.
- **20.** Suppose $\mathbf{S} = \{x_1, \dots, x_n\}$ is linearly dependent. Then some vector, say x_n , in *S* is dependent, so span $S \setminus \{x_n\} = \text{span } \mathbf{S}$. Continue to a contradiction to dim V = n.
- 21. (c) Let x, y be in the parallelepiped. Then $x = \alpha_1 x_1 + \dots + \alpha_n x_n$ and $y = \beta_1 y_1 + \dots + \beta_n y_n$ where $0 \le \alpha_k, \beta_k \le 1$. Thus, $\alpha x + (1 \alpha) y = (\alpha \alpha_1 + (1 \alpha) \beta_1) x_1 + \dots + (\alpha \alpha_n + (1 \alpha) \beta_n) x_n$. Note that $0 \le \alpha \alpha_k + (1 + \alpha) \beta_k \le \alpha + (1 \alpha) = 1$. So the parallelepiped is convex.

Chapter 2, Section 3

1. (a)
$$L(x+y) = L\left(\begin{bmatrix} x_1+y_1\\ x_2+y_2 \end{bmatrix}\right) = \begin{bmatrix} (x_1+y_1)+2(x_2+y_2)\\ 2(x_1+y_1)-(x_2+y_2)\\ (2x_1-x_2)+(2y_1-y_2) \end{bmatrix} = \begin{bmatrix} x_1+2x_2\\ 2x_1-x_2 \end{bmatrix} + \begin{bmatrix} y_1+2y_2\\ 2y_1-y_2 \end{bmatrix}$$

$$= L(x) + L(y).$$
(c) $L(f(t)+g(t)) = (f(t)+g(t))' + (f(t)+g(t))$

$$= (f'(t)+f(t)) + (g'(t)+g(t)) = L(f(t)) + L(g(t)).$$

3. L rotates the x_1 -axis counter clockwise a bit and the 22-axis clockwise a little, stretching both.

7.
$$L_1 \circ L_2(x_1, x_2) = L_1\left(\begin{bmatrix} x_1 - x_2 \\ x_2 + 1 \end{bmatrix}\right) = \begin{bmatrix} (x_1 - x_2) + (x_2 + 1) \\ (x_1 - x_2) - (x_2 + 1) \end{bmatrix}$$

= $\begin{bmatrix} x_1 + 1 \\ x_1 - 2x_2 - 1 \end{bmatrix}$
9. (a) $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

- 13. Try y = at + b. Plug in and determine a and b.
- 15. Suppose $(\beta_1, \ldots, \beta_n)$ is a solution to the pendent equation for

$$L(x_1),\ldots,L(x_n)$$

Then $\beta_1 L(x_1) + \cdots + \beta_n L(x_n) = 0$ or $L(\beta_1 x_1 + \cdots + \beta_n x_n) = 0$. Since *L* is one-to-one, $\beta_1 x_1 + \cdots + \beta_n x_n = 0$. Thus $\beta_1 = \ldots = \beta_n = 0$, and so $L(x_1), \ldots, L(x_n)$ are linearly independent.

16. $L_1 \circ L_2(x + y) = L_1(L_2(x) + L_2(y)) = L_1(L_2(x)) + L_1(L_2(y)) = L_1 \circ L_2(x) + L_1 \circ L_2(y).$

Chapter 3, Section 1

- 2. Let E be an echelon form of A obtained by interchange and add operations. Then det $A = (-1)^t$ det E and since det A = 0, det E = 0. Thus, E has a row of 0's and hence there is a free variable in the solution to Ax = 0. (There are other proofs as well.)
- 4. Arguing by contradiction, suppose x_1, \ldots, x_r, u_i is linearly dependent for each *i*. Show that this **means** $u_i \in \text{span}\{x_1, \ldots, x_r\}$ for each *i*. If $x \in V$, $x = \alpha_1 u_1 + \cdots + \alpha_n u_n$ for some scalars $\alpha_1, \ldots, \alpha_n$. Show $x \in \text{span}\{x_1, \ldots, x_r\}$, and explain why $V \subseteq \text{span}\{x_1, \ldots, x_r\}$. But this means dim V = r, r < n, a contradiction.
- 9. No. Find an A and B such that rank $(A+B) \neq \operatorname{rank} A + \operatorname{rank} B$.

10. Look at 3 x 3 matrices with lots of 0's.

Chapter 3, Section 2

- 3. Define $A = PDF^{-1}$.
- 4. Find different sets of eigenvectors for *P*.
- 7. Use that if $A = PDP^{-1}$, $A = XI = P(D = XI)P^{-1}$ and that

 $\operatorname{rank}(A - XI) = \operatorname{rank}(D - \lambda I).$

£

- 8. Suppose A has a real eigenvalue A. Then $As = \lambda x$. But, A rotates while λ stretched, etc.
- 11. A diagonal matrix.
- 12. (a) Let $\varphi(\lambda) = \det(\underline{A-\lambda I})$. If $\varphi(\lambda_1) = 0$ and λ_1 is a complex number, then $0 = \overline{\varphi(\lambda_1)} = \det(\overline{A} \overline{\lambda_1}I) = \det(A \overline{\lambda_1}I) = \varphi(\overline{\lambda_1})$. Now note that $(\lambda_1 \lambda)(\overline{\lambda_1} \lambda)$ is a real polynomial. So $\varphi(\lambda)/(\lambda_1 \lambda)(\overline{\lambda_1} A)$ is a real polynomial, namely

$$\varphi_1(\mathsf{A}) = (\lambda_3 - \lambda) \cdot \cdot \cdot (\lambda_n - \mathsf{A}).$$

Continue, by working with $\varphi_1(A)$, to see that complex conjugate eigenvalues pair up. And, put everything together.

Chapter 3, Section 3

- 1. (a) Can't diagonalize. The eigenvalues are $\lambda_1 = 2, \lambda_2 = 2$, but the corresponding eigenspace has dimension 1. So, we can't find linearly independent eigenvectors p_1, p_2 to *form* a nonsingular *P*.
- **4.** Note that $P^{-1}A = DP^{-1}$. Then $\hat{p}_i A = \lambda_1 \hat{p}_i$ where \hat{p}_i is the i-th row of P^{-1} . So, the rows of P^{-1} will give left eigenvectors.
- 5. No. Find a counter example.
- 7. Show det $(A XI) = \det(A^t XI)$ by using det $B = \det B^t$.
- 9. If $A = PBP^{-1}$ and As = As, $PBP^{-1}x = \lambda x$. Rearrange this to $B(P^{-1}x) = \lambda(P^{-1}x)$. Conclude.
- 10. If A is singular Ax = 0 has a nontrivial solution, say y. Then Ay = Oy so θ is an eigenvalue of A. The converse still needs to be argued.
- 11. Note that $\begin{bmatrix} I & A \\ 0 & I \end{bmatrix}$ has an inverse.

Chapter 3, Section 4

- 1. (a) $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$
- 2. (a) $P = \begin{bmatrix} 0 & \frac{1}{1} \\ 1 & 0 \end{bmatrix} \qquad J = \begin{bmatrix} 3 & \frac{1}{3} \\ 0 & 3 \end{bmatrix}$
- There are 2 linearly independent eigenvectors for λ (from the 1,1 and 3,3 entries of J). So dim (eigenspace for A) = 2.
- 4. Solve AP = PB for P.

- 8. Use $(A \lambda I) p_1 = 0$ and $(A \lambda I) p_2 = 1$. 9. Find **R** such that $A = R \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} R^{-1}$ Then $A = R \begin{bmatrix} \epsilon^{-1} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & \epsilon \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \epsilon & 0 \\ 0 & 1 \end{bmatrix} R^{-1}.$ Thus, $\mathbf{P} = R \begin{bmatrix} \epsilon^{-1} & 0 \\ 0 & 1 \end{bmatrix}$.
- 13. If $A = PJF^{-1}$, $A^{-1} = PJ^{-1}P^{-1}$. So A^{-1} is similar to J^{-1} . Conclude.

Chapter 4, Section 1

3.
$$\lim_{k \to \infty} (A_k + B_k) = \lim_{k \to \infty} \left[a_{ij}^{(k)} + b_{ij}^{(k)} \right] = \left[\lim_{k \to \infty} \left(a_{ij}^{(k)} + b_{ij}^{(k)} \right) \right]$$
$$= \left[\lim_{k \to \infty} a_{ij}^{(k)} + \lim_{k \to \infty} b_{ij}^{(k)} \right] = [a_{ij} + b_{ij}] = A + B.$$

8. Suppose f is continuous. Let $A \in \mathbb{R}^2$ and A_1, A_2, \ldots be a sequence that converges to A. Then $\lim_{k \to \infty} f(A_k) = f(A) = \begin{bmatrix} f_1(A) \\ f_2(A) \end{bmatrix}$. Also, $\lim_{k \to \infty} f(A_k) = \begin{bmatrix} \lim_{k \to \infty} f_i(A_k) \\ \lim_{k \to \infty} f_2(A_k) \end{bmatrix}$, so both f_1 and f_2 are continuous at

A. Since A was chosen arbitrarily, f_1 and f_2 are continuous in \mathbb{R}^2 . (The converse still needs to be proved.)

- 9. (a) $\lim_{t \to 0} A(t) = \begin{bmatrix} \lim_{t \to 0} (2t-1) & \lim_{t \to 0} e^t \\ \lim_{t \to 0} \frac{t}{t-1} & \lim_{k \to 0} \theta \\ \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} = A(0).$ Thus A(t) is continuous at t = 0.
- 14. $m_1 x_1'' = -k_1 x_1 + k_2 (x_2 x_1)$ $m_2 x_2'' = -k_2 (x_2 - x_1) - k_3 x_2$
- 15. Same as in Optional.

Chapter 4, Section 2

1. (a)
$$\lim_{k \to 0} A^k = \lim_{k \to 0} A\left(\begin{bmatrix} 1 & -\frac{4}{3} \end{bmatrix} \begin{bmatrix} .6 & 0 \\ 0 & -.1 \end{bmatrix} \begin{bmatrix} \frac{3}{7} & \frac{4}{7} \\ -\frac{1}{7} & \frac{1}{7} \end{bmatrix}\right)^k$$

$$= \begin{bmatrix} 1 & -4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \lim_{k \to 0} (.6)^k & 0 \\ 0 & \lim_{k \to 0} (-.1)^k \end{bmatrix} \begin{bmatrix} \frac{3}{7} & \frac{4}{7} \\ -\frac{1}{7} & \frac{1}{7} \end{bmatrix}$$

$$= \begin{bmatrix} -4 \\ 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{3}{7} & \frac{4}{7} \\ -\frac{1}{7} & \frac{1}{7} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

ŧ

2. (a)
$$x = \alpha_1 2^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \alpha_2 4^k \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
.
4. (a) $\alpha_2 4^k \begin{bmatrix} \bullet \bullet \\ \bullet \end{bmatrix}$ (The vector could be any eigenvector for $\lambda = 4$.)

11. Substitute PDF^{-1} for A and proceed as in the introduction to this section.

Chapter 4, Section 3

- 1. (a) $x = \alpha_1 e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \alpha_2 e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. (The choice of eigenvectors can be different.)
- 8. $y(t) = e^{-t} \begin{bmatrix} 1\\1 \end{bmatrix}$.
- 9. Find the Taylor series for $\sin \tau$. Replace τ by At. Then differentiate termwise.
- 12. $y(t) = \sin\left(\sqrt{A}t\right) \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} + \cos\left(\sqrt{A}t\right) \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$. Define \sqrt{A} , etc. 13. If $\left|a_{ij}^{(k)}\right| \leq (nm)^k$ then $A^{k+1} = AA^k$ so $a_{ij}^{(k+1)} = \sum_{r=1}^n a_{ir}a_{rg}^{(k)} \leq \sum_{\substack{r=1\\r=1\\up.}}^n m(nm)^k$. (The proof by induction would still need a formal write-up.)

Chapter 5, Section 1

- 5. (a) Yes (b) no. Find x's that support these answers.
- 10. (a) $||x + ty||^2 = (x + ty, x + ty) = (x, x) + 2t(x, y) + t^2(y, y)$. Substitute $||x||^2 = (x, x), (x, y) = \sum_{r=1}^n x_k y_k$.
- 11. (a) $||x+y||_2^2 = (x+y,x+y) = ||x||_2^2 + (x,y) + (y,x)$ $+ ||y||_2^2 \le ||x||_2^2 + 2 ||x||_2 ||y||_2 + ||y||_2^2 = (||x||_2^2 + ||y||_2^2)$ Now take the square root of both sides for the triangle inequality.
- 12. (a) $||x||_2 \le ||x||_1$ so $||x||_2 \le .001$.

Chapter 5, Section 2

1. (a) Let $m_r = \max\{m_1, \ldots, m_r\}$, then $m_k \le m_s$ for all k so $cm_k \le cm_s$. Thus,

$$\max\left\{cm_1,\ldots,cm_r\right\}=cm_s.$$

(b) Let $n_s = \max\{n_1, \ldots, n_r\}$ and $m_t = \max\{m_1, \ldots, m_r\}$. Continue.

- 2. (b) $||I|| = \max_{||x||=1} ||Ix|| = \max_{||x||=1} ||x|| = 1.$
- 7. (a) Plot Ax for $x = e_1, -e_1, e_2, -e_2$. (The vertices of C_0 .) and connect with edges.
 - (b) Graph $\pm Ae_1$, $\pm Ae_2$, and connect with segments.
- 9. (b) $\left\| L\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right) L\left(\begin{bmatrix} 2\\2 \end{bmatrix} \right) \right\|_1 = \left\| \begin{bmatrix} -1\\-3 \end{bmatrix} \right\|_1 = 4,$ $\left\| \begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} 2\\2 \end{bmatrix} \right\|_1 = 2.$

11. Use that
$$\sum_{k=1}^{n} |a_{kj}| = \sum_{k=1}^{n} 1 |a_{kj}| \le \left(\sum_{k=1}^{n} 1^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} |a_{kj}|^2\right)^{\frac{1}{2}}$$
 by the Cauchy-Schwarz inequality. Now, if $||A||_1 = \sum_{k=1}^{n} |a_{kr}|$,

$$||A||_1 \le \sqrt{n} \left(\sum_{k=1}^n |a_{kj}|^2\right)^{\frac{1}{2}} \le \sqrt{n} ||A||_F.$$

- 12. (d) $c(AB) = ||AB|| ||(AB)^{-1}|| = ||AB|| ||B^{-1}A^{-1}||$ $\leq ||A|| ||B|| ||B^{-1}|| ||A^{-1}|| = ||A|| ||A^{-1}|| ||B|| ||B^{-1}|| = c(A) c(B)$
- 13. (a) Note that $\mathbf{x} = A^{-1}b$ and $\mathbf{y} = A^{-1}c$. So $||\mathbf{x} \mathbf{y}|| \le ||A^{-1}|| ||b c||$. Also $||A|| ||\mathbf{x}|| \ge ||b||$. So $||\mathbf{x}|| \ge \frac{||b||}{||A||}$. Thus $\frac{||\mathbf{x} - \mathbf{y}||}{||\mathbf{x}||} \le \frac{||A^{-1}|| ||b - c||}{||b||/||A||}$, etc.
- 16. (a) $1123.4-x | < 10^{-3} (123.4) = .1234$. So $x = 123.4 \pm a$ number less than .1234. So x differs from 123.4 by a number starting in the fourth digit of 123.4. (Multiplying by 10^{-3} shifts the decimal 3 places to the left, causing a number which starts in the 4th digit of 123.4.)

Chapter 5, Section 3

2. (b) Write out the expressions for $||AB||_F$ and $||A||_F ||B||_F$ and compare.

- 3. For the triangle inequality, $||x + y||_R = ||R(x + y)|| = ||Rx + Ry|| \le ||Rx|| + ||Ry||$ (since $||\cdot||$ is a norm) $= ||x||_R + ||y||_R$.
- 6. (a) The eigenvalues are 4, -1.
- 8. (b) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

10 (a)
$$x = (I - A)^{-1}b = \frac{1}{.77}\begin{bmatrix} .9 & .2\\ .2 & .9 \end{bmatrix}\begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 1.429\\ 1.429 \end{bmatrix}$$
 using Neumann's formula. Rate, using the 1-norm, is $||A||_1^k = .3^k$.

Ch pter 5, Section 4

- 4. For Example 5.10:
 - (1) If $x \neq 0$, then $(x, x) = x_1 \bar{x}_1 + \dots + x_n \bar{x}_n = |x_1|^2 + \dots + |x_n|^2 > 0$ since some $x_i \neq 0$.
 - (2) $(x,y) = x_1 \overline{y}_1 + \dots + x_n \overline{y}_n = \overline{y_1 \overline{x}_1} + \dots + \overline{y_n \overline{x}_n}$ = $\overline{y_1 \overline{x}_1 + \dots + y_n \overline{x}_n} = \overline{(y,x)}.$
 - (3) $(\alpha x, y) = (\alpha x_1) \overline{y}_1 + \dots + (\alpha x_n) \overline{y}_n = \alpha (x_1 \overline{y}_1 + \dots + x_n \overline{y}_n) = \alpha (x, y)$.
- **5.** For (iii): $(x, \alpha y) = \overline{(\alpha y, x)}$ by (2), $= \overline{\alpha(y, x)}$ by (3), $= \overline{\alpha}(\overline{y, x)} = \overline{\alpha(x, y)}$ by (2).

6.
$$(0, x) = (0x, x) = 0(x, x) = 0$$
. Give reasons.

- 9. $\|\alpha_1 u_1 + \ldots + \alpha_m u_m\|_2^2 = (\alpha_1 u_1 + \cdots + \alpha_m u_m, \alpha_1 u_1 + \ldots + \alpha_m u_m)$ = $\alpha_1 \bar{\alpha}_1 (u_1, u_1) + \cdots + \alpha_m \bar{\alpha}_m (u_m, u_m) = |\alpha_1|^2 + \cdots + |\alpha_m|^2$. Give reasons.
- 14. First apply Gram-Schmidt to $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ to get u_1, u_2 . Then use the corresponding Fourier sum.

16. (a) The line is span
$$\left\{ \begin{array}{c} \\ \end{array} \right\}$$
 So $u_1 = \left[\begin{array}{c} \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{array} \right]$ and $P = u_1 u_1^t = \left[\begin{array}{c} \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{array} \right]$.
(b) $P \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \left[\begin{array}{c} \frac{3}{5} \\ \frac{3}{5} \\ \frac{5}{5} \end{array} \right]$.

17. $P^2 = (UU^t) (UU^t) = UIU^t = UU^t$. Give reasons.

19. No. Show.

Chapter 6, Section 1

6. (a) The columns of U form a linearly independent set so U is non-singular. (There are other ways of showing this.)

(b) Since U is nonsingular and $U^{H}U = I$, we can multiply this equation, on the right, by U^{-1} to get $U^{H} = U^{-1}$.

- 10. Apply Theorem 6.5.
- 11. Cos of the angle between x, y is $\frac{(x,y)}{\|x\|_2 \|y\|_2}$. Write out the equivalent expression for Qx, Qy. Then manipulate one of these to the other.
- 13. Let $a = \frac{1}{2} \left(\begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 5 \\ 0 \end{bmatrix} \right)$, the average of the vectors. Since we want to reflect about span $\{a\}$, take u to be orthogonal to a.
- 16. (b) Under rotations or reflections the flag points away from the origin.
- 17. Let $\hat{S} = \{L(z) : x \in S\}$. Prove ||L(z) L(z)|| = r, for all $L(z) \in \hat{S}$. (This proves $L : S \to S$.) And prove that if ||w - L(z)|| = r, then w = L(z) for some x where ||x - z|| = r. (This proves onto.)

Chapter 6, Section 2

1. (a)
$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
. (There could be others.) $T = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}$.

- 3. Let A(x + y) = (a + pi)(x + iy). Then $Az = \alpha x \beta y$, $Ay = \beta x + \alpha y$. Thus L(z) = Ax maps span $\{x, y\} \rightarrow \text{span} \{x, y\}$. Apply Gram-Schmidt to x, y to get u_1, u_2 . Then $Au_1 = r_1u_1 + r_2u_2$, $Au_2 = s_1u_1 + s_2u_2$. So $A[u_1u_2] = [u_1u_2] \begin{bmatrix} r_1 & s_1 \\ r_2 & s_2 \end{bmatrix}$. Extend u_1u_2 to an orthonormal basis for R^4 say u_1 , 212,213,214. Set $Q = [u_1u_2u_3u_4]$ and show AQ = QT
- 8. Let x, y be linearly independent vectors which are not orthogonal. Let P = [xy], $D = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ where $\alpha \neq \beta$. Form $A = PDP^{-1}$. (A particular such example will be fine.)
- 10. No. An example still needs to be given.
- 11. Argue by contradiction. Use that $TT^H = T^H T$.

Chapter 7, Section 1

- 1. There are infinitely many solutions.
- 2. If the equation of the line is mx + b = y, solve

$$m +b = 1$$

 $2m +b = 1$
 $2m +b = 2$

4. (b) The line is span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$$
. So, $P = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$. And the closest point is $P \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}$.

- 8. No.
- 9. Since $A^t A = A^2$ and the eigenvalues of A^2 are $\lambda_1^2, \ldots, \lambda_n^2$, it follows that $\sigma_1 = \sqrt{\lambda_1^2} = |\lambda_1|, \ldots, \sigma_n = \sqrt{\lambda_n^2} = |\lambda_n|$.
- 16. (a) $A^H A V = V \Sigma^H U^H U \Sigma V^H V = V \Sigma^H \Sigma$, so $A^H A v_i = \sigma_i^2 v_i$ for all a.

Chapter 7, Section 2

1. 0^t since it satisfies the equation (i)-(iv) of a pseudo-inverse.

3. (a)
$$A^+ = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{1} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{\sqrt{2}} & \frac{\sqrt{2}}{\sqrt{2}} \\ -\frac{\sqrt{2}}{1} & \frac{\sqrt{2}}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} \end{bmatrix}.$$

- 4. Show the matrix satisfies (i)-(iv) of a pseudo-inverse.
- **5.** (a) 1.
- 7. 1. The supporting work must still be given.

9. (a)
$$L(y) = \begin{bmatrix} 2y_1 \\ 0 \end{bmatrix}$$
 where $Z = Y = \left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right\}$. So L collapses (projects) P^2 into the u axis and then doubles this axis

collapses (projects) R^2 into the y_1 -axis and then doubles this axis and sends to the z_1 -axis.

- 10. Change the problem to finding the closest orthogonal matrix Q to Σ . Then show, by looking at the terms in $||Q - \Sigma||_F$, that such a matrix is *I*. (This is the idea. Organization is still required.)
- 11. It says that the condition number is squared, perhaps doubling the number of additional digits in error when we solve the normal equations $A^tAx = A^tb$.

Chapter 8, Section 1

1. (c) $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ 3. (a) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$ 5. Use $3R_2 + R_1$ so $E = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. 6. (a) $\begin{bmatrix} 1 & 0 \\ * & * \end{bmatrix} \begin{bmatrix} 2 & 4 \\ \times & * \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ \ell_{21} & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & \times \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix}$ 9. (a) Just multiply $\begin{bmatrix} 0 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}$. (See why it works.) (b) From Chapter 1, we know that the product of two lower triangular

(b) From Chapter 1, we know that the product of two lower triangular matrices is lower triangular. Now, if $\ell = [\ell_{k1} \dots \ell_{kk-1} \ 10 \dots 0]$ and $u = [0 \dots 0 \ 1 \ell_{j+1,j} \dots \ell_{nj}]^t \dots$

- 11. Use the first row of L to find the first row of X. Continue.
- 12. Note that $A = \begin{bmatrix} e_1 A \\ \cdots \\ e_n A \end{bmatrix}$. Now apply an elementary operation and see what happens with the $e_i A$ rows.

Chapter 8, Section 2

- 6. (w, u) = 0 is $u_1w_1 + \cdots + u_nw_n = 0$ or in augmented form $[u_1 \dots u_n|0]$. So, there are n - 1 free variables and so dim W = n - 1.
- 8. (c) If u has length 1,

$$HH^{t} = (I - 2uu)^{t} (I - 2uu^{t})$$

= I - 4uu^{t} + 4uu^{t}uu^{t}
= I - 4uu^{t} + 4uu^{t} (Note u^{t}u = 1.)
= I.

i

1

- 11. The QR decomposition, with partial pivoting, produces an R of the form $F = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$ where R_{11} is upper triangular and nonsingular. Since rank $A = \operatorname{rank} (QR) = \operatorname{rank} R$, R_{11} must be $r \times r$.
- 12. Note that Hu = -u so -1 is an eigenvalue of H. And, since Aw = w for all $w \in W$, and dim W = n-1, there are n-1 linearly independent eigenvectors, say w_1, \ldots, w_{n-1} for the eigenvalue 1.
- 14. Use $|\det A| = |\det (QR)| = |\det Q \det R| = |\det R| = |r_{11} \cdots r_{nn}|$. Since $a_i = Qr_i$ where a_i and \mathbf{r}_i are the i-th columns of A and R, respectively, $||a_i||_2 = ||Qr_i||_2 = ||r_i|| \ge |r_{ii}|$. Now, put together.
- 15. Note that $a_i = r_{1i}q_1 + \ldots + r_{ii}q_i$, so $a_i (r_{i1}q_1 + \ldots + r_{i,i-1}q_{i-1}) = r_{ii}q_i$. Now, using $Q^t A = \mathbb{R}$ (so $q_k^t a_i = r_{ki}$), show that $r_{i1}q_1 + \ldots + r_{i,i-1}q_{i-1}$ is the Fourier sum for a, and thus the closest vector in span $\{a_1, \ldots, a_{i-1}\}$ to a_i . Finish.
- 17. Apply Givens matrices to Q to obtain an upper triangular matrix R where $r_{11} > 0, \ldots, r_{n-1,n-1} > 0$. Now **R** must be orthogonal so R is diagonal with $r_{11} = 1, \ldots, r_{n-1,n-1} = 1$ and $r_{nn} = \pm 1$. Since the determinant of a Givens matrix is 1, det $Q = \det R = r_{11} \cdot \ldots r_{nn}$. Finish.

Chapter 9, Section 1

- 3. Check the trace.
- **5.** Yes

6. (b)
$$|\lambda - a_{ii}| \le \sum_{\substack{k=1 \ k \neq i}}^{n} |a_{ki}|$$
, etc.

Chapter 9, Section 2

3. (a) $\lambda'_1(0) = .5.$ 5. (a) $\frac{1}{s_1} = 1.$ So $|\lambda'_1(0)| \le 1.$

Chapter 10, Section 1

3.
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$= \left(\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \right) \left(\begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \right)$$
$$= RR^t \text{ where } R = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}.$$

8. The model is $\begin{bmatrix} 8 & 0 \\ 0 & 4 \end{bmatrix} x'' + \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{bmatrix} x = 0.$

9. (a) Using Theorem 10.1, the following equations are equivalent.

$$\det (\lambda B - A) = 0$$
$$\det \left(\lambda \left(P^{H}\right)^{-1} P^{-1} - \left(P^{H}\right)^{-1} DP^{-1}\right) = 0$$
$$\det \left(\left(P^{H}\right)^{-1} (XI - D) P^{-1}\right) = 0$$
$$\det (\lambda I - D) = 0.$$

The last equation has solutions $\lambda_1, \ldots, \lambda_n$.

Chapter 10, Section 2

- 4. Use Theorem 10.5.
- 6. The eigenvalues are 5 and 1 with corresponding orthonormal eigenvectors $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{\sqrt{2}} \end{bmatrix}$, respectively. So, for the image ellipse, the major axis is $5\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, and the minor axis is $1\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{\sqrt{2}} \end{bmatrix}$. Sketch from this.
- 7. Let A and B be the two positive definite matrices. Then $h(x) = x^{H} (A + B)x = x^{H}Ax + x^{H}Bx \ge 0$ with equality only when x = 0. Thus, A + B is positive definite. (Now show A + B is Hermitian.)
- 11. Observe that by applying these elementary operations, det $A_k = \det E_k$ where E_k is the $k \times k$ submatrix in the upper left corner of E. Tell why.

Chapter 11, Section 1 2. A basis for the plane is $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. Add $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and form $R = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. Set $P = R \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} R^{-1}$. 4. Test by $P^2 = P$.

5. A basis for the line is
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, for the plane is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Set
 $R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $P = RDR^{-1}$.

7. Try extending q_1, \ldots, q_r to q_1, \ldots, q_n an orthonormal basis. Set $Q = [q_1, \ldots, q_n]$. Then,

$$QQ^t = \hat{Q}D\hat{Q}^t$$

where $D = \text{diag}(1, \dots, 1, 0, \dots, 0)$ where there are r 1's in D.

Chapter 11, Section 2

1. (a) Let $A \in X$. A ball B of radius E about A is

$$\mathbf{B} = \{B : B \in X \text{ and } \|B - A\| < \varepsilon\}.$$

3. Use $f(a,b,c) = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$. To show f is continuous (it should be clear), let $\begin{bmatrix} (a_1,b_1,c_1)(a_2,b_2,c_2)\cdots \to (a,b,c) \end{bmatrix}$. Then the image sequence is $\begin{bmatrix} I & b_1 \\ c_1 & c_1 \end{bmatrix}$, $\begin{bmatrix} a_2 & b_2 \\ b_2 & c_2 \end{bmatrix}$,... which converges to $\begin{bmatrix} I & b \\ c & c \end{bmatrix}$. Since $f(a,b,c) = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$, f is continuous, etc.

- 4. Use $f(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ for $0 < \theta < 2\pi$ and $\pi < \theta < 3\pi$. This covers the Givens matrices. Now do the Householder matrices.
- 8. Let Q_1, Q_2, \ldots be a sequence of orthogonal matrices that converge to A. Then

$$Q_k^t Q_k = I.$$

Taking the limit gives

$$A^t A = I$$
.

So, A is orthogonal. Hence, the set of orthogonal matrices is closed.

2

• · · _

Bibliography

A. Matrix Theory

- 1. Horn, R., Johnson, C.R. (1985): Matrix anaysis. Cambridge University Press, NY
- **2.** Franklin, J. (1968): Matrix theory. Prentice-Hall, Inc., Englewood Cliff, NJ

B. Numerical Linear Algebra

- 1. Datta, B.N. (1995): Numerical linear algebra and applications. Brooks/ Cole Publishing Co., Pacific Grove, CA
- 2. Golub, G.H, Van Loan, C.F. (1996): Matrix computations, 3rd ed. John Hopkins University Press, Baltimore

C. MATLAB

- 1. Coleman, T.F., Van Loan, C. (1988): Handbook for matrix computations. Siam, Philadelphia
- **2.** Pratap, R. (1996): Getting started with MATLAB. Harcourt Brace College Publishers, Orlando
- Dongarra, J., Bunch, J.R., Moler, C.B., Steward, G.W. (1978): LIN-PACK User's Guide. Siam, Philadelphia
- **4.** Hanselman, D., Littlefield, B. (1997): The Student Edition of MAT-LAB, version 5. Prentice Hall, Upper Saddle River, NJ

Index

1-norm norm, 158 2-norm norm. 158 absolute value, 3 add. 12 addition, 4 adjoint adjoint of A, 19 affine space, 40 augmented matrix, 14, 47 axis. 48 back substitution, 12 backward multiplication, 6 basis, **48** blocks, 10 Cauchy-Schwarz inequality, 161

characteristic equation, characteristic polynomial, classical norms, closed, **340** closest matrix, closest rank k matrix, 252 cofactor. 15 complex numbers, 1 complex vector space, 29 computing Numerical Rank, 257 computing range and null space, 256 condition number, 173, 302 conjugate, 2, 9 conjugate transpose, 9 continuous, 122 convex sets, 53 coordinates for x, 49 Cramer's Rule, 19 Crout method, 269 data compacting, 258 demographic, 135 dense, 341 determinant, 15 diagonal, 7 diagonal matrix, 7 diagonalizable, 87 dimension, 50 dominant term, 132

•

\$

Doolittle method, 269

eigenspace, 91 eigenvalues, 88 eigenvector, 90 element-wise operation, 347 equal, 5 equivalent, 161 Euclidean distance, 117 Euclidean space, 33

forward multiplication, 6 Fourier sum, 195 free variables, 12 Frobenius norm, 180 function space, **34**

Gauss-Jordan, 14 Gaussian elimination, 12 geometric vector, 31 Givens matrix, 207 Gram-Schmidt process, 196 grid view, 60

Hadamard's inequality, 287 Hermitian, 10 Hermitian form, 320 Hermitian matrix, 228 Householder matrix, 209

i-th row expansion, 16
identity matrix, 7
ill-conditioned error, 175
induced norm norms, 167
infinity norm norm, 158
, 158
inner product, 191
interchange, 12
inverse, 9
inverse equation, 9
iterative improvement, 272

j-th column expansion, 16

Jordan blocks, 109 Jordan form, 108 kernel null space N(L), 65left eigenvector, 102 Leslie matrix population matrix, 136 limit point, 340 line. 33 linear. 58 linear combination. 37 linear manifolds. 40 linearly dependent, 44 linearly independent, 44 lower triangular, 7 main diagonal entries, 7 matrix. 3 matrix space, 33 minor, 15 negative definite, 309 negative semidefinite, 309 Neumann's formula, 120 nonsingular, 9 norm normed space, 157 normal matrix matrix, 226 normed space, 158 null space kernel N(L), 65null space of A, 51 N(A), 51one norm, 158 open, 340 optimization, 326 orthogonal, 192, 206 orthogonal projection matrix, 198 orthogonal set, 194 orthogonally similar, 219

orthonormal set, 194 parallelepiped, 53 partial sums, 119 partitioned arithmetic, 11 pendent equation, 44 perspective projection map, 331, 334 perspective projection matrix, 335 pivot variables, 12 pivots, 12 plane rotation, 207 plot X. 63 positive definite, 309 positive semidefinite, 309 projection map, 331 pseudo-inverse of A, 254 pyramid, 53 Pythagorean theorem, 192 **QR**-factorization, 196 quadratic form, 320 range, 62 rank A, 76 real vector space, 29 real version of Schur's Theorem, 225 rectangular diagonal matrix matrix, 237 reduced row echelon form, 14 reflection, 207 reflectional symmetry, 213 residual, 272 right eigenvector, 102 rotation, 206 rotational symmetry, 213 row echelon form, 12 rref, 14 scalar multiplication, 5 scalars, 29 scale, 12 Schur's Theorem, 223 segment, 33

sequence converges to A_0 , 118 sequence of $m \ge n$ matrices, 117 series, 119 similar, 88 singular, 9 singular value decomposition (SVD), 237 singular values, 237 size. 4 span span of S, 37 spectral radius, 182 spring-mass problems, 124 square, 4 square matrix, 7 submatrices, 10 SVD singular value decomposition, 237 symmetric, 10 symmetry, 213 systems of linear equations, 8 tournament, 20 transformations, 58 translation. 58 transpose, 9 triangular, 7 trivial space, 31 two norm, 158 unit vector, 4 $e_i, 4$ unitarily similar, 219 unitary, 206 unitary equation, 209 upper triangular, 7 Vandermonde matrix matrix, 81 vector. 4 vector norm, 157 vector space real vector space complex vector space, 29

÷

vectors vector space, **29**

well conditioned error, 175

Y-coordinate system, **321**