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Preface 
This text is intended for a basic course in matrix theory and applications. 
“Basic” here means that the material chosen is what is most often seen in 
these courses, and the presentation stresses insight and understanding. 

There is no common definition of “understanding”; however, there is 
some agreement of its consequences. A person that understands material 
should be able to do the following: 

fill in any missing pieces of the material that were not given, 

0 adjust the material to cover like problems, 

extend the material beyond what was seen, and perhaps 

create by adding new work to the material. 

In this text, there are some places where results are given for special 
cases, e.g., 2 x 2 matrices rather than n x n matrices. This was done so 
that the notation required was simple and the idea of the proof was easier 
to glean. Of course, understanding this case should mean that the general 
proof can be seen as well. Still, writing out the proof can take some time 
in dealing with subscripts and such. There are also a few places where the 
first two consequences come into play. Vnderstandmg is important, and it 
seems that when students don’t understand, they resort to memorization 
of material that means nothing to them. 

There are some special features of the text, which are described as follows: 

1. Optional subsections. At the end of each section, a subsection entitled 
Optional covers applications of the material in the section. Its intent 
is to show how the material in the subsection is used. 

2. MATLAB* subsections. Also at the end of most sections, there is a 
subsection entitled MATLAB. These subsections discuss the various 
commands we use in MATLAB to do the computations described 
in the sections. Of course, learning requires that some problems be 
done by hand. However, for larger problems, some kind of software 

*MATLAB is a registered trademark of The Mathworks, Inc. For product infor- 
mation, please contact: 

The Mathworks, Inc. 
3 Apple Hill Drive 
Natick, MA 01760-2098 
Tel: 508 647-7000 
Fax: 508-647-7001 
E-mail: infoOmathworks.com 
Web: www.mathworks.com 
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is required (as it saves considerable time). We used MATLAB since 
it is the software of choice in this area. 

Code for the pictures and other graphics used in the text are also 
given in these subsections. Code for some algorithms used are given 
as well. This is important for several reasons. First, the code can 
be used to get color pictures rather than the black and whites shown 
in the text. Second, with a little effort, code can be adjusted or 
extended to handle other problems. Third, this code is important 
since not everyone uses MATLAB on a daily basis. It is nice to be 
able to review code a bit to bring the work back to mind. 
Actually, the students can work through the Optional and MATLAB 
subsections themselves. 

3 .  Visuals. Many professors believe that pictures are important to learn- 
ing, and studies on the hemispheres of the brain support that view. 
This text supports much of the verbal material with pictures. In fact, 
there are 129 pictures or drawings in this text. Exercises involving 
drawing and pictures are also given. 

4 .  Examples. Much of the theory given in the text is supported by exam- 
ples, 115 in fact. This serves several purposes. Some students learn 
better by looking at examples, although there is always the problem 
of mimicking here rather than working from basic ideas. And, some 
professors may choose to cover some of the material by discussing 
and showing examples rather than by discussing and proving. 

5 .  Exercises. There are 450 exercises in the text designed to help stu- 
dents learn the material in the sections: practice calculations, apply- 
ing results, completing proofs, and such. 

6. Order. The first 7 chapters of this text represent basic matrix theory. 
Beyond that, the chapters can be taken in any order. These latter 
chapters are short and perhaps a bit more advanced. 

In conclusion, I would like to thank those students who, over the years, 
provided feedback on how they felt they learned material. It was helpful. 

In addition, I would like to thank my wife, Faye, for typing and working 
with me on this manuscript. Both of us thank John MacKendrick from 
MacKichan Software for his help in typesetting problems. 

And, I would like to thank my editor, Bob Stern, for his advice and help 
on producing this text. 

Darald J. Hartfiel 
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1 
Review of Matrix Algebra 

In this book we will m u m e  some basic background in matrices, linear 
equations, and determinants as this material is usually studied in previous 
courses. 

What is assumed is reviewed in this chapter. In reviewing, a few re- 
marks and examples are usually enough to bring the work back to mind. 
Observing the technical notations used in the book and working through a 
few problems will also help. 

Almost all of the work in this book can be done using either the set R 
of real numbers or the set C of complex numbers. Any exceptions (when 
we work only in R or in C) will be stated. 

In linear algebra and matrix theory, it is traditional to refer to numbers 
as scalars (real or complex). We will use Greek letters a, p, . . . to denote 
scalars. 

1.1 Matrices, Systems of Linear Equations, 
Determinants 

Since we use complex numbers in this book, it may be helpful to give a brief 
review of them. A complex number is written in the form a + bi where a 
(the real part) and b (the imaginary part) are real numbers and i = &i. 
If the complex number has imaginary part 0, we simply write a for a + Oi. 
Since complex numbers commute, bi = ab, so we can also write complex 
numbers as a + ib. 
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Complex numbers can be plotted in the complex plane by finding a on 
the real axis (z-axis) and b on the imaginary axis (y-axis) and plotting 
a + bi at (a, b).  (See Figure 1.1.) 

Y 

a 

FIGURE 1.1. 

The computing rules are as those for real numbers, using i2 = -1 to 
simplify. For example, 

(2 + 32) (4 + 5i) = 
2 . 4  + 2 . 5 i  + 3 i .  4 + 32.52 = 

8 + 102 + 122 - 15 = -7 + 22i. 

If 

z = a + b i  

its conjugate is 
- z = a - b i .  

Calculation shows that if w = c + di, then 

- 
z +  w = f + F  andZZU=fE. I 

Since ZZ = a2+b2 is a real number, we can simplify a fraction by multiplying 
its numerator and its denominator by the conjugate of the denominator. 
For example, 

3 + 2 i  3 i 2 i  4- 5 i  22-7i 22 7 .  
4 + 5 i  4 + 5 i  4- 5 i  41 41 Ea* -- -- .-=-E-- 
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We also use that the absolute value (also called the modulus) of z is 

(zI = JFTK 
Viewed in the complex plane, it is seen (Figure 1.2) that (zI is the distance 
between z and 0. 

z = a + b i  +* 
FIGURE 1.2. 

By direct calculation, it can be seen that 

Finally, recall that 

eib - - cos b + i sin b, 

and 

ea+ib = eaeib. 

For example, = e2 (cos 3 + i sin 3) = e2 (4 + $2) = 3.69 + 6.402 
(rounded to the hundredths decimal place). 

1.1.1 Matrix Algebra 
A matrix is an m x n array of numbers placed in m rows and n columns. 
In general, we exhibit a matrix as 
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or more compactly as [ajj],  depicting the entry aij in row i and column j .  

j 
- /i - - - - - 1  

The size of this matrix is m x n. If m = n, the matrix is often called 
square. 

case letters for entries. Thus, we write 
We use capital letters to denote matrices and the corresponding lower 

A = [aij] , B = [bij] , etc. 

If a matrix is 1 x n or m x 1, we call it a vector and simply write 

2 = [Xi] . 
The m x 1 vector, ei ,  called a unit vector, defined by 

appears throughout the text. 

except 
Recall that the arithmetic of matrices is like the arithmetic of numbers, 

i. Matrices do not necessarily commute under multiplication. 

ii. Matrices need not have multiplicative inverses. 

We will again see this as we give a brief review of the algebra (arithmetic) 
of matrices. 

Developing the algebra of matrices, for m x n matrices A and B, define 
addition as 
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And if (Y is a scalar, define scalar multiplication as 

a A  = [aaij] . 

Thus, 

2 -1 [: - Y ] + [ - 2  o ] = [ :  I:] 
and 

-2 3 

Recall that equality between matrices of the same size means that all 
corresponding entries are equal. Using this, the following properties for 
m x n matrices and scalars are easily seen. 

(a) A + B = B + A  

(b) ( A +  B )  + C = A +  ( B  + C) 

(c )  The matrix 0, all of whose entries are 0, satisfies 

A+O = 0 + A  = A. 

(d) For each matrix A,  the matrix - A  = [-aij] satisfies 

A + (- A )  = (- A )  + A = 0. 

( e )  a ( A + B ) = c t A + a B  

(f) (a + p)  A = a A  + PA 

(g) (4 A = Q (PA) 

(h) l A =  A 

It may be helpful to demonstrate one of these results. 

Proof ( e ) .  By direct computation, 

a ( A  + B )  = (Y ([aij] + [ b i j ] )  

= a [ U i j  + bij] 

= [a (aij + b i j ) ]  

= [QUi j  + QbZj] 

= ["Uij] + [(Ybij] 

= (Y [aij] + 0 [b i j ]  

= a A  + (YB. 
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This verifies (e). 

Let A be an m x r matrix and B an r x n matrix. The product AB is 
defined entrywise as the m x n matrix C where 

Gj  = ai rb l j  + aizbzj + * * * + ai,b,j 

k=l 

for 1 5 i 5 m and 1 5 j 5 n. 
Computing this product in terms of the rows of A, called forward mul- 

tiplication, yields the rows of AB; e.g., to compute the i-th row of AB, we 
multiply the i-th row of A and the matrix B as in 

where ai is the a-th row of A and b l ,  . . . , b, the rows of B. (Here we can 
think of taking row ai, tilting it forward or vertically, so its entries are 
against the corresponding rows of B, and multiplying through.) 

Computing columns of the product, called backward multiplication, yields 
for the j-th column of AB, 

[a1 . . a,] bj = bljal + . . + b,ja, 

where bj is the j-th column of B and a l ,  . . . , a, are the columns of A. 
(Here we can think r~i taking a column bj of B, tilting it backward, or 
horizontally, so its efitries itre against the corresponding columns of B ,  and 
multiplying through.) Viewing a product as a backward multiplication will 
allow us to see (PS obvious) many matrix results. It is useful. 

An example may help. 

Example 1.1 Let I = [ ] . We show that I A  = A for any 2 x 2 

matrix A.  Here, ifal and a2 are the rows of A, then by forward multapli- 
cation 

I A = [ O  1 0  l ] [ z : ] = [ z : ] = A .  

To see this, note that multiplying A by the first row of I ,  we tilt vertically 
and multiply through 

; [::I 
7 (do mentally) \ 
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obtaining the first row oj A.  Doing the same for the second row oj I ,  we 
have 

0 
1 [::I 

/” (do mentally) \ 

[a21 

obtaining the second row oj A .  

a2 denote the columns oj A,  we have 
W e  now show AI = A by using backward multiplication. Here, i j  a1 and 

1 0  
[ a1 a2 ] 

i” (do mentally) \ 

[ a 1  a 2 1 [ ; ]  = [a11 

and 
0 1  

[ a1 a2 3 
/” (do mentally) \ 

[ a 1  a 2 ] [  ;] = [a21 

Thus, 

A square matrix T is upper triangular if t i j  = 0 whenever i > j. It is 
lower triangular if t i j  = 0 when i < j. When we say that T is triangular, 
T can be either upper triangular of lower triangular. If TI and T2 are n x n 
upper triangular matrices, then, using forward multiplication, we see that 
TIT2 is upper triangular. (Observe that if T is the i-th row of TI and c 
the j-th column of T2 and i > j ,  then the nonzero entries of r correspond 
to 0 entries in c and so r c  = 0. The companion result for lower triangular 
matrices is also true. 

A square matrix D is a diagonal matrix if D is both upper triangular and 
lower triangular. A diagonal matrix is often written D = diag(dl1, . . . , d,,), 
simply identifying the main diagonal entries d l l ,  . . . , d,, of D. An identity 
matrix I is a diagonal matrix with 1’s on the main diagonal. Note that, if 
the products are defined, I A  = A by forward multiplication and AI = A 
by backward multiplication. 

If A is an n x n matrix, then 

A” = 1 
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and if k is a positive integer, 

where A appears here as a factor k times. 

pressed sums and products are defined, follow. 
Additional properties of the product, for all matrices in which the ex- 

(i) (AB) C = A (BC) 

(j) A ( B + C ) = A B + A C  

(k) ( B + C ) A = B A + C A  

(1) A (aB) = a (AB) (Often in computing, a scalar a is caught between 
matrices. This property assures a can be pulled out and placed in 
front of the product.) 

An additional computation may be helpful. 

Proof (1). Suppose A is an m x T matrix and B is an T x n matrix. 
Then 

This verifies the result. 

The definition of matrix multiplication allows the writing of systems of 
linear equations 

in compact form as the matrix equation 

where A = [aij],  z = [ i l ] , a n d b =  [ t ]  
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If A is a square matrix and there is a square matrix B which satisfies the 
inverse equation 

A X = X A = I  

then B is an inverse of A and A is nonsingular. (Some books use the word 
invertible.) If A has no inverse, it is singular. If B and C are inverses for 
A,  then 

B = BI = B ( A C )  = (BA)C = IC = C 

so there can be at most one inverse for A. 
denote this inverse, when it exists, as A-l.  

(There may be none.) We 

Properties of the inverse are 

(m) T-l is upper triangular when T is upper triangular and nonsingular. 
The companion result for lower triangular matrices also holds. 

(n) 

(0) (AB)-l = B-lA-l ,  when both A and B are nonsingular. This can 
be extended, by induction, to ( A . . . A k ) - l  = A - 1 . . .  A;'. Thus, 
(A")-l = ( A - l ) m ,  or simply A-", when A is nonsingular and m a 
positive integer. 

= A, when A is nonsingular. 

In problems involving inverses, the inverse equation is often used. We 
show this in the following computation. 

Proof (0).  Note that by replacing parentheses 

(AB) (l3-lA-l) = A (BB-') A - l =  A-lIA = I 

and similarly (B-lA-') (AB)  = I .  Since l3-lA-l satisfies the inverse 
equation for AB, (AB)-l = B-lA-l .  

Finally, for an m x n matrix A, we define 
- -  a12 - . .  all a21 a * .  

A =  ... . . .  - -  
ami am2 ai, a271 - * .  amn 

called the conjugate and the transpose of A, respectively. Using these, we 
define 

A H  = ( A ) t ,  
called the conjugate transpose of A. 
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, then 1 l + i  2- 3 i  [ 2 4 + 2 i  Example 1.2 Ij A = 

1- i  2+3i = [  2 4 - & [  

Matrices which satisfy 

, 

A = A ~  

are called Hemitian, or symmetric if A has real entries. (In the latter case, 
AH = At.) 

Properties of the conjugate transpose are 

(p) ( A H )  = A for any m x n matrix A. 

(9)   AH)-^= ( ~ - 1 ) ~  if A is nonsingular. 
1 

(r) ( A  + B)H = AH + BH for any m x n matrices A and B. 

(s) (AB)H = B H A H  for any m x r  matrix A and r x n  matrix B. This can 
A?, so, in terms of reversing be extended to (A1 Ak)H = A:. 

the order of the products, it is like the inverse of a product. 

Another demonstration of a computation shows how to use this notation. 

Proof (r). By direct computation, 

Thus the result is established. 

It is sometimes useful to do matrix arithmetic on submatrices which 
make up the matrix. By partitioning the rows and columns, a matrix A 
can be partitioned into submatrices Aij (sometimes called blocks) say 

1 

, 5 
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For example, if we partition 

1 2  3 4  

then we can write A = [ 
1 -: 'i ] , A Z I =  [ 5 16] ,andAp2= [ -2 8 I. 

2:; ] where All = [; :], A12 = 

If B is a hatrix, partitioned as is A ,  then addition can be done using the 
submatrices, that is, 

A + B = [Aij + B;j] . 

And, if the expressed matrix sums and products of the blocks are defined, 

r r  1 

J 
Note that this partitioned arithmetic is exactly like that for the entry arith- 
metic previously described. 

Example 1.3 Some examples of partitioned arithmetic follow. 

(a)  LetA= [ ti: 2:; ] , B =  [ :if ] whereA andB are4x4 

matrices and all submatrices are 2 x 2 matrices. Then 

A + B =  [ All +B11 A12 +Bl2 ] 
A21 + Bzi A22 + B22 

and 

(b) Let A be m x r matrix and B an r x n matrix. Ij B = [blbz . . . b,] , 
where bk is the k-th column oj B,  then 

AB = [AblAbz.. . Ab,] . 
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1.1.2 Systems of Linear Equations 
To solve a system of linear equations 

we simplify it to a system in TOW echelon form (staggered rows), such as 

OX, = *. 
Here the 0 ' s  are nonzero scalars and the *'s are arbitrary scalars. Using 
this form, the scalars 0 are called pivots and the variables corresponding to 
them are called pivot variables. All other variables are called free variables. 

To solve the simplified system, we set each free variable equal to an 
arbitrary scalar. We then solve for the pivot variables, starting with the 
last equation and working up, in terms of the free variables. The solutions 
are then expressed using only the free variables. This method is called back 
substitution. 

To simplify a system we can use the following elementary operations. 

c 

a. Interchange: Ri ct Rj, interchange equations i and j. 

b. Scale: aRi, multiply equation i by a nonzero scalar a. 
I c. Add: aRj + R,, add a times equation j to equation i .  

It can be shown that applying an elementary operation to a system of 
linear equations will not change its solution set. 

Operation (a) can be applied to a system to obtain a nonzero coefficient 
of x1 in equation 1. Then operation (c) can be applied to  eliminate x1 
from equations 2 through m. And, this method can then be applied to the 
system with the 1-st equation deleted. Continuing, we obtain a row echelon 
form. 

An example will help recall the method, called Gaussian elimination. 

Example 1.4 Solve 
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Since the arithmetic will only take place on the constants, we do the oper- 
ations on the corresponding augmented matrix 

2 1  5 2  5 3  5 4  
1 1  

Applying -2R1+ R2 and -3R1+ R3 yields 

5 1  5 2  x 3  x 4  

1 1  1 

0 0 4 -4 -48 
[ 0 0 - 2 :I ::I 

Now we w e  2R2 + R3 to get 

51 2 2  5 3  5 4  

This says that 51 and 5 3  are pivot variables while 5 2  and 5 4  are free. 
Set 

x2 = Q 

5 4  = p, arbitrary constants. 

Soluing for the pivot variables, in terms of the free variables, we have, f r o m  
the second equation 

so 

2 3  = -12 +p. 

And, from the first equation, 

x l + Q + x 3 + p = 1 0  

so 

5 1  = 22 - (Y - 2p. 
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Using -R1 i- R2, we have 

To obtain 1's on the pivots, we apply $R2, yielding 

1 1  1 0  
[ o  1 1 - +  $ 1 .  

[ ; ; I - $  $ 1 .  
Getting 0's above the second pivot, we use -Rz + R1. So we have 

- 3 1  -- 

Thus, solving (1.1) or  equivalently (1.2), we get 

As can be seen, this matrix is in the second block of the augmented matrix 
above. 

1.1.3 Determinant 
Recall that if A is a 1 x 1 matrix, say A = [all], then 

det A = all. 

If A is an n x n  matrix, with n > 1, we use the following inductive definition. 

i. Let Aij denote the matrix obtained from A by deleting row i and 

ii. Set ~j = (-l)i+j det Aij. This number is called the ij-th cofactor of 

column j .  

A. (The det Aij is called the ij-th minor of A.) 

Using this notation, we define 

det A = a l l c l l+  ~ 1 2 ~ 1 2  + . . . + alncln 

= all [(-l)'''det All] 

+ a12 [(-1)'+2 det A12] + . . + al, [(- l)'+n det AI,] . 

Example 1.6 Applying the definition, 

a b  
(a) det [ ] = a [(-l)'+' det All] + b [(-1)'+2 det A121 

= ad - be. 
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2 3 -1 
(b) det [ 0 4 -: ] = 2 [(-l)'+'det [ -: ]] + 

-3 1 

3 [(-l)1+2det [ -:]I +(-l) [(-l)'+3det [ -3 O " ] I =  
2 . 1 0 2  + 3 *  (-1). (-6) + (-1)- 1 . 1 2  = 10. 

Actually, the determinant can be expanded along any row or column as 
given below. The proof, a bit intricate, is outlined in the exercises. 

aikC,& (the i-th row expansion) 
i 

n 

k = l  
(a) det A = 

n 

k = l  
(b) det A = Uk,C&j (the j-th column expansion) 

1 4 3  
Example 1.7 Let A= [ -: -! ] . Expanding the determinant along 

the third column, to  make use of the numeroua 0's there, we have 

Some easy consequences of (a) and (b) follow. 

(c) If T is a triangular matrix, then det T = tllt22. . t,. As an example, 
expanding along the first columns, 

= t l l  det 
0 t33 0 t33 

(d) If a row of A is a scalar multiple of another row of A, then det A = 0. 
For example, 

det [  aa a a b  ]=aab-bua=O.  

(e) If bl ,  b2 , .  . . , b, are n x 1 vectors, then 

det [ ( g b k ) a 2  ...a,,] = k d e t [ b x a 2  ... an] 
k = l  k=l 

I 

I 
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r 
where ak is the k-th column of A. (The result also holds when k= 1 bk 

is the j-th column instead of the first one.) As an example, expanding 
along the first column, 

a + b  e 
=det [ c + d  f ] 

=,et[: ; ] + d e t [  ; ] .  
The next property shows that all determinant results about rows hold 

equally for columns. 

(f)  det A = det At , det AH = Observe that 

a b  det[  a c d  b ] t = = d e t [ :  :] =ad-bc=de t  [ d ] .  

A group of results, showing how the determinant behaves when elemen- 
tary operations are performed on the matrix, follows. 

(g) If two rows of A are interchanged, obtaining B,  then det B = - det A. 
For example, 

det [ : : ] = a d  - bc while 

det [ ;f ] =bc-ad. 

(h) If any row of A is multiplied by a scalar a, obtaining B,  then det B = 
adet  A. (So we can pull out a scalar if it appears as a factor in all 
of the entries of a row.) Observe that in the 2 x 2 case, 

det [ a ] = a a d -  bac a c  ad 
= a (ad - bc) 

a b  = a d e t  [ d ] .  
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(i) If a scalar multiple of a row of A is added to another row, obtaining 
B, then det B = det A. For example, expanding along the last row, 
using the transpose of (e), 

c ? a  d + b  ] = d e t [ :  i ] + d e t [ z  :] 
= d e t [  a b  d ] .  

1 

(j) If interchange and add operations are applied to A to obtain a row 
echelon form E, then det A = ( -l)t det E where t is the number of 
times the interchange operation was used. An example will demon- 
strate the result. 

Let A = [ 2 0 -1 ] . Applying -2R1+ R2 and RI + R3, 
1 0  

-1 1 

detA=det  0 0 -3 . [:: ;] 
Applying R2 ++ R3 yields 

0 0 -3 
= - (-3) 
= 3. 

One of the strongest results about determinants concerns the product of 
matrices. It can be used to derive several useful results about matrices. 

(k) If B is also an n x n matrix, then det (AB) = (det A )  (det B )  . 

f 

f 

The key ideas for the proofs follow. 

Proof. For (c), if T is upper triangular, expand the determinant along 
column 1, and continue this on the subsequent cofactors. The lower trian- 
gular case is handled similarly. 

Property (d) is proved by induction on n. For n = 2,  the property can be 
checked directly. Assuming the property for n = T ,  to show the property 
for n = T + 1, expand det B about a row other than the two which are 
scalar multiples and use the induction hypothesis on the cofactors. 

umn and rearranging. 

\ 

1 Property (e) is proved by expanding the determinant along the fist  col- 

b 
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Property (g) is proved as was (d) . 
For property (h), if row i was multiplied by a, then expanding de tB  

along row i yields 

det B = aai1cil + 3 . . + aai,c;, 
= a (ailcil + . . . + aincin) 
= adet  A. 

To prove property (i), use (e) and (d). For property (j), use (g) and (i). 
And, the proof of (k) is outline in the exercises. w 

The adjoint of A is defined, by using cofactors, as 

adj A = [cij] t . 

Example 1.8 Let A = d e f . Then 

t 

[:: f] 
c11 c12 c13 

I' ei - f h  - (d i  - f g )  dh - eg 
ai - cg - (ah - bg) 

b f  - ce - (af - cd) ae - bd 
= [ - ( & - c h )  

1 ei - f h  -bi + ch bf - ce 

dh- eg -ah+bg ae-bd 
-dz+ f g  ai- cg - af  +cd . 

Three properties of the adjoint are listed below: 

(1) A (adj A) = (adj A) A = (det A )  1 

Thus if det A # 0, from the inverse equation, 

(m) A-' = & adj A. For example, let A = [ E  :]. ThenadjA= 

detA adj A = [ 1. Checking, -," ] and A-l = 1 ad-bc ad-bc 

ad-bc ad-bc 
-- [ - 

we see that AA-' = I .  

If A is nonsingular and b is an n x 1 vector, we have Cramer's Rule. 

(n) The solution to Aa: = b has as its i-th entry, zi = $&, where Ai 
is the matrix obtained from A by replacing column z by b. As an 



20 1. Review of Matrix Algebra 

example, if [ ] 2 = [ 1, we have 

=- -  - -1, 
2 
-2 21 = 

det [ ; 241 
-2 
-2 

1 --- - 1. - 
det [ 3 1  

2 2  = 

Finally, the determinant determines nonsingularity. 

(0) A is nonsingular if and only if det A # 0. 

Proof. We argue a few of these results leaving the others as exercises. 
For (l), we do the 2 x 2 case which can be extended to the n x n case. 

Here 

1 allcl l  + a12c12 UllC21 + (312c22 

U21Cll+ a22c12 a21c21 + (322c22 

= [ de:A d i A ]  

noting that the off diagonal entries are determinants of matrices with du- 
plicate rows. For example, the 1,2-entry is an expansion along the 2nd row 
of the matrix obtained from A by replacing the 2nd row with the 1st row, 

Similarly, (adj A)A = (det A)I. 
For (m), if A is nonsingular, AA-l = I .  Thus, det Adet A-' = 1, 

and so det A # 0. Now, by (I), A(& adj A) = (& adj A) A = I. So 

In (o), if det A # 0, from (m), A-' = J-& adj A. So A is nonsingular. 

This concludes the proof. 

A-l = 1 adj A. 
det A 

On the other hand, if A is nonsingular, det A # 0 as argued in part (m). 

1. 1.4 Optional (Ranking) 
Suppose, in a tournament, four tennis players, named 1, 2, 3, and 4, play 
each other exactly once. We draw a directed graph with vertices 1, 2, 3,4 
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and arcs from a to j if i beats j. Define A = [aij] where 

1 if there is an arc from i to j 
0 otherwise. 

If A2 = a(?) , then we can show that [.I 
a:;’ = number of secondary wins from i to j 

i.e., the number of players k where i 
beats k and k beats j. 

To rank the players, set B = A + A2. The sum of the i-th row entries in 
B gives that player’s total wins and secondary wins. This total is used to 
rank the players. 

For example, if the outcome of the tournament, in digraph form, is given 
in Figure 1.3, 

FIGURE 1.3. 

0 1 1 1  0 0 2 1  

0 0 0 0  0 0 0 0 .  
0 0 1 0  0 0 0 0  

thenA= [ 1 a n d A 2 =  [ 1 
y o  1 3  2 1  

Thus B = A + A2 = 1 1 .  Summing the rows of B yields 

r 6 1  
1 0  0 1 0 1  

. Thus, the ranking is 1: Player 1; 2: Player 2; 3: Player 4; and 4: 

Player 3. 
Expressions such as A + A2, with some refinements, have been used to 

determine the power of pro football teams. What has been shown above 
should be considered as a starting point rather than a finished product. 
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1.1.5 MATLAB (Solving Ax = b) 
Some of the basics of the MATLAB package are given in Appendix A. 
These basics include how to calculate answers to the computations in this 
section. We will add to this some additional remarks about solving Ax = b. 

1. Solving A z  = b: If A is n x n and nonsingular, A\b will provide a 
solution to Ax = b or indicate it is having a problem. When this 
occurs, sometimes the mathematics problem can be redescribed to 
eliminate the difficulty. 

If A is m x n, we can solve A z  = b using the augmented matrix 
B = [ A  I b] and finding the reduced row echelon form. An example 
follows. 

B = [ l  1 1; 1 1 1; 1 1 11; 
rref ( B )  

Now, we can write out the solution, x =  [‘3[ ;I+.[ -;I. 
2. Least squares solving Ax = b If A is m x n with m # n, A\ b provides 

a least-squares solution to Az = b. A least-squares solution is not 
always a solution. (We study least-squares solutions in Chapter 7 
and Chapter 8.) An example follows. 

A = [  1 1; 1 1; 1 11; 
b =  [ 1; 2; 3 1 ;  
A\b 

L J  

If MATLAB is having a solving problem, a warning is given. Warnings 
here usually indicate that in computing, some ‘small’ number was assumed 
to be 0. The 0 didn’t occur due to rounding and consequently was set to 
0. And had it not been set to 0, the answer may be very different. 
For more, type in help mldivide. 

Exercises 

1. Express in the form a + bi. 
(a) (3 - 22) (-4 + 5 4  

( e )  e(2+3i)t, where t is 

(b) (2 - 3i)2 
(c) 2-5i 3+2i (d) 14- 321 

a real parameter 

A 
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2. Prove that if z = a + bi and w = c + di, then 
(a) z + w  =Z+TZ. (b) E = f E  
(c) b + 'WI 5 I4 + I 4  * (4 14 = 14 1.11. 
(e) l z ~ =  ( z ~ ) + .  

3.  Let A, B be m x n matrices and a,/3 scalars. Prove the following. 
(a) A + B = B + A  (b) ( A + B ) + C = A + ( B + C )  
(c) A + O = A  (d) A + ( - A ) = O  
(e) (aP) A = (Y (PA) (f) (a + P )  A = a A  + PA 

4. Compute expressions for the following. 

(a) [ 
(b) [u1a2] [ -: 

] [ i t  ] by forward multiplication. (Here bl and b2 are 

] by backward multiplication. (Here a1 and a2 

1 x 2 vectors.) 

are 2 x 1 vectors.) 

5. Compute by backward multiplication. 

b1 P2 P31 [ ^ " ' x " ,  ::I 
0 0 A3 

6.  Two parts: 

(a) Let T = [ 'p iiz ii: ] . If T is nonsingular, use the inverse 

equation (XT = I) and forward multiplication to show that 2'-' 
is upper triangular and that its main diagonal is tG1, t;;, ty;. 

(b) Extend this result to nonsingular upper triangular matrices in 
general. (Hint: Start with the last row of X.) 

0 t33 

7. Let A,  B, and C be n x n matrices. 

(a) If AB = AC, then B need not be C. Give an example of this 
where none of A,  B, or C is 0. Also, explain what arithmetic 
property, for real numbers, is missing from the arithmetic of 
matrices that causes this to occur. 

(b) Do the same for: AB = 0 doesn't imply A = 0 or B = 0. 

8. Let A, B, and C be matrices. Assuming all multiplications are de- 
fined, prove the following. 
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(a) (AB)  C = A ( B C )  
(b) A ( B + C )  = A B + A C  
(c) (B + C) A = B A  + C A  

I 

9. Compute A-l ,  if it exists, by solving AX = I, using the augmented 
matrix. 

10. Prove that if A and B are n x n matrices and AB = I, then B = A- l .  

11. Let A be an n x n nonsingular matrix. Prove the following. 

(a) (A-I)- '  = A 
(b) (A")-l = (A-')* , m a positive integer 

(c)  (AH)-' = (A- l )H 

12. Let A be an m x n matrix. Prove that (AH)" = A. 

13. Let A be an m x r matrix and B an r x n matrix. Prove that 
 AB)^ = BHA? 

14. Solve the following. 

2 1  - 2 2  + 2 3  + 2 4  = 6 
221 + 2 2  + 323 - 2 4  = 5 

Indicate, as in Example 1.4, all operations done in solving. Also 
identify all free variables and pivot variables. Use 

(a) Gaussian elimination. 
(b) Gauss-Jordan. 

15. Consider the system of linear equations 

uz1+ b z 2  = e 
m 1 + d 2 2 = f  

where a, b, c, d, e, and fare  constants. 

(a) Apply 6 R 1 +  R 2  to (1.3) to obtain 

a x 1  + b x 2  = e (1.4) 
(c + 6u) 2 1  + (d + Sb) 2 2  = f + 6e. 

Show that if (a,/?) is a solution to (1.3), it is a solution to (1.4) 
and vice versa. 
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(b) Repeat (a) for 6R1, where 6 # 0. 

16. Consider the matrix equation 

[: :] [ :; ;;I=[; ;] 
where a, b, c, d, e, f,  g, and h are constants. To solve, we equate the 
corresponding columns to get 

uz1 + bzg = e 
czl + dz2 = f (1.5) U Y l +  by2 = 9 

cy1 + dy2 = h. 

Explain how to solve these equations simultaneously. 

and 

17. Write out the expression for 

det d e f I [: t : I  
18. Compute det A for 

2 
(a) A = [ i -; -1 ] by expanding along the 2nd column. 

(b) A = [ -; 1 2 0 3  1 by any row or column expansion. 

2 1 0 0  

19. Let A be an n x n matrix. Prove by induction. 

(a) det A = det At 
(b) If A has two rows that are scalar multiples of each other, then 

det A = 0. 

20. Let A =  0 -1 3 . Compute adj A. [: : :I 
21. If A has entries which are rational numbers, are the entries in adj A 

rational numbers? Explain. 

22. Prove that if A is a 3 x 3 nonsingular matrix, then A z  = b has 
as its solution z where zi = 9. (Hint: Use that z = A-'b = 

(adj A)  b and write out the expressions for 21 ,  22, and 23 . )  
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23. Let A be an n x n matrix. Prove by induction that expanding the 
determinant along any row yields the same result as expanding about 
the first row. (Hint: For the general step, expand the determinant 
along the i-th row and then those cofactors along the 1st row. Show 
this is the same as expanding about the first row and then those 
cofactors along the i-th row of A.) 

that if A is singular, E has a row of 0’s and vice versa. 

using the following outline. 

24. Let A be an n x n matrix and E a row echelon form for A. Prove 

25. Let A and B be a 3 x 3 matrices. Prove that det (AB) = det A det B 

(a) Prove that if an elementary operation is done on A and on AB, 
(Hint: Write AB = obtaining A and z, then AB = 3. 

[ 251.1 
(b) Apply interchange and add operations to A and AB to obtain 

E and z, reseively ,  where E is a row echelon form. Then, 
by (a), EB = AB. If t interchange operations were used, then 

det (AB) = (-l)tdet (EB) 

e22bz-k e23b3 

e1lbl-k el2bz-k el3b3 1 e33b3 

= (-l)* det 

Using properties (d) and (e), continue to get 

det (AB) = (-l)tdet 1 e22 b1 bz 1 
L e33 b3 J 

= (-l)t el le22e33 det B 
= (-l)t det E det B .  

Now use that det A = ( - l )t  det E to finish the work. 

26. Let A = [ ] where B is a square matrix and a a scalar. Using 

partitioned arithmetic, compute A2. (Be sure all multiplications used 
are defined.) 

27. Let A = [ 6 ] be a partitioned matrix where both 1 ’ s  are n x 

Using partition arithmetic, and the inverse equation, find the n. 
corresponding partitioned form of A-’. 
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28. The equation 

26x1 + .35x2 = .09 
. 5 4 ~ 1 +  .7ox2 = .16 

has solution x = (-1, l)t. Show that 3 = (-1.51, 1.38)t nearly solves 
the equation by showing that b - Ax is small. 

29. (Optional) Rank the players for the tournament graph given in Fig- 
ure 1.4. 

FIGURE 1.4. 

2 1  0 1 - 1 
30. (MATLAB) Let A =  

pute the following. 
(a) A + B  (b) A - B  
(c) AB (d) 3A 
(e) A-lB ( f )  BA-l 

(i) det A (j) rref A 
(4 A-l (h) A6 

31. (MATLAB) Let A and B be as in Exercise 30 and b = ( l , O ,  l ) t .  

(a) Solve Ax = b. 

(b) Solve Ax = b using fornut long. (To extend the display of 
the answer on the screen type in format long. This will provide 
answers to about 15 digits. To return to standard format, type 
in format short.) 

32. (MATLAB) Solve 
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(a) By using the reduced row echelon form. 
(b) By using A\b. 

1 0 1  1 -1 

0 1 0  
33. (MATLAB) solve [ 1 1 o ] x = [ ; 3” ] for x. 

t 

f 

t 

i f 



2 
Introduction to Vector Spaces 

It has been observed that there are many algebraic systems which, in terms 
of arithmetic properties, are just like R2 and R3. These systems often arise 
in mathematical work. In this chapter, we give a general study of these 
systems. 

As we go through this chapter, we will see very little direct application 
(for example model building) of it. The reason for this is that this chapter 
introduces concepts and techniques (tools, so to speak) which are then used 
throughout matrix theory and applications. These tools are important to 
learn. 

2.1 Vector Spaces 

In this section, we study algebraic systems having arithmetic properties 
like those of R2 and R3. These algebraic systems are called vector spaces. 
The general (abstract) definition of a vector space follows. 

Definition 2.1 A vector space is a nonempty set V with elements called 
vectors , together with a set of numbers, called scalars. The set of numbers 
can be R or (2. (When we need emphasis, we can use the words real vector 
space OT complex vector space to distinguish the two cases.) 

(a) On V there is  an operation, called vector addition, that combines any 
pair of vectors x and y into a vector, denoted by  x + y ,  called their 
sum. This addition must satisfy the following properties. 
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i. x + y = y + x for all vectors x and y. 

ii. (x + y) + z = x + (y + z )  for all vectors x, y and z. 

aii. There is  a unique vector, denoted by  0, such that 0 + x = x for 

iv. For any vector x, there corresponds a unique vector, denoted by  

all vectors x. 

-2, such that x + (-2) = 0. 

(b) On  V there i s  a n  opemtzon, called scalar multiplication, that combines 
a scalar a and a vector x into a vector, denoted by ax, called their 
product. This scalar multiplication must satisfy the properties below. 

v. a (x + y) = ax + a y  for  all vectors x and y and scalars a. 

vi. (a + p) x = ax + Px for all vectors 2 and scalars a and p. 
vii. a (Px) = (a@ x for all vectors x and scalars (Y and p. 

viii. lx = x or all vectors x. 

We should remark for clarity that when we talk about scalars, we mean 
the scalars (from either R or q) of the vector space. (The properties 
given above can be recalled since they are the basic arithmetic properties 
of R2 and R3, four involving +, and four involving a mix of + and scalar 
multiplication . ) 

We intend to develop a theory (a collection of results) about vector 
spaces. Results will be stated about vector spaces, in general, and thus 
proofs can only use the properties listed in the definition of a vector space. 
To show how this is done, we provide a proof of a lemma extending the 
properties of a vector space. 

Lemma 2.1 The following are also properties of a vector space. 

(a) Ox = 0 

(b) a O = O  

(c) -1x = --2 

(d) ax = 0 implies a = 0 or x = 0 

Proof (a). Using that the scalar 0 satisfies 0 + 0 = 0, we have 

02 = (0 + 0 )  2 = ox + ox. (2.1) 

Now, Ox is a vector and thus has an additive inverse, -(Ox). Adding this 
vector to the left and right sides of (2.1) and simplifying using the properties 

t 

I 

s 

3 

I 

I 

, ':. 

b 

i 



2.1 Vector Spaces 31 

FIGURE 2.1. 

of a vector space, yields 

- (Ox) + 02 = - (02) + (Ox + ox ) 
- (02) + ox = (- (OZ) +Ox) +ox 

0 = 0 + 0 2  
0 = ox 

the desired result. 

As mentioned previously, there are many vector spaces. A few of these 
follow. 

Example 2.1 
tiplication defined by the tables 

%vial Space: Let V = (0) with addition and scalar mul- 

for all scalars a.  This is a vector space. 

Example 2.2 Vector spaces R2 and R3 (This example is helpful in de- 
veloping a geometric view of vector calculations.): W e  will develop this 
material an R2.  The generalization to R3 should be clear. 

Recall from calculus, a geometric vector f rom a point x = ( 2 1 , ~ ~ ) ~  to a 
point y = (yl, yz)  , written 3, is a directed line segment f rom x to y. The 
inclination of such a vector is (y1 - xlr y2 - x2)" Two geometric vectors 
are equal (equivalent) if they have the same inclination. For example, in 
the diagram (Figure 

Two geometric vectors can be added by  finding any two equivalent vectors 
with the same initial point and adding those vectors by the parallelogram 

t 

the geometric vectors are equal. 
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law. Alternately we can take equivalent vectors that are appended at end 
and initial points and complete the triangle for the sum. 

Any point x in R2 can be associated with the geometric vector from the 
origin to x. With this association, arithmetic in R2 can, be envisioned in 
terms of geometric vectors. For example, 

l .  Scalar multiplication: 2 [ ] = [ ] can be seen by drawing the ge- 

ometric vector f rom [ ] to [ ] and by scaling this corresponding 

geometric vector by  2. (See Figure 2.2.) 

1 

FIGURE 2.2. 

2. Addition: [ ] + [ ] = [ E ] can be seen by adding the geometric 

vectors corresponding to [ ] and [ ] by the parallelogram rule, t 

or appending (an end to an initial) and completing the triangle. (See 
Figure 2.3.) 
Appending is also useful in seeing subtraction. Note in Figure 2.4, 
that a geometric vector equivalent to x - p can be seen by beginning 
at the point p ,  going to 0 (to obtain a geometric vector equivalent to  
-p), then proceeding to the point x as diagrammed (adding x to -p). 
Completing the triangle gives a geometric vector for x - p.  Note that 
to find the corresponding point 

i 
in R2, we need to start this vector at the origin. 
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FIGURE 2.4. 

W e  also use the following parametric descriptions from calculus. 

I. Line: The line through points a and b, a # b, is given by 

x = t a + ( l - t ) b ,  where - m < t < w .  (2.2) 

(2.3) 

2. Segment: The segment between points a and b, a # b, is given by 

x = t a  + (1 - t )  b, where 0 5 t 5 1. 

We use (2.2) and (2.3) as the equations of lines through, and segments 
between, vectors a and b, a # b, in any vector space V. 

Example 2.3 Matrix Space and Euclidean Space: Let 

RmXn = { A  : A is an m x n matrix with entries in R}. 

Using real scalars, matrix addition, and scalar multiplication, RmXn is a 
vector space. (Since the vectors are matrices, we can call RmXn a matrix 
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space.) C"'" i s  defined similarly, using complex numbers in vectors as 
well as for the scalars. 

For simplicity of  notation, set 

These are the classical real or complex Euclidean m-spaces, respectively. 
W e  use the words Euclidean m-space, or simply the symbol E", to denote 
either R" or C". 

Example 2.4 Polynomial space: Let 

p : p ( t )  = an--ltn-l + an-2tn--2 + . + a0 
pn= { where an-l, an-2, . . . ,a0 are real scalars 

and t a real variable 

Using real scalars, the usual addition (adding coeficients of like t e r n s )  
and scalar multiplication (multiplying the coeficients by  the scalar), P,, i s  
a vector space. 

W e  should also recall here that two polynomials are equal i f  and only i j  
the coeficients of their corresponding t e rns  are equal, e.g., ij 

a2t2 + a1t + a0 = b2t2 + b,t + bo, 

then 

Example 2.5 f i nc t ion  space: Let [a, b] be an interval of real numbers and 

C [a, b] = {f : f is a real continuous f inct ion on [a, b]}. 

Using real scalars, the usual definition of addition and scalar multiplication, 
namely 

= b, a1 = b l ,  and a0 = bo. 

(f + 9 )  ( t )  = f ( t )  + 9 ( t )  and 
b f  1 ( t )  = a ( f  ( t ) )  9 

C [a, b] is a vector space. 

f = 9 )  if and only i j  
It i s  also helpfil to recall that two functions, f and g, are equal ( m ' t t e n  

f ( t )  = 9 ( t )  

for all t .  
For the open interval (a, b) ,  C(a, b) is defined similarly. 

Most vector spaces arise inside the larger vector spaces given in the 
examples above. The definition below describes such sets. 

I 

I 

1 

I 
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Definition 2.2 Let V be a vector space and W a nonempty subset oj  V .  
Then W is a subspace oj V provided that W is  

i. Closed under addition: ij x, y E W then x + y E W. 

ai. Closed under scalar multiplication: ij x E W and a any scalar, then 
ax E w. 

(The addition and scalar multiplication is as that in V . )  

We leave it as an exercise to show that, using this definition, geometri- 
cally a subspace in R3 must be one of the following: 

(a) The set ( 0 ) .  

(b) A line through the origin. 

(c) A plane through the origin. 

(d) R3 itself. 

(See illustrations of each in Figure 2.5.) 

I 

FIGURE 2.5. 

We now show that sets which are subspaces are actually vector spaces. 

Theorem 2.1 Every subspace is a vector space. 

Proof. Suppose W V and satisfies the definition of a subspace. We 
show that W satisfies the definition of a vector space. 

By the definition of a subspace, W # 0 and properties (a) and (b) of the 
definition of a vector space hold. Thus, we need only verify properties (i) 
through (viii) of the definition of a vector space. We do a sample of these. 
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Property i. Let x, y E W.  Then x + y = y + x since this is true in V. 
(The addition table for W is a subtable of the addition table for V.) 

Property iv. Let x E W .  By Lemma 2.1, -12 = -x. Thus by (b) of 
the definition of a subspace, we know that -x E W.  Hence, this verifies 
property (iv). rn 

1 

An example showing how to apply this theorem follows. 

Example 2.6 
a vector space. 

We show that the set W G RZx2 of symmetric matrices is 

Here we simply check the properties of the definition of a subspace. Clearly, 
W f 8 .  

d e  a b  ] , [ e f  ] + ] E W .  Then [ 
. Since this sum is symmetric, the sum is an 

Closum of addition: Let [ 
a + -t e 
b+e c + f  1 

W .  
Closure of scalar multiplication: Let a be a scalar and 

Then 

Thus, the product is symmetric and hence in W .  
Having verified the properties of a subspace, it follows that W is a sub- 

In the remaining work, we will show how axes can be put in a vector 
space. (This god will help unify the work.) To get the idea of how this 

space and thus a vector space. 

. In some sense (which we describe later), these vectors point 

out different dimensions. And, any x E R3 can be reached using them. 
For example, if x = (2,3, 4)t, then 

x = 2e1+ 3e2 + 4e3, 

and the coordinates 2, 3, 4 tell how x is reached; i.e., go 2 units on the axis 
determined by e l ,  then 3 units in the direction of the axis determined by 
e2, etc. 

! 

! 

I 
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To obtain axes in an arbitrary vector space, we look for vectors with two 
special properties. (i) We must be able to reach any vector using them, and 
(ii) these vectors must point out different dimensions. The first property 
is mathematically described below. 

Definition 2.3 Let S = {XI,. . . ,x,} be a nonempty subset of a vector 
space V .  Ij 

for some scalars a1,. . . ,a, , then x is a linear combination oj xi,. . . , xm. 
(So x can be reached by  going a1 units o n  the axis determined by 21, etc.) 
The set of all linear combinations o j  21,. . . ,x,, the set that S spans, i s  
called the span of S. That is, 

1 2 : 2 = a1x1+ . * .  + a,x,  { for  some scalars a1, . . . , a m  
span S =  

(So S is the set of all reachable vectors.) 

Example 2.7 If we view R3, the span of a nonzero vector, say XI, i s  a 
line. (See Figure 2.6.) The span of the two noncollinear vectors, say x1 

I 

FIGURE 2.6. 

and 22 illustrated an Figure 2.7, is a plane. 
And if we have three noncoplanar vectors, they span R3. 

As we might expect, spans provide subspaces. 

Theorem 2.2 Let V be a vector space and S = {XI,. . . , x,} a nonempty 
subset of V .  Then span S is a subspace of V .  

Proof. To show span S is a subspace, we need to verify each property 
of the definition of a subspace. 
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~~ 

FIGURE 2.7. 

Closure of addition: Let z, y E span S. Then 

I 

i 

for some scalars 0 1 1 , .  . . ,am and &, . . . ,om. Adding we get 
1 

a linear combination of 21,. . . , x m .  Thus, z + y E span S. 
Closure of scalar multiplication: left as an exercise. 

We conclude this section by demonstrating that just a few vectors can 
span R2 2. 

Example2.8 Let Ell = [ :], E12 = [ 0" i ] ,  E21 = [ 0 0  o ] ,  

and E22 = 1 0" 1.  We show these matrices span R2x2.  
L J 

[: 1;3. To do this, we take an arbitrary matrix A in R2x2,  say A = 

We need to show that A is a linear combination of El l ,  E12, Ezl,  and &2. 
Thus, set 

Q I E ~ ~  + a2Ei2 + ~ 3 E 2 1 +  (~qE22 = A. 

Equating corresponding entries, we have a solution, namely 

= a, a2 = b, a3 = c,  and a4 = d. 

Hence, A E span { E l l ,  E n ,  E n ,  E22) and since A was arbitrarily chosen, 

span {El i ,  E12, ~321 ,  E221 = R2x2 .  

I 

t 
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2.1.1 

In this optional, we give a geometrical view of the solution set of Ax = b. 
To see this, we consider a small system, 

Optional (Geometrical Description of the Solutions to  
AX = b)  

2~ $ 4 ~  -6% = 2 
- 3 ~  -69 +9t. = -3 ' 

As a matrix equation we can write this system as 

To solve, we apply Gaussian elimination to get 

1 - 2 @ + 3 ~ ~  [:I=[ ! ] 

[R]..[ p ] + o [  -3 
where a and p are arbitrary. Thus, there are infinitely many solutions, one 
for each pair of chosen a and p. 

Actually, the solution set is more than an infinite set, it has shape. Note 
that we can pull out LY and ,f3 from the vector and write it as 

If we graph all vectors of the form a 

a plane through the origin. The graph of the solution set then is a trans- 

lation, by [ 8 ] , of that plane, as depicted in Figure 2.8. 

solutions (providing there are any) can be described in the form 
Although Ax = b is a more general equation than that just studied, its 

z = 20 + a121 + . * -  +am2, 

where 2 0 , .  . . ,z, are vectors and a1,. . . ,a, the free variables. Thus, if 
W = span (21,. . . , x,}, then the solution set is 

20 + W = {x : 2 = 20 + w where w E W }  , 
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a translation by xo of the subspace W .  Such sets are called @ne spaces (or 
linear manifolds). Thus, the set of solutions to a system of linear equations 
has that kind of shape. 

I 

FIGURE 2.8. 

2.1.2 MATLAB (Graphics) 
The basics of graphing a function can be found in Appendix A. 

Code for Graphing z = 1 - 2y + 3z 

y = linspace (-20, 20, 20) ; 
z = linspace (-20, 20, 20) ; 
[yl 4 = meshgrid (y, z )  ; 
m e s h ( 1  - 2 * y + 3  * z,y, z )  
xlabel(’z-axis’), ylabel( ’y-axis’), 

title (’Graph of the solution set’) 

% More points give a finer grid. 

% Labels axes. 

% Gives graph a title. 
zlabel( ’z-axis’) 

For more information on graphing, type in help mesh. 

Exercises 
1. Prove (b), (c), and (d) of Lemma 2.1. 

2. Two parts. 

(a) Draw geometric vectors corresponding to (1’ 2) t1  (2, l ) t ,  -2 (1,2)” 
and 2 (1, 2) t  - (2, l)t.  

(b) Using Figure 2.9, show (i) a vector equivalent to a - b using a 
and b and (ii) a - b originating at the origin. 

b 
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FIGURE 2.9. 

3. Four parts. 

(a) Give the 0 vector for each of the following vector spaces. 
i. R4 ii. R2x3 

iii. P3 iv. C[O, 11 

i. R3 ii. R2x3 
(b) Give the form of an arbitrary vector in the following. 

iii. P3 
(c) Give -x for the following x’s.  

i. x =  [ - a ]  
1 -1 ii. x =  [ -1 o ]  

iii. x = t2 + 2t - 1 
iv. x = sint 

(d) Identify, by context, which symbols are vectors and which are 
scalars. 

i. Ox = O 
iii. A + 0 = 0 

ii. 2 + (-x) 
iv. af (t) + pg ( t )  = 0 

4. Let f ,  g, h E C (a, b, ] and a,  p scalars. Prove the following. 

(4 (f + 9) + h = f + (9 + h) 
(b) 0 (f + 9) = af + 

5.  Find the parametric equation of the line determined by the following. 

(a) z =  [ n]..= [ 4 
1 1  l ] ’ B = [  -1 1 1 
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6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

2. Introduction to Vector Spaces 

Prove that each of the following is a subspace. 

} (a) W = { x : z = ( z 1 , s ~ , z 3 )  t a n d q + z 2 = 2 3  

(b) W = {p : p ( t )  = at2 + bt + ct and a +  b +  c = 0) 

(c) W = {A : A E RzXz and A is upper triangular} 

(e) W = {A : A E R2x2 and all  + a12 = 0, a21 + a22 = 0) 

(f) c1 ( - ~ , o o )  = {f : f E C (--oo,co) and f is differentiable} 

(g) W = {f : f E C1 (--oo,co) and f ' - f  = 0) 
(h) W = {x : I is a function on the nonnegative integers and 

z (k + 1) + x (k) = 0 for all k.} (Use that the set of functions 
defined on the nonnegative integers is a vector space.) 

(d) W = {f : f E C [-1,1] and f (0) = 0) 

(Use known calculus results.) 

Show that the following subsets of R2x2 are not subspaces. 

(a) W = {A : A is the singular matrix} 
(b) W = {A : A is the nonsingular matrix} 

Prove that if W is a subspace of a vector space V, then 0 E W. 

Prove Theorem 2.1, property (ii). 

Graph the solution set of y = z2 in R2. Is the solution set, namely 
{ (2, y) : y = z2} a vector space? 

Explain why, geometrically, a subspace in R3 must be (0) , a line 
through the origin, a plane through the origin, or R3. (The explana- 
tion may be a bit rough, so support it with drawings.) 

Decide if x is a linear combination of y and z. 

W x = [  1 1 1  O ] , Y = [  0 1  1 1 ] , % = [ 0  1 0  1 ]  

(c) x = t + l , y = 2 t - 3 , 2 = 4  

Three parts. Prove the following. 

(b) S = { [ X 1 , [ 0" 1 ,  [ I} spans the symmetric 

matrices in R2x . 
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(c) S = {t - 1, t + 1) spans P2. 

14. Decide if the given set spans the given vector space. 

(4 { (L1 ,  , ( - l , l , O ) t  , of} , R3 
(b) { 1 + t ,  t -t t2} , F2 

15. Draw span { (1, l ,O)t,  (1,1,1)”> in R3. Find two other vectors that 

16. Prove Theorem 2.2, part b. 

17. Let V and W be vector spaces with the same set of scalars. Define 

span the same space. 

on V x W, 

( V 1 , W I )  + (212,w2) = (211 +v2,w1 + w 2 )  and 
a (211, w1) = (av1, a w l )  

where v1, 212 E V ;  w1, w2 E W ,  and a a scalar. Prove that V x W 
with this + and scalar multiplication is a vector space. 

18. Let V be a vector space and U ,  W subspaces of V .  Prove that each 
of the following is a subspace of V .  

(a) U n W 
(b) U + W ,  U + W = {x = u + w where u E U, w E W }  

19. (MATLAB) Solve 

2 1 + 2 2 + 2 3  = 3 
2 1  - 2 3  = 0 

by using the rref command. Graph the solution set as done in the 
example in Optional. 

2.2 Dimension 

In this section we continue the study, started in the last section, of find- 
ing vectors that form axes in a vector space. We now mathematically 
describe the second special property (vectors pointing out different dimen- 
sions) needed for such sets. 

We first describe the property algebraically, so we can calculate. Later 
in this section, we will show that our algebraic description is what we want 
geometrically. 
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f 
Definition 2.4 Let V be a vector space and S = {xl,. . . , x,} a nonempty 
subset oj V .  If the pendent equation 

0121 + * * * + amxm = 0 

has only the trivial solution, 01 = . - -  = a, = 0, then S is  linearly in- 
dependent. The set S is linearly dependent if the pendent equation has a 
nontrivial solution. 

Alternately (as often used in other books), we say that vectors 21, . . . , x, 
are linearly independent or linearly dependent if the “set” of these vectors 
is linearly independent or linearly dependent . 

The following example shows how decisions about linearly independent 
and linearly dependent sets are made. 

Example 2.9 Decide i j  

are linearly independent or linearly dependent. 
To do this, we solve the corresponding pendent equation, 

: ] + a 3 [ ;  0 0  0 ]  

Equating corresponding entries, we have 

a1 +a2 +a3 = o  
Ql +a2  = O  
Q l  +a3 = o  

a2 + a 3  = o  
Solving, by say Gaussian elimination, yields only 

a1 = 0, a2 = 0, a 3  = 0. 

Thus, [ ,!, ] , [ : ] , [ ; ] are linearly independent. 

We now attach some geometry to our definition. First, let x be a vector. 
Observe that if z = 0, then a0 = 0 has nontrivial solutions (Any a # 0 
will do.), so (0) is linearly dependent. If z # 0, then az = 0 implies LY = 0 
by Lemma 2.1 (d), so {z) is linearly independent. (Actually, a single such 
vector generates an axis.) 

Now consider a set of vectors S = {XI , .  . . , xm} where m 2 2. If 

xk $ span s\ {zk} 9 

f 

I ‘j I .  
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then x k  is not reachable using the vectors in S\ {xk}. (Recall that S\ {xk} 
is the set S with the vector x k  removed.) Thus, we say x k  is independent 
in 5'. If 

x k  E spans\ {xk} 7 

zk is reachable using the vectors in S\ {xk}, and so we say Xk is dependent 
in S. 

We intend to show that S is a linearly independent set if and only if each 
vector in S is independent in S. Thus in R3 such sets would appear as 
shown in Figure 2.10. 

FIGURE 2.10. 

We need the following lemma. 

Lemma 2.2 Let V be a vector space and S = ( 1 ~ 1 ,  . . . , x,} a subset of V 
containing at least two vectors. Then S is linearly dependent if and only 
af S contains a dependent vector. 

Proof. We need to argue two parts for the biconditional. 
Part a. Suppose S contains a dependent vector. Without loss of gener- 

ality (the vectors in S can be reindexed), we suppose XI is dependent in S. 
Thus 

21 = P2.2 + * .  * + Pm% 
for some scalars p2 , .  . . , P, . Now by rearranging, 

1x1 - p 2 ~ 2  - * 3 .  - P m X m  = 0 

and so the pendent equation has a nontrivial solution, namely 

(1, --A,. . . ? -P,) * 

Thus, S is linearly dependent. 
Part b. The converse implication is left as an exercise. 
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Another form (actually the contrapositive) of this lemma says that S = 
{q, . . . , 2,) is linearly independent if and only if each 2 k  E s is indepen- 
dent in S. 

As we expect, dependent vectors can be removed from a set without 
affecting the span. 

Theorem 2.3 Let S = (21,. . . , z m }  be a subset of a vector space V. If 
x k  as dependent in s, then 

span S = span S\ {zk) . 
Proof. For simplicity of notation, we re-index the vectors in S so that 

We show that span S = span S\ (XI}, which is an equality of sets argu- 
Zk becomes 21. 

ment. Thus, let 2 E spans. Then 

2 = P~ZI + . . . + Pmxm (2.4) 

for some scalars PI,. . . , P,. Since 21 is dependent in S, we can write 

2 1  = 7 2 ~ 2  + . . . + YmXm. (2.5) 

for some scalars y2, . . . , -ym. 
Substituting (2.5) into (2.4), we have 

z = (PI72 + P 2 )  2 2  + . * . + (P17m + Pm) 2, 

which says that 2 E spans\  (21). Thus spans  G spans\ {XI}. 
Now let 2 E span S\ (21)  . Then 

2 = @222 + . . . + Pm2m 

for some scalars &, . . . , p, Writing 

2 = 021 + p222 + . * . + Pmxm 

shows that 2 E span S. Thus span S\ (21)  E span S. 

We give an example showing how we can use this theorem. 

3 

i 

! 

Example 2.10 Identzfy the shape of span S where S= {zl, x2,23, 2 4 )  and # 

, 7. 

To find dependent vectors an S ,  we consider the pendent equation 

wz1+ 0 2 2 2  + CY323 + a 4 2 4  = 0. (2.6) 
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[; ; 0 0  

Putting this into an augmented matrix and finding a row echelon form yields 

0 0 0  0 0 

Thus 0 3  and a4 are free. Setting a3 = 0,  a4 = -1 and solving, we get 
(1, - l , O ,  -l), and by plugging into (2.6), 

q .  0 

21 - x2 = x4. 

Similarly, setting a3 = -1, a4 = 0 yields the solution (1,1, -1 ,O) ,  so by 
(2.6) 

21 + 52 = 2 3 .  

( In  general, i f  all free variables ak are set to 0, except, say ai, which as set to 
-1, then we see that x; i s  a linear combination of the vectors corresponding 
to pivot variables.) 

Thus 

span S = span S\ {x4} = span S\ {x3 ,~4} .  

Now, i f  allfree variables are set to 0, the resulting equation (2.6) contains 
only vectors corresponding to pivot variables, namely 

which is a plane. 

As demonstrated in the example, we have the following. 

Corollary 2.1 Let A be an m x n matrix and E a row echelon form oj A.  
Let S = {al, . . . ,a,} where a; i s  the i- th column oj A .  
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(a) The columns oj A corresponding to the columns oj  E that don't con- 
tain pivots are dependent in s. And, they can be removed from S 
without affecting the span. 

(b) The columns oj  A corresponding to the columns oj E that contain 
pivots are linearly independent vectors. 

We now describe those sets which can be used to form axes. 

Definition 2.5 Let V 
nonempty subset oj V .  The set S i s  a basis for V ij 

be a vector space and S, S = (21, ... ,z,}, a 

a. S is linearly independent and 

ii. span S = V. 

I n  addition, we consider the set S as ordered, so XI is the first vector, 
2 2  the second vector, etc. in S .  (Now each vector, say xi, in S determines 
an axis in V ,  namely span {xi} .) 

Example 2.11 Some vector spaces with bases follow. 

(a) Rn has as a basis {el,. . . ,en}. (There are others.) 

(b) RmXn has as a basis { Eij 11 5 i 5 m and 1 5 j 5 n }  where Eij i s  the 
matria: having a 1 in the ij-th position and 0's elsewhere. (There are 
o them.) 

(c) P,, has as a basis (1, t ,  . . . , tn-'}. (There are others.) 

Let V be a vector space that has a basis, say S = (21,. . . , z,,}. We now 
show how coordinates are attached to vectors in V. (This is somewhat like 
the calculus problem of attaching of polar coordinates to points in R2.) 

2 = a1371 + * * *  + an2, 
For any 2 E V we can write 

(2.7) 

for some scalars a1, . . ., an. Note that these scalars must be unique since 
if 

2 = P ~ X I  + * * .  + Pnxn (2.8) 

for some scalars pl,. . . , p,,, then by subtracting (2.8) from (2.7), we have 

0 = (a1 - P i )  2 1  + * * + (an - P,) 
Since S is linearly independent, 

a1 - P1 = 0,. . . ,an -p, = 0 or 
a1 = p1,. . . , a n  = p,. 

t 

I 

s 

I 

, .  

I 

3 

.~ ... 
*. 

3 
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Thus, we can define the S-coordinates for x as 

(Of course, the coordinates depend on S.) We see that a basis gives a 
coordinate system, which we call the S-coordinate system, with axes de- 
termined 2 1 , .  . . , zn. The vector 2 is located by proceeding al units along 
the axis determined by z1 to get ( ~ 1 ~ 1 ,  then a 2  units parallel to the axis 
determined by 22 to get 0121  + ~ 2 x 2 ,  etc. (Geometrically we would add 
by appending.) We label the axes as y1,. . . , yn,  respectively. (See Figure 
2.11.) 

/ / / /  / 
/ / 

FIGURE 2.11. 

A particular example follows. 

Example 2.12 Note that R2 has S = (1, l ) t ,  (-1, l)t] as a basis. To 
find the coordinates of (1,3)t with respect to this basis, we set 

{ 

[ : ] = a 1 [  ; ] + a 2 [  -;] 
and solve for  a1, a g .  This gaves a1 = 2, crp = 1. Thus, 

To locate [ ] with respect to S, we move 2 units along the yl-axis 

followed by  1 unit in the direction of the y2-&, as shown in Figure 2.12. 

The number of axes, or vectors in a basis, gives the dimension of a vector 
space. To show this, we need a technical result. 

Lemma 2.3 Let V be a vector space having a basis of n vectors. 
number of vectors in any linearly independent set of V cannot exceed n. 

The 
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FIGURE 2.12. 

Proof. We will prove this lemma for Euclidean n-space, which is more 

Let S = {yl, . . . , ym} be any set of vectors in En where m > n. We 
For this, consider the pendent 

insightful, leaving the general argument as an exercise. 

show that S must be linearly dependent. 
equation 

~ r l y l +  * * * f Crmym = 0. (2.9) 

Using backward multiplication, write (2.9) as the matrix equation 

[YI ~ m l  [ PI: ] =o. 
Q'm 

Note that the coefficient matrix is n x m, and thus if we compute a 
row echelon form (say by Gaussian elimination) for the augmented ma- 
trix [ y ~  . . . ym \ 01, there is a free variable. From this it follows that there 
are oo-many solutions to (2.9) and hence S is linearly dependent. 

A consequence of the lemma follows. 

Theorem 2.4 Let V be a vector space hawing a basis. 
V wntain the same number of vectors. 

Proof. Let B1 = (21,. . . , z p }  and Bz = {yl,. . . , yq} be bases for V. 
Using Lemma 2.3, noting the B1 is linearly independent, it follows that 
p 5 q. Using Lemma 2.3, with BZ linearly independent, yields g 5 p .  
Thus, p = q, the desired result. 

Then all bases of 

By using this theorem, we can define the dimension of a vector space 
as we intended, counting vectors in a basis. 

Definition 2.6 Let V be a vector space. 

I 

f 

i. If V = {0} ,  then dimV = 0. 

' I  
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ii. If V has a basis, say {lcl,. . . , x,,} ,  then dim V = r. 

iii. In all other cases, dim V = 00. 

Example 2.13 Applying the definition, we can see that 

(a) dim R” = n, dimC” = n. 

(b) dimRmxn = mn, dimCmXn = mn. 

( c )  dimP, = n. 
And, interestingly, as given in an exercise 

(d) dimC (+00,00) = 00. 

A more complicated example follows. 

Example 2.14 Let A be an m x n matrix. Define the null space oj A as 

N (A) = { X  : Ax = 0).  

It  is left as an exercise to show that N ( A )  is a subspace. 
We compute the dimension oj N(A) for a small example. For this, let 

A = [ 1. To find the null space we solve -4 
-3 6 -3 

Ax = 0. 

This yields 

where 0, p are free variables. Factoring these scalars out oj x yields 

andsoN(A)=span{  [ -!I, [ a]). 
If we set x = 0 and observe the last two entries of the vectors in the 

equation 

o=f f  [ -!I + P  [ ;] 9 
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it is clear that Q = P = 0, so 

Hence,{ [ -!I 7 [ 11) 1 1 , 1 1 are linearly independent. 

is a basis for N(A) and so 

dimN(A) = 2. 

In general, 

(2.10) dim N(A) = number of free variables 
in the solution of Ax = 0. 

And, a basis for this subspace can be found from the solution, as in the 
example, by using the vectors which are coefficients of the free variables. 

Finally, we point out a result useful in establishing when linearly inde 
pendent sets actually form bases. 

Corollary 2.2 Let V be a vector space with dim V = n. Then, any set 01 
n linearly independent vectors in V is a basis oj V .  

Proof. Suppose ~ 1 , .  . . ,zn are linearly independent vectors in V .  To 
show 2 1 , .  . . , x ,  forms a basis for V, we need only show that 

span ( 2 1 , .  . . ,z,} = V. 

Let z E V .  Then by Lemma 2.3, 5 1 , .  . . , x,, x are linearly dependent. 
Thus there is a nontrivial solution (&,. . . , P,, P )  to the pendent equation 

alzl+..-+(Y,xn+a2=O. 

Note that = 0 implies that 

a121 + * * + a,x, = 0 
has a nontrivial solution, namely ( P l , .  . . ,Pn) ,  which contradicts that 
21,. . . ,xn are linearly independent. Thus, P # 0. 

Since p # 0, we can solve 

P ~ Z I  + + Pnxn + PZ = O 
for z, yielding 

2 = -21 -P1 + . o s +  -x,. -Pn 
P P 

Thus x E span (21, . . . , zn}. And, since x was chosen arbitrarily, 

span(z1,. . . ,z,} = v, 
which is what we wanted to prove. rn 

An example showing how this corollary can be used follows. 

3 

I ':, . .  
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Example 2.15 Can we write any polynomial in P3 in the form 

a + b ( t  - 1) + c ( t  - 1)2? 

Note that 1, t-1, (t - 1)2 are linearly independent in P3. Since dimP3 = 
3, these vectors also form a basas for P3. Hence, the answer is yes. 

2.2.1 
Using vector space notions, we can describe basic geometrical objects in 
R" . 

Optional (Dimension of Convex sets) 

1. Parallelepiped: To describe a parallelogram in R2, let 2, y be linearly 
independent vectors. (See Figure 2.13.) Then { a x  + py where 0 5 
a 5 1, 0 5 p 5 1) describes all points in the parallelogram with 
sides x and y. For a parallelepiped in R37 let x,y,z be linearly 
independent. Then the description is {ax+py+y t  where 0 5 a 5 1, 
0 5 P 5 1 , 0 5 y 5 1 ) .  

FIGURE 2.13. 

In R" a parallelepiped determined from linearly independent vectors 
x l ,  . . . , x ,  is {alq +. . - + a,x, where 0 5 a1 5 1, .  . . ,O 5 a, 5 1). 

2. Pyramid: Using the same technique as in 1, we have that if x and y 
are linearly independent in R2 then { a x  +by where 0 _< a, 0 _C p, 
and o! + p 5 1) is a triangle with vertices 0, x ,  and y. (See Figure 
2.15.) 
In R", for xl,x2,. . . ,z, linearly independent, {axl+azz,+. -+a,x, 
whereO<al ,  O < a 2 ,  . . . ,  O I a , a n d  a l+az+. .e+a,  51) 
describes a pyramid. 

A nonempty set S in a vector space V is convex if for each x ,  y E S ,  the 
segment between x and y, namely 

(Yz + (1 - a)y 
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- - - -  - - - - - - - - - ,  
, '  

, I  

1 

I I 

FIGURE 2.14. 

%----- f ' .  .. 
Y 

FIGURE 2.15. 

where 0 5 Q 5 1, is in S. The disc in Figure 2.16 is convex, and the L is 
not. 

A subspace W of V is clearly convex and so are its translations. And, 
parallelepipeds and pyramids are convex. 

For any convex set S, define the dimension of S as follows: 

i. d i m s  = 0 if S = {zo}, i.e., S contains a single point. 

ii. d i m s  = r if r > 0 is the largest integer such that S contains r + 1 
vectors zo,z1, . . . , ,z, for which z1 - z o , z 2  - 50,. . . ,z, - zo are 
linearly independent. Note in Figure 2.17 that a line has dimension 
1, a disc dimension 2, and a pyramid dimension 3. 

iii. d i m s  = co otherwise. 

Since a vector space V itself is convex, it has a dimension as described 
above. If the vector space dimension of V is n, then V has n linearly 
independent vectors, say 51,. . . , zn. Taking zo = 0, we have that the 

1 
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FIGURE 2.16. 

FIGURE 2.17. 

convex dimension of V is at least n. And since no larger set of vectors in 
V can be linearly independent, the convex dimension of V is n also. 

Exercises 

1 0  {[ :  3 [ o  1 1 7  [; :I} 
(d) 1 + t ,  1 + t2,  1 - t 

2. Let V be a vector space and z, y E V. Prove that z, y are linearly 
dependent if and only if one of these vectors is a scalar multiple of 
the other. (Thus, deciding if two vectors are linearly independent is 
often a matter of looking.) 

3. Let u, v, w be linearly independent vectors in a vector space V. Prove 
that u, u + v, u + v + w are linearly independent. 

4. Prove Lemma 2.2, part b. 

5. Prove that every nonempty subset of a linearly independent set is 
linearly independent. 

6 .  Two parts: 
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(a) Let f and g be differentiable functions. The Wronskian of f and 
g is 

Prove that if W ( f ( t )  , g ( t ) )  # 0 for some t ,  then f and g are 
linearly independent. 

(b) State and prove the generalization of this result to the n func- 
tions. 

7. Using Exercise 6, decide which sets of functions are linearly indepen- 
dent. 

(a) et,e-t  (b) t -  1, t + l ,  t 
(c) sint, cost  

8. Let A be an m x n matrix. Prove that N ( A )  is a subspace. 

9. In R2, find the coordinates of (3, 3)t if the basis is S = (2, l) t  , (1,2)") . 
Draw the axes and the corresponding grid, and geometrically find 
(3, 3)t in terms of them. 

10. Find the coordinates of 

{ 

1 if the basis is 

11. Find a basis for each of the following. 

(a) span { [ I ] , [ ] , [ a ] , [ ] } Give its dimension 
-1 -1 

and draw the shape. 

(c) s p a n { t - l , t + l , 2 t - - l , t - 2 }  

12. Prove that [ 1, [ 1, [ ] are linearly dependent in R2. 

13. Prove Lemma 2.3 for a vector space V .  

14. Find a basis for each of the subspaces given below. Give the dimen- 
sion of each. 

(a) W = { A  : A E R2x2 and A is upper triangular} 

d 
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(b) W = { A  : A E R2x2 and diagonal} 

(c) W = { A  : A E R2x2 and symmetric} 

15. Prove that C (-00, .o) = 00. 

(Hint. Assumethat dimC(-oo,oo)=nandconsider l , t ,  ... ,t".) 

16. The solution set to yN+3y'+2y = 0 is a subspace of C (-m, m). Fkom 
differential equations, we know that the dimension of this subspace 
is 2. Thus, if we can guess two linearly independent solutions to this 
equation, we have a basis for it. Solve the differential equation by 
guessing. 

17. The solution set S to z ( I C  + 2) -52 ( I C  + 1) +62 ( I C )  = 0 is a subspace. 
(See Exercise 6 in Section 1). By 
guessing, find a basis for S and thus S itself. (Hint: Try 2 (k) = r k  
for some scalar r. Plug it in and determine which T'S  work.) 

It is known that d ims  = 2. 

18. Let V be a vector space, V # {0}, and 21,. . . ,zn E V .  Prove that 
if span ( ~ 1 , .  . . , xn} = V ,  then some subset of {TI, . . . , zn} is a basis 
for V .  

19. Let V be a vector space and 2 1 , 2 2 , 2 3  in V .  If 21 # 0, show that 

(a) If 22 4 span {q}, then 21, 2 2  are linearly independent. 

(b) If in addition to (a), 23 4 span{zl,zz}, then 21, 22, 23 are 
linearly independent. 

20. Let V be a vector space with dim V = n. If 21,. . . ,z, E V and 
span (21,. . . ,z,} = V ,  prove that zl, . . . ,z, are linearly indepen- 
dent. 

21. (Optional) Find, by making a drawing, the dimensions of the follow- 
ing convex sets in R3. 

(a) A parallelepiped 

(b) A ball, i.e., {z : 29 + 2; + 2: 5 1)  

Prove the following are convex and find their dimensions. 

(c) A parallelepiped in R" 
(d) A pyramid in R" 
(e) An affine space in R" 

22. (MATLAB) Using MATLAB, rref, Theorem 2.3, and Corollary 2.1, 
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(a) Decide if [ -:] [ -!] [ [ -;] are linearly inde 

pendent. 
(b) Find a basis for 

(c) Find a basis for span (2t  + 1, t2 + t - 1, t + 1, 4) .  

(d) Find a basis for span { [ ;  :I,[; :I,[: - ; I 7  

(On (c) and (d), use the augmented matrix obtained from the pendent 
equation.) 

2.3 Linear Transformations 

Functions from vector spaces to vector spaces are called transformations (or 
maps, operators). As in calculus, they arise in mathematically describing 
phenomenon. 

An example may be helpful. 

Example 2.16 Let a E R2 and define L : R2 -+ R2 by 

L ( x )  = x + a. 

This transformation is called a translation. Ij a = [ t i ] , t h e n L [  = 

So L shifts R2 a1 units in the direction of the x1-& and a2 

units in the direction of the 2 2 - d .  For example, i j  a = [ 1, this shift 

can be seen in Figure 2.18. 

In this section we give a study of transformations that behave l i e  the 

+ [ x 2 + a 2 ]  

derivative and the integral that we saw in calculus. 

Definition 2.7 Let V and W be vector spaces. A transformation L : 
V + W is called linear if for all vectors and scalars, 

A '  
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Y2 

FIGURE 2.18. 

i. L (x + y) = L (x) + L (y) (L goes across sums.) 

ii. L (ax) = aL (x) (Scalars can be pulled out.) 

By (ii), L (Ox) = OL (x) so linear transformations also satisfy 

L (0) = 0. 

Thus, if L (0) # 0, then L is not linear. Notice that the transformation in 
Example 2.16 is not linear. 

Putting (i) and (ii) together, we have that 

L (a2 + Py) = aL  (z) + PL (y) . 
So, L maps lines as + (1 - a)  y into lines aL (x) + (1 - a) L (y) as well as 
line segments into line segments. (Here we assume L (x) # L (y) ; otherwise 
L maps the line into a point.) 

A matrix map, say L ( s )  = Ax, is a linear transformation. Using this 
transformation, we demonstrate the line property. 

+ Example 2.17 L e t L ( x ) =  

(1 - a)  [ -: ] . Then the image of C is determined by Q [ ]-t(l- a)  [ -; 1. 
The graphs are shown an Figure 2.19. 

An interesting linear transformation, which we will use later to look at 
pictures of various sets of matrices, follows. 

Example 2.18 (l?ransfownation from RZx2 into R4). Define L by 

x and f2 the line described by  a [:I [ ’  l l  
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FIGURE 2.19. 

To show that L is linear, we need to verify properties (i) and (ii) of the 
definition of linear transformation. 

L goes across sums: Let A= [ zit tit ] and B= [ ii: t: 1. Then 

Scalars can be pulled out: Let A = [ :i: zit ] and a a scalar. Then 

In this section we will be concerned with matrix maps; however, some of 
the theorems will be proved for linear transformations in general. 

The following theorem lets us see a picture, the grid view, of a linear 
transformation. These pictures help provide insight into some of the work 
that follows. 

Theorem 2.5 Let V and W be vector spaces with V having as a basis 
(21, .  . . , xn}. Let L be a linear transformation from V to  W .  Then 

for all scalars 01, . . . , a,. 
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Proof, This can be seen by sequentially applying the properties of a 
linear transformation, 

L ((a121 + * .  . + an-lzn-l) + an2n) 
= L (a121+ . . . + an-12,4) + L (anzn) 

and by continuing, 

= L (a1q)  + . . . + L (an-lzn-l) + L (an%) 
= a1L (21) + * .  + an-1L ( I c n - l )  + anL (Zn) 

More formally, the proof can be done by induction. 

The following example shows how we get a grid view of a linear trans- 
format ion. 

Example 2.19 Let 

To describe L ,  note that { e l ,  e2) i s  a basis for R2 and that L (e l )  = 

and L (e2) = 1 1. And, since L (ale1 + a2e2) = a l L  ( e l )  + a2L (e2) = 

a1 [ ] + a,L[ 1'1, we see that [ ] and [ ] form axes for a grid in 

R2 as shown in Figure 2.20. 

~ 

FIGURE 2.20. 

Observe that the image of a square in the grid for R2 is a pamllelogmm 
in the image grid.  And that the grid view gives a picture of where all points 
in R2 go in the map. 
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Note that (2.11) also assures that the range oj L, denoted R ( L ) ,  is 
the span 01 L(x1) ,  ... ,L (xn) ,  and this is a subspace. (Recall that a 
basis can be found for R ( L )  by remowing dependent vectors fiom among 
1 4  (21) 7 9 L (zn).) 

Another example may be helpful. 

Example 2.20 Let 

1 0  
L ( x )  = [ ; ; ] 2. 

Getting a gr id  view oj L, we plot L(e1)  = [ a ]  and L ( e 2 )  = [ y ] in 

R3. Now, drawing the image grid shows where the gr id  oj R2 goes under L. 
(See Figure 2.21.) Note that the image is  a subspace spanned by L (el), 

L - 
FIGURE 2.21. 

The grid view is often helpful in determining the matrix that does what 
we want to R2. For example, if we want to skew the plane by moving the 

points on the zcz-axis parallel to the SI-axis so that 1 1 ends up at 1 1 , 
L J  

we would use A = [ 
-1 0 

] since we want L ( e l )  = el and L (e2) = 

- -  
rotates the plane 2 radians, etc. 

An example will show how this can be used in graphics. 

t 

i 

i 

t 

I .  
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Example 2.21 Given a sequence of points 

in R2, we form the matrix X = [ 5: F i  ;I 1. The command 

plot X will sequentially connect the points with line segments as shown in 

Figure 2.22. Thus, i j  S =  [ 1, then plot S gives a square. 

FIGURE 2.22. 

And i f  E = 1 8 1, then plot E gives the letter E. 
L .I 

Now to rotate S by $ radians, we let A = [ $ -3 ] and plot AS. 

] and plot AE.  See Figure 2.23. (If And to shear E ,  we let A = [ 

FIGURE 2.23. 

it is not eye appealing, it can be adjusted.) 

We now give a rather easy way of showing that a linear transformation 
is one-to-one. 

Theorem 2.6 Let V and W be vector spaces with L : V -+ W a linear 
transformation. Then L is one-to-one i f  and only i f  L ( x )  = 0 implies x = 0.  

Proof. We argue the parts of the biconditional. 
Part a. Suppose L is oneto-one and L ( x )  = 0. Since we know that 

i5 (0) = 0, one-to-one implies that x = 0, which is what we need to show. 
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Part b. Suppose L (2) = 0 implies x = 0. To show that L is one-to-one, 
let 2, y E V and set 

Rearranging yields 

L(x) - L(y) = O  or 
L(x-y)=O. 

By hypothesis, this says that x - y = 0 and thus x = y. Hence L is one-to- 
one. I 

An example of how the theorem can be used follows. 

Example 2.22 Let S be set of 2 x 2 symmetric matrices. It can be seen 
that S is a subspace and dim S = 3. Define L : S + R3 by 

The 4 occurs since we want to zmserue distance. The distance between [ l] and [ d i  A ] is 
b e  

The distance between (a ,  f i b ,  c)' and 6, &b, Z ( I t i s  

( ( a  - &)2 + ( f i b  - fi6) + ( c  - . >1 
Note also that L is linear and one-to-one. So R3 gives a model of S. 

The singular matrices in S have determinant 0,  i.e., 

a b  det[ = O  

OT 

ac - b2 = 0. 

Thus, we can get a view of this set by  graphing in R3 those vectors (a ,  f i b ,  c) t 

that satisfy ac-b2 = 0. Replacing b by &, we can then graph (a, 6, c)" 
This graph is shown in Figure 2.24. 

7 
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Graph of singular malnces r 

~~ ~ 

FIGURE 2.24. 

It is interesting that special sets of matrices are often not simply infinite 

Not all linear transformations are oneteone. Some transformations ac- 
sets but actually have some shape. 

tually collapse the space. To see how collapsing takes place, let 

N ( L )  = { y : y is a solution to L (x) = 0) 

called the null space or kernel of L. As given in an exercise, N ( L )  is a 
subspace. 

Let 

z + N ( L )  = { w  : w = z + y  for some y E N ( L ) } ,  

called a translate by z of the null space of L. Using translates, we can 
describe how a linear transformation collapses space. 

Theorem 2.7 Let V and W be vector spaces and L : V + W ,  a linear 
transformation. If z E V and L ( z )  = b, then the solution to  L ( x )  = b is  
z + N ( L )  . (Thus L collapses z + N ( L )  into b.) 

Proof. We prove two parts. And, we use that 

S = {w : w is a solution to L (z) = b }  . 
Part a. We show that z + N ( L )  C_ S .  For this, let 2) E z + N (L) .  Then 

w = z + y for some y E N (L) .  Thus, L (u)  = L ( z  + y) = L ( z )  + L (y) = 
L ( z )  = b. Hence, 2) E S and so z + N ( L )  C S. 

z+ N ( L ) .  For this, let w E S. Then, set 
y = w - z. Since L(y )  = L ( w )  - L ( z )  = 0,  y E N ( L ) .  And since 
w = z + y, w E z + N (L) .  Thus, S 

Part b. We show that S 

z + N (L) .  
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Since L collapses z + N (L)  into b ( b  = L ( z ) )  and the dimension of 
the affine space z + N ( L )  is dim N (L), we see that L collapses dim N (L) 
affine spaces in V to each vector in R (L) . Thus, intuitively only dim V - 
dim N (L) is left, and we would expect that 

dim R ( L )  = dim V - dim N (L) 

which is correct. However, we will only show this for matrix maps. 

Theorem 2.8 Let A be an m x n matrix and L ( x )  = Ax. Then 

dimN(A)+dimR(A) =n. 

Proof. The pendent equation 

ala1 + ‘ - * + anun = 0, 

for the columns of A, can be written as 

A X = O  

where x = ( ( ~ 1 , .  . . , an)t .  Let [E IO] be a row echelon form of [A IO]. 
Fkom (2.10), dimN (A) = number of free variables determined by [E IO]. 

From Corollary 2.1, the columns of A corresponding to the pivot variables 
are a basis for R(A). Thus, 

dim N ( A )  + dim R (A)  = total number of variables 
= n, 

the desired result. w 

At the beginning of the chapter we said that we would study spaces 
which were like R2 and R3. We conclude the chapter by showing that a 
finite dimensional vector space V is like E”, where E” = R” if V is a real 
vector space and E” = (Zn if V is a complex vector space. 

Theorem 2.9 Let V be a vector space with basis {XI,. . . , xn}. Define 
Then L is a 

one-to-one linear transformation. 
L : V + En by L(alXl+.**+QnXn)  = (ai ,  ... ,an). t 

Proof. We show that L satisfies the two defining properties of a linear 

L goes across sums: Let 2, Y E V and write x = a121 + 1 . 1  + QnXn, 

+ pnxn, where the a i ’ s  and pi ’s  are scalars. Then x + y = 

transformation. 

y = Plx1 + 
(a1 + P I )  2 1  + . * * + (an  + a n )  zn. SO, I 

: 
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Scalars can be pulled out: left as an exercise. 
Finally, L is one-to-one since, if L (x) = (0,. . . ,O), 

x = O x ~ $ . * . O z n  
= O  

This proves the theorem. 

A way to view this theorem is that if we express vectors as x = ~ ~ 1 x 1  + 
. . + anzn, then the arithmetic of these vectors is done on the coefficients. 

So the arithmetic is like that done on vectors (01,. . . , in E”. 

2.3.1 
Graphics concerns drawing pictures or making movies on a computer screen. 
In this optional, we want to show how linear transformations play a part 
in that work. 

Example 2.23 ( A  house in a strong wind.) W e  can start with a house 
made by  drawing a few line segments as in Figure 2.25.If we shear the house 

Optional (Graphics of Polygonal Shapes) 

We look at two problems. 

FIGURE 2.25. 

a bit, say by multiplying by 

we have the second picture, Figure 2.26.0f course, i f  this is a technical 
drawing, we wou1dn”t want this roof, since it appears to elongate o n  the left 
and contract on the right. W e  can f ix  the drawing by shearing the sides of 
the house and translating the roof by 

And yes, the lengths of the walls in Fagure 2.27 (now of length 2.01) are a 
bit elongated, but that would not be discernible with the eye. 
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t 

FIGURE 2.26. 

FIGURE 2.27. 

Example 2.24 (A falling bowling pin.) We find a basic shape of a bowling 
pin by using a polygonal shape. (See Figure 2.28.) We  translate the pin 

FIGURE 2.28. 

(See Figure 2.29.), so its right lower point (the point at which the rotation 
for falling takes place) is at the origin by wing 

Now fo r  falling, we show the pin under rotations by various angles. For 
example, f o r  -2 and -5 we have Figure 2.30. 

i 

I 

f 

t 

t 
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14 
FIGURE 2.29. 

& . -  -I 0 I 

FIGURE 2.30. 

2.3.2 MATLAB (Codes, including Picture of the Singular 
Matrices in Matrix Space) 

[ ;: ] ’ [ ;: ] For the polygonal shape obtained by connecting points 

sequentially by segments, we define the vector of x-values and the vector 
of corresponding y-values: 

2 = [a ... z,] ; 
y = [Yl Ynl ; 
To connect the points with line segments, we use the command plot 

(2, Y> * 
1. Code for Original House 

t; 1 a 0” 2” ] % Determines the points for 
the walls. 

; %Determines the points for 
the roof. 

plot (WZ zuy) 

plot ( T Z ,  ry) . 

hold % Keeps the first plot from 
being erased. 
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2. Code for Sheared Walls House 

Using wz, wy, rz, ry from 1, we add the following. 
w x l  = wz + .2 * wy; 
wyl = wy; 
rzl = rz + [.2 * ry]; 
ryl = ry; 
plot (wzl, wyl) 
hold 
plot (rzl, ryl) 

3. Code for Picture of Singular Matrices 

a =linspace(O, 10,20); 
c =linspace(O, 10,20); 
[a, c] =rneshgrid(a, C) ; 
y = (2 * a. * C )  , A ( .5 )  ; 
mesh(a, Y, c)  

Exercises 
1. Decide which of the following transformations are linear. 

L 

i 

(a> L (x1,22) = (z1+ 222,2zi- ~ 2 ) ~  

(b) L ( A )  = A + At for all k x k matrices A 
(c) L (f ( t ) )  = f' ( t )  + f (t)  for all f E CI (--oo, 00) 

(d) L (z ( I C ) )  = z (k + 1) + x (k) for function x defined on the non- 
negative integers 1 

2. Which of the following transformations L : Rnxn -, R axe linear? 

(a) L ( A )  = trace A,  where trace A = all + 
(b) L ( A )  = det A 

. + ann 

3. Draw the grid map of L ( z )  = [ ] z, and tell what L does to 

R2. 

. Find the range and the null space in R3 for 

L (z) = Az.  Sketch both. 

5.  Graph the range of L where L(x) = x. Show the grid of 

R2 and its image @. 
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6.  Draw the line z = a [ ] + (1 - g) [ 1. Compute the image of 

this line for L (z) = [ -: ] z and draw it. 

7. For the given L1 and L2, find L1 o L2 for the following. 

8. Let L : V + W be a linear transformation. Prove that N ( L )  is a 
subspace. 

9. Find A if L (z) = Aa: is such that 

(a) L(e1) = [ 1 1, L (e2) = [ ] and A is 2 x 2. 

10. Solve the following polygonal graphics problems. 

(a) Find the matrix X for the equilateral triangle with base from 
( -2 ,0 ) t  to (2,0)t. Find the matrix A so that L shrinks the 
SI-axis (and the corresponding space) by i. Plot A X .  

(b) Find the matrix X for a tower (4 points should do it) with base 
from ( - l , O ) t  to ( l , O ) t  and height 10. Find the matrix A that 
leans the tower to the right by 5 radians. Plot A X .  

soitsbaseisat (1, l)t 

and it is tilted to the left by 2 radian. What transformation L 
(not linear) is such that plot LF ( L  applied to each vector in F )  
produces the flag in this position? 

1 0 1 1 2 2 1  [ (c) Move the flag F = 
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11. Let A be an rn x n matrix. Suppose a row echelon form for Ax = 0 
has T free variables. In writing 2 in terms of the free variables, we 
can pull out the free variables so x is a linear combination of vectors 
which are coefficients the free variables. Explain why those vectors 
form a basis for the null space of A. (Assume that the last T variables 
are free and that the rest pivot variables. Look at the last T entries 
in the coefficient vectors.) 

12. Find a basis for the following subspaces. 

(a) W = {at2 + bt + a + b : a, 6 ,  E R} (So a and b are free.) 

13. Let L be defined on the functions having 2 n d  derivatives by 

L (y) = yll - 3y' + 2y. 

Solve y" - 3y' + 2y = t using Exercise 16 of the previous section, and 
guessing some y such that the solution set is y + N (L) . 

14. Using Ekercise 17 of the previous section, solve 

~ ( k + 2 ) - 5 2 ( k + 1 ) + 6 ~ ( k ) = 2  

by guessing a solution. 

15. Prove that if L : V + W is a one-bone linear transformation and 
q ,  . . . ,z, are linearly independent in V ,  then L (xl) , . . . , L (2,) are 
linearly independent in W .  

16. Let V be a vector space and V* the set of all linear transformation 
from V to V .  With the usual definition of addition and scalar mul- 
tiplication of functions, show that V* is a vector space. (Just show 
closure of addition and scalar multiplication.) 

17. Use that the set of all functions of two variables, on which the partial 
derivatives exist, is a vector space. Then using Exercise 16, decide if 
& and -& are linearly independent. 

18. Complete the proof of Theorem 2.9. 

19. (Optional) Write the MATLAB code for the third picture of the 
house with a strong wind sequence. 

20. (Optional) Write the MATLAB code that gives all three pictures of 
the falling pin problem. 

, .  

i 

E 
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21. (MATLAB) Let L ( s )  = A s  where A= 1 1 0 . Using the rref 
L o  0 li 

command, 

(a) Find the kernel of L. 
(b) Find the range of L. 

The null and orth commands provide matrices whose columns are (or- 
thonormal) bases for the kernel of L and the range of L,  respectively. 
Do (a) and (b) using these commands. 



i 
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Problem involving 
A 

Similarity 

Substitute 
1 Problem involving 

PDP" 6 A D 

As shown Figure 3.1, a classical method for solving problems involving a 

)( Solve 

Solution to Convert Solution to 
problem involving problem involving 

FIGURE 3.1. 

matrix, say, A,  is to first factor the matrix as 

A = PDP-' 
where P is a nonsingular matrix and D a diagonal matrix. The expres- 
sion PDP-' is then substituted into the problem for A, thus reducing the 
problem to one involving D. This problem is then solved and its solution 
converted into the solution of the original problem. 
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This chapter explains when and how a matrix A can be factored as 
A = PDF-1 and then shows how this factorization is used in problem 
solving. 

3.1 Nonsingular Matrices 

Nonsingular matrices constitute almost all of the space of n x n matrices. In 
this section, we give some of the basic results about nonsingular matrices, 
describing nonsingular matrices in terms of their rows and columns. 

Theorem 3.1 Let A be an n x n matrix. Then A is nonsingular and 
only ij A has linearly independent columns. 

Proof. The biconditional is argued in two parts. 
Part a. Suppose A is nonsingular. To show that the columns of A form 

a linearly independent set, we solve the pendent equation 

ala1 + * .  . + anan = 0 

where al, . . . ,a, are the columns of A. By back multiplication, this can 
be written as 

A [ ? ]  =O. 
Since A is nonsingular, it has an inverse. Multiplying through by this 
inverse yields 01 = = a, = 0. Thus, the columns of A form a linearly 
independent set. 

Part b. Suppose A has linearly independent columns. Then, using that 
the columns form a basis, 

Ax = e, 

has a solution, say, bi for each i. Set B = [bl . . . bn]. Then by partitioned 
multiplication, AB = I .  Now, calculating the determinant of both sides, 
we have det A det B = 1. Thus det A # 0, and so A is nonsingular. I 

Since det At = det A,  A is nonsingular if and only if A has linearly inde- 
pendent rows. Thus, interestingly, A has linearly independent rows if and 
only if it has linearly independent columns. We now extend this result. 

A word used for the maximum number of linearly independent columns 
follows. Let A be an m x n matrix. Define the rank of A as 

rankA = largest integer T such that A has r 
linearly independent columns. 

! 

_ .  

! 

i 
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If E is a row echelon form of A, from Corollary 2.1, the columns of A 
corresponding to pivots in E form a basis for the span of the columns of 
A, and so provide the largest number of linearly independent columns in 
A. Thus, 

rank A = number of pivots in E.  

Further, the number of pivots in E is exactly the number of nonzero rows 
of E ,  e.g., in 

0 0 0 0  

both are 2. Thus, 

rankA = number of nonzero rows of E. 

Example 3.1 Let A = , A row echelon form oj A is 

Thus, rankA = 2. (Columns 1 and 2 oj A f o r m  . 

a basi.3 for the span of the columns oj A.) 

The determinant is rarely used in computational work. However, it is 
a useful tool in developing matrix results. The next theorem, though a 
bit intricate is worth the effort to learn. It links rank, determinant, and 
linearly independent rows, linearly independent columns. We show its use 
in several places in this text. 

Theorem 3.2 Let A be an m x n matrix, A # 0. Let B be an r x r 
submatria: oj  A such that det B # 0 and such that for any (r + 1) x ( r  + 1) 
submatrix C containing B ,  det C = 0. Then rank A = r .  

Proof. We will argue a particular case leaving the general proof as an 

Let A be a 3 x 4 matrix and suppose B is the 2 x 2 submatrix in the 
exercise. 

upper left corner of A. We use the notation 

where the b l ,  b2 and a1,a2,a3,a4 are column vectors of B and A, respec- 
tively. 
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Since det B # 0, by Theorem 3.1, b l r b  are linearly independent and 
thus a1,a2 are linearly independent. By deleting dependent vectors, we 
will show that 

Thus dim span {al, . . . , a4) = 2 so A has at most 2 linearly independent 
columns. This assures us that rankA = 2. 

To prove that a3 is a linear combination of a1 and a2, we proceed as 
follows. Note that b l ,  is a basis, and so we can write 

b3 = crib1 + a2b2 
for some scalars a1, a2. Define 

and note that 

Solving for a3 yields 

By substituting, we have 

Since the hypothesis assures det [al,%,a3] = 0, it follows that & = 0. 
Thus, using (3.1), 

a3 = ala1 + a 2 a 2 .  

Similarly a4 is a linear combination of al, a2 and so rank A = 2. 

An example may be helpful. 

1 -1 3 -1 

2 -2 3 -2 
Example 3.2 Let A= [ -1 1 0 1 1. The submatrix B= 

in rows 1, 2 and columns 1, 3 is such that det B = 3. All 3 x 3 submatrices 
C containing B are such that det C = 0. Thw, by the theorem, rank A = 2. 
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Three corollaries follow from the theorem. 

Corollary 3.1 Let A be an m x n mat*. Then 

(a) rank A = rank At and 

(b) rank A = rank A H .  

Proof. We prove Part (a), leaving Part (b) as an exercise. 
Suppose rank A = r and let B be an r x r submatrix of A as described in 

the theorem. Since det Bt = det B # 0, At contains an r x T submatrix hav- 
ing a non-zero determinant. Hence, rank At 2 rank A. Applying the same 
argument to At yields that rank A 2 rank At. Thus, rank A = rank At. H 

Note that this corollary says that the maximum number of linearly inde 
pendent rows equals precisely the maximum number of linearly independent 
columns in any matrix. 

The next corollary shows that the rank doesn’t change when multiplying 
by nonsingular matrices. 

Corollary 3.2 Let A be an m x n matrix, P and Q nonsingular m x m 
and n x n matrices, respectively. Then rank PAQ = rank A. 

Proof. We outline the proof, leaving the write up as an exercise. 
First prove that ai,, ai2,  . . . , ais are linearly independent columns of A if 

and only if Pail, Pai2, . . . , Pais are linearly independent columns of PA. 
(This is a matter of checking the pendent equations.) Thus, rankPA = 
rank A.  

Now, set B = P A .  Then, using the first part of this proof, 

rank B = rank@ = rankQtBt = rank (BQ)t 
= rank BQ = rank PAQ. 

And putting together, 

rankA = rank B = rank PAQ, 

which is what we want. 

The last corollary shows how to extend a linearly independent set to a 
basis. 

Corollary 3.3 Let a l ,  . . . , a, be linearly independent vectors in Euclidean 
n-space. Then there are vectors a,+l,. . . ,an such that al, . . . ,an forms a 
basis for this vector space. 

Proof. Let A = [a1 . . .a,]. Since rank A = r ,  by Theorem 3.2, there is 
an r x r submatrix B of A such that det B # 0. 
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Suppose il, . . . , in- ,  are rows of A which contain no entries of B. S u p  
pose further that our indexing is such that il > - .  > in-T. Then set 

C = [e;, . . . el,-,A] 

an n x n matrix. Now, by expanding along the 1-st columns, 

det C = (-1)a1+' . . . (-l)in-'+l det B. 

Thus, det C # 0 and so the columns of C are linearly independent. Setting 
a,+l = e;,, . . . ,a, = e;,,+ yields the result. 

The following example demonstrates the corollary. 

Example 3.3 Let a1 = ( l , l , l , l ) $  and a2 = (l , l , - l , l)$.  
these vectors to a basis. For this let 

W e  extend 

Note that the 2 x 2 submatrix, in rows 
we add el and e4 to get 

1 '1  
1 1  

2 and 3 of A, is nonsingular. So, 

C = [e4elalaz] 
0 1 1  

= [ o  0 0 1 - 1  0 i ]  * 
1 0 1  

Then, by the proof of the corollary, C is nonsingular and t h m  {a l ,  a2, e4, e l )  
is a basis. 

A useful tool in showing that a matrix is nonsingular follows. 

Lemma 3.1 Let A be an n x n matrix. If Ax = 0 has only the solution 
x = 0, then A is nonsingdar. 

Proof. By backward multiplication, write 

A x = O  

as 

x1a1 + . . + xna, = 0 

where a1,. . . , a, are the columns of A. Since this is a pendence equation, 
and z = 0 is its only solution, the columns of A are linearly independent. 
Hence, A is nonsingular. 

A theorem useful in polynomial interpolation follows. 
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x 
Y 

Theorem 3.3 Let 21,. . . ,xn be n distinct real scalars. Then, the Van- 

2 1  2 2  ... xn 
Y1 Y2 . - e  Yn 

dennonde matrix 

A =  

1 21 * * a  

1 2 2  * e -  

1 2, * * e  

... 

is nonsingular. 

Proof. By Lemma 3.1, we can show that A is nonsingular by showing 
that Ax = 0 has only the solution x = 0. For simplicity we will do this for 
the case n = 3, leaving the general argument as an exercise. 

Let I = [ ] be a vector such that 

1 2 1  x; 

We show that x = 0. 
Define p ( t )  = a + bt + ct2. Equation (3.2) can be rewritten as 

P ( 4  = 0 
P ( X 2 )  = 0 
P(X3) = 0. 

This means that p ,  a polynomial of at most degree 2, has 3 distinct roots. 
The Fundamental Theorem of Algebra assures that nonzero polynomials 
of degree at most 2 cannot have 3 distinct roots. Thus, p (x) must be the 
zero polynomial and so a = b = c = 0. But, this means that x = 0 and 
thus A is nonsingular. 

To see where this theorem is useful, suppose we want a polynomial to 
pass through the data 

where XI, 22,. . . , x, are distinct. We need a polynomial p such that 
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Year 
Population in millions 

To find p, we set p (t) = ao + alt + . - + an-ltn--l and calculate its coeffi- 
cients. Note that (3.3) can be written as 

1950 1960 1970 1980 
150.7 179.3 203.2 226.5 

By the theorem, the coefficient matrix is nonsingular, which shows that the 
system has precisely one solution. This solution determines the coefficients 
of p. Note that we also see that there is precisely one polynomial of degree 
n - 1 or less that passes through these points. 

150 , . . , . , , . , - 
ma.  

z w  . 
0 

220. 

110.  

100. 

190. 

0 

I10 . 0 

110. 

tea .  

150. 0 

4 . 0 . .  , , , , , , , , 
IO I5 SO 55 80 15 IO I5 10 I S  

3.1.1 Optional (Interpolation and Pictures) 

IO 

In this optional, we show how to estimate populations and how to use 
MATLAB to view this work. 

Censuses are taken every 10 years, e.g., 

FIGURE 3.2. 

Suppose we are preparing a report that requires some estimate of the 
population in 1965. To get this estimate, we find the polynomial of d e  
gree 3 or less that passes through the data points. Using MATLAB, this 
polynomial is 

p (2) = 0 . 0 0 0 7 ~ ~  - 0.1465 x2 + 12.7567~ - 206.3000. 

E 
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To get a sense of how well this polynomial will estimate the population in 
1965, it is helpful to view the polynomial. The graph of this is shown in 
Figure 3.3. 

I 

FIGURE 3.3. 

Finally, we find the value of p at 65, 

p(65) = 192.0125 

computed to 4 decimal places 

in Figure 3.4 
And, if we want to plot everything, we have the result, which is shown 

I 
m , , , , , , , ,  I . ,  

FIGURE 3.4. 
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Notice that this problem was done with x = [ 50 60 70 80 ] rather than 
x= [ 1950 1960 1970 19801 . Using the latter z, MATLAB indicated it was 
having a problem giving polyfit (5, y, 3). So, we redescribed our problem. 

3.1.2 MATLAB (Polyfit and Polyval) 
Given data 
x = [xl xz 2.3.. .2n+l ]  ; 
Y = [YI ~2 9 3  * . * ~ n + l ] ;  

the command polyfit (2, y, n) h d s  the coefficients of a polynomial of degree 
n which passes through the data. And, given a polynomial p, polyval ( p ,  xi) 
gives lp (21) P (.2) * * * P (2n+l)l. 

1. Code for Plotting Data 

2 = [50 60 70 801 ; 
y = [150.7 179.3 203.2 226.51 ; 
plot (2, Y, ’0’) 
axis([40 90 100 2601) 

% Plots data with an 0 
% Takes data points off edges 

of the picture by changing 
the size of the box to [40,90] 
by [100,260] 

2. Code for Plotting Polynomial 

Using lines 1 and 2 from 1, we add the following. 
P = POlyfit (Z,Y,3) 

0.0007 -0.1465 % These are the coefficients 
of the polynomial. 

12.7567 -206.3000. 
zi = linspace (40,90,50) ; 
z = polyval(p, xi) ; 
plot (z, y, ’O’, xi, z, ’:’) % Plots the data (2, y,’O’) 

and the ‘curve ’(zi, z, ’:’) 

In the last line above, the symbol ’0’ indicates only points are plotted, 
while ’:’ indicates points are to be connected by line segments. 

3. Code for Plotting Point. 

Using all but the last line of 2, we add the following for the last code. 
POlyval (PI 65) 
ans = 191.5812 
plot (z, y, ’O’, xi, z, ’ : ’, 65, 191.5812, ’ x ’) 

For more information, type in help polyval, help polyfit, and help plot. 
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Exercises 

1. Use Theorem 3.2 to find the rank of 

2. Prove that if A is an n x n singular matrix, then Ax = 0 has infinitely 
many solutions. 

3. Extend the given vectors to a basis for R3. 

( 4  [ ;] (b) [ t ] ,  [ a ]  
4. Let V be a vector space. To extend a linearly independent set in V 

to a basis, we can proceed a follows. Let u1,. . . , u, be a basis for a 
vector space V and 2 1 , .  . . , x, linearly independent vectors in V .  

(a) Show that if T < n then xl,. . . , x,, ui are linearly independent 

(b) If 51,. . . , xp, u; are linearly independent, set x,+l = ui and 
for some i. (Some ui provides a new dimension.) 

repeat (a) for T + 1. 

Prove (a). 

5. Apply the algorithm of Exercise 4 to the following. 

(a) t + 1, t - 1 and basis 1, t ,  t2 

6. Give a general proof for 
(a) Theorem 3.2 (b) Theorem 3.3. 

7. Prove Part (b) of Corollary 3.1. 

8. Provide the details for the proof of Corollary 3.2. 

9. Is L (A)  = rankA a linear transformation from R" + R? 

10. Find two matrices of rank 2 whose product is rank 1. 

11. Prove 
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50 50 

70 

40 40ffi 70 

70 70 

FIGURE 3.5. 

(a) That rank AB 5 rank B. (Hint: Show AB cannot have more 

(b) That rank AB 5 rank A. (Hint: Use the transpose.) 

(c) That rank (AB) = rankB if A is nonsingular. 

linearly independent columns than B.) 

12. Let A = [ -: : 1. Explainwhywecan’tfindasequenceAl,Az, ... 
of 2 x 2 matrices, having rank 1, which converge to A. (Hint: Use 
that the determinant is continuous.) 

13. We will assume that the temperature at an interior point on the plate 
in Figure 3.5 is the average of the temperatures of the four closest 
surrounding points. (We are assuming steady-state temperatures and 
using that each grid point gives an estimate of the temperature there 
with those estimates getting better when the square has more grid 
points.) 

(a) Write out the system of linear equations the solution of which 

(b) Solve this system. Explain why it is important for there to be 

(c) Label the points with their temperatures and check to see if it 

(d) If there were 100 interior points, how many equations would 

gives the unknown temperatures. 

precisely one solution. 

looks right. 

there be? 

14. Find a quadratic which passes through the data (O,O), (1, l), (2,O). 
Graph the quadratic and the data. 

15. (Optional) Use the data for 1960, 1970, 1980 to estimate the popu- 
lation in 1977. (This figure has been given in reports as 218.4. But, 
the figure is actually unknown.) 

I 
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0 1 -1 -2 
1 0  0 1 16. (MATLAB) Let A = 

17. 

1 2  2 0 O J  

(a) Find rank A by using the command rank ( A ) .  
(b) Find rank A by using the command rref ( A ) .  

(MATLAB) Let 

applying rref to 

Extend x, y to a basis by 

3.2 Diagonalization 

Let A be an n x n matrix. If A can be factored as 

A = PDF-' 

for some nonsingular matrix P and diagonal matrix D, we say that A is 
diagonalizable. Not all matrices are diagonalizable. However, when they 
are, we show how this factorization can be done. Before starting this work, 
we need a few preliminaries. 

The function 

cp (A) = det ( A  - X I ) ,  

where X is a scalar, is called the characteristic polynomial o j  A and 

V(X) = 0 

its characteristic equation. (Some books use +(A) = det ( X I  - A)  as the 
characteristic polynomial. Note that det ( X I  - A)  = (-1)" det ( A  - X I ) ,  
so the solutions to cp (A) = 0 and +(A)  = 0 are the same.) 

The lemma below shows that the characteristic polynomial has, counting 
multiplicities, n roots. 

Lemma 3.2 The characteristic polynomial oj  A is a polynomial of degree 
n. 

Proof. Let B = A - X I .  Expanding detB along row 1 eliminates 
row 1 from all submatrices in the cofactors of the expansion. (Recall 
c . .  25 = (-1)"j det Aij.) Expanding these minors along row 1 eliminates row 
2 of A from all submatrices in the new cofactors. Continuing, we see that 



i 

88 3. Similarity 

det B = (all - A) (a22 - A) * .  (a,  - A)+p (A) , where p (A) is a polynomial 
in A of degree at most n-1. Since (all - A) (ann - A) = (-l)n An+q (A), 
where the degree of q is smaller than n, by putting together, the result fol- 
lows. w 

Using the Fundamental Theorem of Algebra, we can factor 

cp (A) = (A’ - A) (A2 - A) * * * (A, - A) 

(or +(A) = (A - A I )  (A - A,) (A - An) if we like). The roots, namely 
A1,A2, . . .An,  are called the eigenvalues (or, sometimes the latent roots 
or characteristic values) of A. We should recall from previous studies of 
polynomials, that the roots of cp (A) are the solutions to cp (A) = 0. Thus, 
eigenvalues could be complex numbers even when the entries of A are real 
numbers. In this case, we must work in (t. 

An example of finding eigenvalues follows. 

Example 3.4 To find the eigenvalues of A = 0 3 1 , we solve [I : :] 
cp (A) = 0. 

(3 - A) (3 - A) (4 - A) = 0. 

This gives 

Thus, the eigenvalues are A1 = 3, A2 = 3, and AB = 4. Note that the 
eigenvalue 3 has multiplicity 2. 

We now link the eigenvalues of A to D in any factorization A = PDP-’. 
This requires the following notion: two n x n matrices A and B are similar 
if there is an n x n nonsingular matrix P such that 

A = PBP-I. 

This equation can be written as A = S-’BS where S = P-l. So actually 
it doesn’t matter if the superscript -’ is on the first or third factor of 
PBP-’. And, since P-lAP = B, B and A are similar so the order of A 
and B ( A  and B similar or B and A similar) doesn’t matter. 

Lemma 3.3 Let A and B be n x n matrices. I f A  and B are similar, their 
characteristic polynomials are identical. Thus, A and B have precisely the 
same eigenvalues. 

Proof. If A and B are similar, there is a nonsingular matrix P such that 

As given below, similar matrices have the same eigenvalues. 

A = PBP-’. 

J 

? 
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Thus, 

det ( A  - X I )  = det ( P B F - l -  X I )  
= det [P ( B  - XI) P-'] 
= det Pdet(B - X I )  det P-' 
= det ( B  - X I )  

since det P det P-l = det (PF-') = det I = 1. w 

When A is similar to a diagonal matrix D, this lemma assures us that A 
and D have the same eigenvalues. We now show that the eigenvalues of D 
are precisely those scalars that are on the main diagonal of D. A bit more 
general result follows. 

Lemma 3.4 If T is an n x n triangular matrix, then its characteristic 
polynomial is 

Thus, the eigenvalues of T are exactly the main diagonal entries of T.  

Proof. Suppose T is upper triangular. Then, expanding the determinant 
along the first column, we have 

r tz2 - x 

l o  0 . . ,  

Continuing to expand along the first columns, we have 

the desired result. 

Putting the results above together, what we now know is that if A is 
similar to a diagonal matrix D, then the main diagonal entries of D are 
the eigenvalues of A,  in some arrangement. 

Example 3.5 Let A = [ 9 f 1 . The eigenvalues of A are A1 = 3 and 

X 2  = 1. So i f  A is similar to a iagonal matrix D,  then 

D'[() 3 0  1 ]  o r D = [ ;  ; ] .  
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Thus, when a matrix A is diagonalizable, we can calculate D, 

where XI,. . . , A, are the eigenvalues of A in some order. 
We now try to find an n x n nonsingular matrix P such that 

A = PDF-'. 

To find P, rearrange this equation to 

AF = PD.  

Equating corresponding columns, we have 

APl = XlPl 

Apn = XnPn, 

... 

where pi  is the i-th column of P. 
For an eigenvalue A, any nonzero vector p such that 

(3.4) 

Ap = Xp (3.5) 

is called an eigenvector belonging to A. Thus, in (3.4), p l  is an eigenvector 
belonging to X I , .  . . , p ,  is an eigenvector for A,. And, our problem now 
is to find linearly independent eigenvectors PI,. . . , p ,  that satisfy (3.4). 
That these vectors are linearly independent assures that P is nonsingular. 
To find an eigenvector p ,  belonging to eigenvalue A, we solve the equation 

Ap = Xp 

or, by rearranging to a better form 

Ap - Xp = 0 
Ap - XIp = 0 

( A  - X1)p = 0, 

a system of linear equations. 

The next lemma shows this equation has a nonzero solution p. 

Lemma 3.5 Ij X is an eigenvalue oj A, then there is a n  eigenvector p 
belonging to A. 

i . 
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Proof. Note that since X is an eigenvalue of A ,  

cp (A) = 0. 

Thus, 

det ( A  - AI) = 0 

and so A - XI is singular. Hence, from Lemma 3.1, we see that there is a 
nonzero vector p such that 

( A  - AI)p = 0. 

Thus, Ap = Ap and p is an eigenvector belonging to A. w 

We call the null space of A - AI, the eigenspace for the eigenvalue A. 
Note this is a subspace, whose dimension is positive, and that all vectors 
in N ( A  - A I ) ,  except 0, are eigenvectors belonging to A. So there are lots 
of eigenvectors belonging to any eigenvalue. 

To find P, we only need to find a linearly independent set of eigen- 
vectors, say, p l ,p2 , .  . . ,p ,  belonging to A1, . . . , A,, respectively. Then 
P = [ P I . .  .pn] is nonsingular and A = P D F 1 .  Note also from (3.4), 
that the order of the eigenvalues in D is determined by the order of eigen- 
vectors in P or vice versa. 

Example 3.6 Let A= . We find D and P such that A = 

PDP-l. 

(a) Computing D: We solve 

det ( A  - XI) = 0,  

which is 

(A - l)? (A - 4) = 0. 

Thus, A1 = 1, A2 = 1, and AJ = 4, are the eigenvalues of A .  
yields 

This 

D =  0 1 0 .  [:: :I 
(b) Computing P: We find corresponding eigenvectors. 
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a. Eigenvectors for A1 = A2 = 1. Here we solve 

( A - A l l ) x = O  

to find p l  and p z .  Solving 1 1 1 x = 0 by  Gaussian elim- 

ination, we get the row echelon form 
[: : : I  

[; ;I;]* 
Xl % x3 

Note 52, 23 are free so, 

2 3  = a 
3 2  = P 

where a, p are arbitrarily chosen. Then 

2 1  = -a - p. 
T h w  

=.[ -:I + P [  - a ] .  
Since A1 = A2 = 1, we need two solutions p l  and p z ,  which 
form a linearly independent set. W e  take a- = 1, = 0 for r -1 1 r -1 1 
p l  = I 0 I and a = 0, P = 1 fo rm = I 1 I .  (Different 

L 1 J  1 0 1  
choices for  a and /3 could have been made.) Observe, by  looking 
at the last 2 entries of each vector, that pl and pz are linearly 
independent. 

ii. Eigenvector for A3 = 4. Solving 

( A  - A3I) x = 0 we get 
r l i  

x = a 1 1 , where a is arbitrary. 

Let a = 1 and so p3  = [ ] . 

, -  

I 
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I t  can be shown that p1, pp, andp3 are linearly independent, and so 

-1 -1 1 

(To check, we can always compute PDF-' t o  see i f  we actually get 

Observe in 
Figure 3.6 that they intersect only at the origin and that p l ,  m, and 
p3 are linearly independent. 

A-1 
I t  might also be interesting to  see the eigenspaces. 

I I  I 

l A \  I 4 -  

Eigenspace for hl,12 Eigenspace for I ,  

FIGURE 3.6. 

3.2.1 Optional (Buckling Beam) 

A uniform column of length 1 compressed by a load (force) F at its top is 
shown in Figure 3.7. We let y(x) be the deflection of the column at x, as 
given in Figure 3.8. The mathematical equations for this deflection are 

- -kY, @Y -- 
dx 

where k is a positive constant depending on the force and the composition 
of the column. ( k  = 6 where E is the modulus of elasticity of the beam 
and I is the moment of inertia of the cross-sectional area by the column.) 
Actually, this differential equation is not difficult to solve directly. However, 
we will use it to show how differential equations can be solved numerically. 
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J-7 

FIGURE 3.7. 

FIGURE 3.8. 

This differential equation can be converted into a system of linear equa- 
tions by approximating @ at equally spaced points Z O , ~ ,  . . . , Z, in [0, l ] .  
We use the usual approximation 

where h = $ and pi (y, = y (z,)) the deflection shown in Figure 3.9 of the 
column at zi. 

Then we have, for five points (Actually, more points would lead to a bet- 
ter approximation and a better description of the deflection of the column.) 
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FIGURE 3.9. 

To keep the problem small, we will assume the column's deflection is sym- 
metric about 2 2 ,  the center of the beam, and so y3 = y1. Thus we have, 
using that yo = 0, 

kl 

kl 
1 6 y 1  

1 6 y 2  

2Yl - y2 = 

-2y1+ 2y2 = 

or 

2 -1 
[ - 2  2 ] [ ; : ] = h [ ; : ]  

k12 where X = x. 
Observe that if [ i: ] # [ 1,  by (3.6), X must be an eigenvalue of 

[ -; -:] a n d s o X = 2 - & o r X = 2 + &  

ing, we have 
Plugging XI = 2 - & (the smallest eigenvalue) into (3.6), and rearrang- 

Thus [ :i ] = a [ $1, where cy is free. So y1 = cy, y2 = &a, and 

consequently the column could appear in any of the buckling shapes in 
Figure 3.10. 

Buckling theory indicates that if the force is small, so that X < 2 - 
4 (approximately, since our equations approximate the solution to the 
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FIGURE 3.10. 

differential equation), then [ ] = [ 8 ] and if small deflections occur, 

the column returns to this position. When X = 2 - 4, the column can 
buckle a bit and stand as the one of the shapes described. When X > 2-&, 
and not at other eigenvalues, slight deflections can collapse the column. At 
the remaining eigenvalue, at least in theory, buckling can occur with shapes 
different from that given. 

3.2.2 MATLAB (Eag and [P, D]) 
The matrix function eig(A) computes the eigenvalues and corresponding 
eigenvectors of the matrix A. As a single command, eag will provide a list 
of these eigenvalues. If we want corresponding eigenvectors, in particular 
P and D so that A = PDP-', we must ask for those matrices using the 
command [P, D] = eig (A) .  For example, 

A = [I 2; 3 01; 
eig (A> 
ans = [ -: ] 
[P, D] = eig ( A )  

ans: P = 

ans: D = 
0.8321 1 

For more, type in help ezg. 

7 -  
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Exercises 
1. Diagonalize (find P and D such that A = PDF-l)  each of the fol- 

lowing matrices . 

0 ' I  
0 5 1  

; :I 
1 1  

2. Draw the eigenspaces for each of (a), (b), (c), (e), and (f) of Exercise 
1. 

3. Find a matrix with eigenvalues A1 = 1 and A2 = 2 and eigenvectors 

p l  = [ ] and p2 = [ -; 3, respectively. 

4. Let A = [ ; 3. Then A is similar to D = [ 1. Find two 

matrices for P such that A = PDF-'. 

5. Give an example of a 2 x 2 matrix which is not similar to a diago- 
nal matrix. Draw the eigenspaces for the example. (Hint: Look at 
triangular matrices with multiple eigenvalues.) 

6. Find 2 x 2 matrices A and B such that the eigenvalues of A + B are 
not, in any order, the sums of the eigenvalues of A and B. 

7. Let A be a 3 x 3 diagonalizable matrix with A an eigenvalue of mul- 
tiplicity 2. Prove that rank ( A  - A I )  = l. 

where 0 # 0 or T. Explain, using Ap = I cos0 -sin0 
sin0 cos0 8. Let A = 

Ap, why A has no real eigenvalues. 

9. If A is similar to a diagonal matrix, and a a scalar, what are the 
eigenvalues of A - a1 in terms of a and the eigenvalues of A? 

10. Suppose A = PDF-l where D = diag (AI , .  . . ,A,). Prove 

(a) If A is 2 x 2, then A2 = P [ 2 ;' ] p-' 
(b) Ak = P diag ( A t , .  . . , A i )  P-l for any positive integer I C .  

11. Let A be an 3 x 3 matrix with linearly independent eigenvectors p l ,  
p 2 ,  and p3. Let P = [iDIp2p3]. What is P-lAF? 
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12. Two parts: Let A be an n x n real matrix. 

(a) Show that if X is an eigenvalue of A,  then x is an eigenvalue of 
A. (Complex eigenvalues come in conjugate pairs.) 

(b) Show that if p is an eigenvector of A belonging to A, then jj is 
an eigenvector for A belonging to x. 

13. Prove that 

(a) A is similar to A. 

(b) If A is similar to B and B is similar to C, then A is similar to 
C. 

14. Give an example of two matrices that have the same eigenvalues but 
are not similar. 

15. Find (using, say, CRC Standard Math Tables) formulas for the SCP 
lution to quadratic, cubic, and quartic equations. (For polynomial 
equations of degree 5 or more, no such formulas exist. Thus, for 
k x k matrices with k 2 5, approximation techniques are used to find 
eigenvalues.) 

16. (MATLAB) Let p ( t )  = tn - a,-ltn-l - -.  . - aol. Set 

1 !- /I 0 0 0 ... 0 

0 1 0 - e *  0 
0 0 1 0 

a0 a1 a2 %I-2 an-1 

(a) Show that p(t) = (-l)np(t) so ~ ( t )  and p ( t )  have the same 

(b) Use MATLAB and (a), to solve t4 - 3t3 + 2t2 - 3t + 1 = 0. 

roots (cp ( t )  is the characteristic polynomial of C). 

17. (MATLAB) Find P and D for each of the matrices in Exercise 1. 
Use rank to check P to see if it is nonsingular. 

18. (Optional) Repeat the Optional work using m = 6. 

19. (Optional) The boundary valve problem 
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has solution y = x2 + 2x + 2. To approximate the solution by finite 
difference methods, we set 50 = O,zl = i, 2 2  = ;I,. . . ,z, = 1 and 
use the approximations 

2 

where h = $ (the step size for this problem). 

Use the approximation above to convert the boundary value prob- 
lem into a system of linear equations and solve that system. Using 
MATLAB, plot y = x2 + 22 + 2 and the approximations. Use 

(a) n = 4  
(b) n = 8  

3.3 Conditions for Diagonalization 

In this section, we describe when there are n linearly independent eigen- 
vectors p l , .  . . , p ,  for the n eigenvalues X1,. . . ,A, of an n x n matrix A.  
Of course, in this case, since P can be constructed from these eigenvectors, 
P is nonsingular and A is similar to a diagonal matrix. 

We need a lemma. 

Lemma 3.6 Let A be an  n x n matrix with distinct eigenvalues AI,  . . . , A,. 
Then any corresponding eigenvectors p l  , . . . , p,  to these eigenvalues, re- 
spectively, form a linearly independent set. 

Proof. Consider the pendent equation 

alp1 + . * .  + a,p, = 0. 

Multiplying both sides of this equation by A, then A2,. . . yields 

a1 Alp1 + * . . + a,X,p, = 0 
... 

aJ-lp1 + * .  . + a,x;-lp, = 0. 

Writing these equations in matrix form yields, by backward multiplication, 

1 A1 * . .  

1 A, 
. . .  [alp1 . * * &.P,l 
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Since the Vandermonde matrix is nonsingular, we can multiply though by 
its inverse to get 

i 

and thus a1 = 
linearly independent set. w 

= ar = 0. Hence we see that the eigenvectors form a 

As a consequence of this theorem, we have one of the most important 
results in matrix theory. 

Corollary 3.4 Let A be an n x n matrix with n distinct eigenvalues. Then 
A is similar to a diagonal matrix. 

Proof. By the lemma, A has, corresponding to the n distinct eigenval- 
u s ,  a set of n linearly independent eigenvectors. These eigenvectors form 
a nonsingular matrix P such that A = PDP-', D the diagonal matrix 
made up of eigenvalues corresponding to the eigenvectors in P. w 

i 

Of course, matrices don't always have distinct eigenvalues. In those cases, 
to diagonalize, we need some further information about eigenvectors. 

Lemma 3.7 Let A be any n x n matrix. I f  X is an eigenvalue of A of mul- 
tiplicity m, then A cannot have moTe than m linearly independent eigen- 
vectors belong to A. (Thus, dim N ( A  - XI) 5 m.) 

Proof. We will argue a special case of the lemma, using proof by con- 
tradiction, leaving the general case as an exercise. 

Let A be a 3 x 3 matrix and suppose m = 1 and z, y linearly independent 
eigenvectors for A. Extend z, y to 2, y ,  z a basis for Eucidean bspace and 
set P = [z y z] .  Then 

AP = [Xz Xy w] 

where w = Az. Factoring yields 

A P = P  0 X p [ a ' :  ::] 
where a, p, and y are chosen to satisfy w = ax + & + yz. Now 

! 
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and so the eigenvalues of A are A, A, y. This yields the contradiction. w 

This lemma assures that if an eigenvalue of A has fewer linearly indepen- 
dent eigenvectors than its multiplicity, then we simply cannot get enough 
linearly independent eigenvectors to form P. For example, if the eigen- 
values are A1 = Xz = A3 = 2, X4 = A5 = 3 and dim ( A  - A11) = 2, then 
we cannot get three linearly independent eigenvectors for the eigenvalue 2. 
And, thus A is not diagonalizable. An example of such a matrix follows. 

Example 3.7 Let A = ] . Then A1 = Xa = 0.  Computing the 

corresponding eigenspace, we solve, in augmented matrix form 
[ 

Thus, 

x1 = a, Q is arbitrary 
XZ = 0 

and so 

x=,[ ;] 
(The eigenspace is the XI-&.) Thus, there are not two linearly indepen- 
dent vectors belonging to the eigenvalue 0, and so A is not diagonalizable. 

Note also, that i f  A were diagonalizable then 

A = P I O  0 0  o ]P- l  

since both eigenvalues of A are 0. But this means that A = 0,  not the given 
A.  

The following theorem gives necessary and sufficient conditions for a 
matrix to be diagonalizable. 

Theorem 3.4 Let A be an n x n  matrix with distinct eigenvalues XI,. . . , A, 
having multiplicities ml, . . . , m,., respectively. Then A is similar to a di- 
agonal matrix i f  and only if each X i  has a linearly independent set of mi 
eigenvectors (i.e., the dimension of its eigenspace is mi). 

Proof. We prove this result for a 3 x 3 matrix A with eigenvalues A1 = 
Az, A3 and corresponding eigenvectors p l ,  pp, p3 where pl  and pz are linearly 
independent. We need to show that pl1p2,p3 are linearly independent. 
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Arguing now by contradiction, we suppose ( P l , P 2 , P 3 )  is a nontrivial 
solution to the pendent equation for p1,p2,p3. Thus, 

P I P 1  + P2P2 + P3P3 = 0. (3.7) 

We suppose that P1 # 0. (The same lime of reasoning that follows applies 
to any choice of Pi # 0.) Then Plpl + P2p2 is an eigenvector belonging to 
XI .  And P3p3 is either an eigenvector belonging to X3 or it is 0. Regardless, 
by rearranging (3.7), we have 

But this says that we have some eigenvectors, belonging to distinct eigen- 
values, which are linearly dependent. However, this remark contradicts 
Lemma 3.6. H 

It is interesting that an alternate approach, using row vectors, could have 
been taken to diagonalize a matrix. To see this, let X be an eigenvalue for 
an n x n matrix A. Then det ( A  - X I )  = 0 and so, taking the transpose 
of the matrix ( A  - X I ) ,  det (At - X I )  = 0. Thus, there is a nonzero row 
vector y such that 

(At - XI) yt = 0 

or, taking the transpose 

and so 

yA = Xy. 

Such a nonzero row vector is called a left eigenvector, belonging to A, for A. 
When emphasis is desired, we call an eigenvector, as previously defined, a 
right eigenvector for A. 

Using left eigenvectors, we could have formed a matrix R, whose rows 
are left eigenvectors. Then 

RA = DR 

where D = diug (XI,. . . , A,) where XI,. . . , An are the eigenvalues of A. If 
R is nonsingular, A = R-IDR. 

There is a useful relationship, called the Principle of Biorthogonality, 
between left and right eigenvectors, which we give below. 

Theorem 3.5 Let A be an n x n  matrix with distinct eigenvalues XI, . . . , A, 
and corresponding left and right eigenvectors y ~ ,  . . . , yn and XI,. . . , x,, re- 
spectively. 
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(a) Ij i # j ,  then yixj = 0. 

(b)  Otherwise, yix; # 0. 

Proof. There are two parts. 
Parta. Since 

yiA = Xiyi and Axj = Xjxj, 

we have 

or 

(Xi - X j )  yixj = 0. 

Since Xi  # X i ,  it follows that y;xj = 0. 

cidean n-space. Thus, 
Part b. Since X I , .  . . ,A, are distinct, 21,. . . ,IC, forms a basis for Eu- 

y: = a1z1 + . . * + anzn 
for some scalars a1, . . . , an. Multiplying through by yi yields, using that 
yixj = 0 for i # j, 

2 
Il~ill2 = aiyizi. 

Since ~ly;lli # 0, y;zi # 0. 

The following example numerically demonstrates the property. 

Example 3.8 Let A = 1 4 1 1. The eigenvalues of A are ~1 = 4, 
L J 

X 2  = -1 with corresponding right and left eigenvectors x1 = [ : ] , z 2 =  

[ -; 1, and y1 = (2,3), y2 = (1, -1). Note that y lx l  = 5, ~ 1 x 2  = 0, 

~ 2 x 1  = 0,  and ~ 2 x 2  = 5 .  

To conclude this section, we show how to use diagonalization in helping 
understand linear transformation geometrically. To do this, we let A be 
an n x n diagonalizable matrix, with real eigenvalues. So, we can factor 
A = PDP-l using real numbers. 
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The columns of P form a basis, say, Y = { P I , .  . . , p n ] .  Thus given any 
2, 

2 = W P l +  * * + YnPn 

for some scalars 91, .  . . , yn. And y = (91,. . . , yn)t gives the Y-coordinates 
of x .  Note that 

x = Py 

50 P converts Y-coordinates of x into the vector x .  

We do this in two steps. 
Now, we describe the linear transformation L ( x )  = Ax in Y-coordinates. 

1. Converting L ( x )  into Y-coordinates, we have 

P-'L ( x )  = P-lAx. 

2. Converting x into Y-coordinates, we have 

P- lL  ( P y )  = P-lAPy. 

Thus, if we set 

we have described the transformation L ( x )  = Ax in terms of Y-coordinates. 
And, with respect to these coordinates, L stretches, shrinks, reflects the 
axes, etc. (and thus the corresponding space) in the Y-coordinate system. 

We show a particular example. 

and L ( x )  = Ax is described by Ly ( y )  = Dy an the Y-coordinate system. 
Looking ut L through the Y-coordinates, we see in Figure 3.11 that L 

leaves the y2 -& alone but stretched the y1 -axis (and corresponding space) 
by 3. 
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FIGURE 3.11. 

3.3.1 

Matrices with distinct eigenvalues can be diagonalized. 
make up most all of matrix space. To view this, we give a picture. 

Optional (Picture of Multiple Eigenvalue Matrices an 
Matrix Space) 

These matrices 

Let 

The characteristic equation for A is 

X2 - (a + d)  X + ad - bc = 0 

so 

(a + d)  f j / (a  + d)2 - 4 (ad - bc) 
2 A =  

Thus, A has a multiple eigenvalue if and only if ( a  + d)2  - 4 (ad  - bc) = 0. 
Expanding and rearranging yields (a - d)2 +4bc = 0. If b and c are 0, then 
a = d ,  and we have a diagonal matrix. Thus, we will suppose c # 0. 

Now 

- (a  - d)2  
4c b =  

Thus, 

-(a-d)a 
a 4c 
c d  

L 

has multiple eigenvalues for all c # 0. 
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To get some picture of this set, we set c = d. Define i 

a linear map which preserves distances as shown in Optional, Chapter 2, 
Section 3. Since 

we have a picture of the multiple eigenvalue matrices in a piece of the space 
of 2 x 2 matrices. To draw this picture, we graph (a, w, 
Notice in Figure 3.12 that this set of matrices has shape. And, notice that 

.. 

a 

10 

FIGURE 3.12. 

it does not take up much of the matrix space. 

3.3.2 MATLAB (Code for Picture) 
Code for Picture of Multiple Eigenvalue Matrices 

a = linspace (-10,10,20) ; 
d = linspace (1,10,20) ; 
[a, d]  = meshgrid (a, d )  ; 
y = - ( (u  - d) . A 2)./ (4 * d)  ; 
2 = sqrt (2) * d; 
mesh ( a , y , z )  

I 

x 

i 
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Exercises 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

If possible, diagonalize (find D and P )  the given matrix. If not, draw 
the eigenspaces and explain why the matrix cannot be diagonalized. 

1 1 0  1 1 0  

0 0 2  1 1 2  

Prove 
(a) Lemma 3.7. (b) Theorem 3.4. 

Find left and right eigenvectors for each eigenvalue of the matrices 
below. 

If A = PDF-', how can we find n linearly independent left eigen- 
vectors for A,  by using P? 

Let A be an n x n matrix and E a row echelon form of A.  Are the 
eigenvalues of A on the main diagonal of E? 

Let L ( x )  = Ax. As in Example 3.9, describe L in the Y-coordinate 
system for the matrices given below. 

Prove that if A is an n x n matrix, then A and At have the same 
eigenvalues. 

Two parts. 

(a) Provedet [ ] = (det A )  (det C), where A and C are square 

matrices. (Use induction on the number of rows of A.)  

(b) Tell how to find the eigenvalues of [ E ] in terms of A and 

C. 

If Ax = Ax, x # 0, and B = PAF-l ,  show how to find an eigenvector 
for B belonging to X by using x and P. 

10. Prove that A is singular if and only if 0 is an eigenvalue of A.  
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11. 

12. 

13. 

14. 

15. 

3.4 

3. Similarity 

Let A be an m x n matrix and B an n x m matrix. Prove that the 
m x m matrix AB and the n x n matrix B A  have the same nonzero 
eigenvalues. 

A B 0  I A  I A  0 0 
(Hint:[ B O ] [ O  I ] = [ U  I ] [ B  B A ] . )  

Two parts: 

(a) Prove that if A is diagonalizable, then so is A2. 
(b) Find a matrix A which is not diagonalizable, but A' is diago- 

nalizable. 

Let A be an n x n matrix with linearly independent right eigenvectors 
21,. . . , xn and left eigenvectors y1,. . . , yn . If 

x = a1z1+ - * * + anxn, 

prove that a; = E for all i. 

(Optional) View the 2 x 2 matrices, with multiple eigenvalues, in 

R3 by setting d = 0 and graphing (a, $, c )  over 1 5 a 5 10, 
1 5 c 5 10. 

t 

1, the matrix for a 1 -1 -1 (MATLAB) Let S = -1 

square. Find the linearLtransformation L (z) 2 Az  that stretches 
the square (and corresponding space), along the line y = x, by 2. 
Plot S and plot (AS) .  (Hint: Find L y  (y) = Dy that does this and 
then contruct L (x) = A z  from it.) 

Jordan Forms 
As we saw in the last section, not all matrices me diagonalizable. Those 
matrices which are not diagonalizable are often called defective. In this 
section, we describe another n x n matrix J, quite close to a diagonal 
matrix, except the superdiagonal entries j 1 2 ,  $23,. . . ,jn--l,n need not be 0. 
This matrix is called a Jordan form. It can be shown that every square 
matrix, diagonalizable or defective, is similar to a Jordan form. 

The proof of the Jordan form result is much more intricate than what 
we saw in Sections 2 and 3. However, the use of the Jordan form is not 
much beyond that for diagonal matrices, and so there is no reason not to 
use it. 

The Jordan form is described below. 

i 
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Definition 3.1 Let J be an upper triangular matrix with a super diagonal 
o j  0’s and 1’s and all entries above the superdiagonal 0’s ( j T s  =O for s >r+l). 
If  a 1 appearing on the superdiagonal implies the diagonal entries in its row 
and column are identical ( jT,T+l = 1 s j T T  = jr+l,,.+l), then J is called a 
Jordan form. 

Thus, Jordan forms appear as 

[ A 1  O ] , [ A 1  l ] , [ 2  A2 0 0  ,I,[:: i1 :] 
0 0 A3 0 0 A3 0 A2 0 A1 

0 0  [ 2 A2 1 1 ,  [: j1 ! ] , a * ‘  

0 0 A2 0 0 A1 

From these remarks we can state Jordan’s theorem. 

Theorem 3.6 Any n x n mat+ A is similar to a Jordan form. 

Notice that since J is upper triangular, by Lemma 3.4, the eigenvalues 
of A are the main diagonal entries of J .  And we can partition J so that 
all main diagonal blocks are square. Each main diagonal block contains 
the same eigenvalue and has a super diagonal of 1’s. All other blocks have 
entries 0. For example, 

1 0  0 o l o l o  2 J  

These main diagonal blocks are called Jordan blocks. If the Jordan 
blocks are J1 , .  . . , J,, we can write this as 

J = diag (J1,. . . , JT) . 
Except for the arrangement of the Jordan blocks, it is known that the 

Jordan form is unique. A general method to find J ,  as well as the nonsin- 
gular matrix P, can be found in the theory books in the Bibliography. In 
this text, for 2 x 2 and 3 x 3 matrices, we will simply try to solve AP = PJ 
for both P and J. We show how in the example below. 

Example 3.10 Let A = 3 2 0 . Here, the eigenvalues of A are 

given by A1 = 2, A2 = 2,  and A3 = 4. It  is clear that the Jordan block f o r  
[:: : I  
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X3 = 4 is 1 x 1. W e  need to decide, however, i f  there are two 1 x 1 Jordan 
blocks f o r  the eigenvalues XI and XZ or only one 2 x 2 Jordan block. 

W e  solve 

A = PJF-’ 

or, obtaining a better form, 

AF = PJ 
AblP2P31 = blP2P31 J 

where pl,  p2 ,  p3 are the columns of P. 
Placing A3 as the last Jordan block in J ,  we have 

so 

AP3 = 4P3, 

( W e  use backward multiplication to get 4~3 . )  an eigenvector problem which 
we solve to get 

P3= [ H I .  
(Other choices could have been made for p3.) 

Now 

where 
Thus, 

has two Jordan blocks of size 1 x 1 or one 2 x 2 Jordan block. 

where p = 0 or 1. 
Using (3.8), we know that 

APl = 2Pl. 

So we solve 

i 
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This yields 

pl = Q [ ] , CY arbitrary. 

We let Q = 1, so 

P l =  [ ;]. 
Thus, the eigenspace for the eigenvalue 2 has dimension 1. 
us that j i s  not a diagonal matrix. So 

This assures 

Now by (3.8) and backward multiplication, we need to solve 

AP2 = P l  + 2P2 

or 

( A - 2 1 ) P z  = P l  

for p 2 .  Since p l  = [ ] , we solve 

( A - 2 I ) p z =  [ H I .  
By Gaussian elimination and choosing one solution, we get 

p2= [ i ] .  
Thus, P =  [P1pzp3] = 

The 1’s on the super diagonal of J are there by choice. Other numbers 
could also have been chosen as shown below. 

Theorem 3.7 Let A be an n x n matrix. Then A is  similar to a Jordan 
form with the 1’s on the superdiagonal replaced by any E # 0. 
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Proof. Let A = PJF-l where J is a Jordan form of A. Let D = 
diag ( E - ~ ,  . . . , E- " ) .  Then DJD-' is J with the 1's on the superdiag- 
onal replaced by E'S.  This occurs since premultiplying J by D multiplies 
the i-th row of J by and postmultiplying by D-l multiplies the j-th 
column by €3. For example, 

3 1 0  
DJD- - 

Now, if we set R = PD-', then 

A = PJF-' 
= (PO-') DJD-' (DF-l) 
= RJ,R-~ 

where J,  is J with all 1's on the superdiagonal of J replaced by E. This 
yields the result. w 

Mostly, the Jordan form (for the defective case) is used for theoretical 
purposes. However, it is important to have some kind of diagonal-like form 
for any matrix. The Jordan form is such a form. We conclude by showing 
some -uses of the form. 

i 

Theorem 3.8 Let A be an n x n matrix having eigenvalues A I , .  . .(, A,. 
Then 

I 

(a) det A = A1 . . . A,. 

(b)  trace A = XI + * . . + A,. 

(c) crA has eigenvalues a A 1 , .  . . , aAn for any scalar cy. 

(d )  Ak has eigenvalues A!, . . . , A: for  any natural number I C .  

Proof. We argue parts (a) and (c), leaving part (b) and (d) as exercises. 

Part a. Since A = PJP-I, 
In both parts we let A = PJP-l where J is a Jordan form of A. 

de tA=de tPde t Jde tP- l  

= det P det P-' det J 
= det J = A1 . A,. 
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Part c. Since A = P J F - l ,  

(YA = P [(YJ] P-l. 

Thus, a A  and (YJ are similar and thus have the same eigenvalues. Since 
aJ is upper triangular, its eigenvalues are the entries on its main diagonal. 
These eigenvalues are 0x1,. . . , ax,. 

Other uses of the Jordan form will be seen in the remainder of the text. 

3.4.1 

Let 

Optional (Numerical Problems in Finding the Jordan 
Form) 

where E is a scalar. We can factor 

Thus, the eigenvalues of A, are A1 = 3 + E  and XZ = 3. Note that the 
Jordan form of A0 is 

But, if E # 0,  then A, has distinct eigenvalues and so it has Jordan form 

3+E 0 
J C = [  o 3 1 .  

If E + 0,  A, .--) Ao; however, J ,  -, [ ; ] which isn’t the Jordan form 

In numerical computations involving a matrix, the answer obtained is not 
necessarily acc-mate. However, it usually can be proved that it is correct 
for a matrix A which is close to A. ( A  is obtained from the numerical 
calculation on A by adjusting for round off.) Thus, loosely speaking, if close 
matrices have close exact answers, then a numerical calculation provides a 
good approximation to the desired answer. 

However, note that this isn’t the case for Jordan forms. Round off errors 
on defective matrices can produce close matrices which are diagonalizable. 

of Ao. 



114 3. Similarity 

3.4.2 MATLAB ( [P ,  D] and Defective A )  
MATLAB does not calculate Jordan forms for defective matrices. If there 
are close or multiple eigenvalues, there may be a problem in computing P. 
Type in help ezg and carefully read any information about this. (We will 
look at this problem mathematically in Chapter 9.) 

When A is defective, instead of using the Jordan form, it is sometimes 
possible to use the Schur form in its place. This form can be calculated 
numerically. (MATLAB does it.) We will cover this in Chapter 6. I 

Exercises 
1. If the eigenvalues of A are given by 

(a) A1 = 2, A2 = 2, and A3 = 3; what are the possible Jordan forms? 
(b) Do the same for A1 = A2 = A3 = 4. 
(c) Do the same for A1 = 12, A2 = 2. 

2. Find P and J for the following A’s. 

4 0 0  

2 0 4  
(e) A = [  1 2 1 1  

3. If the Jordan form for A is [ a  a 8 1 ,  
! 

what is the dimension of the eigenspace for A? 

[: : ] a  

5 -1 4. Let A = [ 1. Find P such that P-lAF = 

5. Is the set of all diagonalizable matrices a subspace? 

6. Let A = 0 4 0 . Then A1 = A2 = A3 = 4. The eigenspace for 

4 is dimension 2. Find two linearly independent eigenvectors pl , pz 
for 4. Now, p3 must satisfy (A - 41)p3 = p for some eigenvector p 

(So, P can be a bit diacult to find.) 

[:: :I 
belonging to 4. 7l-y p l  and then p2 for p .  Is there always a solution? ! 
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7. Let P be an n x n nonsingular matrix. Prove that L : Rnxn -+ Rnxn 
defined by L ( A )  = P-'AF is linear. 

8. Suppose 

Api = XPI 
Ap2=Xp2+pi. 

Prove that p2 E N ( ( A  - XI)2) .  

9. Let A = [ 3 .  Find P such that = P. 

[; ; ] , € > o .  

P-' where J = 

10. Let A be a 3 x 3 

Prove that A is similar 

11. Prove that if A and B are n x n matrices then trace AB = traceBA. 

12. For Theorem 3.8, prove (b) and (d). (Hint: On (b), use Exercise 11.) 

13. Let A be a nonsingular matrix. If the eigenvalues of A are A1 , . . . , An 
prove that the eigenvalues of A-' are A,', . . . , X i ' .  

the following matrices are diagonalizable. 
14. (Optional) For the given matrices, using MATLAB, decide which of 

(a) A =  -1 ( b ) A = [ :  i :] 
1 1 2  1 1 1  

0 0 0 3  



1 
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4 
Matrix Calculus 

In previous courses we studied calculus for functions of one variable and 
calculus for functions of several variables. In this chapter we extend these 
studies to a calculus for matrices. 

4.1 Calculus of Matrices 

To develop a calculus for matrices, we need a way to measure distance 
between matrices. We use the standard definition of Euclidean distance. 

Definition 4.1 Let A and B be m x n matrices. Define 

which we call the Euclidean distance between A and B.  (Thus, i f  A and B 
are close, then all of their corresponding entries are close and vice versa.) 

The calculus for matrices extends, a bit, the calculus for functions of 
several variables. The work will be familiar (even duplicative), and thus 
we need only give a sampling of the results. We begin with sequences. 

Definition 4.2 Let Al,A2,. . . be a sequence of m x n matrices. If there 
is an m x n matrix A such that 



118 4. Matrix Calculus 
I 

we say that the sequence converges to 4 and vrrite 

lim Ak = A.  
k + m  

We now show that limits can be calculated entrywise, thus allowing us to 
use the results from calculus in our work. In doing this we use the notation 
Ak = [a$)]. 

Theorem 4.1 In the set oj m x n matrices, lirn Ak = A if and only zj 

lim a(k) = ai, for all i, j .  
k + m  

k-+m 

Proof. We argue the two parts of the biconditional. 
Part a. Suppose lim Ak = A.  Since for any i , j  

k-+m 

it follows from the Squeeze Theorem in calculus that lim a$) = aij for 
any i, j. 

Part b. Suppose lim ai;) = aij for each i, j. Using that the square root 
and the absolute value functions axe continuous and properties of the limit 
from calculus, 

k-ica 

k + m  

so 

or lim Ak = A. rn 
k - m  

As an example, we have the following. 

Example 4.1 Let Ak = for k = 1,2 , .  . . . Then, using the 

theorem, 

Although there are many results about sequences of matrices, we will 
consider only two. This is enough to show how these kinds of results are 
developed. 
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Theorem 4.2 Let Al ,  A 2 , .  . . and B1, Bz , .  . . be sequences oj  rn x s ma- 
trices and s x n matrices, which converge to A and B ,  respectively. Then 

lim AkBk = AB. 
k - m  

Proof. By Theorem 4.1, we can prove this result by an entrywise argu- 
ment. For this, note that the ij-th entry of the k-th term, &&, of the 
sequence, is = air ( k )  brj ( k )  . By the sum and product rule in calculus, 

T = l  

the ij-th entry in AB. 

The following corollary shows a bit more about how we obtain these 
limit results . 
Corollary 4.1 Let A I ,  A2, . . . be a sequence of m x n matrices that con- 
verge t o  A.  Let P and Q be p x rn and n x q matrices, respectively. Then  

lim PAkQ = PAQ. 
k + m  

Proof. Consider the sequences P, P , .  . . and A I ,  A2, .  . . . Then by the 
Theorem 4.2 

lim PAk = PA. 
k - c a  

Now consider the sequences PA1, PA2,. . . and Q,  Q,  . . . . Again using the 
theorem, 

lim PA& = ( P A )  Q 
k - m  

which yields the result. 

Series of matrices are defined by sequences as shown in the following. 

Definition 4.3 Let Al ,  Az, . . . be a sequence of mxn matrices. Construct 
the sequence of partial sums Al,  A1 +A2, A1 +A2 + A s , .  . . . If this sequence 
of matrices converges to A,  we write 

k=l 
00 

and say that the series Ak converges to A .  
k=l 
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We show two basic series results. Other such results are derived in the 
same way. 

Theorem 4.3 Let P ana! Q be p x m and n x q matrices, respectively. 
Let 

00 

Ak be a series oj m x n matrices that converges to  A. Then  
k= l  

00 

= PAQ. 
k = l  

00 

Proof. To keep our notation simple, we first show that PA& = PA.  
k=l 

We can do this by an entrywise argument. 

The ij-th entry in the t-th partial sum, 
t 

k=l 
PA&, is 

And, by the sum and product rule of calculus 

t / m  \ 

m 

k=l  

the ij-th entry of PA. 
00 

Similarly, setting Bk = PAk for k = 1 ,2 , .  . . and noting that Bk = 
00 

PA, we can show that BkQ = ( P A )  Q. Thus, 
k=l 

00 

k=l 

the intended result. rn 

, 

- 
k= 1 

For the second result, we give Neumann’s formula for the s u m  of a par- 
ticular series. 
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Theorem 4.4 Let A be an n x n matrix such that lim Ak = 0. Then 
k-+w 

I +  A +  + . . . = ( I  - A)- ' .  

Proof. We prove this in two parts. 
Part a. We show I - A  is nonsingular. Arguing by contradiction, suppose 

that I - A is singular. Then there is a nonzero solution to 

( I  - A ) z  = 0 ,  

say, 2.  Thus, 

AP = 2. 

Multiplying through by A yields 

~ 2 2  = A ( A ~ )  = ~ j .  = 2 

and in general 

Ak2 = 2.  

Thus, taking the limit as k 4 00, we have 

0 = 2  

a contradiction from which Part a follows. 
Part b. We show I + A + A2 + -.  = (I - A)-'. To do this, note that 

( I  - A )  ( I  + A +  + Ak-') = I - Ak.  

so  

I + A +  +A"' = ( I  - A)-' (I- Ak)  . 
Taking the limit on k 4 00, we see that the partial sums converge, and 

1 I + A + + . . . = (I - A)-  , 

the desired result. w 

Let f be a function from a set of m x n matrices to a set of p x q matrices. 
An example may help. 

Example 4.2 Define S = { [ 4 ] : a, b E R}.  Define 
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This is  a function of a subset oj R2x2 into RlX1. (Recall that the braces 
about a matrix are cosmetic, so RIX1 = R.) 

Identifging L 

we graph f by graphing (a ,  b,ab - 1). This is done in Figure 4.1. 

- r .  

5 

FIGURE 4.1. 

Let B and L be m x n matrices. As in calculus, 

lim f ( A )  = L means lim dE (f ( A ) ,  L )  = 0. 
A-B A-.B 

(In terms of e - 6, given E > 0, there is a S > 0 such that if dE (A,  B)  < 6, 
then dE (f ( A ) ,  L )  < e . )  

Writing 

f (4 = [fzj (41 9 

where fij (A) is the ij-th entry o f f  (A), we can show that 

lim f ( A )  = L if and only if 
A-B 

The limit properties can be derived as well. 
The function f is continuom at B means lim f ( A )  = f ( B ) ,  and f is 

continuous on a set means f is continuous at each matrix of the set. And, 
f is continuous at B or on a set if and only if this is also true for each fij. I) = ad - bc is continuous 

(ad - bc is a polynomial in a ,  b, c, d ) ,  and more generally, f ( A )  = det A is 
continuous on the set of all n x n matrices. 

A-B 

From calculus we know that f ([ 
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As seen in Chapter 1, there are determinantal formulas for the entries in 
A-’ and 2 = A-lb. For example, if 

then 

A - l = [  - e]. 
ad-bc ad-bc 

Note that the entries are rational functions of a,  b, c,  and d ,  which are 
continuous where the denominator is not 0. From this, we see that, for 
nonsingular matrices, 

f ( A )  = A-’ 

and 

f (A ,  b)  = A-’b (the solution to Aa; = b) 

are continuous functions, as well. 

say, 
Now we look at matrices whose entries are functions of a real variable t, 

A (t)  = [aij (t>l . 
Then 

t+to 

assuming that the limits of the entries exist. (Note that aij ( t )  is a scalar 
function, and we know the calculus results for such functions.) The limit 
properties are as those in calculus. 

Continuing, A ( t )  is continuous at to ,  or on an interval for t ,  if and only 
if the same is true for all entries aij ( t )  of A (t). 

For the derivative, if A( t )  is such that its ij-th entry aij ( t )  is differen- 
tiable for all i , j ,  then 

The following theorem shows a result about the derivative of matrix 
products. Recall, for this work, matrices don’t commute. 

Theorem 4.5 Let A ( t )  be m x s and let B(t) be s x n, both matrices with 
entries dzflerentiable on (a ,  b ) .  Then 

d 
dt  
- ( A  ( t )  B(t))  = 
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Proof. Note that 

as desired. 

Finally, for the integral, we define 

provided the integrals of the entries are defined. Properties of the integral 
can also be proved by entrywise arguments. 

4.1.1 Optional (Modeling Spring-Mass Problems) 
We give an example showing how the calculus just described can be used 
in mathematical modeling. 

Two particles of masses ml and m2 are attached to springs in the config- 
uration shown in Figure 4.2. The particles move on a frictionless floor in a 
horizontal line. If the spring constants are kl and kz, respectively, we want 
to find the mathematical model that describes the motion of the particles. 

FIGURE 4.2. 

When the masses axe not in motion (equilibrium position), we associate 
an zl-axis and an z2-axis so that their origins are at the positions of particle 

i 

i 

T 
1 
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1 and particle 2, respectively. Now, if the particles have been put in motion, 
let 

2 1  ( t )  = position of particle 1 at time t on the xl-axis and 
2 2  ( t )  = position of particle 2 at time t on the x2-axis. 

Hooke’s law implies that the restoring force on a particle due to a spring 
is the product of the spring constant and the displacement of the particle 
from the equilibrium position. Using Hooke’s law and applying Newton’s 
law, that mass times acceleration is equal to force (See Figure 4.3.), we 
have 

d2 
dt2 

m1-q ( t )  = force on particle 1 due to the springs. 

I 
I t  I 

FIGURE 4.3. 

There are two forces on particle 1, namely 

Fl = - h Z l  ( t )  , 
and 

Fz = kz [ ~ z  ( t )  - 2 1  ( t ) ] .  

Thus 

d2 
dt  m i z ~ i  ( t )  = - ~ Z I  ( t )  + k2 [Q ( t )  - 21 ( t ) ]  

= - (kl  + k z )  21 ( t )  + k222 ( t )  . 
For particle 2 we have 

d2 
dt2 m2-22 ( t )  = -kz [a (t)  - 2 1  ( t ) ] .  

Putting these into a matrix equation we have 

Solving this equation for 51 (t)  and 2 2  ( t )  gives the positions of the particles 
at any time t. 
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4.1.2 MATLAB (Code for Graph of Fbnction) 
Code for Figure 4.1 

a =linspace(-5,5,10) ; 
b = a; 
[a, b] =meshgrid(a, b) ; 
mesh(a, b, a. * b - 1) 
view([l, -1,1]) % View with (1, -1, l)t 

pointing toward us. 

i 

i 

Exercises 
1. Find dE (A, B )  for the given A and B. 

2. Compute 

3. Prove that if Ak and Bk are mxn matrices for all k and lim Ak = A, 
k+oo 

1 
lim Bk = B then lim (Ak + Bk) = A + B. 

k--roo k - + m  

4. Let a (t) is a real valued function and A (t) a matrix of functions. If 
lim a (t) = cy0 and lim A (t) = A, prove the result that lim a0 (t) A (t) = 
t-+a t+a t+a 
aoA. 

5. Let AI, A2, . . . be a sequence of matrices that converge to A. If A is 
nonsingular, show that A;', Ai', . . . converge to A-l. 

1 1  
6. L e t & =  [ $ 1  fork=1 ,2  ,.... FindAl+Aq+... . (Recall 

that 1 + T + r z  +. . = & for any T ,  I T ]  < 1.) 

7. Let A (t) = [ 4 1. Calculate and graph each of the following. 

(a) detA(t) 
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(b) The 1,2-entry of A (t)-’ 

(c) The first entry of A (t)-’ b, where b = [ ] 
f1 ( A )  where fi (A)  is the i-th 

entry of f (A) .  Prove that f is continuous if and only if both f l  and 
f2 are continuous. 

[ f 2 ( 4  1 8. Let f : R2x2 + R2. Set f (A)  = 

2t - 1 et 
9. Let A( t )  = [ A 1. Show that 

(a) A ( t )  is continuous at t = 0. 

(b) A ( t )  is not continuous at t = 1. 

. Find I cost sin t 
t + 2  0 10. Let A = 

(4 $ A ( t ) *  
(b)  A ( t )  dt.. 

11. Suppose A (t) ,  B ( t )  are differentiable n x n matrices. Prove that 

12. Suppose P and A( t )  are n x n matrices with A ( t )  differentiable. 
Prove that 

d d 
dt dt  
- PA ( t)  = P- A  ( t )  . 

13. Suppose A(t )  and B(t) are integrable n x n matrices. Prove that 
J: (A(t )  + B(t))  d t  = s,” A(t)dt + s,” B(t)dt. 

14. (Optional) Attach a third spring to m2 and to a wall as diagramed 
in Figure 4.4. Find the mathematical model for this system. 

I ’  I 

FIGURE 4.4. 
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FIGURE 4.5. 

15. (Optional) Derive the mathematical model for the spring-mass sys- 
tem shown in Figure 4.5. 

16. (MATLAB) Le tA= [ ] and c = [ 1. In the square [0,4] x 

[5,91 graph 

(a) The 1,l-entry and the 1,2entry of A-l. 
(b) Both 21 and 2 2  of 2 = A-~c. 

4.2 Difference Equations 

In this section, we show how to solve systems of difference equations, as well 
as show that eigenvalues determine the solution’s behavior. We demonstrate 
the technique to solve systems with a small example. Extensions of the 
technique should be clear. 

Let 2 1  ( I C )  and 2 2  ( I C )  be functions defined on the nonnegative integers 
that satisfy 

51 ( I C  + 1) = a1121 ( I C )  + a1222 ( I C )  
2 2  (IC + 1) = a2151 (IC) + a2252 (k) 

where all, a12, a21, and a22 are scalars. We can write these equations as 
a matrix equation 

where z(k) = [ zi 
called a difference equation.) 

] and A = [ :ii :it 1. (The equation in (4.1) is 
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If z(0) is a given vector then (4.1) determines a sequence 

@), 4 1 ) ,  4% * .  

We intend to find a formula for z ( k )  in terms of the eigenvalues and eigen- 
vectors of A. To get this, note that 

2 (1) = Az (0) , 
z (2) = Az (1) = A2z (0) 

z (IC) = Akz (0) 
... 

Observe that if A and z (0) are real, so is z (IC) for all IC. 
We now assume that A is diagonalizable, say, 

A = PDF-l 

where P = [pl pz] and D = [ 
(4.2) to obtain 

x", 1. We substitute PDF-l for A in 

2 ( I C )  = PDkPp-lz ( 0 ) .  

Set 

(Note that [ zi ] can be computed by solving P [::I = z ( O ) o r w p i +  

a2p2 = z (0). So P-l need not be calculated.) Thus, we have 

= C.rJ:Pl+ a2&2 

the desired formula involving eigenvalues and eigenvectors. More generally, 
if A is n x n and diagonalizable, we would get 

z ( I C )  = a&p1+ . * .  + anX:pn. 

An example showing how to use the formula to solve a difference equation 
follows. 
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Example 4.3 Let z (0) = [ -: 1. we solve 

Here A1 = 3, A2 = 1 with corresponding eigenvectors p l  = [ +2= 

, respectively. Thus, using our formula, 

Now, since z (0) = [ -: 1 ,  wing (4.5) and plugging in k = 0, we have 

[ -:]=a4 : ] + a 2 [  -;I. 
Solving for 01 ana! a 2  yields a1 = 2 ana! a2 = -4. Thw, our solution is 

Note that as k -, 00, the entries in z ( k )  + 00 tend to 00. 

We now extend our work a bit to defective matrices. Observe that if 
A = PJF-', where J = diag (J1,.  . . , JT) is a Jordan form of A, 

lim A k =  lim PJkP-l  
k + m  k + m  

lim Jf 0 ... 
lim J t  ... = P  k + w  ... 
0 ... lim J: J l o  k-mo 

Thus, convergence of A, A2, . . . depends on the Jordan blocks of A. For- 
mulas for their powers follows. 
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x 1 0 * - e  

If Ji = [ 1, an s x s Jordan block, then 

0 0 0 * . -  

x3 3 x 2  3x 1 - 0 .  

0 x3- 3 x 2  3x . e *  

... 0 0 0  

(4.7) 1 (sk 1)  xk-5+l x k  ky-1 (;)p ... 
0 x k  k x k - 1  (,k2)P--" 

J: = 

and in general (We leave it as an exercise.), 

xk 0 0  0 ... 
J f  = 

where (:) = 0 if k < r and (:) = &, otherwise. 

defective. 

Example 4.4 Solve 

Using these formulas, we can solve difference equations even when A is 

Factoring, we have 

By direct calculation, 

z ( k )  = PJkPP-'a: (0)  

.5k k (.5)"l 

where [ :i ] = P-la: (0) .  And by backward multiplication, we have 
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Note that, as a consequence of the eigenvalues, 

lim 5 (k) = 0. 
k-roo 

By observing (4.6) and the formulas for the Jordan blocks in (4.7), we 
have the following. 

Theorem 4.6 Let A be an n x n matrix. Then 

(a)  lim Ak converges if each eigenvalue X oj A is such that 1x1 < 1 or ij 
k - m o  
1x1 = 1, then X = 1 and it is on 1 x 1 Jordan blocks. 

(b) And for  all other cases, lim Ak doesn't exist. 

An example demonstrating the theorem follows. 

k - r m  

with P = Example 4.5 Let A . Then A is diagonalizable 

1. Thus n &  

If lim Ak doesn't exist, often we can still say something about the be- 
k A c o  

havior of 2 ( I C ) .  A small example can show this. 

Example 4.6 If we solve 

we get (using 5 digits in our answers) 

We  f ind  the dominant term (the term having the largest eigenvalue, in 

absolute value, in 2 ( k ) ) .  This is a1 (1.0624)k [ ~~~~~~ 1. Note that by 

factoring out this weficient in (4.8), we have (assuming a1 # 0)  

0.7630 + a 2  (-0.7624)k [ 0.6464 1) 
z ( k )  = (1'0624)k ([ 0.6464 ] a1 (1.0624)k -0.7630 ' 
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NOW, since the second term, within the parentheses, approaches 0 as IC --+ 0, 
we see that the contribution oj 

to the size oj x ( I C )  is small compared to that oj 

W e  indicate this by writing 

and say that z ( k )  has dominant term a1 (1.0624)k 

For z (0) = 1 1, in Figure 4.6, we can see a picture of the iterates 
L J  

from k = 0 to k = 20. I n  this picture 0 indicates the initial vector and each 
* a following vector, 2 (1) ,IC (2) ,  . . . ,z (20). The polygonal line indicates 
the order of occurrence of these vectors. Notice that the vectors look like 
the dominant term as k increases. 

Since 

we see that x ( k )  increases by about 6% on each iteration. 

As a final consequence of Theorem 4.6, we consider the nonhomogeneous 
difference equation 

z (k + 1) = AZ ( k )  + b 

where A is an n x n matrix and b an n x 1 vector. 
Writing out a few iterates, we have 

z (1) = AX (0)  + b 
~ ( 2 ) = A z ( l ) + b  

=A2z(0 )+Ab+b 
... 

x ( k +  1) = A ~ X ( O )  + A ~ - % + A ~ - ~ ~ +  ... + b 
= Akz (0)  + (Ak-' + Ak-' + - .  . + I )  b. 

(4.9) 
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0.5 
1 1.5 2 25  3 35 4 

FIGURE 4.6. 

i 

Now, if each eigenvalue, say, A, of A satisfies 1x1 < 1, then by Theorem 4.6, 
lim Ak = 0. And by Neumann’s formula, 

k+aa 

I + A + A ~ + . . .  = ( I - A ) - ~ .  4 
Thus, calculating the limit in (4.9), we have 

lim x (k + 1) = ( I  - A)-’ b. 
k+oo 

(4.10) 

(z (k + 1) here can be replaced by x (k) since we are talking about the 
convergence of a sequence.) 

We can see some use of the result in the following example of a production 
process. 

Example 4.7 We consider a two-grade school (7th and 8th grades). Each 
year, 1000 new students enter the 7th grade. Of those currently in the 
school, 80% of the students are promoted, 10% retained for another year 
and 10% of each class drops out. A diagram of the situation follows in 
Figure 4.7. 

Let x1 ( k )  and 2 2  ( k )  denote the number of students in the 7th and 8th 
grades in the k-th year, respectively. Then 

~1 (k + 1) = .lzl (k) + 1000 
22 (k + 1) = .8~1 (k) + .I22 ( k )  
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or 

FIGURE 4.7. 

2 ( k  + 1) = AX (k) + b 

.1 0 1000 

Since the eigenvalues of the matrix are .1 and .l, we have by (4.10) 

lim 5 (k) = ( I  - A)-’ b 
k-oo 

- [ 1.111 
0 ] [ l,, ] - 0.988 1.111 

Thus, as k increases, we expect to see about 1111 students in the 7th grade 
and 988 students in the 8th grade. 

4.2.1 Optional (Long-Run Prediction) 
Being able to see what is going to happen if trends continue is important 
in many areas. We look at one such problem. 

An important social science (demographic) problem is to predict the 
population of a region or country in future years. Such information is used 
in planning (roads, water, schools, food, etc.) for that area. 

To describe the technique in general, suppose that some population is 
divided into three age groups: young, adult, and older, where the number 
of years in each group, called the period, is the same. Survival rates (% of 
those in one group that live to be in the next) are computed. These rates, 
SI for young to adult, s2 for adult to older, can be obtained from official 
records. Birth rates (number of offsprings per member in each group per 
period) say, b l ,  b2, b3, for the groups, respectively, can be obtained in the 
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same way. Using this data we form the matrix 

which is called a Leslie (or population) matrix. 
Suppose we compute populations in each group every period. Let XI (IC), 

2 2  ( k ) ,  2 3  (k) denote the number of people in groups 1,2, and 3, respectively, 
at period IC. Then at period k + 1 we have 

or in matrix form 

2 (IC + 1) = Px (k) 

where 

The Leslie matrix given below was obtained (taking some liberties with 
the data) from a third world country. The age groupings were 0-4, 5-9, 
10-14, . . . , 45-49. 

A =  

0 0 0 .83 .83 .50 .50 .ll .ll 0 
. 9 4 0  0 0 0 0 0 0 0 0  
0 . 9 8 0  0 0 0 0 0 0 0  
0 0 . 9 8 0  0 0 0 0 0 0  
0 0 0 . 9 8 0  0 0 0 0 0  
0 0 0 0 . 9 8 0  0 0 0 0  
0 0 0 0 0 . 9 8 0  0 0 0  
0 0 0 0 0 0 . 9 8 0  0 0  
0 0 0 0 0 0 0 . 9 7 0 0  
0 0 0 0 0 0 0 0 . 9 7 0  

The largest eigenvalue for A is XI = 1.1903, with corresponding eigenvector 

I '  
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- - 
0.5897 
0.4657 
0.3834 
0.3157 
0.2599 
0.2140 
0.1762 
0.1451 
0.1182 
0.0964 

Pl = 

- - 

* 

@ =  

4.2.2 

There are some useful commands when working with population matrices. 
The command A = zems(n,  n) provides an n x n matrix, all entries of which 
are 0’s. Now to obtain a population matrix, we can change some entries 
in A, using say, A(1,4) =.83, which changes the 1,4-th entry in A to .83. 

Also, if the command [V, D] = eig (A)  is used, the columns of V are 
eigenvectors. To get an individual column of V, say, the second, use V (  :, 2). 
Of course, for a row, the companion command is V (2, :). If we want to 

M A T L A B  (Code for Viewing Solution to Diflerence 
Equations; Handling Large Matrices) 

- 0.2133 
0.1685 
0.1387 
0.1142 
0.0940 
0.0774 
0.0637 
0.0525 
0.0428 
0.0349 - 
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sum the entries in say, V (:, 2) and divide V (:, 2) by that sum, we can use 
e = ones (1, lo) which provides a 1 x 10 vector having 1’s as its entries. 
Then we use (e * V (:, 2)) A (-1) * V (:, 2) . (Exponents are done before 
multiplication. Type in help precedence for more.) An exercise will be 
provided on which these commands can be helpful. 

1. Code for Computing Limits 

A = [.2 .8; .6 .4] ; 
[P, D] = eig (A)  
D (1,l) = 0; 

limit = P * D * inv ( P )  

% The 1,l-entry of D was -.4. 
We set it to 0. 

2. Code for Computing Limits 

A = [.3 .7; .4.6] ; 
L = zero (2,2) ; 
while norm (A - L, ’fro’) 

> I O A  (-7) 
% Tests to see if the distance 

between A and L 5 
This condition can change 
with different problems. 

L = A; 
A = A * A ;  

end, A % If distance 5 prints 
out A. 

3. Code for Viewing Solution to Difference Equation 

2 = [l; 11 ; 
A = [.3.9; .9 01 ; 
for k = 1 : 21 

p (IC) = 2 (1) ; 
Q ( I C )  = 2 (2) ; 

z = A * z ;  

% Generates 2-values [p(l). . .p(21)] 

for the (p (k) , q (k)) to be plotted. 

the iteration. 

and y-values [q (1). . . q (21)] 

% Gets to the next point in 

end 
plot (1,1, ’0,) 
hold 
plot (P, Q, ’ * ’1 
Plot (PA) 

% Plots starting point with 0. 

% Plots points (p ( I C ) ,  q (IC)) with *. 
% Draws ‘curve’ through points. 

In iterations like this, it is helpful to include a stopping criteria so that 
the iteration won’t run forever. For example, insert c = 1 between the 2nd 
and 3rd lines, and 
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c = c + l  
if c > 1000 

break 
end 

between the 6th and 7th lines. 

Exercises 
1. Compute lim Ak for the given A,  if possible. If not possible, explain 

k + w  
why the sequence does not converge. 

'2 '4 (b) A =  [ ] 
(a) A =  [ .3 .3 ] 2 2  

(a) J = [ i  k ]  (b) J =  0 3 1 [: : r ]  
4. Find the dominant term in (a) and (b) of the solutions of Exercise 2. 

5. Let 

x (0)  = c. 

Find a vector c such that x ( k )  is constant for all k. 
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1 -1 6. The solution to y (k + 1) = [ ] y (k), y (0) = [ ] is Y (k) = 

( l + i ) k [  _ t ] + ( l - i ) ' [  :I. 
- 

(a) Show that y (k) = y (k) so y (k) is real. (The imaginary part is 

(b) Find y (k) as an expression involving real numbers. (Hint: Use 
(a + ib )k  = rk (cos Ice + i sin Ice) where a+ib = r (cos e + i sin e).) 

7. Let A be an n x n matrix. Prove that if lim Ak exists, then so does 

0.1 

k + w  
lim J k .  (Hint: Write J k  = P 1 A k P  and compute the limit.) 

k + w  

8. To solve the scalar difference equation 

~ ( k  + 2) - 32 (k + 1) + 22(k) = 0 

set 

Then, using the three equations above, we have 

y1 (k + 1) = Y2 (k) 
Y2 (k + 1) = 3Y2 (k) - 291 ( I C ) .  

Solve this system for y1, to find x. 

9. Company A has machines that periodically break down. When a 
machine does break, it costs about $1,000 to fix it. (We will assume 
at most one machine breaks per month.) In monthly intervals, the 
probability that if a machine broke the previous month, one will break 
this month is .l, while if no machine broke the previous month, the 
probably that one will break this month is .15. (See Figure 4.8.) Let 

y1 (k) = probability that a machine breaks in month k, 
92 (k) = probability that a machine doesn't break 

in month k. 

Then 

Y1 (k i- 1) = . l ~ l  (k) + . 1 5 y ~  (k) 
Y2 (k + 1) = .9Yl (k) + .85y2 (k) 

3 

f 



4.2 Difference Equations 141 c5 broken working 

.15 

FIGURE 4.8. 

or 

(a) Compute y (k) and lim y ( I C )  . (Use y (0) = 

(b) We estimate the average cost of fixing the machine as follows: 
the first entry in lim y(k) is the long-run probability of the 
machine breaking in any month. So that number times $1,000 
will give us an estimate of the monthly cost of fixing machines. 
Compute this number. 

10. For the %class school diagramed in Figure 4.9, find k - m  lim y(k) and 

k+a,  

k+oo 

interpret this vector. 

FIGURE 4.9. 

11. Let A be a 2 x 2 diagonalizable matrix and b a 2 x 1 vector. Find, by 
using the eigenvalue-eigenvector approach, a formula for the solution 
to  

z ( I C  + 1) = h (k) + b. 

12. Let A be an n x n matrix. Prove that if 5 ( I C  + 1) = Aa; (k) for all 
nonnegative integers I C ,  then 2 (0) , 2 (1) , . . . converges, for all a;(O), 
if and only if A,  A*, . . . converges. (Hint: Use z (0) = el, e2, ..., en. )  
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13. (MATLAB) By computing eigenvalues, eigenvectors, and solving a 
system of linear equations for the scalars, solve 

2 1  (k + 1) = 221 (k) + 5 2  (k) 
22 ( I C  + 1) = 2 1  (k) + 222 (k) 
2 3  (k + 1) = 2 2  (k) + 223 ( I C )  

2 1  (0) = 1 
22 (0) = 2 
23 (0) = 4. 

14. (MATLAB) Find lim Ak for A = 
k - m  

(a) Use the diagonalization approach. 
(b) Use the iteration approach. 

15. (MATLAB) As in Example 4.6, graph the solution to Example 4.7, 

where 2 (0) = 

16. (Optional) The following population matrix, with age groups as in 
Optional, is for a small county. 

- 0 0 0 0 .14 .34 .26 .14 .08 .06 
. 9 4 0  0 0 0 0 0 0 0 0 
0 . 9 8 0  0 0 0 0 0 0 0 
0 0 . 9 9 0  0 0 0 0 0 0 
0 0 0 . 9 9 0  0 0 0 0 0 
0 0 0 0 . 9 9 0  0 0 0 0 
0 0 0 0 0 . 9 9 0  0 0 0 
0 0 0 0 0 0 . 9 8 0  0 0 
0 0 0 0 0 0 0 . 9 7 0  0 
0 0 0 0 0 0 0 0 . 9 7 0  

Analyze this matrix as was done in Optional. Use commands de- 
scribed in MATLAB.. 

4.3 Differential Equations 

In this section, we show how to solve systems of differential equations. We 
start with a small example which can be generalized. 

f 



4.3 Differential Equations 143 

Let z1 ( t )  and 2 2  ( t )  be differentiable functions that satisfy 

2: ( t )  = a1121 ( t )  + a1222 ( t )  
4 ( t )  = a2121 ( t )  + a2222 ( t ) .  

where allra12,a21, and a22 are scalars. 
matrix equation yields 

Putting these equations into a 

(4.11) d 
dt 
-2 ( t )  = AX ( t)  

where 2 = [ z: [:{ ] and A = [ 
nalizable and that A = PDP-', where D = 

1. We assume that A is diago- 

L 

To find the function 2 ( t ) ,  we substitute for A in (4.11), obtaining 

d 
d t  
-2 ( t )  = PDP-lz ( t )  . 

Rearrangement yields 

d 
d t  

P-'-2 ( t )  = DP-lx  ( t )  

- (P% ( t ) )  = D (p-la: ( t ) )  . 

y (t)  = P-lz ( t )  

or 

d 
dt 

Now define 

and substitute this expression into (4.12) to obtain 

In terms of entries, we now have 

Since, in general, the scalar differential equation 

(4.12) 

(4.13) 

(4.14) 

d 
dt 
--z ( t )  = x-z ( t )  
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has solution z ( t )  = (yeXt, where CY is an arbitrary constant, the solution to 
(4.14) is 

where a1 and a2 are arbitrary scalars. Thus 

and so by (4.13), and backward multiplication, 

(4.15) 

If A is n x n and diagonalizable, this extends to 

Thus to solve (4.11), we need only find the eigenvalues XI, X2 and corre- 
sponding eigenvectors p l , p 2  of A,  respectively, and write out the solution 
using them. 

The following example shows how to use the formula to solve systems of 
differential equations. 

Example 4.8 Solve 

Here A = 1 -3 1. The eigenvalues oj A are X I  = -2 and A2 = -4 1 -3 
L .I 

with corresponding eigenvectors pl = [ ] and pz = [ -; 1, respectively. 
Thus, 

is the solution. 
Note that because the eigenvalues oj A are negative, lim x ( t )  = 0. 

t-wo 
' 4  
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Similarly, if A is diagonalizable and has positive eigenvalues, we can show 
that 

d2 
dt2 
--z ( t )  + A-z (t) = 0 

has solution 

where the a i s  and 6 s  are arbitrary constants. (The extension to n x n 
diagonalizable matrices should be clear.) 

Another way to solve differential equations is by using functions. h n c -  
tions will give neat, compact expressions for solutions which don’t depend 
on the Jordan form. However, they can be difficult to compute. 

To see how to develop functions of matrices, let f ( ~ )  be a scalar function 
with Maclaurin series 

(4.17) 

where r is a variable and ao, al ,  . . . constants. We assume that this series 
converges for all T and thus converges absolutely for all 7. 

f ( T )  = a0 f a17 + a2T2 f * * 

For an n x n matrix A,  define correspondingly 

f ( A )  = a01 + a1A + a2A2 + .. .  (4.18) 

As given in the exercises, if m = m+xlaijI (the largest entry, in absolute 

value, in A) ,  then 
w 

So since (4.17) converges absolutely, using T = nm, 

la01 + la11 nm + la21 (nml2 + e . .  

converges. Thus by the comparison test, using S i j  as the Kronecker 6, 
la01 6ij+lalI laijI+la2l I a . .  ::)I + . . e  convergesandsoao6~~+ala~~+a2a~~)+.  . . 
converges. So the series in (4.18) converges. (Thus, f ( A )  can be computed 
without knowing the Jordan form.) 

Example 4.9 Let A = [ ,?j 
let f (T )  = eT. Since 

An example may be helpful. 

1. Then Ak = [ t ] for all I C .  Now 

7 T2 eT = 1 + - + - +. . . 
l! 2! 

e * = ~ + - ~ + - ~ 2 + . . .  1 1 
l !  2! 
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It should be mentioned that this matrix was  chosen so that the series that 
occurred Could be summed. In general, we can’t find f (A)  so easily. 

We now obtain formulas for f ( A )  in terms of the Jordan form of A. Note 
that if 

A = PJP-’ 

where J is the Jordan form of A, then by substitution, 

f (A)  = %I + alA + a2A2 + . e -  

= a,-,PP-l+ alPJP-’ + a2PJ2P-’ + 
= P (a01 + a1 J + a2 J 2  + .)  P-’ 

which yields 

f ( A )  = P f  (J)P-’. (4.19) 

And, if J = diag (J1, . . . , Jr) ,  where each Jk is a Jordan block, 

f ( J )  = %I1 + a1 diag(J1,. . . , Jr )  +azdiag (J;, . . . , J:) + 
= diag(%Il+ alJl+ a2 J; + - * , . . . , a,-,I + a1Jr + - . ) 

where I = diag (11,. . . , I,.) is partitioned as is J .  So 

f ( J )  = diag (f ( J 1 )  1 . * 7 f ( J r ) )  

Thus, to compute f (A) ,  we need only find a formula for f (J i ) ,  where J, 
is some Jordan block. 

Lemma 4.1 If Ji is an n x n Jordan block, say, 

J i = [  x 1 0 - - e  H ]  
0 0 0 ... 

then 
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where f (k) denotes the k-th derivative oj f. (Recall here that f (k) (A) means 
that f ( r )  is diflerentiated k tames and then r is replaced by X.) 

Proof. We sum the series a01 + a1 Ji + a2 J," + . . This yields, as the 
1,l-entry of the sum, 

a0 + alX + a 2 ~ ~  + . = f (A). 

For the 1, r + 1 entry, we have 

r! (r + l)! 
= -a, + - r! T ! l !  

1 
r ! 

= - f'" ( A ) .  

These expressions yield the entries of f(Ji) that appear in the formula 
of the lemma. 

An example follows. 

Example 4.10 Let f (7) = sin7 and A = 

(4.,%'O), we have 
[ ! ! 1. Then bywzng 

0 0 :  

2! 

L o o sin: J 

More generally, we need to look at an example of the type f (At)  where 
(Scalars usually precede matrices; however, in this t is a real variable. 

setting, by tradition, the roles are reversed.) 
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As shown previously for A, we can show that 

f ( A t )  = P f  ( J t ) P - ‘ .  

However, we cannot use the formulas for f ( J t )  since, for example, J t  = 

, the super diagonal is composed of 0’s and t’s, not 0’s and 1’s. 

imply put, J t  is not a Jordan form. This, however, is easily remedied. 
For example, we can write 

J t  = 

- - 

At t 0 
0 At t 
0 0 At 
1 0  0 
0 t-1 0 
0 0 t-: 

At 1 0 

][: ^k $ !  : I *  
At 1 0 

0 0 At 
And since [ 0 At 1 ] is a Jordan block, we have 

1 0  1 0 0  

0 0 t2 0 0 t-2 O ext 

More generally, for an n x n Jordan block J ,  we have 
p - 1  A t  [ ext l! 2! ... *l 

(4.21) 

In the example below, we show how to compute eAt. 

2 0  [ 2 ] .  ThenJ=  [ :] a n d P =  [ i ] .  Example 4.11 Let A = 

Thus, using (4.,%’l), 

e2t 
= [ te2t :t 1 .  
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The remainder of the section concerns eAt and lim eAt. We use that 

Thus, 
t+m 

if X = a + ib, then ext = eateibt where eibt = cos (bt)  + i sin (bt). 
leibt I = 1 for all t. In addition, we use that 

O i f a < O  
lim eat = 1 if a = 0 . 

c o i f a > O  
We now describe when lim eAt exists. 

Theorem 4.7 Let A be an n x n matrix. Then 
t4m 

{ t+m 

(a) lim eAt = 0 af and only if all eigenvalues X = a + bi oj A satisfy 
t-m 
a < 0. 

(b) >m eAt exists if all eigenvalues X = a + bi oj A satisfy a 5 0,  and 
when a = 0, then X = 0 and its corresponding Jordan blocks are 1 x 1. 

Proof. This follows by using L’Hospital’s Rule on the entries of eJt .  

‘M 

We now solve the differential equation, with initial condition 

Y’ ( t )  = AY ( t )  
Y (0) = c,  

(4.22) 

by using functions of matrices. We know that the scalar differential equa- 
tion 

2’ ( t )  = ax ( t )  
2 (0 )  = 20 

z ( t )  = eatxO. 

has solution 

Using functions of matrices, we mimic this solution. 
Note that, as in the scalar case, 

d 2A2t + 3A3t2 - e A t = ~ + -  -+... 
dt 2! 3! 

1 + A t + ~ + * * *  

= AeAt. 

Hence by direct computation, we can show that 

y ( t )  = eAtc 

is the solution to (4.22). Thus, if A is real, since eAt is a series in At, it is 
real and so is y ( t ) ,  provided c is real. 

An example follows. 
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Example 4.12 Solve 

Using the data for the previous example, 

[: !I* [ 1 x (t) = e 

W e  can get a view of the solution x (t)  by  graphing the vector x (t) ,  or 
by using the exponential. The latter method does not require our knowing 
the Jordan form, so we will demonstrate this technique. We graph 

on [0,2] in increments of .l. So, we plot 

to achieve the *'s in Figure 4.10.Again, 0 indicates the position of the initial 

FIGURE 4.10. 

vector and the segments connecting *'s indicate the order of occurrence of 
the x ( t )  's. Observe that os t increases, the x (t)  's cover mow distance so 
there is some acceleration. 
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4.3.1 
The two walls of a building, sketched in Figure 4.11, provide a restoring 
force on the floor above them. This force is equal t o  the stiffness constant 

Optional (Modeling Motions of a Building) 

FIGURE 4.11. 

k of the walls times the displacement of the floor from equilibrium. 

ml, m2 and stiffness constants kl ,  k2. 
We now model the two story building in Figure 4.12 with floor masses 

FIGURE 4.12. 

Let 

y1 ( t )  = displacement of floor 1 from 
equilibrium at  time t ,  and 

y2 ( t )  = displacement of floor 2 from 
equilibrium at time t .  

(Positive values indicate the building is to the right of equilibrium.) 

ton’s law, 
The restoring force on floor 2 is -k2 (y2 ( t )  - y1 ( t ) )  and thus, by New- 
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Or, in matrix form, 

4.3.2 MATLAB (Code for Viewing Solutions of Difkrential 
Equations Using expm) 

MATLAB does not provide a command for eAt; however, we can use e x p m  (Atk) ,  
for values t l ,  t z ,  . . . instead. We demonstrated this in Example 4.12. 

For more information, type in help expm. 

Code for Viewing Solution of Differential Equations 

2 = [l; 11 ;y = 2; 

A = [2 0; 2 11; 
t = .l; 
for k = 1 : 21 

P ( k )  = Y o ) ;  
= y ( 2 ) ;  

y = e x p m ( t * A ) * z ;  
t = t + .l; 

plot (1, l,lol) 
plot (P, Q, * ’1 

end 

hold 

% 

% 

% 

% 

Generates etkAx for 
t = 0, .1,.  . . ,2. 

Plots starting point with 0. 

Plots points [p (IC) , p (k)] 
f o r k = l ,  ... ,20with*. 
Plots ‘curve.’ 

1. Solve, using the eigenvalue-eigenvedor formula (4.15). 

(a) 2’1 (t)  = -221 ( t )  + 2 2  ( t )  
2; ( t )  = 2 1  ( t )  - 2x2 ( t)  

(b) 2: (t> = 2x1 ( t )  + 2 2  (t> 
2; ( t )  = 221 ( t )  + 2 2  ( t )  
2 1  (0) = -1 
22 (0) = 5 

(c) 2: ( t )  = 2 1  ( t )  + 2 2  ( t )  + 2 3  (t> 
2; ( t )  = 5 1  (t)  + 2 2  ( t )  + 2 3  ( t )  
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2. Solve, using the eigenvalue-eigenvector formula (4.16). 

(a) z:’(t) + 221 ( t )  + 22 ( t )  = 0 
x; ( t )  + 2 1  (t) + 2x2 (t) = 0 
Xl(0) = 2 
2 2  (0) = 0 
2’1(0) = -4 
2; (0)  = -2 

2; ( t )  + 2x1 ( t )  + 2x2 ( t )  = 0 
2 1  (0) = 0 
2 2  (0) = 3 
x; (0)  = 3 
2; (0) = 2 

(b) Z? ( t )  + 321 ( t )  + 122 ( t )  = 0 

3. Solve the spring-mass problem in Optional of Section 1, for r n l  = 
m2 = 1, kl = 3, k2 = 2. 

4. Solve the two-floor building problem for ml = m2 = 1, kl = 3, k2 = 4 
in Optional. Also use yl(0) = 1, 512 (0) = 2, 51’1 (0) = 51; (0)  = 0. 

5. Let A = [ 
(4.20) 

-; 1. Compute each of the following, using formulas 

(a) eA (b) sinA 
(c) eAt (d) sinAt 

6. Let f ( t )  = 
absolutely. Calculate each of the following. 

+ ait + azt2 -4- . Assume that the series converges 

(4 f’ ( t )  
(4 f ( k )  (t> 

(b) f” ( t )  

7. Let A =  [ 0” :I. 
(a) Find eA by summing the series. 

(b) Find eAt. 
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8. Solve y' ( t )  = [ -; -: ] y, by using (4.21), where y (0) = 

Compute lim y ( t ) .  Does the limit depend on y (0)? 
t-bm 

9. Compute a formula for & sin At and for & cos At. 

10. (Cayley-Hamilton Theorem) Prove if cp (A) is the characteristic poly- 
nomial for A, cp ( A )  = 0. (Hint: Break this down to Pcp ( J )  P-' = 0 
and use the formulas.) 

11. Explain why $eAt can be computed termwise. 

12. Let A be a 2 x 2 matrix with positive eigenvalues. By using functions, 
find the solution to y" + Ay = 0. (Hint: Look at the corresponding 
scalar problem for ideas.) 

13. Let A be an n x n matrix with mv(a i j I  I m. Show that Iutik'l 5 
' J  

nkmk for all IC 2 1. 

14. To solve the differential equation 

Jn) + an-12(n-1) + . . . + a12 = 0, 

set y1 = z, y2 = d1), . . . , yn-l = dn- ' ) ,  yn = dn-l). Then, using 
the n + 1 equations, we have 

Y: = Y2 
Y; = Y3 

~ i - 1 ~  Yn 

... 

y' n = -&-lYn - . . . - alyl. 
This system can be solved by matrix techniques and y1 gives the 
solution x. Do this technique to solve 

XI' - 32' + 22 = 0. 

15. Two tanks of solution are linked as in Figure 4.13. 
Initially, there are 100 gallons of solution in each tank. The solution 
in tank A contains 50 grams of salt, while there is no salt in tank 
B. Water is pumped into tank A at 20 gallons/min from an outside 
source. Solution is pumped as shown in the diagram. 
Let y1 ( t )  and 312 ( t )  denote the grams of salt in tanks A and B, 
respectively, at time t .  

(a) Model this problem with a system of differential equations. 
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FIGURE 4.13. 

(b) Solve the equations in (a). 
(c) Compute lim y ( t )  . 

t-ca 

(d) Explain what the calculation in (c) says about the amount of 
salt in the tanks as t increases. 

16. Let f be a function with a Maclaurin series that converges for all T. 

. Show, by summing the series, that f ( J t )  = 

17. The equation 

(a) Show that the imaginary part of y is 0. 
(b) Find the solution in terms of real numbers. 

18. Let A be an n x n matrix and b ( t )  an n x 1 vector of continuous 
functions. 

(a) Show that the solution to 
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is 

(Hint: Mimic the variation of parameter technique of scalar dif- 
ferential equations.) 

(b) Solve y' ( t )  = [ -; 4 y ( t ) + [  :I 
19. (Optional) Find the mathematical model for the threestory building 

diagrammed in Figure 4.14. 

FIGURE 4.14. 

20. (MATLAB). Graph the solution to 

(a) By solving and then graphing the solution 2 (t). 
(b) In steps t = 0, .l, .2,. . . , as in Example 4.12. 

21. (MATLAB) Solve using the eigenvalueeigenvector formula. 
2'1 ( t)  = 2 1  ( t )  +222 (t)  
2; (t)  = 221 ( t )  + 2 2  ( t )  
2'3(t) = 2 2  ( t )  +223 ( t )  
21 (0) = 10 

23(0) = 0 
2 2  (0) = -8 

i 



5 
Normed Vector Spaces 

In previous chapters we used the standard definition of distance, d E ,  on 
Euclidean *space. In this chapter, we extend this work by defining various 
distances on Euclidean n-space and by defining distance on more general 
vector spaces, as well. Why we use various different ways to measure 
distance in a vector space will also be explained and shown in various 
examples. 

5.1 Vector Norms 

In this section we show how to define distance in vector spaces in general. 
As in Euclidean n-space, this is done by first defining the length of a vector. 

Recall that the length of a vector x in R2 is 

llxll = (x: + 
To get the general definition of length of a vector (called a norm in this 
setting), we use the properties of this length, as given in calculus. 

Definition 5.1 Let V be a vector space. Suppose there is a way of as- 
signing to each x in V ,  a nonnegative number, written I(x(1. We call the 
assignment function a norm (or vector norm when we want to distinguish 
it from other n o m  that appear later in this book), provided that it satisfies 
the following properties for all x, y in V and scalars CY. 

i. 11x() > 0 iifx # 0 and llOll = 0 
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iii. \Ix + yll 5 11x11+ llyll (This property, ca2led the triangdar inequality, 
generalizes by induction to 11x1 + * + xrll 5 llzi 11  + . * . + 11x7 1 1  .) 

A vector space that has a norm defined on i t  is called a normed vector 
space. 

In a normed vector space V we can define distance d between a pair of 
vectors (Points may be a better word when talking about distance.) x and 
y as the norm of x - y. (See Figure 5.1.) 

FIGURE 5.1 

In this setting, the distance d is called a metric. This metric is translation 
invariant, that is, if a E V, 

d ( x + a , y + a )  = d ( z , y ) .  

Thus, d (x ,O)  = d (x + a, a ) ,  i.e., the distance from 2 to 0 is the same as 
the distance from x + a to a. 

The classical norms on Euclidean n-space follow. Others are included 
in the exercises. 

Theorem 5.1 Definedfor all vectors x in Euclidean n-space, the following 
are n o m .  

f 
(b) 11x)/2 = (5 IzkI') , called the 2-norm Note that 1 1 ~ 1 ) ~  = d E  (x ,O) .  

k = l  

(c) 11x11, = max ( 1 ~ 1 , .  . . ,  IS,^}, called the 00-nom 

Proof. We prove (a), leaving (b) and (c) as exercises. Since the first 
two properties of the definition of a norm are easily verified, we only show 
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the third property. For it, 
n 

k=l  
n 

k=l 
n n 

k = l  k=l 

= lI4l1 + IlYI l1 
as required. 

Example 5.1 Let x = (1, - 2 , 2 ) t .  Then 

I1411 = I l l  + 1-21 + 121 = 5 

11.112 = (12 + (-2)2 + 2’) = 3 

I I ~ I I ~  = m={ilt , 1-21 , 131) = 3. 

It is interesting to graph the unit “circles” of these norms in R2. 

(a) To graph Co = {x E R2 : = l} ,we graph IIz\I1 = 1, or 1x11 + 
1x21 = 1 . To do this, in the first quadrant we graph 2 1  + 2 2  = 1, in the 
second quadrant -21 + 2 2  = 1, etc. 

The graph of C, = {E E R2 : I Iz-u[ [ ,  = l}, where a = [ 2” 1,  is a 

translation of the graph Co. Both graphs are shown in Figure 5.2, and 
they are congruent. 

FIGURE 5.2. 

(b) The graph of Co = ( 5  E R2 : = 1) is shown in Figure 5.3. 
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FIGURE 5.3. 

(c) The graph of CO = (2 E R2 : llslloo = l} is given in Figure 5.4. 

FIGURE 5.4. 

Note that only the 2-norm is orientation invariant. That is, if we measure 
the length of a stick, with one end at the origin, we get the same result 
regardless of how the stick is placed. The length of the stick, however, will 
change in the 1-norm, and the oo-norm if, say, we tilt it a bit. 

It is also interesting to graph the norms as functions of the entries of 
the vectors. The graphs of f(z) = (1z((, for the various classical norms, are 
given in Figure 5.5. 

Observe that the only norm showing a smooth surface (so partial deriva- 
tives can be taken everywhere) is the %norm. We will show the importance 
of this when we look at leastrsquares problems. Also, note that the graphs 
in the previous examples are level curves of these functions. 

We might wonder about the necessity of various norms and, thus, various 
metrics. To provide an answer we can recall that angles can be measured 
by using degrees or radians. However, in calculus, derivative formulas in- 
volving the trigonometric functions are given in radians. If they were done 
for degrees, those formulas would be more complicated. In the same way, 
often calculations are more easily done when choosing an appropriate nom.  

A' 
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FIGURE 5.5. 

And, in some problems, the information obtained by using one norm can 
be better than that obtained by another. 

Still, all norms are equivalent in the following sense. Given any norm 
11-11, there are positive scalars CY and p such that 

(z, 0 )  I I141 I P ~ E  ( ~ ~ 0 )  

for all 2. Thus 1 1 ~ 1 1  is small if and only if the entries of x are small. We 
will show this for our classical norms. 

Theorem 5.2 For all vectors x, 

k = l  \k=l / 

Thus, taking square roots 

And, since by the Cauchy-Schwarz inequality, as given in the exercises, 

n / n  \ i / n  \ t  

k = l  \k=l 1 \k=l ) 
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which yields (a). 

Since dE (zk, xo) = dE (q - 50, O), we see that if ~ 1 ~ x 2 . .  . is a sequence 
of vectors and 20 a vector, then for any norm 11.11, and corresponding a and 
Pl 

a d E  (xk, xo) 5 11xk - 2011 5 P ~ E  (xk, .o> . 
Thus, if we establish convergence to xo in any of our norms, we equivalently 
have established convergence in the Euclidean distance, and vice versa. 
Figure 5.6 and 5.7 shows the convergence of ~ 1 ~ x 2 , .  . . to xo using Euclidean 
distance and the -norm. pjJ r =  1 

r = 2  

FIGURE 5.6. 

I r = 2  

FIGURE 5.7. 

5.1.1 Optional (Evaluating Models) 
Mathematical models are often built to predict or describe some phe- 
nomenon. Such models should, when possible, be evaluated. We show 
how this can be done on a small social science problem. 

Social scientists study people: numbers of people in each age group, job 
category, sex, etc. And they study movements of people in various cate- 
gories. 
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Professional 
Supervisory 
Labor 

15 10 3 28 
9 35 44 88 
8 55 221 284 

55 “ J  1 8 100 268 

Note that the first row of A gives the percentage of each categories’ sons 
that end up as professionals. The second and third row of A have cor- 
responding interpretations. Thus, if f is a distribution of fathers in the 
categories, then 

s = Af 

gives the distribution of their sons in the categories. For example in our 
data 

268 284 

and Af = s. 

of the sons’ sons in the categories. For this, we calculate 
What we now do is use this transition matrix to compute the distribution 

sons’sons = A s  

289.6 290 
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1 1 ~ 2 ~ 1 1 1  

400 

5.1.2 MATLAB (Vector N o m )  

The commands to obtain vector norms are natural: norm(z,l) provides 
IIxlI1, norm($, 2) provides 11z112, and norm(z, inf) provides 11x11,. For more, 
type in help nom. 

Exercises 
1. Let 5 = (1,1, I ) ~ .  Compute 1 1 ~ 1 1 ~ ,  11x112, and 11x11,. 

2. Find the distance between (1,0,1, l)t and (1,1,2, O ) t  using the 
(a) l-norm. (b) %norm. 
(c) oo-norm. 

3. Let x = (3 - 4i, 4 + 3i)t. Find the length of z in the 
(a) l-norm. (b) 2-norm. 
(c) -norm. 

4. Let z = (1 -t 2i, 2 + i)t  and y = (1 + i, 1 - 2i)t. Find the distance 
between x and y in the 

(a) l-norm. (b) 2-norm. 
(c) 00-norm. 

5. Draw the unit ‘circles’ of the l-norm, %norm, and 00-norm in R2, 
superimposing one upon the others. Using these pictures, decide the 
following. 

E 
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(a) If 11411 51 is I14l2 I 1 

(b) If 11~1Ioo I1 is 11z112 I 1  

6. Graph the unit ‘circles’ of the l-norm and the co-norm in R3. Is the 
‘circle’ for the l-norm similar to a rotation of that of the 00-norm, as 
it is in R2? (Hint: Count vertices.) 

7. Prove that if 11.11 is a vector norm, 

(a) Il-4I = 1141 ’ (b) 115 - YII = IlY - 41 . 

8. Define f :  R2 + R by f ( 2 1 , 2 2 )  = llzl12 where 2 = ( 2 1 , ~ 2 ) ~ .  Find 
g ( 5 1 , 2 2 )  and g (21922) .  

9. Place a stick in R2 so that one end is at the origin and the other at 
(0, l)t. Tilt the stick by $ radian. Find the length of the tilted stick 
in each of the following. 

(a) l-norm (b) Znorm 
(c) cc-norm 

n 

k = l  
10. (Cauchy-Schwarz inequality) Let z,y E R”. Prove that s k g k  5 

))z)I2 llyl12 as follows. (This inequality can be recalled from the calculus 
result cos0 = by noting that lcos01 5 1.) 

11. Prove Theorem 5.1 

(a) Part (b). Hint: Use the Cauchy-Schwarz inequality. 

(b) Part (c). 

12. Let z and y be in Euclidean n-space. Use Theorem 5.2 in the follow- 
ing. 
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- 0 0 .232 .207 .036 0 
.98 0 0 0 0 0 
0 . 9 9 0  0 0 0 
0 0 . 9 9 0  0 0 
0 0 0  . 9 9 0  0 

- 0 0 0  0 . B O  

13. Define 
1 11.11, = (I.lIP + . . . + I.nlP) . 

where p is a positive integer. Prove that llzllp , called the pnorm, is 
a vector norm on Euclidean n-space. (Just verlfy norm properties (i) 
and (ii)). 

1 

14. Let dl > 0 and d2 > 0. Show that llzll = (d l  1z1I2 + d2 1 ~ 2 1 ~ ) ’  , 

15. Prove part (c) of Theorem 5.2. 

16. (Optional) Using MATLAB and eigenvalues and eigenvectors, com- 
pute lim A”. Explain what this vector tells us about the long-run 
behavior of the sons’ occupations. 

called a weighted norm, is a norm on Euclidean n-space. 

k-rm 

17. (MATLAB) The population of a small country is placed in categories 
0-9 years old, 10-19 years old, . . . The population in the categories 
in 1970 was 

(82, 330, 506, 525, 425, 431)t. 

The Leslie matrix was found to be 

(a) Compute the population, in the categories in 1980 and 1990. 
(b) The actual population in 1990 is given by 

(187, 81, 330, 506, 524, 424)t. 

Find the relative (percentage) error between the estimate com- 
puted in (a) and the actual population. 

5.2 Induced Matrix Norms 

In various calculating situations, involving vectors and matrices, we need 
to pull out A in llAzll, similar to pulling out a scalar, llax11 = 11x11. The 
matrix norm of this section is designed to have that property. 
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Definition 5.2 
the induced matrix norm for an n x n matrix A as 

Let (1.11 be a vector norm on  Euclidean n-space. Define 

(It  can be proved that there is a maximum, as well as a minimum value of 
f(z) = when f is evaluated over all x # 0. Later we wall prove this 
for the classical vector norms.) 

If A is m x n and we w e  the same classical vector n o m  on  11x11 and 
IIAzll, IlAll is also defined by (5.1). (Note that if m # n then z and Ax 
are in dzfferent vector spaces.) 

By the way we defined llAll, we see that 

llA.11 5 IlAll 1141 
for all z, precisely the property that allows us to pull out A in llAzll. 

On some problems, the following method to calculate IlAll is useful. 

Theorem 5.3 IlAll = max IIAuII. 
1141=1 

Proof. Let f (x) = # for all x # 0. Then f (z) = # =& IIAzlI = 

( (A&/(  and setting u = fi 

fb) = IlAull 
= f(4. 

Thus, we see that every value off  is achieved by some u, llull = 1. 
Furthermore, if llull = 1, then setting z = u, we have f (x) = f (u). So 

every value achieved by u, 1IuII = 1, is also achieved by an z, z # 0. Thus, 

the desired result. 

An example calculating the induced matrix norm may now be helpful. 

Example 5.2 Let A = [ -; -: ] . Then, using the vector 2-norm 

= 4 5 2 :  - 8x122 + 55;. 

If JIz(I2 = 1, zT + zi = 1, so z1 = * d m .  Plugging this into (5.2) and 
using calculus, we can show that maxf (x) = 3. So JIAIlz = 3. 
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We now need to show that an induced matrix norm is in fact a norm. 

Theorem 5.4 A n y  induced matrix n o r m  is a n o m .  That  is, for any 
m x n matrices A and B and f o r  any  scalar a, 

1. llAl\ > 0 ij A # 0 and llOll = 0,  

2. IlaAll = [ai IlAll f o r  any  scalar a ,  and 

3. lIA + BII 5 IlAll + IPII * 

(4 ll4l = 1- 

In addition, every induced matrix n o m  has the following properties: 

( b )  llA.11 L IlAll IIzl1, with equality f o r  some z # 0.  

(c )  llABll 5 11 All 1lB11, assuming the product is defined. 

( d )  min llAz11 = h, I A- if A is nonsingular. 
114=1 

(e )  llAsll L 11x11, provided A is nonsingular. 

Proof. We first prove that the induced matrix norm is actually a norm. 
For this, we prove properties (2) and (3), leaving property (1) as an exercise. 
Part 1. For (2), using vector norm properties, we have that 

= la1 IlAll 
For (3), we have that 

= IlAll + IPII . 
Part 2. We now prove three of the remaining properties of the theorem. 

For (b) , by definition 



5.2 Induced Matrix Norms 169 

Thus, for any x # 0, 

or 

IlAll I14 2 IIAzll . 
And, the latter inequality holds for all x. Further, equality holds for some 
x # 0 since f (x) = # achieves a maximum at some x # 0. 
For (c), since 

we have by (b) 

and again by (b) 

= IlAll IlBll * 

1 = 11x11 = IIA-lAzll I llA-lll IlA~ll 

where equality holds for some 5 by (b). Thus & I IlAzll and since 
equality holds for some x, 

For (d), for any 11x11 = 1, 

which is the result desired. 

Since induced matrix norms are norms, the equivalence of norms result 
holds. That is, for any induced matrix norm 11-11, there are positive scalars 
Q and 0 such that 

QdE (A ,  0) 5 11 All 5 P d E  (A, 0) 

where d E  is the Euclidean distance on matrices. The consequences of this 
result are as those for vector norms. For example, if a sequence of matrices 
AI, Az, . . . is such that 

JJAb - AjJ + 0 a~ k + 0, 
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for some matrix A, then 

So, Ak tends to A entrywise. 
As you might suspect, computing IlAll by definition can be rather chal- 

lenging. Remarkably, however, we can find formulas for a few of the induced 
matrix norms. 

Theorem 5.5 Let A be an mxn matrix. Using the classical vector n o m ,  
we have the following. 

m 

(a) For the vector norm ~ ~ - ~ ~ 1 ,  llAlll = m+x lakj l ,  the m d r n u m  abso- 
3 k = l  

lute column sum. 
n 

(b) For the vector n o m  11.11,, llAll, = m+x laikl ,  the mazimum ab- 
' k=l 

solute m w  sum. 
1 

(c) For the vector norm 11-112,  llA112 = max [A (AHA)] a where the m u -  
imum is taken over the square root of all eigenvalues A(AHA) of 
AHA. (For completeness we included this formula here. I t  is proved 
in Chapter 7.) 

Proof. We prove (a). There are two parts. 

Part 1. We show llAlll 5 m g  
m 

lakj l .  For this, 
3 k = l  

m 
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m 

k = l  
Part 2. We show there is a u, Ilulll = 1, where llAull = m y  l a k j l .  

m m 

For this suppose m+x 

since llulll = 1, 

l a k j l  = Iak,.J. Then set u = e,.. Using this u, 
3 k = l  k = l  

m m 

llAlll 2 IIAu.II1 = la171 Iarn~I = x / a k r l  = m ? X x ( a k j l .  
k = l  k = l  

Putting the parts together yields the result. 

Example 5.3 Let A = [ -: -: 1 .  Then 

I I A I I ~  = m={131+ 1-21 , 1-11 + 121) 

IIAII, = m= ti31 + 1-11 , 1-21 + 1211 

= max{5,3} = 5 

= max{4,4} = 4 

llAllz = m a  [A (AtA)]' 
= max (4.13, .97} rounded to the hundreths place 
= 4.13. 

We conclude this section by showing what induced matrix norms tell us 
about a linear transformation, 

L ( z )  = Ax.  

If we look at the image of the unit circle, 

1. max llL(x)II = IlAll says that the longest vector there has length 
Ilxll=1 

ll All. 

2. min llL(z)II = & says that the shortest vector there has length 
llx/l=1 h. (We assume here that A is nonsingular.) 

Thus 

l l U Z ) I I  
min I]L(y)i = ((AI1 This number gives us some indication of 3. 114=1 

II " I1 = 1 

how much the image of the circle is distorted. 

Example 5.4 Let L (x) = [ 
shown in Chapter 10, the image of the unit circle is an  ellipse. 

] 2. As indicated in the Figure 5.8 and 
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FIGURE 5.8. 

The major axis is an line with the vector [ ] and the minor axis zn line 

with[ -:I. 
We now find the maximum and minimum lengths among the image vec- 

tors. Since L ([ 4 I) = 4 [ 4 1, the marimurn length is 4, which 

agrees with 

& A 

1 

-a -2 
And, since L ([ 4 I) = 2 [ 4 1, the minimum length is 2. This 

is the same as 

-- - 2. 
1 

llA-1112 
We can convert these remarks into results about approximations. For 

this, let w be given and z an approximation of w. Then 
I 

IIL (4 - L (411 I IIAII Ilw - 41 (5.3) 
which say that the error between image vectors, (IL (w) - L (z ) ) I ,  is no more 
than IlAll times the error between w and z, IIw - 211. 

Should we want to bound the error independent of scaling, we would use 
relative error. The error between w and z, relative to w, is defined as 

Independence of scaling can be seen in the calculation 
! 
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Note that if 

where s is a positive integer, then 

Il'w - zll I lo-" ll'wll . 
Now, lo-" llwll moves the decimal in llwll to the left s places. Thus, the 
first digit of (Iw - z ( (  begins (in the worst case) at the (s + 1) - s t  digit of 
IJwJI. For example, (12345) = 12.345, whose first digit begins in the 
4 t h  digit of 12345. So z approximates w to within the s-th digit of IIwII, 
the size of w. We will say here that t is an s digit approximation of w. 

Using Theorem 5.4, 

(5.4) IIL (4 - L (411 < IlAll IIw - 41 
1 - L II(w)ll - llAll-1 l l w l l  

llw - 41 
llwll 

= c(A) - 
where 

c ( A )  called the condition number of A. Thus the relative error between 
image vectors is no greater than c(A) times that of the relative error be- 
tween the vectors themselves. So c (A)  is somewhat like the derivative in 
calculus. (The derivative indicates how much change in function values we 
might expect from a change in values.) 

As given in the exercises, c(A) >_ 1 for all A. In addition, although 
c ( A )  can be computed using any induced matrix norm, the sizes of the 
corresponding c(A) ' s  are about the same. For example, it can be shown 
that 

where c1 ( A ) ,  c2 (A), and coo (A) are the condition numbers of A with re- 
spect to the induced 1, induced 2, and induced 00 matrix norms, respec- 
tively. 

5.2.1 
For us, a t-digit computer is a computer which rounds or truncates all 
numbers to the first t digits of the number. For example, using rounding, 

Optional (EWOT in Solving Ax = b )  
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a %digit computer gives 

64872 =64900 

and 

329 + 2.67 = 331.67 = 332. 

Thus, if a problem is solved on a t-digit computer, the numerical t-digit 
solution is in error. For example, suppose we solve, using a 2-digit com- 
puter, 

! 

Applying R1 + Rz, we get 

-1 410 [: 5 1 6 6 0 1  

Thus, 2 2  = = 132 = 130 and by back substituting 

2x1 - (130) = 410 
2x1 = 540 

2 1  = 270. 

The computed solution (270, 130) can be compared to the actual solution 
(271, 132), and we can see that we computed the first 2 digits of the en- 
tries of the actual solution accurately. Unfortunately, such accuracy is not 
always the case. 

Let A be an n x n nonsingular matrix and b an n x 1 vector. Consider 

AX = b. (5.5) 
It can be reasoned that if (5.5) is solved by, say, Gaussian elimination with 
partial pivoting, on a t-digit computer, then the obtained answer 2,  satisfies 

( A  + E) 2 = b (5.6) 

for some n x n matrix E where 

(z denotes approximately). Actually, E depends on n and so for small 
problems, the approximation can be better, while on larger problems, it 
can be worse. Furthermore, if z is the solution to (5.5) ,  

! 

! 
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So the condition number shows how much affect the change E in (5.6) has 
on the solution in (5.5). For example, if t = 7 and c ( A )  = lo2 then 

So 5 need not be a 7 digit approximation of x. We may have lost 2 digits 
because of the condition of the problem. 

Loosely, if c ( A )  is small (error magnification is not significant), then 
A is called well conditioned. If, on the other hand, c ( A )  is large (error 
magnification is beyond what is desired), then A is called ill-conditioned. 
In between, A is called moderately conditioned. (What is significant and 
what is tolerable depends on the problem at hand.) 

We now look at an example which puts some of the discussion together. 
1 0 5 1 0  5 
3 3  5 

Example 5.5 Let A = [ 
b using MATLAB. 

$ 1  a n d b =  [ 1.  W e s o l v e A x =  

Using format long to get about 15 digits (MATLAB calculates in about 
15 digits.), we get 

while 

1.26923076923075 

1.93846153846149 
-3.19999999999993 

I 1.26923076923079 . = [ $ I = [  1.938461538461 54 

33 - 
-3.20000000000000 . 

So we can see there is some error. 
Now 

cond (A,inf) = 1.206666666666643 x lo3. 

All but the leading digit or so of these digits are unimportant (so even i f  
this computation has lots of its last digits in error, it still gives us what we 
want). W e  note that 

C ( A )  z 103. 

So, we might expect to lose a few digits. Now, 
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So we lost about 1 digit. (Our answer was not exactly obtained as a 15-digit 
computation.) 

Since MATLAB calculations are done in about 15 digits, and normally 
only the first 5 digits are displayed, unless c(A) is very large, we should 
have the answer we want. 

From the above, we see that computing c (A) ,  and getting, say, lo’, tells 
us about our answer 5. If s is large, it is a red flag that the computed 
answer may not be a sufficiently close digit approximation of x.  (In such 
a case, using iterative improvement, as discussed in Chapter 8 can provide 
more digits of accuracy.) 

5.2.2 MATLAB (Matrix Norms and Condition Numbers) 
The commands for computing matrix norms are like those for vector norms, 
namely: norm(A,l) for llAlll, norm(A,2) for llA1I2, norm(A, inf) for 
llAll,, norm (A, ‘fro’) for llAllF = d E  (A, 0). For more type in help n o m .  

In addition, we can compute the various condition numbers: u m d  (A,  1 )  
for c1 (A), m d  (A, 2)  for c2 (A),  m d  (A, inf) for c, (A) .  For more type 
in help cond. 

Exercises 

1. 

2. 

3. 

4. 

5. 

Let {ml, . . . , m,} be a set of real numbers. 

(a) If c is a positive number, prove that max {cml, . . . , m r }  = 

(b) If {nl, . . . , n,} is also a set of numbers, prove that 

c max {ml,  . . . , m,}. 

max{ml+ 721,. . . ,m, + n,} 
- < max {ml, . . . , m,} + max (721,. . . , n,} . 

Prove Theorem 5.4, 
(a) Property 1. 
(c) Property e. 

(b) Property a. 

Prove Theorem 5.5, part b. 

Let A = [ 
11h112 over all x ,  )1x1)2 = 1. 

Using the formulas in Theorem 5.5, compute both llAlll and (IA(J, 
for 

1. Prove that llA1I2 = 5 by maximizing f (z) = 

i 

I 

I 

! 

I 

I 

I 

! 

i 
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3- 4i  1+2i  6 I 1 -1 -3 

(c) A = 

6. Using the formula for Theorem 5.5, compute 1(Al(, for 

1 0  7. Let A =  [ 1 .  
(a) Graph CO in the 1-norm. 
(b) Graph the image of CO under L ( z )  = Az. (Note that L maps 

(c) Compute llAlll from your sketch. 
(d) Compute llAlll by the formula in Theorem 5.5. 

edges to edges.) 

8. Repeat Exercise 7 for A = [ :] and the oo-norm. 

1 0  9. Let A =  [ 1 .  
(a) Find the grid view of L (z) = Az. 

(b) Using the 1-norm, find the distance between 

and the distance between L 

(c) Compute llAlll and verify (5.3). 
(d) Compute c1 (A) and verify (5.4). 

10. Let A be an n x n matrix and (I.(I an induced matrix norm. Prove 
that 

((Ak\(  5 I(Allk for all k. 

11. Let A be an n x n matrix. Prove that 
1 
n - IlAllF 5 IlAlll 5 J;EllAllF 

Also prove that 
1 
n - llAllF 5 llAllm 5 f i  llAllF * 
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12. Prove using any induced matrix norm, that for nonsingular matrices, 
(b) ~ ( l )  = 1. (a) c(A) 2 1. 

(c) c(A)=c(A-l) .  (d) c(AB) Lc(A)c(B) .  

13. Let A be a nonsingular matrix and suppose that As  = b. 

(a) If Ay = c, show that 

(b) If 4 is the computed solution and r = b - A i ,  show that 

Explain what this means. 

14. Find s and y in R2 such that I I Z - Y ( ~ ~  > 100 but < .01. 
(Hint: It may help to work from drawings.) 

15. Let 2 = [ zi ] , y = [ ii 1. If )(z - yII, < then Is, - yi( < 

for for i = 1,2. If ‘‘;;[:- < is it true that J - ! l  < 
all i? 

16. Concerning relative error, 

(a) Suppose for some scalar 5. Prove that 2 differs 
from 123.4 in the 4 t h  digit of 123.4 (counting digits from the 
left). 

(b) Sometimes we say ‘loosely’ that 123.4 and s agree in the first 3 
digits. To see why this can be wrong, note that 

5 

11.000 - .999) ~ 10-3* 
1 

Does .999 ‘differ’ from 1.000 in the 4th digit? (Remember there 
are 2 representations of 1 in decimal notation, namely, 1 and 
.999...) 

(4 If 

ll[ Ill show that [ ] and 2 differ in the 4th digit of 

I 

I 

I 

I 
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17. Let A be a 2 x 2 matrix and L ( z )  = Az. How should w and E be 
placed in R2 so that 

18. (Optional) Sometimes, in getting data for a mathematical model, we 
can only get 3 or 4 digits (with reasonable accuracy). Suppose the 
model is 

A x = b  

where 

1 1 1  

1 3 9  
A =  [ 1 2 4 1  a n d b =  [::E]. 869 

In the following problems, use MATLAB. 

(a) Solve Az = b. 

(b) Set 

1 1.004 0.999 1.003 
0.998 2.004 3.995 . 
0.995 3.004 8.995 

(Perhaps a is the actual data and A the rounded data.) Solve 
az = b and compare to the answer in (a). 

(c) If our mathematical model is a %digit approximation, should we 
accept the &digit answer given by MATLAB? 

19. (MATLAB) Let z = (-1, l)t and y = (1, l)t. Then ( I E  - y1I2 = 2. Let 

f ] z where 6 = .4. The grid view of L is below.Note L (z) = [ 
in Figure 5.9 that jw increases as E --+ 0. Since 

it follows that c2 ( A )  is increasing as well. (That c2 (A) is large and 
that A is close to being singular are linked, as we will show in Chapter 

Using the idea above, and MATLAB, find a 2 x 2 positive matrix 
with c2 (A) > 1000. 

7.1 
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FIGURE 5.9. 

5.3 Some Special Norms 

In this section, we give two special matrix norms that axe also useful. For 
the first of these, recall that the formula for the matrix norm induced from 
the vector 2-norm is a bit complicated to compute (by hand). However, 
when we need it (pulling A out of the 2-norm), we can usually use the 
Fbbenius nom, 

Note that llAllF = dE (A,  0). 

Example 5.6 Let A = [ -: -:I. Then 

t 
I I A I I ~  = (I-1i2 + 13i2 + i2i2 + 1-41'> 

= (30)* = 5.48 rounded to 3 digits. 

The proof that this is a norm is exactly the same as that of the vector 

We link the Fkobenius norm to the induced matrix norm ) 1 - ( 1 2  as follows. 
2-norm. 

.Theorem 5.6 Let A be an m x n matrix. Then 

! 

! 
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Proof. We prove (a) leaving (b) and (c) as exercises. By direct calcula- 
tion, 

n 

k = l  
and by the Cauchy-Schwarz inequality, applied to a i k x k ,  

which verifies (a). 

Concluding, the F'robenius norm is not an induced matrix norm for any 
vector norm. For square matrices, all such norms have the property that 
1)II) = 1; however, llIllF = ni. Still, it is easy to calculate and useful. 

The second norm we give is another induced matrix norm and also turns 
out to very useful. To define it, let R be an n x n nonsingular matrix. For 
any vector norm 11.11 on Euclidean n-space, define the vector R-norm as 

llxllR = l l h l l  * 

The proof that l l . l l R  is a vector norm is left as an exercise. 

Example 5.7 Let R =  [ 1. using the vector I - n o m ,  

/ /  [ ; ] / I R  = (1 + 21 + (2 * 21 = 7. 

Now the matrix norm induced by vector norm l l . l l R  is, by definition, 

This matrix norm can be computed from the matrix norm induced by 11.11. 
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Theorem 5.7 Ij 11.11 is a vector norm and l l - l l R  the corresponding vector 
R-norm, then the induced matrix norm satisfies 

IlAllR = I(-R-l(( 

f o r  any n x n matrix A. 

Proof. By definition, 

Setting y = & and noting that llRAzll = ((RAR-'yll, we have 

the desired result. rn 

An example follows. 

Example 5.8 Given the oo-vector norm and R = 

IlAllR = IIRAR-'llm 

Thus, i f A =  [ 1 -1 2 ] ,  then 

To conclude this section, we show how norms can be used to bound 

For any n x n matrix A, we define the spectral radius of A, denoted p ( A ) ,  
eigenvalues. 

bY 
I 

P (4 = m a  14 
where the maximum is over all eigenvalues X of A. 

As shown below, any induced matrix norm bounds the spectral radius. 
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Theorem 5.8 Let A be an n x n matrix and (I.I( any vector norm. Then 

p(A) I IlAll 

where IlAll i s  the induced matrix norm oj  A. 

Proof. Let X be an eigenvalue of A. Then 

AX = AX 

for some eigenvector x. Thus, 

I I X 4  = llA4 

1x1 114 I IIAII I141 
and by using the properties, 

And since x # 0, 

1x1 I IlAll. 

Thus, since X was arbitrary, 

p ( A )  I IIAII * 

The result follows. 

We demonstate the theorem with an example. 

Example 5.9 Let A = [ -: : 1.  Then the eigenvalues of A are 1 + i 
and 1 - i .  Further, llAlll = llAll, = 2, whi2e llAlla = 1.4142. So llAllz 
provides the best estimate of p (A) here. (See Figure 5.10) 

Actually, as can be seen in Figure 5.9, for a given n x n matrix, and any 
positive scalar E ,  there is ‘some’ norm equal to, or close to, the spectral 
radius. 

Theorem 5.9 Let A be an n x n matrix and E a positive scalar. 
there is an induced matrix n o m  11 -1 )  such that 

Then 

p (A )  I IIAII I p(A)  + E .  

Proof. The first inequality has already been shown, so we need only 
argue the second. By Theorem 3.7, there is a nonsingular matrix P such 
that 
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- - t - * +**- 

I I I :  

I 

FIGURE 5.10. 

where JE is the Jordan form of A with the 1's on the superdiagonal replaced 
by€. Now, 

IlAllp-1 = IIP-'APllm 
= II  JEll, 

I p(A) + E ,  

the required bound. 

A special case of the theorem follows. 

Corollary 5.1 Let A be an n x n matria: where all eigenvalues A, 1x1 = 
p ( A ) ,  are on 1 x 1 Jordan blocks of the Jordan form of A. Then there 
exists an induced matria: n o m  11.11 such that 

IlAll = p ( A ) .  

Proof. Note that in the proof of Theorem 3.7, E'S in J ,  only occur in 
rows containing eigenvalues X where 1x1 < p(A). Thus E can be chosen 
sufficiently small such that llJEll, = p (A) .  Hence llAllp-l = p (A). 

And, as a consequence, we have a norm proof of the following. 

Corollary 5.2 If  A is an n x n matrix and p(A) < 1, then lim Ak = 0. 

Proof. Choose E > 0 such that p ( A )  + E  < 1. Then, using the theorem, 

Since 

k-oo 

let 1 1- 1 1  be an induced matrix norm such that IlAll 5 p ( A )  + E .  
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for all IC, lim llAkII = 0. Thus, by the equivalence of norms, we have that 
k-ma 

lim Ak = 0. 
k + w  

One of the important uses for norms is that they provide rates of con- 
vergence for sequences of vectors. For example, consider the sequence gen- 
erated by 

2 ( k  + 1) = Ax ( k )  + b (5.7) 

where A is an n x n matrix and b an n x 1 vector. We know that if (1.11 is 
an induced matrix norm and IlAll < 1, then p ( A )  < 1, so by Neumann’s 
formula 5 (0) ,z (1) , ... converges to, say, 2. Thus, calculating the limit of 
the sides of (5.7), we get 

2 = A z + b .  (5.8) 

Subtracting (5.8) from(5.7), we get 

~ ( k + 1 )  - 2  = A ( z ( k )  -x). 

Thus, 

112 (k + 1) - 41 I IlAll 112 (k) - 41 . 
(So, if, for example llAll = .9, then 112 (k + 1) - 211 is no more than .9 of 
112 ( k )  - 511, the previous calculation.) And, so the convergence rate of 
2 (0) ,2 (1) , ... to 5 is, using the norm, IlAll per iterate or, overall, using 
this norm, the convergence rate is llAllk after k iterations. Note that by 
Theorem 5.9 and Corollary 5.1, we can get this rate to be either p ( A )  or 
slightly more. 

5.3.1 Optional (Splitting Techniques) 
In this optional, we see how to convert the problem of solving a system of 
linear equations into a difference equation. 

To see this, let A be an n x n matrix and b an n x 1 vector. To solve 

A x = b  (5.9) 

we can use the direct method of Gaussian elimination with partial pivoting. 
Of course, due to round off, the numerical answer, say, 2, may be incorrect 
in the last few digits, an perhaps more, depending on c ( A )  . 

Another way to solve (5.9) is by converting it into a difference equation. 
To do this, let D = diag (a l l ,  ..., ann) and B = A - D. (Thus A is split 
into D and B.) Then (5.9) becomes 

( B  + D )  2 = b 



186 5. Normed Vector Spaces 

or by rearranging 

If D is nonsingular, 

x = -D-lBx + D-lb. 

The difference equation arises by setting x (0) as some constant vector 

x (k + 1) = -D-lBa: (k) + D-lb. (5.10) 

Now, if A is diagonally dominant ( I ~ i i l  > laill + + lai,i-11 + Jai,i+il + 
. . + lain\ for all i, a situation which often occurs when numerically solving 

differential and partial differential equations), then llD-lB[lm < 1. Thus, 
the sequence converges to, say, x. Calculating the limit of the sides of 
(5.10), we get 

and inductively defining x (1) , 3: (2) , . . . by 

z = -D-lBz + D-lb. 

Rearranging, we have 

Ax = b. 

So x is the solution to (5.9). 
Note that 

112 + 1) - 41 I IlAll Ib (k) - 211 * 

Thus, if a numerically computed 2 (k) is in error, then the next 2 ( I C  + 1) = 
A2 (k) + b satisfies 

112 (k + 1) - 4 I IlAll 112 (k) - $11 
and so the difference I l?(k+l)  -xll is no more than IIA(( Il?(k) - - [ I .  
Thus, even if small errors are made in computing the iterates, x continues 
to convergence. 

Another feature about iterative methods is that we can continue to com- 
pute z ( I C ) %  until we have the desired number of digits of accuracy. To help 
understand this remark, we provide an example. 

Example 5.10 Let A = [ i ]  a n d b =  [ h ] .  W e s o l v e h = b b y  

spli t t ing.  1 .  So D-lB = [ 4 ] a n d  
2 0 2  Here, D = [ ] and  B = [ 

1 
D-lb = [ ] . Since, p (D-'B) = .4082 

z (k + 1) = -D-'Ba: (k) + D-'b 

b 

i 



5.3 Some Special Norms 187 

0.0278 -0.0093 0.0046 
0.5139 0.4931 0.5023 

converges at the rate oj (.4082)k to the solution to Ax = b. 

Starting with x (0)  = [ ] , we have 

L 0.2500 J L 0.5833 J 1 0.4583 1 

L 0.4988 1 1 0.5004 ] 1 0.5001 1 

0.5001 

And, after the l l - th  iterate, all entries have the same digits and SO x = 

o*oooo as can be checked. 
O n  larger problems, it may be that the last digit doesn't converge, e.g., 

[ 0.5000 ] 
- .  

when the amount of convergence and the amount of error balance. In that 
case, we take as the approximate solution the answer to those digits that 
do agree. 

There are many well-known splitting methods. For example, the point 
Jacobi and the Gauss-Seidel methods are two of the better known splitting 
methods. 

5.3.2 MATLAB (Code for Iterative Solutions) 
The MATLAB codes for the calculations in this section follow. 

1. Code for Example 5.10 

for k = 1 : 12 

end 
x = B * x + b  
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2. A More General Code for Iterative Solutions 

Y = [I; 11 
z = [O; 01 ; 
c =  1; 
while (norm(z - y)/norm(z) 

% This is ~ ( 0 ) .  
% Used as a counter. 
% Continues until 14 digit 

% This keeps z (k) . 
% This calculates 2 (k + 1) .  

> 10 A (-14)) approximation is reached. 
y = z; 
z = B * z + b  
c = c + l  % Updates the counter. 

if c > 10000 
break 

end % If we can’t get a 14 
digit approximation, we 
need to stop somewhere. 

end 

Exercises 
1. Find the Frobenius norm for each matrix. 

2 -1 0 

2. Prove Theorem 5.6. 

(a) Part b. (Hint: Use Part (a) and consider the ratios e.) 
(b) Part c. 

3. Let R be a nonsingular matrix. Prove that for any vector norm 11.11, 
l l . l l R  is a vector norm. 

4. Find ) 1 ~ ( ) ~  for 

(a) z = [ -: 1, R = [ : ] and the vector 1-norm. 

(b) z= [ - i ] , R =  [ ~ ] , a n d t h e v e c t o r ~ n o r r n .  

5.  Find llAllR for 
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(a) A = [ 1, R = [ f 1, and the vector l-norm. 

1 2  1 -1 
(b) A = [ 3, R = [ 1, and the vector oo-norm. 

6. L e t A = [  :]. 
(a) Find the eigenvalues of A. Plot these in R2. 
(b) Using the l-norm and the cc-norms, find bounds on the eigenval- 

ues. Draw circles of radii llAlll and llAll, about the origin, and 
observe that these circles contain the eigenvalues of A. What 
norm gives the better result? 

(a) Is the bound p(A) 5 ( ( A ( ( ,  always a good one? 

(b) Let R = [ ; $ 1. Calculate, using the l-norm to define l l . l l R ,  

(c) Can you improve on the bound IlAllR of (b) by using R = 

t-oo lim (llAllR - P ( A ) )  * 

[; 
8. Give an example of a 2 x 2 matrix A such that p (A) = 1 and 

(a) lim Ak exists. 

(b) /im Ak doesn’t exist. 
l+oo 

+a2 

9. 

10. 

Let A be an n x n matrix. Prove 

For the following difference equations, find z such that z (1) , 2 (2) , ... 
converges to 2. What is the rate of convergence, using ll.lll and ll.lloo, 
for the following? 
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.6 .1 0 

0 0 .4 
(b) x ( k + l ) =  [ 0 .5 11  z ( k ) +  [ 11 

12. (MATLAB) Consider the school problem diagrammed in Figure 5.11. 
Provide the mathematical model, z ( I C  + 1) = Az ( I C )  + b, for this 
process. 

FIGURE 5.11. 

(a) Provide the mathematical model, x ( I C  + 1) = Ax ( I C )  + b, for this 

(b) Find the steady state vector z,z = lim z ( I C ) ,  and explain what 
the entries in this vector mean. 

(c) Using the convergence rate, and x(0) = 0, find the smallest IC 
such that (12 - z (k)II, I (.1) 1 1 ~ 1 1 ~ ,  so the process is within 
10% of steady state. 

process. 

k + m  

13. (MATLAB) Consider z ( I C  + 1) = Az ( I C )  where 

0 0 .99 
A =  [ O9 .:I. 

Find 
(a) IlAlll' (b) IlAll, 
(4 IlAllz 

Which of these norms gives the convergence at the best rate? 

3 1 -1 
14. (MATLAB) Solve [ -: :] x = [ i ]  by splitting as de- 

scribed in Optional. 
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15. (MATLAB) Find, by tinkering, a matrix A such that IIAlll < llA1I2. 

5.4 Inner Product Norms and Orthogonality 

In this section we define a dot-productl called an inner product in this 
setting, on vector spaces. We show how to use inner products to define 
norms. As with dot products, inner products can also be used to define 
orthogonality, and orthogonality can be used as it was in calculus. 

To define an inner product, we use the properties of a dot product in 
Euclidean 2-space. Recall that for vectors x and y in this space, 

2. y = ZlVl + z2Y2, 

or perhaps in different notation 

(2, y) = ZlVl+ 22V2. 

Definition 5.3 Let V be a vector space. Suppose that there is a way oj 
assigning to each pair of vectors 2 and y in V a scalar, written (x, y). This 
function,(-,  -), is an inner product on V provided i t  satisfies the following 
properties for all vectors and all scalars. 

i. (x,z) > 0 ij z # 0 and (0,O) = 0 
- 

ii. (z,y) = (y,z> 

iii. (ax, y) = Q (2, y) and (z, cry) = E (z, y) 

iv. (z, y + z )  = (2, y) + (x, z )  and (z + yl z )  = (z, z )  + (y, z )  

A vector space V that has an inner product defined on  it is called an 
inner product space. 

Actually the second properties in (iii) and (iv) can be proved from the 
remaining given properties. We include them since they are companions 
to the first properties. 

Some classical inner products and inner product spaces follow. 

Example 5.11 On Euclidean n-space, an inner product is 

xi2i. (In the real case, E = yi.) 
n 

(2, y) = (5.11) 
i=l 

Example 5.12 O n  m x n matria: space, an inner product is 
r n n  - ... .. 

( A , B )  = x x a i j b i j .  (5.12) 
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Example 5.13 On C [a, b], define 

(5.13) 

This is an inner product. 

Note that all of these inner products arise, like the dot product, by 
multiplying corresponding entries (second entries conjugated) and summing 
those products. 

As with dot products, an inner product can be used to determine lengths 
of vectors, that is, 

1 1 ~ 1 1  = (x,.)' . 
And, mimicking the proof for the vector ;I-norm, we can show that 11-11 is a 
norm. 

The following example will show how to use this norm in calculating. 

Example 5.14 Let A = [ 
Example 5.12, 

-: ] . Then, using the inner product of 

IlAll = (4 A)? 
= (1.1 + (-1) (-1) + O . O +  l . l+  

= A. 

= ((-1)2 + (-2)2 + (-3)2 + 32)i 
= fi. 

Orthogonality of two vectors x and y is defined in the natural way, 
namely, if 

(XlY) = 0 

then z and y are orthogonal. (Note that if ( x , y )  = 0, then ( y , x )  = 0, so 
the order of x and y isn't important.) 

Using orthogonality, we have the Pythagorean theorem for any inner 
product space. 

I 
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Lemma 5.1 Let V be an inner product space and X,Y E V .  4 (z,Y) = 0, 
then I(z + y(I2 = 1 1 ~ 1 1 ~  + I(y1I2, as depicted in Figure 5.12. 

FIGURE 5.12. 

Proof. Since 

we have the result. rn 

A major use of orthogonality is in calculating coefficients of linear com- 
An example of how binations of pair-wise orthogonal nonzero vectors. 

follows. 

Lemma 5.2 Let q1,. . . , qn be pairwise orthogonal nonzero vectors an Eu- 
clidean n-space. Then q1,. . . , qn are linearly independent. 

Proof. Let (pl,. . . ,,On) be a solution to the pendent equation for the 
vectors 41,. . . , qn. Thus, 

+ . * + Pnqn = 0- 

Now, 

P k  ( q k , q k )  = 0. 

Since ( q k ,  q k )  > 0, Pk = 0. And, since IC was arbitrary, p1 = - 
Thus 41,. . . , qn are linearly independent. 

= pn = 0. 
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Any set of pair-wise orthogonal vectors is called an orthogonal set; while 
if, in addition, each vector has length, or norm, 1, the set is called an 
orthonormal set. 

Orthogonality is often used in closest point (approximation) work. To 
show how, we provide a brief review of calculus. 

In calculus, we use dot products to find the component of a vector x on 
a vector u. (See Figure 5.13.) If c is that component, as given in calculus, 
c = z o u  zLozL. Observe that x - cu is orthogonal to u and that cu is the closest- 

FIGURE 5.13. 

point in span {u }  to x. 
Using components, if u1 and 112 are Orthogonal in R3 and z E R3, then 

x - c1u1- c2u2 is orthogonal to u1 and 212; it is orthogonal to span (211, u2). 
Here c1 = are the components of x on u1 and 7.42, 
respectively. Thus, c1u1 + c2u2  is the closest point in span{ul,u2} to x. 
(Perhaps making a small 3-D model, Figure 5.14, will help.) 

and c2 = 
YlOUl 

I' / 

FIGURE 5.14. 

We now give this result for any inner product space. 

Theorem 5.10 Let V be an inner product space and ~ 1 , .  . . , u, pairwise 
orthogonal nonzero vectors in V .  Let x E V and from it define the corre- 
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spondang Fourier sum, using u l , .  . . ,urn, as 

Xf = c1u1+ . . - + cmu, 

where the component ck oj x on 'Ilk as ck = M. Then 2-25 is orthogonal 
to each of ul, . . . ,urn. (See Figure 5.15.) 

I 

Proof. To prove that x - xf is orthogonal to '1Lk, show by direct calcu- 
lation that (x - x f , uk )  = 0. rn 

We now apply this theorem to find orthogonal vectors ~ 1 ~ ~ 2 , .  . . ,Urn, 

which span the same space as given linearly independent vectors x i ,  . . . , x,. 
To do this, set 

In general 

where c1 = 

formula.) 
,.. . , ck-1 = e. (So we can compute all uk's by +-i 

That span (211,. . . , urn} = (XI, . . . , x,} is left as an exercise. 
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As you may recall from linear 
Schmidt 
follows. 

algebra, this method is called the Gram- 
process. An example demonstrating the Gram-Schmidt process 

Example 5.15 Let XI = [ i ] , x 2 =  [ a ] , a n d x 3 =  [ 8 1 .  Then 

i. u1=x1= [ i ] .  
ii. FOT 212 we need to calculate the corresponding xf. Here 

and so 

iii. To get 213, we need to find the corresponding x f .  So 

1 

=-211+-112= 1 1 [ a ] .  
3 2  

1 

Hence 213 = 2 3  - x, = 2 3  - J Z L ~  1 - 2212 1 = [ -: ] . Obserue that '113 

is orthogonal to  211 and 212. 

If A = [z . . .4, then applying the Gram-Schmidt process to the columns 
of A leads to an important factorization of A, called the QR-factorization, 
namely 

A = Q R  (5.14) 

where the columns of Q form an orthonormal set and R is an upper trian- 
gular matrix. We show how this can be done in an example. 
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Example 5.16 Let A = [z1x2x3] where the xi's are given in the previous 
example. We use the calculations of the previous example, 

u1=21 

2 
212 = 22 - -211 

3 
1 1  

213 = 23 - -u1- - 7 4  
3 2  

solwing for  the xk's yields 

1 1 
-u1+ -u2 + u3 = 23. 3 2  

Writing these equations as a matrix equation, using backward multiplication 
on columns, yields 

L 

Now, normalizing the ui 's, we have on  the lefc side 

or 

Finally, plugging in the numbers, we get the QR-factorization, 

(The method of factoring A = QR given here is  not good in numerical 
computations involving rounding. I n  Chapter 8, we give a good method.) 

Using components, we now give the closest point (approximation) theo- 
rem. 
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Theorem 5.11 Let V be an inner product space and ul, . . . ,um pairwise 
orthogonal vectors an V .  Let x E V .  Then the closest vector in the sub- 
space W = span {ul, . . . , urn} to x is precisely xf, the Fourier sum using 
u1,. . . ,urn. 

Proof. Let u E W. Since xf E W ,  so is xf -TJ. (See Figure 5.16.) Thus, 
we can write 

Xf - 0 = a1u1+ . . . + amurn 

for some scalars a1,. . . , am. Since, by the lemma, x - xf is orthogonal to 

FIGURE 5.16. 

u1,. . . , u,,,, by direct calculation we can show it is orthogonal to xf - u. 
Thus by the Pythagorean Theorem, 

11. - U1l2 = IIX - xp1I2 + IlXf - UII" 

Rearranging leads to 
2 2 2 

IIx - xf(( = IIx - ull - llxf - and so 

115 - " f 1 1 2  5 112 - v1I2 
where equality can hold only if u = xf. Since this inequality holds for all 
v E W ,  zf is precisely the closest vector in W to x. w 

Given a subspace W of Euclidean n-space, Theorem 5.11 can be used to 
find a matrix P such that Px is the closest point in W to x, for any x. 
This P is called an orthogonal projection matrix. 

We find P in R" since this is the matrix we use most often. (C" is done 
in exactly the same way.) To find P, let u1,. . . , u, be an orthonormal 
basis (a basis of orthogonal vectors each having length one) for W and 
U = (111,. . . , U T ] .  Then, we need P to satisfy Px = xf Recall that 

~j = (2, '1~1) 211 + * * + (2, UT) UT. 
Thus by backward multiplication, 

7 
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Noting (x,ui) = uix, we have 

=[u1, ... ,UT] [ ;] x 

= u U t X .  

Thus, 

P = UUt  

is the orthogonal projection matrix desired. 
An example can help. 

[ a ]  and [ s ]  Example 5.17 Let W be the plane given by t = 0. Since 

satisfy this equation, W = span { [ a ]  , [ il). Note that the basisfor 

W is not an orthonormal basis. 

Applying Gram-Schmidt to 1,  we have the orthogonal basis [ i 1,  [ 
given below. 

1 

v2=  [ 4. 
These vectors can be normalized to obtain an orthonormal basis, namely 

Now 
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and 

P = U U t =  0 1 0 . [: 1 11 
And, since P [ z i  ] = [ ] , at is geometrically clear that P projects 

R3 onto the plane W .  
2 3  

5.4.1 
Sometimes in work we have data which is not precise, perhaps obtained by 
measurement or experiment. If it is known that the actual problem involves 
a symmetric matrix, the data may only give some close approximation to 
it. When this occurs, we can replace the approximate matrix by the closest 
symmetric matrix by using Fourier sums. We show how this is done for 
2 x 2 matrices. 

The 2 x 2 symmetric matrices form a subspace of R2x2 of dimension 
3. An orthogonal basis for subspace is 

0 0  

Optional (Closest Matrix f iom Symmetric Matrices) 

[: 3 [ 0  I ] ’ [ ;  4 
a b  For any A = [ 

ing Theorem 5.11. This matrix is 

3, we compute its closest symmetric matrix by apply- 

0 0 b+c 0 1 
A,=,[; i ] + d [ O  1 ] + T [  1 0 1  

Of course this result can be extended to n x n matrices. 

5.4.2 MATLAB (Orth and the Projection Matrix) 
MATLAB can be used to find an orthonormal basis for a vector space 
spanned by given vectors. And, the orthogonal projection matrix can be 

1: :J We use the spanning vectors to form a matrix A = 
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For the orthonormal basis, use the command orth ( A )  which gives an 
orthonormal basis for the span of the columns of A. 

orth(A) 
0.8507 0.5257 

ans = 0.5257 -0.8507 1 [ o  0 

[:: :I 

The first two columns of this matrix form an orthonormal basis. Note, 
however, it is not the basis obtained by Gram-Schmidt. This kind of com- 
putation is usually done with a QR decomposition or a singular value de- 
composition. (See Chapters 7 and 8.) 

Now, for the orthogonal projection matrix we use, 
Q = orth ( A )  ; 
P = Q * Q '  

ans= 0 1 0  . 

(Q' is the transpose of Q.) 

This is, as expected, what we obtained in Example 5.17. 
For more, type in help orth. 

Exercises 
1. Find the inner product of each of the following: 

t (a) z = (I ,  -1 , l )  , y = ( 2 , 0 ,  - I ) ~ .  
(b) ~ = ( i , l , l - Z )  , ~ = ( 2 - 3 Z , 2 i , l + i ) ~ .  t 

1 (c) A =  [ -: :I , .=[ 1 4 -2 
2 -1 -3 

(d) f ( t )  = t ,  g ( t )  = 1, where a = -1 and b = 1. 

2. Find the distance between the vectors in Exercise 1, parts (a), (b), 
( 4 ,  and (4. 

3. Decide which pair of vectors are orthogonal. 

t t (4 2 = (1, -1) , Y = (1,1) 
t (b) 2 = ( l , i ,  1 - i) , y = (i, -1 + i, 

( . ) A = [ ,  1 -1 l ] , B = [  -1 1 1 1 ]  

(d) f ( t )  = cost, g ( t )  = sin t ,  where a = -T and b = T 

4. Prove that the expressions in (a) Example 5.11, (b) Example 5.12, 
and (c) Example 5.13 are inner products. 

5. In the definition of inner product, prove that the second properties 
of (iii) and (iv) can be proved from the remaining properties. 
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6. For any inner product space V ,  prove that (0, 2) = 0 for any x E V. 

7. In an inner product space, the angle 0, 0 5 0 < R, between two 
nonzero vectors x and y satisfies the equation 

(Recall here that ~ Iz~~= (z , z )~ ,  and llyll = (9, y)*.) Find the angles 
between the following vectors. 

(a) 2 = (l,O)t, y = (1, l ) t  
(b) z = (1,1,1, l)t, y = (l,O,O, l)t 

Check your answer geometrically. 

( c ) . = [ ,  1 0  l ] l Y = [ o  1 0  0 ]  

8. Normalize the following vectors. 

(4 (lJAt 
(c) A = [  -: -: :] (d) f ( t ) = t w h e r e a = - 1 , b = 1  

(b) (1 + i, 2 - 3i)t 

9. Let ul,.. . ,urn be an orthonormal set. Prove that 

10. Apply the Gram-Schmidt process to 
t (a) 21 = ( 1 , ~  lit, z2 = (1 ,1 ,0 )~ ,  x3 = (1, - 1 ~ 2 )  . 

(c) f ( t )  = 1, g (t)  = t ,  h ( t )  = t2,  where a = 0, b = 1. 

11. In the Gram-Schmidt process, prove that 

(a) span {21,mr 2 3 )  = span (111 ,112, ~ 3 ) .  

(b) span{zl,... , ~ , } = s p i ~ n { ~ l l . - .  > z L ~ } .  

12. Find the orthogonal projection matrix that orthogonally projects 

(a) R2 onto the line parametrically described by 21 = t ,  xz = t 

(b) R3 onto the plane given by 21 + 22 + 23 = 0. 
where -00 < t < 00. (Check your work geometrically.) 

13. Apply the Gram-Schmidt process to [ -3 [ n]. [ 8 1 .  Ex- 
plain geometrically why u3 = 0. 

f 
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[ n ] .  14. In span { [ i ] , [ I ] } , find the closest vector to 

15. Find the polynomial of degree 1 (or less) closest to 1 + t + t 2 ,  on [0,1]. 

16. Consider the line parametrically described by 21 = t ,  z2 = 2t where 
-ca < t < 00. 

(a) Find the orthogonal projection matrix from R2 onto this line. 
(b) Use the orthogonal projection matrix to compute the closest 

point on this line to [ ] . (Check your answer geometrically.) 

17. Let P be an orthogonal projection matrix. Show that P2 = P. 

18. Find the formula for the orthogonal projection matrix from C" to W 
where W has u1, . . . , u, as an orthonormal basis. 

19. Does the set of orthogonal projection matrices, defined on R2,  form 
a subspace of R2x2? 

20. (Optional). Using Fourier sums, find the closest upper triangular 

matrix to [ [I. 1. 
21. (MATLAB). Use MATLAB to solve the following problem. Let 

W 2 R3 be the vectors in the solution to 

2 1  + 222 - 2 3  = 0. 

(a) Find an orthonormal basis for W.  (Find null(A) , A = [l 2 - 11.) 
(b) Find the corresponding orthogonal projection matrix P. 
(c) Use P to find the closest point in W to [l, 1,lIt. 
(d) How close is [l, 1, lIt to W? 

22. (MATLAB). Let L ( z )  = Ax where A = -1 1 0 . [:::I 
(a) Find an orthogonal basis for range L. 
(b) Find the orthogonal projection matrix of R3 onto range L. 





6 
Unitary Similarity 

A unitary matrix U is a special matrix, which as a linear transformation 
L(x) = Ux, preserves figures in the space. The grid view of these trans- 
formations shows no shearing nor scaling. They appear as rotations or 
reflections of the space. And, since these matrices do not distort figures, 
they are excellent for obtaining simple coordinate views of curves, surfaces, 
and other geometrical objects. In addition, since these matrices do not 
magnify error, they are also important in developing numerical algorithms 
which provide good answers. 

6.1 Unitary Matrices 

This section concerns the Euclidean n-space with inner product 

(x, y) = 2151 + . . . + Xn&. 
(Recall for real numbers, iji = yi.) It is often helpful to write this inner 
product as a matrix product, 

(6.1) H 
(2, Y) = Y 2- 

In fact, much of what we do in this section can be directly observed by 
using (6.1). 

We study n x n matrices U such that L ( x )  = Ux preserves figures 
(including lengths and orthogonality). Thinking in terms of the grid view, 
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since the columns of U form the axes for the new grid in the range of L, 
those columns should form an orthonormal set (as el and e2 did in R2). 
Otherwise the geometry is distorted. See Figure 6.1. 

FIGURE 6.1. 

Definition 6.1 An n x n matrix U is unitary if the columns of U are 
pair-wise orthogonal and length one. If the entries in the matrix are real 
numbers, we call the matrix orthogonal, and, as is customary, use Q instead 
of u. 

Two examples demonstrate what L (x) = Qx, or simply Q, does to R2. 

. By  definition, this Example 6.1 (Rotation) Let Q = 

m a t m  is orthogonal. The grid view of L (x) = Qx is given in Figure 6.2. 
This transformation rotates the plane 8 degrees. More generally, the n x n 

1 cos8 -sin8 
sin8 cos8 [ 

XI 

. .  .. 

I '. 

FIGURE 6.2. 
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matrix 

... 
0 0 a * .  L e . 1  J 

called a Givens matrix or plane rotation, rotates the x,x,-plane in R", 
leaving all other coordinates alone. ( In  R3, rotating in the xlxcz-plane 
keeps the x3-mis  .fixed and rotates R3 about it. I n  higher dimensions, this 
may be a bit  hard to imagine.) 

Example 6.2 (Reflection) Let H = 1 (?:! - 2: 1 , the only orthog- 
L 1 

onal matrix, other than that in Example 6.1, with first column 

The gr id  view oj L ( x )  = Q x  i s  given in Figure 6.3. I t  i s  clear that L is  not 

,'. 
. n .  

\ I  ' I 

FIGURE 6.3. 

a rotation. However, this transformation can be seen as a reflection (flip) of 
the plane about the line t bisecting the XI-axis and the y1-axis. (Perhaps 
overlaying a transparency, drawing the axes on  it and then reflecting as 
described will help.) 

Alternately, L can be described as inverting the plane through C so that 
each x ends up at its mirror image x' as shown in Figure 6.4. W e  use this 
latter view to find the matrix for this transformation on  R". 
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X 
e 

~~ ~ ~ 

FIGURE 6.4. 

e 

For this, let u E R" be such that llullz = 1. (In analogy, u will be the 
direction of the inversion.) Define 

W = {x : x E R" and (u, x) = 0). 

(W generalizes L .  R" will be inverted through W.)  As given in the exercises, 
W is a subspace. 

We show how to mflect R" through W parallel to u. To do this, let P be 
the orthogonal projection matrix from R? onto the line, span {u}. Thus, 

P = u ut. 

(Note that P is n x n.) Given x E R", P x  is the projection of x onto the 
line determined by u. Thw,  the inversion of x through W parallel to u is 
the vector x' where x' = x - 2Px as shown in an Figure 6.5. From this, we 

4 --1;. X 

Px 

W 

X' 

~ ~~ 

FIGURE 6.5. 
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have that 

L (z) = H z ,  

where 

H = I - 2uut  (6.2) 

reflects R" through W parallel to u. 

For example, if we want to reflect R2 parallel to u = [ -3 1, through 

W = {Z : (qu) = 0) =span { [ I}, we wou~d use 

1 [-;ti&] 
H = I - 2  [ -$ ] 

The matrix HI as defined in (6.2,11 i s  called a Householder matrix . 
To see how much of matrix space orthogonal matrices comprise, we can 

graph a piece of this space from R2x2,  which contains the plane rotations. 
For this, we look at the %dimensional subspace of matrices of the form 

, 0 5 6 < 27r, in this [ E ] and graph the matrices 

space. The graph appears in Figure 6.6. 
about 

the origin. But interestingly, they do not constitute all of this space since 

(1,1,0, O)t  (which corresponds to [ 1) is also on this sphere. However, 

what we need to see is that the orthogona matrices cover only a small part 
of matrix space. 

Lemma 6.1 Let U be an n x n matrix. Then U as unitary if and only if 
U satisfies the unitary equation, 

1 cos6 -sin6 [ sin6 cos0 

Actually the orthogonal matrices are on the sphere of radius 

Definition 6.1 can be formulated as a matrix equation. 

U H U  = I .  

Proof. We argue both implications of the biconditional. 
Part a. For the direct implication, suppose U is unitary. Then 
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0nhOpoll.l rnaLh.r In 2 I 2 VT~SI~K apace 

'1 

FIGURE 6.6. 

where the columns of U are 211,. . . ,u,. Using (6.1), UHU = I. 

UHU = I. In terms of entries, the equation is 
Past b. For the converse, suppose U satisfies the unitary equation 

1 0 . . .  H 

[ 21, 21;..::y] 211 - . 21, 21, = [ 0 0 ... ... ;] (6.3) 

where 211,. . . , u, are the columns of I/. Thus, by (6.1), the columns of U 
are pair-wise orthogonal and of length one, and so U is unitary. rn 

An immediate consequence of this theorem is that if U is unitary, then 
u-' = UH. 

This lemma is usually used to develop results about unitary matrices 
rather than to decide if a particular matrix is unitary. We show this in the 
results below. 

Theorem 6.1 Let T be a triangular matrix that is unitary. Then T is a 
diagonal matrix with ltkkl = 1 for all k. 

f 

Proof. Since T is unitary (and so T-' = TH), T satisfies the equation, 

mH = T ~ T .  (6.4) 

We now argue the 3 x 3 case, since that argument is easily extended to the 
general case. We suppose T is lower triangular. 
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Writing out (6.4) entrywise, we have 

t 2 l  t22 
t31 t32 t33 0 t33 - - -  

til t 2 l  t31 

= [ 8 222 j32  ] [ l 2  ; ] 
0 j33 t32 t33 

Comparing the 1,l-entries in the products, we get 

tlllll = L t u  + L t 2 1  +j31t31 or 
\tiil2 = kill2 + 1t21I2 -I- It311 . 2 

Thus, t 2 1  = t31 = 0. Comparing the 2,2-entries, then the 3,Sentries estab- 
lishes that T is a diagonal matrix. Finally, since T is unitary, the columns 
of T must be length 1 and so each I tkk (  = 1. w 

For the arithmetic of unitary matrices, we have the following. 

Theorem 6.2 Two properties of unitary matrices follow. 

(a) If  U1 and U2 are unitary, so is U1U2. 

(b) If U is unitary, so is UH. 

Proof. We argue Part (a), leaving Part (b) as an exercise. 
Let U1, U2 be unitary. Then, checking the unitary equation, 

H H  H (u1u2>H (UIU2) = u2 u, UlU2 = u2 u2 = I .  

Thus, by Lemma 6.1, U1U2 is unitary. rn 

Considering the grid view of L ( x )  = U x ,  we would expect the following 
geometric properties. 

Theorem 6.3 Let U be an n x n unitary matrix. 
in Euclidean n-space, 

(a) ) ~ U X J ~ ~  = 1 1 ~ 1 1 ~ .  (Length is unchanged.) 

(b) (Ux ,  Uy) = ( x ,  y) . (If U is an orthogonal matrix then using (a) and 

Then for all x and y, 

(b), we leave it as an exercise to show that U preserves angles.) 

In  addition, 

(c) ldet U (  = 1. (It is known that for a polugonal shape X ,  the uolume 
of AX is ldet AI times the volume of X .  Thus, under L ( x )  = U x ,  L 
preserves volume.) 
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Proof. We argue two parts. 
Part a. Using Lemma 6.1, 

Thus, l l W 1 2  = 11412 ' 
Part b. This is done as in Part (a). 

Concerning calculation, the norm and condition number of a unitary 
matrix are as expected from the grid view. The unit circle is not distorted. 

Theorem 6.4 Let U be a unitary matrix. Then llUl12 = 1 and c2 (U) = 1. 

Proof. Both parts are calculations. 

b 

I 

f 

using the first calculation and that U H  is unitary. 
I 

Recalling Section 2 of Chapter 5, and the Optional there, we see that U 

for use in numerical computations (where rounding error occurs). An ad- 
ditional norm result follows. 

Theorem 6.5 Let A be an m x n matrix. Let Uland U2 be m x m and 
n x n unitary matrices, respectively. Then 

neither magnifies error nor relative error. So, unitary matrices are ideal I 

Proof. We argue both parts. 
Part a. By definition, 

1 

1 

I 

I 
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and setting y = U2x and noting that IIyI12 = llU2~11~ = llxllz 

1 
= max [yHAHAy]' 

I IYl lz=l  

l lYl l2=1 
= max llAY112 

the desired result. 

6.1.1 Optional (Symmetry) 
Orthogonal matrices can be used to describe symmetry in designs. (See 
Figure 6.7.) 

FIGURE 6.7 

For example, the letter H has rotational symmetry (rotate 180') and re- 
flectional symmetry (about the x-axis and about the y-axis). The letter 
T has reflectional symmetry (about the y -axis). Such symmetries are 
sometimes discussed on Sesame Street (a syndicated television series for 
children). 

To see this, 
consider a square in the plane, as shown in Figure 6.8. Note that the 4 

leave this figure fixed. And rotations 

Symmetries can be classified using orthogonal matrices. 

for 6 = 0, 5 ,  K, 1 cos6 -sin0 
sin6 cos6 
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0 

FIGURE 6.8. 

the 4 reflections 
0 1  [: -;I,[ -: :I1[ 1 O ] ’ [  -: -:] 

also leave it fixed. We call this set of rotations and reflections Dq (the 
dihedral group of the square). Note that the star in Figure 6.9 has precisely 
the same symmetry, namely 04. (It can be shown that if a figure has IC 

FIGURE 6.9. 

reflections of symmetry, then it has k rotations of symmetry, counting the 
identity, and we say the symmetry is Dk.) 

Not all figures have reflectional symmetry. For example, the letter 2, in 

Figure 6.10, has only rotational symmetry 

Here, we say the symmetry is CZ, indicating there are only 2 rotations from 
2 onto 2. ck is defined similarly. 

In nature, symmetry is all over. As an example, a daisy has lots of 10- 

tational and reflectional symmetry (in applications, mathematics need not 
fit precisely, so there may be some variation from the precise mathematical 
description of symmetry.) 

In computer graphics, noticing symmetry can save time. For example, if 
the Mandelbrot set is graphed, only that part above the x-axis is required, 

3. COST -sina [: :I,[ s in r  COST 
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FIGURE 6.10. 

since the set has reflectional symmetry about the x-axis. (Changing the 
sign of the second entries of the computed vectors gets the bottom half.) 
Thus, the amount of time to graph this set is cut in half. (It could be many 
minutes, depending on the computer.) 

6.1.2 MATLAB (Code for Picture of Orthogonal Matrices an 
2 x 2 Matrix Space) 

- sin 8 
we graph 1 z:: case 1 ,  which is in the 2-dimensional subspace of 

L 

matrices having the form [ -," ] in the %dimensional subspace of ma- 

trices having the form 

andgraph [ -sin:] f o r O < e < 2 ~ .  

[ 1. We identify this subspace with 

4 COS e 

Code for Picture of Orthogonal Matrices 

theta = linspace(0, 2 *pi, 100) ; 
plot 3 (sqrt (2) *cos( t heta) , % Plot3 draws 

curves in R3 -sin(theta), sin (theta)) 

Exercises 
1. Compute (5, y), using yHx, for the following. 

(a) 5 =  [ -;I..= [ -11 
( b ) x = [  1 ~ 2 1 ,  i Y = [  2- i  i ] 

1 + 2i 
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2. Give the grid view of each. 

3. Give a 2 x 2 orthogonal matrix that does the following. 

(a) Rotates the plane 30" 
(b) Reflects the plane about the axis 'I/ = 22 

4. Find the 3 x 3 Householder matrix that reflects R3 parallel to u = 
r o i  

5. Reflect the clock given in Figure 6.11 about the z1-axis. Is the ori- 
entation (1-2-Sl clockwise) still the same? 

I 

i 
i 

FIGURE 6.11. 

6. Prove that if U is unitary, then 
(a) U is nonsingular and (b) U-l = U H .  

7. Prove Theorem 6.2, part (b). 

8. Prove Theorem 6.3, part (c ) .  

9. Let H be a Householder matrix. Prove each of the following. 

(a) H is orthogonal 
(b) H = Ht  

I 

i 

d Z. 
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I 10. Let A be an n x n matrix and Ul,  Us be n x n unitary matrices. Prove 
c (UlAU2) = c ( A )  for the induced 2-norm and the Frobenius norm. 

11. Let Q be an n x n orthogonal matrix, and x,?,E R". Prove that if 
y = Qx, c = QZ, then the angle between y and 6 is the same as that 
between x and 2. 

12. Find 8 such that 

cos8 -sin8 [ sine case] [ i ]  = [ : ] *  
13. Find u ( 1 1 ~ 1 1 ~  = 1) so that 

( I  - 2 2 1 4  [ ; ] = [ ; 3 . 
14. Let U be a unitary matrix. Is it true that llUlla = IIUIIF? (Give an 

example if it is false.) 

15. Let Q be the rotation matrix of Example 6.1. Let x = 
L 

Tcos (e + 4)  expressed in polar coordinates. Show that Qx = rs in(8+4)  I j .  
(Use trigonometry identities.) What does this say that Q does to 
R2? 

16. Find the matrix F for each flag on the left of Figure 6.12 and Figure 
6.13. Then, find an orthogonal matrix Q, if possible, which rotates 
or reflects the plane, bringing the flag on the left to that on the right. 
Show your answer is correct by showing plot (QJ). 

FIGURE 6.12. 

17. Prove that if Q is orthogonal, then L ( z )  = Qz maps a sphere S of 
radius T about z (S = {z : 112 - zl12 = T } )  into a sphere of radius T 

about L (2) . 
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FIGURE 6.13. 

18. Prove that the matrices in Example 6.1 and 6.2 are the only 2 x 2 
orthogonal matrices. 

19. (Optional) Classify the symmetries as Ck or Dk for the figures in 
Figure 6.14. 

FIGURE 6.14. 

(b) What symmetry do you see in a kaleidoscope? 

20. (MATLAB) Two parts. 

(a) Let P be the matrix for the propeller shown in Figure 6.15. Find 
the matrix Q that rotates the propeller 2 radian. Plot QP to 
see the new configuration. 

! 

FIGURE 6.15. 
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Find the matrix C for the cube, of side 2, shown in Figure 6.16. (The 
center of the cube is at the origin, and the faces are parallel to the planes 
determined by the axes.) Rotate the cube 2 radian in the qzz-plane and 
then 2 radian in the 2223-plane. Find the matrix Q that provides this 
motion and plot QC. 

FIGURE 6.16. 

6.2 Schur Decompositions 

In Chapter 3, we factored A = P J P - l ,  where J is a Jordan form, and 
in the following chapter we saw some of its uses. In this section we look 
at another version of this factorization, the case where we require P to be 
unitary. 

As shown in the picture in Section 1, unitary matrices comprise a small 
part of matrix space so we expect that in such a factorization, we will not 
achieve a form as simple as J .  To see what we might be able to do, we can 
use the Q R  factorization (Gram-Schmidt process) to write P = UR where 
U is unitary and R upper triangular. Then, substituting, 

A = PJP-'  = URJR-'UH. 

Since R, J ,  and R-' are upper triangular, so is the product RJR- ' .  Hence, 
we can write 

A = UTUH 

where U is unitary and T = RJR-' is upper triangular. Thus, A is not 
only similar to an upper triangular matrix T, it is unitarily similar to T .  
And as a consequence of similarity, the eigenvalues of A are on the main 
diagonal of T .  

In general, if A and B are n x n matrices such that A = UBUH for some 
unitary matrix U, we say that A and B are unitarily similar. (And if A,  
B,  and U have real entries, we say A and B are orthogonally similar.) 

We intend to show a direct way (without resorting to the Jordan form) of 
proving that every square matrix is unitarily similar to an upper triangular 
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matrix. To develop this unitary matrix version of Jordan's theorem, we need 
the following lemma, which gives a simple way to extend an orthogonal set 
to an orthogonal basis. 

Lemma 6.2 Let ul, . . . , u,. be pair-vise orthogonal nonzero vectors in Eu- 
clidean n-space. Then there are vectors u,+1,. . . , u,, such that ul,. . . ,217, 

ur+l, . . . , u, are pair-wise nonzem orthogonal vectors, and thus these vec- 
tors form a basis for  Euclidean n-space. 

Proof. We intend to solve for ur+l, . . . , u, one at a time. 
Consider 

Since 211,. . . , u, are pair-wise orthogonal nonzero vectors, and thus are 
linearly independent, [ul. . . u,] has rank r and hence so does 

If T < n, any echelon form of (6.5) has a free variable, and so there is a 
nonzero solution, say u,+1, to (6.5). 

ur+l for all k 5 r. Thus 211,. . . , u,, u,+1 are pair-wise orthogonal nonzero 
vectors. 

Now we continue the procedure to find u,+2 and then ~ , + 3  until u, is 
found. Thus we obtain n pair-wise orthogonal nonzero vectors. By Lemma 
5.2, these vectors give a basis for Euclidean n-space. w 

Note that since ufu,+1 = 0 (uk H u,+1 = (u,+I,uk)), uk is orthogonal to 

An example of the technique follows. 

Example 6.3 Let u1 = (1,1, l)t. To &end u1 to an orthogonal basis, we 
solve 

u;x = 0. 

The augmented matrix as 

There are two free variables, and a so~ution is u2 = [ -:I. Now sohe 
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The augmented matrix as 

Applying -RI + Rz, we have 

Thus with (Y an arbitrary scalar, 

53 = a 

5 2  = --a 

51 = --a. 

1 
2 
1 
2 

For a = 2 ( W e  can choose any nonzero a.), we have 

u3= [ 4. 
Thus u1,u2,u3 forms an orthogonal basis. 
If we normalize these vectors, we have 

an orthonormal basis. 

Now, to get the idea of how to find a unitary matrix U such that A = 
UTUH where T is upper triangular, we look at a small case. 

Let A be a 3 x 3 matrix. Let X be an eigenvalue for A with corresponding 
eigenvector u1, of unit length. Extend u1 to ul, u2, 213 an orthonormal 
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basis. Then, by partitioned and backward multiplication 

a start toward the triangular matrix. 
Now, we continue with B. Let A2 be an eigenvalue of B with v1 a 

corresponding eigenvector of unit length. Extend to an orthonormal 
basis, say V I ,  v2. Then 

= [VlV21[ A2 0 ff p ] 
where CY and p are determined by Bv2 = a01 + pv2. Setting V = [u1v2], 
we have 

Now, to get this back to 3 x 3 matrices, set U2 = [ 1. Then 

Setting U = UlU2, a unitary matrix, we have 

UHBU = [*] 
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where we set ,B = XJ. Using similarity, XI, Xz, and 
of A.  

are the eigenvalues 

More formally, we have Schur’s Theorem. 

Theorem 6.6 Let A be an n x n matrix. Then there is an n x n unitary 
matrix U such that 

A = U T U H ,  

where T is an upper triangular matrix. 

Proof. The proof is done in steps showing how. 
Step 1. (Finding Ul) Let X be an eigenvalue of A with z a correspond- 

ing eigenvector. Set u1 = 2 and extend u1 to  an orthonormal basis, 
U I ,  ~ 2 , .  . . , u, by Lemma 6.2. Set Ul = [ul. . . u,] . Then 

l l z l l z  

where the entries in column ck, are found by solving 

So, deflating, 

where B is an (n - 1) x (n - 1) matrix. Thus, we have the first row stag- 
gered. 

Step 2. (Finding Uk) Suppose 

where C1 is a (IC - 1) x (IC - 1) upper triangular matrix. Now, repeating 
step 1 on C,  we obtain a unitary matrix W ,  such that 

where /3 is a scalar. Set 
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an n x n unitary matrix. Then, deflating (to get a smaller matrix in the 
lower right corner), 

which has k staggered rows. 
Step 3. (Finding U) Set 

u=  ul.-.un-l. 

Then, U is unitary and 

UHAV = T 

an upper triangular matrix. 

A numerical example follows. 

Example 6.4 Let A = [ 1 -: 1. We find U and T in steps. I 

Step 1. (Finding U1) The eigenvalues of A are 1, i, -i. Let X = 1. A 

corresponding eigenvector is x = [ 1, so u1 = [ $ ] . Extending to 

an orthogonal basis, we have 

1 

3 

1 

UP= [ [ ;] 
-3 

and so 

Deflating we have 

I 
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Step 2. (Finding U2) NOW 

Note that X = i is an eigenvalue of C and has a corresponding eigenvector 

. Take v2 = [ $ ] and set W = 

i -- -& x =  [ -& i ] .  Thusv1= [ 2 i ]  

1 

. T h w U 2 = [  1 0  0 -G -4 '1.  Then w ] =  [ 0 2 4 4  

Step 3. (Finding U )  Set 

The proof of Schur's theorem also shows that if A has real entries and real 
eigenvalues, then A is orthogonally similar to a triangular matrix. Even 
without the real eigenvalues hypothesis, a real version of Schur's Theorem 
can be given. 

Corollary 6.1 Let A be an n x n matrix with real entries. Then there is 
an orthogonal matrix Q ,  szLch that 

1 0 0 T,, 1 
where each Tkk 1 X 1 or 2 X 2. 

(a) If Tkk is 1 x 1, Tkk = [A] where X is a real eigenvalue of A. 

(b) If Tkk is 2 X 2, then its eigenvalues are nonreal, complex conjugate 
eigenvalues (A and 1) of A. 

Proof. Exercise. 
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As we have seen, calculations involving a diagonal matrix are much easier 
than those involving a triangular matrix. Thus we now show when a matrix 
is unitarily diagonalizable (unitarily similar to a diagonal matrix). 

Let A be an n x n matrix. If 

A ~ A  = A A ~  

then A is called a normal matrix. (Examples of normal matrices include 
Hermitian matrices and symmetric matrices.) The simple condition given 
above determines precisely those matrices that are unitarily diagonalizable. 

Corollary 6.2 Let A be an n x n matrix and A = UHTU a Schur decom- 
position. Then A is normal if and only ij T is diagonal. 

Proof. The proof is as in Theorem 6.1, and so it is left as an exercise. 

If A is normal, then we know, by the previous corollary, that A is similar 
to a diagonal matrix D. Thus, 

A = PDP-l 

where D must be formed from the eigenvalues of A and P the corresponding 
eigenvectors, a calculation simpler than the Schur form technique. Actually, 
this P can be adjusted to form a unitary matrix U where 

A = UDUH 

To do this, suppose p , , p , + l , .  . . , p s  are those columns in P that are eigen- 
vectors for the eigenvalue Xi. Apply the Gram-Schmidt process to these 
eigenvectors to obtain u,, u,.+l,. . . ,us, an orthonormal set of eigenvectors 
for Xi. Replace p r , p , + l , .  . . , p ,  in P with %, u,+1,. . . ,us. Doing this for 
all eigenvalues of A yields a matrix U. To prove that this U is unitary, 
we need only show that if u, and uj belong to different eigenvalues then 
(Ui, U j )  = 0. 

Lemma 6.3 Let A be a n  n x n normal matrix. Let X and p be eigenvalues 
of A with corresponding eigenvectors x and y, respectively. If X # P, then 
k , Y >  = 0. 

Proof. Since A is normal, we can factor A = UHDU as assured by Corol- 

lary 6.2. For simplicity, we will now assume n = 3 and D = 0 X 0 . 

(The general argument is an extension of this case.) 
[ b i  1 ;] 

Now, if x and y are eigenvectors belonging to X and respectively, 

& = A X ,  A y = p y .  



Thus 

or, rearranging 

Set 

So we have 
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UHDUx = AX, UHDUy = P y  

DUX = XUX, DUy = PUy. 

w = us, e = u y .  

Dw = Xw, D z  = Pz. 

This says that the eigenspace (See D above.) for X is span {e l ,  e2} and for 
,f3 is span {e3}. Thus, we have that 

(w ,  z )  = ZHW = 0. 

(x, y) = (UHW, U H z )  = (w ,  z )  = 0 

Now , 

which is the desired result. 

Below, we give an example of unitarily diagonalizing a symmetric matrix, 
using the eigenvalueeigenvector approach. 

Example 6.5 We unitarily diagonalize A = 1 1 1 . Here XI = 3, [: : :] 
Xz = 0, AJ = 0. Corresponding eigenvectors are p l  = [ ; I 1  Pz = [ I -: 1 -p] di- [ -i 1,  and p3 = [ -!I, respectively. So P = 

agonalizes A .  Adjusting P to an orthogonal matrix, we apply the Gram- 
Schmidt process to the eigenvectors for X I ,  and then to those for X 2 .  This 

1 1 1 

gives q1 = [ 42 = [ -5 ] , and q3 = [ ] respectively. So 

z -3 

. AndA=QDQturhereD= 

75 O-x  
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We now show that, as seen in the example, symmetric matrices are always 
orthogonally similar to a diagonal matrix. (Complex numbers are not 
necessary for the factorization.) To do this, we need to show that symmetric 
matrices have real eigenvalues so that the previous work can be done using 
only real numbers. Actually, we can show a bit stronger result. 

Lemma 6.4 Let A be an n x n Hermitian matrix. Then each eigenvalue 
oj A is real. 

Proof. Let X be an eigenvalue, and x a corresponding eigenvector, of A .  
Then 

AX = A X .  

Multiplying through by xH yields 

x H A x  = XxHx. 

Taking the conjugate transpose of both sides, we have 

x H A H x  = L H x .  

Since AH = A, (6.7) can be written as 

X H h  = XxHx. 

Now equating the right sides of (6.6) and (6.8) yields 

h H X  = L H x  

Recall that x H x  = 11x11; > 0. Thus, 
- 

X = A. 

This implies X is a real scalar. 

So, we have the desired result below. 

Corollary 6.3 Let A be a symmetric matrix. 
similar to a diagonal matrix. 

Then A is orthogonally 

Proof. Apply Corollary 6.2 and Lemma 6.4. 

6.2.1 
If we take a spring-mass system, as shown in Figure 6.17,where ml = m2 = 

Optional (Motion in Principal Axes) 
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FIGURE 6.17. 

1, as given in Chapter 4, the positions x1 ( t )  and 2 2  ( t )  of the two particles 
satisfy 

-k2 ] x ( t )  = 0. XI1 ( t )  + [ k1 - i2k2 
IC2 

Notice that the matrix K = [ k1 - ;2k2 i: ] is symmetric due to the 

springs exerting the same force to the left as to the right. 
To solve (6.9), we orthogonally diagonalize K ,  say K = QDQt where D = 

diag (AI ,  XZ) and Q = [q1q2]. Plugging QDQt into (6.9) and rearranging, 
we have 

y” ( t )  + Dy ( t)  = 0 (6.10) 

where y ( t)  = Qtz ( t )  or 

QY ( t )  = 2 ( t )  . (6.11) 

Equation (6.11) can be interpreted as a change of coordinates from those 
determined from the basis Y = {q l ,  q 2 )  to the original vectors. Tradition- 
ally, the vectors q1 and qz are called principal axes for the Y-coordinate 
system. 

Equation (6.10) describes the motion of the particles with respect to the 
Y-coordinates. In this coordinate system we have, from (6.10), 

y; ( t )  + XlYl = 0 
y; ( t )  + x2yz = 0. 

Solving these equations, we get 

Using that 

a cos ( f i t )  + sin ( f i t )  = r cos (At + 6) 
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where r = d m  and 6 satisfies 

CY -P cos6 = -, sins = -, 
r r (6.12) 

we have 

where TI,  61 and r2, 62 are given by (6.12). And we see that with respect 
to the yl-axis (determined from q1) the motion is like cos (amplitude = T I ,  

period = 27r/&) as it is with the y2-axis. Understanding the motion 
with respect to these axes gives us some view of y ( t ) ,  and thus x ( t) .  

To firm up the discussion, we look at an example. 

[ -; Example 6.6 Let K = Then 

xtt + K x  = 0 

can be described, in t e r n  of the principal axes as 

y" + Dy = 0 

where A1 = 4.5616 and XZ = 0.4384. 

For simplicity, suppose y (0) = [ ] and y'(0) = 0. Then 

y1 ( t )  = cos ( A t )  
= cos (2.1358t) (period = 2.9419) 

= cos (0.6621t) (period = 9.4895). 

Thus, if wegraph (yl(t),yz(t))t, which is the same as graphing ( x I ( t )  , ~ ( t ) ) ~ ,  
we can see its shadow on the y1-axis as y1 ( t )  and on the y2-wi.9 as y2 ( t ) .  

In looking at Figure 6.18, we see that y1 (t)  achieves 1 about three times 
from its initid position while y2 ( t )  achieves it about once (agreeing with 
their periods). So, we have some view of what is going on. 

To see how intricate the graph is, we look at it for t = 0 to t = 300. (See 
Figure 6.19.) 
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FIGURE 6.18. 

I 
1 1.5 

-1.51 
1.5 -1 0 . 5  0 0.5 

yl=cor(213yu) 

FIGURE 6.19. 

6.2.2 MATLAB (Schur) 
For a given n x n matrix A the command for the Schur form T is given by 
schur ( A ) .  To obtain U and T ,  use [V,T] = schur (A) .  If A is normal, T 
will be diagonal. 

Since MATLAB doesn't provide Jordan forms, if A is defective (or nearly 
so), the Shur factorization can often be used in its place. Numerically, this 
factorization can be found rather accurately. We provide an exercise solving 
systems of differential equations in this manner. 

To see more, type in help schur. 
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Code for Graphics of Example 6.5 

t = linspace(0,4 * pi, 100) ; 
plot (cos (2.1358 * t )  , 

hold 

axis([-l.5 1.5 - 1.5 1.5)) 

cos (0.6621 * t)) 
plot (1, 1, '0,) 

% To get the graph off the 
edges of the picture. 

The second picture changes lime 1 to 
t = linspace(0,300,600) ; 

Exercises 
1. Find a unitary matrix U such that UHAU is upper triangular. 

(b) A = [  -1 0 ' 1  
4 2 1  

(a) A =  

-3 6 -3 'J (c) A =  1 -2 L 
2. Which matrices are normal? 

1 1 1  
(c) [-: ; ]  (4 [ l  1 1 1  1 1  

3. Prove Corollary 6.1 for 4 x 4 matrices. Assume A has no real eigen- 
values. 

4. Prove 

(a) Corollary 6.2. 
(b) Lemma 6.3. 

5. Unitarily diagonalize A using eigenvalues and eigenvectors. 
( a ) A = [ l  2 1 1  2 I ]  ( b ) A = [ ! i  a ]  

1 1 2  

6. Prove that a unitary matrix is normal. 

7. Let A = [ 1. Find two different Schur decompositions of A. 
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8. Find a matrix that is diagonalizable but not unitarily diagonalizable. 

9. Prove that if A is normal, so are the following. 

(a) AH 
(b) UHAU where U is unitary 

10. Is the product of two symmetric matrices symmetric? 

11. Let T be a triangular matrix which is not diagonal. Show that T is 
not normal. 

12. Give a direct proof, using the proof of Schur’s theorem as a guide, 
that A is unitarily similar to a lower triangular matrix. 

13. Prove A is unitarily similar to a lower triangular matrix by using 
Schur’s Theorem on A H .  

14. For the spring-mass system of Chapter 4, Section 1, let the masses 
be ml = 1, m2 = 1 and the spring constants IC1 = 1, IC2 = 1. So the 
equation is 

X I 1  + Kx = 0. (6.13) 

(a) Find the solution to (6.13). 

(b) Adjust the solution so that x (0) = [ ; ] , x ’ ( O ) =  [ - :I- 
(c) Draw the position of the masses at time t = 1,2,  and 3. 

1 cos0 sin0 15. (Optional) The graph of the orthogonal matrices sin - cos [ 
(the reflections) is a circle as was the graph of the rotations. Do these 
circles intersect in R2 2? 

16. (MATLAB) Solve 

X I = [ ;  (6.14) 

(a) Tiy the eigenvalue-eigenvector approach. 
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(b) Use the Shur form and solve 

9' = Ty 

where y = Qtx .  Thus 

Y (0) = Qtx (0) . 

(Recall, z ' ( t )  = A z ( t )  + f ( t )  has solution z ( t )  = z(0)eAt + 
ext s,' e-x+f  ( T )  d ~ . )  Convert this solution back to that of (6.14). 

i 
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Convert to a 

c 
Problem mvolvmg 

A ). problem involving 

Singular Value Decomposition 

In this chapter we show a decomposition of a matrix A (called a singular 
value decomposition), 

A = UCVH 

where U and V are unitary and C a diagonal matrix. The way this de- 
composition is used (See Figure 7.1.) is often like that for the previous 
decompositions. However, the kinds of problems on which a singular value 

Convert to a Solution to 
solution to problem problem involving 

mvolvmg A 

FIGURE 7.1. 

decomposition is used are different from those solved by previous decompo- 
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sitions. The problems solved here usually involve maximizing or minimizing 
lengths or distances (which includes approximations), or involve shapes or 
figures in geometry. 

7.1 Singular Value Decomposition Theorem 1 

In this section, we show how to obtain a singular value decomposition of a 
matrix A. To get the idea of how this is done, we first look at the special 
case where A is nonsingular. 

Since A H A  is Hermitian, using Schur’s theorem, 

VHAHAV = D 

for some unitary matrix V = [ V I . .  . IJ , ] ,  where v, is the i-th column of V ,  
and diagonal matrix D. Recall that D = diag (XI, ..., An) where the Xi’s 
are the eigenvalues of AHA. Rearranging we have 

(AV)H (AV) = D. (7.1) 

The key idea for the decomposition comes from making the appropriate 
observations in (7.1). To do this, recall that for vectors x and y, 

Thus, (7.1) tells us that the columns of AV are orthogonal, and so AV is 
almost orthogonal. And, it says that the square of the length of the a-th 
column A v ~ ,  is Xi  and so its length is a. Thus setting ui = 6 for all i 
and scaling the columns of AV, we have that 

is unitary. And, we have 

AV = [ A v ~  # .  . AIJJ 

= uc. 

where C = diag (01,. . . , u,). Thus, we have the decomposition, 

A = UCVH.  

i 

i 

! 
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To develop this work more generally, we proceed as follows. Let C = [cij] 
be an m x n matrix. If oij = 0 for i # j ,  we call C a rectangular diagonal 
matrix and write 

C = diag (ol,.. . , cs) 

where s = min {m, n}  and 0; = oii for all i. 

Example 7.1 As examples of rectangular diagonal matrices, we have the 

L J 

The major theorem in this section describes a singular value decomposi- 
tion (SVD) of an arbitrary matrix. 

Theorem 7.1 Let A be an m x n matrix and s = min{m,n). Ij A has 
rank T ,  then 

(a) There is an m x m unitary matrix U, an n x n unitary matrix V ,  
and an m x n diagonal matrix C = diag (ul,. . . , us),  such that 

A = U C V H  

where 

The scalars 6 1  , . . . , e, are called singular values and are the square 
roots of the nonzero eigenvalues oj AHA, ordered by size. 

(b) The decomposition can be expanded as 

A = 01ulvF +.  . * + CJ~U,W, H 

where, expressed in terms of their columns, U = [ul.. .urn] and V = 
[w1 . . . wn] . 

Proof. We prove both parts. 
Part a. We give the proof in steps, showing how U, V ,  and C are found. 
Step 1. (Finding V) Note that A H A  is an n x n Hermitian matrix. Let 

V be an n x n unitary matrix that diagonalizes the n x n matrix AHA, Le., 

vH (A"A) v = D (7.2) 
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where D = diag ( A I , .  . . ,A,) and A1 2 A2 2 . e * 2 An. ( h a l l  Hermitian 
matrices have real eigenvalues.) Observe that (7.2) can be written as 

(AV ) H  (AV = D 

or setting W = AV , t 

j WHW = D. 

Step 2. (Finding E) Using that w, is the i-th column of W ,  we have 

for some integer T .  Now, let C be the m x n rectangular diagonal matrix, 
C = diag (ul, . . . ,us) where 

t 

An Thus, A1 2 * a *  2 A, > 0 = Ar+l = ... = H A, = W, W, = ( w , , ~ , )  2 0. 

Jr;l if A, > o 
0 otherwise. 

Note that these ui are completely determined by the eigenvalues of A H A  
and thus from A. 

Step 3. (Finding U )  By (7.2), the columns of AV are pairwise orthog- 
onal. (Some of the last columns could be 0.) And the i-th column of AV 
has length ui. Normalizing the nonzero columns, we have 

for all i, i 5 T.  Extend u1,. . . , u,. to an orthonormal basis, say, 

U l ,  . . . , U,, . . . ,UT 

and set 

u = [UI . . . Urn]. 

Then, using that Av; = uiui for i 5 r and that u,+~ = 
backward multiplication, 

= us = 0, and 

AV = UC 

and so 

A = U W H .  

Finally, r = rank C = rank A. 
Part b. Write 

i 
I 

, 



I 
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where Ei is the m x n matrix having a 1 in the ai-th position and 0’s 
elsewhere. So 

A =  u ( u ~ E ~ ) v ~ + . . . + u ( u , E , ) v ~  
= u1u1v1 + . . . + usu3v, 
= U l U l V l  + . . . + UTUrVr . 

H H 

H H 

This is the desired result. 

An example may help. 

Example 7.2 Let A = We find an SVD of A and its ex- 

pansion. We do this in steps. 
Step 1. (Finding V )  Orthogonally diagonalize AtA. Since AtA = 

[I :I[:: : I = [ ;  2 2 2  ; ] , w e f i n d V = [ *  3 -3 O - 3  -$] 
andD= [ O  0 0 1 .  

. 

& A *  

6 0 0  

0 0 0  
L J 

Step 2. (Finding E) Since A 1  = 6 ,  A2 = A3 = 0 and A is 2 x 3, we have 

6 1  = &, u2 = 0,  and C = 
J 

Step 3. (Finding U )  To do this, compute 

1 

Set u1 = ‘Avl a1 = [ $ 1. Extend to an orthonormal basis by setting 

u2= [ -A & ] .  ThenU= [ 5 -* ] . Since 
3 3  

AV = UC, A = UCVt = 



1 
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Step 4. For the expansion, we have 

i 

In Chapter 3 we gave an expression for llA1I2 mentioning that we would 
prove this later. This proof can now be given. 

Corollary 7.1 Let A be an m x n matrix. Then 
(a) IIAII, = 017 
(b) c2(A) = IIA1I2 11A-l 
Proof. We prove both parts. 
Part a. We prove this part for n x n matrices leaving the general case 

Let A = UCVH be a singular value decomposition of A. Recall that 

= 2, when A is n x n and nonsingular. 

as an exercise. 

llA1I2 = llUCVH(l, = llCl12 since U and V H  are unitary. i 
Now, 

So, llZl12 5 C T ~ .  Further, since lle11I2 = 1, IIC1I2 2 IICelII, = 01. Thus 

Part b. As in Part (a), we can show that llA-1112 = &. Thus, putting 
i llCll2 = 01. 

together, c2 ( A )  = IIA112 IIA-1112 = e. W 

Perhaps the best known use of singular value decompositions is that they 
can be used to least-squares solve problems. To see how, let A be an m x n 
matrix and b an m x 1 vector, and consider the system of linear equations 

Ax = b. (7.3) 
In many problem, it is known that (7.3) has no solution. In any case, we 
can look for a ‘least square’ solution, that is, a vector x such that 

IIAX - b11* (7.4) i 
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is the smallest possible. (Thus, the left and right side of (7.3) are as close 
as they can be.) 

To find a least-squares solution, since multiplying by unitary matrices 
doesn’t change lengths, IIAx - bl12 = (ICVHx - UHbll, for all x, so (7.4) 
has the same least-squares solution as 

Thus, simplifying VHx = y and U H b  = c, we least-squares solve 

c y  = c 

or 

To get the left and right sides as close as possible, we need 

Y 1  = C l I U 1  
... 

yr = cT/uT 

and we assign 

.. 
yn = 0. 

(Actually, yr+l , .  . . , yn could be assigned any values. They are free vari- 
ables.) 

Thus, 
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x=v 

and 

- c1/01 - 

C r I 0 ,  

... 

0 

0 
... 

- 

Example 7.3 Consider 

h = b  

1 -1 [-:I+ where A = [ -1 

5 2  [ -: ] over all x yields span { [ -; ] , [ -; I), and observe in Fzg- 
ure '7.2 that b is not in this span. So there is no solution to the equation 

] and b = [ 1. Note that Ax = X I  

Y 

I 
I I 

I 
I'. I 

I X  
I )  

I 
I 

FIGURE 7.2. 

Ax = b. 
To least-squares solve this equation, we factor A = U C V H ,  yielding U = [ $ * ] , E =  [ i ] ,  a n d V H =  [ * -*I. Wemultiply 
-75 75 7 5 7 3  

h = b  

through by U H  to  get 

CVHx = UHb. 
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Simplifying, set y = VHx and solve 

Cy = UHb 

OT 

which yields 

1 
2y1 = - Jz 

We set y2 = 0 and by  solving, y1 = &. Hence, y = 1 $ 1. Thus, 
L J undsox=V[ y ]  1 = [ -11. 

Checking visually, since 

we see that Ax, marked with an o in the graph, is the closest vector. 

Although the SVD approach is a very accurate method (in terms of 
computer computations) for finding least-squares solutions, other methods, 
such as the QR-decompositions, are often used instead. (They are faster.) 

Concluding this section, we show that least-squares solutions can be ob- 
tained by solving the classical normal equations. 

Theorem 7.2 Let A be an m x n matrix and b an m x 1 vector. 
least-square solutions to 

The 

Ax=b  

can be found by  solving the normal equations 

AHAz = AHb. 

Proof. Let UCVH be a singular value decomposition of A. Then, the 
least-squares solutions to 

A x = b  



244 7. Singular Value Decomposition I 

are the least-squares solutions to i 
C V H x  = U“b. (7.5) , 

Multiplying through by C H  yields 

CHCVHx = CHUHb. (7.6) 

We now need to make an observation. For it, let C = 

U H v =  7 . Then (7.5) is [:I i 
[;; 3 0 0  : ] v H z = [ ; ]  

[; ; ~ ] v H x = [ q .  

and (7.6) is 

Now getting the sides as close as possible, we observe that the ‘solutions’ 

Now, multiplying (7.6) through by V, which won’t change the solutions, 
to (7.6) are precisely the ‘least-squares solutions’ to (7.5). 

yields, 

VCHZVHx = VCHUHb (7.7) 

and inserting UHU yields 

VCHUHUCVHx = VCHUHb 

or 

A H h  = AHb. 

i 
i 

I 

Thus, the solutions to these normal equations are the least-squares solu- 
tions to Ax = b. m I 

Example 7.4 Using the data of the previous example, Example 7.3, we 
have 

I 
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temperature tl t 2  . . .  
chirps c1 c2 

To least-squares solve 
Ax = b, 

we look at the normal equations 

AtAx = Atb, 

t m  

Cm 

or 

2 -2 [ -2 2 ] x = [  - : I  
which has solutions. Using Gaussian elimination, we get 

where a! i s  an arbitrary scalar, as the least-squares solutions to  Ax = b.  

Fora! = --a, x = [ -4 ] our least-squares sohtion,  with smallest norm, 

found in the previous example. 

... 
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I C 

FIGURE 7.3. 

or in matrix form 

(Here, some of the t i ' s  could be the same.) Now, we want (Y and /3 
so that the difference between the two sides is as small as possible. 
Thus, we want (a + /3t1 - C I ) ~  + . . - + (a + Pt, - as small as 
possible. (RRcall that the minimum of a square root can be found by 
finding the minimum of the radicand.) This assures us that we are 
getting the minimum of the sum of the squared distances between 
the line points (ti, ct + @ti) and the data points ( t i ,  ci). (See Figure 
7.4.) From this we see that we want a least-squares solution to the 

I- ti 

FIGURE 7.4. 

equation. 

2. Least-squares fitting curves: Here we extend the work given in 1 by 
looking at data. For this recall that in Chapter 3, Section 1, we saw 
how to find a polynomial that fits through data. For example, if the 
data is 

2 1 1  2 3 4 5 
I -  

y I 0.9 4.2 8.7 16.2 24.5 
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we can find a polynomial p ,  of degree at most 4, which passes through 
the data. The data and this polynomial are shown in Figure 7.5, the 
graph of the polynomial being shown with the dashed curve. 
In looking at this polynomial, especially at the ends, we might wonder 
if the polynomial describes the relationship of this data. Perhaps, by 
just looking at the data, we might feel that the data, which probably 
has some error, is more like a quadratic. Thus, we least-squares fit 
a polynomial of degree 2 to this data. Since q (x) = ax2 + bx + c is 
the general form for a quadratic, we can least-squares solve for the 
coefficients by solving 

ax2 +bx + c =  y 
a + b  +c= 0.9 
4a +2b + c =  4.2 
9a +3b + c =  8.7 
16a +4b + c =  16.2 
25a +5b + c =  24.5 

MATLAB gives this function by using the command polyfit(x, y, 2), 
and using this we find 

q (x) = 0.9286~~ + 0.33486~ - 0.3600. 
The graph of this polynomial is also in Figure 7.5, and we probably 
would agree that this fits the data better than does p .  Of course, in 
making such a decision, knowing where the data is from, and a sense 
or feel for that problem is helpful. 

Graph o l lus l  squams lltlnp CUM lanes CUM that I ta  data 

35 - 

30- 

25 - 

20 - 
15 - 
10 - 

FIGURE 7.5. 

3. Space problem: Note that 

x + y + z = l  
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is a subspace of dimension 2 in R3. And, note that (1,1, l)t is not on 
this subspace. We want to find the closest point on the subspace to 
(1,1,1)'. Observe in Figure 7.6 that (1, - l , O ) t  and ( l , O ,  -l)t span 

FIGURE 7.6. 

the subspace. Thus, we want to find those scalars 21 and 52, which 
cause the left side of 

to be as close to the right side as possible. So, we need to find the 
least-squares solution to 

[ -; :] [::I = [ ;] 
0 -1 

Of course, this problem could also be solved by Fourier sums or by 
using the orthogonal projection matrix. 

7.1.2 MATLAB (Least-Squares Solutions to Ax = b) 
For the computations used in this section, we can use the following. 

1. Least-squares solution to Ax = b where A is m x n and m # n: 
to produce a least-squares solution, we can use A\b. We would like 
to describe our problems here so that the columns of A are linearly 
independent. 

2. Singular Value Decomposition: To compute the SVD of a matrix A,  
use the command [V,S,V]  = svd(A). Recall A = U W t .  The S 
given is C. If all we need is C, the command is svd (A) ,  which gives 
the singular values for A. 
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Type in help mldivide, help svd for further information. It may also 
See be interesting to check documentation on how SVD is computed. 

Bibliography. 

Code for Picture in Optional 

1 2 3 4 5 1 ;  
y " = I  = .9 4.2 8.7 16.2 24.5 ] ; 
P =polyfit(z, Y, 4) ; 
Q =polyfit(x, Y, 2) ; 
xi =linspace(O, 6,50) ; 
z =polyval(p, xi) ; 
w =polyval(q, xi) ; 
plot(x, y, 'O',xi, z ,  ': ' ,zi,w) 

Exercises 
1 1  1. Solve [ ] x = [ ] by using the 

(a) SVD approach. 
(b) Normal equations approach. 

2. Least-squares fit a line through 

3. Write out the system of linear equations whose least-squares solutions 
gives the quadratic (y = ax2 + bz  + c) which least-squares fits *- 

4. Find the point on the line y = x closest to the point [ ] using 

(a) The least-squares approach. 
(b) The orthogonal projection matrix. 
(c) The Fourier sum approach. 

5.  Find an SVD for the following. 

(b) A = [ :  n] 
1 1 1  (c) A = 
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6. Derive the SVD theorem starting with 

U ( A A ~ ) U ~  = c 
and proceed to find V .  

7. Let A = [ zi: zi: ] andb = [ 2 1. Letz = [ ] and f ( 2 1 , ~ )  = 

llAx - 4 2 .  

(a) To find the critical points of f, we would solve 

Show that the solutions x to these equations satisfy 

AtAx = Atb. 

(b) Can we do the same thing with ~ ~ ~ ~ ~ l ?  Explain. 

8. Let A be an m x n matrix. Suppose UICVIH and U2CV2H are singular 
value decompositions of A. Is U1 = U2, VI = Vz? 

Prove that the singular values of A are / A i /  , . . . , ]An/.  

diagonalization of A. Is UDUH an SVD of A? 

11. If UCVH is a singular value decomposition of A, prove that V C H U H  
is one for A H .  (Thus, we can convert an m x n problem into n x rn 
problem.) 

9. Let A be an n x n symmetric matrix with eigenvalues A I , .  . . , A,. 

10. Let A be a Hermitian matrix. Suppose A = UDUH is a unitary 

12. Explain when we can get an SVD using only real numbers. 

13. Prove Corollary 7.1, 

(a) Part (a) for m x n matrices. 

(b) Part (b). 

14. Rewrite A = UCVH into o D v H  by truncating columns of U and 
Here A = rows of VH, where D = dzag(o1, ... ,uv) is r x r. 
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y 

15. Prove that the least-squares solution computed, from (7.3) on, is the 

16. Let A = UCVH be an SVD of A. 

least-squares solution of smallest norm. 

x - 1 0  1 2  3 
.9 .1 1.1 3.9 9.1 

(a) Prove the columns of V (called right singular vectors) are eigen- 
vectors for A ~ A .  

(b) Prove the columns of U (called the left singular vectors) are 
eigenvectors of A A ~ .  

(c) Show by an example, that if left and right singular vectors of A 
are found, U and V H  formed from these singular vectors, then 
UCVH need not be A. 

17. (MATLAB) Two parts: 

(a) Compute the least-squares solutions to 

i. [ i ; ] x = [  i ] .  
ii* [ 1 1 ] x = [  1 : q .  

1 1  

(b) Find the SVD of 

i. [ f 
-2 

-;I 3 ii. [ *: 

-.3 
3.1 0 2 1  

18. (MATLAB) Consider the data given below. 

(a) Find the polynomial that passes through this data. 
(b) Find the quadratic polynomial that least-squares fits this data. 
(c) Plot the graph of both polynomials and the data. 

19. (MATLAB) Suppose we want to estimate the value of a spring con- 
stant, say, for one of our spring-mass problems. By stretching the 
spring and recording the force to do so, we collect the following data. 

Using Hooke’s Law: Force = spring constant times displacement, use 
least-squares and the data above to estimate the value of the spring 
constant. (Recall measurements can be in error.) 
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7.2 Applications of the SVD Theorem 

The SVD theorem is a remarkably strong tool in matrix theory. In this 
section, we look at a few additional uses of this theorem. In these appli- 
cations we assume that the matrix A has SVD as described in Theorem 
7.1. 

1. Distance to the closest rank k m x n matrix 

Given m and n, define 

Rank k = (B : B is an m x n matrix having rankk}. 

(Note that Rank k is not a subspace.) Define the distance and relative 
distance from an m x n matrix A to Rank k as 

d (A,  Rank k) = min llA - Bl12 
llA - Bll2 

llAll2 
drel (A,Rank k) = min 

where the minimums are over all B E Rank k. (We will show minimums 
exist.) The result we want follows. 

Theorem 7.3 Let A be an m x n mat& of rank T .  Then, if k < T ,  

(a) d(A,Rank k) = ~ k + l .  

(b) drel (A,Rank k) = y. 
Proof. We prove both parts. 
Part a. Note that if B E Rank k, since multiplying by unitary matrices 

doesn't change distance, 

IIA - B112 = lIUCVH - 4 1 2  

= IIC - UHBVII, 

= (IC - CII, 
where C = UHBV and C E Rank k. Thus 

d(A, Rank k) = d(C, Rank I C ) .  

We now break Part (a) into two parts. 

i. d ( C , C )  2 Qk+l for all C E Rank k. To see this, let C E Rank k. 
For simplicity of notation, we will assume that first k columns of 
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C are linearly independent. Define an (n - IC - 1) x n matrix E in 
partitioned form, as 

E = [ O  I ]  

where I is the (n - k - 1) x (n - k - 1) identity matrix. (If n- k- 1 = 
0, E is 0 x n, i.e.,it won’t appear in what follows.) Then, since 
rank C = k, 

rank [ g ]  = k + ( n - k - l ) = n - l .  

Thus there is an 2, 1 1 ~ ( ( ~  = 1, such that [ ] 2 = 0. Note that, 

since Ex = 0, xk+2  = - 3 .  = X, = 0. 
Now 

2 ~‘k+l11X1I2 = Q+l* 

Thus, since C was chosen arbitrarily, (i) follows. 

ii. d(C,C)  = c k + l .  To show this, by (i), we need to find only one 
C E Rank k such that Il(C-C)l12 = O k + l .  For this C, set C = 
dzag (01,. . . , Q, 0,. . . ,O) .  Then, as in the exercises, Il(C - C)I12 = 
g k + l -  

Part b. Apply Corollary 7.1, and (a) of this theorem. 

Using the theorem, if A is nonsingular, then by (a) the closest singular 
matrix to A has rankn - 1 and the distance is on. Also by (b) 

On - 1 -- 
c2(A) - 6 1  

IIA - BII, 
llAll2 

= min 

where the minimum is over all singular matrices B. Thus 

This says that over all nonsingular matrices A, such that , say, llAl12 = c, 
c is a constant, the matrices which have the larger condition numbers are 
closer to being singular, and vice versa. 
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2. Moore-Penrose Pseudo-inverse of A 

We know that the inverse exists for all nonsingular matrices. Actually, 
however, the notion of inverse has been extended to all inatrices (even 0). 
We will show how. 

The MoorePenrose pseudo-inverse of an m x n matrix A is an n x m 
matrix X such that 

i. A X A = A .  

ii. X A X  = X .  

iii. AX is Hermitian. 

iv. X A  is Hermitian. 

As we now show, each matrix has precisely one pseudtrinverse. 

Lemma 7.1 Let A be an m x n matrix. 
matrix X which satisfies (i) through (iv). 

Then there is a unique n x m 

Proof. We prove two parts. 
Part a. For the existence, set 

X = Vdiag (nF1, .  . . ,n;',O,. . . , 0 )  U H .  

Then X satisfies (i) through (iv). 

(iv). Then 
Part b. For the uniqueness, suppose X and Y are solutions to (i) through 

X = X A X  = X X H A H  = X X H A H Y H A  = XAXAY 
= XAY = XAYAY = A ~ X ~ A ~ Y ~ Y  = / iHyHy  
= Y A Y  =Y .  

Thus X = Y .  4 

Since A has precisely one pseudeinverse, we can denote it by +. And 
since, if A is nonsingular, A-l  satisfies properties (i) through (iv), we have 
that A+ = A- l .  So the pseudo-inverse extends the notion of the inverse 
to all matrices. 

To see some use for this generalization, recall that if A is nonsingular, 
then 

A x = b  

has a solution x = A-lb. We show an extended such result for all matrices. 

Corollary 7.2 Let Ax = b be a system of linear equations where A is an 
m x n matrix and b is m x 1 vector. Then x = A+b is the least-squares 
solution to this equation that has the smallest 2-norm. 

V 
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Proof. To least-squares solve Ax = 6 ,  we least squares solve CVHz = 
Now note that the least-squares U H b  or 

solutions to Cy = U H b  are precisely the solutions to 
Cy = U H b  where y = V H x .  

C+Cy = P U H b  (7.8) 

where 

C+ = diag (OF', . . . ,0,',0,. . . , O )  . 

For example, if C =  [: 0 2 I] 0 and U H b =  [ g ] , t h e n C y = U H b i s  

3y1= 4 
2y2 = 7 

0 = 5, 

while C+Cy = C+UHb is 

4 
Y1 = - 3 

7 
Y2 = - 2 
0 = 0. 

Let @ be the solution to (7.8) where all free variables are set to 0. Then 
C+C@ = y so (7.8) becomes 

@ = C+UHb. 

Since $ = V H 2  (i defined by f = V@) 

V H i  = C+UHb 

or 

2 = VC+UHb 
= A+b. 

Finally, since 1 1 @ 1 1 2  is the smallest possible solution to (7.8), and 11%112 = 
1 1 @ 1 1 2 ,  I(PII, is the smallest least-squares solutions to Ax = b, the desired 
result. rn 

There are many other uses of the psuedeinverse. 
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3. Computing range and null space 

To compute the range and null space for A,  recall that 

AV =UC. 
By partitioned multiplication on the left and backward multiplying on the 
right, we have 

Av, = U,U~ 

f o r i = l ,  ... , r a n d  

Avi = 0, otherwise. (7.9) 
Both of our results will be obtained from (7.9). To see this, recall from 
Section 3 of Chapter 2 that, if V I ,  . . . , v, is a basis for En then Avl, . . . , Av, 
form a spanning set for the range of A. Thus, the vectors ( ~ 1 ~ 1 , .  . . , a,ur, 
and thus u1,. . . , u, span the range of A, i. e., 

R(A)  = span {ul,. . . , uT} 

For N(A) ,  suppose Az = 0. Then by writing 2 = a 1 q  + -.  . + anvn, and 
noting (7.9), we see that 

h = ( a l u 1 )  + * * + a, (arur) 
= ( a l a l )  111 + * . . + (arc,) ur 
= 0. 

Since u1,. . . ,u, are linearly independent, a l u l  = 0,. . . ,a,.u, = 0 or 
+ a,v,. And any vector in 01 = 0,. . . ,a, = 0. Thus, z = ar+lvr+l + 

this form is in N ( A ) ,  so 

N ( A )  = span {v,+l, .  . . , v,} . 
(Numerically, this is a good way to compute R(A)  and N(A) . )  

[Vr+l. . . v,], then U1Ui and 
R(A) and N ( A ) ,  respectively. 

As given in Chapter 5, Section 4, if we set U 1  = [UI. . . u,] and VZ = 
are orthogonal projection matrices onto 

Example 7.5 In Ezample '7.2 we showed for A = 1; ; 1 t h a t U =  

L V "  

Thus, we have 

A 
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a lane in R2, and 

a plane in R3. 

4. Computing numerical rank 

Note that rank A is not a continuous function of the entries of A. For 
example, let A (e) = 1 ‘le 1 and r ( e )  = rankA(e). The graph of 

r ( E )  is 
L 1 

given in Figure 7.7. Thus r is discontinuous at E = 1. 

I 

c. 

L , 

-- 

FIGURE 7.7. 

Because of discontinuity, it can be difficult to compute rank. For exam- 

The singular value decomposition, 
ple, MATLAB says it will ‘approximate’ the rank of a matrix. 

A = UCVH 

is often used to estimate rank; a tolerance 6 (estimating what singular 
values may actually be 0 but do not appear so due to rounding) is given. 
If 

then the numerical rank is set equal to T .  MATLAB uses 

6 = to1 = max (m, n) . IIA1I2 . eps, 

where our eps = 2.2204 x 
computations are done in about 15 digits.) 

(a MATLAB number which indicates 



258 7. Singular Value Decomposition 

As an example, if we define Q = 7 , C = diag (100, , L -;I 
and A = QEQt,  then MATLAB gives rankA = 1. Note that 

6 = 2 x 100 x 2.2204 x 

= 4.4408 x 10-l~ > u2 = 1 0 - l ~ .  

So, rankA was estimated at 1. (Here, we are looking at a rigged problem.) 

5. Data compacting 

Suppose, for simplicity, we have a 3 x 3 array of pixels which can be lit 
to form pictures. (Pixels could be in different colors, but we will use black 
and white.) We associate a 3 x 3 matrix A with aij = 1 if the ij-th pixel 
is to be lit and 0’s otherwise. An example is below. 

A =  1 0 0  L [: : I] 
Note, to represent “L,” or any figure in our 3 x 3 array of pixels, we need 
to store 9 entries in the array. 

The singular value decomposition of A can be written as 

H A = 0 1 ~ 1 ~ 1  + O ~ U ~ V ;  

- .5 

-.707 
= 1.85 [ -.5 ] [-.924,-.384,0] + .715 

-.5 
- .5 

-.707 
[-.384, -.924,0] 1 

1 .855 .355 0 .137 -.330 0 
.855 .355 0 + .137 -.330 0 . 

= [ 1.21 .523 0 ] [ -.194 .467 0 

If we use a simple rounding rule on c1u10p that entries of .5 and above are 
1’s and that those less than .5 are O’s, u1ulvf determines the picture. (It 
can be that on larger problems, n x n rather than 3 x 3, u l u l v ~  +azuzw~ 
may be required to produce the picture, or we may need even more terms. 
However, it should be observed that 01 2 u2 2 and lluillz = 1, llvjl12 = 
1 for all i and j ,  so we expect to add matrices of smaller size each time.) 

Counting entries 
which we need to form L, we have 

Thus to keep L we need only retain ul ,  u1, and 01. 

I(f0r u1) + 3(for u’) + 3(for tf) = 7 

Of course, this is a reduction of 2 from the original 9 entries we needed to 
keep. (Perhaps 22% would be a better view.) However in larger problems, 
the savings can be great. 
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6. Representations of linear transformations 

The SVD gives an interesting view of the linear transformation L ( x )  = 
Ax, where A is an m x n  real matrix. To see this, set A = U C V H .  Using the 
columns of U and V, define 2 = {q, ..., urn} and Y = { V I ,  ..., vn}.  Then 
Z and Y are orthonormal bases for the codomain R" and the domain R" 
of L,  respectively. And, if t = [.Iz and y = [.IY, we have that 

U z  = x and V y  = x 

are the change of coordinates from these bases, respectively, to the given 
vectors. 

We now convert L ( x )  = Ax, so the domain is given in terms of the 
coordinates using Y and the codomain given in terms of the coordinates 
using Z. To do this, change the coordinates of Ax into those for the basis 
Z by multiplying them by U H .  Thus we have 

UHAx.  

And we change the coordinates of x to those for the basis Y by replacing 
IL: by V y ,  getting 

UHAVy.  

Thus, 

U H A V y  = UHUCVHVy  = C y .  

Hence, in terms of new coordinates in the domain and codomain, (See 
Figure 7.8.) 

FIGURE 7.8. 

An example may help. 
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Example 7.6 (Collapsing of space) Let A = [ i i ] .  A n ~ ~ D o j A i s  

0.7071 -0.7071 ] [ 3 . 1 y  
] [ 0.4472 0.8944 ] 

0.7071 0.7071 -0.8944 0.4472 ' 

h m  this, Y = { v l , m  I={[  o.8gM] ' [  0.4472 -::;4} a n d Z = { W L 2 I =  

{ [ ::;:;: ] [ -::g;i I} are bases for the domain and codomain, re- 

spectively. (See Figure 7.9.) 

I '  YI . ,  q . I  I 

! : 

. '  ,)c/ 
. .  . I. . '.I 

' .  
~ 

FIGURE 7.9. 

I n  terms of the coordinates of these bases, the transformation is described 
as 

Thus, the y2-mi3 is collapsed (orthogonally projecting all points in R2 onto 
the y1-axis), and the yl-mi3 is then stretched by  3.1623 and laid on the 

el-axis. (Note L [ t ] =3.1626 [ ; ] . I  

7.2.1 
The computations discussed in this section can be done using MATLAB. 

Use pinv(A) for the psuedeinverse of A, nu11(A) for an orthonormal 
basis for the null space of A, and orth(A) for an orthonormal basis for the 
range of A. 

MATLAB (pinv, null, orth, and rank) 

A 
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Exercises 
1. What is O+? 

2. In proof of Lemma 7.1, Part b, tell why each statement is true. 

3. Compute A+ where A is given below. 

L J 

where u1 and 6 2  are positive 

1 1  'I !I 1 

4. Prove: 

(a) If 

(b) If A is nonsingular, then A+ = A-l .  
(c) If A = U W H ,  an SVD, then A+ = V C + U H .  

= diag (01,. . . ,on) where 01 2 . 2 or > 0 = (~,+1 = 
= on, then = diag (o:', . . . ,or1, 0, .  . . ,O ) .  

5.  How near are the following matrices to a singular matrix? 

1 1 0  

0 1 1  

6. For each of the following matrices, 

(a) Find an orthonormal basis for R(A) and N ( A ) ,  and 

(b) Find orthogonal projections on R(A) and N ( A ) .  

A =  0 1 1  [:: :] 
7. Let A = [ 1:;; :!:; 1. If 6, as given in application 4, is .03, what 

is the numerical rank of A? 

8. Use an SVD approach to represent T in a 3 x 3 array, as done in 
application 5. 

9. As in application 6,  describe what L does. 
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L 1 

10. Let A be a 2 x 2 matrix. Prove that in the F‘robenius norm the closest 
unitary matrix to A is Q = UP where A = UCVH is a singular 
value decomposition of A. (Note that the proof can be extended to 
the n x n case.) 

11. Prove llAlli = ((AtAI(, and that c2 (AtA)  = llAtAIl2 I1A-l (A-l)tll = 

llAlli IIA-’II; = c2 ( A ) 2 .  What does this say about solving normal 
equations numerically? 

2 

12. Prove that if C = diag(o,O, . . . ,O), then llCl12 = 101. 
13. Prove that if 01 > 0,. . . , (T, > 0 and 21,. . . ,z, vectors in E”, then 

span (0121,. . . , oSz8} = span ( 2 1 , .  . . , zn}. 

1 1 - 1  1 0  

14. (MATLAB) Let A = I -: 1 .  

(a) Find the distance from A to the rank 1, rank 2, and rank 3 
matrices. 

(b) Find the pseud+inverse of A by using the singular value de- 
composition of A. Compare your results to that obtained using 
pinv( A).  

(c) Compute the range and null space of A,  using an SVD and using 
the command orth and null. 

(d) Compute rank ( A )  and rank ( A t ) .  
(e) Solve Az = b where b = [l, -1,O, 1,1, -lit. 

15. (MATLAB) Is there a matrix A so that rank A # rankAt in MAT- 

16. (MATLAB) A ‘house’ is shown below. 

LAB? 

0 0 1 0 0  

0 1 1 1 0  
0 1 1 1 0  
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Using the expansion A = ( T ~ u ~ v :  +.. . + ( T ~ U S V ; ,  show what the house 
looks like for 





r 

8 
LU and QR Decompositions 

We have already seen that factoring matrices into simpler ones is important 
in developing and applying matrix theory. In this chapter we look at f a -  
toring an m x n matrix either as LU (where L is a lower triangular matrix 
and U a row echelon form) or as QR (where Q is an orthogonal matrix 
and R a row echelon form). Both factorizations involve a kind of Gaussian 
elimination approach and are highly used in numerical algorithms and soft- 
ware, such as MATLAB. Knowing this material also helps us understand 
the occasional warnings given with a MATLAB computation. 

8.1 The LU Decomposition 
Let A be an m x n matrix. An m x m elementary matrix E ,  belonging to 
an elementary operation, is the matrix that produces by premultiplication, 
the elementary operation applied to A. Thus 

E A = B  

where B is obtained by applying the elementary operation directly to A. 
For example if m = 2, we have the following. 
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aR1 +R2 E = [  y ] .  
Observe that each elementary matrix is nonsingular and its inverse reverses 
the elementary operation defining it. We will show this using the previous 
examples. 

0 1  
R l * R z  E =  [ y i ]  E - ' = [  0 ]  R1* R2 

Thus, if Gaussian elimination is applied to A to obtain a row echelon form 
U ,  then elementary matrices corresponding to the elementary operations 
used, say, E l , .  . . ,E , ,  are such that 

E, E1A = U. (8.1) 

Example 8.1 Let A = [ -E li ] . Applying Gaussian elimination, 

we have 

A -f 
-2R1+R2 , , 

[ 3 5 13 

-4Rz + R 1 -1 2 

E3 = 
0 -4 1 

Now 

b 

i 
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If no interchange operations are used, then each E, is lower triangular, 
so E, . . . El is lower triangular and so is L = (E,  3 . . El)-'. Thus from 
(8.1), 

A = LU. 

If no scaling was applied (and there need not be) then, remarkably, L can 
be computed easily from the multipliers used. (If -a& + Rj is applied, a 
is the multiplier.) For example, to compute L, note that if 

E 3 = [ :  : ] , & = [  0 1 0 0  1 O ] , E l = [ - a  1 0 0  l o ]  
0 -7 1 -p 0 1 0 0 1  

then 

L=ET1E; 'E j1=[  (Y 1 0 0  1 0 1  [ 0 1 0 0  1 0 1  [ 0 1 0 0  1 0 1  

0 0 1  p o l  o r 1  

P r l  
Thus L can be computed by placing the multipliers used in their corre- 
sponding positions in L, so there is no need to keep track of the corre- 
sponding elementary matrices. (The order here, namely E;'E;'E;' is 
important. The computation of E3'ET1Er1 cannot be done in the same 
way.) Thus, as shown in the following example, computing LU is as efficient 
as finding U by Gaussian elimination. 

Example 8.2 Using the data from Example 8.1 and forming L directly 
from the multipliers, we have 

so 

A = L U  

Interchanges, however, may be required. We give two ways in which this 
can happen. 
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i. We obtain a form such as 
@ * * * *  

0 0 0  

Now we would need to interchange rows 3 and 4 to continue toward 
a row echelon form. 

ii. We have, say, 

0 1000 * * * 
0 * =I * * *  

In numerical calculation, it is known that choosing large pivots, in 
general, leads to better results. Thus, at this step we would apply 
Rz cf R3, obtaining a larger pivot. 

To see how to proceed when interchanges are used, we make an observa- 
tion. Suppose 

23 Y 3  .z3 

We apply R1+ R2, R1+ R3 to get 

[ a 0 1  i :][ 4 0 0 1  : ] A = [ ?  0 yd v3 21. w3 
(8.2) 

Now we would use R2 cf R3, whose corresponding elementary matrix is 
r l  o 0 1  

, which is not lower triangular. Note, however, if we 

apply C first, we have 

x1 Y1 21  

and our corresponding elementary operations, eliminating x~ first, would 
then be Z R 1  + R3, T R 1  + R2. Using the corresponding elementary 
matrices, we would now have 

1 0 0  1 0 0  

0 0 w2 
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Comparing this result to that of (8.2), we can see that interchange oper- 
ations, and their corresponding elementary matrices, can be moved up in 
the list of elementary operations done on A. To commute the elementary 
matrices, observe that applying cRi + Rj and Rj H Rk is the same as 
applying R j  H Rk and cR, + R k  (i < j < k). Thus, we need only change 
the c’s in the row positions that might be in row j or row k according to 
the interchange. For example, for a R l +  Rz and R2 H R3 we have 

1 0 0  1 0 0  1 0 0  1 0 0  

0 1 0  0 0 1  
[ o  0 1 ] [ 0  1 o ] = [ o  a 0 1  1 0 ] [ 0  0 1 0  0 1 1  

or RZ H R3 and aR1+ RJ. 
So, if P, called a permutation matrix, is the product of elementary ma- 

trices corresponding to interchange operations (It accumulates all inter- 
changes of rows into a single permutation of rows.), we see the following 
result. 

Theorem 8.1 Let A be an m x n matrix. Then there i s  a permutation 
matrix P such that 

P A  = LU 

where L is lower triangular with 1’s on  the main  diagonal and U i s  an 
echelon form. 

Proof. In applying Gaussian elimination, commute the elementary ma- 
trices corresponding to the interchange operation so they are nearest A.  
Then we have 

E,. . Es+lC, . - * CIA = U, 

where C,, . . . , C1 are the elementary matrices corresponding to interchange 
operations and E,.’ . . . ,Es+l those corresponding to add operations. Set 
P = C, . - .  C1, a permutation matrix. Using this 

?A = (E,. .. . Ea+l)-’ U 
= LU 

-1 
where L = E,. - - ‘  Ea+,) 

1’s on the main diagonal, so does ET ... E a+ ~  and E,. e . .  E a+~)  . H 
is lower triangular. Finally, since each E i  has ( -  -1 

( 
The form of Gaussian elimination we used to obtain L and U is called 

the Doolittle method. (In this method the main diagonal of L consists of 
1’s.) If we scale rows to obtain pivots which are 1, the technique is called 
the Crout method. (This method produces pivots in U which are 1’s.) 
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1 -1 2 
Example 8.3 Let A = 

2R1 + R 1 -1 2 
A 

0 0 1  

3R1 + R  1 -1 2 

3 0 1  

R2 t-t R 1 -1 2 

0 1 0  

so 
C&ElA = U. 

Now we need to move C so it is next to A. Here 

CE2 = &C 
where E2 is 3Rl + R2. 
elementary matrix is adjusted to show that.) And 

(Rows 2 and 3 were interchanged by C so the 

CEI = ElC 

where El corresponds to 2R1 + R3. (Rows 2 and 3 were interchanged by 
C, and El now needs to apply the addition to row 3.) 

So we have 

E2ElCA = U 
and setting P = C, 

P A =  LU 

where L = (E2E11-l which can also be computed wing multipliers, so 

-2 0 1 
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We now show how the factorization can be used to solve a system of 
linear equation, say, 

Ax = b. 

To do this, factor PA = LU. Substitution yields 

LUX = Pb. 

i. We first fmd L-IPb. For this we solve 

L y  = Pb 

which can be solved by forward substitution. (Solve for y1 first, then 
y2, etc.) This gives y = L-lPb. 

ii. Now we solve Ux = L-lPb. Knowing y, we can solve for x by solving 

u x = y  

by back substitution. 

Example 8.4 Solve 

[; -:] [ f:] = [ - ? ] e  

We factor A = LU to get 

i. Solve Ly = b by forward substitution. Here 

1 0  
[ I  I]y=[-:] 

and we get y = [ 21. 
ii. Now solve Ux = y by back substitution. Here 

and we get 

x = [  4 1 .  
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8.1.1 Optional (Iterative Improvement in Solving Ax = b) 
Let A be a nonsingular matrix. We can solve 

A x = b  (8.3) 
by Gaussian elimination applied to the augmented matrix [ A  1 b] or by using 
the LU method. (Both use the same amount of arithmetic.) The LU 
method has an advantage, however, when (8.3) needs to be solved for several 
different right sides. To show how this can occur, we describe the iterative 
improvement method which can be used to solve (8.3). 

Suppose we numerically solve (8.3), obtaining E. Thus, we might expect 
some nonzero residual 

r1 = b - Ax-. 

(For accuracy, the residual should be computed in double precision, i.e. 
using twice as many digits as normal.) We now try to improve our solution 
by solving 

Ax = r1 (8.4) 
for al and adjusting the numerical solution to 2 + a l .  Note that if a1 is 
the exact solution to (8.4), then 

A ( E + a l )  = A E + A a l =  b-r l  +rl  = b. 

So E + al would be the exact solution to (8.3). However, we may again 
expect some error, say, we get 81 instead of ai.  

r2 = b - A ( E + i i l ) .  

We compute the residual 

If r2 is not 0, then we would solve 

Ax = 7-2 

for a2 and adjust to P + 81 + 82. 
It can be shown that, unless c (A)  is very large, the sequence E,  $+&I,  E+ 

81 + 82 , .  . . converges to the solution to (8.3). And, usually, only a few 
iterations are required for desired results. 

Note that in this process, we solve 

A x = b  (8.5) 
Ax = 7-1 

... 
If A is factored into LU, each solution can be computed by a forward, and 
then a backward substitution, which involves far fewer arithmetic opera- 
tions than solving each equation in (8.5) by Gaussian elimination. So here, 
the LU method has a distinct advantage. 

An example follows. 
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Example 8.5 Let A = [ .402 ’982 .321 ‘573 ] and b = [ -$! 1. Solving Ax = 

b in 3-digit arithmetic, by iterative improvement, we get L = 

and ’= [ 0 .087 ] *  382 .573 

On  the first iteration, we have 

The second iteration gives 

which is the exact solution. 

We should also add that there is a similar iterative improvement method 
for solving least-squares problems. 

8.1.2 MATLAB (lu, [L,  U ]  and [L, U, F]) 

MATLAB uses the LU decomposition to solve Ax = b. 
The MATLAB command for the LU decomposition for any square matrix 

A is Zu(A). To obtain L, U ,  and P such that P A  = LU, use [L ,U,F]  = 
lu ( A ) .  Using [L, U ]  = lu ( A )  produces PtL  (not L) and U .  MATLAB calls 
P t L  a ‘psychologically triangular matrix’, Le., L with the rows permuted. 
An example follows. 

A = [ l  1; 2 3 1 ;  
[L, U] = lu ( A )  

ans:L= [ ;I,.= [ i  
Type in help 1u for more information. 

Exercises 

1. Let A = 1 1 where ak is the k-th row of A. Find the 3 x 3 
L a3 J 

permutation matrix P such that 

(a) P A =  [ :]. (b) P A =  [ i!]. 
(c)  P A =  [ 1 .  (d) P A =  [ i: ] 
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where a k  is the k-th row of A. Find the elementary 

matrix E such that 
a1 

(b) E A =  [ a2 --fa1 ] . 
I 3a3 

(c) E A =  
a3 - 3al 

3. For the given matrix A, find the LU decomposition. 
(a) A = [  1 1 1 1  2 4 1  (b) A = [  2 1 0 1 -1 0 -11 

1 3 9  3 2 -2 

4. For the given matrix A, fmd the LU decomposition with partial piv- 
oting. 

5. Give an example of an elementary matrix for add operation which is 
not lower triangular. 

6. Suppose we know that A has an LU decompositon. Solve for L and 
U by first finding the first row of U, then 121, then the second row of 
U, etc. 

( b ) A =  

7. Show that the two 3 x 3 elementary matrices Corresponding to 2R1 + 
R2 and 3R2 + R3, don’t commute. 

8. Show that the two 3 x 3 elementary matrices corresponding to aRl + 
R2 and PR1+ R3 do commute. (Actually, for a given i, all elementary 
matrices corresponding to (Yk% + Rk commute.) 

main diagonals. 
9. Let L1 and Lz be two 3 x 3 lower triangular matrices with 1’s on their 

(a) Prove that Ll& has 1’s on its main diagonal. 

(b) Prove the result for n x n matrices. 

I ’  

“ .  
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10. Let A be a nonsingular matrix. Suppose LU and J% are two LU 
decompositons of A. Prove that L = e and U = U .  

111 0 0 
11. Let L = [ 121 122 0 ] be a nonsingular matrix. By solving 

131 132 133 

LX = I ,  

find formulas for the entries of L-l in terms of those of L. 

12. Let E be an m x m  elementary matrix corresponding to an elementary 
operation. Let E be the matrix obtained from the m x m identity 
matrix by applying the elementary operation to it. Prove that E = E. 

13. Let E be a nonsingular m x m matrix. Let A be an m x n matrix and 
b an m x 1 vector. Prove that Ax = b and EAz = Eb have the same 
solution set. (Loosely, this shows that most any kind of operation, 
e.g., OR, + PRj (p # 0) can be applied to a [A I b] . )  

14. (MATLAB) Let A = -2 4 1 and b =  [ : 1 -:] [ - i ] .  
(a) Find the LU decomposition of A. 
(b) Solve Ax = b by using this decomposition. 
(c) Solve Aa: = b by using the command A \ b. 
(d) Compare results. 

8.2 The QR Decomposition 

We can do with Householder matrices what we , a t  did wit., elementary 
matrices. Although this work can be done with either real or complex 
numbers, we will do the work with real numbers, so we can give geometrical 
views. 

Recall that a Householder matrix is defined by 

where u is a vector such that 1 1 ~ 1 1 ~  = 1. Thus, if u is not of length 1, we 
would use the vector & and obtain 

2 
H = I - 7 ~ ~ t  

l l ~ l l 2  
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As shown in in Figure 8.1, what H does is reflect (or invert) R" parallel 
to u and through the subspace 

w = {y : (u, y) = 0). 

i H x  

FIGURE 8.1. 

For a given vector x, we now need to find a Householder matrix H such 
that Hz = f llxl12 el.  (Recall that H is orthogonal and orthogonal matrices 
don't change the length of vectors.) How such an H can be determined is 
shown in the following example. 

Example 0.6 Let x be a nonzero vector in R2. Notice in Figure 8.2 that 
two diferent choices, llzl12 e1 and - 11z112 e l ,  are possible. 

I / . *  / 

t -' 
FIGURE 8.2. 

1. For Hx = 1 1 ~ 1 1 ~  e l ,  we w e  the vector u = x - 1 1 ~ 1 1 ~  el (equivalent to 
the a m w  from ( 1 ~ 1 1 ~  el to z). 
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FIGURE 8.3. 

2. For H z  = - 1 1 ~ 1 1 ~  el, we use the vector u, u = z + IIz112 el (equivalent 
to the arrow from - ) 1 ~ 1 1 ~  el to z in Figure 8.3). 

Actually in software, the choice changes depending on z. For numerical 
reasons (to obtain better answers), whichever of 11zIl2 el or - IIzllz el is 
farthest from z, is chosen. For example, in our picture, - )1z112 el would 
be chosen. However, for our work, we will simply choose 1 1 ~ 1 1 ~  el. 

To help recall the expression for u, observe in Figure 8.4 that 

2 + 11~112 e1 
2 

is the average of z and llzl12 el, and z - 11z112 el (a change of sign) provides 
the orthogonal vector. (Their dot product is 0.) 

FIGURE 8.4. 

n o m  these remarks we have the following. 
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Theorem 8.2 Let x be a nonzero n x 1 vector. Ij x # 
2 - 1 1 ~ 1 1 ~  el. Then 

set u = 

2 H = I - ~ U U ~  
11412 

and 

Proof. A direct calculation. 

We show a numerical example below. 

[ H]-[ a ]  = 
Example 8.7 Let x = [ ] . Then u = x - ( 1 ~ 1 1 ~  el = 

[ - 9 1 .  Thus 

2 H = I - 7uut  
11.112 

= [ 0 1 0 0  1 O ] - $ [  -!I[-, 0 41 

0 0 1  

and H x  = [ a ] .  
matrices, we let 

Now, to see how to do a Gaussian elimination process using Householder 

We find the Householder matrix HI such that 

HI [ 21 = [ i ]  
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where C1 = 11 [ ii ] I/ . Then 
2 

4 v1 w1 

0 v3 w3 

H l A =  [ 0 212 - 1 .  
We now find the Householder matrix H such that 

where e2 = 11 [ ] I /  . Set 2 

Then by partitioned multiplication, 

which is a row echelon form. 

have from (8.6) that 
So, if we let R denote the row echelon form and set Q = (H2Hl) - l ,  we 

A = Q R  

where Q is an orthogonal matrix. 
More generally, we have the following theorem. 

Theorem 8.3 Let A be an m x n m a t k .  Then, there exists a sequence 
of Householder matrices H I , .  . . , H,, such that 

H S . - . H 1 A =  R 

where R is a row echelon form. Thus, setting Q = ( H ,  . . - HI)- ' ,  A = QR. 

Proof. If A = 0, there is nothing to argue; thus, we assume A # 0. The 
proof is now given in steps. 

Step 1. (Finding H1)  Let b denote the first nonzero column of A .  If 
b = \lb1\2 e l ,  the first row is staggered and we set A1 = A. Otherwise, using 
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Theorem 8.2, let I f 1  be the Householder matrix such that Hlb = ( ( b ( ( ,  e l .  
Then H1A has its first row staggered. Set A I  = H1A. 

Step 2. (Finding Hk) Suppose Ak has its first k rows staggered. Then 

Cl c2 

0 B ]  

where C1 has k staggered rows. If B has all 0 columns, we are through. 
Otherwise, let b denote the first nonzero column of B. If b = (Ib(l e l ,  the 
( I C +  1)st row is staggered, and we set Ak+l = A k .  If b # llbll e l ,  let H be 
the Householder transformation such that 

Hb = llb112 e l .  

Setting Hk+l= [ 6 
formation such that if we set 

1, an m x m matrix, we have a Householder trans- 

Ifk+lAk = Ak+l 

then Ak+l has IC + 1 staggered rows. 
Step 3. (Finding Q) Thus all rows can be staggered and a row echelon 

form R achieved. Putting together, if s Householder matrices were used, 
then H, H1A = R and Q = (H, . - HI)- ' .  

3 10 

4 10 -5 
Example 8.8 Let A = [ 0 0 1. 
x = [ ] and by Example 8.7, HI = [ Step 1. (Finding H I )  To find H I ,  we use the first column of A .  So, i ] .  N o w H I A = A 1 =  

5 0 -5 

[ d ' p  - $ I .  

[H H % I .  
Step 2. (Finding H2) For H2 we use [ 1. We obtain Q Householder 

o ]  , a n d s o H z =  
0 1  

m a t k  H where H [ i ]  = [ i ] .  we get^= [ 

Step 3. (Finding Q )  Putting together, we have H2HlA = H2Al = 1 

[ '% -91  = R, the row echelon form. 



8.2 The QR Decomposition 281 

Finally, 

3 0  4 

H2H1= [ 0 - a ] ,  
0 1  

so 

and A = QR. 

Recall, pivoting was used in the LU decomposition to get large pivots. 
The same can be done in the QR decomposition. For example, if 

4 v1 w1 
H1A= [ ; ;; :; ] , 

we can check the columns [ ;: ] and [ iz ] to see which has the greater 

length. If I/ [ :t ] 1 1 2  > 11 [ ;: ] 1 1 2 ,  then columns 2 and 3 of H1A are inter- 

changed. If C is the elementary matrix corresponding to that elementary 
operation, then 

1 0 0  

(When multiplying by C, we can use backward multiplication to see the 
result.) Now, we determine our next Householder matrix H2 so that 

z1 

H2H1AC= [ ?  e 2  = R  (8.7) 
0 0 93 

where t?, = /I [ z; ] /I . (Had we not interchanged the columns, we would 

have had a smaller pivot, namely 
2 

Thus, from (8.7) we have 

A P  = QR 

where Q = (HzHl)- l  and P = C, a permutation matrix. (In general, P 
is the product of the accumulated Ci’s.) 
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The QR decomposition is often used in least-squares solving a system of 
linear equations, say, 

To find a least-squares solution x, we use the factorization A = QR (or 
QRFt) and substitute this into ( 8.8). We have 

QRX = b. 

As shown in Chapter 7, this is equivalent to finding least-squares solutions 
to 

RX = Q t b .  (8.9) 

Now we need to find vectors 2 so the left side is as close to the right side 
of (8.9) as possible. For example, if 

R = [  T11 y ]  r12 

and c = Qtb, we would find xi’s so the left and right sides of 

are as close as we can make them. 
We can’t do anything about the last equation; however, we can get x’s 

so that the first two equations are satisfied. And any such x will be a 
least-squares solution to (8.8). 

Example 8.9 Find the least-squares solutions to 

3 -3 

4 -4 
Here, A = [ 0 5 ] and b = [ ] . Now, wing Example 8.7, 

H I = [  3 0  -!] s o H l A = [ ;  5 -5 :I=.. 
5 

I 
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Further, 

So the equation we need to least-squares solve is = Qtb  or 

7 
5 

5x1 - 5x2 = - 

5x2 = 1 
1 0 = 5' 

The least-squares solution is 

1 
2 2  = - 

5 
i 2  

2 1  = - 
25 

o r x =  [ f 1. 
Note that, for this 2, IIAx - bl12 = 5 since we could do nothing with the 

In finding a QR decomposition, we could also use Givens matrices. The 
last equation. 

basic idea for this approach is covered in the exercises. 

8.2.1 Optional (Q R Algorithm) 
The numerical computation of Q and T of the real Schur form is usually 
done by the Q R  algorithm. This algorithm is as important to eigenvalues 
and eigenvectors as Gaussian elimination is to systems of linear equations. 

The algorithm sets A1 = A and iterative factors 

Ak = Q&. 

Then sets 
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we see that 

Ak+i = Q: * QiAQi * Q k  

so, setting 

Q = Qi * e -  Qk 

Ak+i = QtAQ 

Thus Ak+l is orthogonally similar to A. For sufficiently large I C ,  Ak+l is 
close to a block triangular matrix. Replacing those entries in Ak+l below 
the blocks, which are sufficiently close to 0 by 0 yields the computed Schur 
form T of A. 

The QR algorithm can be used to compute eigenvalues, and correspond- 
ing eigenvectors of A. (This is the best general such method.) We describe 
how this is done. 

If T is a real Schur form, its eigenvalues are the eigenvalues of the 1 x 1 
or 2 x 2 matrices on the main diagonal, which are easy to compute. Thus, 
the eigenvalues of T and hence A are calculated. 

Corresponding eigenvectors can be computed as follows. For an eigen- 
value A, solve 

T Y = A Y ,  Y f O  
or 

(T - A I )  y = 0 

for corresponding eigenvectors. Then, for each such eigenvector, since 

T = QtAQ 
QtAQy = AY 

AQY = AQv, 

Qy is an eigenvector for A corresponding to A. 

matrices and an implicit shift, etc.) 
As we might expect, this algorithm has been improved (using Hessenberg 

It may be helpful to look at some data. We use the MATLAB program. 
A =  [l 2; 341 
for n = 1 : 5 

[Q, R1= qr (4;  
A = R * Q  

end 
Notice in the iterates, the 2,l-entries tend to 0, thus we get T. 

1. [ 5.2000 1.6000 3 
0.6000 -0.2000 
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1 5.3796 -0.9562 
0.0438 -0.3796 

[ 5.3718 1.0030 ] 
3’ 0.0030 -0.718 

5.3723 -0.998 
0.0002 -0.3723 

5.3723 1.0000 
0.0000 -0.3723 

We can compare our result to the MATLAB result obtained by using the 
command 

0.0000 5.3723 1 . -0.3723 -1.0000 I shur(A) = 

This is a litt e different; however, recall that MATLAB uses a more so- 
phisticated QR-alogrithm (implicit shifts, etc.), and that Q and R, in the 
QR decomposition, are not unique. 

8.2.2 MATLAB (Ax = b, QR, Householder, and Givens) 
MATLAB uses the QR decomposition to least-squares solve Ax = b. 

Comparing the LU decomposition and the QR decomposition, it is known 
that the latter requires about twice as much arithmetic to compute. And, 
to solve Ax = b, LU with partial pivoting is known to be very satisfactory. 

In comparing Householder and Givens, using Givens matrices requires 
about twice as much arithmetic as using Householder matrices. 

The MATLAB commands for the QR decomposition and Householder 
matrices follow. 

1. QR decomposition: The MATLAB command for the QR decomposi- 
tion of A is qr (A). To obtain the Q and R, use [Q, R] = qr (A). For 
the QR decomposition with column pivoting, use [Q, R, F ]  = qr (A) . 
The P here is as in AF = QR. An example follows. 

A = [ l  2; 1 1 1 ;  
[Q, R, Fl = qr (A) 

1 -0.8944 -0.4472 2.2361 -1.3416 1 -0.4472 0.8944 1’ R =  1 - 0 0.4472 am: Q = 

a n d P = [ l  0 1  o ] .  J L 

2. Householder matrix: Given a vector z # 0, the command [H,r] = 
qr (z) provides a Householder matrix H such that Ha: = f llzllz el. 
The r gives f I I I C ~ ~ ~  el as shown in the following example. 
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z = [  1; 2 1 ;  
IH, 7.1 = qr (x) 

1 -0.4472 -0.8944 [ ans: H = 

= [ 2 . 2 3 5 i r  0'4472 

3. Givens matrix: Given a vector x E R2, we can get a Givens matrix G 
such that Gx = f 11x112 el by using [G, r] =planerot(x). For example 

z = [  1; 2 1 ;  
[G, r ]  = planerot (z) 

ans: G = [ 0.4472 0.8944 ] 
-0.8944 0.4472 

2.2361 
r = [ o  1 .  

Type in help qr for more information. 

Exercises 
1. For the given A, find the QR decomposition. 

( . )A=[!  :] ( b ) A =  

2. For the given A, find the QR decomposition with column pivoting. 
( . ) A = [ :  i ]  ( b ) A = [ :  1 - 1 0 3  0 4 0 1  

1 0 4  

3. Given z # - IIzllz el, show, using sketches, how to find a Householder 
matrix H such that 

0 1 x =  2 usingthe QRdecomposition. 
4* 1 4  1 1 1 1 1 
5.  Solve I 1 z = I by using the QR decomposition with 

column pivoting. 

6. Let u be a nonzero vector in R". Define W = {w : (w, u) = 0). Prove 
that W is a subspace of dimension n - 1. 
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7. Explain why a permutation matrix is orthogonal. 

8. Let H be a Householder matrix. Prove that 

(a) Ht = H .  
(b) H H t  = HtH = I. 

(d) [ 
(e) detH = -1. 

(c) H2 = I .  3 is a Householder matrix. 

9. Let A be an m x n matrix having rank T .  

(a) Prove that A can be factored 

A = Q o R o  
where QO is an m x T matrix with orthonormal columns and & 
a row echelon form. 

(b) Prove that Qo is an orthonormal basis for span {a l ,  . . . , a,} 
where ai is the i-th column of A. 

10. Prove that the QR decomposition, with column pivoting assures that 
in R, 

IT111 L 17.221 L ... 

11. Using Exercise 10, prove that if rankA = T ,  then in partitioned form, 

where R11 is a nonsingular T x T upper triangular matrix. 

12. Let H be a Householder matrix. Prove that H has one eigenvalue 
which is -1, all others being 1. 

13. Let A be a nonsingular matrix. Prove that if QR and QR are QR de- 
compositions of A, then QQ is a diagonal matrix with main diagonal 
composed of 1’s and -1’s. 

14. Let A be an n x n real matrix. Using the QR decomposition, prove 
Hadamard’s inequality. 

ldet AI 5 Ila1ll2 * . * Ilanl12 

Describe what this inequality says about the volume of a paral- 
lelepiped in R3 determined from edges a l ,  a2, ag. (A sketch can help 
support the description.) 
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15. Let A = QR, a QR decomposition. Prove that  IT;,^ = distance from ai 
to span {a l ,  . . . , ai-1) where al ,  . . . , a, are the columns of A. (So, 
the r,i's give some idea of how close the vectors are to being linearly 
independent. ) 

16. Twoparts. 

, a Givens matrix, and z = 1 cos8 -sin8 
cos 0 (a) Let G = sine 

Show what trigonometric equation should be solved to h d  0 

such that G A  = 

[ 

(b) Explain, for a 3 x 3 matrix A, how to find Q and R using Givens 
(Use as a guide the parallel result for Householder matrices. 

matrices shown in this section.) 

17. Let Q be an orthogonal matrix. Prove that Q is a product of Givens 
matrices (plane rotations) if and only i f  det Q = 1. 

18. Let z E C", z # 0. Choose 8 such that z1 = Izlleie. D e h e  
u = z + eae 1 1 ~ 1 1 ~  el and 

Prove that H is unitary and Hz = -eie )1z112 el .  (This is the House- 
holder matrix for complex numbers.) 

19. (MATLAB) Factor the following matrices as QR. 

4 3  

7 -1 6 
(a) A =  [-: 5 2 1  

1 2- 3 i  i 4 + 2 i  
0 3- 2 i  -5 

-3+4i  2 62 

4 -1 2 

[ -; f 1. Find 

(b) A = 

20. (MATLAB) Let A = 

(a) The QR decomposition of A. 
(b) orth(A) . 

Compare (b) and the Q from (a) in light of exercise 9(b). 

b 
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21. (MATLAB) Let W = span { [ i ]  [ ! I ) .  Find the distance 

from [ i ] to w 

(a) Using the QR decomposition and Exercise 15. 
(b) Using orth to find the orthogonal projection matrix P from R3 to 

(c) Using least-squares on Ax = el where A = [ p ] to find x ,  

W ,  and computing (le1 - Pelll,. 

and computing (IAz - elll,. 

22. (MATLAB) Adjust the program in the MATLAB section and apply 
r 0 1 0 1  
I - : :  ; I *  the QR algorithm to A = 

L J 





9 
Properties of Eigenvalues and 
Eigenvectors 

In this chapter we study how small changes in the entries of a matrix affect 
the eigenvalues and eigenvectors of that matrix. Such changes occur in 
modeling since the matrix in the model is often only an approximation of 
the actual one. Further, in numerical computations, usually the answer we 
get is (due to rounding) actually the exact answer to a matrix which is close 
to the given matrix. So, if matrices close to a given matrix have close eigen- 
values and eigenvectors, we would have an ideal situation. Unfortunately, 
this is not always the case. 

9.1 Continuity of Eigenvalues and Eigenvectors 

We have seen that eigenvalues and eigenvectors are important to calculating 
lim Ak,  solving systems of differential and difference equations, graphics, 

etc. Understanding about eigenvalues and eigenvectors also allows us to 
interact with software, such as MATLAB, knowing how to interpret an- 
swers. 

In this section, we show that eigenvalues are continuous (in some sense), 
and, under certain hypotheses, so are corresponding eigenvectors. 

Eigenvalues are roots of cp (A) = det ( A  - A I ) ,  the characteristic polyno- 
mial of A. To study these roots will require our obtaining formulas for the 
coefficients in cp (A). For this, let A be an n x n matrix and il, . . . , i, any 
T integers between 1 and n where i l  < . . < i,. Define 

k + w  

A ( i l l . .  . , i,) 
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as the determinant of the submatrix found in rows il, . . . , i,. and columns 
il, . . . , i, in A. For example, if 

then 

A (2) = det [5] = 5 ,  

A ( l , 3 ) = d e t [  i ]  =9-21=-12and  

A (1,2,3) = det [A] = 0. 

These A's can be used to calculate the coefficients in cp (A), as shown below. 

Lemma 9.1 Let A be an n x n matrix and cp(X) = %An + c,,-1An-' + 
.--+q. Then 

for all k < n, where the sum C is over all il, . . . , in-k where 21 < . - < 
' h - k .  

Proof. We prove this result for a 3 x 3 matrix leaving the general argu- 
ment as an exercise. For a 3 x 3 matrix A, with columns ul, u2, and u3, 

observe that cp (A) = det (A - X I )  = det [a1 - Xel,  a2 - Xe2, a3 - Xes]. By 
using properties of the determinant, we have 

cp(X) = det [-Xel, -Xe2, -Xes] + (det [al, -Xes, -Xes,] 
+det [ -Xel ,a2,  -Xes,] +det[-Xel, -Xez,ag]) 
+det [-Xel,u2,as] + det [al, -Xe2,ug] + det [ul, u2, -Xes] + det [al,  u2, as] 
= -A3 + (A (1) X2 + A (2) X2 + A (3) X2) 
- (A (2,3) + A (1,3) + A (1,2) A) + A  (1,2,3) 
= -A3 + E A  (i) X2 - E A  ( i 1 , i z )X  + A (1,2,3), 

which is the desired result. 

An example follows. 



9.1 Continuity of Eigenvalues and Eigenvectors 293 

Example 9.1 Let A =  4 5 6 . Then [: : 3 
A (1) = 1, A (2) = 5, A (3) = 9 SO 

~2 = (-1)2 (1 + 5 + 9) = 15 
A(1,2) = -3, A ( l , 3 )  = -12, A(2,3)  = -3 SO 

3 
~1 = (-1) (-3 - 12 - 3) = 18 

A ( l , 2 , 3 ) = 0 ,  SO q = O .  Thus, 
cp (A) = c3X3 + c2X2 + C l X  + co 

= --Xi + 15X2 + 18X + 0. 

Note that from Lemma 9.1 and Theorem 3.8 

q = detA = X 1 - - - X ,  and 

cn-1 = ( - l ) n - l t ~ a ~ A =  (-l),-'(Xl + * . - + A , )  

where XI, . . . , A, are the eigenvalues of A. 

the Continuous Dependence Theorem. 

Theorem 9.1 Let A be an n x n matrix with eignenvalues XI,.  . . ,An.  
Given E > 0 ,  there as a 6 > 0 ,  such that ij B is an n x n matrix and 
IIB - All, < 6 the eigenvalues oj B can be arranged, say, pl,. . . ,,On, such 
that 

We now use this lemma to prove a type of continuity of eigenvalues result, 

] X i  - pi] < E for  all i. 

f l ] . l l F  can be replaced by any matrix nom.) 

Proof. We apply the following theorem from mathematical analysis: Let 
p ( t )  = antn+. -+ao, have roots XI,. . . ,A,. Given E > 0, there is a 61 > 0, 
such that if q ( t )  = b,t" +. . . +bo and la; - bil < 61 for all i, then the roots 
of q ( t )  can be arranged, say, &,. . . ,p,, such that [X i  - pil < E for all i. 

To apply this result to our theorem, given E > 0, take 6 > 0 such that if 
( (B  - AllF < S, then 

(Since the determinant is continuous, such a 6 exists.) 

This theorem assures, in numerical calculations, that if A is given and 
if we calculate the eigenvalues of a sequence of matrices AI, A2, . . . , where 
lim A k  = A, then AI, A2, . . . have eigenvalues that tend to those of A. 

k-+m 
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A useful application of this theorem is Gershgorin's theorem, which gives 
This a region in the complex plane that includes all eigenvalues of A. 

theorem follows. 

Corollary 9.1 Let A be an n x n matrix. Consider the disks Di in the 
complex plane determined by graphing the inequalities, involving the vari- 
able A, 

n 

k = l  
k#i  

n (E laikl being the i-th off-diagonal absolute row sum) for i = 1,. . . , n. 
k = l  
k # i  

(a) Ij i i s  an eigenvalue oj A, then 

(b) Ij K is  a union oj m disks and K is disjoint from all other disks, 

is in Di for some i. 

then K contains m eigenvalues oj A.  (See Figure 9.1.) 

I 4 

FIGURE 9.1. 

Proof. There are two parts. 
Part a. Since i is an eigenvalue of A, there is a eigenvector z such that 

AX = AX. (9.1) 

Let xi denote the largest, in absolute d u e ,  entry in 2. Then, equating the 
i-th entries in (9.1), we have 

n 
C a i k x k  = ixi. 
k=l 
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Bringing the aiixi term to the right side yields 
n 

k f i  

Taking absolute values, we have 

k = l  
k f i  

and dividing by JxiJ, 

k # i  

And since 5 1, for all k, we have 

n 

k # i  

SO 1 E Di. 
Part b. Consider 

Bt = diag (a l l , .  . . ,ann) + t ( A  - diag (a l l , .  . . ,a,,)). 

Note that BO = diag (a l l , .  . . ,a,,) and that B1 = A. 
Define g( t )  = the number of eigenvalues of Bt in K .  Note that the disks 

for Bt lie in the corresponding disks for A. 
Now suppose g ( t )  is not continuous on [O, 11, say, not at t o .  Thus, there 

is a sequence t l ,  t 2 , .  . . converging to t o  such that g ( t k )  # g ( t o )  for all k. 
But this implies that the eigenvalues of Btk can’t approach those of Bto, 
providing a contradiction. (See Figure 9.1.) Thus g ( t )  is constant, which 
says that g (0) = g (1). Since Bo has exactly m eigenvalues in K, so does 
B1, which is A. 
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I 

I I n. 

I I 

FIGURE 9.2. 

The graphs are in Figure 9.2. 
The eigenvalues of A are XI = 0.4384,Xz = 4.5616 (to 5 digits), and 

A3 = 6. We see in the figure that these eigenvalues are covered by D1 and 
& u D3. 

A corollary defining the radius of the disks by norms follows. 

Corollary 9.2 LetA= D+BwhereD=diag(dl, ... ,&) a n d B a n n x n  
matriz. Using any of the induced n o m  1 1 - 1 1 1 ,  1 1 . 1 1 2 ,  and Il-lloo, consider the 
disks Di defined by  

IA - dil I IlBll 
for i = 1,.  . . , n. Then both (a) and (b) of Gershgorin’s Theorem hold. 

Proof. The proof of this corollary, for induced matrix norms l l . l l l  and 
II.lloc, is like that of Geshgorin’s Theorem. For the induced matrix norm 
1 1 . 1 1 2 ,  the proof is more complicated. rn 

Note that Theorem 9.1 does not imply that eigenvalues axe functions of 
the entries of their matrices. (As the entries of a matrix change, so do the 
multiplicities of the eigenvalues. A way to describe these eigenvalues as 
functions isn’t known.) 

For us to obtain a result of this type requires that there be no multiple 
eigenvalues. Thus to show eigenvalues as functions, we let A be an n x n ma- 
trix with distinct eigenvalues XI, . . . , A,. Let T be a radius which produces 
non-intersecting disks D1,. . . , D, about these eigenvalues respectively. 

Now we let the entries of A vary, forming the matrix B. Then from re- 
sults in function theory, if B is sufficiently close to A (say, I(B - AllF < e ) ,  
then the eigenvalues &, . . . , p, of B remain in the disks D1,. . . , D,. (See 
Figure 9.3.) Further, these eigenvalues are both continuous and differen- 
tiable. 

Continuing, for each eigenvalue Pi, there is an eigenvector z;, of length 
1, that is continuous and differentiable. 
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FIGURE 9.3. 

9.1.1 Optional (Eigenvectors and Multiple Eigenvalues) 
The eigenvalues of A are continuously dependent on the entries of A (as 
given in Theorem 9.1) even when those eigenvalues aren’t described as 
functions. There is no such general result for eigenvectors. 

Eigenvectors are continuous about matrices that have distinct eigenval- 
ues. In the following we show an interesting example, a varient of one given 
by J. W. Givens, of what can happen when matrices are close to a matrix 
with multiple eigenvalues. 

Example 9.3 Let 

where E is a positive scalar. This matrix has the form 

whose eigenvalues are X = k d m .  Thus the eigenvalues of A, are 

x = * E .  

Talczng A = E ,  a corresponding eigenvector (when 3 i s  not a multiple of 27r) 
is 

(This vector can be normalized, but for  simplicity, we leave it as is.) Now, 

as E + 0, the vectors [ -: ] and [ -: ] occur infinitely often. Thus, 

the eigenvectors ‘wobble’ and do not tend to any vector. So, even though 
the eigenvectors are continuous, they are very sensitive to change in the 
matrix. 
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Exercises 
1. Compute the characteristic polynomial for 

[ i -3 -:] 
by using Lemma 9.1. 

2. Write out the general proof of Lemma 9.1. 

3. The eigenvalues of A = [ 3 -9 i I ]  were calculated as, A 1  = 

1.02, A2 = 3.14, A3 = 2.15.,& = .73. Is this correct? (Do not 
calculate the eigenvalues of A and compare.) 

1 1 - 1 1  

4. Give one eigenvalue for 

[ i  ; 21. 
tan6 200! 

5. Apply Gershgorin’s Theorem to 

A =  1 2 0 .  [: 1 :I 
Is A nonsingular? 

6. Let A be an n x n matrix. 

(a) Show that the eigenvalues of A and At are the same. 
(b) State Gershgorin’s theorem for eigenvalues of A in terms of col- 

umn sums. 

(c) Determine the eigenvalues of A = 

schgorin’s Theorem. Check A and At. 

I .  
(d) Estimate the eigenvalues of , using Gerschgorin’s 

disks. Use both row and cokmn sums. ’ 

. 



9.2 Perturbation of Eigenvalues and Eigenvectors 299 

(e) Compute the eigenvalues of the matrix in (d) using MATLAB. 

1. Note that oneof the 

Plot these in the disks determined by (d). 

7. Apply Gershgorin's theorem to A = [ :6 
disks contains no eigenvalues. Does this contradict the theorem? 

8. Prove Corollary 9.2 for l l . l l m .  

9.2 Perturbation of Eigenvalues and Eigenvectors 

To perturb means to change slightly. Thus, in this section, we study how 
much eigenvalues and corresponding eigenvectors of an n x n matrix, say, A, 
change under small perturbations of the entries of A obtaining, say, A + E. 
We should recall from calculus that even if a function (like eigenvalue or 
eigenvector functions) is continuous, small changes in the variables can 
yield huge changes in the corresponding functional values. 

Theorem 9.2 Let A be an n x n diagonalizable matrix, say, A = PDF-'. 
Let E be an n x n m a t k  and I).)) the induced m a t k  n o m  1 1 - 1 1 1 ,  1 1 - 1 1 2 ,  OT 

Our first theorem is an eigenvalue result. 

ll.llOO. 
(a)  Ij X i s  an eigenvalue oj  A + E ,  

1X - A i l  I c ( P )  IIEII 
for some eigenvalue X i  oj A.  

from all other disks, then K contains m eigenvalues oj A.  
(b) Ij K is  the union oj m of the disks described in (u)? and K is disjoint 

Proof. Since the proof of (b) is as that in Gershgorin's Theorem, we 
only prove part (a). 

By hypothesis, 

P-lAF = D 

where D = diag (XI,. . . , A,) and XI,. . . , A, the eigenvalues of A. Thus 

P-' ( A  + E )  P = D + P-lEP. 

Now, if X is an eigenvalue of A + E ,  using similarity, it is an eigenvalue of 
D + F I E F .  Applying the Corollary 9.2 to D + P-IEE; yields that, for 
some X i ,  

( A  - Xi (  5 I(P-lEFII 

I Ilp-lll IlPll IlEll 
= c (PI llEll7 
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the desired result. 

We can think of c ( P )  here as somewhat like a derivative. Setting X = 
A i  ( A  + E )  and X i  = X i  (A), we have 

( X i  (A + E )  - Xi (A)( 5 c ( P )  llEll, 
somewhat similar to the Mean Value Theorem that we studied in calculus. 

Note that if we change the entries in A a bit, say, by adding E where 
IlEll < .01, then we can’t assume the eigenvalues of A + E  are within .01 of 
those of A. This would be true if A is normal since in this case we would 
have P unitary and then using the induced matrix norm, 1 1 . 1 1 2 ,  c ( P )  = 1. 
However, if c (P)  is larger, the eigenvalues of A + E may be farther away 
from those of A than 11E11. 

1 1  Example 9.4 Let A = ,, 1 Then XI = 1, A2 = 2, P = 
t u  ‘ J  1 0.01 0.02 1 p-1 = 1 -; 1 and coo ( P )  = 22 = 4. NOW IC’ ~ 

I 0.01 0.03 1 ’  YL Ilr = 
L -  1 L J 

so A + E is a change in A of .04(11E11, = .04). What we know now is 
that the eigenvalues of A + E am within coo ( P )  11 Elloo = .16 of those of A.  
Calculating the eigenvalues of A + E, we have = 1.0001, A2 = 2.0399, 
well within OUT bound. 

We now give another perturbation result. This result, concerning both 
eigenvalues and eigenvectors, is obtained by differentiation of the eigenvalue 
and eigenvector functions which we described in the previous section. So, 
we assume that the eigenvalues XI,. . . , A,, of A are distinct. 
For this work, we let y1,. . . , yn be left eigenvectors of A, correspond- 

ing to AI, . . . , A,, respectively. We assume these eigenvectors have been 
normalized so that their lengths are 1. 

In addition, let E be an n x n matrix, llE1I2 = 1, and B = A + t E  where 
t is a real variable. We take t sufficiently small so that the eigenvalues of 
B remain in the disks described in the previous section. It can be shown 
from function theory, that for each i ,  there is a differentiable eigenvector 
zi (t), si (0) = zi, and a differentiable eigenvalue Xi  ( t ) ,  X i  (0) = Xi,  such 
that for sufficiently small t ,  

( A  + tE )  ( t )  = X i  ( t )  ~i ( t )  

where 112% (t)l12 = 1. (Note A, (t) = pi of the previous section.) 
The idea now is to compute X: (0), to see how small changes in t affect 

A, ( t ) .  

Theorem 9.3 Using the above notations, 
I 

6 
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(a) (0) = and 

(b) If xi ( t )  = 61 ( t )  X I +  . . + 6, ( t )  x ,  (Si ( t )  = I), then 

yixi 

for all j # a .  

Proof. We prove both parts. 
Part a. Expanding 

( A  + tE )  ~i ( t )  = Xi ( t )  xi ( t )  

we have 

 AX^ ( t )  + tExi ( t )  = Xi ( t )  xi ( t )  . 

Differentiating 

AX!, ( t )  +  EX^ ( t )  +  EX!, ( t )  = X!j ( t )  xi ( t )  + Xi ( t )  x!, ( t )  

Setting t = 0 yields 

AX!, (0 )  +  EX^ = A!, (0)  xi (0)  + X i  (0)  x!, ( 0 ) .  

Rearranging leads to 

( A  - A i l )  X: (0) = A!, (0)  xi -  EX^. 

Multiplying through by yi, we have 

0 = X: ( 0 )  y i ~ i  - Y ~ E x ~ .  

Thus 

Part b. Now, note that for any j ,  

y jx i  ( t )  = Sj  ( t )  y j x j .  

so 

Since xi ( t )  is differentiable, so is Sj ( t ) .  
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Multiplying (9.2) through by yj, using the Principle of Biothogonality, 
and that 

XI (0) = sl, ( O ) X 1 +  * .  * +s:, (O)x, 

yields 

( A j  - Ai) yjbi (0) zj = -yjExi when j # i. 

so 
YjExi 

(A, - A i )  yjxj ’ 6; (0) = 

the result desired. 

Note that 

Then by the Cauchy-Schwaxz inequality, 

1 
5 -  

Si 

where 

(9.3) 

sa = I yaxi I . 
(Observe that since )y,xjl 5 (/zi1I2 ~ ~ y i ~ ~ 2  = 1, 0 < Si 5 1.) 

We call $ the condition number for Ai .  Using (9.3), we interpret 5 like 
the derivative in calculus, if si is close to 0, X i  is ill-conditioned. (Small 
changes in A can lead to much larger changes in Xi.) And if si is close to 
1, X i  is well conditioned. (Small changes in A lead to small changes in A,.) 

Geometry can help us see when $ is large. ( A i  is ill-conditioned.) Note 
from Figure 9.4 that 

lcos81 = lyazil 
= si .  

J 
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FIGURE 9.4. 

I o  
(x. I 

Y ,I Y:  

(hi ill conditioned) (hi well conditioned) 

FIGURE 9.5. 

So si is the absolute value of the cosine of the angle between xi and yi. 
Thus if the left and right eigenvectors (left eigenvector transposed) of Xi 
are nearly orthogonal (si is near 0), then $ is large, and the condition 
number is large. If the left and right eigenvectors of X i  are nearly parallel 
(si is near 1), then 6 is near 1 , l  being the best possible condition number. 

Since a normal matrix (This includes symmetric and Hermitian matri- 
ces.) is orthogonally diagonalizable, as given in the exercises, zi = y i  for 
all a and so its eigenvalues are well conditioned. (This sometimes prompts 
the remark that matrices which have ill-conditioned eigenvalues are non- 
normal.) (See Figure 9.5.) 

Similar to our analysis of eigenvalues, the numbers 

(9.4) 

(where the expression is omitted) indicate the sensitivity of the 
coefficients of zi ( t )  to small changes in t in A + t E .  Thus, if A has distinct, 
well-separated eigenvalues and is not too large, then the eigenvectors 
xi ( t )  have well-conditioned coefficients. 
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Example 9.5 Let A = 1 1. Then A1 = 5 ,  A2 = 1 with corresponding 
L 

right eigenvectors, normalized, = [ ] , 22 = [ $ ] and left 
3 -3 

eigenvectors yl = [ h, 31, y2 = [A, -31 . 
(a) The condition numbers for the eigenvalues are 

Thus for a small t ,  the eigenvalues of A + tE will differ from those 
of A by  about t ,  at most. (Note that A is symmetric.) 

(b) For the condition of eigenvectors, we look at two parts. Note that 

So the eigenvectors have well-conditioned coeficients. 

9.2.1 Optional (Pictures of Eigenvalue and Eigenvector 
Sensitivity) 

In this optional, we show the sensitivity of eigenvalues and eigenvectors in 
terms of pictures. To do this, we need some preliminary work. 

It is known that if a matrix A has an ill-conditioned eigenvalue ($ is 
large for some i), then A is close to a matrix having multiple eigenvalues. 
(The converse is not true.) So if a matrix has close eigenvalues, it is a 
signal that eigenvalues and eigenvectors could be ill conditioned. 

We now look at two examples showing this, one for eigenvalues and the 
other for eigenvectors. 

Example 9.6 For eigenvalues we let A = [ ! ] .  T h e n X I = l + &  

and A2 = 1 - 6 c  give the eigenvalues of A. As a jknction of b and c, the 
graph of A1 is shown in Figure 9.6. We use the Robenius norm on RZx2 
so the matching [ ] - ( b , ~ ) ~  preserves distance. Note that near the 

b and c axes (b or c is small), the partial derivatives of A are vely large. 
So we know that small changes in b or c (near the axes) can cauae much 

larger changes in AI. For example, for A = [ 3, the eigenvalues 
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FIGURE 9.6. 

*Oool 1, we have I 1000 1 are AI = ~ . O O O O ,  AZ = I.OOOO. But for A = 
L J 

A1 = 1.3162, A2 = 0.6838. So a change of .0001 in A (JJEIJ ,  = .0001), 
changed A I  from 1.000 to 1.3162 and A2 from 1.0000 to 0.6838. (This was 
somewhat predictable since the eigenvalues were close. Close eigenvalues 
are a red Jag.) 

Observe also that when b = c, A1 doesn't change much for  changes in, 
say, b .  As  we know, this is true for symmetric matrices an general (even 
when eigenvalues are close). 

Example 9.7 For eigenvectors, we let A = 

so E = [ ; 1.  The eigenvalues of A ( t )  are given by 

1 Y 

The corresponding eigenvector, normalized to length 1, for A1  is 

= [ .l+JL ] 
d 

where d = (8t2 + .02 + . 2 4 m ) '  . 

1. I n  the graph, the eigenvector is (y, z ) ~ .  Observe in Figure 9.7 that about 
t = 0 the eigenvector shows a lot of change for small changes in t .  This is 

W e  let x = t ,  y = 7, 2t z = .1fJ.i1+4td and graph ( x , ~ , z ) ~  for -1 L t 5 
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w.phd- d A  

FIGURE 9.7. 

confirmed numerically by  computing the eigenvector for several values o f t .  

t -.l 0 .1 
2 -0.5257 0 0.5259 
Y 0.8507 1 0.8507 

(Note that A has close eigenvalues when t is small, a redflag that indicates 
eigenvectors could be ill conditioned.) 

9.2.2 MATLAB (Condeig) 
MATLAB provides condition numbers for eigenvalues. The command is 
condeig. An example follows. 

A = [ l  0 1 ; 2  7 3 ; 7  2 03; 
e i g w  

2.5958 
ans = [ -7;;;;l ] 
condeig( A) 

ans = [ 1.4399 ] 1.5766 

1.1994 
If we want eigenvectors (recorded as columns in a matrix), eigenvalues, 

[V, D, s] = condeig (A) 
and their condition numbers, we use 
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1. Code for eigenvalue picture 

b = linspace(0, 10,30) ; 
c = linspace(0, 10,30) ; 
[b, c] = meshgrid(b, c)  ; 
s = l+sqrt(b. * c) ; 
mesh(b, c, s) 
grid on 

2. Code for eigenvector pictures 

t = linspace( -1,1,50) ; 
d = 8 * ( t .  A 2) + .02 + .2*sqrt(.Ol + 4 * (t. A 2)) ; 
y = 2 * t . /d; 
z = .l+sqrt(.Ol + 4 * (t. A 2))) . /4  

grid on 
PlOt3(t, Y, 

For more information, type in help condeig. Also for the graphs, type in 
help plot3. 

Exercises 
2 1  1. Let A =  [ 2 ] .  

(a) Factor A = PDF-' and compute c ,  (P) .  
.1 .1 

(b) If E = [ -1 * I ]  9 find cm (PI 11E1Im. 

(c)  Plot the eigenvalues of A in R2. Draw circles of radius C, ( P )  llEll, 

(d) Find, and plot in (c), the eigenvalues of A + E.  
about the eigenvalues. 

2. Repeat Exercise 1 for A = [ lob0 1:: ] and E =  [ :: :: 1- 
3 1  3.  let^= [ 3 ]  

(a) Using E = 

9.3 (a). 
[ k 1 ,  compute A: (0), for i = 1,2 ,  using Theorem 

(b) Repeat (a) for E = 

4. Repeat Exercise 3 for A = [; I,,]. 
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5. For the matrix given in Exercise 3, 

(a) Find & for XI. Explain what this means in terms (9.3). 

(b) Find 1x1 - X2l. Using (9.4), explain what 

(c) Repeat (a) for Xz. 

(d) &peat (b) for 22. 

means in 
terms of the condition of the coefficients of 21. 

6. Repeat Exercise 5 for the matrix in Example 4. 

7. Let A be an n x n normal matrix with distinct eigenvalues. Prove 
that if yi is a left eigenvector, for the eigenvalue X i  of A, then y i  is a 
right eigenvector belonging to that eigenvalue. 

8. (MATLAB) Let 

2 1 -1 
A =  [ z: -;I. 

(a) Find the eigenvalues of A. 
(b) Find & for i = 1, 2, and 3. 
(c) Make some conclusion from (b). 

9. (MKTLAB) Find a 3 x 3 matrix, with $ > 100, for some i. (Use 
theory to see where to look.) 

b e 



10 
Hermitian and Positive Definite 
Matrices 

As we will see, Hermitian matrices (In the real case we are talking about 
symmetric matrices.) arise in mathematical models of mechanical systems, 
in Hermitian forms, and in optimization. (There are many other areas as 
well.) In this chapter we look at several results about Hermitian matrices 
which are useful in these areas. 

10.1 Positive Definite Matrices 

As we have seen, a Hermitian can be diagonalized by a unitary matrix. By 
using a special class of Hermitian matrices, the positive definite Hermitian 
matrices, we show in this section how two matrices can be simultaneously 
diagonalized in a special way. 

A Hermitian matrix A is positive definite if all of the eigenvalues of A 
are positive. And if A has all nonnegative eigenvalues, we use the words 
positive semidefinite. (If - A  is positive definite, we call A negative definite 
and if - A  is positive semidefinite, we call A negative semidefinite.) Positive 
definite matrices can be factored in a special way. 

Lemma 10.1 Let A be an n x n matrix. Then A i s  Hermitian and positive 
definite if and only af there is  an n x n nonsingular matriz R such that 

A = RRH. 

(Ij A is symmetric, R is real, and we have A = RRt . )  
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Proof. We prove the biconditional in two parts. 
Part a. If A is Hermitian and positive definite, we can factor 

A = UDUH 

where U is a unitary matrix and D = diag (XI,. . . , A,) where each X i  > 
0. Define D i  = diag (A,. . . , and set R = UD?, a nonsingular 
matrix. Then 

A = RRH. 

Part b. If A = RRH, then A is clearly Hermitian. To show that A is 

Suppose X is an eigenvalue of A. Then Ax = Ax for some eigenvector x. 
positive definite, we proceed as follows. 

Since A = RRH, 

R R ~ X  = A X .  

Thus 

X ~ R R ~ X  = X X ~ X  

IIRHxll: = 1141;. 
- 

Since R is nonsingular, so is RH (det RH = det R # 0) and thus RHx # 0. 
Hence IIRHxlli > 0. Since 11x11; > 0, it follows that X > 0. As X was an 
arbitrarily chosen eigenvalue, A is positive definite. 

Example 10.1 Let A = [ 1, a symmetric m a t k .  The eigenvalues 

and corresponding eigenvectors (of length 1 )  are given by XI = 4, X2 = 2,  

and u1 = [ $ 1, u2 = [ -$ 1. Thus, A is positive definite. Now 

J z - 1  J z J z  
= [ J z  l ] [ - 1  11  
= R R ~  

J2 -1 
4 1  

where R =  [ 1. 
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Adjusting the proof slightly, we can show that an n x n matrix A is 
Hermitian and positive semidefinite if and only if A = RRH for some n x n 
matrix R. 

Note that if S = RH,  then 

A = SHS 

so which matrix in the factorization has the superscript H doesn’t matter. 
From this lemma we can produce a simpler factorization, the Choleski’s 

decomposition . 
Corollary 10.1 Let A be an n x n matrix which is  Hermitian and positive 
definite. Then 

A = T ~ T  

where T is an upper triangular matrix. 

Proof. Using Lemma 10.1, factor 

A = SHS.  

Now factor S = UT, where U is unitary and T upper triangular. (UT found 
from the Gram-Schmidt process, i.e. the QR factorization.) By substitution 

A = ( U T ) H  ( U T )  
= T ~ T ,  

which is Choleski’s decomposition. rn 

Note that the lemma (or corollary) also implies that if A is Hermitian and 
positive definite, and B is a nonsingular matrix, then BHAB is Hermitian 
and positive definite. (To see this, factor A = RHR and substitute to get 

We can now show how two Hermitian matrices can be simultaneously 
B H A B  = BHRHRB = ( R B ) ~  (RBI.) 

factored into diagonal matrices. 

Theorem 10.1 Let A and B be n x n Hermitian matrices with B positive 
definite. Then there is an n x n nonsingular matrix P such that 

PHBP = I and PHAP = D 

where D = diag (AI,. . . , A,). Further, i f  A is also positive definite, D has 
a positive main diagonal. 

Finally, i f  A and B are real, so is P. 

Proof. The proof outlines the method to find P. 



312 10. Hermitian and Positive Definite Matrices 

Step 1. (Find R.) As in Lemma 10.1, find R such that 

B = RRH. 

Note that R-lB (RH)-' = I .  
Step 2. (Find 0.) 

a Hermitian matrix. 

Step 3. (Find P.) 

Then 

Set 

c = R - ~ A  ( ~ ~ 1 - l  

rhus, we can find a unitary matrix U such that 

UHCU = D, or 

U H R - ~ A  (RH)-' u = D. 

Set 

I P = (RH)-l  U. 

PHBF = U H R - ~  ( R R ~ )  (RH)-' u = I 

P ~ A F  = U ~ R - ~ A    RH)-^ u = uHcu = D. 

and 

Thus, P has the required properties. rn 

Finally, if A is positive definite, so is PHAP, so D has a positive main 
diagonal. 

Example 10.2 Let A = [ -; -: ] and B = [ 
steps of the proof of the theorem. 

1. We follow the 

Step 1. (Finding R) Factoring 

.=RRt=[i  2 0  2 ] >  

s o R = I O  2 0  2 1 .  
Step k. (FanAang U) Set 
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Orthogonally diagonalizing C, we have 

Step 3. (Finding P )  Set 

= [ f  -fl 
Simultaneous diagonalization of positive definite Hermitian matri s arise 

in simplifying quadratic forms, say, q1 (z) = ztAx and 42 (z) = ztBz (which 
represent, say, kinetic and potential energies). It is also sometimes used to 
solve systems of differential equations of the form 

Mz” ( t )  + Kx (t)  = 0 (10.1) 

as in the spring-mass, building, etc. problems. The simultaneous reduction 
here (using y ( t )  = P-’x ( t ) )  yields 

y” ( t )  + Dy ( t )  = 0. 

These equations are easily solved for y ( t )  and then 

5 ( t )  = PY (4 
= Y1 ( t )  P l  + * * .  + Yn ( t )  Pn 

where y (t)  = (y1 ( t )  , . . . , yn ( t))  and pi is the i-th column of P. We will 
show such an approach in Optional. Now, however, we want to observe 
that (10.1) is equivalent to 

5’’ ( t )  + M-lKx ( t )  = 0. 

If M-lK is diagonalizable, we can solve this problem as described in Chap- 
ter 4. 

We need the following. 

Corollary 10.2 Let A and B be n x n Hermitian matrices with B positive 
definite. Then B-lA is diagonalizable. And if A is positive definite, B- lA  
has positive eigenvalues. 

Proof. From the theorem, there is a nonsingular matrix P such that 

PHBP = I (10.2) 
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PHAF = D .  (10.3) 

Taking the inverse of the matrices in (10.2) and multiplying sides to those 
of the equation in (10.3), we have 

P-lB-1 (pH)-' PHAF = I D  

or 

Thus, B-'A is diagonalizable. 
Finally, if A is positive definite, then so is PHAF and thus by (10.3), D 

has a positive diagonal. And using similarity, B-lA has positive eigenval- 
ues. 

In Chapter 4, we derived a formula for the solutions to 

x" ( t )  + Ax ( t )  = 0 (10.4) 

where A is a 2 x 2 diagonalizable matrix with positive eigenvalues. 
The formula is 

x ( t )  = (a1 cos A t  + p 1  sin At) p l  

+ (a2 cos A t  + pz sin A t )  pz 

(10.5) 

where A1 and XZ are the eigenvalues of A having corresponding eigenvectors 
p l  and p z ,  respectively. 

Example 10.3 We solve the spring-mass problem given by the equation 

An example applying this formula follows. 

1 0  4 -1 
[ o  a].'/+[ -1 ,]x=O. 

This system is equivalent to 

1 0  4 -1 4 -1 Now [ ] [ -1 ] = [ -4 ] is diagonalizable with D = 

[ i ]  a n d P = [  -: 11. Thw 

I[:]- x ( t )  = (a1 cos A t  + p 1  sin At> [ - ] + (a2 cos f i t  + pZ sin f i t  
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If the problem has initial conditions, say, 

we compute coeficients to  satisfy these. R o m  

we get a1 = 2, a2 = 3. And  from 

W e  find p1 = & and P2 = a. SO 

10.1.1 
A building as diagramed in Figure 10.1, can show some motion if displaced 
from vertical. 

Optional (Solving the Motion of a Building Problem) 

FIGURE 10.1. 

The mathematical model for this building was derived in Chapter 4 as 

d2 
M z Y  ( t )  + KY 0) = 0 
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where M = [ 
that M and K are symmetric and positive definite. 

i2 ] and K = [ IC' -k2 + I C 2  -" k2 1. It can be shown 

We now demonstrate how to use Theorem 10.1 to solve this equation. A 
particular example follows. 

Example 10.4 Consider the building dram in Figure 10.2.Then M = 

R 1 m, =- 
4 

k, = 1  

rn, = I  
k, = 3  

FIGURE 10.2. 

1 0  4 -1 1 and K = [ -1 [ 
the MA LAB section, we found 

1. Using MATLAB and the algorithm in 

1 -0.7071 -0.7070 
'= [ 1.4142 -1.4142 

and 

Thus using (10.5), 

2 ( t )  = (a1 cos A t  + p1 sin A t )  p l  

+ ( 0 2  cos f i t  + p2 sin mt) pa 

-1.4142 * 

-0.7071 1 + (&,COS ( f i t )  +&sin ( f i t ) )  [ 
Now suppose at t = 0 the building is erect, so x1 (0)  = 0 and x2 (0)  = 0. 
With a gust of wind, we have xi (0)  = 1 and xi (0) = 1. Plugging in t = 0,  
we have 

x 

! 
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or 

Solwing yields a1 = a2 = 0.  
Now 

Solving 

we get PI = -.01443 and ,LIZ = -0.7500. 
Thus, the subsequent motion of the building is 

1 -0.7071 
= -0.1443sin (At> [ 1.4142 

-1.4142 1 ’ -0.7071 - 0.7500 sin ( h t >  [ 
A graph depicting the building when t = 1 can be obtained by calculating 

0.5890 
x( l )  = [ 0.9175 ] . 

Thus we have the shape shown in Figure 10.3. 

FIGURE 10.3. 
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10.1.2 MATLAB (Code for  Computing P)  
The commands for finding P, such that PtBF = I and P t A F  = D ,  as 
described in Theorem 10.1, follow. 

L =chol(B) ; % Gives the Cholesky decomposition 
of B as LLt where L is lower 
triangular. 

C = inv (L )  * A * inv (L'); 
[Q, 'I] = schur (C)  ; 
P=inv(L ' )*Q 
D = P' * A *  P 
(MATLAB calculations may not agree entrywise with hand calculations 

See the exercises for a few problems on which to use this algorithm. 
since the factorizations RRt and QDQt are not unique.) 

Exercises 
1. Factor A as RRH 

2 1 1  

1 1 3  
5 2  1 2 1  [ 2 5 ] (b) [ 

2. Prove that A is Hermitian and positive semidefinite if and only if 

3. Using Exercise 2, factor [ i i ] a s R R H .  

4. Prove that if A is an n x n positive semidefinite Hermitian matrix, 

A = RRH for some matrix R. 

then so is BHAB where B is an n x n matrix. 

5.  Find a matrix P that diagonalized "both" 

Is P an orthogonal matrix? Are the columns of P orthogonal? 

6. Solve [ i ] d'+ [ .!j i ] 3: = 0 where x (0) = [ : ] and x'(0) = 

[ : 1. (Use the results of Exercise 5. )  

+ [  .!j i ] z = O w h e r e x ( O ) =  [ : ] and x'(0) = 

. (Use the results of Exercise 5. )  

8. Solve the spring-mass problem in Figure 10.4 using Corollary 10.2. 

9. Twoparts. 
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1 k =- 
' 4  

ml=8grams 
1 k, =- 
4 t m2=4grams 

FIGURE 10.4. 

(a) Prove that XI,. . . , A, (called generalized eigenvalues) of Theo- 

(b) Prove that the columns pi  of P in Theorem 10.1, called gener- 

rem 10.1 can be found by solving det (AB - A )  = 0. 

alized eigenvectors, can be computed by solving 

for mi linearly independent vectors, where A i  has multiplicity 
mi, and then by applying Gram-Schmidt to these using the inner 
product (z, y) = yHBz. [ a  -i - 9 1  a n d B  = [ 1 -: 2 - a ] .  

10. (MATLAB) Let A = 

Use the algorithm in Optional to find the matrix P described in 
Theorem 10.1. 

11. (MATLAB) Solve the building problem for the building in Figure 
10.5 where initially 2 1  (0) = 1, zi (0) = 0, z 2  (0) = 1, za (0) = 0. 
Draw the building when t = 5 .  

FIGURE 10.5. 
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10.2 Special Eigenvalue Results on Hermitian 
Matrices 

In this section, we look at several eigenvalue results about Hermitian ma- 
trices. To do this, we define a special function called a Hermitian form. 

Let A be an n x n Hermitian matrix. Define a Hermitian f o r m  h as 

h : C n + C  

where 

h(x) = z H h .  

H If a = xHAx,  then & = aH = ( x H A z )  = x H A x  = a. Thus the value of 
a Hermitian form is always real. If A is symmetric and we let q denote h 
restricted to R", that is 

q : R n + R  
q (z) = ztAx,  

we call q a quadratic form. 
Hermitian and quadratic forms arise in representations of potential and 

kinetic energy in a system. Using Lagrange's equation and energy expres- 
sions, mathematical models of the system can be derived. In addition, 
these forms are used to develop numerical methods for computing eigen- 
values, as well as in solving optimization problems for functions of several 
variables. 

We first give a description of Hermitian forms, obtaining some view of 
the shapes of their graphs. To do this, let A be an n x n Hermitian matrix. 
Then we can factor A as 

A = UDUH 

for some unitary matrix U = [ul.. . u,] where u k  is the k-th column of U, 
and diagonal matrix D = daag (AI, .  . . , A,). We assume these eigenvalues 
are arranged in D so that 

A1 2 A2 2 . . . 2 A,. (10.6) 

Now 

h ( x )  = zHAx = x H  (UDUH) z = ( U H ~ ) H  D ( U H z ) .  

Setting y = U H x ,  and defining hy ( y )  = yHDy,  we have 

h (z) = yHDy 

= ~1 IY1I2 + * .  . + An 1ynl2 
= hY ( Y )  

(10.7) 
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To see what this equation means geometrically in R", set Y = { u l , .  . . , un}. 
Then the equation 

x = u y  

converts the y coordinates of x into x. Thus 

4 (3) = qY (Y) 

says that q (x) can be graphed by graphing qy (y) in the Y-coordinate 
system. 

We show an example. 

[: :] - 1 

Example 10.5 Let A = 

4 0  T h e n D =  [ 2 ] , U =  [ -71. So 
7 5 7 5  

1 1 

The graph of 

is an Figure 10.6. The graph of 

- 5 - 5  
X l - a I E  d - a l s  I 

FIGURE 10.6. 
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4Y (Y> = YtDY = 4Y:: + 2Y22, 

using the Y-coordinate system is in Figure 10.7. 

systems are rotated -4 radian, showing them relative to the axes in R2. 

following theorem. 

Note that both graphs are identical when the axes of the Y-coordinate 

The use of hy ( y )  to derive information about h ( x )  can be seen in the 

FIGURE 10.7. 

Theorem 10.2 Let h ( x )  = xHAx be a Hermitian form. Then A is a 
positive definite Hermitian matrix i f  and only i f  h ( x )  > 0,  for  all x, except 
at x = 0. 

Proof. Follows from (10.7). 

We now give a sequence of results about the eigenvalues of Hermitian 
matrices. In Rayleigh’s Principle, we show how the smallest and largest 
eigenvalues of a Hermitian matrix can be found from Hermitian form. 

Theorem 10.3 Let h ( x )  = xHAx be a Hemi t ian  form. Then 

where A1 and A, are the largest and smallest, respectively, eigenvalues of 
A.  Further, the maximum and minimum values of h are achieved at u1 and 
un, the eigenvectors of length 1 corresponding to A1 and A, respectively. 
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Proof. We prove the maximum result. 
Part a. We show that if 1 1 ~ 1 1 ~  = 1, then h (z) 5 A I .  To see this, by (10.7), 

h (Z) = hY ( Y )  7 

Part b. We show there is an Z, 11z112 = 1, such that h (z) = AI. For this, 
let y = e l .  Then z = Uel  (z = u1) and 

the desired result rn 

A result extending Rayleigh’s Principle, namely Courant’s Minimax The- 
orem, shows how each eigenvalue of a Hermitian matrix can be found using 
expressions like those of Rayleigh. This work is rather intricate, a bit 
more than what is intended in this text. However, we will state a useful 
consequence of Courant’s work, the Inclusion Principle, without proof. 

Theorem 10.4 Let A be a n  n x n Hermitian  mat^ and B the (n - 1) x 
(n  - 1) submatrix of A obtained by deleting its last TOW and last column. 
If the eigenvalues of A and B are indexed such that, A1 2 + - -  2 A, and 
P1 2 . . . /3n-1, respectively, then 

A1 2 P1 2 A2 2 P 2  2 . . . L Pn-1 > - An. 

An example demonstrating the Inclusion Principle follows. 

Example 10.6 Let A = 1 2 3 . Then, the eigenvalues o f A  are 

given by A1 = 6, A2 = 1, A3 = -3, while the eigenvalues of B are given by 
PI = 3, P2 = 1.  Observe that 

[ r  : :] 
A1 2/31 2 A2 L P2 2 A3. 
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Using the Inclusion Principle, we can give a test for positive definite 
Hermitian matrices. 

Theorem 10.5 Let A be an n x n Hermitian matrix. Let Ak be the sub- 
matrix in the first k rows and columns oj A .  Then A is positive definite ij 
and only i j  det Ak > 0 for all k .  

Proof. We prove both parts of this biconditional. 
Part a. We show that if A is positive definite, then det Ak > 0 for all 

k .  For this, let 2 = (XI,. . . , X k ,  0,. . . ,0) E C". Then, since A is positive 
definite 

Since this holds for all such x's, with equality only when x = 0, Ak is 
positive definite, and thus all its eigenvalues are positive. Since det Ak is 
the product of the eigenvalues of Ak, det Ak > 0. 

Part b. We show that if det Ak > 0 for all k ,  then A is positive definite. 
Here, we use induction on n. If A is 1 x 1, then the result is obvious. Thus, 
suppose the result holds for all n, n < k .  Now let A be an k x k Hermitian 
matrix satisfying the hypothesis of this part. 

Since Ak-1 is Hermitian and satisfies the hypothesis of this part, we 
have by the induction hypothesis that Ak-1 is positive definite and thus 
its eigenvalues, say, PI,. . . , P k - l  are all positive. Now, by the Inclusion 
Principle, if XI, . . . , X k  are the eigenvalues of A,  then using the notation of 
(10.61, 

A1 2 P i  2 2 P k - 1  2 Aka 

Thus, A k - 1 , .  . . , A 1  are positive. Since det A > 0 and det A = A1 . 
it follows that Ak > 0 as well. Thus, A is positive definite. rn 

Xk-1  A k ,  

We demonstrate the theorem with an example. 

Example 10.7 Let K = [ IC' T2 -:: ] where kl > 0 and k2 > 0. 

Then det K1 = kl  + kz > 0 and det K = klk2 > 0 .  Thus, K is positive 
definite. 

The final result of this section is an interesting result about linear trans- 
formations. For this result, we work with real numbers. 

Recall that if A is symmetric, then we can factor A as 

A = QDQt 

where Q = [ q l . .  . q"] is orthogonal and D = diag (AI,. . . , A,). And 

xtAx = c 
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can be graphed by graphing 

ytDy = C, 

where Qy = x,  in the coordinates determined by the basis Y = (41,. . . , qn}. 
The graph in these coordinates is 

Aly;  + . * * +Any;  = c. 

If A1 > 0,.  . . , A, > 0 and c > 0, the graph of this equation is an ellipsoid. 
Thus, if A is positive definite symmetric and c > 0, then the graph of 

xtAx = c 

is an ellipsoid. 
Our theorem now follows. 

Theorem 10.6 Let A be an n x n nonsingular matrix. Then L ( x )  = Ax 
maps ellipsoids to ellipsoids. 

Proof. We argue this theorem in two parts. 
Part a. We show that the image of an ellipsoid is on an ellipsoid. To 

do this, let E be an ellipsoid. Then E is the graph of xtBx = c where B 
is a positive definite symmetric matrix and c a positive scalar. Since B is 
positive definite, B = RtR for some nonsingular matrix R. 

Let x E E. Then 

xtRtRx = c. (10.8) 

Now let L (x )  = y .  Then A-ly = x. Substitution into (10.8) leads to 

Yt  (A-I)' R~ R A - I ~  = c. (10.9) 

Since (A-')t RtRA-l = (RA-l)t (RA-'), this matrix is positive definite 
symmetric. Thus, y is on the ellipsoid defined by (10.9). 

Part b. We show the image of the ellipsoid E is all of the ellipsoid defined 
by (10.9). For this let y be on the ellipsoid defined by (10.9). We need to 
show there is an z E E such that L ( x )  = y .  This part will be left as an 
exercise. 

An example showing a consequence of this theorem follows. 

Example 10.8 Let L ( z )  = Az where A = [ I 2 1. Then L maps the 

unit circle into an ellipse. By Rayleigh's Principle, 

= XI, the largest eigenvalue of A.  
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And the value is  achieved at ul, a corresponding eigenvector of unit length. 
Thus, L(u1) is the major axis of the image ellipse. 

Similarly, the length of the minor axis is A2, the smallest eigenvalue oj 
A and is  achieved at L (u2), u2 a corresponding eigenvector of unit length. 
Thus, L (uq) is the minor axis of the ellipse. 

Since A1 = 3, u1 = 1 1 a n d ,  

I 

FIGURE 10.8. 

10.2.1 Optional (Optimization) 
In elementary calculus, we saw that if f (x) was a function of one variable, 
and 20 a critical point, then f" (20) > 0 implied the critical point was at a 
local minimum while f" (20) < 0 assured a local maximum. We outline a 
corresponding such test for a function f(x, y )  of two variables. (It can be 
extended to more variables.) 

If (20, yo) is a critical point of f (2, y ) ,  then 
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is called the Hessian of f(z, y) at (20, yo). Under rather mild conditions 
on f, H is symmetric. 

If H is positive definite, which we can easily check by Theorem 10.5, then 

except when z = z o  and y = yo. And it can be shown that q ( z , y )  > 
R (z, y) for (z, y) close to (not equal) (20, YO). So f (2, Y) - f (zo, YO) = 
q ( z , y )  + R(x,y) > 0 for all such (z,y), and thus f (z0,yo) is a local 
minimum of f .  (See Figure 10.9.) 

I I 

FIGURE 10.9. 

If H is negative definite, then f (zo, yo) is a local maximum. 
We give an example. 

Example 10.9 Let f (2, y) = 2x2 + zy + 3y2 - 62 - 13y + 6. 

a. W e  f ind  the critical points o f f .  

Setting the partial derivatives off  equal to  0 ,  we have 

4~ + y  - 6  = O  
2 +6y -13 = 0. 

or 

4 x + y = 6  
~ $ 6 9  = 13. 

The solution to these equations is (1, 2 ) t .  
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ai. W e  decide ij f has a local maximum or local minimum at (1, 2 ) t .  
To do this, we calculate the Hessian oj f at (1, 2)t. W e  get 

L ~J 

which is positive definite. Thus, there is u local minimum ut (1,2)* 

Exercises 
1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 

9. 

Graph by changing coordinates using the basis Y that provides the 
eigenvalue description. 

(a) 52: + 22122 + 52; = 5 (b) 2: + 22122 + xf = 1 

Graph by using the basis Y that provides the eigenvalue description. 
Describe each shape. 

(a) q ( 2 1 ,  z2) = 42: + 22122 + 42; 
(b) Q (21,572) = 2: + h 1 2 2  + 2; 

Using the hypothesis of Rayleigh’s Principle, prove that min h (z) = 

An. 

Decide which matrices are positive definite. 

11412=1 

Demonstrate the Inclusion Principle for 1 3 2 [: : :I 
Let L (2) = [ 3” ] 2. Then L maps the unit circle in R2 into an 

ellipse in R2.- Find the ellipse as in Example 10.8. 

Prove that the sum of two n x n positive definite matrices is positive 
definite. 

Give the details for the proof of Theorem 10.2. 

Let A be a 3 x 3 Hermitian matrix where all = 0. Prove that A 
has a nonnegative and a nonpositive eigenvalue. (Hint: Apply the 
Inclusion Principle to A I ,  Az, and A where Ak is the submatrix of A 
in the first k rows and k columns of A.)  



10.2 Special Eigenvalue Results on Hermitian Matrices 329 

10. Let A be an n x n positive definite Hermitian matrix. Prove that the 
submatrix in rows 2, .  . . , n - 1 and columns 2 , .  . . , n - 1 is positive 
definite. (Actually, any submatrix sharing the same rows and columns 
of A is positive definite.) 

11. Let A be an n x n positive definite Hermitian matrix. Suppose we 
can obtain an echelon form E by only applying the add operation 
CY€$ + Rj where i < j. Prove that A is positive definite if and only 
if the entries on the main diagonal of E are positive. 

12. (Optional) Let 

f (z,y) = 4z2 + 22 + 4y2 + 4y + 2. 

(a) Find the critical points of f .  
(b) Analyze the critical points to see if they yield local maximum 

or local minimum values of f .  

13. (Optional) Repeat Exercise 12(b) for 

f (z, y) = sinz + cosy + zy 
for the critical point (0,O). 

14. (MATLAB) Graph and describe each shape. 

[: (a) q (z) = z t A z  where A = 2 'I 
[: :I (b) q (z) = z t A z  where A = 

(c) q (z) = z tAz  where A = [ -; -:I 





11 
Graphics and Topology 

In this chapter we will show how matrices can be used in computer graphics 
and, to some extent, how special pieces (nonsingular matrices, diagonaliz- 
able matrices, etc.) of matrix space can be viewed. So in some sense, both 
topics deal with pictures. 

11.1 Two Projection Matrices 

In this section we study two special maps: the projection map and the 
perspective projection map, which are maps from R" into R". We first 
develop the projection map. 

Recall that we have defined and used the orthogonal projection matrix. 
This matrix projected Euclidean n-space orthogonally onto a subspace of 
itself. We now extend this notion to allow projections at various angles. 

Definition 11.1 Let P be an n x n matrix. Ij P is similar to a diagonal 
matrix D (thus, P = RDR-I for  some n x n matrix R) whose main diag- 
onal consists of 0's and l 's,  then P is called a projection (or idempotent) 
matrix. 

To give a grid view of L(s)  = Px, we start by letting Y = { T I , .  . . , rn}, 
where T I ,  . . . , r,  are the columns of R, a basis for Euclidean n-space. Recall 
that Y determines axes for the Y-coordinate system and that R = [TI  . . . T,] 

converts coordinates, 

Ry = X, 
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where y is the coordinate vector of x in the Y-coordinate system. 
Now, in the Y-coordinate system Ly  (y) = Dy is easily seen as a pro- 

jection of the space. For example, Ly(y)  = [ : : ] y projects ~2 onto 

r l  o 0 1  
the yl-axis, parallel to the y2-axis; while L y ( y )  = 0 1 0 projects 

L o  0 0 1  - 

R3 into the yly2-plane parallel to y3. (See Figure 11.1.) 

FIGURE 11.1. 

To link L ( E )  = Px and Ly ( y )  = Dy, we need a theorem whose proof is 
described in Chapter 3, Section 3. 

Theorem 11.1 Let P be a projection matrix with P = RDR-land R = 
[ r l . .  . r,]. If Y = { r l , .  . . ,T,}, then L y  (y) = Dy in the Y-coordinate 
system gives the same map as L(x) = Px. 

The theorem makes clear that a projection matrix P behaves as does 
D, using axes determined from Y. To help clarify the theorem, we give an 
example. 

4 2  
Example 11.1 Let P = [ Ii ] . Then we can factor 

2 1  1 0  3 - 4  
p = [ 1  2 ] [ 0  o ] [ - ,  , ] a  

So D = 1 1. Now L (x) = Px, described naturally, is the same as 
L -  - J  

L,(y) = Dy in the Y-coordinate system, where Y = 
r n i  

Note Ly  projects onto the y 1 - h  (determined from ) parallel to the 1 ; 1  
L J  

312 -ads (determined from [ 11. See Figure 11.2. 

Another example may help. 

,- 
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XZ Y2 

I 

FIGURE 11.2. 

Example 11.2 Suppose we want to  construct a projection that collapses 
R2 into the line y = x parallel to  [ y 1. W e  take a vector on  the line, say, 

[ 1. Then set 

y = { [  ;I.[ :I} and 

D = [ :  y ] .  
N o w R =  [ :] a n d P = R D R - l =  [ 
desired projection. See Figure 11.3. 

1.  And, L (x )  = Px is the 

FIGURE 11.3. 

It is possible to tell if P is a projection matrix without factoring. 
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Theorem 11.2 P as a projection matrix if and only i j  P2 = P. 
says L (L ( z ) )  = P(Pz) = Px = L ( E ) . )  

showing P2 = P. Thus we need only argue the converse. 

(This 

Proof. The direct implication is proved by setting P = RDR-I and 

Suppose 

P2 = P. (11.1) 

Factor P, by Jordan’s theorem, so 

P = RJR-l 

where J is a Jordan form for P .  Substituting into ( l l . l ) ,  and simplifying 
yields 

J2 = J. 

Since J is block diagonal, 

J z  = J k  (11.2) 

for each Jordan block J k  of J. Viewing the main diagonals of these blocks, 
we see from (11.2) that any eigenvalue X must satisfy 

X = A  2 

so X = 1 or 0. And, all Jordan blocks must be 1 x 1. (If not, view the 
1,2-entry for a contradiction) Thus P is similar to a diagonal matrix with 
main diagonal entries 0’s and 1’s. w 

Notice in the examples that the projections there axe “slanted.” As you 
might expect, “orthogonal” projections require the basis Y, and thus the 
matrix R, to be orthogonal. 

Definition 11.2 A projection matrix P is an orthogonal projection af P = 
QDQt for some orthogonal matrix Q and D a diagonal matrix whose main 
diagonal consists of 0’s and 1’s. 

We can also tell, without factoring, if P is an orthogonal projection. 

Theorem 11.3 Let P be a projection matrix. Then P is an orthogonal 
projection if and only if Pt = P. 

Proof. The proof is left as an exercise with the following hint: If Pt = P, 
Pis normal. 

The second kind of projection map we consider is the perspective pro- 
jection map. In this kind of map, Euclidean n-space is projected toward a 
‘point at infinity.’ (Think of looking at railroad tracks to see how lines are 
intended to go.) 

b 

i 
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Definition 11.3 An (n + 1) x (n + 1) mat& A is called a perspective 
projection matrix i f  i t  can be partitioned 

B O  B b  ' = [  b 1 1  O r A = [ O  1 1  

where B is an n x n matrix. 

As a use for this matrix, note that the difference equation 

can be written 

(11.4) 

The convergence of (11.4) depends on the eigenvalues and Jordan blocks 1. Concerning the eigenvalues of A,  we use the notion of of A = [ 
the spectrum of a matrix C ,  namely, 

a (C)  = { X : X is an eigenvalue of C} . 

The following lemma is easily proved. 

Lemma 11.1 If A is a perspective projection matrix then 

a ( A )  = a ( B ) U { l )  

Perspective projection matrices also arise in graphics. In art, a painter 
might hold up his thumb to help envision a vanishing point behind the can- 
vas. The drawing diminishes the back (top, bottom, and sides) to provide 
perspective. A draftsman will do this by perhaps initially establishing a 
vanishing point for a drawing, perhaps putting a point in the upper right 
corner of the drafting paper. (See Figure 11.4.) 

The same results can be achieved in computer graphics using mathe- 
matics. We project to the xy-plane (our canvas). However, since we are 
projecting, rather than drawing, the point we need is in front of the object. 
(So we get the eye view.) We label the axes as in Figure 11.5. 

We choose a vanishing point e ,  e = (0, 0, d)t  on the z-axis and use it to 

obtain perspective. To calculate where e places the point p ,  p = [ ; ] , i n  

the xy-plane, say, at [ ;: 1, we use the line determined by e and p ,  namely 

cup+ (1 - a ) e  (11.5) 
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I 

FIGURE 11.4. 

P =  

Y 

X 

FIGURE 11.5. 

where -00 < Q: < 00. We choose (Y so that z = 0, i.e. 

(YZ + (1 - (Y) d = 0. 
Solving yields 

d a = - .  
d - z  

Now, using this Q: in (11.5), we have that 
d 

2 2* = - 
d - z  

Note that 

(11.6) 
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Thus, if we dpfine x on those vectors in R4 with nonzero last entry, such 
that x normalizes the vector to have last entry 1, then we have 

- d x  
'd-r 

d--Z: 
0 

- 1  

I = [  i] .  
(Vectors that are scalar multiples of each other are said to have homoge- 
neous coordinates. Hence, 7r maps vectors into vectors with homogeneous 
coordinates and having last entry 1.) Putting together, if 

1 0  0 0 
0 1  0 0 *-[:::: -03 :I, 

then the perspective projection map 7r o A maps vectors into the zy-plane 
with the perspective of a vanishing point at e, a distance d from the origin. 

11.1.1 Optional (Drawing Pictures Using Projection Maps) 
In this optional we will draw a box to be viewed on a computer screen. We 
do this with a perspective projection map and a projection map. 

Part a. Perspective projection. 

The eye view we take of the box is from a vertex, say, f ,  to the farthest 
vertex, say, h, from f .  Thus we place the line through h and f on the 
z-axis so that f is at (O,O, 3)t  and h at (O,O, l)t. So the vertices of the box 
that we view are 

t a = (-2,0,3) 
t b = (-2, -2,3) 

c = (0, -2 ,3 )  

d = (2,0, l)t 
e = (2,2, I ) ~  

f = (0 ,0 ,3) t  
g = (0,2, ly. 

t 

(This box is not a cube.) To outline the box, we intend to draw the edges 
in the following sequence: 

a - b - c - d - e -  f - c -  f - a - g - e .  



338 11. Graphics and Topology 

Listing the x, y, and z coordinates of this sequence, we have the following. 
2 = [-2,-2,0, 2, 2, 0, 0, 0,-2,0,2];  
y=[0 , -2 , -2 ,0 ,2 ,0 , -2 ,0 ,0 ,2 ,2] ;  
z = [ 3 , 3 , 3 , 1 , 1 , 3 , 3 , 3 , 3 , 1 , 1 ] ;  
Now we position our eye at e = (O,O, lo), so d = 10. 

Computing our perspective projection on the zy-plane, we have 
d = 10; 

s = d* ones(1,ll) ; 
zl  = d * x . / ( s - z ) ;  
91 = d * y./ (S  - Z )  ; 
Now, plotting in the xy-plane 

w = zeros (1,ll) ; 
plot3 (21, y l ,  w) 

view (0,W) 

axis equal 
axis off 

To view the picture from the z-axis, we use the following. 
% Tilts axes so that the z-axis points 

% Puts tick marks so they are equal. 
% Removes appearence of axes. 

toward us. 

The picture is below in Figure 11.6. 

FIGURE 11.6. 

Of course, if we increase d, the back square will appear to increase in 
size, so this can be adjusted to suit the viewer. 

Part b. Projection. 
t -  

To contrast, suppose we simply project our box on the zpplane. We use 
x, y, and w from the previous program. And, we add 

PlOt3(2, Y, w) 
view (0,90) 
axis equal 
axis off 
The picture is in Figure 11.7. 

A 
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FIGURE 11.7. 

Notice that in this picture, the back square appears larger than the front 

Perspective is important in drawing. Our eyes expect it. And when it 
square. However, measurement shows they are the same. 

is missing, we see (perceive) a distortion. 

Exercises 
1. Find P that projects R2 onto the line y = 2x parallel to (1, l)t. 

2. Find P that projects R3 onto the plane 2 + y + z = 0 parallel to 

3. Find the orthogonal projection of R3 onto plane x + y + z = 0. 

4. 1s P = [ i i ] a projection matrix? 

5. Find P that projects R3 onto the line x = t [ i ] (parametrically 

described), and parallel to the xy-plane. (All points project parallel 
to the xy-plane.) 

6. Find the projection of R4 onto the xlxz-plane parallel to the plane 
21 + z2 + z3 + 2 4  = 0. 

7. Prove that if Q = [ql . . . qT] is an n x T matrix whose columns form 
an orthonormal set, then QQt is an orthogonal projection of R" onto 
span (91,. . . , qT} .  (Write in the form RDR-l.) 

(L1,  O Y .  

8. Prove Theorem 11.3. 

9. Prove Lemma 11.1. 

10. Find the perspective projection map into R2 using the vanishing point 
(070, 
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11. Let d be the vanishing point of a projective projection map into R2. 

12. (MATLAB) 

If d increases, what would happen to the picture of a house? 

(a) Find the perspective projection matrix P that projects R3 into 
R2 with vanishing point e = (O,O, 20)t .  

(b) Change the box in Optional into a cube. Use P to project the 
cube into R2. 

(c) Does the picture “look right”? If not, how should the vanishing 
point be changed? (Art, even on computers requires experience 
and sense.) 

1 1.2 Manifolds and Topological Sets 
In working with matrices, it is very helpful to have some sense or feel for 
the special sets of matrices: the nonsingular matrices as well as the matrices 
that have distinct eigenvalues. As shown in Chapter 5, Section 2, a matrix 
relatively close to singular matrices has a large condition number, c (A).  
And, as given in Chapter 9, Section 2, if a matrix is close to matrices 
with multiple eigenvalues, that matrix might have large eigenvalue and 
eigenvector condition numbers. In this section, we provide results intended 
to give that sense. Most of the work is based on the following definition. 

Definition 11.4 The concepts described below wncern the set oj m x n 
matrices with matrix n o m  (1.11. Let E > 0 and A an m x n matrix. A 
ball B about A of radius E is defined as 

B = { B  : B is an m x n matri3: and llB -All < E } .  

Let K be a set of m x n matrices. 

i. K is open if for each A E K there is some ball B about A such that 
B E K. 

ii. K is closed if whenever AI, Az... are in K and the sequence converges 
to some A, called a limit point of K, then A E K. 

It is left an exercise to show that the compliment of an open set is closed 
and vice versa. 

Open sets K are important since sufficiently small errors made in esti- 
mating or calculating an A E K results in a matrix in K. Not always so in 
closed sets. However, in closed sets K, limits of convergent sequences in 
K must be in K. 1 

Two special closed and open sets of matrices follow. 

F 
b 

i 



11.2 Manifolds and Topological Sets 341 

Theorem 11.4 In  the space oj n x n matrices, 

(a) The set of singular matrices is closed. 

( b )  The set of nonsingular matrices is open. 

Proof. There are two parts. 
Part a. The determinant is a continuous function. Hence if AI, A2, . . . 

is a sequence of singular matrices which converge to A, then detA = 
lim det Ak = lim 0 = 0. Thus A is singular. Hence, the set of singular 

matrices is closed. 
Part b. Since the set of nonsingular matrices is the compliment of the 

set of singular matrices, the result follows. 

k - m  k + m  

Results concerning diagonalizable matrices follow. 

Theorem 11.5 I n  the space of n x n matrices, 

(a) The set of matrices that have multiple eigenvalues (at least one eigen- 
value of multiplicity 2 or more) is closed. 

(b) The set of matrices that have distinct eigenvalues is  open. 

Proof. There two parts. 
Part a. Let AI, A z , . .  . be a sequence of matrices which have multiple 

eigenvalues. Suppose the sequence converges to A. By the continuous 
dependence of eigenvalues, A cannot have distinct eigenvalues since if A 
had distinct eigenvalues, we could find small nonintersecting disks, say, 
of radius E ,  about them. But then, for some 5 ,  if llAk -All,  < 6, the 
eigenvalues of Ak would have to be within e of those of A. Thus, the set 
of matrices that have multiple eigenvalues is closed. 

Part b. Left as exercise. I 

Continuing with the definition, 

iii. K is dense if for each matrix A in the space, and each scalar E > 0, 
the ball about A of radius E contains a matrix from K.  

Thus, any matrix can be approximated arbitrarily close using matrices 
in a dense set. Two such sets of matrices follow. 

Theorem 11.6 I n  the space of n x n matrices, 

(a) The set of matrices with distinct eigenvalues is  dense. 

(b) The set of nonsingular matrices is dense. 
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Proof. There are two parts. 
Part a. Let A be an n x n matrix. Write 

A = PJF-' 

where J is the Jordan form of A. Let 

6 = min [ X i  - X j l  

where the minimum is over all distinct eigenvalues Xi, X j  of A. Let E be a 
variable, 0 < E < 8 .  Define 

D = dzag (e ,  2 5 . .  . ,ne). 

And set 

B = P ( J + D ) P - - ' .  

Note that B has distinct eigenvalues for all E and that 

l imB=A.  
e - 4  

Thus, there are matrices with distinct eigenvalues arbitrarily close to A. 

to nonzero eigenvalues.) m 
Part b. This part is similar to Part a. (Note, nonsingular is equivalent 

We might mention that neither the nonsingular matrices nor the matrices 
with distinct eigenvalues are convex sets, so they don't have a convex set 
dimension. Intuitively, however, it is nice to have some notion of dimension 
of the sets we studied. Thus, we will need an extended definition for 
dimension. And, we will do this only for the real numbers. 

For some intuition on this, let X be a nonempty subset of m x n matrices. 
We will say the X has dimension k if at each A E X ,  there is an open set 
containing A which looks something like an open set in Rk. (Say we can 
lay an open set in Rk oneto-one, on the open set containing A.)  So around 
any point in X ,  it looks like Rk. (See Figure 11.8.) 

For a mathematical description, let X be a nonempty subset of m x n 
matrices. Using the matrix norm l l . l l F ,  we can define ball, open and closed 
sets in X (rather than in the whole set of m x n matrices) as we did in the 
space of m x n matrices. And using the vector norm 11.112,  we can define 
those same notions in Rk. 

Now suppose that at each A E X there is an open set W (open in X) 
containing A, an open set V in Rk, and a function f. 

f : V + W  

which is 
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4 . . -  

FIGURE 11.8. 

1. One-to-one and onto, and such that both 

2. f and f - l  are continuous. 

Then we say that X is a k-manifold. And, we add, all k-manifolds are 

Giving some dimension to nonsingular matrices, we have the following. 
assigned the dimension I C .  

Theorem 11.7 Let U be the set of n x n nonsingular matrices. Then U 
is an n2 -manifold. 

Proof. Define f : RnZ 4 Rnxn by 

all  . . . aln 
f ( a l l , - . .  ,aln,a21,. .-  ,a2n,... ,aril,..- ,ann)= [ .. .  1 .  

an1 . . . ann 

Then f is one-to-one and onto. 

is open, let z E V. 
B (f (z) , r )  about f (z) of radius r such that 

Let V = f-' ( U ) .  (That is, V = {z : f (x) E U}.)  To show that V 
Since U is open, there is a ball Then f(z) E U .  

If B ( x , r )  is the ball about z of radius r in Rna, then f : B(z,r) t 
B (f (z) , T ) .  As 2 was arbitrarily 
chosen, V is open. 

Finally, it is clear (checking to see if z k  -+ x, then f (zk) -+ f (z) and if 
Bk + B ,  then f - '  (Bk) --+ f - '  (B ) )  that f and f - l  are continuous. Thus, 
U is an n2-manifold. 

Thus, it follows that B (5, r )  E V. 

As an additional result we have the following. 

Theorem 11.8 The set of n x n matrices, having distinct eigenvalues, is 
an n2 -manifold. 

Proof. Exercise. 
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11.2.1 Optional (Rank k Matrices) 
In this optional we look at special subsets of m x n matrices having various 
rank conditions. The first of these is Rank 1 k defined by 

Rank 2 k =  {A: rankA 2 k}. 
We show two properties about the set. 

Theorem 11.9 I n  the space oj m x n matrices, 

(a)  Rank 2 k i s  an open set, and 

( b )  Rank 2 k is an mn-manifold. 

Proof. There are two parts. 
Part a. Let A E Rank 2 k. Then A has a k x k submatrix C such that 

C is nonsingular. To simplify the argument, we will suppose that C is in 
the upper left corner of A. 

Let U denote the set of the k x k nonsingular matrices. Since U is open, 
there is a ball about C of radius r such that 

B (C,r) G U. 

Now note that if R is an n x n matrix and S the submatrix in the k x k 
upper left corner of R, then 

IIA - RllF < 7- 

IIC - SII, 

implies that 

Thus, if 

R E  B(A,r)  

then S E B (C,r),  and so S is nonsingular. From this it follows that all 
matrices in B (A, r )  have rank at least k. Thus 

B ( A , r ) G R a n k L k  

and so, Rank 2 k is open. 
Part b. Mimicking the proof of Theorem 12.7 yields this result. 

From this theorem it follows that, using that the compliment of an open 
set is closed, 

Rank 5 k = { A  : rankA 5 k} 
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is a closed set. 
An additional result concerns 

Rankk = {A : rankA = I C } .  

This set is neither open nor closed in Rmx". However, Rank k is a manifold. 

Theorem 11.10 Ranklc is a IC2 + IC (n - I C )  + k (m - I C )  manifold. 

Proof. We will prove this theorem for IC = 2 and 3 x 3 matrices. The 

Let A E Rank2 and suppose that the 2 x 2 nonsingular submatrix C in 
extension to the general case will be clear. 

A is in the upper left corner. Then, partitioning A, we have 

where z is a 1 x 2 vector, y a 2 x 1 vector, and a a scalar. If C = [ C I C ~ ]  , c1 
and c2 the columns of C, then 

y = a1c1 + a2c2 

for some scalars aland a 2 .  And, if A = [ %i ] , where al ,  a2, and a3 are 

the rows of A,  then a3 = ylal + y2a2 for some scalars y1 and y2. 
Now, set f : Ra --t R3x3 by 

Let V = f-' (Rank2). Then 

f :V-,Rank2 

is one-to-one and continuous. Also, f-l is continuous. Thus, Rank2 is a 
4 + 2 (3 - 2) + 2 (3 - 2)-manifold. rn 

From this theorem, we get a view of the n x n singular matrices. This 
set can be seen as the union of Rank k sets for k < n. And, since Rank k 
is a IC2 + 2k (n - k)-manifold, we see the singular matrices as a union of 
manifolds, the largest dimension of which is n2 - 1 obtained by the set 
Rank (n - 1). 
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Exercises 
1. Write out the definitions for ball, open, close, and dense sets in 

(a) X, a subset of m x n matrices. 
(b) Rk. 

2. Show that the set of 2 x 2 matrices is a Pmanifold. 

3. Show that the set of 2 x 2 symmetric matrices is a bmanifold. 

4. Show that the orthogonal matrices in the 2 x 2 matrices form a man- 
ifold of dim 1. 

5. Prove that the compliment of an open set in Rmxn is closed and vice 
versa. 

6.  Explain why Theorem 11.5, part (b) is true. 

7. Show that IC2 + 2k (n - IC), where 1 5 IC 5 n - 1 is largest when 
(Hint: Use k = n - 1. 

f(z) = z2 - 2z (n - z) and apply calculus techniques.) 

8. Prove that the set of n x n orthogonal matrices is closed. 

9. Prove Theorem 11.6, part b. 

And, at k = n - 1, this value is n2 - 1. 

10. Prove Theorem 11.8. 

{ [ 4 ] where a,b ,c  E R . Graph 11. (MATLAB) Let S = A : A = 

all rank 1 matrices in S such that a > 0 and b = a+c over 1 5 a I 10, 
1 5 c 5 10. 

1 



Appendix A: MATLAB 

In this appendix, we go over some of the basics of the MATLAB software 
package. More appears, as it is needed, in the text. 

Numbers: The arithmetic operations for numbers, as with calculators, 
are +, -, *, and /. 

Matrices: To enter a matrix, say A = [; ; q t Y P e i n  

A = [ l  2 3; 4 5 6 1  
The semicolon indicates the beginning of a new row. If we don't want the 
matrix to appear on the screen, we can use a semicolon at the end of the 
command, as in 
~ = [ i  2 3; 4 5 6 1 ;  

Arithmetic: If A and B have been entered, we can do arithmetic with 
them by using the commands 

A + B,A - B 
A * B  for the matrix product 
a * A  for the scalar product 
inv(A) for A-' 
A\b 
A A 2  for A2 
A' for A transpose 

for the solution to Ax = b 

Sometimes we need an element-wise operation. Placing a period in front 
of the operation provides that result. 
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A.\B gives 121 
A. A 2  gives a:j 

Functions: MATLAB provides a large list of functions of matrices. These 
functions provide us with numerical calculations that would require a great 
deal of time if done by hand. For example, if A has been entered, we can 
get 

rref(A) 
det (A) ,rank(A) , . . . 

in what seems natural. Usually, this is correct. 

Graphics: We break this up into two parts. 

Part 1. 2-D Graphics. To plot a function, say f (t), it is required that 
we decide at what points we want to see the graph. We enter these points 
by indicating where the interval is to start, where it is to end, and the 
number of points desired in the interval. For example, since the variable 
is t ,  

Now to plot f ( t ) ,  we use 

MATLAB will connect the points 

with segments. (Remember, t is a matrix so if f ( t )  = t2,  we would write 
plot(t, t. A 2).) 

Curves described parametrically can be graphed in the same way. For 
example 

graphs ( t 2 , t 5 )  over our interval. 

Part 2. 3-D Graphics. To plot a function, say f (s, t) ,  we need two 
intervals 
s =limpace( - 1,3,100) ; 
t =liispace(2,6,100) ; 
Now to get the grid on which we will plot f (s, t ) ,  we use 
[s, t] =meshgrid(s, t )  ; 

for the reduced row echelon form 

Probably, some good advice is, if we want something, say rankA, type 

t =linspace(O, 1,s) 

P W t ,  f ( t)) .  

gives t = [0, f ,:, $,I] 

(0, f (0)) (4,f ( a ) )  (4, f (4)) (5 ,  f ( 5 ) )  (1, f (1)) 

plot(t. A 2, t. A 5) 

Thus, [s, t]  provides the matrix of points in s x t ,  all ordered pairs (si,tj) 
where si is in s and t j  is in t. 

To graph f (s, t ) ,  we can use 
mesh(s, t ,  f (s, t ) )  

which plots (s, t ,  f (s, t ) )  and connects with rectangular-like sheets. 
Curves can be graphed using plot3 as in 

plot3(t, t. A 2, t. A 5) 

. 
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Sometimes we need to put more than one graph on the screen. To su- 
perimpose graphs, use the command hold after the first graphing command 
has been entered. 

Programming: Calculations which are iterative (a sequence of calcula- 
tions) can done using for loops, while loops and perhaps incorporating ij 
statements. We briefly go over each of these. 

Part 1. For loop. If a calculation needs to be done for say n = 1 ,2 , .  . . , r ,  
we can do them by using a program such as 

for n= 1 : r 

end 
calculation 

As an example, to add the first ten natural numbers, we would use 
s=o; 
for n = 1 : 10 

S = S + n  
end 

(If you do not want S printed on each pass through the loop, end it with 
a semicolon. Then add S after end as in end, S. 

Part 2. While loop. The whale loop works with a relation, such as > or 
2, which is a bit different from the for loop. In general, we use 

while (relation) 
calculation 

end 
For example, to add the first ten natural numbers, we might have 
s = 0; 
c =  1; 
while c < 11 

s = s + c ;  
c = c + l ;  

end, S 

Part 3. If and else. Sometimes, a decision needs to be made which de- 
termines our next calculation. And, often this occurs within a loop. For 
example, if we want an upper triangular matrix of 1’s we can use 

A =zeros(3,3) ; 
fori  = 1 : 3 

f o r j = 1 : 3  
i f i < j  

end 
A(i ,j)  = 1; 

end 
end 
A bit more complicated example use else as well. 



350 MATLAB 

A = [  1 -2 0; 3 0 -4; 0 -1 2 1 ;  
fori = 1 : 3 

for j = 1 : 3 
if A (i, j) > 0 

A ( i , j )  = 1; 
elseif A (z,j) < 0 

else 

end 

A (i,j) = -1; 

A ( i , j )  > 0; 

end 
end 

Help: If assistance is needed with a command, type in help and the name 
of the command as in help det. 

? 



Answers to Selected Exercises 

Chapter 1 

2. (a) z + w = ( a  + c)  + ( b  + d) i = ( a  + c) - ( b  + d )  i = a- bi + c-  di = 
z + w  

4. (b) [--a2 a1 fa21 

5. [ XlPl X2Pz X3P3 ] 
6. (a) Using the first column of T ,  and backward multiplication, show 

that the first column of X is (t;: ,O,O)t.  Continue to the second 
column. 

7. (a) In arithmetic, if ab = ac, then a ( b  - c)  = 0. So if a # 0, b- c  = 0 
or b = c. The missing arithmetic property is: nonzero constants have 
inverses. 

10. Note that det Adet B = 1, (Show this.) so detA # 0. Thus, A-’ 
exists. Solve for B. 

11. (a) Show satisfies the inverse equation for A-’ so it’s the 
inverse of A-l. 
(b) Use induction on rn. 

21. If B = adj A, then b, = cji = (-1)”’detAji. Now argue that 
det Aji is rational. 
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1 
2 1  = - (bicii + b2c2i+ b3~3i) det A 

1 

detA [ b3 a32 :::I 9 

bl a12 a13 
det b2 a22 - - -  

24. det A = (-l)t a1 . . . ap det E where t =number of interchanges used 
and where a,& was used T times. Explain why the last row of E is 
0. (Note: The determinant section follows the section on systems. 
However, the determinant results used here could have preceded that 
section. And thus our use of determinant results here to prove a 
systems result is legitimate.) 

Chapter 2, Section 1 
1. (c) Use the identity (-1 + 1) = 0 and so (-1 + 1 ) z  = Os. Now 

3. (a) (iii) Ot2 + O t  + 0 which can also be written as 0. 
(iv) z where z ( t)  = 0 for all t. 

8. Let z E W .  Since W is closed under scalar multiplication, Oz E W .  
Since Ox = 0, 0 E W .  

11. Let S be the subspace. If S # {0}, let z E S ,  z # 0. Then az E S for 
all scalars a. So S contains a line through the origin. If S contains 
nothing else, S is that line. Continue. 

13. (a) Choose an arbitrary vector, say ( a , b , ~ , ) ~  in R3. Show that 
01  (1 , 1, O)t  + a 2  (1, -2, - 1)' + a3 (- 1,2, 2)t = (a,  b, c ) ~  has a solution 

18. (a) Let x ,  y E Ur3 W .  Then x E U and y E U. Since U is a subspace, 
s + y  E U. Similarly, z + y  E W.  Thus, s+y E U n  W .  

simplify. 

Chapter 2, Section 2 
3. Rearrange the pendent equation alu+a2 (u + v)+a3 (u + 21 + w) = 0 

and set the coefficients of u, v, and w to 0. (Explain why this can be 
done.) Now solve that system of equations for ~ 1 , a 2 , 0 3 .  Give the 
conclusion. 

5. Let S = (21, . . . , z,} be linearly independent. By reindexing, if nec- 
essary, let S = { X I , .  . . , zr} be the chosen subset of S. Now suppose 
S is linearly dependent and ( p , ,  . . . , &) a nontrivial solution to  its 
pendent equation. Extend to a nontrivial solution to the pendent 
equation for S. 
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6. Consider af ( t )  + Pg ( t )  = 0. Differentiation yields af’ ( t )  +Pg’ ( t )  = 
0. Thus, 

f ( t )  9 (9 [ f’W g ’ ( t )  I [ ; I = [ : 1 . 
So if there is a single t such that W (f ( t )  , g ( t ) )  # 0, for that t ,  
[ {lyi) $yJl ] is nonsingular. That is enough to show a = = 0. 

8. If z,y E N ( A ) ,  then Az = 0 and Ay = 0. Thus, A ( z + y )  = 0 and 
so z + y E N (A) .  

13. Let (z1, . . . , z,} be a basis for V .  Consider a1y1+. . . + amyrn = 0. 
Write each yi as a linear combination of z l , .  . . ,z, and substitute 
these into the equation. Rearrange, set coefficients of the xi’s to 0. 
Note the number of solutions here. 

14. (a) dim W = 3 

16. Try y = ert and determine T so y works. 

18. Remove vectors, one at a time, from the set until no dependent vectors 
are left. Explain why this set is a basis. 

19. (a) Let (pl,p2) be a solution to the pendent equation. So P1zl + 
P2x2 = 0. If P2 # 0, we can solve for z2 showing z2 E span(z1). 
Thus P2 = 0. Now we have P1zl = 0. Since z1 is linearly independent 
p1= 0. 

20. Suppose S = ( 5 1 , .  . . ,z,} is linearly dependent. Then some vector, 
say z,, in S is dependent, so span S\ {z,} = span S. Continue to a 
contradiction to dim V = n. 

21. (c) Let z, y be in the parallelepiped. Then z = alzl+-. .+a,z, and 
y = Plyl +....t Pnyn where 0 5 ( Y k , P k  5 1. Thus, ax+ (1 - a ) y  = 
( a a l + ( l - a ) ~ l ) z l + - - - + ( ~ a n + ( l - a ) ~ , ) z , .  Note that 0 5 
aak + (1 + a) P k  5 a + (1 - a )  = 1. So the parallelepiped is convex. 

Chapter 2, Section 3 
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3. L rotates the 21-axis counter clockwise a bit and the 22-axis clockwise 
a little, stretching both. 

1 2 1  - 222 - 1 = [ 

13. Try y = at + b. Plug in and determine a and b. 

15. Suppose ( P 1 ,  . . . , p,) is a solution to the pendent equation for 

L ( 2 1 )  9 . .  - L (2,). 

Then p l L  ( 2 1 )  + . + p,L (G,) = 0 or L ( P 1 q - t  . + P,zn) = 0. 
Since L is one-bone, P 1 q  + e .  .+P,z, = 0. Thus p1 = . . . = p, = 0, 
and so L (21) , . . . , L (2,) are linearly independent. 

16. L10 L2 (2 + y) = Li (L2 ( E )  + L2 (Y)) Li (L2 (2)) + L1 (L2 (9)) = 
L10 L2 (4 + h O L 2  (VI. 

Chapter 3, Section 1 
2. Let E be an echelon form of A obtained by interchange and add 

operations. Then det A = (-l)t det E and since det A = 0, det E = 0. 
Thus, E has a row of 0’s and hence there is a free variable in the 
solution to Az = 0. (There are other proofs as well.) 

4. Arguing by contradiction, suppose 21,. . . , x,, u, is linearly dependent 
for each i. Show that this means ui E span (21,. . . , zr} for each i. 
If z E V, I = alul + - .  + a,u, for some scalars a1,. . . ,a,. Show 
z E span ( 2 1 , .  . , , zr}, and explain why V C span (21,. . . , 2,). But 
this means dimV = T ,  T < n, a contradiction. 

9. No. Find an A and B such that rank ( A  + B)  # rankA + rankB. 

10. Look at 3 x 3 matrices with lots of 0’s. 

Chapter 3, Section 2 
3. Define A = PDF-l.  

4. Find different sets of eigenvectors for P. 

7. Use that if A = PDF-l,  A - X I  = P ( D  - X I )  P-’ and that 

rank (A - X I )  = rank (D - X I ) ,  
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8. Suppose A has a real eigenvalue A. Then As = Az. But, A rotates 
while X stretched, etc. 

11. A diagonal matrix. 

12. (a) Let cp(X) = det(A-XI). - If cp(A1) = 0 and A1 is a com- 
plex number, then 0 = cp(A1) = det ( A  - 511) = det ( A  - ~ I I )  = 
cp ( 1 1 ) .  Now note that (XI - A) ( 1 1  - A) is a real polynomial. So 
cp (A)  / ( A ,  - A) (5,  - A) is a real polynomial, namely 

'PI (A) = (A, - A). . a (A, - A ) .  

Continue, by working with cpl (A), to see that complex conjugate 
eigenvalues pair up. And, put everything together. 

Chapter 3, Section 3 
1. (a) Can't diagonalize. The eigenvalues are A1 = 2, X2 = 2, but the 

corresponding eigenspace has dimension 1. So, we can't find linearly 
independent eigenvectors p l ,  p2 to form a nonsingular P. 

row of P - l .  So, the rows of P-l will give left eigenvectors. 
4. Note that P-'A = DP-l .  Then fiiA = X l f i i  where pi  is the i-th 

5. No. Find a counter example. 

7. Show det ( A  - XI) = det (At - X I )  by using det B = det Bt .  

9 .  If A = PBP-' and As = As, PBP-lx  = Ax. Rearrange this to 
B (P-'s) = X ( P - l z ) .  Conclude. 

so 0 is an eigenvalue of A. The converse still needs to be argued. 
10. If A is singular A z  = 0 has a nontrivial solution, say y. Then Ay = Oy 

11. Note that [ I A  I ] has an inverse. 

Chapter 3, Section 4 

0 0 3  0 0 3  

2.  (a) P =  [ O  1 0  i ]  J x [ ~  0 3  ' 1  
3. There are 2 linearly independent eigenvectors for X (from the 1,l and 

3,3 entries of J). So dim (eigenspace for A) = 2. 

4. Solve AP = P B  for P. 
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8. Use ( A  - M ) p ,  = 0 and (A - X1)pz = 

9. Find R such that A = R [ f ] R-l 

A = R [ ‘ ; ~  

1. 

Then 

€ 0  [ 0 1 ] R - l -  

Thus, P = R [ ‘ol ; ] *  
13. If A = PJF-l,  A-l = PJ-lP-l .  So A-’ is similar to J - l .  Con- 

clude. 

Chapter 4, Section 1 

8. Suppose f is continuous. Let A E R2 and AI, A2,.  . . be a sequence 

that converges to A. Then lim f (Ak) = f ( A )  = 

lim f (Ak) = .k+oo 

k+oo 

lim f i  (Ak) 
, so both f 1  and f 2  are continuous at 

k-oa [ k + m  lim f 2  (Ak) 1 
A.  Since A was chosen arbitrarily, f 1  and f 2  are continuous in R2. 
(The converse still needs to be proved.) 

lim (2t - 1) lim et 
9. (a) l i i A ( t )  = lim t kdo  l i i  0 ] = [ -: i ]  = A ( 0 ) .  

t - O t - ’  k+O 
Thus A (t) is continuous at t = 0. 

14. m1zY = - k l q  + IC2 ( z 2  - q) 
m2x; = -IC2 ( 2 2  - z l )  - IC322 

15. Same as in Optional. 

Chapter 4, Section 2 

1. (a )  l i m A k = l i m A ( [  1 -4 3 ]  [ [ -1 I ] ) *  k-rO k--rO 

0 0  3 4  =[: -;I[: :][4 TI=[, 0 1 .  
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4. (a) a24’ [ -: ] (The vector could be any eigenvector for X = 4.) 

11. Substitute PDF-I for A and proceed as in the introduction to this 
section. 

Chapter 4, Section 3 

1. (a) z = ale-t  [ : ] + a2e-3t [ -: 1. (The choice of eigenvectors 

can be different.) 

8. y ( t )  = e-t [ : 1. 
9. Find the Taylor series for sinT. Replace 7 by At. Then differentiate 

termwise. 

n 
m (nm)k. (The proof by induction would still need a formal write- 

T = l  

UP.) 

Chapter 5, Section 1 

5. (a) Yes (b) no. Find 2’s that support these answers. 

10. (a) llz + ty1I2 = (z + t y ,  z + t y )  = (z, z) + 2t  (z, y) + t2 (y, y). Sub- 
n 

stitute llz11~ = (z, z) , (z, y) = xkyk. 
T = l  
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Chapter 5, Section 2 
1. (a) Let m, = max {ml, . i . , mr},  then m k  5 ma for all IC so c m k  5 
cm,. Thus, 

max{cml, ... ,cm,}=cm,. 

7. (a) Plot Ax for x = el, -el,ez,-e2. 
connect with edges. 

(b) Graph fAe1 ,  fAe2 ,  and connect with segments. 

(The vertices of Co.) and 

n 

k= 1 
Cauchy-Schwarz inequality. Now, if llAlll = lUkr(, 

/ n  \ t  

12. (d) c(AB) = IlABll ~ ~ ( A B ) - l ~ ~  = IlABll IIB-lA-lJI 

5 IlAll IlBll IIB-lll p-lll = IlAll llA-lll IlBll IIB-lll = c(A)c(B)  

13. (a) Note that x = A-lb and y = A-lc. So 112 - yII 5 (IA-l(( (Ib - cI(. 

Also ((All I(xI( 2 llbll. So llxll 2 H. Thus $# 5 j ! ,  etc. 

16. (a) 1123.4 - x1 < (123.4) = .1234. So x = 123.4f a number 
less than .1234. So x differs from 123.4 by a number starting in the 
fourth digit of 123.4. (Multiplying by shifts the decimal 3 places 
to the left, causing a number which starts in the 4th digit of 123.4.) 

Chapter 5, Section 3 
2. (b) Write out the expressions for llABllF and llAllF llBllF and com- 

pare. 

I 



~ 

3. 

6. 

8. 

1c 

c h 
4. 

5.  

6. 

9. 

14. 

16. 
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1'429 using Neu- .9 .2 
.77 [ .2 .9 ] [ ] = [ 1.429 ] (a) x = ( 1 - A ) -  b = 2 

mann's formula. Rate, using the l-norm, is llAlll = .3k. 

1 

k 

pter 5 ,  Section 4 

For Example 5.10: 

(1) Ifz # 0, then (z,z) = zlZ1+...+znZi., = 1z112+**-+1z,12 > 0 
since some xi # 0. 

(3) (ax, y) = (am)  g1 + * * + (az,) g, = Q (zlgl+ . . . + zng,) = 
f2 (5, Y> . 

- 
For (iii): (z,ay) = (ay,z)  by (2), = a(y ,z )  by (3), = 75 (y,z) = 

( 0 , ~ )  = (Oz,z) = 0 (z,z) = 0. Give reasons. 

E b ,  Y) by (2). 

lla1u1 + . . . + f2,uml12 = (Q1W + * * ' + a,um, a l u l +  . . . + cr,u,) 2 

2 2 = ai~i(ui,ui)+.~.+a',SYm(um,u,) = la11 + e . . + (  a,[ . Give 
reasons. 

First apply Gram-Schmidt to [ b ] , [ ] to get u1,u2. Then use 

the corresponding Fourier sum. 

17. P2 = (UUt)  (UUt)  = UIUt = UUt .  Give reasons. 
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19. No. Show. 

Chapter 6, Section 1 

6.  (a) The columns of U form a linearly independent set so U is non- 
singular. (There are other ways of showing this.) 

(b) Since U is nonsingular and UHU = I ,  we can multiply this 
equation, on the right, by U-' to get UH = U-'. 

10. Apply Theorem 6.5. 

11. Cos of the angle between z,y is *. Write out the equivalent 

13. Let a = 4 ([ ] + [ I) , the average of the vectors. Since we 

expression for Qz, Qg. Then manipulate one of these to the other. 

want to reflect about span {a } ,  take 21 to be orthogonal to a. 

16. (b) Under rotations or reflections the flag points away from the origin. 

17. Let S = { L  (z) : z E S}. Prove (IL (z) - L (z) I [  = T ,  for all L (z) E S. 
(This proves L : S -+ S.) And prove that if JIw - L(z)(l  = T ,  then 
w = L (z) for some z where IIz - zll = T.  (This proves onto.) 

Chapter 6, Section 2 
1 

1. (4 Q =  [ -T ] . (There could beothers.) T = [ A 1. 
7 3  

3. Let A (z + y) = (a + pi) (z + iy). Then Az = a z - p y ,  Ay = p z + a y .  
Thus L (z) = Az maps span {z, y} --* span {z, y } .  Apply Gram- 
Schmidt to z,y to get 211,212. Then Aul = ~ 1 2 ~ 1  + ~2212,Au2 = 

~ 1 ~ 1  + 52212. SO A ( ~ 1 2 1 2 1  = (2112121 [ :i zi 3. Extend 2 1 1 ~ 2  to an 

orthonormal basis for say 211, 212,213,214. Set Q = [211212213214] and 
show A& = QT 

8. Let z,y be linearly independent vectors which are not orthogonal. 

;] w h e r e a f p .  FormA=PDP-' .  (A Let P = (zy] , D = [ 
particular such example will be fine.) 

10. No. An example still needs to be given. 

11. Argue by contradiction. Use that TTH = THT. 

J 
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Chapter 7, Section 1 
1. There are infinitely many solutions. 

2. If the equation of the line is mx + b = y, solve 

m +b = 1  
277% +b = 1  
2m +b = 2  

1 

4. (b) The line is span{ [ I). So, P = [ $ ] [ & 3 ] = 

. And the closest point is P [ ] = [ 1 1. 
8. No. 

9. Since AtA = A2 and the eigenvalues of A2 are A:, . . . , A i ,  it follows 

t h a t o 1 = f l = I X 1 1 ,  ... ,on=&=JXnl .  

16. (a) AHAV = VCHUHUCVHV = V C H C ,  so AHAvi = c& for all 
a .  

Chapter 7, Section 2 
1. Ot since it satisfies the equation (i)-(iv) of a pseudeinverse. 

1 1  2 1  1 1 + -7 ,I[: ;I[-, ? ? =  ,1 [-I - - -  # ] .  

4. Show the matrix satisfies (i)-(iv) of a pseudo-inverse. 

5. (a) 1. 

7. 1. The supporting work must still be given. 
1 

9. (a) L ( y ) =  [ 'r] w h e r e Z = Y = ( [  $ 1  [ -$ I} .  S O L  

collapses (projects) R2 into the yl-axis and then doubles this axis 
and sends to the zl-axis. 

10. Change the problem to finding the closest orthogonal matrix Q to E. 
Then show, by looking at the terms in [ I &  - EllF, that such a matrix 
is I .  (This is the idea. Organization is still required.) 

11. It says that the condition number is squared, perhaps doubling the 
number of additional digits in error when we solve the normal equa- 
tions AtAs = Atb. 
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Chapter 8, Section 1 

0 1 0  

1 0 0  
1 . (c )  P = [  0 0 1 1  

3. (4 

5.  Use 3R2 + R1 SO E = 

1 0  2 4  
[e,, 1 ] [ :  : ] = [ 4  111 

0 0  1 0 0  
9. (a) Just multAgly 1 0  

works.) 

(b) From Chapter 1, we know that the product of two lower triangular 
matrices is lower triangular. Now, if -! = [&I.. ..&-I 1 0 . .  .O] and 
u = [O.. .o  1 lj+l,j.. .&J.. . 

11. Use the first row of L to find the first row of X. Continue. 

12. Note that A = [ ?-A ] . Now apply an elementary operation and 
%A 

see what happens with the e,A rows. 

Chapter 8, Section 2 

6. (w,u) = O ~ ~ U ~ W ~ + - - . + U , W ,  =Oorinaugmentedform [u1 ... unlO]. 
So, there are n - 1 free variables and so dimW = n - 1. 

8. (c) If u has length 1, i 

H H t  = (I - 2 4  (I - 2uut) 
= I - 4uut + 4uutuut 
= I - 4uut + 4uut (Note utu  = 1.) 
= I .  
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11. The QR decomposition, with partial pivoting, produces an R of the 

form F = [ R;l Ri2 ] where R11 is upper triangular and nonsin- 

gular. Since rankA = rank (QR) = rankR, R11 must be T x T .  

12. Note that H u  = -u so -1 is an eigenvalue of H .  And, since Aw = w 
for all w E W ,  and dim W = n - 1, there are n - 1 linearly independent 
eigenvectors, say w1, . . . , wn-l for the eigenvalue 1. 

14. Use IdetAl = ldet(QR)) = IdetQdetRI = IdetRI = I T ~ ~ - - . T , , I .  
Since a; = Qri where ai and ri are the i-th columns of A and R, 
respectively, llail12 = IlQril12 = llrill 2 Iriil. Now, put together. 

15. Note that a, = rliql + . . . + riiq;, so ai - (rilq1 + . . . + r,+lq,-l) = 
riiq,. Now, using QtA = R (so qka, = ~ k i ) ,  show that r;lql + . . . + 
Ti,+lq,-l is the Fourier sum for a, and thus the closest vector in 
span {a l , .  . . , ai-1) to a;. Finish. 

17. Apply Givens matrices to Q to obtain an upper triangular matrix 
R where ~ 1 1  > 0,. . . , ~ ~ - 1 , ~ - ~  > 0. Now R must be orthogonal so 
R is diagonal with r11 = 1,. . . , T ~ - I , ~ - ~  = 1 and rnn = fl. Since 
the determinant of a Givens matrix is 1, det Q = det R = ~ 1 1 .  . . rnn. 
Finish. 

Chapter 9, Section 1 
3. Check the trace. 

5. Yes 

6. (b) J X  - ai,( I IakiJ , etc. 
n 

.k=1 
k # i  

Chapter 9, Section 2 
3. (a) Xl, (0) = .5. 

5. (a) $ = 1. SO Ix~, ( 0 ) 1  5 1. 

Chapter 10, Section 1 

3. [ 1 1  1 1 ] = [  + -+I [ 0 2 0  0 1  [ -J; + +  J 
3 3  

= ( [  + z z  -"I [ 7 ;]) ([ 7 ;] [ -7 + 7 *I) 
[: :]. = RRt where R = 
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1 1  8 0  8. The model is [ ,, ] x" + [ -3 -4 ] x = 0. 

9. (a) Using Theorem 10.1, the following equations are equivalent. 

det(XB-A) = 0 

det X PH -lP-' - (PH)-'DP-') = 0 

det ( (pH)-' ( X I  - 0) P-') = 0 

det(XI-D) = 0. 

( (  

The last equation has solutions XI,. . . , An. 
Chapter 10, Section 2 

4. 

6. 

7. 

11. 

Use Theorem 10.5. 

The eigenvalues are 5 and 1 with corresponding orthonormal eigen- 

vectors [ $ ] and [ ] , respectively. So, for the image ellipse, 

the major axis is 5 [ $ 1,  and the minor axis is 1 [ $ 1. Sketch 

from this. 

Let A and B be the two positive definite matrices. Then h(x) = 
xH (A + B) x = x H A x  + x H B x  2 0 with equality only when x = 0. 
Thus, A + B is positive definite. (Now show A + B is Hermitian.) 

Observe that by applying these elementary operations, detAk = 
detEk where E k  is the k x k submatrix in the upper left corner 
of E. Tell why. 

-75 
1 

-3 

Chapter 11, Section 1 

2. A basis for the plane is [ -i ] , [ -!I. Add [ a ]  and form 

r 1 1  11 r l  o 0 1  

4. Test by P2 = P. 

5. A basis for the line is , for the plane is [ ] [ 1. Set 

a n d P = R D R - l .  

I 
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7. Try extending q1 , . . . , qr to q1 , . . . , qn an orthonormal basis. Set Q = 
[qi,.. . , qn]. Then, 

Q Q ~  = QoQt 

where D = diag (1,. . . , 1,0,.  . . ,0) where there are T 1's in D. 

Chapter 11, Section 2 

1. (a) Let A E X. A ball B of radius E about A is 

B = { B  : B E X and I(B -All < E } .  

3. Use f (a ,  b,c) = 11 : 1. To show f is continuous (it should be 

clear), let ( a l ,  bl:cl) (a2Yb2, c2) .  . . -+ (a ,  b, c) .  Then the image se- 

quence is [ i: :i ] , [ 2 2 ] , . . . which converges to [ i 1. 
Since f (a ,  b, c)  = [ i : 1, f is continuous, etc. 

1 for 0 < 9 < 27r and 7r < 9 < 37r. This cos0 -sin9 

covers the Gkvens matrices. Now do the Householder matrices. 
J 

8. Let &I,  Q2,. . . be a sequence of orthogonal matrices that converge 
to A.  Then 

Q",k = I .  

Taking the limit gives 

AtA = I .  

So, A is orthogonal. Hence, the set of orthogonal matrices is closed. 



a 
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adjoint 

adjoint of A, 19 
affine space, 40 
augmented matrix, 14, 47 
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back substitution, 12 
backward multiplication, 6 
basis, 48 
blocks, 10 

Cauchy-Schwarz inequality, 161 
characteristic equation, 87 
characteristic polynomial, 87 
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closest matrix, 200 

closest rank k matrix, 252 
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complex numbers, 1 
complex vector space, 29 
computing Numerical Rank, 257 
computing range and null space, 

condition number, 173, 302 
conjugate, 2, 9 
conjugate transpose, 9 
continuous, 122 
convex sets, 53 
coordinates for x, 49 
Cramer’s Rule, 19 
Crout method, 269 

256 

data compacting, 258 
demographic, 135 
dense, 341 
determinant, 15 
diagonal, 7 
diagonal matrix, 7 
diagonalizable, 87 
dimension, 50 
dominant term, 132 
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Doolittle method, 269 

eigenspace, 91 
eigenvalues, 88 
eigenvector, 90 
element-wise operation, 347 
equal, 5 
equivalent, 161 
Euclidean distance, 117 
Euclidean space, 33 

forward multiplication, 6 
Fourier sum, 195 
free variables, 12 
F’robenius norm, 180 
function space, 34 

Gauss-Jordan, 14 
Gaussian elimination, 12 
geometric vector, 31 
Givens matrix, 207 
Gram-Schmidt process, 196 
grid view, 60 

Hadamard’s inequality, 287 
Hermitian, 10 
Hermitian form, 320 
Hermitian matrix, 228 
Householder matrix, 209 

i-th row expansion, 16 
identity matrix, 7 
ill-condit ioned 

error, 175 
induced norm 

norms, 167 
infinity norm 

norm, 158 
, 158 
inner product, 191 
interchange, 12 
inverse, 9 
inverse equation, 9 
iterative improvement, 272 

j-th column expansion, 16 

Jordan blocks, 109 
Jordan form, 108 

kernel 
null space 

N (L), 65 

left eigenvector, 102 
Leslie matrix 

limit point, 340 
line, 33 
linear, 58 
linear combination, 37 
linear manifolds, 40 
linearly dependent, 44 
linearly independent, 44 
lower triangular, 7 

population matrix, 136 

main diagonal entries, 7 
matrix, 3 
matrix space, 33 
minor, 15 

negative definite, 309 
negative semidefinite, 309 
Neumann’s formula, 120 
nonsingular, 9 
norm 

normal matrix 

normed space, 158 
null space 

kernel 

null space of A, 51 

normed space, 157 

matrix, 226 

N (L), 65 

N ( A ) ,  51 

one norm, 158 
open, 340 
optimization, 326 
orthogonal, 192, 206 
orthogonal projection matrix, 198 
orthogonal set, 194 
orthogonally similar, 219 
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orthonormal set, 194 

parallelepiped, 53 
partial sums, 119 
partitioned arithmetic, 11 
pendent equation, 44 
perspective projection map, 331, 

334 
perspective projection matrix, 335 
pivot variables, 12 
pivots, 12 
plane rotation, 207 
plot X, 63 
positive definite, 309 
positive semidefinite, 309 
projection map, 331 
pseudsinverse of A, 254 
pyramid, 53 
Pythagorean theorem, 192 

QR-factorization, 196 
quadratic form, 320 

range, 62 
rank A, 76 
real vector space, 29 
real version of Schur’s Theorem, 

225 
rectangular diagonal matrix 

matrix, 237 
reduced row echelon form, 14 
reflection, 207 
reflectional symmetry, 213 
residual, 272 
right eigenvector, 102 
rotation, 206 
rotational symmetry, 213 
row echelon form, 12 
rref, 14 

scalar multiplication, 5 
scalars, 29 
scale, 12 
Schur’s Theorem, 223 
segment, 33 

sequence converges to Ao, 118 
sequence of rn x n matrices, 117 
series, 119 
similar, 88 
singular, 9 
singular value decomposition (SVD) , 

singular values, 237 
size, 4 
span 

spectral radius, 182 
spring-mass problems, 124 
square, 4 
square matrix, 7 
submatrices, 10 
SVD 

237 

span of s, 37 

singular value decomposition, 
237 

symmetric, 10 
symmetry, 213 
systems of linear equations, 8 

tournament, 20 
transformations, 58 
translation, 58 
transpose, 9 
triangular, 7 
trivial space, 31 
two norm, 158 

unit vector, 4 

unitarily similar, 219 
unitary, 206 
unitary equation, 209 
upper triangular, 7 

ei, 4 

Vandermonde matrix 

vector, 4 
vector norm, 157 
vector space 

matrix, 81 

real vector space 
complex vector space, 29 
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