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Preface

This text is intended for a basic course in matrix theory and applications.
“Basic” here means that the material chosen is what is most often seen in
these courses, and the presentation stresses insight and understanding.

There is no common definition of “understanding”; however, there is
some agreement of its consequences. A person that understands material
should be able to do the following:

o fill in any missing pieces of the material that were not given,
¢ adjust the material to cover like problems,
e extend the material beyond what was seen, and perhaps

e create by adding new work to the material.

In this text, there are some places where results are given for special
cases, e.g., 2 X 2 matrices rather than n x n matrices. This was done so
that the notation required was simple and the idea of the proof was easier
to glean. Of course, understanding this case should mean that the general
proof can be seen as well. Still, writing out the proof can take some time
in dealing with subscripts and such. Ttere are also a few places where the
first two consequences come into play. Understanding is important, and it
seems that when students don’t understand, they resort to memorization
of material that means nothing to them.

There are some special features of the text, which are described as follows:

1. Optional subsections. At the end of each section, a subsectionentitled
Optional covers applications of the material in the section. Its intent
is to show how the material in the subsection is used.

2. MATLAB* subsections. Also at the end of most sections, there is a
subsection entitled MATLAB. These subsections discuss the various
commands we use in MATLAB to do the computations described
in the sections. Of course, learning requires that some problems be
done by hand. However, for larger problems, some kind of software

*MATLAB is a registered trademark of The Mathworks, Inc. For product infor-
mation, please contact:

The Mathworks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

Tel: 508 647-7000

Fax: 508-647-7001

E-mail: infoOmathworks.com
Web: www.mathworks.com



is required (as it saves considerable time). We used MATLAB since
it is the software of choice in this area.

Code for the pictures and other graphics used in the text are also
given in these subsections. Code for some algorithms used are given
as well. This is important for several reasons. First, the code can
be used to get color pictures rather than the black and whites shown
in the text. Second, with a little effort, code can be adjusted or
extended to handle other problems. Third, this code is important
since not everyone uses MATLAB on a daily basis. It is nice to be
able to review code a bit to bring the work back to mind.

Actually, the students can work through the Optional and MATLAB
subsections themselves.

. Visuals. Many professors believethat pictures are important to learn-

ing, and studies on the hemispheres of the brain support that view.
This text supports much of the verbal material with pictures. In fact,
there are 129 pictures or drawings in this text. Exercises involving
drawing and pictures are also given.

. Examples. Much of the theory given in the text is supported by exam-

ples, 115in fact. TheS serves several purposes. Some students learn
better by looking at examples, although there is always the problem
of mimicking here rather than working from basic ideas. And, some
professors may choose to cover some of the material by discussing
and showing examples rather than by discussing and proving.

. Exercises. There are 450 exercises in the text designed to help stu-

dents learn the material in the sections: practice calculations, apply-
ing results, completing proofs, and such.

. Order. The first 7 chapters of this text represent basic matrix theory.

Beyond that, the chapters can be taken in any order. These latter
chapters are short and perhaps a bit more advanced.

In conclusion, | would like to thank those students who, over the years,

provided feedback on how they felt they learned material. It was helpful.

In addition, | would like to thank my wife, Faye, for typing and working

with me on this manuscript. Both of us thank John MacKendrick from
MacKichan Software for his help in typesetting problems.

And, | would like to thank my editor, Bob Stern, for his advice and help

on producing this text.

Darald J. Hartfiel
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1
Review of Matrix Algebra

In this book we will assume some basic background in matrices, linear
equations, and determinants as this material is usually studied in previous
Courses.

What is assumed is reviewed in this chapter. In reviewing, a few re-
marks and examples are usually enough to bring the work back to mind.
Observing the technical notations used in the book and working through a
few problems will also help.

Almost all of the work in this book can be done using either the set ®
of real numbers or the set C of complex numbers. Any exceptions (when
we work only in R or in C) will be stated.

In linear algebra and matrix theory, it is traditional to refer to numbers
as scalars (real or complex). We will use Greek letters v, 8, ... to denote
scalars.

1.1 Matrices, Systems of Linear Equations,
Determinants

Since we use complex numbers in this book, it may be helpful to give a brief
review of them. A complex number is written in the form a +bi where a
(the real part) and b (the imaginary part) are real numbers and i =/—1.
If the complex number has imaginary part 0, we simply write a for a +0i.
Since complex numbers commute, bi = b, SO we can also write complex
numbers as a tib.
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Complex numbers can be plotted in the complex plane by finding a on
the real axis (z-axis) and b on the imaginary axis (y-axis) and plotting
atbiat (a,b). (See Figure 1.1.)

bjl_ ,atbi

1 x
J -
a

FIGURE 1.1.

The computing rules are as those for real numbers, using i? = -1 to
simplify. For example,

(2+32) (4+5i) =
2.4%2.5:+3i.4+3i.5i =
g +10i T12i — 15= -7 +22i.

z=a+l
its conjugate is
Z =a — bi.

Calculation shows that if w =c¢ +di, then

Z+W=Z+7 and ZW = ZW.

Since 2z = a?+5? is areal number, we can simplify a fraction by multiplying
its numerator and its denominator by the conjugate of the denominator.
For example,

342 _34% 4-5i_2-7i_ 2 7,
445 4+5 4-5i 41 n E™*
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We also use that the absolute value (also called the modulus) of z is

|2| =+/a? + b2

Viewed in the complex plane, it is seen (Figure 1.2) that |z is the distance
between z and 0.

A
z=a+bi
bT"'
12
>
FIGURE 1.2.

By direct calculation, it can be seen that

1
2+ w| <2l + |wl, |zw| =|z|w], and |2] = (22)*

Finally, recall that
e = cosh tisinb,
and

ib

ettib — gaeid,

For example, e+1% =e? (cosZ +ising) =e? (% +32§z) =3.6916.40i
(rounded to the hundredths decimal place).

1.1.1 Matrix Algebra

A matrix is an m x n array of numbers placed in m rows and n columns.
In general, we exhibit a matrix as
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or more compactly as [a;;], depicting the entry a;; in row ¢ and columnj .

The size of this matrix is m x n. f m = n, the matrix is often called
square.

We use capital letters to denote matrices and the corresponding lower
case letters for entries. Thus, we write

A =laij] , B =[b;j] , etc.

If a matrix is 1x n or m x 1,we call it a vector and simply write

T = [.'L‘,] '

The m x 1vector, e;, called a unit vector, defined by

[ ° ]

-

e = +— i-th row,

appears throughout the text.
Recall that the arithmetic of matrices is like the arithmetic of numbers,
except

i. Matrices do not necessarily commute under multiplication.
ii. Matrices need not have multiplicative inverses.

We will again see this as we give a brief review of the algebra (arithmetic)
of matrices.

Developing the algebra of matrices, for m x n matrices A and B, define
addition as

A+B=[a,-j+b,~j].
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And if o is a scalar, define scalar multiplication as

aA = [aa;j) .
1 0 2 1 3 -1
[2 _1}+[—2 0]‘[0 —1}
9 0 1} _ 0 2
-2 3| { -4 6]
Recall that equality between matrices of the same size means that all

corresponding entries are equal. Using this, the following properties for
m X n matrices and scalars are easily seen.

Thus,

and

(@) A+B=B+A
(b) (A+B)tC=A+ (BTC)
(¢) The matrix 0, all of whose entries are 0, satisfies

A+0 =0+ A=A.

(d) For each matrix A, the matrix — A= [—a;;] satisfies

At (-A)=(-AFA=0.

(e)a(A+B)=aA+aB

(f) (atB)A=0A+pA

(8) (@f) A =, (BA)

(h)y 1A= A

It may be helpful to demonstrate one of these results.

Proof (e). By direct computation,

a (At B) = a(lai] + b))
=alai; T by)
= [dai; Tby))]
= [aa,-j +ab,-j]
= aa;;] T {aby]
=ala;;] Tab]
=aA taB.
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This verifies (e). »

Let A be an m x r matrix and B an r x n matrix. The product AB is
defined entrywise as the m x n matrix C where

¢ij = ainby; +ai2b2j +... + airbr;

r
= z Qikbr;
k=1

forl<i<mand1<j <n.

Computing this product in terms of the rows of A, called forward mul-
tiplication, yields the rows of AB;e.g., to compute the i-th row of AB, we
multiply the i-th row of A and the matrix B as in

b
ai | oo | =aab+--- +airby
by
where g; is the i-th row of A and by, ... ,b, the rows of B. (Here we can

think of taking row a;, tilting it forward or vertically, SO its entries are
against the corresponding rows of B, and multiplying through.)

Computing columns of the product, called backward multiplication, yields
for the j-th column of AB,

[(11 . ..a,] bj =b1ja1 + .. +b1-_7'ar

where b; is the j-th column of B and as,...,a, are the columns of A.
(Here we can think of taking a column bj of B, tilting it backward, or
horizontally, so its eatries are against the correspondingcolumns of B, and
multiplying through.) Viewing a product as a backward multiplication will
allow us to see (as obvious) many matrix results. It is useful.

An example raay help.

Example 1.1 Let | = [ (1) (1] We show that JA = A for any 2 x 2

matrix A. Here, if a; and a2 are the rows of A, then by forward multipli-

BRI PR

To see this, note that multiplying A by the first row of |, we tilt vertically
and multiply through

1 a)
0 4]
/ (do mentally) \

(rojfa] - )
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obtaining the first row oj A. Doing the same for the second row oj I, we
have

0 ai
1 as
/ (do mentally) N
[0 1] [ o ] - [a2]

obtaining the second row oj A.
We now show Al = A by using backward multiplication. Here, if a1 and
as denote the columns of A, we have

10
(; ay a2 ]
/ (do mentally) N
[ @ az][(l)} = [a:1]
and
0 1
d[ a; ao
4 (do mentally) N
[ a1 ag][(ll] = [ag] .
Thus,
[ @ ag][(l) (1)] = [a a].

A square matrix T is upper triangular if t;; =0 whenever i >j. Itis
lower triangular if ¢;; =0 when i < j. When we say that T is triangular,
T can be either upper triangular of lower triangular. I 73 and Tz are nx n
upper triangular matrices, then, using forward multiplication, we see that
T\ T» is upper triangular. (Observe that if » is the i-th row of 77 and ¢
the j-th column of T3 and i > j, then the nonzero entries o r correspond
to 0 entries in ¢ and so r¢ =0. The companion result for lower triangular
matrices is also true.

A square matrix D is a diagonal matrix if D is both upper triangular and
lower triangular. A diagonal matrix is often written D = diag(d1, ... ,d,),
simply identifying the main diagonal entriesdi1, ... ,d of D. An identity
matrix I is a diagonal matrix with 1’s on the main diagonal. Note that, if
the products are defined, | A = A by forward multiplication and Al = A
by backward multiplication.

If A is an n x n matrix, then

AH=1
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and if k is a positive integer,
AF=A... A

where A appears here as a factor k times.
Additional properties of the product, for all matrices in which the ex-
pressed sums and products are defined, follow.

(i) (AB)C =A(BC)
() A(B4+C)=AB+ AC
K) (B+C)A=BA+CA

() A(aB) =a(AB)(Often in computing, a scalar a is caught between
matrices. This property assures a can be pulled out and placed in
front of the product.)

An additional computation may be helpful.

Proof (1). Suppose A is an m x » matrix and B is an r x n matrix.
Then

A(aB) = la;;] (a b)) = [ai;] [aby] = [Z aix (abe;)
k=1

= [}’—:a (aikbkj)J =Q [i a,-kbkj] = CV(AB) .

k=1 k=1

This verifies the result. m

The definition of matrix multiplication allows the writing of systems of
linear equations

a11T1 + @122 + -+ - + Q1pZy, = by
021%1 + G20%3 + - - - + A2 Ty, = bo

Am1T1 + AmaTa + - + GmpTn = by

in compact form as the matrix equation

I
where A =[ai], z=| ...
Tn



1.1 Matrices, Systems of Linear Equations, Determinants 9

If A is a square matrix and there is a square matrix B which satisfies the
inverse equation

AX=XA=1I

then B is an inverse of A and A is nonsingular. (Some books use the word
invertible.) If A has no inverse, it is singular. If B and C are inverses for
A, then

B =Bl =B(AC) = (BA)C=IC=C

so there can be at most one inverse for A. (There may be none.) We
denote this inverse, when it exists, as A1,
Properties of the inverse are

(m) T-* is upper triangular when T is upper triangular and nonsingular.
The companion result for lower triangular matrices also holds.

(n) (A‘l)—1 =A, when A is nonsingular.

(0) (AB)™' =B~*A™, when both A and B are nonsingular. This can
be extended, by induction, to (A---Ax)~! = Ag'--- A7 Thus,
(A™)~ = (A~1)™, or simply A=™, when A is nonsingular and m a
positive integer.

In problems involving inverses, the inverse equation is often used. We
show this in the following computation.

Proof (o). Note that by replacing parentheses
(AB)YB'A™Yy=A(BB ')Al = A"11A =]

and similarly (B-*A=1) (AB)=1. Since B~!'A-! satisfies the inverse
equation for AB, (AB)™' =B~14"!. m

Finally, for an m x n matrix A, we define

a1 al2 a1n all an
= a: a a a) a922
A= 21 22 2n and At — 2
aml1 m2 Amn Gln G2n °*° Gmn

called the conjugate and the transpose of A, respectively. Using these, we
define

A" =(4),

called the conjugate transpose of A.
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CT1+i 2-3i
Example 1.2 IjA—[ 2 449 |»then

2+3i |° 1-5 2
: 243 4-—-2i
Matrices which satisfy
A= A"

are called Hermitian, or symmetric if A has real entries. (In the latter case,

AR = At)
Properties of the conjugate transpose are

(p) (AH)H = A for any m x n matrix A.
(@) (AF) 1= (A’I)H if A is nonsingular.
(r) (A+B)H = A¥ + BH for any m x n matrices A and B.

() (AB)¥ = BH AH forany m x r matrix A and rxn matrix B . Thiscan
be extended to (A; -+ Ag)¥ = Afl... AB s, in terms of reversing
the order of the products, it is like the inverse of a product.

Another demonstration of a computation shows how to use this notation.

Proof (r). By direct computation,
—_—t
(A+B)Y¥ = ([aij] + b)) = las; + bi;]™ = [as; + bi5 ]
= [@i; + Bij]" = [@ji + bjs] (ij-th entry is aj; + bj:)
= [ﬁj,’] + [ Bﬁ] = [Z-lij]t + [-Bij]t = AH 4 BH,

Thus the result is established. m

It is sometimes useful to do matrix arithmetic on submatrices which
make up the matrix. By partitioning the rows and columns, a matrix A
can be partitioned into submatrices A;; (sometimes called blocks) say

Ay A - Ay

A= Ay Aa Aoy

Apl Ap2 ces Apr
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For example, if we partition

12 3 4
12 38 | -5 13
Y D
31516 | -2 8

= W

. Al A 2
then we can write A = [A; AZ } where A;; = [ - ], Az =

-5 13
2 0 ,A21=[5 16],andA22=[—2 8]
If B is a matrix, partitioned as is A, then addition can be done using the
submatrices, that is,
A+B = [4; TBy).

And, if the expressed matrix sums and products of the blocks are defined,
ki
AB = {Z A,'kBkJ
k=1 J

Note that this partitioned arithmetic is exactly like that for the entry arith-
metic previously described.
Example 1.3 Some examples of partitioned arithmetic follow.

By, Biz where A and B are 4 x 4

(a) Let A= L;%;I Az ,B= [ By,
il é?S trices a eBB( 2 matrices. Then

matrices
[AII + Bt Az + Big }

A+B=
A2l +By AR+ Bo

AB = A1 B + A1pBoy A1 Bio + A12By
A21By1 + AgoBgy A2 Bio + A2 Bao

(b) Let A be mXx r matrixand B anr X n matrix. I B =[b1by...b,],
where by, is the k-th column of B, then

AB = [Abj Aby .. .AD] .

a; (11B
1A= az. , where ay, is the k-th row of A, then AB = azB
anB
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1.1.2 Systems of Linear Equations

To solve a system of linear equations

1171 + 61282 + -+ + Q1aZn = by
Q2171 + a22T2 + « - - + GonZy = bo

Am1Z1 + Am2T2 + - + CmnTn = by,
we simplify it to a system in row echelon form (staggered rows), such as

®T) + *x3 + - -+ *T, = *
®x2 + -+ *Tp = *

ox, =%

Here the ®'s are nonzero scalars and the «’s are arbitrary scalars. Using
this form, the scalars ® are called pivots and the variables correspondingto
them are called pivot variables. All other variables are called free variables.

To solve the simplified system, we set each free variable equal to an
arbitrary scalar. We then solve for the pivot variables, starting with the
last equation and working up, in terms of the free variables. The solutions
are then expressed using only the free variables. This method is called back
substitution.

To simplify a system we can use the following elementary operations.

a. Interchange: R; — R;, interchange equations i and j.
b. Scale: aR;, multiply equation i by a nonzero scalar a.

c. Add: aR; + R;, add a times equation j to equation i.

It can be shown that applying an elementary operation to a system of
linear equations will not change its solution set.

Operation (a) can be applied to a system to obtain a nonzero coefficient
of z; in equation 1. Then operation (c) can be applied to eliminate z;
from equations 2 through m. And, this method can then be applied to the
system with the 1-st equation deleted. Continuing, we obtain a row echelon
form.

An example will help recall the method, called Gaussian elimination.

Example 1.4 Solve

lzy+ 1z9 + 1234 lzg = 10
221 + 229 + 0z3 + 424 = 44
31‘1 + 3.’122 + 7z3 — 1.’124 = —18.
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Since the arithmetic will only take place on the constants, we do the oper-
ations on the corresponding augmented matrix

10
44 '
—18

Ty 52 53 54
1 1 1 1
2 2 0 4

3

3 7 -1

Applying —2R; + Ry and —3R; + R3 yields

Iy 52 I3 Ty
1 1 1 1 10
0 0 -2 2 24
0 O 4 —4 | —48

Now we use 2R, + Rs to get

1 T2 53 54
1 1 1 1410
0 0 -2 2|24 |.
0 0 0 0 0

This says that z; and x3 are pivot variables while 2 and z4 are free.
Set

2 =Q
z4 = /3, arbitrary constants.

Solving for the pivot variables, in terms of the free variables, we have, from
the second equation

—2r3+28=24
SO
zz = -12+D.
And, from the first equation,
Ti+a+r3+4=10
SO

1 =22 —a - 206.
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Thus
[ z; 22 —a—28
r= 9 _ [¢7
- 3 | -12+ 8
| T4 B
[ 22 -1 -2
0 1 0
=| _1o |+ ot B 1
| 0 0 1

Since o and B can be any scalars, there are infinitely many solutions.

If, while applying Gaussian elimination, we scale each pivot so it is 1
and then apply add operations to obtain 0's below and above the pivot,
the method is called Gauss-Jordan. This method requires about é more
arithmetic operations than does Gaussian elimination, so it isn’t used for
large problems.

The row echelon form obtained by using Gauss-Jordan is called the re-
duced row echelon form (rref), and rref does appear as a command on most
calculators and in computer software.

If A is a nonsingular matrix, its inverse can be found by solving

AX =1. (1.1)

Note the solution is X = A-1, (To solve, multiply the equation through
A1)

If X = [z1...2,], where z; is the j-th column of X, then by partitioned
arithmetic,

Azy =ey,... , Az, =e,. (1.2)
These equations can be solved simultaneously, using the augmented matrix
[Al1.

If in the process of applying Gaussian elimination, or Gauss-Jordan, to this
matrix, a row of 0’s is encountered in the first block, then, as given in the
exercises, A is singular.

An example will help bring the method back to mind.

Example 1.5 Let A = [ } ; ] The augmented matriz for AX = I is

[AlI]. Applying Gauss-Jordan, we start with

1 1710
1 3101

T ke
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Using —R; + Ky, we have

o2]at)

To obtain 1’s on the pivots, we apply $R,, yielding

11 1 0
o 1] ¢}

Getting 0’s above the second pivot, we use —R» +R1. So we have

HE

Thus, solving (1.1) or equivalently (1.2), we get

As can ke seen, this matrix is in the second block of the augmented matrix
above.
1.1.3 Determinant
Recall that if Aisa 1 x 1matrix, say A = [all],then
det A =aq;.
If Alisan nxn matrix, with n > 1,we use the following inductive definition.

i. Let A;; denote the matrix obtained from A by deleting row % and
column j.

ii. Set ci; =(—1)""7 det A;;. ThiS number is called the -t cofactor of
A. (Thedet A;; is called the ij-th minor of A))

Using this notation, we define
det A =aiieir +azcie T Fanern
=a [(—1)1“ det Au]
+a1 [(—1)1+2det Au] o tam (D) det Al
Example 1.6 Applying the definition,

(8 det [i 2] =a[(-1)"* det 4| Tb[(~1)** det A

=ad - be.
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(b)det[_3 4 (2” 2|(~ 1)1+1dt[4 ‘§H+
0
-3
(-

0
6)t(~1)-1.12 = 10.

[( 1)+2 det [ —2 H +(=1) [(—1)“3 det[ _Z ; H N

2-1.2+43-(=1)-

Actually, the determinant can be expanded along any row or column as
given below. The proof, a bit intricate, is outlined in the exercises.

(a) detA =Y aikeix (the i-th row expansion)
k=1

n
(b) detA =3 ax;ck; (thej-th column expansion
J~R)
k=1

1 4 3
Example 1.7 Let A= [ —2 0 0 |. Expanding the determinant along
3 -1 0

the third column, to make use of the numerous (/s there, we have

det A=3 [(—1)1+3 det [ ‘g _(1’ H +0-c3+0-ca3
= 6.
Some easy consequences of (a) and (b) follow.

(c) If Tisatriangular matrix, thendet T =#13t22-. .1  Asanexample,
expanding along the first columns,

tin tiz i ton
det 0 tog to3 =t;; det [ 82 23 ] = t11t090t33.
0 0 @ B33

(d) If a row of A is a scalar multiple of another row of A, then detA =0.
For example,

det[c?a abb}=aab—baa=0.

(e) If by,be,...,br are n x lvectors, then

det [(Zb") as. ..an] = Zdet [bxaz ...an)
k=1 k=1

-
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where a, is the k-th column of A. (The result also holds when k=1by

is the j-th column instead of the first one.) As an example,expanding
along the first column,

wl[2]+[a] 7]

at+tb e
=det[c+d f]

=(a+b)f-(c+d)e
=af —ce+bf —de

a e b e
=det[c f}-i-det[d f J
The next property shows that all determinant results about rows hold
equally for columns.

(f) det A = det A%, det A =det A Observe that

'k a ¢ [a b
det[% d} =det[b d]:ad—bc=det c d]'

A group of results, showing how the determinant behaves when elemen-
tary operations are performed on the matrix, follows.

(g) Iftwo rows of A are interchanged,obtaining B, then detB = —det A.
For example,

] =ad — bc while

} = bc — ad.

(h) If any row of A is multiplied by a scalar a, obtaining B, then det B =
adetA. (Sowe can pull out a scalar if it appears as a factor in all
of the entries of a row.) Observe that in the 2 x 2 case,

a b | _
det [ac ad } = gad ~ bac

=a (ad - bx)

a b
=adet ¢ d:l
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(i) If a scalar multiple of a row of A is added to another row, obtaining
B, then det B =detA. For example, expanding along the last row,
using the transpose o (e),

@ b a b
Aot | o4 g d+b | =det + det o b

= det

[+ JE R e T~
Q, oo

(j) If interchange and add operations are applied to A to obtain a row
echelon form E, then det A = (—1)* det E where ¢ is the number of
times the interchange operation wes used. An example will demon-
strate thepresult.

10 1
Let A= 2 0 -1 |. Applying ~2R; + Rz and Ry +R3,
-1 1 2
1 0 1
detA=det| 0 0O -3
01 3

Applying R, « Rj yields

1
det A= —det | O
0

o =0o
w

-3

=-(-3)
=3.

One of the strongest results about determinants concerns the product of
matrices. It can be used to derive several useful results about matrices.

(K) F B is also an n x n matrix, then det (AB)= (detA) (detB).

The key ideas for the proofs follow.

Proof. For (c), if T is upper triangular, expand the determinant along
column 1,and continue this on the subsequent cofactors. The lower trian-
gular case is handled similarly.

Property (d) is proved by inductionon n. For n =2, the property can be
checked directly. Assuming the property for n =T, to show the property
forn=rT 1, expand det B about a row other than the two which are
scalar multiples and use the induction hypothesis on the cofactors.

Property (e) is proved by expanding the determinant along the first col-
umn and rearranging.
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Property (g) is proved as was (d) .
For property (h), if row i was multiplied by a,then expanding det B
along row i yields

detB =aajici; T+ .. Tagincin
=a (a,-lcil + - + a,-ncl-n)
=adet A.

To prove property (i), use (e) and (d). For property (j), use (g) and (i).
And, the proof of (K) is outline in the exercises.

The adjoint of A is defined, by using cofactors, as

ade = [Cij]t .
a b ¢
Example 18 Let A= d e f |. Then
g h i

r t
Ci1 €12 €13

adjA=| ca c2 023J

C31 C32 Ca3

ei—-fh —(di—fg) dh —eg I

=] —(bi—ch) ai—cg - (ah-hbg)
bf —ce —(af —cd) ae —hd
ei—fh -bitch bf —ce
=] —di+fyg ai—-cg -—af+cd |.
dh—eg —ah+bg ae-hd

Three properties of the adjoint are listed below:
D AadjA) =(adjA) A = (detA)1
Thus if det A 3# 0, from the inverse equation,

_ . a b
(m) A~! = gz adjA. For example, let A = [ . d

d Zp
d -b _ . -b ~b .
. } and A~ = —L_agjA = [ ad-be  ad-be } Checking,
= ad-bc ad-bc

]. Then adj A =

we see that AA~1 =1.
If A is nonsingular and b is an n x 1 vector, we have Cramer’s Rule.

(n) The solution to Az = b has as its i-th entry, z; = gfett—’}, where A4;
is the matrix obtained from A by replacing column ¢ by b. As an
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example, if [1 2]1::[}],\/\/ehave

3 4
l'l—dt.12 —_2— ,
13 4
11
det{s 11 -
Iy = _ =—=1
gl L2 2
“13 4

Finally, the determinant determines nonsingularity.
(o) A is nonsingular if and only if det A # O.

Proof. We argue a few of these results leaving the others as exercises.
For (1), we do the 2 x 2 case which can be extended to the n x n case.
Here

AadjA= I ai; a2 ] [ Ci1 €21 }
| 621 422 C12 C22
aucn; tapzciz anean +a12622 1
ag1€11 +a2C12  G21021 Taxcy
[ det A 0
0 det A }

noting that the dff diagonal entries are determinants of matrices with du-
plicate rows. For example, the 1, 2-entry is an expansion along the 2nd row
of the matrix obtained from A by replacing the 2nd row with the 1st row,

a1 a2 ] _

a11€21 + aiacye = det
a1 a2

Similarly, (adjA)A = (det 4).

For (m), if A is nonsingular, AA~! = |. Thus, detAdetA™! = 1,
and so detA # 0. Now, by (1), A& adjA) = (g7 adiA)A=1. So
A7l = gradj A

In (0), if detA # 0, from (m), A~ = 325 adjA. So A is nonsingular.
On the other hand, if A is nonsingular, det A s 0 as argued in part (m).

This concludes the proof. m

1.1.4 Optional (Ranking)

Suppose, in a tournament, four tennis players, named 1, 2, 3, and 4, play
each other exactly once. We draw a directed graph with vertices 1,2, 3,4
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and arcs from i to j if 5 beats j. Define A =[a;;] where

0. — 4 Lifthereisanarc fromito
* 7 1 0 otherwise.

If A2 = [ag-)] , then we can show that

ag) = number of secondary wins from i to j
i.e., the number of players k where i
beats k and k beats j.

To rank the players, set B = A + A2, The sum of the i-th row entries in
B gives that player’s total wins and secondary wins. This total is used to
rank the players.

For example, if the outcome of the tournament, in digraph form, is given
in Figure 1.3,

FIGURE 1.3.
0111 0021
_ 10011 s 10010
then A = 000 0 and A¢ = 00 0 0
0010 0 00O
013 2
A+ 42_100 21 . .
Thus B = ATA® = 0000l Summing the rows of B yields
06 010
6
(3) . Thus, the ranking is 1: Player 1; 2: Player 2; 3: Player 4; and 4:
1
Player 3.

Expressions such as A +A2, with some refinements, have been used to
determine the power of pro football teams. What has been shown above
should be considered as a starting point rather than a finished product.
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1.1.5 MATLAB (Solving AX =b)

Some of the basics of the MATLAB package are given in Appendix A.
These basics include how to calculate answers to the computations in this
section. We will add to this some additional remarks about solving Az =b.

1. Solving Az =b: If A is n x n and nonsingular, A will provide a
solution to AX = b or indicate it is having a problem. When this
occurs, sometimes the mathematics problem can be redescribed to
eliminate the difficulty.

if A is m x n, we can solve Az = b using the augmented matrix
B = [A]b] and finding the reduced row echelon form. An example
follows.

B=[111 111 11 1]
rref (B)
1 111
ans=1{0 0|0
0 00

Now, we can write out the solution,m=[ 1 ;a ]=[ ! ]+a [ -1 ]

0 1

2. Least squaressolving Ax =b If A ismxn with m % n,A b provides
a least-squares solution to Az =h. A least-squares solution is not
always a solution. (We study least-squares solutions in Chapter 7
and Chapter 8.) An example follows.

A=[1 1,11 1 1]
b= [[1; 2: 3 ];
A,
==6]
0
if MATLAB B having a solving problem, a warning is given. Warnings
here usually indicate that in computing, some ‘small’ number was assumed
to be 0. The 0 didn’t occur due to rounding and consequently was set to

0. And had it not been set to 0, the answer may be very different.
For more, type in help midivide.

Exercises

1. Express in the form a +b:.
@ B-2(-4t5) (b) (2-3i)°

B8 (d) 14 -3¢
ﬁ%)) e(+3)t where ¢ is

a real parameter
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2. Prove that if z =a +hi and w =c *di, then
() zFw=%+w. (b) zw =zw.
() lztw| |zl +lwl. (d) [zw] =]2|{w].
() lol=(z2).
3. Let A, B be m x n matrices and «, # scalars. Prove the following.

@ A+B=B+A (b) (A+B)+C=A+(B+C)
(c) A+0=A (d A+(-4)=0
() (@B)A=a(PA) (f) (atBA=cA+PA

4. Compute expressions for the following.

(a) ‘[ g (1) ] [II;; ] by forward multiplication. (Here b; and b2 are

X 2 vectors.)

(b) [aias] [ (1) i } by backward multiplication. (Here a; and a3

are 2 x 1 vectors.)

5. Compute by backward multiplication.

A 0 O
[Pip2ps]| 0 X O
0 0 X3

6. Two parts:

[tu t12 lis }
(@) Let T=] O ta2 to3 | . If T isnonsingular, use the inverse
0 0 33
equation (XT = I)and forward multiplication to show that 7~
is upper triangular and that its main diagonal is t;;}, toz, ta3 -
(b) Extend this result to nonsingular upper triangular matrices in
general. (Hint: Start with the last row of X.)

7. Let A, B, and C be n x n matrices.

(a) f AB =AC, then B need not be C. Give an example of this
where none of A, B, or C is 0. Also, explain what arithmetic
property, for real numbers, is missing from the arithmetic of
matrices that causes this to occur.

(b) Do the same for: AB =0 doesn't imply A =0or B =0.

8. Let A, B, and C be matrices. Assuming all multiplications are de-
fined, prove the following.
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10.
11.

12.
13.

14.

15.
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(a) (AB)C =A(BC)
(b) A(B+C)=AB+ AC
(c) (BTC)A=BA*CA

. Compute A~1, if it exists, by solving AX =1, using the augmented

matrix.

@a4=|11] ma=[ ] ]

Provethat if A and B aren X n matricesand AB = |,then B = A1,
Let A be an n x n nonsingular matrix. Prove the following.

(a) (A7) =A

(b) (A™™ =(4~1)™ , m a positive integer

(c) (4) ™" = (41"
Let A be an m x n matrix. Prove that (AH)H =A.

Let A be an m x » matrix and B an r x n matrix. Prove that
(AB) =BHAH,

Solve the following.

Ty -T2+ 23+34=6
2z, t2, 323 =24 =5

Indicate, as in Example 1.4, all operations done in solving. Also
identify all free variables and pivot variables. Use

(a) Gaussian elimination.
(b) Gauss-Jordan.

Consider the system of linear equations

azy +bze =e (1.3)
cxy+dry = f

where a, b, ¢, d, e, and fare constants.
(a) Apply 6R; + Ry to (1.3) to obtain
ar, +b.’L‘2 =e (14)
¢ Téa)z, T (d+Sh)zy =f Tée.

Show that if (, 3) is a solution to (1.3), it is a solutionto (1.4)
and vice versa.
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(b) Repeat (a) for 6R;, where 6 # 0.
16. Consider the matrix equation
a b Ty ni|l_| e ¢g
c d z2 y2 | | f h
where a, b, ¢, d, e, f, g, and h are constants. To solve, we equate the
corresponding columns to get

ary +b:c2 =e ayr +by2 =g (1.5)
czy Tdzo=f and ey tdy, =h.

Explain how to solve these equations simultaneously.

17. Write out the expression for

det [

Q@ Qe
>0 o

ST
[

18. Compute det A for

1 2 2
(@ A=]1 -1 -1 { byexpandingalong the 2nd column.
"3 1 4
1 2 0 3
-2 1 2 5 b | .
(b) A= 1300 y any row or column expansion.
2100

19. Let A be an n x n matrix. Prove by induction.

(a) det A =det A*
(b) If A has two rows that are scalar multiples of each other, then

detA =0.
2 01
20. Let A= [ 0 -1 3 | . Compute adj A.
2 30

21. If A has entries which are rational numbers, are the entries in adj A
rational numbers? Explain.

22. Prove that if A is a 3 x 3 nonsingular matrix, then Az = b has
as its solution z where z; = %4, (Hint: Use that z = A~'b =

= (adjA)b and write out the expressions for 1, z2, and z3.)
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23. Let A be an n x n matrix. Prove by induction that expanding the
determinant along any row yields the same result as expanding about
the first row. (Hint: For the general step, expand the determinant
along the i-th row and then those cofactors along the 1strow. Show
this is the same as expanding about the first row and then those
cofactors along the i-th row of A.)

24. Let A be an m x n matrix and E a row echelon form for A. Prove
that if A is singular, E has a row of 0’s and vice versa.

25. Let A and B be a 3 x 3 matrices. Prove that det (AB)=detA detB
using the following outline.

(a) Prove that if an elementary operation is done on A and on AB,
taining A and AB, then AB = AB. (Hint: Write AB =
al B
az B |.)
a3 B
(b) Apply interchange and add operations to A and AB to obtain
E and AB, respectively, where E is a row echelon form. Then,
by (a), EB =AB. If t interchange operations were used, then
det (AB)=(-1)"det (EB)

enbi+ epnbr+ ey3b;
=(-1)"det exobo+ eg3bs
e33b3

Using properties (d)and (e), continue to get

o ]
det (AB)=(~1)"det | ey b
e3s b3 |
= (—l)t e11ez0€e33 det B
=(-1)"det EdetB.

Now use that det A = (-1)! det E to finish the work.

26. LetA:[g c

partitioned arithmetic, compute 42. (Be sure all multiplications used
are defined.)

|
217. LetA—[0 I

n. Using partition arithmetic, and the inverse equation, find the
corresponding partitioned form of A1,

where B is a square matrix and « a scalar. Using

be a partitioned matrix where both I’s are n X
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30.

31.
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The equation

26z + .35z2 = .09
54z 4+ .70z2 = .16

has solution x = (-1,1)*. Showthat # = (—~1.51, 1.38)" nearly solves
the equation by showing that b — AX is small.

(Optional) Rank the players for the tournament graph given in Fig-
ure 1.4.

FIGURE 1.4.

1 2 1 01 -1
(MATLAB) LetA=| 2 -1 0 {andB=|1 3 1 |. Com-

0 1 3 21 1

pute the following.

(@ A+B (b) A—B
c) AB d) 3A
éeg A7'B éf) BA™!
(g A= (h) 4°
(i) detA @j) rref A

(MATLAB) Let A and B be as in Exercise 30 and b = (1,0, 1)*.

(a) Solve Ax =h.

(b) Solve Ax = b using format long. (To extend the display of
the answer on the screen type in format long. This will provide
answers to about 15 digits. To return to standard format, type
in format short.)

(MATLAB) Solve

lz; + 1z + 023+ 1y = 7
1lz; + 0z + 1lz3 +0z4 = 4
O0zy + 1lzo + 1lzz + 124 =10
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(a) By using the reduced row echelon form.
(b) By using A\b.

101 1 -1
33. (MATLAB) solve]1 1 0| X=]2 0| forX.
010 1 3



2
Introduction to Vector Spaces

It has been observed that there are many algebraic systems which, in terms
of arithmetic properties, are just like R? and R3. These systems often arise
in mathematical work. In this chapter, we give a general study of these
systems.

As we go through this chapter, we will see very little direct application
(for example model building) of it. The reason for this is that this chapter
introduces conceptsand techniques (tools, so to speak) which are then used
throughout matrix theory and applications. These tools are important to
learn.

2.1 Vector Spaces

In this section, we study algebraic systems having arithmetic properties
like those of R? and R®. These algebraic systems are called vector spaces.
The general (abstract) definition of a vector space follows.

Definition 2.1 A vector space is a nonempty set V with elements called
vectors , together with a set of numbers, called scalars. The set of numbers
can be R or @. (When we need emphasis, we can use the words real vector
space or complex vector space to distinguish the two cases.)

(a) OnV there is an operation, called vector addition, that combines any
pair of vectors X and y into a vector, denoted by X +y, called their
sum. This addition must satisfy the following properties.
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i. x Ty =y +x for all vectors x and y.
ii. (xty)t:z=x*(@y*2) for all vectors X,y and .

#1. There is a unique vector, denoted by 0, such that 0 +x =X for
all vectors X.

iv. For any vector X, there corresponds a unique vector, denoted by
—z, such that x + (—-z) =0.

(b) OnV thereisan opemtzon, called scalar multiplication, that combines
a scalar a and a vector X into a vector, denoted by ax, called their
product. This scalar multiplication must satisfy the properties below.

V. a (x+y) =ax tay for all vectors x and y and scalars a.
vi. (atpB)x =ax* g3z for all vectors & and scalars a and 3.
vt a(fBz) = (@)X for all vectors X and scalars a and 3.
viii. Ix =x or all vectors X.

We should remark for clarity that when we talk about scalars, we mean
the scalars (from either R or ¢) of the vector space. (The properties
given above can be recalled since they are the basic arithmetic properties
of R? and R, four involving +, and four involving a mix of + and scalar
multiplication.)

We intend to develop a theory (a collection of results) about vector
spaces. Results will be stated about vector spaces, in general, and thus
proofs can only use the properties listed in the definition of a vector space.
To show how this is done, we provide a proof of a lemma extending the
properties of a vector space.

Lemma 21 The following are also properties of a vector space.
(@) Ox=0
(b) a0=0
(c) ~lz =-x
(d) ax =0 impliesa=00r x =0
Proof @). Using that the scalar 0 satisfies 0 +0 =0, we have
02=(0%0)2 =ox +ox. (2.1)

Now, OX is a vector and thus has an additive inverse, -(0x). Adding this
vector to the left and right sides of (2.1) and simplifyingusing the properties

e
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[
T

I;LAIL

FIGURE 2.1.

of a vector space, yields

— (0x)* 0z = — (02)* (Ox+ox)
- (0z) + ox = (- (0z) + 0z) +0OX
0=0+0z
0 =0X

the desired result. ®

As mentioned previously, there are many vector spaces. A few of these
follow.

Example 2.1 Trivial Space: Let V ={0} with addition and scalar mul-
tiplication defined by the tables

+
0

| 0
al0

| o

and
[0
for all scalars a. This is a vector space.

Example 2.2 Vector spaces £? and R* (This example is helpful in de-
veloping a geometric view of vector calculations.): We will develop this
material an 2. The generalization to R* should be clear.

Recall from calculus, a geometric vector from a point X = (z;,z2)" to a
point y = (y1,32)", written Z3, is a directed line segmentfrom X toy. The
inclination of such a vector is (y1 —z1, y2 —x2)*. Two geometric vectors
are equal (equivalent) if they have the same inclination. For example, in
the diagram (Figure 2.1), the geometric vectors are equal.

Two geometric vectors can be added by finding any two equivalent vectors
with the same initial point and adding those vectors by the parallelogram
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law. Alternately we can take equivalent vectors that are appended at end
and initial points and complete the triangle for the sum.

Any point x in R? can be associated with the geometric vector from the
origin to X. With this association, arithmetic in R? can be envisioned in
terms of geometric vectors. For example,

4

I. Scalar multiplication: 2 [? = [2

} can be seen by drawing the ge-

ometric vectorfrom [ 8 to [ i and by scaling this corresponding
geometric vector by 2. (See Figure 2.2.)

1
.1_ \
\i

FIGURE 2.2.

2. Addition: [‘11 }+[ ‘; ] = [g ] can be seen by adding the geometric

. 1 4
vectors corresponding to 4 ] and 1 by the parallelogram rule,

or appending (an end to an initial) and completing the triangle. (See
Figure 2.3.)

Appending is also useful in seeing subtraction. Note in Figure 2.4,
that a geometric vector equivalent to X —p can be seen by beginning
at the point p, going to O (to obtain a geometric vector equivalent to
—p), thenproceeding to the point X as diagrammed (adding X to —p).
Completing the triangle gives a geometric vector for x —p. Note that
tofind the corresponding point

n—m
T2 —p2

in R?, we need to start this vector at the origin.
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FIGURE 2.3.
xl
[x.'P.] - X,
=X=p o
X, D, ’K A
X : equivalent to x— p
/ 4
{pl]
p =
b,
FIGURE 2.4.

We also use the following parametric descriptions from calculus.
1. Line: The line through points a and b, a # b, s given by
¢ =ta+ (1 -t)b, where — oo <t < oo. (2.2)
2. Segment: The segment between pointsa and b, a # b, is given by
z=tat(1-t)b, where0<t<1. (2.3)

We use (2.2) and (2.3) as the equations of lines through, and segments
between, vectors a and b, a # b, in any vector space V.

Example 2.3 Matrix Space and Euclidean Space: Let
R™* ={A: A Banmx n matrix with entries in R}.

Using real scalars, matrix addition, and scalar multiplication, R™*™ is a
vector space. (Since the vectors are matrices, we can call R™*™ a matrix
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space.) C™*™ is defined similarly, using complex numbers in vectors as
well as for the scalars.
For simplicity of notation, set

Rm — Rmxl and Cm _ mel.

These are the classical real or complex Euclidean m-spaces, respectively.
We use the words Euclidean m-space, or simply the symbol E"", to denote
either R™ or C"".

Example 2.4 Polynomial space: Let
{ p:p ()= anort™ Fangtn 2+ .- 44, }

n =

where @,_1,8n_2,...,a0 are real scalars
and t a real variable

Using real scalars, the usual addition (adding coefficients of like terms)
and scalar multiplication (multiplying the coefficients by the scalar), P, is
a vector space.

We should also recall here that two polynomials are equal if and only
the coefficients of their corresponding terms are equal, e.g., 4

agt? tajt Tag =bot® +5,t Tho,
then as =b9, ay =b,, and ay =ho.
Example 2.5 Punction space: Let [ab] be aninterval of real numbers and
C [ap) = {f :f is areal continuous function on [ap]}.

Using real scalars, the usual definition of addition and scalar multiplication,
namely
(F+9) @) =f@) +9(t) and
(@f) () =a(f (),

C [ap] is a vector space.
It is also helpful to recall that two functions, T and g, are equal (written
f=g) if and only if

F)=9()

for all t.
For the open interval (ab), C(a,b) is defined similarly.

Most vector spaces arise inside the larger vector spaces given in the
examples above. The definition below describes such sets.
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Definition 2.2 Let V be a vector space and W a nonempty subset of V.
Then W is a subspace of V provided that W is

i. Closed under addition: if X,y € W then X +y E W.

i2. Closed under scalar multiplication: 4/ x € W and a any scalar, then
axEW.

(The addition and scalar multiplication is as that in V.)

We leave it as an exercise to show that, using this definition, geometri-
cally a subspace in &% must be one of the following:

(a) The set {0}.

(b) A line through the origin.
(c) A plane through the origin.
(d) R? itself.

(See illustrations of each in Figure 2.5.)

FIGURE 2.5.

We now show that sets which are subspaces are actually vector spaces.
Theorem 2.1 Every subspace is a vector space.

Proof. Suppose W € V and satisfies the definition of a subspace. We
show that W satisfies the definition of a vector space.

By the definition of a subspace, W # @ and properties (a) and (b) of the
definition of a vector space hold. Thus, we need only verify properties (i)
through (viii) of the definition of a vector space. We do a sample of these.
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Property i. Let X,y E W.Then X +y =y + X since this is true in V.
(The addition table for W is a subtable of the addition table for V.)

Property iv. Let X E W. By Lemma 2.1, —1z = —z. Thus by (b) of
the definition of a subspace, we know that —z E W. Hence, this verifies
property (iv). m

An example showing how to apply this theorem follows.

Example 2.6 We show that the set W C R2*? of symmetric matrices is
a vector space.

Here we simply check the properties of the definition of a subspace. Clearly,
W 0.

Closure of addition: Let “ b d e EW. Then [ 2 " .
d e a+d b+e i ]
] = [ . Since this sum is symmetrlc the sum ¢ an
e f b+e c+f
Closure of scalar multiplication: Let a be a scalar and
a b
[ b ¢ ] ew.

Then

ole ®] - [ ca ab
b c|] |ab ac)’
Thus, the product & symmetric and hence in W.

Having verified the properties of a subspace, it follows that W is a sub-
space and thus a vector space.

In the remaining work, we will show how axes can be put in a vector
space. (This goal will help unify the work.) To get the idea of how this

1 0
is done, note that R3 has axes determined by e; = l: 0 ], ez = [ 1 ] ,
0 0

0

ez = [ 0 |. Insome sense (which we describe later), these vectors point
1

out different dimensions. And, any x E R® can be reached using them.

For example, if X = (2, 3,4)", then

X =2e; + 3ey +463,

and the coordinates 2, 3, 4 tell how X is reached; i.e., go 2 units on the axis
determined by ey, then 3 units in the direction of the axis determined by
g2, etc.

L
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To obtain axes in an arbitrary vector space, we look for vectors with two
special properties. (i) We must be able to reach any vector using them, and
(i) these vectors must point out different dimensions. The first property
is mathematically described below.

Definition 2.3 Let S = {z1,...,Zm} be a nonempty subset of a vector
space V. If

=1+ -+ T,
for some scalars o1, . .., o ,thenX is alinear combination of 1,... ,Zm.
(So x can be reached by going ¢4 units on the azis determined by z1, etc.)

The set of all linear combinations of y,...,zm, the set that S spans, is
called the span of §. That is,

span S—{ TIT=0T1+ .- +am:cm
P ~ U for some scalars oy, ... ,0m

(So S is the set of all reachable vectors.)

Example 2.7 If we view R3, the span of a nonzero vector, say zj, is a
line. (See Figure 2.6.) The span of the two noncollinear vectors, say z;

X ;}/alxl where a1
Q/Xa]xl where 0<a,<1

;/'/alxl where o, <0

FIGURE 2.6.

and z; illustrated an Figure 2.7, is a plane.
And if we have three noncoplanar vectors, they span R3.

As we might expect, spans provide subspaces.

Theorem 2.2 Let V ke a vector space and § = {z1,... ,4 anonempty
subset of V. Thenspan § is a subspace of V.

Proof. To show span S is a subspace, we need to verify each property
of the definition of a subspace.
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Q)X +aXa
for a<0,0,>0

— X HapX; for @ 20,0,20 ——

— X topX)

—— fora;<0,0)80 _J x va,x, for a,20,a,<0

FIGURE 2.7.

Closure of addition: Let &,y € span S. Then

T =017+ -+ @y, and
y=pr1+  +BnTm

for some scalars ay, . .. ,am and By, ..., By. Adding we get
z+y=(ar+8)z1 4+ +{(@m+ Bp)Tm

a linear combinationof zy,...,z,. Thus, z +y € spans.
Closure of scalar multiplication: left as an exercise. ®

We conclude this section by demonstrating that just a few vectors can
span R**2,

-

1 h
Example2.8 Let Fy; = [0 8], E,, = [O 1 ], Ey, = [9 3
]

00
01

To do this, we take an arbitrary matrix A in R?*2, say A = L'b .

=d
We need to show that A is a linear combination of Eqy, Eyo, Eq;, and E;2
Thus, set

and Eqpy = [ } We show these matrices span R?*2,

a1En tasEry TasEy + asEp = A,
Equating corresponding entries, we Aave a solution, namely
a; =a,as =b,az3 =c, and oy =d.
Hence, A € span{e11,E12, E21, E23} and since A wes arbitrarily chosen,

span {Eyy, E12, Ea1, Ex} = R**2.
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2.1.1 Optional (Geometrical Description of the Solutions to
Ax =h)

In this optional, we give a geometrical view of the solution set of Ax =b.
To see this, we consider a small system,

2r +4y -6z = 2
-3z -6y 492 = -=-3°

As a matrix equation we can write this system as

EERI RS

To solve, we apply Gaussian elimination to get

[

where a and 3 are arbitrary. Thus, there are infinitely many solutions, one
for each pair of chosen a and 5.

Actually, the solution set is more than an infinite set, it has shape. Note
that we can pull out & and B from the vector and write it as

B

B —2
If we graph all vectors of the forma | 0 J +p 1 } , we get
1 0

~([1{1)

a plane thrpughy the origin. The graph of the solution set then is a trans-
1
[0 , of that plane, as depicted in Figure 2.8.
0

Although AX =1 is a more general equation than that just studied, its
solutions (providing there are any) can be described in the form

lation, by

T =g +a1x1 +---+am:cm

where zg,. ..,z are vectors and ag,. .., a., the free variables. Thus, if
W =span{zi,. .. ,Zm}, then the solution set is

zo TW ={x :2 =20 +wwherew E W },
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a translation by zq of the subspace W . Such sets are called affine spaces (or
linear manifolds). Thus, the set of solutionsto a system of linear equations
has that kind of shape.

FIGURE 2.8.

2.1.2 MATLAB (Graphics)
The basics of graphing a function can be found in Appendix A.
Code for Graphing z =1-2y +32

y = linspace (- 20, 20, 20);
z =linspace (—20, 20, 20);

[y, 2] =meshgrid (y, 2); % More points give a finer grid.
mesh (1 —2xy+3+*2z,y,2)
xlabel(’z-axis’), ylabel{ y-axis’), % Labels axes.

zlabel(’z-axis”)
title ("Graph of the solution set’) % Gives graph a title.

For more information on graphing, type in help mesh.
Exercises

1. Prove (b), (c),and (d) of Lemma 2.1.

2. Two parts.

(a) Draw geometric vectors correspondingto (1, 2)t, (2,1), -2(1,2)*,
and 2 (1,2)" - (2,1)".

(b) Using Figure 2.9, show (i) a vector equivalent to a — b using a
and b and (ii) a — b originating at the origin.
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a P
W

b
b

a

FIGURE 2.9
3. Four parts.

(a) Give the 0 vector for each of the following vector spaces.
i. R* ii. R®3
ii. P iv. CJ[0,1]
(b) Give the form of an arbitrary vector in the following.
i. R® ii. R¥3
iii. P;

(c) Give —z for the following z’s.

1
i.z=]| -1
l. 0

iz=| 1 7L
T=11 o0
ii. x=¢2+2t -1
iv. X =sint

scalars.

(d) Identify, by context, which symbols are vectors and which are
i. 0x =0

i. z4+ (—X)
i AT0=0 iv. of()+8g(t)=0
4. Let f,g,h E C (ab,] and «, G scalars. Prove the following.

(@) (f+9) +h=F+(g+h)
(b) a(f+9) =af +ag

5. Find the parametric equation of the line determined by the following.
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6. Prove that each of the following is a subspace.
(@) W ={z: 2= (22,53,25) and z; + =)
(b) W={p:p(t) =at2 thttct and a+ b+c =0}
() W ={A :A € R**? and A is upper triangular}
(d) W={f:fEC[-1,1] and f (0)= 0}
(&) W={A:Ac R?®2 and ay, ta12=0, a21 +az =0}

(f) Ci(—00,00) = {f : f € C(~0,0) and f is differentiable}
(Use known calculus results.)

(@) W={f:fECi(-00,00) and f' - f =0}
(h) W = {x : z is a function on the nonnegative integers and

z(k+1)*x (k)=0forall k&.} (Use that the set of functions
defined on the nonnegative integers is a vector space.)

7. Show that the following subsets of R%*2 are not subspaces.
(@) W ={A :Ais the singular matrix}
(b) W ={A : A is the nonsingular matrix}
8. Prove that if W is a subspace of a vector space V, then 0 E W.
9. Prove Theorem 2.1, property (ii).

10. Graph the solution set of y =22 in R2. Is the solution set, namely
{(z,y) :y ==2?} a vector space?

11. Explain why, geometrically, a subspace in R® must be {0}, a line
through the origin, a plane through the origin, or R%. (The explana-
tion may be a bit rough, so support it with drawings.)

12. Decide if x is a linear combination of y and z.

(a) z=(1,~1. )‘u_(zo -
(b) x_[(il Oj [ J [ ‘T
©z=t+1,y=2t-3,2=4

13. Three parts. Prove the following.

(2) $ = {(1,1,0)",(1,~2,~1)" ,(~1,2,2)' } spans RS.

) S = {[1 gl [0 (1)},[? (1)]} spans the symmetric
matrices in R4*

i
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(c) S={t -1, ¢ *1} spans Pz

14. Decide if the given set spans the given vector space.

@ {11 (-1,1,0° 0,11} &®
(b) {1 tt,t+t2} Py

of[La] [0 )L 8]

15. Draw span {(1,1,0)‘ ,(1,1, l)t} in R®. Find two other vectors that
span the same space.

16. Prove Theorem 2.2, part b.

17. Let V and W be vector spaces with the same set of scalars. Define
onVx W,

(v1,wy) + (ve, wa) = (vy + v2, w1 + w2 ) and
a(v1,w1) = (av1,aw)

where vy,v2 € V ;wy,we € W ,and a a scalar. Prove that V x W
with this * and scalar multiplication is a vector space.

18. Let V be a vector space and U, W subspaces of V. Prove that each
of the following is a subspace of V .

() UnW
b)) U+ W, UTW={x=utwwherex EU, we W}

19. (MATLAB) Solve

zy+x2t+2x3 = 3
T - 23 =0

by using the rref command. Graph the solution set as done in the
example in Optional.

2.2 Dimension

In this section we continue the study, started in the last section, o find-
ing vectors that form axes in a vector space. We now mathematically
describe the second special property (vectorspointing out different dimen-
sions) needed for such sets.

We first describe the property algebraically, so we can calculate. Later
in this section, we will show that our algebraic description is what we want
geometrically.
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Definition 2.4 Let V be a vector space and S ={z,,...,% anonempty
subset of V. If the pendent equation

ay T +... +amxm =0

has only the trivial solution, ;3 = .- = a, =0, then S is linearly in-
dependent. The set S is linearly dependent if the pendent equation has a
nontrivial solution.

Alternately (asoften used in other books), we say that vectorszy, ... ,z,,
are linearly independent or linearly dependent if the “set” of these vectors
is linearly independent or linearly dependent .

The following example shows how decisions about linearly independent
and linearly dependent sets are made.

Example 2.9 Decide 4

11 11 10
1 01710 1)'11 1
are linearly independent or linearly dependent.
To do this, we solve the corresquding prnijent equation, 0

+ag
11 11 1 0]_ 00]
a1[1 0]“’2[0 1]‘[0

Equating corresponding entries, we have

a1 +a2 +a3 =0

o +az =0
01 +a3 =0"
Q2 +a3 =0

Solving, by say Gaussian elimination, yields only

a; =0,a2 =0, ag =0.

Thus, [i (1) J ,[(1) i J ,[} (1) J are linearly independent.
We now attach some geometry to our definition. First, let X be a vector.
Observe that if z = 0, then a0 = 0 has nontrivial solutions (Any a # 0
will do.), so {0} is linearly dependent. Ifz 5 O,then az =0 impliesa = 0
by Lemma 2.1 (d), so {z} is linearly independent. (Actually, a single such
vector generates an axis.)
Now consider a set of vectors S={xl1,. .. ,zm} Wherem > 2. If

zix ¢ span S\ {zx},
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then zj is not reachable using the vectors in S\ {zx}. (Recallthat S\ {zx}
is the set S with the vector zx removed.) Thus, we say zx is independent
inS. If

7. € span S\ {zk},

Ty is reachable using the vectors in S\ {zx}, and S0 we say zx is dependent
in S.

We intend to show that Sis a linearly independent set if and only if each
vector in S is independent in S. Thus in R® such sets would appear as
shown in Figure 2.10.

X3

X2

X] X1

FIGURE 2.10.

We need the following lemma.

Lemma 22 Let V be a vector space and S ={z1,... )} asubset of V
containing at least two vectors. Then S is linearly dependent if and only
«f S contains a dependent vector.

Proof. We need to argue two parts for the biconditional.

Part a. Suppose S contains a dependent vector. Without loss of gener-
ality (the vectors in S can be reindexed), we suppose z; is dependent in S.
Thus

T =32 T + BT
for some scalars 3, . .. ,8,. - Now by rearranging,
lzy — Boze — - = BpZm =0
and so the pendent equation has a nontrivial solution, namely
(1, =82 .., =Bm)-

Thus, S is linearly dependent.
Part b. The converse implication is left as an exercise. =
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Another form (actually the contrapositive) of this lemma says that S =
{z1, ... yzm} Is linearly independent if and only if each zx E S is indepen-
dent in S.

As we expect, dependent vectors can be removed from a set without
affecting the span.

Theorem 23 Let S = {z,...,%m} be a subset of a vector space V. If
Ty s dependent in S, then

span S=span S\ {zx} .

Proof. For simplicity of notation, we re-index the vectors in S so that
z, becomes z1.

We show that span.S = span S\ {1}, which is an equality of sets argu-
ment. Thus, let z € spanS. Then

Ir = ,81(1;1 + e +ﬂm$m (2'4)
for some scalars 84, .. ,8,,- Since z; is dependent in S, we can write
21 =22t Tz, (2.5)

for some scalars v,, ... y¥,,-
Substituting (2.5) into (2.4), we have

g= P72 tB)ze t . . +(Bivm +Bn)zm

which says that z € span S\ {z;}. Thus spanS C span S\ {z1}.
Now let z EspanS\ {z;} . Then

z = (Box2 + --.+,3mib‘m
for some scalars 8y, ... ,3,, Writing
2 =0z, +ﬂ2:c2 + .. -+ﬂm$m
shows that z € span S. Thus span S\ {z:} C spanS. m
We give an example showing how we can use this theorem.

Example 2.10 Identify the shape of span.S where S={z,z4, 23,24} and

(i) <[] [1] 1]

Tofind dependent vectors an S, we consider the pendent equation

Q1T] + Qiaa +a3x3 +a424=0. (2.6)
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Putting this into an augmented matrix and finding a row echelon form yields
112 0 '0
0o 11 — 0
000 0 O

Thus a3 and a4 are free. Setting a3 =0, ey = —1 and solving, we get
(1,-1,0,-1), and by plugging into (2.6),

T —T9 = 4.

Similarly, setting az = —1, a4 = 0 yields the solution (1,1, -1,0), so by
(2.6)

z1 T o =23.

(In general, f allfree variables a4, are set to 0, except, say «;, which s set to
-1, then we see that z; is a linear combination of the vectors corresponding
to pivot variables.)

Thus

spanS =span S\ {z4} =span S\ {z3,z4}.

Now, if all free variables are set to 0, the resulting equation (2.6) contains
only vectors corresponding to pivot variables, namely

a171 + agze = 0.

which is a plane.
As demonstrated in the example, we have the following.

Corollary 2.1 Let A be anmx n matrix and E a row echelon form of A.
Let S ={ay,...,a,} where a; is the i-th column of A.



48 2. Introduction to Vector Spaces

(a) The columns of A corresponding to the columns of E that don't con-
tain pivots are dependent in S. And, they can be removed from S
without affecting the span.

(b) The columns of A corresponding to the columns of E that contain
pivots are linearly independent vectors.

We now describe those sets which can be used to form axes.

Definition 2.5 Let V be a vector space and S, § = {z1,...,z,}, @
nonempty subset of V. The set S is a basis for V ij

. S is linearly independent and
ii. span § =V.

In addition, we consider the set S as ordered, so z; is the first vector,
xo the second vector, etc. inS. (Now each vector, say xi, in S determines
an axis in V ,namely span{z;}.)

Example 2.11 Some vector spaces with bases follow.
(a) R™ has as a basis {el,. ..,es}. (There are others.)

(b) R™*™ has as a basis {Ei;|1 <i<mand 1<j <n} where B isthe
matriz having a 1in the ij-th position and 0’s elsewhere. (There are
others.)

(c) P, has as a basis (1,t,... ,t*=1}. (There are others.)

Let V be a vector spacethat has a basis, say S = {z;,. .. ,z»}. We now
show how coordinates are attached to vectorsin V. (Thisis somewnhat like
the calculus problem of attaching of polar coordinates to points in R2.)

For any = E V we can write

2=o7 +... +anzn (2.7)

for some scalars a;, ..., a,. Note that these scalars must be unique since
if

z=0z T - +8,2n (2.8)
for some scalars 8y, . .. ,8,, then by subtracting (2.8) from (2.7), we have
0=(a1-B)z T t(an—B,)zn.

Since S is linearly independent,

a; -6, =0,...,0, — B, =00r

ay =f,..,an =,
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Thus, we can define the S-coordinates for X as

a

[z]s =

(Of course, the coordinates depend on S.) We see that a basis gives a
coordinate system, which we call the S-coordinate system, with axes de-
termined z1,. .. ,o,. The vector z is located by proceeding al units along
the axis determined by z; to get a;z1, then az units parallel to the axis
determined by x2 to get ayz; T agzs, etc. (Geometrically we would add

by appending.) We label the axes as y1,. .. ,¥n, respectively. (SeeFigure
2.11)

FIGURE 2.11.

A particular example follows.

Example 2.12 Note that R? has § = {(1,1)*, (—1,1)t} as a basis. To
find the coordinates of (1,3)* with respect to this basis, we set

1]-o[t]=[ -]

and solve for a;, a;. This gives a; =2, a2 = 1. Thus,

5117

To locate [; ] with respect to 5, we move 2 units along the y; -axzis
followed by 1 unit in the direction of the y2-azis, as shown in Figure 2.12.

The number of axes, or vectors in a basis, gives the dimension of a vector
space. To show this, we need a technical result.

Lemma 2.3 Let V be a vector space having a basis of n vectors. The
number of vectors in any linearly independent set of V cannot exceed n.
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FIGURE 2.12.

Proof. We will prove this lemma for Euclidean n-space, which is more
insightful, leaving the general argument as an exercise.
Let S = {y1,...,ym} be any set of vectors in E” where m >n. We

show that S must be linearly dependent. For this, consider the pendent
equation

a1+ F aplYm = 0. (29)
Using backward multiplication, write (2.9) as the matrix equation

231
[yl“_ym] e =0

Qm

Note that the coefficient matrix is n x m, and thus if we compute a
row echelon form (say by Gaussian elimination) for the augmented ma-
trix {y1 ...ym | 0], there is a free variable. From this it follows that there
are co-many solutions to (2.9) and hence Sis linearly dependent. m

A consequence of the lemma follows.

Theorem 2.4 Let V he a vector space hawing a basis. Then all bases of
V wntain the same number of vectors.

Proof. Let By = {zi,...,zp} and By = {y1,... ,yq} be bases for V.
Using Lemma 2.3, noting the B; i linearly independent, it follows that
p < g. Using Lemma 2.3, with By linearly independent, yields g < p.
Thus, p =g, the desired result. m

By using this theorem, we can define the dimension of a vector space
as we intended, counting vectors in a basis.

Definition 2.6 Let V ke a vector space.
i. If V={0},thendimV =0.
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ii. FV has a basis, say {z1,...,z-}, thendimV =r.
iii. In all other cases, dim V = 0.

Example 2.13 Applying the definition, we can see that
(@) dimR’ =n, dimC™ =n.
(b) dim R™*™ =mn, dim C™*™ =mn.

(c)dim P, =n.
And, interestingly, as given in an exercise

(d) dim C (+00,00) = 0.
A more complicated example follows.
Example 2.14 Let A ke an m x n matriz. Define the null space of A as
N (A) ={x :Ax =0}.

It is left as an exercise to show that N(A4) is a subspace.
We compute the dimension of N(A) for a small example. For this, let

2 2 .
A [ 3 6 _3l Tofind the null space we solve
Ax =0.
This yields

20 —a
= g
[0 4

where «, 3 are free variables. Factoring these scalars out of x yields

[

-1] [2
and so N (4) = span 01,1
1 0

If we set x = 0 and observe the last two entries of the vectors in the
equation

-1 [2
0=a 0 +ﬂ 1 3
o]el;
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[-17 [2]

it is clear that g =8 =0, so 0 [, 1| are linearly independent.

1 0
-1 2
Hence, 01,11 I's a basis for N(A) and so
1 0
dim N(A) =2.
In general,
dimN(A) = number of free variables

in the solution of Ax =0. (2.10)

And, a basis for this subspace can be found from the solution, & in the
example, by using the vectors which are coefficients of the free variables.

Finally, we point out a result useful in establishing when linearly inde-
pendent sets actually form bases.

Corollary 2.2 Let V te a vector space with dimV =n. Then, any set of
n linearly independent vectors in V is a basis of V.

Proof. Suppose z1,...,z, are linearly independent vectors in V. To
show z1,. ..,z, forms a basis for V, we need only show that

span{zy,. .., zn} = V.

Let z € V. Then by Lemma 2.3, z,. .. ,z,, X are linearly dependent.
Thus there is a nontrivial solution (84, . .. ,8,,8) to the pendent equation

a1 + - oz, +az =0.
Note that 8 =0 implies that
a1y +.-. +an$n :0

has a nontrivial solution, namely (5,...,8,,), which contradicts that
z1,...,2Zn are linearly independent. Thus, 3 # 0.
Since 8 # 0, we can solve

Bz T 8,2, t6z=0
for z, yielding

2==Bﬂ-1-x1+---+=-§-ﬁ;z:n.

Thus x E span{zi, ... ,zn}. And, since z was chosen arbitrarily,
span {z1,...,2n} =V,

which is what we wanted to prove. m

An example showing how this corollary can be used follows.
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Example 2.15 Can we write any polynomial in Ps in the form
atp(t- )tc(t-1)*

Note that 1,¢z—1, (t—1)? are linearly independent in Ps. Since dim Ps =
3, these vectors also form a basis for P3. Hence, the answer is yes.

2.2.1 Optional (Dimension of Convex sets)

Using vector space notions, we can describe basic geometrical objects in
R™.

1. Parallelepiped: To describe a parallelogram in R?, Ietx, y be linearly
independent vectors. (See Figure 2.13) Then {ax+ 8y where 0 <
a<1, 0<p < 1) describes all points |n the parallelogram with
sides x and y. For a parallelepiped in R3 let z,y,z be linearly
independent. Then the descriptionis {az+fy+vzwhere0<a < 1,
0<p8<1, 0<y<1})

FIGURE 2.13.

In R™ a parallelepiped determined from linearly independent vectors
T1y ... 42 B{oaz1+ .- Tanz, Wwhere0< a; < 1,...,0< a, < 1).

2. Pyramid: Using the same technique as in 1,we have that if x and y

are linearly independent in R2 then {ax+ By where 0 < a, 0 < 3,
anda T4 < 1) is a triangle with vertices 0, x, and y. (See Figure

2.15))
InR™,for z,x2,. .., z, linearly independent, {az1+asz;+ - -+anzy
where 0 < a;, 0<g,...,0<apand oy +ag+--+a, <1}

describes a pyramid.

A nonempty set S in a vector space V is convex if for each x,y E S, the
segment between X and y, hamely

az T (1-a)y
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LY U !

FIGURE 2.14.

FIGURE 2.15.

where 0 < @ < 1,isin S. The disc in Figure 2.16 is convex, and the L is
not.

A subspace W of V is clearly convex and so are its translations. And,
parallelepipeds and pyramids are convex.

For any convex set S, define the dimension of S as follows:

i. dimS =0if S ={z¢}, i.e., S contains a single point.

ii. dimS = if r > 0 is the largest integer such that § contains r +1
vectors zg, %1, ... ,,z, for which z; — Zo, %2 — xg,...,2, — ¢ are
linearly independent. Note in Figure 2.17 that a line has dimension
1,a disc dimension 2, and a pyramid dimension 3.

iii. dim$ =coo otherwise.

Since a vector space V itself is convex, it has a dimension as described
above. [If the vector space dimension of V is n, then V has n linearly
independent vectors, say zj,...,r,. Taking zo = 0, we have that the
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x\N
]

FIGURE 2.16.
X
Xy
X3
Xo
X0 1
FIGURE 2.17.

convex dimension of V is at least n. And since no larger set of vectors in
V can be linearly independent, the convex dimension of V is n also.

Exercises

1. Decide if the following sets of vectors are linearly independent.

(a) (1,1,1)%, (-1,1,-1)%, (0,1,0)"
(b) (1,0,1,0)%, (0,1,1,0)*, (0,0,1,1)*

oflTol o] 11}
(d) 1+t, 1+, 1-t

2. Let V be a vector space and z, y € V. Prove that z, y are linearly
dependent if and only if one of these vectors is a scalar multiple of
the other. (Thus, deciding if two vectors are linearly independent is
often a matter of looking.)

3. Let u, v, w be linearly independent vectors in a vector space V. Prove
that », u *v,u+v *w are linearly independent.

4. Prove Lemma 2.2, part b.

5. Prove that every nonempty subset of a linearly independent set is
linearly independent.

6. Two parts:
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(a) Let T and g be differentiable functions. The Wronskian of f and
g is

1) 4@
Prove that if W (f (t),g(¢)) # 0 for some t, then f and g are
linearly independent.

(b) State and prove the generalization of this result to the » func-
tions.

W(f(t),g(t))=dec[ f& 9 ]

7. Using Exercise 6, decide which sets of functions are linearly indepen-
dent.

(@) etet (b) t-1,¢4+1,t
(c) sint, cost

8. Let A be an m x n matrix. Prove that N(A) is a subspace.

9. In R?, findthe coordinates of (3,3)t if the basisis S = { (2,1) ,(1,2)*

Draw the axes and the corresponding grid, and geometrically find
(3,3) in terms of them.

10. Find the coordinates of [ Z’ Z

ool loa] Lo )13}

11. Find a basis for each of the following.

1 1 [ 2 3
(a) span 11, 0 } , 11 } , 1 } Give its dimension
1 -1 0 -1

and draw the shape.
0
1

11 01][10
@eei[1 o).V o] 0 0]
12. Prove that [ z ], [c ], [e are linearly dependent in R2.

] if the basis is

(== ]

(c) span{t —1,t+1,2t - 1,¢t— 2}
d [

13. Prove Lemma 2.3 for a vector space V.

14. Find a basis for each of the subspaces given below. Give the dimen-
sion of each.

(@) W ={A:A € R?*2 and A is upper triangular}



15.

16.

17.

18.

19.

20.

21.

22.
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(o) W ={A:A E R?*Z and diagonal}
(c) W ={A:A e R?*? and symmetric}

Prove that C (—oo0, 00) =o00.
(Hint. Assumethat dim C (—o0,00) = n and consider 1,¢, ...,t".)

The solutionset to y”+3y’+2y = 0is a subspace of C (—oo, 00). From
differential equations, we know that the dimension of this subspace
is 2. Thus, if we can guess two linearly independent solutionsto this
equation, we have a basis for it. Solve the differential equation by
guessing.

The solutionset S to z (It +2) —=52(k + 1)+6z (I() = 0 is a subspace.
(See Exercise 6 in Section 1). It is known that dimS = 2. |3¥
guessing, find a basis for S and thus S itself. (Hint: Try z (k) =r
for some scalar r. Plug it in and determine which 7’s work.)

Let V be a vector space, V # {0}, and zi,...,zo, € V. Prove that
if span{z1,...,zn} =V ,then somesubset of {z1, ... ,z,} is a basis
for V.

Let V be a vector space and z1,xz2,z3 in V. Ifzy # 0, show that

(a) If z5 ¢ span{z1}, then 1, z2 are linearly independent.

(b) If in addition to (a), zs ¢ span{zi,z2}, then z1, z2, 23 are
linearly independent.

Let V be a vector space with dimV =n. F zi,...,z, E V and
span{zi,...,zn} =V ,prove that z,...,z, are linearly indepen-
dent.

(Optional) Find, by making a drawing, the dimensions of the follow-
ing convex sets in R3.

(a) A parallelepiped
(b) Aball,ie., {z :z}tz%tz%<1)

Prove the following are convex and find their dimensions.

(c) A parallelepipedin R™
(d) A pyramid in R™
(e) An affine spacein R"

(MATLAB) Using MATLAB, rref, Theorem 2.3, and Corollary 2.1,
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1 0 -1 1
(a) Decide if _ll) i } g are linearly inde-
0 -1 - -1
pendent.

(b) Find a besis for

~{ D

(c) Find a besis for span {2t +1,#2 tt - 1,t +1,4).

(d) Findabasisforspan{[; (1)]’[: i]’[(l) —i],
2 all el B

(On (c) and (d), use the augmented matrix obtained from the pendent
equation.)

2.3 Linear Transformations

Functions from vector spacesto vector spaces are called transformations (or
maps, operators). As in calculus, they arise in mathematically describing
phenomenon.

An example may be helpful.

Example 2.16 Let a € R? and define L : R?* — R? by
L (x)=x ta.

This transformation is called atranslation. Ija = [ Z; ], then L [ i; ] =

[ z1ta ] So L shifts R% a; units in the direction of the z; -azis and ap
T2 + az

units in the direction of the z;-azis. For example, if a = [? ], this shift
can he seen in Figure 2.18.

In this section we give a study of transformations that behave like the
derivative and the integral that we saw in calculus.

Definition 2.7 Let V and W be vector spaces. A transformation L :
V — W is called linear iffor all vectors and scalars,
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+
-+
r -
/

FIGURE 2.18.

i L(zty) =L (X)*TL() (L goes across sums.)
ii. L (ax)=aL (X) (Scalars can bke pulled out.)
By (ii), L (0X)=OL(z) so linear transformations also satisfy
L (0) =0.

Thus, if L (0) # 0, then L is not linear. Notice that the transformation in
Example 2.16 is not linear.
Putting (i) and (ii) together, we have that
L (oz tBy) =aL(z) T BL(y).

So, L maps lines as +(1 —a)y into lines aL (X)* (1—a)L (y) as well as
line segments into line segments. (Here we assume L (X)# L (y); otherwise
L maps the line into a point.)

A matrix map, say L(z) = Az, is a linear transformation. Using this
transformation, we demonstrate the line property.

Example 2.17 Let L (z)= [ } _} ]x and ¢ the line described by a i ]+

1- a)[_; . Thentheimage of £ is determined by Q [g ]a{l —-a) _; ]
The graphs are shown an Figure 2.19.

An interesting linear transformation, which we will use later to look at
pictures of various sets of matrices, follows.

Example 2.18 (Transformation from R?*? into R*). Define L by

b‘

TN
e
e =]

8, o
——
N———”

I
/] O o
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, A L{e)
- .

FIGURE 2.19.

To show that L is linear, we need to verify properties (i) and (ii) of the
definition of linear transformati[n.

L goes across sums: Let A= [ 21t 212 ] and B= [b” b1z ] Then

a2 bar b2
_ ain +bnn a1z +bi2 .
L(A+B)—L([ az1 +bay an+bx ])
an +bn a1y b11
aiz + by a2 b2
az + b as) b21 (4)+ L(B)
az + by ag bao ,
r
Scalars can be pulled out: Let A = | 91 912 ] and a a scalar. Then
| @21 a2z
[ aan a1
L(ad)=L (| ¢ a2 ) =92 [ 4| 92| —aL(A).
Qa2 Qa2 aaz) a21
aaz2 a22

In this section we will be concerned with matrix maps; however, some of
the theorems will be proved for linear transformations in general.

The following theorem lets us see a picture, the grid view, of a linear
transformation. These pictures help provide insight into some of the work
that follows.

Theorem 2.5 Let V and W be vector spaces with V having as a basis
{z1,. .. yzn}. Let L be a linear transformationfrom v to W. Then

Loz 4+ +onzp) =1Ll (z1) +... + anL(zy) (2.11)

for all scalars ey, ... ,an.
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Proof, This can be seen by sequentially applying the properties of a
linear transformation,

L ((031131 +.. . +a'n-lmn—~1) +an-’1:n)
=L(aiz1+ ...+ an__1$n_1) + L (anmn)

and by continuing,

=L (alml) + P + L (an—lwn—l) + L (anwn)
=a;L eyt Tan-1L @n-1) T anL (za)

More formally, the proof can be done by induction. &

The following example shows how we get a grid view of a linear trans-
formation.

Example 2.19 Let
21
L(z)= [1_2]:5.
To describe L, note that {e1,e2} is a basis for R* and that L (el)= [ i ]
and L{eg) = [ ; ‘ And, since L (a1e; T azes) =a1L(eI)+a2L(32) =

xn [% l'l'az [ ; }, we see that [f ] and [; ] form azes for a grid in

R? as shown in Figure 2.20.
2o Y2 oL ey +Liey
L L el Ll e - 2ete © LY e’
v ¢ ' [ 4 17%2 = .,
SRR . Lig=Ax - ;o
— — x; L. taag) .,
€ . , -
FIGURE 2.20.

Observe that the image of a square in the grid for R? is a pamllelogmm
in the image grid. And that the grid view gives a picture of where all points
in R% go in the map.
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Note that (2.11) also assures that the range of L, denoted R (L), is
the span of L(z1),...,L(z,), and this is a subspace. (Recall that a
basis can be found for R (L) by removing dependent vectors from among
L(wl)"" 9L($‘n))

Another example may be helpful.

10
L(cc):[l 1}2:.
01

1 0
Getting a grid view of L, we plot L(e;) = [1 and L (eg) = [1 in
0 1
R3. Now, drawing the image grid shows where the grid of R? goes under L.
(See Figure 2.21.) Note that the image is a subspace spanned by L (el),

Example 2.20 Let

FIGURE 2.21.
L (62).
The grid view is often helpful in determining the matrix that does what

we want to R?. For example, if we want to skew the plane by moving the

points on the z,-axis parallel to the z,-axis so that (1) ] endsup at [ . ] )

we would use A =J(1) i ] sincewe want L (el)=e; and L (e2) =

|

NHNH'_‘H!

L
And A = [ _3 I ] reflects R? about the z,-axis; A = [ V2

%)
rotates the plane § radians, etc.

An example will show how this can be used in graphics.
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Example 2.21 Given a sequence of points
z1 Zo ] [ Tn ]
Byl

in R?, we form the matrix X = [z1 Tz o In ] The command
n Y2 - Yn

plot X will sequentially connect the points with line segments as shown in
TO 1100 ], thenplot S gives a square.

Figure 2.22. Thus, i S = 00110
o & o
X
;WU T
5, b2 Y.
FIGURE 2.22.
. 2 0100 2
And if E = [ 0 g 1011 2 2 , then plot E gives the letter E.
S |
Now to rotate S by % radians, we let A = 715 ? ] and plot AS.

And to shear E, we let A = [(1) } ] and plot AE. See Figure 2.23. (If

FIGURE 2.23.

it is not eye appealing, it can be adjusted.)

We now give a rather easy way of showing that a linear transformation
is one-to-one.

Theorem 2.6 Let V and W be vector spaces withL : V. — W a linear
transformation. ThenL is one-to-oneif and only if L (x)=0 impliesx =0.

Proof. We argue the parts of the biconditional.
Part a. Suppose L is one-to-one and L(z) = 0. Since we know that

I (0) =0, one-to-one implies that x =0, which is what we need to show.
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Part b. Suppose L (z) =0 implies x =0. To show that L is one-to-one,
letz, y EV and set

L(z)=L{y).
Rearranging yields
Lz)-L(y)=0 or
Lz —y)=0.

By hypothesis, this says that z —y =0 and thus x =y. Hence L is one-to-
one. m

An example of how the theorem can be used follows.

Example 2.22 Let S be set of 2 x 2 symmetric matrices. It can be seen
that S is a subspace and dimS =3. DefineL : S — R3 by

L[Z b ] = (a,\/fb,c)t

c

he \éi occurs[since we want to preserve distance. The distance between
a c] and ré bv] is
b b ¢

“2 3
((a—d)2+2(b—b) +(c—&)2)
The distance between (a,/2b, c)t and (&, V26, é)t is

3
((a—&)z+(fib—\/§8)2+(c—é'2)

Note also that L is linear and one-to-one. So R3 gives a model of S,
The singular matrices in S have determinant 0, <.e.,

a b} _
det[b c]—O

or
ac - b2 =0.
Thus, we can get a view of this set by graphing in B3 those vectors (a, /26, ¢)t

that satisfy ac—b* = 0. Replacing b by /ac, we can then graph (a,v2ac, ¢)""
This graph is shown in Figure 2.24.



2.3 Linear Transformations 65

Graph of singular matrices

c-axis
&
LR LN A R

FIGURE 2.24.

It is interesting that special sets of matrices are often not simply infinite
sets but actually have some shape.
Not all linear transformations are one-to-one. Some transformations ac-

tually collapse the space. To see how collapsing takes place, let
N (L)={y :y is a solution to L (z) =0}

called the null space or kernel of L. As given in an exercise, N (L) is a
subspace.
Let

z+ N(L)y={w:w =z +y forsomey E N (L)},

called a translate by z of the null space of L. Using translates, we can
describe how a linear transformation collapses space.

Theorem 2.7 Let V and W be vector spaces and L : V — W, a linear
transformation. Wz EV and L(z) =b, then the solution to L(z) =b is
z+N(L). (ThusL collapses z +N (L)into b.)

Proof. We prove two parts. And, we use that
S ={w :w is asolutionto L (z) =b}.

Part a. We show that z +N (L)C S. For this, letv Ez+N (L). Then
v=ztyforsomey EN(L).Thus, L(w) =L (zFty) =L(2)+L(y) =
L (z)=b. Hence,v ES andsoz+N (L)C S.

Part b. We show that S C z+ N (L). For this, let w E S. Then, set
y =w —z. Since L(y) = L(w) - L(z) =0, y € N(L). And since
w=z%ty, wez+N(L). Thus, SCzTN (L). =
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Since L collapses z TN (L)into b (b = L(z))and the dimension of
the affine space 2 ¥ N (L) is dimN (L), we see that L collapses dim N (L)
affine spaces in V to each vector in R (L). Thus, intuitively only dimV —
dimN (L) is left, and we would expect that

dimR (L)=dimV =dimN (L)
which is correct. However, we will only show this for matrix maps.
Theorem 2.8 Let A be an m x n matrix and L (x)=AX. Then
dim N (4) + dim R (A4) = n.
Proof. The pendent equation
ajo T+ apae, =0,
for the columns o A, can be written as
Az =0

where X =(ai,. .. ,an)’. Let [E|0) be a row echelon form of [A]0].

From (2.10), dim N (A) = number of free variables determined by [ E| 0].
From Corollary 2.1, the columns of A correspondingto the pivot variables
are a basis for R(A). Thus,

dimN (A)*+dimR (A)= total number of variables
:n,

the desired result. =

At the beginning of the chapter we said that we would study spaces
which were like R? and R3. We conclude the chapter by showing that a
finite dimensional vector space V is like E”’, where £ = R™ if V is a real
vector space and E” =@™ if V is a complex vector space.

Theorem 2.9 Let V be a vector space with basis {z;,...,z,}. Define
L :V — E* by L{yZy + -+ + an2n) = (@1, ..., an)t. Then L is a
one-to-one linear transformation.

Proof. We show that L satisfies the two defining properties of a linear
transformation.

L goes across sums: Let 2, y € V and write X = ayz; T--- T anzn,
y =6z1 +.. ﬂ Tn, Where the a;’s and 8;’s are scalars. Then X +y =

(a1 T8, 7 + -+ (an +8,) zn. So,

L(z+y) = (a1 +PB,-- an+8,)

= (ala-" aan)t'l'(ﬁla--- aﬂn)t
=L(z)+ L(y).
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Scalars can be pulled out: left as an exercise.
Finally, L is one-to-one since, if L (x)=(0,...,0),
z =0z, + -+ 0zq
=0

This proves the theorem. m

A way to view this theorem is that if we express vectors as X = a2 +
...+ an Ty, then the arithmetic of these vectors is done on the coefficients.
So the arithmetic is like that done on vectors («;, . .. ,an)t in E”,

2.3.1 Optional (Graphics of Polygonal Shapes)

Graphics concerns drawing pictures or making movies on acomputer screen.
In this optional, we want to show how linear transformations play a part
in that work.

We look at two problems.

Example 2.23 (A house in a strong wind.) We can start with a house
made by drawing afew line segments as in Figure 2. 25. If we shear the house

FIGURE 2.25.

At

we have the second picture, Figure 2.26.0f course, if this is a technical
drawing, we wouldn’t want this roof, since it appears to elongate on the left
and contract on the right. We can fix the drawing by shearing the sides of
the house and translating the roof by

L(m)=z+['g].

And yes, the lengths of the walls in Figure 2.27 (now of length 2.01) are a
bit elongated, but that would not be discernible with the eye.

a bit, say by multiplying by
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FIGURE 2.26.

FIGURE 2.27.

Example 2.24 (Afalling bowling pin.) Wefind a basic shape of a bowling
pin by using a polygonal shape. (See Figure 2.28.) We translate the pin

FIGURE 2.28.

(See Figure 2.29.), so its right lower point (the point at which the rotation
for falling takes place) s at the origin by using

L(m)=z+[_(1)].

Now for falling, we show the pin under rotations by various angles. For
example, for —Z and —% we have Figure 2.30.

2
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FIGURE 2.29.

FIGURE 2.30.

2.3.2 MATLAB (Codes, including Picture of the Singular
Matrices in Matrix Space)

For the polygonal shape obtained by connecting points[ z1 } yoen { Zn ]
n Yn

sequentially by segments, we define the vector of x-values and the vector
of corresponding y-values:

2 =21 .. Zp);

Y=y nl;
To connect the points with line segments, we use the command plot

(2,9).
1. Code for Original House

wr=|1 1 ;
wy = { 2 049 9 J ;% Determines the points for
the walls.
T = { 5 2 351;
15 3 15 ]] ;. %Determines the points for

™Y =
the roof.
plot (wz wy)
hold % Keeps the first plot from

being erased.
plot (rz,ry) .
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2. Code for Sheared Walls House

Using wz, Wy, rz, ry from 1, we add the following.
wxT =wz .2 wy;
wyl =wy;
rel =rz T [.2ny];
ryl =ry;
plot (wzl,wyl)
hold
plot (rz1,ryl)

3. Code for Picture of Singular Matrices

a =linspace(0, 10, 20);
¢ =linspace(0, 10, 20);
[a.c] =meshgrid(a, o) ;
y=@2+a.xc),A(5);
mesh(a,y,c)

Exercises

11
.Let A=1(]1 1
00

1. Decide which of the following transformations are linear.

(a) L(z1,z2) =(z1 + 222,221 — a:z)t
(b) L (A)=A Tt 4¢ for all k x k matrices A
() L(f @) =T (¢) T/ (¢ for all f € C1(~00,00)

(d) L(z (k)) = = (k+ 1) + x (k) for function x defined on the non-
negative integers

. Which of the following transformations L : R**”* — R axe linear?

(@) L (A)=trace A, wheretrace A =ay +-.%aq,,
(b) L (A)=detA

. Draw the grid map of L(z) = [? g ] z, and tell what L does to

RZ.

. Find the range and the null space in R3 for

==
| S |

L (z)=Az. Sketch both.

11
. Graph the range of L where L (z) = [ 10 } X. Show the grid of
01

R? and its image R®.
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6. Draw the linez =« [ i ] + (1-0) [3 } Compute the image of

1 -1

this line for L (2) = 11

} z and draw it.
7. For the given Ly and Lo, find L, o Ly for the following.

(a) Ly ((x11$2)t) = (21 + 22,71 — 22)°,

= (z, — 2,72+ 1)°

(@022

(b) Ly ((a:l,xz)t) = (21 — 3xg, 21 + 2x2)°,
(1220 =
((e2,22))

($17m2)t = (xl’ O)t’

Ly ((931,932)t) = (z2,21)" + (2,-3)°

8. Let L : V — W be a linear transformation. Prove that N (L} is a
subspace.

9. Find A if L (z)= Az is such that
2 1 .
(@) L(el):[ 1 ],L(ez)Z [2} and Ais 2 x 2.

1 1
(b) L(el)=ii1:l,L(ez)= [O]andAis3x2.
0 1

10. Solve the following polygonal graphics problems.

(a) Find the matrix X for the equilateral triangle with base from
(-2,0)" to (2,0). Find the matrix A so that L shrinks the
z1-axis (and the corresponding space) by 1. Plot AX.

(b) Find the matrix X for a tower (4 points should do it) with base
from (—1,0) to (1,0)" and height 10. Find the matrix A that
leans the tower to the right by & radians. Plot AX.

001101 : . b

(c) MovetheflagF = 011221 soitsbaseisat (1,1)
and it is tilted to the left by £ radian. What transformation L

(not linear) is such that plot LF (Lapplied to each vector in F)
produces the flag in this position?
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

2. Introduction to Vector Spaces

Let A be an m x n matrix. Suppose a row echelon form for Ax =0
has r free variables. In writing z in terms of the free variables, we
can pull out the free variables so X is a linear combination of vectors
which are coefficients the free variables. Explain why those vectors
form a basis for the null spaceof A. (Assumethat the last r variables
are free and that the rest pivot variables. Look at the last r entries
in the coefficient vectors.)

Find a basis for the following subspaces.

@ W ={at2 tst tatb:abe R} (Soaandb are free.
_ a+b a |,

ww={[*+* ¢]-ancen)

Let L be defined on the functions having 2nd derivatives by
Ly) =y" -3 *T2y.

Solvey” =3y’ +2y =1 using Exercise 16 of the previous section, and
guessing some y such that the solution set isy TN (L)

Using Exercise 17 of the previous section, solve
z(k+2)—5z(k+1)+6z(k)=2
by guessing a solution.

Prove that if L : V — W is a one-to-one linear transformation and
z1, ..., 2, are linearly independent in V ,then L (z,) ,... ,L(z,) are
linearly independent in W,

Let V be a vector space and V* the set of all linear transformation
from V to V. With the usual definition of addition and scalar mul-
tiplication of functions, show that V* is a vector space. (Just show
closure of addition and scalar multiplication.)

Use that the set of dll functions of two variables, on which the partial
derivativesexist, is a vector space. Then using Exercise 16, decide if
% and % are linearly independent.

Complete the proof of Theorem 2.9.

(Optional) Write the MATLAB code for the third picture of the
house with a strong wind sequence.

(Optional) Write the MATLAB code that gives all three pictures of
the falling pin problem.
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o O

1
1 } . Using the rref
0

O =

21. (MATLAB) Let L (x) = As where A= [

command,

(a) Find the kernel of L.
(b) Find the range of L.
The null and orth commands provide matrices whose columns are (or-

thonormal) bases for the kernel of L and the range of L, respectively.
Do (a) and (b) using these commands.



o




3
Similarity

As shown Figure 3.1, a classical method for solving problems involving a

Problem involving Substltu\te Problem involving
A PDP"* for A D
\” Solve
Solution to Convert Solution to
problem involving - problem involving
A D
FIGURE 3.1.

matrix, say, A, is to first factor the matrix as
A =pDp!

where P is a nonsingular matrix and D a diagonal matrix. The expres-
sion PDP~! is then substituted into the problem for A, thus reducing the
problem to one involving D. This problem is then solved and its solution
converted into the solution of the original problem.
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This chapter explains when and how a matrix A can be factored as
A = PDF~! and then shows how this factorization is used in problem
solving.

3.1 Nonsingular Matrices

Nonsingular matrices constitute almost all of the space of nx n matrices. In
this section, we give some of the basic results about nonsingular matrices,
describing nonsingular matrices in terms of their rows and columns.

Theorem 3.1 Let A be an nx n matrix. Then A is nonsingular if and
only ¢ A has linearly independent columns.

Proof. The biconditional is argued in two parts.
Part a. Suppose A is nonsingular. To show that the columns of A form
a linearly independent set, we solve the pendent equation

a3a +.. .+anan =0

where ay, ..., a, are the columns of A. By back multiplication, this can
be written as
(2%}
Al... =0
(2413

Since A is nonsingular, it has an inverse. Multiplying through by this
inverse yields «; =--- =a, =0. Thus, the columns of A form a linearly
independent set.

Part b. Suppose A has linearly independent columns. Then, using that
the columns form a basis,

AX =e,
has a solution, say, b; for each i. Set B =|[b; ...b,]. Then by partitioned
multiplication, AB = 1. Now, calculating the determinant of both sides,

we have det A det B = 1.Thus detA # 0, and so A is nonsingular. =

Since det A* =det A, A is nonsingular if and only if A has linearly inde-
pendent rows. Thus, interestingly, A has linearly independent rows if and
only if it has linearly independent columns. We now extend this result.

A word used for the maximum number of linearly independent columns
follows. Let A be an m x n matrix. Define the rank of A as

rank A = largest integer r such that A has r
linearly independent columns.
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If E is a row echelon form of A, from Corollary 2.1, the columns of A
corresponding to pivots in E form a basis for the span of the columns of
A, and so provide the largest number of linearly independent columns in
A. Thus,

rank A = number of pivotsin E.

Further, the number of pivots in E is exactly the number of nonzero rows
of E, eg., in

I—|
oo®
oo *
o ® %
O % ¥

'

both are 2. Thus,

rank A = number of nonzero rows of E.

1 011
Example 31 Let A=|1 1 0 1 A row echelon form of A is
2 11 2
10 01
E=|101 -1 0. Thus,rankA =2. (Columns 1 and 2 oj A form
00 00

a basts for the span of the columns of A.)

The determinant is rarely used in computational work. However, it is
a useful tool in developing matrix results. The next theorem, though a
bit intricate is worth the effort to learn. It links rank, determinant, and
linearly independent rows, linearly independent columns. We show its use
in several places in this text.

Theorem 3.2 Let A be an m x n matrix, A # 0. Let B beanr xr
submatriz of A such that det B # 0 and such that for any (r + )x (r + 1)
submatrix C containing B, detC =0. Thenrank A =r.

Proof. We will argue a particular case leaving the general proof as an
exercise.

Let A be a 3 x 4 matrix and suppose B is the 2 x 2 submatrix in the
upper left corner of A. We use the notation

SEREETE

31432 | 33434

] = [01020304]

where the by, b, and a;, a2, as, a4 are column vectors of B and A, respec-
tively.
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Since det B # 0, by Theorem 3.1, by,bo are linearly independent and
thus a1,a2 are linearly independent. By deleting dependent vectors, we
will show that

span {a;,az} = span{ai,...,a4}.

Thus dimspan{ay, ... ,as} =2 so A has at most 2 linearly independent
columns. This assures us that rank A =2.

To prove that a3 is a linear combination of a; and a2, we proceed as
follows. Note that by, bs is a basis, and so we can write

b3 = a1by T by
for some scalars a1, ag. Define
= az — 11 — a2 (3.1)

and note that

Solving for a3 yields
ag ={+ oqay + azas.
By substituting, we have

det [a;, az, ag] = det [a1, a2, £ + a1a1 + azas)
= det [a1, ag, £] + det [ay, a2, a1]
+ det [al,ag,aga,g]
=det [0),02,f] + 0 +0=det B - £3.

Since the hypothesis assures det [a;,a2,a3] = 0, it follows that ¢35 = 0.
Thus, using (3.1),

a3 = aja; + agas.
Similarly a4 is a linear combination of a;,a2 andsorank A=2. m

An example may be helpful.

1 -1 3 -1 13
Example 32 LetA=]-1 1 0 1. ThesubmatrixB= ,
2 -2 3 -2 -1 0

in rons 1, 2 and columns 1, 34s such that det B =3. All 3x 3 submatrices
C containing B are such thatdetC =0. Thus, by the theorem, rank A = 2.
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Three corollaries follow from the theorem.

Corollary 3.1 Let A be an m x n matriz. Then

(a) rank A =rank A* and
(b) rank A =rank A%,

Proof. We prove Part (a),leaving Part (b) as an exercise.

Supposerank A =r and let B be anr x r submatrix of A as described in
the theorem. Since det B* =det B # 0, A* contains anr xr submatrix hav-
ing a non-zero determinant. Hence, rank A* > rank A. Applying the same
argument to A? yields that rank A > rank A*. Thus, rank A =rank A, =

Note that this corollary says that the maximum number of linearly inde-
pendent rows equals precisely the maximum number of linearly independent
columns in any matrix.

The next corollary shows that the rank doesn’t change when multiplying
by nonsingular matrices.

Corollary 3.2 Let A be an m x n matrix, P and Q nonsingular m x m
and n x n matrices, respectively. Thenrank PAQ =rank A.

Proof. We outline the proof, leaving the write up as an exercise.

First prove that a;,, a;,, - -. ,a;, are linearly independent columns of A if
and only if Pa;,, Pa,,, ... ,Pa,, are linearly independent columns of PA.
(This is a matter of checking the pendent equations.) Thus, rank PA =
rank A.

Now, set B =PA. Then, using the first part of this proof,

rank B =rank B* = rank Q' B* =rank (BQ)"
=rank BQ =rank PAQ.

And putting together,
rank A =rank B =rank PAQ,

which is what we want. m

The last corollary shows how to extend a linearly independent set to a
basis.

Corollary 33 Letas,...,a, be linearly independent vectors in Euclidean
n-space. Thenthere are vectors a,+1,...,a, Such thatas,...,a, forms a
basis for this vector space.

Proof. Let A =[a; ...a,]. Since rank A =r, by Theorem 3.2, there is
an r X r submatrix B of A such that detB # 0.
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Suppose 1 ..., 4, _r are rows of A which contain no entriesof B. Sup
pose further that our indexing is such that ¢; >--- >4,_,. Then set

C =Te;,...€, . A
an n X n matrix. Now, by expanding along the 1-st columns,
det € = (=1)** .. (=" et B
Thus, det C # 0 and so the columns of C are linearly independent. Setting
Qrp1 =€, 40,0, =€, _, Yieldsthe result. ®
The following example demonstrates the corollary.

Example 33 Let a; = (1,1,1,1)* and ay = (1,1,-1,1)*. We extend
these vectors t0 a basis. For this let
|
1 11‘

A=[a1a2]= 1 -1 1.
1 1J

Note that the 2 x 2 submatriz, in rows 2 and 3 of A, is nonsingular. So,
we add e; and ey to get

C =[eqe10102]

011 1
Bo11-1
0 1
101 1

Then, by the proof of the corollary, C is nonsingular and thus {a1,az,e4, €1}
is a basis.

A useful tool in showing that a matrix is nonsingular follows.

Lemma 3.1 Let A be an n x n matrix. If AX =0 has only the solution
X = 0, then A is nonsingular.

Proof. By backward multiplication, write
Az =0

T1a1 +. ..+a:nan =0

where a1, . .. ,a, arethe columnsof A. Since this is a pendence equation,
and z =0 is its only solution, the columns of A are linearly independent.
Hence, A is nonsingular. m

A theorem useful in polynomial interpolation follows.
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Theorem 33 let z4,...,z, be n distinct real scalars. Then, the Van-
dermonde matrix

n—1
1z - @ :

n—

A: 1 o e - :1:2
-1

1 Ty - z:

is nonsingular.

Proof. By Lemma 3.1, we can show that A is nonsingular by showing
that AX = 0 has only the solution X = 0. For simplicity we will do this for
the case n 3= 3, leaving the general argument as an exercise.

a
Letz = | b | be a vector such that
c

1z, z? a 0
1 T $2 b = 0 . (3.2)
1 =3 23 c 0

We show that X =0.
Define p (t)=a *+bt +ct2. Equation (3.2) can be rewritten as

[SLVTS

p(z1) =0
p(z2) =0
p(z3) =0.

This means that p, a polynomial of at most degree 2, has 3 distinct roots.
The Fundamental Theorem of Algebra assures that nonzero polynomials
of degree at most 2 cannot have 3 distinct roots. Thus, p (X)must be the
zero polynomial and so a =b =c¢ =0. But, this means that Xx =0 and
thus A is nonsingular. m

To see where this theorem is useful, suppose we want a polynomial to
pass through the data

Xz |z2]...] 2a
Y“ylly?.l---lYn
where 1, z2,. .. ,z, are distinct. We need a polynomial p such that
p(z1) =y (3.3)
p(z2) =92

p(2n) = Yn-
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To find p, we set p (t) =ao Tast + .-- Ta,_;t~ and calculate its coeffi-
cients. Note that (3.3) can be written as

-1
1 z - z7 ag (1
1z -+ zpl a; _| %
1 P n—1 a
Tn T, n—1 Yn

By the theorem, the coefficient matrix is nonsingular, which shows that the
system has precisely one solution. This solution determines the coefficients
of p. Note that we also see that there is precisely one polynomial of degree
n — 1 or less that passes through these points.

3.1.1 Optional (Interpolation and Pictures)

In this optional, we show how to estimate populations and how to use
MATLAB to view this work.
Censuses are taken every 10 years, e.g.,

Year | 1950 1960 1970 1980
Population in millions | 150.7 179.3 203.2 226.5

10 43 SO 58 L L] 70 iE] 80 IS 90

FIGURE 3.2.

Suppose we are preparing a report that requires some estimate of the
population in 1965. To get this estimate, we find the polynomial of de-
gree 3 or less that passes through the data points. Using MATLAB, this
polynomial is

p(z) = 0.0007z% — 0.1465 z*> + 12.7567— 206.3000.

1
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To get a sense of how well this polynomial will estimate the population in

1965, it is helpful to view the polynomial. The graph of this is shown in
Figure 3.3.

4 45 S S5 6 6 70 75 8 8 80

FIGURE 3.3.
Finally, we find the value of p at 65,
p(65) =192.0125

computed to 4 decimal places

And, if we want to plot everything, we have the result, which is shown
in Figure 3.4

© 4 H %5 60 6 ™ 5 W B O

FIGURE 3.4.
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Notice that this problem was done with X = [ 50 60 70 80 ] rather than
z=[ 1950 1960 19701980] . Using the latter z, MATLAB indicated it was
having a problem giving polyfit (z,y,3). So, we redescribed our problem.

3.1.2 MATLAB (Polyfit and Polyval)

Given data

T = [:L‘l T $3...$n+1];

Y=[ny2¥s .. Until;
the command polyfit (z,y, n) finds the coefficients of a polynomial of degree
n which passes through the data. And, given a polynomial p, polyval (p, i)

gives [p(z1)P(z2) ... P (znt1)].
1. Code for Plotting Data

z =[5060 70 80];

y =[150.7 179.3203.2 226.51;

plot (z,y,’0’) % Plots data with an O

axis([40 90 100 260}) % Tdesdata points off edges
of the picture by changing
the size of the box to [40, 90]
by [100, 260]

2. Code for Plotting Polynomial

Using lines 1 and 2 from 1, we add the following.

P= p01yﬁt (:c,y,3)

ans: 0.0007 -0.1465 % These are the coefficients
of the polynomial.

12.7567 —206.3000.

zi = linspace (40,90, 50);

z = polyval(p, z1);

plot (z,y,’0’, xi,z,") % Plots the data (z,y,'0’)
and the ‘curve’(zi, z,:")

In the last line above, the symbol 'O’ indicates only points are plotted,
while ’2’ indicates points are to be connected by line segments.

3. Code for Plotting Point.
Using all but the last line of 2, we add the following for the last code.
polyval (p, 65)
ans = 191.5812
plot (z,y,’0’,x1,z," :*, 65, 191.5812,” x )

For more information, type in help polyval, help polyfit, and help plot.
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Exercises

1. Use Theorem 3.2 to find the rank of

01 2 -1
A=111 -1 3

1 2 1 -2

2. Prove that if A is an nx n singular matrix, then AX = 0 has infinitely
many solutions.

3. Extend the given vectors to a basis for R3.

T

4. Let V be a vector space. To extend a linearly independent set in V
to a basis, we can proceed a follows. Let ui,...,u, be a basis for a
vector space V and z,. .. ,z, linearly independent vectors in V.

(a) Show that F » <nthen z,,...,X,,u; are linearly independent
for some ¢. (Some u; provides a new dimension.)

(b) ¥ zi1,...,zr,u; are linearly independent, set z,+1 = u; and
repeat (a) for r +1

Prove (a).
5. Apply the algorithm of Exercise 4 to the following.

(a) t T 1t — 1and basis 1,2
1 -1 1 1 .
(b)[l 1],[_1 _l]andba.sm
10 01 00 00
oopPjiooplrTopPlot
6. Give a general proof for
(@) Theorem 3.2 (b) Theorem 3.3.
7. Prove Part (b) of Corollary 3.1.
8. Provide the details for the proof of Corollary 3.2.
9. IsL (A)=rank A4 a linear transformation from R"* — R?
10. Find two matrices df rank 2 whose product is rank 1.

11. Prove
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12.

13.

14.

15.

3. Similarity

70

70 70

FIGURE 3.5.

(a) That rank AB < rank B. (Hint: Show AB cannot have more
linearly independent columns than B.)

(b) That rank AB < rank A. (Hint: Use the transpose.)
(c) That rank (AB)=rank B if A is nonsingular.

_ 11
LetA—[_1 1

of 2 x 2 matrices, having rank 1, which converge to A. (Hint: Use
that the determinant is continuous.)

] . Explain why we can’t find a sequence A;, Ao, ...

We will assume that the temperature at an interior point on the plate
in Figure 3.5 is the average of the temperatures of the four closest
surrounding points. (We are assuming steady-state temperatures and
using that each grid point gives an estimate of the temperature there
with those estimates getting better when the square has more grid
points.)

(a) Write out the system of linear equations the solution of which
gives the unknown temperatures.

(b) Solve this system. Explain why it is important for there to be
precisely one solution.

(c) Label the points with their temperatures and check to see if it
looks right.

(d) If there were 100 interior points, how mary equations would
there be?

Find a quadratic which passes through the data (0, 0), (1,1), (2,0).
Graph the quadratic and the data.

(Optional) Use the data for 1960, 1970, 1980 to estimate the popu-
lation in 1977. (This figure has been given in reports as 218.4. But,
the figure is actually unknown.)
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11 2 1]
01 -1 -2
16. (MATLAB)LetA= | o o 1
22 0o o]

(a) Find rank A by using the command rank (A).
(b) Find rank A by using the command rref (A).

17. (MATLAB) Let z = . Extend X,y to a basis by

Yy =

e e N
OO O

applying rref to [z y I].

3.2 Diagonalization

Let A be an n x n matrix. If A can be factored as
A =PDF-!

for some nonsingular matrix P and diagonal matrix D, we say that A is
diagonalizable. Not all matrices are diagonalizable. However, when they
are, we show how this factorization can be done. Before starting this work,
we need a few preliminaries.

The function

@ (A) =det (A=XI),
where X is a scalar, is called the characteristic polynomial of A and

(X)) =0

its characteristic equation. (Some books use @ (A) = det (X| —A) as the
characteristic polynomial. Note that det (X1 —A) = (-1)™det (A—XI),
so the solutionsto ¢ (A) =0 and ¢ (A) =0 are the same.)

The lemma below shows that the characteristic polynomial has, counting
multiplicities, n roots.

Lemma 3.2 The characteristic polynomial of A ¢s a polynomial of degree
n.

Proof. Let B = A — XI. Expanding det B along row 1 eliminates
row 1 from all submatrices in the cofactors of the expansion. (Recall
o = (—-1)"“ det A;;.) Expanding these minors along row leliminates row
2 of A from all submatrices in the new cofactors. Continuing, we see that
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detB =(a11 —A) (a2 —A)---(a, —A)+p(A) ,wherep (A) isapolynomial
in A of degreeat most n—1. Since(ai1y —A) *** (@nn —A) =(=1)" A"+¢ (A),

where the degree of ¢ is smaller than n, by putting together, the result fol-
lows. =u

Using the Fundamental Theorem of Algebra, we can factor
9(A) =(A —A) (A2 —A)---(A —A)

or @A) = (A =A) (A —A2) -+ (A = An) if we like). The roots, namely
A1, Ag,- -+ An, are called the eigenvalues (or, sometimes the latent roots
or characteristic values) of A. We should recall from previous studies of
polynomials, that the roots of ¢ (A) are the solutionsto ¢ (A) =0. Thus,
eigenvalues could be complex numbers even when the entries of A are real
numbers. In this case, we must work in ¢.

An example of finding eigenvalues follows.

cow
oW

1
Example 3.4 Tofind the eigenvalues of A = [ ]L} , We solve
4

v (A) =0.
This gives
(3-A) (3-A)(¢4-A =0.

Thus, the eigenvalues are A; = 3, A = 3, and A3 = 4. Note that the
eigenvalue 3 has multiplicity 2.

We now link the eigenvalues of A to D in any factorization A = PDP~L.
This requires the following notion: two n x n matrices A and B are similar
if there is an N x N nonsingular matrix P such that

A=PBPL

This equation can be written as A =S~!BS where S = P~!, So actually
it doesn’t matter if the superscript ~! is on the first or third factor of
PBP-!. And, since P"1AP =B, B and A are similar so the order of A
and B (Aand B similar or B and A similar) doesn’t matter.

As given below, similar matrices have the same eigenvalues.

Lemma 3.3 Let A and B be nx n matrices. If A and B are similar, their
characteristic polynomials are identical. Thus, A and B have precisely the
same eigenvalues.

Proof. If A and B are similar, there is a nonsingular matrix P such that

A =PBP7L

-
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Thus,
det (A= XI) =det (PBF~! —XIl)
=det [P(B-XI)P~}]
=detPdet(B —XI) det P~}
= det (B-XI)
since det Pdet P~* =det(PF~!) =detl=1. m

When A is similar to a diagonal matrix D, this lemma assures us that A
and D have the same eigenvalues. We now show that the eigenvalues of D
are precisely those scalars that are on the main diagonal of D. A bit more
general result follows.

Lemma 3.4 If T is an n x n triangular matrix, then its characteristic
polynomial is

Pr (A) = (tll - A) (t22 - A) T (tnn - )‘) .
Thus, the eigenvalues of T are exactly the main diagonal entries of T.

Proof. Suppose T is upper triangular. Then, expanding the determinant
along the first column, we have

toz =X 23 t2n
P =(tu-Ndet| O TR e
0 0 i tan— A

Continuing to expand along the first columns, we have
90()\) = (tll _}‘)(t22 _/\)"'(tnn ‘/\)a
the desired result. m

Putting the results above together, what we now know is that if A is
similar to a diagonal matrix D, then the main diagonal entries of D are
the eigenvalues of A, in some arrangement.

1 2
Az = 1. Soif A is similar to a diagonal matrix D, then

p-[3 2] wn=[} 2].

Example 3.5 Let A = [ 2 IJ . The eigenvalues of A are A; =3 and
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Thus, when a matrix A is diagonalizable, we can calculate D,

M 0 - 0
D= 0 A 0
0 0 -+ A,

where A,...,A are the eigenvalues of A in some order.

We now try to find an n x n nonsingular matrix P such that
A =PDF-".
To find P, rearrange this equation to
AF =PD.

Equating corresponding columns, we have

Apr =Ap1
(3.4)

A;Dn = /\npny

where p; is the i-th column of P.
For an eigenvalue A, any nonzero vector p such that

Ap =\p (3.5)
is called an eigenvector belongingto A. Thus, in (3.4), p; is an eigenvector
belonging to Aq,...,p, is an eigenvector for A,. And, our problem now

is to find linearly independent eigenvectors py,. ..,p, that satisfy (3.4).
That these vectors are linearly independent assures that P is nonsingular.
To find an eigenvectorp, belongingto eigenvalue A, we solve the equation

Ap =2Ap

or, by rearranging to a better form

Ap—/\p=0
Ap - Alp=10
(A‘AI)p::O,

a system of linear equations.

The next lemma shows this equation has a nonzero solution p.

Lemma 35 Ij A is an eigenvalue of A, then there is an eigenvector p
belonging to A.
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Proof. Note that since X is an eigenvalue of A,
¢ (A) =0.
Thus,
det(A-Al)=0

and so A — Xl is singular. Hence, from Lemma 3.1, we see that there is a
nonzero vector p such that

(A-AD)p=0.
Thus, Ap =Ap and p is an eigenvector belongingto A. ®

We call the null space of A — Al, the eigenspace for the eigenvalue A.
Note this is a subspace, whose dimension is positive, and that all vectors
in N (A—Al),except 0, are eigenvectors belonging to A. So there are lots
of eigenvectors belonging to any eigenvalue.

To find P, we only need to find a linearly independent set of eigen-
vectors, say, p1,p2,-..,Pn belonging to Aj, ... ,A  respectively. Then
P = [p1...pa) is nonsingular and A = PDP~!. Note also from (3.4),
that the order of the eigenvalues in D is determined by the order of eigen-
vectors in P or vice versa.

Example 3.6 Let A= [

- = N
— D
D -

] . Wefind D and P such that A =
PDP1,
(a) Computing D: We solve
det (A= X1)=0,
which is
(A —1)” (A —4) =0.

Thus, Ay = 1,22 =1, and A3 = 4, are the eigenvalues of A. This

I

(b) Computing P: Wefind corresponding eigenvectors.

0
1
0

OO =
w oo
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i. Eigenvectors for A; =Xy = 1. Here we solve

(A-=MDz=0

111

tofindp; and pe. Solving{ 1 1 1 | X =0 by Gaussian elsm-
111

ination, We get the row echelon form

5] 3

SOoO~E

DO~
IO~

SO0
—_

Note z;, z3 are free so[
23=a
zy =P
where @, are arbitrarily chosen. Then

z; =-a-.

=[]
~| )=

Since A1 = A2 = 1, we need two solutions p; and pz, which
form a linearly independent set. Wetake a = 1, 8 = 0 for
-1 -11
P = 0f{anda=0, 8=1forp;, = 1 |. (Different
1 0

Thw

choicesfora and B could have been made.) Observe, by looking
at the last 2 entries of each vector, that p; and p, are linearly
independent.

i. Eigenvector for A3 =4. Solving

(A=X3I)x =0 we get
1

X=a [ 1 } , Where a is arbitrary.
1

1
Leta=1and sopz = [1}
1
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It can be shown that py, pq, andp; are linearly independent, and so

-1 -1 1
P=[pp2p3] = 0 11
1 01

(To check, we can always compute PDF~! to see if we actually get
A.)

It might also be interesting to see the eigenspaces. Observe in
Figure 3.6 that they intersect only at the origin and that 1, po, and
ps are linearly independent.

\

Eigenspace for A4,2, Eigenspace for |,

FIGURE 3.6.

3.2.1 Optional (Buckling Beam)

A uniform column of length 1 compressed by a load (force) F at its top is
shown in Figure 3.7. We let y(z) be the deflection of the column at x, as
given in Figure 3.8. The mathematical equations for this deflection are

d*y
dx
y(0)=0,y(0)=0

= _ky,

where k is a positive constant depending on the force and the composition
of the column. (k = % where E is the modulus of elasticity of the beam
and | is the moment of inertia of the cross-sectional area by the column.)
Actually, this differential equation is not difficultto solve directly. However,
we will use it to show how differential equations can be solved numerically.
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O<w

A S

FIGURE 3.7.

FIGURE 3.8.

This differential equation can be converted into a system of linear equa-
. . . 2 - R
tions by approximating j—;% at equally spaced points zg, Z1, ... ,n in [0,1].
We use the usual approximation

d®y (z:) _ Y1 — 20 + Y1
dz2 K2

where h :ﬁ and y; (y; =y (z;)) the deflection shown in Figure 3.9 of the
column at z;.

Then we have, for five points (Actually, more points would lead to a bet-
ter approximation and a better description of the deflection of the column.)

y2 —2y1 + Yo
2
(4)
—2ys +
w = —kyo.
(%)

= —kyl
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FIGURE 3.9.

To keep the problem small, we will assume the column's deflection is sym-
metric about z., the center of the beam, and so y3 =y1. Thus we have,
using that yo =0,
l2
Yl —y2 = Te
ki?
-2 — —
Y1+ 2y2 16 Y2
— k2

ERIRE
where A = %,

Observe that if [zl } # [ g ], by (3.6), A must be an eigenvalue of
2

or

[_g _;}andso/\=2—\/§or)\=2+\/§.

Plugging A, = 2 —+/2 (the smallest eigenvalue) into (3.6), and rearrang-

ing, we have
5 alln]-6]

Thus [ gl =a [ \/% , Where ¢y is free. SOy, =y, yo = \/§a, and
2

consequently the column could appear in any of the buckling shapes in

Figure 3.10.

Buckling theory indicates that if the force is small, so that A < 2 —
V2 (approximately, since our equations approximate the solution to the
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>

FIGURE 3.10.

differential equation), then [ 0 ] = [ 0
Y2 0

the column returns to this position. When A = 2 — /2, the column can

buckle a bit and stand asthe one of the shapes described. When A >2-+/2,

and not at other eigenvalues, slight deflections can collapse the column. At

the remaining eigenvalue, at least in theory, buckling can occur with shapes

different from that given.

] and if small deflections occur,

3.2.2 MATLAB (Eag and [PD])

The matrix function eig(A) computes the eigenvalues and corresponding
eigenvectors of the matrix A. As a single command, eig will provide a list
aof these eigenvalues. If we want corresponding eigenvectors, in particular
P and D so that A = PDP~!, we must ask for those matrices using the
command [P,D] =eig (A). For example,
A=[12;30];
eig (4)
3
ans = [ —3
[P,.D] =eig (A)
0.7071 -0.5547
0.7071 08321
0

T~ _ |3
ans: D = 0 _2]

ans: P =

For more, type in help eig.
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Exercises

1.

10.

11.

.LetA:[

Diagonalize (find P and D such that A = PDF~!) each of the fol-
lowing matrices.

1 _
@ a=[% 8] ®a=[2 ]
©a=[ty, @a=[ 1]
1 1 1 1 -1 0
() A=1{1 1 1} ) A= -1 10
1 11 LO 0 2

Draw the eigenspaces for each of (a), (b), (c), (€), and (f) of Exercise
1.

. Find a matrix with eirenvalues A1 = land A, = 2 and eigenvectors

1 .
} , respectively.

1
p1=[1]andpz= -1

i i] ThenAissimiIartoD:[

matrices for P such that A =PDF-".

20 .
0 0}. Find two

. Give an example of a 2 x 2 matrix which is not similar to a diago-

nal matrix. Draw the eigenspaces for the example. (Hint: Look at
triangular matrices with multiple eigenvalues.)

. Find 2 x 2 matrices A and B such that the eigenvaluesof A +B are

not, in any order, the sums of the eigenvalues o A and B.

. Let A be a 3 x 3 diagonalizable matrix with A an eigenvalue of mul-

tiplicity 2. Prove that rank (A-Al) =1.

sin0  cos0
has no real eigenvalues.

. Let A :l C0s0  —sind ] where 0 # 0 or 7. Explain, using Ap =

Ap, why

. If A is similar to a diagonal matrix, and a a scalar, what are the

eigenvalues of A —af in terms of a and the eigenvalues of A?
Suppose A = PDF~! where D =diag (A1,. .., n). Prove
20 ]
. 2 1 P—-l
(@) FAis2x2, then 4 P[O A2
(b) A* =P diag (At,. .. ,Af,) P~ for any positive integer k.

Let A be an 3 x 3 matrix with linearly independent eigenvectors p,
p2, and p3. Let P =[pypops]. What is P~ AF?
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12.

13.

14.

15.

16.

17.

18.

19.

3. Similarity
Two parts: Let A be ann x n real matrix.

(a) Show that if A is an eigenvalue of A, then X is an eigenvalue of
A. (Complex eigenvalues come in conjugate pairs.)

(b) Show that if p is an eigenvector of A belonging to A, then 5 is
an eigenvector for A belonging to A.

Prove that

(a) A issimilarto A.

(b) If A is similarto B and B is similar to C, then A is similar to

Give an example of two matrices that have the same eigenvalues but
are not similar.

Find (using, say, CRC Standard Math Tables) formulas for the so-
lution to quadratic, cubic, and quartic equations. (For polynomial
equations of degree 5 or more, no such formulas exist. Thus, for
k x kK matrices with k > 5, approximation techniques are used to find
eigenvalues.)

(MATLAB) Let p(t) =t —ap_1t*! —.. . —agl. Set
o 1 0 -- 0 0
o 0o 1 - 0 0
C=]0 0 0 ... O
1
a a & 7 an-2 Gp-)

(a) Show that ¢ (t) = (=1)"p(t) so ¢(t) and p(t) have the same
roots (¢ (t)is the characteristic polynomial of C).

(b) Use MATLAB and (a), to solve t* —3¢3 +2¢2 =3t +1=0.

(MATLAB) Find P and D for each of the matrices in Exercise 1.
Use rank to check P to see if it is nonsingular.

(Optional) Repeat the Optional work using m = 6.

(Optional) The boundary valve problem

V' +y +y=2*+4z+6
y(0) =2, y(1)=5
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has solution y =z2 +2z +2. To approximate the solution by finite
difference methods, we set zg =0,z; = %, Tog = -f;,. ..,y =1 and
use the approximations

" () = L8+ 2y’§2mi) +y (@)
sy = Y@in) —y (i)
Yy (mi) - = 2h L

where h =% (the step size for this problem).

Use the approximation above to convert the boundary value prob-
lem into a system of linear equations and solve that system. Using
MATLAB, plot y =22 +22 +2 and the approximations. Use

(@ n=4
(b) N=8

3.3 Conditions for Diagonalization

In this section, we describe when there are n linearly independent eigen-
Vectors ps,. .. ,p, for the n eigenvalues A;,. .., A, of an n x n matrix A.
Of course, in this case, since P can be constructed from these eigenvectors,
P is nonsingular and A is similar to a diagonal matrix.

We need a lemma.

Lemma 3.6 Let A be annx n matrix with distinct eigenvalues A1, ... ,A
Then any corresponding eigenvectors py,...,p, to these eigenvalues, re-
spectively, form a linearly independent set.

Proof. Consider the pendent equation
a1py + ... +anr =0.
Multiplying both sides of this equation by A ,then A2,. .. yields
a1 \1p1 +. tap =0
alx\f_lpl +-:...+ar/\:_1pr =0.
Writing these equations in matrix form yields, by backward multiplication,

1 A - ,\{*1
[alpl.--arpr] = 0.

1 A -t
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Since the Vandermonde matrix is nonsingular, we can multiply though by
its inverse to get

[oapy ... arp] = 0.

So
onpr =0
a.pr =0
and thus a; =--- = a, = 0. Hence we see that the eigenvectors form a

linearly independent set, m

As a consequence of this theorem, we have one of the most important
results in matrix theory.

Corollary 3.4 Let A ke annxn matrix with n distinct eigenvalues. Then
A s similar to a diagonal matrix.

Proof. By the lemma, A has, corresponding to the n distinct eigenval-
ues, a set of n linearly independent eigenvectors. These eigenvectors form
a nonsingular matrix P such that A = PDP~!, D the diagonal matrix
made up of eigenvalues corresponding to the eigenvectorsin P. m

Of course, matrices don't always have distinct eigenvalues. In those cases,
to diagonalize, we need some further information about eigenvectors.

Lemma 3.7 Let A be any nx n matrix. If X is an eigenvalue of A of mul-
tiplicity m, then A cannot have more than m linearly independent eigen-
vectors belong to A. (Thus, dimN (A-XIl)<m.)

Proof. We will argue a special case of the lemma, using proof by con-
tradiction, leaving the general case as an exercise.

Let A be a 3x 3 matrix and supposem = 1and z,y linearly independent
eigenvectors for A. Extend z,y to z,y,2 a besis for Eucidean 3-space and
set P =(zy z]. Then

AP =[Az Xy w]
where w = Az. Factoring yields
A0«
AP=P| 0 X 8
0 ~
w =az T8y Tvz. Now

0
where a, S, and v are chosen to satisfy
0
A
0
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and so the eigenvalues of A are A, A,~. This yields the contradiction. =

This lemma assures that if an eigenvalue of A has fewer linearly indepen-
dent eigenvectors than its multiplicity, then we simply cannot get enough
linearly independent eigenvectors to form P. For example, if the eigen-
values are Ay = Ay = A3 =2, Ay = A5 =3 and dim(A-X;I) =2, then
we cannot get three linearly independent eigenvectors for the eigenvalue 2.
And, thus A is not diagonalizable. An example of such a matrix follows.

00
we solve, in augmented matrix form

Lo als]

1 =a, Q is arbitrary
) =0

o]

(The eigenspace is the z;-azis.) Thus, there are not two linearly indepen-
dent vectors belonging to the eigenvalue 0, and so A is not diagonalizable.
Note also, that if A were diagonalizable then

A=P[g g]P‘l

since both eigenvalues of A are 0. But this means that A =0, not the given
A.

Example 3.7 Let A = [0 L } . Then Ay = X2 = 0. Computing the

corresponding eigenspace,

Thus,

and so

The following theorem gives necessary and sufficient conditions for a
matrix to be diagonalizable.

Theorem 3.4 Let A be annxn matrix with distinct eigenvalues Ay, . .. ,A
having multiplicities ms, ... ,m., respectively. Then A is similar to a di-
agonal matrix 4f and only if each A; has a linearly independent set of m;
eigenvectors (i.e., the dimension of its eigenspace &m; ).

Proof. We prove this result for a 3 x 3 matrix A with eigenvaluesA; =
A2, Az and corresponding eigenvectors p1, p2, p3 Where p1 and ps are linearly
independent. We need to show that pi1,p2,ps are linearly independent.
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Arguing now by contradiction, we suppose (8;,8s,83) is a nontrivial
solution to the pendent equation for p;, p2, ps. Thus,

Bip1 + Byp2 + B3ps =0. 3.7

We suppose that 3, # 0. (The same line of reasoning that follows applies
to any choice dof 8; #0.) Then B;p; +,32p2 is an eigenvector belonging to
A1. And B3ps is either an eigenvector belongingto Az or it is 0. Regardless,
by rearranging (3.7), we have

1(8yp1 + Bop2) + 1(Bsp3) = 0.

But this says that we have some eigenvectors, belonging to distinct eigen-
values, which are linearly dependent. However, this remark contradicts
Lemma 3.6. m

It is interesting that an alternate approach, using row vectors, could have
been taken to diagonalize a matrix. To see this, let A be an eigenvalue for
an n x n matrix A. Then det (A—-XIl) =0 and so, taking the transpose
of the matrix (A= XI), det(A4* = XI) =0. Thus,there is a nonzero row
vector y such that

(A*=XDy*=0
or, taking the transpose
y(A-AI)=0
and so
yA =\y.

Such a nonzero row vector is called a left eigenvector, belongingto A, for A.
When emphasis is desired, we call an eigenvector, as previously defined, a
right eigenvector for A.

Using left eigenvectors, we could have formed a matrix R, whose rows
are left eigenvectors. Then

RA=DR

where D =diag (A1,. .. ,A) Where Aq,. .. ,A, are the eigenvalues of A. If
R is nonsingular, A = R"1DR.

There is a useful relationship, called the Principle of Biorthogonality,
between left and right eigenvectors, which we give below.

Theorem 3.5 Let A ke annxn matrix with distinct eigenvalues Ay, ... ,A,
and corresponding left and right eigenvectors g1, ... ,yn and z1,. .. ,zn, re-
spectively.
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(a) Iy i1 # j, then y;z; =0.
(b) Otherwise, yix; # 0.

Proof. There are two parts.
Parta. Since

yiA :)‘iyi and A:L‘j :/\]‘.’l)j,

we have
yiAz; = \yiz; and g Az = Ajyiz;.
Thus,
AT = AT
or

(A —Aj) yiz; =0.
Since A; # J;, it follows that y;z; =0.
Part b. Since Ay,. .., A, are distinct, z,...,z, forms a basis for Eu-
cidean n-space. Thus,

yiH =iy + +anmn

for some scalars «y, ... ,an. Multiplying through by y; yields, using that
yiz;j =0fori#j,

“in|§ = QY.
since [|yil|3 # 0, yiz: #0. m

The following example numerically demonstrates the property.

Example 3.8 Let A = [ ; g 1 The eigenvalues of A are Ay = 4,
L Jd
. L . 1
Ay = —1 with corresponding right and left eigenvectors z, = [1 ], Ty =

[_g ], and y1 = (2,3), y2 = (4, —1). Note that y1z1 = 5, y172 =0,
yaz1 =0, and yozo =5.

To conclude this section, we show how to use diagonalization in helping
understand linear transformation geometrically. To do this, we let A be

an n x n diagonalizable matrix, with real eigenvalues. So, we can factor
A = PDP-! using real numbers.
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The columns of P form a basis, say, Y ={p1,. .. ,pn}. Thus given any
z,

z=yip1+- -+ T Yapn

for some scalarsys, . .. ,yn. Andy =(y1,... ,yn)t gives the Y-coordinates
of x. Note that

x =Py
so P converts Y-coordinatesof x into the vector x.
Now, we describethe linear transformation L (x) =Ax in Y-coordinates.

We do this in two steps.

1. Converting L (x) into Y-coordinates, we have
PlL(x)=P !Az.
2. Convertingx into Y-coordinates, we have
P71L(Py)=P 1APy.

Thus, if we set

we have describedthe transformation L (x) = Ax in terms of Y-coordinates.

And, with respect to these coordinates, L stretches, shrinks, reflects the

axes, etc. (and thus the corresponding space) in the Y-coordinate system.
We show a particular example.

ey

21 3 0
Example 3.9 ForA—[1 2],D—[0 1
Thus,

éll"'u -

4 2

EE )
V2 V2 |

and L (x)=Ax is described by Ly (y) =Dy a the Y-coordinate system.
Looking ut L through the Y-coordinates, we see In Figure 3.11 that L
leaves the y,-azis alone but stretched the y;-azis (and corresponding space)

by 3.

,andP:[ 2
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FIGURE 3.11.

3.3.1 Optional (Picture of Multiple Eigenvalue Matrices an
Matrix Space)

Matrices with distinct eigenvalues can be diagonalized. These matrices
make up most all of matrix space. To view this, we give a picture.

Let
a b
(2]
The characteristic equation for A is

N —-(atd)rtad-kc=0

SO

\ (atd)+ \/('a+d)2 —4(ad - bc)
= 2

Thus, A has a multiple eigenvalue if and only if (a'l'd)2 —4(ad —bc) =0.
Expanding and rearranging yields (a— d)®+4bc =0. If band c are 0, then

a =d, and we have a diagonal matrix. Thus, we will suppose ¢ # 0.
Now

_—(a-d’

b 4c

Thus,

has multiple eigenvalues for all ¢ # 0.
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To get some picture of this set, we set c =d. Define

b a
([ al)-
v2d
a linear map which preserves distances as shown in Optional, Chapter 2,
Section 3. Since

—SCL—df a
L ([ a i D =| a=d? |
d jgd
we have a picture of the multiple eigenvalue matrices in a piece of the space
of 2 x 2 matrices. To draw this picture, we graph (a, Za—d)?

<
Notice in Figure 3.12 that this set of matrices has shape. And, notice that

Graph of matrices with muitiple eigamaiuss

FIGURE 3.12.

it does not take up much of the matrix space.

3.8.2 MATLAB (Code for Picture)

Code for Picture of Multiple Eigenvalue Matrices

a = linspace (—10, 10, 20) ;

d = linspace (1, 10, 20);

[a,d] = meshgrid (a,d);
y=-((a—-d).A2)./(4xd);
z =sqrt (2) * d;

mesh (a,y, 2)
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Exercises

1. If possible, diagonalize (find D and P ) the given matrix. If not, draw
the eigenspaces and explain why the matrix cannot be diagonalized.

@ (53] ®[5:]

11 0
(c) ll 1 } (d) [ 0:
0 2 _
2. Prove

0
(@) Lemma3.7. (b) Theorem 3.4.

N OO
e e
e )

3. Find left and right eigenvectors for each eigenvalue of the matrices
below.

1 4
1

110
(a)A=[1 (b)A=[011
011

4_1f A =PDF-', how can we find n linearly independent left eigen-
vectors for A, by using P?

5. Let A be an n x n matrix and E a row echelon form of A. Are the
eigenvalues of A on the main diagonal of E?

6. Let L (x)=Ax. As in Example 3.9, describe L in the Y-coordinate
system for the matrices given below.

0a=[24] oo} 3]

7. Prove that if A is an n x n matrix, then A and A! have the same
eigenvalues.

8. Two parts.

(a) Provedet [ g g ] = (detA) (det C),where A and C are square

matrices. (Use induction on the number of rows of A.)

(b) Tell how to find the eigenvalues of

0 ] in terms of A and
C.

B C

9. If Ax =Xz, x # 0,and B = PAF—1, show how to find an eigenvector
for B belonging to A by using x and P.

10. Prove that A is singular if and only if O is an eigenvalue of A.
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11. Let A be an m x n matrix and B an n x m matrix. Prove that the
m X m matrix AB and the n x » matrix B A have the same nonzero
eigenvalues.

(Hi“t:[Azf g”é ?]=[6 ?Hg BOA]')

12. Two parts:

(a) Prove that if A is diagonalizable, then so is A2.

(b) Find a matrix A which is not diagonalizable,but A? is diago-
nalizable.

13. Let A be an n x n matrix with linearly independent right eigenvectors
z1,... ,Z, and left eigenvectorsyi,. .. ,yn . If

X =z + -+ T anz,,
- —_ i T H
prove that a; —j‘;—i for all i.

14. (Optional) View the 2 x 2 matrices, with multiple eigenvalues, in
t
R3 by setting d = 0 and graphing (a,-‘g, c) over 1 < a £ 10,
1<e< 10
1 -1 -1 .

15. (MATLAB) Let S = -1 , the matrix for a
square. Find the linear transformation L (z) = Az that stretches
the square (and corresponding space), along the line y = X, by 2.
Plot Sand plot (AS). (Hint: Find Ly (y) = Dy that does this and
then contruct L (X)= Az from it.)

3.4 Jordan Forms

As we saw in the last section, not all matrices are diagonalizable. Those
matrices which are not diagonalizable are often called defective. In this
section, we describe another n x n matrix J, quite close to a diagonal
matrix, except the superdiagonal entries jy2, j23, . - . , jn—1,, N€€d not be 0.
This matrix is called a Jordan form. It can be shown that every square
matrix, diagonalizable or defective, is similar to a Jordan form.

The proof of the Jordan form result is much more intricate than what
We saw in Sections 2 and 3. However, the use of the Jordan form is not
much beyond that for diagonal matrices, and so there is no reason not to
use it.

The Jordan form is described below.

s
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Definition 3.1 Let J be an upper triangular matrix with a super diagonal
o] 0’s and 1’s and all entries above the superdiagonal 0’s (j.s =0 for s >r+1).
If a 1 appearing on the superdiagonal implies the diagonal entries in its row
and column are identical (jrr4+1 = 1= jrr =Jjr+1,r.41), then J is called a
Jordan form.

Thus, Jordan forms appear as

0
M O A1 1
[0 \2]’[0 \1}’[8 . 0]’[
0 A 0 M 0 0 a3

A1 0 O A1 0
0 X 11],{0 A& 1 },---
0 0 A 0 0 X

From these remarks we can state Jordan’s theorem.
Theorem 3.6 Any n x n matriz A is similar to a Jordan form.

Notice that since J is upper triangular, by Lemma 3.4, the eigenvalues
of A are the main diagonal entries of J. And we can partition J so that
all main diagonal blocks are square. Each main diagonal block contains
the same eigenvalue and has a super diagonal of 1’s. All other blocks have
entries 0. For example,

3 1 0lolo 0]
0 3 1{0|o0 o
g;g 0 0 3/olo o
003‘”000200
00 0102 1
0 0 0ojojo 2

These main diagonal blocks are called Jordan blocks. If the Jordan
blocks are Ji,. .., Jr, We can write this as

J =diag(Jy,...,Jr) .

Except for the arrangement of the Jordan blocks, it is known that the
Jordan form is unique. A general method to find J, as well as the nonsin-
gular matrix P, can be found in the theory books in the Bibliography. In
this text, for 2 x 2 and 3 x 3 matrices, we will simply try to solve AP =PJ
for both P and J. We show how in the example below.

2 00

Example 3.10 Let A =13 2 0 |. Here, the eigenvalues of A are
0 0 4

given by Ay =2, A2 =2, and A3 =4. It b clear that the Jordan block for
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Az =4 is1x 1. Weneed to decide, however, if there are two 1x 1 Jordan
blocks for the eigenvalues A; and Az or only one 2 x 2 Jordan block.
W e solve

A=PJE"!
or, obtaining a better form,

AF =PJ
A [p1peps] = [p1paps) 3

where p1, pe, ps are the columns of P.
Placing Az as the last Jordan block in J, we have

Alp1paps] = [p1p2ps] [ g 2 ] .

AP3 :4p3,

(We use backward multiplication to get 4ps.) an eigenvector problem which

we solve to get
0
ps=1|01.
1

(Other choices could have been made for p3.)
Now

Alpipo] = [p1pa] (3.8)

where J has two Jordan blocks of size 1x 1 or one 2 x 2 Jordan block.
Thus,

L

I
—
o
N ®
| I—

where 8 =0 or 1.
Using (8.8), we know that

Ap; =2p;.
So we solve

(A—2D)p; = 0.
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This yields

0

- [t]

Thus, the eigenspace for the eigenvalue 2 has dimension 1. This assures
us that J is not a diagonal matrix. So

(53]

Now by (3.8) and backward multiplication, we need to solve

0
pL=a [1 } , o arbitrary.

Weleta =1, so

Apy =p1 +2py
or
(A-20)pz =p,

0
for pa. Since p1 = [1 } , We solve

0
0
(A—-2I)p2= I: 1 } .
0

By Gaussian elimination and choosing one solution, we get

(4]
oo 1]

The 1’s on the super diagonal of J are there by choice. Other numbers
could also have been chosen as shown below.

0
Thus, P = [p1paps] = [ 1
0

o oOwl
o oON
(el SR
= OO

Theorem 3.7 Let A be ann x n matrix. Then A is similar to a Jordan
form with the 1’s on the superdiagonal replaced by any e # 0.
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Proof. Let A = PJF~! where J is a Jordan form of A Let D =
diag{e~t,e72,... ,e-**). Then DJD~! is J with the I’s on the superdiag-
onal replaced by e's. This occurs since premultiplying J by D multiplies
the i-th row of J by €% and postmultiplying by D~! multiplies the j-th
column by €. For example,

[ el 0 0 310 e 0 O
DID'={ 0 €2 0 0 31 0 € 0
0 0 €3 00 3 0 0 é
(3 € 0
= 3 € {.
|0 0 3

Now, if we set R = PD~1, then

A=PJF!
=(PDY)DJD'(DF1)
=RJ.R!

where J. is J with all 1’s on the superdiagonal of J replaced by e. This
yields the result. =

Mostly, the Jordan form (for the defective case) is used for theoretical
purposes. However, it is important to have some kind of diagonal-likeform
for any matrix. The Jordan form is such a form. We conclude by showing
some-uses of the form.

Theorem 3.8 Let A be an n x n matrix having eigenvalues Ay, . ..., A
Then

(a) detA=X;...A

(b) trace A =A; +.o

(c) @A has eigenvalues aAy, . .. ,aA, for any scalar a.

(d) A* has eigenvalues ,\’1‘, ...,A¥ for any natural number %.

Proof. We argue parts (a) and (c), leaving part (b) and (d) as exercises.
In both parts we let A =PJP~1 where J is a Jordan form of A.
Part a. Since A=PJP1,

det A = det Pdet J det P~}
=detPdet P~ !ldetJ
=detJ=A1--.A
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Part c. Since A=PJF~1,
aA =PlaJ| P71

Thus, aA and «J are similar and thus have the same eigenvalues. Since
aJ is upper triangular, its eigenvalues are the entries on its main diagonal.
These eigenvalues are @A, ... ,¢A,. H

Other uses of the Jordan form will be seen in the remainder of the text.

3.4.1 Optional (Numerical Problems in Finding the Jordan
Form)

Let
Tie lte
A =[ ]

where £ is a scalar. We can factor

-1
4| P ?1-%-][3“1”715 } -
e R N

Thus, the eigenvalues of A, are Ay = 3+ € and A2 = 3. Note that the
Jordan form of Ao is
3 1
=33

But, if £ # 0,then A, has distinct eigenvalues and so it has Jordan form
3 0
Jo = [ 6“5 3 ] .

If e = 0,A, —» Ap; however, J, — [g g ] which isn’t the Jordan form

of AO.

In numerical computations involving a matrix, the answer obtained is not
necessarily accurate. However, it usually can be proved that it is correct
for a matrix A which is close to A. (A is obtained from the numerical
calculation on A by adjusting for round off.) Thus, loosely speaking, if close
matrices have close exact answers, then a numerical calculation provides a
good approximation to the desired answer.

However, note that this isn’t the case for Jordan forms. Round off errors
on defective matrices can produce close matrices which are diagonalizable.

SIS
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3.4.2 MATLAB ([PDJand Defective A)

MATLAB does not calculate Jordan forms for defective matrices. If there
are close or multiple eigenvalues, there may be a problem in computing P.

Type in help etg and carefully read any information about this. (We will
look at this problem mathematically in Chapter 9.)

When A is defective, instead of using the Jordan form, it is sometimes
possible to use the Schur form in its place. This form can be calculated
numerically. (MATLAB does it.) We will cover this in Chapter 6.

Exercises
1. If the eigenvalues o A are given by

(@) A1 =2, =2, and A3 = 3; what are the possible Jordan forms?
(b) Do the same for Ay = A2 = A3 =4,
(c) Do the same for A; =12, A2 =2.

2. Find P and J for the following A’s.

@a=[33] @ as[t 2]
oa=[t3] wa-[4 1]

2
400

€ A=[1 2 1
2 0 4

what is the dimension of the eigenspace for A?

15 -1 . “14z_|4 0
4, Let A= 1 3 ] Find P such that P~*AF —[ 1 4 ]
5. Is the set of all diagonalizable matrices a subspace?
[4 0 0
6. Let A= |0 4 0 |. ThenA; =A; =A3 =4. The eigenspace for
0 3 4

4 is dimension 2. Find two linearly independent eigenvectors D112
for 4. Now, ps must satisfy (A —4I)ps = p for some eigenvector p

belongingto 4. Try p; and then p, for p. Is there always a solution?
(So, P can be a bit difficult to find.)



10.

11.
12.
13.

.LetA=[
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Let P be an n x n nonsingular matrix. Prove that L : R**" — R»*"
defined by L (A) = P~1AF is linear.
Suppose

Ap; = Ap1

Apy = Ap2 + 1.

Prove that p; € N ((A-AI)"’).

2 0
3 2

2 €
[0 2],e>0.

Let A be a 3 x 3 matrix which has I:
0
b

]. Find P such that .. = P. P~! where J =

—

0
A 1 | as a Jordan form.
0 A

a
A
0 0 A

Prove that if A and B are n x n matrices then trace AB =trace BA.

A
0
0
A
Prove that A is similar to [ 0 } where a # 0 and b 5 0.

For Theorem 3.8, prove (b) and (d). (Hint: On (b), use Exercise 11.)

Let A be a nonsingular matrix. [If the eigenvaluesdf A are Aq,... ,A,
prove that the eigenvalues o A~! are /\1‘1, ,,\;1.

14. (Optional) For the given matrices, using MATLAB, decide which of

the following matrices are diagonalizable.

] ~1 0 111
(@ A= | -1 1 0} (b)A={1 1 1}
112 111
1 -1 01
-1 101
©A=1 1 1 21
| 0 00 3







4
Matrix Calculus

In previous courses we studied calculus for functions of one variable and
calculus for functions of several variables. In this chapter we extend these
studies to a calculus for matrices.

4.1 Calculus of Matrices

To develop a calculus for matrices, we need a way to measure distance
between matrices. We use the standard definition of Euclidean distance.

Definition 4.1 Let A and B be m x » matrices. Define
1
5(A,B) = (ZD% u-lz)

=1 j=1

which we call the Euclidean distance between A and B. (Thus, if A and B
are close, then all of their corresponding entries are close and vice versa.)

The calculus for matrices extends, a bit, the calculus for functions of
several variables. The work will be familiar (even duplicative), and thus
we need only give a sampling of the results. We begin with sequences.

Definition 4.2 Let A; A2,... be asequence of m x n matrices. If there
is an mx n matrix A such that

lim dg (A, A) =0
k—o00
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we say that the sequence converges to Ay and write
lim Ax =A.
k+m

We now show that limits can be calculated entrywise, thus allowingus to
use the results from calculus in our work. In doing this we use the notation

Ay = [a,g?)].

Theorem 4.1 In the set o/ m X n matrices, klirn A = A iIf and only ¢
— 00

Jim al¥) = ay; for alli,].

Proof. We argue the two parts of the biconditional.
Part a. Suppose klim Ak = A. Since for any %, j
— OO

0<

agc) S dE (Aka A)

it follows from the Squeeze Theorem in calculus that klirrgo ag“) = a;; for
any 1, j.
Part b. Suppose klim ag-‘) =a; for eachi,j. Using that the square root
— o0

and the absolute value functions axe continuous and properties of the limit
from calculus,

2
lim Z ag’) — Qi

k—oo

SO
klim dg (A, A) =0
or lim A, =A. m
k—oo
As an example, we have the following.
1
Example 4.1 Let Ax = [ _ } _’i ] fork =1,2,.... Then, using the

%
theorem,

lim 1 lim &
limAkzl:kT’w 1 koo ¥ :I:[(l) _(1)]
k—o0

Although there are many results about sequences of matrices, we will
consider only two. This is enough to show how these kinds of results are
developed.

Iz
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Theorem 4.2 Let A;, Ag,... and By, Bs,. .. be sequences of m x s ma-
trices and s x n matrices, which converge to A and B, respectively. Then

klim ArBy = AB.
Proof. By Theorem 4.1, we can prove this result by an entrywise argu-
ment. For this, note that the ij-th entry of the k-th term, ABs, of the

sequence, is Z’: afk)bf%). By the sum and product rule in calculus,

r=1

s 3
lim Zagf)bg;) = Zai,b,j
r=1 r=1

k—oo
the ij-thentry in AB. m

The following corollary shows a bit more about how we obtain these
limit results.

Corollary 4.1 Let A;, Az, ... be a sequence of m x n matrices that con-
verge to A. Let P and Q bep x m and n x q matrices, respectively. Then

Jlim PA,Q = PAQ.

Proof. Consider the sequences P,P,... and A;, Az,.... Then by the
Theorem 4.2

lim PA, =PA.
k—o00

Now consider the sequences PA,, PA,,. .. and Q,Q,.... Again using the
theorem,

lim PAQ = (PA)R
k—o00
which yields the result. m

Series of matrices are defined by sequences as shown in the following.

Definition 4.3 Let A3, Aa, ... be asequence of mxn matrices. Construct
the sequence of partial sums Ay, Ay + Az, A1+ Ay + As,. ... If thissequence
of matrices converges to A, we write

oo
%“Ak:A

and say that the series éj] Ay converges to A.
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We show two basic series results. Other such results are derived in the
same way.

Theorem 4.3 Let P ana! Q hep X m and n x g matrices, respectively.

o0
Let S° A, be a series of m x n matrices that converges to A. Then
k=1

f:PAkQ = PAQ.

k=1

Proof. To keep our notation simple, we first show that ky—l PA, =PA.
We can do this by an entrywise argument. -
13
The ij-th entry in the t-th partial sum, kY-I PA, is

> (St

k=1 \s=1

And, by the sum and product rule of calculus

tl_lfg (pra ) =

s=1

() - (]

tl—l»rgo (pilkz:la’g_l;)) +---+ hm Dim Za(k))

k=1

pira1j + -+ + PimQmj = Zpikak

the ij-th entry of PA.
Similarly, setting Bx = PA; for k =1,2,... and noting that ) _ By =
k=1

PA, we can show that Ifjl BrQ =(PA)Q. Thus,

3" P4:Q = PAQ,
k=1

the intended result. =

For the second result, we give Neumann’s formula for the sum of a par-
ticular series.
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Theorem 4.4 Let A be an n x n matrix such that klim AF =0. Then
—00

I+ A+ A2+ .. =(1-4)7 .

Proof. We prove this in two parts.
Part a. We show | — Ais nonsingular. Arguing by contradiction, suppose
that | — A issingular. Then there is a nonzero solution to

(I1-A)z=0,

say, 2. Thus,

Az =2.
Multiplying through by A yields

A’ = A(Ai)= A2 =%

and in general

Akg =2,
Thus, taking the limit as kK — oo, we have

0=2a

a contradiction from which Part a follows.
Part b. Weshow | +A+42+... =(1-4)"" To do this, note that

(1=A)(1tA+ ... T4 =1 - A"
SO
T+A+-+A1=(1-4)7" (1-4%) .
Taking the limit on k — oo, we see that the partial sums converge, and
I+Aa+a2+. .= (-4,

the desired result. ]

Let f be a function from a set of mx n matrices to a set of p x g matrices.
An example may help.

a 1
1 9

p([23]) =2 3] =on

Example 4.2 Define S = {[ ] :a,b € R}. Define
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This is afunction of a subset of R?*2 into R1*1. (Recall that the braces
about a matrix are cosmetic, so R**! =R.)

Identifying
a 1 t
(53] @,

we graph T by graphing (a,b,ab — 1. This is done in Figure 4.1.

FIGURE 4.1.

Let B and L be m x n matrices. As in calculus,
AIl_mB f (A)=L means All—roanE (f(A) L) =0.

(In terms of € — 6, given € > 0, there is a§ > 0 such that if dg (A,B) <6,
then dg (f (A) L) <e.)
Writing

f(4) =[fi; (4)],
where f;; (A)is the ij-th entry off (A), we can show that

lim £ (A)=L if and only if [f}ig}a fi (A)] =L

The limit properties can be derived as well.
The function f is continuous at B means AITE; f(A)=f(B)and f is

continuous on a set means f is continuous at each matrix of the set. And,
T is continuous at B or on a set if azctonly if this is also true for each f;;.

a b

From calculus we know that f d = ad - be is continuous

(ad —bc is a polynomial in a, b, ¢, d), and more generally, f (A)=detA is
continuous on the set of all n x n matrices.
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As seen in Chapter 1,there are determinantal formulas for the entries in
A~ and z = A~1b. For example, if

a=[2 4]

then
-4 _=b_
A—l — [ ad=hec ad—bc ]
= a .
ad-bc ‘ad—bc

Note that the entries are rational functions of a, b, ¢, and d, which are
continuous where the denominator is not 0. From this, we see that, for
nonsingular matrices,

F(A)=A"1
and
f(Ab)=A"1p (thesolutionto Az =b)

are continuous functions, as well.
Now we look at matrices whose entries are functions of a real variable ¢,

say,
A(t) ={ai; (1)] .
Then

tl_l_)rg A@) = ngﬁ] aij (t)] ‘

assuming that the limits of the entries exist. (Note that a;; (t) is a scalar
function, and we know the calculus results for such functions.) The limit
properties are as those in calculus.

Continuing, A (t)is continuousat to, or on an interval for t, if and only
if the same is true for all entries a;; (t)of A (t).

For the derivative, if A(t) is such that its ij-th entry a;; (t)is differen-
tiable for all 7,5, then

‘%A ) = [%a,-,- (t)} .

The following theorem shows a result about the derivative of matrix
products. Recall, for this work, matrices don’t commute.

Theorem 4.5 Let A (t)be m x s and let B(t) be s x n, both matrices with
entries differentiable on (a,b). Then

& (A0B0) = (340) B0 + A0 (550)).
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Proof. Note that

d
= (4O BO) =

as desired. m

4. Matrix Calculus

% (Z @ik (t) bij (0)]

L k=1

[ s

> (akk (8 b (2) + aik (2) by (t))}

Lk=1

Za;k (t) bkj (t):l + [Z aix (t) ;cj (t)}
Lk:l k=1

((—%A(t)) B(t)+ A() (%B (t)) :

Finally, for the integral, we define

/abA(t)dt= [/ﬂbai,- (t)dt]

provided the integrals of the entries are defined. Properties of the integral
can also be proved by entrywise arguments.

4.1.1 Optional (Modeling Spring-Mass Problems)

We give an example showing how the calculus just described can be used
in mathematical modeling.

Two particles of masses m; and my are attached to springs in the config-
uration shown in Figure 4.2. The particles move on a frictionless floor in a
horizontal line. If the spring constants are k; and k2, respectively, we want
to find the mathematical model that describes the motion of the particles.

k,

Xy

B

-1 0 1

FIGURE 4.2.

When the masses axe not in motion (equilibrium position), we associate
an z1-axis and an zq-axis S0 that their origins are at the positions of particle
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land particle 2, respectively. Now, if the particles have been put in motion,
let

z3 (t)=position of particle 1at time t on the x;-axis and
zo (1)=position of particle 2 at time t on the x;-axis.

Hooke’s law implies that the restoring force on a particle due to a spring
is the product of the spring constant and the displacement of the particle
from the equilibrium position. Using Hooke’s law and applying Newton’s
law, that mass times acceleration is equal to force (See Figure 4.3.), we
have

d2
M= 01 (t)=force on particle 1due to the springs.

F

W

FIGURE 4.3.
There are two forces on particle 1,namely
F =-kiz (1),
and
Fy = ko [z2 (t) — 21 (2))].

Thus

mlj—;zl () = —kyz1 (£) F o[22 (8) — 21 (1))

= — (ks T ko) 21 (8) Thoza (£) .

For particle 2 we have

d2
mQEi.’Bg (t) =—ky [1:2 (t) - (t)] .

Putting these into a matrix equation we have

[0 im0 ][ w56 ]

Solvingthis equation for z; (t)and z. (t)gives the positions of the particles
at any time t.
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4.1.2 MATLAB (Code for Graph of Function)
Code for Figure 4.1
a =linspace(~5, 5, 10) ;
h=a;
[a,b} =meshgrid(a,b);
mesh(a,b a.%b — 1)

view([1, —1,1]) % View with (1,-1,1)*
pointing toward us.

Exercises
1. Find dg (A,B) for the given A and B.

@a-[3 o-[3 1]

[ i o0 [0 1-d
®a=[,5 % ] e=[ 5]

2. Compute
1 k+1
(a) hm [ lck <k ]

3. Provethat if 4; and B, are mxn matrices for all k and klim A =A,
— o0
lim By =B then lim (A +B,) =ATB.
—00

k—oo
4. Let « (t) is a real valued function and A (t) a matrix of functions. If
lim a (t) =ap and lim A (t) = A, prove the result that lim aq (t)A (1) =
t—a t—a

t—a
aoA.

5. Let A, 4., ... be a sequence of matrices that convergeto A. If Ais
nonsingular, show that A7*, A7, ... converge to A-1,

1 1
6. Let Ay = [50E ¥ |fork=1,2,.... Find Aj+A4z+---. (Recall
g
that 1+r tr2 4. .= 7L foranyr, |r| < 1.)
7. Let A(t)= [ i i ] Calculate and graph each of the following.

(a) det A (t)



10.

11.

12

13.

14.
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(b) The 1,2-entry of A ()™

(c) The first entry of A (£)~* b, where b = [
Let f : R?*2 — R2. Setf (A)—[ () 1Where fi (A)is the i-th
e : . e = f2 (A) 3

entry of f (A). Prove that f is continuous if and only if both f; and
fo are continuous.

1
1

1 €t

i —
Let A (t) :[2_t_ 0 ] Show that
t—1

(a) A (t)is continuous at ¢ =0.
(b) A(t) is not continuousat t = 1.

_ | cost sint .
LetA—[t+2 0 ] Find

(a) £AQ).
(b) fy A (t)it.
Suppose A (t) B (t)are differentiable n x n matrices. Prove that

d1am+BOI=2A0+2BO

Suppose P and A(t) are n x n matrices with A(t) differentiable.
Prove that

d d
= PA(=P = At).

Suppose A(t) and B(t) are integrable n x n matrices. Prove that
[P A T B®) dt = 2 A@)dt + [ B(¢)dt.

(Optional) Attach a third spring to m. and to a wall as diagramed
in Figure 4.4. Find the mathematical model for this system.

ky k, ky
WA-Co-MAA 2

FIGURE 4.4.




128 4. Matrix Calculus

FIGURE 4.5.

15. (Optional) Derive the mathematical model for the spring-mass sys-
tem shown in Figure 4.5.

16. (MATLAB) Let A = [Z 2 ] andc = [; ] In the square [0, 4] x
(5,9] graph

(a) The 1,I-entryand the 1,2-entry of AL,
(b) Both z; and z; of z = A™%ec.

4.2 Difference Equations

In this section, we show how to solve systems of difference equations, as well
as show that eigenvalues determine the solution’sbehavior. We demonstrate
the technique to solve systems with a small example. Extensions of the
technique should be clear.

Let z; (I() and z5 (I() be functions defined on the nonnegative integers
that satisfy

I (k + 1) =a11Z (k) +0«12172 (k)
2 (k 1) = a151(k) + a2252 (k)

where a1, a1z, a1, and agge are scalars. We can write these equations &
a matrix equation

z(k+1) = Az (k) (4.1)

where z(k) = [i; gg J and A = [Z;i 2? } (The equation in (4.1) is

called a difference equation.)
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If z(0) is a given vector then (4.1) determines a sequence
2(0), 2(1),2(2), - --

We intend to find a formula for z(k) in terms of the eigenvalues and eigen-
vectors of A. To get this, note that

z (1)= Az (0), (4.2)
z (2) = Az (1) = A%z (0)

x (k) = Az (0)

Observe that if A and = (0)are real, sois z (IC) for all IC.
We now assume that A is diagonalizable, say,

A=PDF™!
A 0 . _ .
where P = [p; p2) and D = [ 01 " ] We substitute PDF~* for A in

(4.2) to obtain
z(I() =PD*P~ 1z (0).

Set
o

Plz(0)= [ o1 ] . (4.3)

(Note that { Z; ] can be computed by solving P [ 3; ] =z (0) or ayp1 +

agpe =z (0).So P! need not be calculated.) Thus, we have

2 (k) = [p1 P [ X N ] [Z; ] (4.4)
= pimte] | 1

= A¥p1 + agAipo

the desired formulainvolving eigenvalues and eigenvectors. More generally,
if A is n x n and diagonalizable, we would get

z (I() =a1)\’fp1 + .- +an/\flpn.

An example showing how to use the formulato solve a difference equation
follows.



130 4. Matrix Calculus

Example 4.3 Let z (0) = [ _g ] We solve

(3]

1
z(k+1)= [ 1 9 }m(k)
Here Ay = 3, A2 = 1 with corresponding eigenvectors p; = [ 1 ], P2 =
{ ﬂi ] , respectively. Thus, using our formula,

z (k) = a1 A¥p1 + e \ipe (4.5)

cat[1]re] 1],

Now, since z (0) = [ _g ], wing (4.5) and plugging in k =0, we have
6] _ 1 -1]
[_2]—01[1}+a2[ 1-.
Solving for @y anal a2 yields oy =2 analag = —4. Thus, our solution is

m(k)=a13k[ i}+a2[ _} |

wfl]- ]

Note that & k — oo, the entries in z (k)— oo tend to oco.

We now extend our work a bit to defective matrices. Observe that if
A =PJF~!, where J =diag(Ji,. .. ,Jr) i a Jordan form of A,

lim A% = lim pJkp-! (4.6)
k—oo k—oo
=P ( lim J") pP-
k—oo
lim Jk 0 0
k—c¢
i X
_» I 0
0 ... lim J¥ J
[ 0 e Jim

Thus, convergence of A, A2, ... depends on the Jordan blocks of A. For-
mulas for their powers follows.
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A 10 0
ifJ; = ° /\ 1 0 , an s x s Jordan block, then
000 --- A
Aoox 1 .- 0
20 X2 .0
0 0 0 --- X
A 3x2 3x 1 -+ 0
0 0 0 cen 8
and in general (We leave it as an exercise.),
Ak kAkk—l (;)tk—lz s (sfllc)Ak;s+1
Je=] 0 AT R e (D) 47)
0 0 0 s }\k

where (¥} =0ifk <r and (f) = Ty Otherwise.

Using these formulas, we can solve difference equations even when A is
defective.

Example 4.4 Solve

m(k+1)=[__; 'g]z(k).
Factoring, we have
{ 1 .5}=[ 1 1”.5 1”.5 —.5]
-5 0 -1 1 0 5 5 .5
By direct calculation,

z (k) =PJ*P1z(0)
=[S R ]
—_ n

1 rk va

(23]

where [
(65

- o[ ] 3] 5]
=a1(.5)k[ _i ]+a2 (k(.5)k—1 [ 0 ] + 5" [ . D

=P~z (0). And by backward multiplication, we have
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Note that, as a consequence of the eigenvalues,
lim z (k)=0.
k—oo
By observing (4.6) and the formulas for the Jordan blocks in (4.7), we
have the following.
Theorem 4.6 Let A be an n x n matrix. Then

(a) klim Ak converges if each eigenvalue X of A issuch that |A| < 1or i
- 00
Al =1, thendx=1and it ison 1 x 1 Jordan blocks.

(b) And for all other cases, klim AF doesn't exist.
—00

An example demonstrating the theorem follows.

Example 4.5 Let A = [ i Then A is diagonalizable with P =

1 -1
(4 1] wan=|
0

1imAk=P(11m[ 1k}) -1
k—o00 k—oo0 5)

1

1

2

-rlo 8] =11 1]

If I|m A¥ doesn't exist, often we can still say something about the be-
haV|or ofa: (IC). A small example can show this.

Sfe~

]. Thus

Wi

”U

[SIEe T

Example 4.6 If we solve

m(k+1)=[:g 'g}z(k),

we get (using 5 digits in our answers)

(4.8)

z (k) = o1 (1.0624) [ 0.7630 ]

0.6464

0.6464 ]

+ a2 (~0.7624)" [ _0.7630

Wefind the dominant term (the term having.the largest eigenvalue, in
absolute value, in z (k)). This is o (1.0624)" 0.7630 Note that by

0.6464
factoring out this coefficient in (4.8), we have (assuming a; # 0)

_ k[ 076301  a2(—0.7624)* | 0.6464
z (k) = 01 (1.0624) ([0.6464] o1 (LOG2A)E - —0.7630
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Now, since the second term, within the parentheses, approaches 0 as& — 0,
we see that the contribution of

o (—0.7624)" [ 0.6464 }

—-0.7630

to the size of x (k) is small compared to that of

o (1.0624)" [ 0.7630 ] :

0.6464

We indicate this by writing

0.7630
z (k) ~ o (1.0624)F [ 0.6464 ]

and say that z (k) has dominant term oy (1.0624)’c [ 0.7630 ]

0.6464

For z (0) = } , in Figure 4.6, we can see a picture of the iterates

fromk =0 tok =20. In this picture O indicates the initial vector and each
= a following vector, z (1),z(2), ...,z (20). The polygonal line indicates
the order of occurrence of these vectors. Notice that the vectors look like
the dominant term as k increases.

Since

2 (k) ~ oy (1.0624)" [ 0.7630 ] ,

0.6464
we see that x (k) increases by about 6% on each iteration.

As a final consequence of Theorem 4.6, we consider the nonhomogeneous
difference equation

z (kT 1)=Az(k)*b

where A is ann x n matrix and b an n» x 1 vector.
Writing out a few iterates, we have

z (1) =Ax (0)tb (4.9)
z(2)=Az(1)+b

= A%z (0) + Ab+b

X (k+1) =A%z (0) T A* b+ A*2p+ ... Fb
=Akz (0)F (At + 42+ +1)b.
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T

25

1.5}

1 15 2 25 3 35 4

FIGURE 4.6.

Now, if each eigenvalue, say, A, of A satisfies |A| < 1,then by Theorem 4.6,
lim A* = 0. And by Neumann’s formula,

k—co
I+A+ A%+ =(I-A)7 .
Thus, calculating the limit in (4.9), we have
kllrpwx(k+ )= (1-4)""h. (4.10)

(z (k1) here can be replaced by x (k) since we are talking about the
convergence of a sequence.)

We can see some use of the result in the followingexample of a production
process.

Example 4.7 We consider a two-grade school (7th and 8th grades). Each
year, 1000 new students enter the 7th grade. Of those currently in the
school, 80% o the students are promoted, 10% retained for another year

and 10% of each class drops out. A diagram of the situation follows in
Figure 4.7.

Let 23 (k) and z, (k) denote the number of students in the 7th and 8th
grades in the k-th year, respectively. Then

zy (kT 1)= 1z, (k) 1000
22 (k + 1) = 82y (K)TF.1z2 (k)
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FIGURE 4.7.

&

or

z (kT 1)=Az (k)b

whemx(k)—’-[zgg ]’A= [ 51; .?]"mdb: 1c0m

Since the eigenvalues of the matrix are .1 and .1, we have by (4.10)

Jim z (k):T ~A)7'b

— | 1111 1000
T 70988 111 [ 0
[ }

= | 988

Thus, as k increases, we expect to see about 1111 students inthe 7thgrade
and 988 students in the 8th grade.

4.2.1 Optional (Long-Run Prediction)

Being able to see what is going to happen if trends continue is important
in many areas. We look at one such problem.

An important social science (demographic) problem is to predict the
population of a region or country in future years. Such information is used
in planning (roads, water, schools, food, etc.) for that area.

To describe the technique in general, suppose that some population is
divided into three age groups: young, adult, and older, where the number
of years in each group, called the period, is the same. Survival rates (% of
those in one group that live to be in the next) are computed. These rates,
s1 for young to adult, sy for adult to older, can be obtained from official
records. Birth rates (number of offsprings per member in each group per
period) say, b;, b2, bs, for the groups, respectively, can be obtained in the
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same way. Using this data we form the matrix

by b b3
P= 81 0 0 )
0 89 0

which is called a Leslie (or population) matrix.

Suppose we compute populations in each group every period. Let x; (IC),
27 (k) 23 (k) denote the number of people in groups1, 2, and 3, respectively,
at period I Then at period k + 1 we have

zi (k + 1) =bi11 (k) + boxo (k) + bsxs (k)
o (k‘ + 1) = 81%1 (k)
z3 (k+ 1) = saz2 (k)

or in matrix form
2(ktT1)=Px(k)
where
zy (k)
z (k) = [ z2 (k) }
z3 (k)

The Leslie matrix given below wes obtained (taking some liberties with
the data) from a third world country. The age groupings were 0-4, 5-9,
10-14, ...,45-49.

w
ooooooooo'@g

-
ooooooooog
o

(o0}

©oocoocococogo
Ooo0oo0oco©Wooo
oo
- ™
CoWoocoocoow
- oo
WO O =—
OO0 O -

cfoloRoNoloRok - N—No)
OO0 O0O©WooOm
eNoNolololoNoloNele)

\‘
©
<O

[

The largest eigenvalue for A is A; = 1.1903,with corresponding eigenvector
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[ 0.5897 ]
0.4657
0.3834
0.3157
0.2599

Pr=1 02140

0.1762

0.1451

0.1182

| 0.0964 |

[ 0.2133
0.1685
0.1387
0.1142
0.0940
0.0774
0.0637
0.0525
0.0428

| 0.0349

=]
l

4.2.2 MATLAB (Codefor Viewing Solution to Difference
Equations; Handling Large Matrices)

There are some useful commands when working with population matrices.
The command A =zeros(n, n)provides an n x n matrix, all entries of which
are 0’s. Now to obtain a population matrix, we can change some entries
in A, using say, A (1,4) =.83, which changes the 1,4-th entry in A to .83.

Also, if the command [V,D] = eig (A)is used, the columns of V are
eigenvectors. To get an individual column of V, say, the second, use V'(:,2).
Of course, for a row, the companion command is V (2,:). If we want to
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sum the entries in say, V (;, 2) and divide V (;, 2) by that sum, we can use
e = ones (1,10) which provides a 1x 10 vector having 1’s as its entries.
Then we use (exV (,2)) A (-1)* V (,2). (Exponents are done before
multiplication. Type in help precedence for more.) An exercise will be
provided on which these commands can be helpful.

1. Code for Computing Limits

A=[2.8; .6 .4];

[P D] =eig (A)

D(1,1) =0; % The 1,1-entry of D was —.4.
We set it to 0.

limit =P % D xinv (P)

2. Code for Computing Limits

A =[.3.7; 4.6];
L =zero(2,2) ;
while norm (A —L,’fro’) % Tests to see if the distance
>10A (=7) between A and L < 1077,
This condition can change
with different problems.

L=A;
A= A=x*A;
end, A % If distance < 1077, prints

out A.

3. Code for Viewing Solution to Difference Equation

2 =(1; 1};
A=[3.9; .90];
fork=1:21
p(0) =z (1 % Generates z-values [p(1)...p(21)]
glk) =z (2); and y-values [g (1)...q(21)]
for the (p(k),¢ (K)) to be plotted.
= Ax*z; % Gets to the next point in
the iteration.
end
plot (1,1,°0’) % Plots starting point with O.
hold
plot (p,q,” *”) % Plots points (p(k),q(IC) with *,
plot (p, q) % Draws ‘curve’ through points.

In iterations like this, it is helpful to include a stopping criteria so that
the iteration won’t run forever. For example, insert ¢ = 1between the 2nd
and 3rd lines, and
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c=c+1
if ¢ > 1000
break
end
between the 6th and 7th lines.

Exercises

1. Compute kI_ip;) A* for the given A, if possible. If not possible, explain
why the sequence does not converge.

wa-[34] ol

Nl oo
[E—

(c)A=[(1) (1)] (d)A=[

= W
ot
[

11 1 i 11 }
i 11
A=10 2 3 £ A=]35 3 3
oa[iaz] onli
2. Solve
o (k+1) = 3z1(k) —z2(k)
@ L(k+1)= -ai(k) +3(k)
o1 (k+1)= 3z1(k) +2z2(k)
b o)) (k + 1) = I (k) +2x9 (k)
( ) T3 (0) = 9
2 (0) = 3
Z1 (k + 1) 3z, (k)

i

(c) T2 (k+1) zy (k) +3x2(k)

3. For the given matrices, compute J2, J3, J7, and J k,
9 1 3 10
(a) J=[0 2] by J=|0 3 1
0 0 3

4. Find the dominant term in (a) and (b) of the solutions of Exercise 2.

5. Let

Find a vector ¢ such that X (k) is constant for all k.
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1

6. The solutionto y (k1) = [1 _i ] y (k), y(0) = [(2) ] sy (k)=

(1+i)’°[ _t } +(1—i)k[ : }
(a) Show that y (K)=1y (k)so y (K)is real. (The imaginary part is
0.)

(b) Find y (k) as an expression involving real numbers. (Hint: Use
(atib)*® =r* (coskd tisinkd) where a+ib =r (cosé +isin e))

. Let A be an n x n matrix. Prove that if klim AF exists, then so does
— 00

klim Jk. (Hint: Write J* = P~1A¥P and compute the limit.)
—00

. To solve the scalar difference equation

z(kt2)-3z(kt1)+2z(k)=0
set

v1 (k) =z (k)
v2(k)=z(k+1).

Then, using the three equations above, we have

yi(k+1) =v2(k)
v2(k+1) =3y, (k) — 231 (k).

Solve this system for y;, to find z.

. Company A has machines that periodically break down. When a

machine does break, it costs about $1,000to fix it. (We will assume
at most one machine breaks per month.) In monthly intervals, the
probability that if a machine broke the previous month, one will break
this month is .1,while if no machine broke the previous month, the
probably that one will break this month is .15. (See Figure 4.8.) Let

y1 (k) = probability that a machine breaks in month &,
y2 (k) = probability that a machine doesn't break
in month k.

Then

v (k+1) = .1y (K)T.1552 (k)
V2 (k +1) =.9y1 (k)T .85%2 ()
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15

FIGURE 4.8.

or

v+0=] 5 5 |v®

where y (k) = [ ” Eg ]

(a) Compute y (k)and kl_i_m(}y(k) . (Usey (0) = [ (1) ]-)

(b) We estimate the average cost of fixing the machine as follows:
the first entry in kir&y(k) is the long-run probability of the
machine breaking in any month. So that number times $1,000

will give us an estimate of the monthly cost of fixing machines.
Compute this number.

10. For the 3-class school diagramed in Figure 4.9, find slirsy (k) and
interpret this vector.

A A% [
2000 9 9 9
Tth 8th —> 9

FIGURE 4.9.

11 Let A be a 2 x 2 diagonalizable matrix and b a 2 x 1vector. Find, by

using the eigenvalue-eigenvector approach, a formula for the solution
to

z(k+1)=Az (K)*h.

12. Let A be an n x n matrix. Prove that if z (k + 1) = Az (k) for all

nonnegative integers k, then z (0) , (1),... converges, for all z(0),
if and only if A, A2, ... converges. (Hint: Use z (0) = ey, e2,...,e5.)
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13. (MATLAB) By computing eigenvalues, eigenvectors, and solving a
system of linear equations for the scalars, solve

o1 (kT =221 (k) F 22 (k)
2y (kT 1)= 21 (k) +225 (k)

23 (ktT1) = 2 (k) +2z3 (k)

71 (0)=1

zo (0) =2

z3 (0) =4.
1 00 0
o 010 0

k —

14. (MATLAB) Find lim A*for A=| o 3 7 ¢
2 0 0 8

(a) Use the diagonalization approach.
(b) Use the iteration approach.

15. (MATLAB) As in Example 4.6, graph the solution to Example 4.7,

where z (0) = [ ggg ]

16. (Optional) The following population matrix, with age groups as in
Optional, is for a small county.

0 0 0O 0 14 34 26 .14 .08 .06
94 0 0 O O O O 0o 0 o0
0.980 0 0 O O O 0 o0
0 0.990 0 O O O o0 O
0 0 0.990 0 0O 0 0 O
0O 0 0 0.990 0O O 0 O
0 0 0 0 0.990 0 0 O
o 0o 0 O O 0.980 0 O
o 0 0 0 0O O O0.970 O
o 0 0 0 0 O O o0.970

Analyze this matrix as was done in Optional. Use commands de-
scribed in MATLAB..

4.3 Differential Equations

In this section, we show how to solve systems of differential equations. We
start with a small example which can be generalized.
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Let z, (t)and z, (t)be differentiable functions that satisfy

.’l:’l ) = anz (t) tapze (t)
ﬂfé (t) =ag 71 (¢) +agzs (t) .

where ay1,a12,a21, and aqe are scalars. Putting these equations into a
matrix equation yields

9 (t)= Az (t) (4.11)
dt
wherez = | 22 | and A = [ o a2 ] We assume that A is diago-
o2 (t) az G2
nalizable and that A = PDP-*, where D = )61 /?2 .

Tofind the functionz (t) we substitute PDP~! for A in (4.11), obtaining
d -1
TiZ (t)=PDP~ 'z (1).
Rearrangement yields
P'l-(%z (t)= DP~'z (1)
or
;—t (P'z (t))=D (P 'z (t)). (4.12)
Now define
y ()=P7 'z (1) (4.13)
and substitute this expression into (4.12) to obtain
2y()=Dy(t)
aty\ =2
In terms of entries, we now have
d
Z0 () = u (t) (4.14)
d
PP (t) = Aoy2 (t).

Since, in general, the scalar differential equation

d
‘E-z(t)z Az (1)
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has solution z (t)= ae*t, where o is an arbitrary constant, the solution to
(4.14)is

¥ (t) = oy et

Y2 (t) = age’\’t

where a; and as are arbitrary scalars. Thus

y(t) = [ e |

agert
and so by (4.13), and backward multiplication,
z(t) =Py (t) (4.15)
= a;e™Mtp; + 0ge*?ipy.

If A'is n x n and diagonalizable, this extends to

z(t) = a;e*p; + - + ape*tp,.

Thus to solve (4.11), we need only find the eigenvalues X;, A2 and corre-
sponding eigenvectors py, p2 of A, respectively, and write out the solution
using them.

The following example shows how to use the formula to solve systems of
differential equations.

Example 4.8 Solve

I

21 (V)
3 (t)

=31 () + z2(t)
I (t) - 31’2 (t) .

I

-3
Here A = [ 1 _; ] The eigenvalues of A are \; = =2 and ), = —4

. - 1 -1 .
with corresponding eigenvectors p; = [ 1 ] and pp = [ 1 ], respectively.
Thus,

T (t) = oe™ip; + ageip,
o2t | 1 —a| -1
et oent] 1]
is the solution.

Note that because the eigenvalues of A are negative, lim x (t)=0.
t—o0
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Similarly, if A is diagonalizableand has positive eigenvalues, we can show
that

d?
W.’L‘

z(t) = (a1 sin (\/Xl- t) + (3, cos (\/-)G t)) m (4.16)
+ (a2 sin (\/E t) + B, cos (\//\_2 t)) D2

where the a%s and gjs are arbitrary constants. (The extension to n x n
diagonalizable matrices should be clear.)

Another way to solve differential equations is by using functions. Func-
tions will give neat, compact expressions for solutions which don’t depend
on the Jordan form. However, they can be difficult to compute.

To see how to develop functions of matrices, let f() be a scalar function
with Maclaurin series

()tTAz(t)=0

has solution

f(m=a+a17+ar?+.- (4.17)

where 7 is a variable and ag, @1, ... constants. We assume that this series
converges for all = and thus converges absolutely for all 7.
For an n x n matrix A, define correspondingly

f (A)=aol ta,Ata 42+ .. (4.18)
As given in the exercises, if m = max|ai;| (the largest entry, in absolute
1'1]
value, in A),then

a?

|aij| <m, ij

<nm?, < ‘ag)l <n?ms,...

So since (4.17) converges absolutely, using 7 =nm,

jaol T laz| nm Fas| (nm)” + -
converges. Thus by hezcomparison test, using é;; as the Kronecker 6,
lag| 8;j+|a1] |aij|+|az| |aii |+ - - converges and so aoéij+a1aij+a2a(2-)+- .
converges. Sothe series in (4.18) converges. (Thus, f (A)can be computed

ij
without knowing the Jordan form.)
An example may be helpful.

11

1
k —
0 1]. Then A _[

Example 49 Let A = [ 0

’;]for all k. Now
let f (r) =e™. Since
2
T +-T—+T_+
e’ =1 1 of
e =T+LA+ LA+
1! 2!
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2
[1+ﬁ+%+--~ H+E+5+--

0 1+ +5+--

=[gg].

It should be mentioned that this matrix was chosen so that the series that
occurred could be summed. In general, we can’t find f (A)so easily.

We now obtain formulas for f(A4) in terms of the Jordan form of A. Note
that if

A=pjp-!
where J is the Jordan form of A, then by substitution,
f(A)=aol TajAtaa?+
=agPP! +a, PJP! taPJ?P 1 +
=P (aof ta) taps2t+...) p-!
which yields
f(A) =Pf(J)P~L. (4.19)
And, if J =diag(J1,...,Jr), where each Jj is a Jordan block,
f(J)=aoly +a1diag(J1,. .. ,Jr) +azdiag (JE, ... ,J,?) +...
= diag(aoly + a1y + 2J7 +... Y ta,J. T .)
where | =diag(/y,. .. ,l,.)is partitioned asis J. So
F(I) =disg(f (J1), ..., £ (7).

Thus, to compute f (A) we need only find a formulafor f (J;), where J;
is some Jordan block.

Lemma 4.1 If J; is an n x f Jordan block, say,

J=|X 10 .. 0
0 A1
A
000
then
) n—
O =
(1) (n—2)
fU=( 0 f A . L0 (4.20)

T
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where £(%) denotes the k-th derivative of f. (Recall here that f (¢} (\) means
that f (r)is differentiated k tames and then 7 is replaced by X)

Proof. We sum the series agl ta,J; T apJ? T-- .. This yields, as the
1,l-entry of the sum,

ap Tar a2+ =f(0).
For the 1, T 1entry, we have

r r+1 r 42 2,
or (7)o (73H Jaea (777 ) 4

r! (r +1)! (r+2)! 2
= b aad b S anaX 4
! 2)!
- ;17 (r!a,+ (r Jl" L ;! ) ar+2>\2+---)
1,
= ﬁf( Y.

These expressions yield the entries of f(J;) that appear in the formula
of the lemma. =

An example follows.

Example 4.10 Let f(7) =sinT and A = [ :I . Thenby using

ool —
ol — O

(4.20), we have

- o) @
FO) L£200) 1_242;1-]

1!

sinA = 0 f ﬂél
0 0 f )

[ i, X COS z —sin &
sing - —or
—_ ™ cos &
0 sing %
) 0 sin Z |
L 3 _1
2 2 4
= 1 3
0 2 2
1
2

0

(o]

More generally, we need to look at an example of the type f (At)where
t is a real variable. (Scalars usually precede matrices; however, in this
setting, by tradition, the roles are reversed.)
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As shown previously for A, we can show that
f(At) =Pf(Jt) P~L.
However, we cannot use the formulas for f(Jt) since, for example, Jt =
0 At

imply put, Jt is not a Jordan form. This, however, is easily remedied.
For example, we can write

‘L At } , the super diagonal is composed of 0’s and ¢’s, not 0’s and 1’s.

At O
Ji=| 0 A t
0 0 A
1 0 O 1 0 1 00
—10 ¢!t 0 o1 0t o0].
0 0 ¢t 0 A 0 0 ¢
A1 O
Andsince | 0 At 1 | isaJordan block, we have
0 0 A
e)\t At
1 0 O e S S ]r10 07
et=10 t1 0 0 M < 0t 0
0 0 t2 0 et 0 0 ¢
= 0 ez\t teT?t_
| 0 0 et
More generally, for an n x n Jordan block J, we have
Q=] 0 M = .. e (4.21)
0 0 0 .- eM

In the example below, we show how to compute e4.

Example 4.11 LetA=[2 0]. ThenJ=[2 1]andP=[O ]

1 2 0 2 11
Thus, using (4.21), 0

et = Peltpl = [ A ]P‘l
€
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The remainder of the section concerns e“* and ItIim eAt,  We use that
— 00

if A\ = atib, then e’ = eatei® where et = cos (bt)+isin(bt). Thus,
|e“"| = 1for all t. In addition, we use that

0ifa<0
lim e®t = 1ifa=0

t .

e oifa>0

We now describe when lim e#* exists.
t=—r00

Theorem 4.7 Let A be ann x n matrix. Then
(a) L‘Iim et = 0 if and only if all eigenvalues A = a T i oj A satisfy
a<0.

()] tlim et exists if all eigenvalues A = a Fbi of A satisfy a < 0, and
when a =0, then A =0 and its corresponding Jordan blocks are 1x 1.

Proof. This follows by using L’Hospital’s Rule on the entries of e/t. ®

We now solve the differential equation, with initial condition
v (t) = Ay (t) (4.22)
Y (O) =¢,

by using functions of matrices. We know that the scalar differential equa-
tion

Z' (t)=ax(t)

2(0)==o
has solution

z (t)=e%x.

Using functions of matrices, we mimic this solution.
Note that, a in the scalar case,

0 4 24% . 3A%?
7¢ =4+t 3
242
=A<1+At+A2,t +)
= Aet,

Hence by direct computation, we can show that

y (t) =ete
is the solution to (4.22). Thus, if A is real, since et is a series in At, it is

real and so is y (t) provided c is real.
An example follows.
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Example 4.12 Solve

%ﬂt):[f g]z(t)
x(0)=“].

Using the data for the previous example,

x(t)=eh [ ! 1
(2 8]0
- [ temejf et ] '

We can get a view of the solution X (t)by graphing the vector X (t),or
by using the exponential. The latter method does not require our knowing
the Jordan form, so we will demonstrate this technique. We graph

x(t)=ef“[ ”

on [0,2] inincrements of .1. So, we plot

ol 1 an| 1| a1 AR | 1

to achieve the = ’s in Figure 4.10.Again, 0 indicates the position of the initial

FIGURE 4.10.

vector and the segments connecting *’s indicate the order of occurrence of
the X (t)s. Observe that as t increases, the x (t)s cover more distance so
there is some acceleration.
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4.3.1 Optional (Modeling Motions of a Building)

The two walls of a building, sketched in Figure 4.11, provide a restoring
force on the floor above them. This force is equal to the stiffness constant

FIGURE 4.11.

k of the walls times the displacement of the floor from equilibrium.
We now model the two story building in Figure 4.12 with floor masses

my, my and stiffness constants ki, ko.

_ Y2
my >
€l
my 3
€—k—>
FIGURE 4.12.

Let

y1 (t)= displacement of floor 1from
equilibrium at time t, and

ya (t)=displacement of floor 2 from
equilibrium at time t.

(Positive values indicate the building is to the right of equilibrium.)
The restoring force on floor 2 is —kq (y2 (t)— 31 (t))and thus, by New-

ton’s law,
mays () = —k2 (y2(£) — 11 (1)) -
The restoring force on floor 1 is —kjy; (£) + k2 (y2 () — %1 (), so we have

mayy (8) = —kagn (8) + k2 (y2 (1) — 1. (1)) -
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Or, in matrix form,

m; 0 " kl + k2 _k2 —
[ 0 mz]y (t)+[ —ky ko y(t)=0

where y (£) = [ n 8 ] .

4.3.2 MATLAB (Code for Viewing Solutions of Differential
Equations Using expm)

MATLAB does not provide a command for e4%; however, we can use e xpm (Atx),
for values ty,%2, ... instead. We demonstrated this in Example 4.12.
For more information, type in help expm.

Code for Viewing Solution of Differential Equations

z=[L1];y =2;
A=[20;21];
t=.1;
fork=1:21
p(k) =y (1); % Generates et*4z for
q(k) =y(2); t=0,.1,...,2.
y=expm(tx A) xz;
t=t+.1;
end
plot (1,1,’0") % Plots starting point with O.
hold
plot (p,g,” *”) % Plots points (p (k) ,p (k)]
for k=1,...,20 with *.
plot (p,q) % Plots “curve.’
Exercises

1. Solve, using the eigenvalue-eigenvector formula (4.15).

@ :L'i (t)= ~2z (t) + b)) (t)
25 ()= @1 (1)-2z2 (1)
(b) z} (t) =2z, (t) +x2(t)
) (t)=221(t) T 22 (t)
I (0) =-1
z2 (0) =5
(c) z} (t) =z (t) T2 (t) +z3(2)
:L"Z (t) =z (t) +:L'2 (t) +z3 (t)



4.3 Differential Equations

x5 (t) = 21 (8) + 22 (1) + 23 (t)

z,(0)=3
I (0) =0
T3 (0) =0.

2. Solve, using the eigenvalue-eigenvectorformula (4.16).

(@) =4 (¢) F2zy (1) 22 (1)=0
= (t)Fz ()T 2x2 (©)=0
z1(0) =2
z2(0)=0
z7 (0) = -4
zh (0)=-2

(b) < (t)F 321 (t)F1z2 (t)=0
2l (1) 2z (t1)F 22, (1)=0
21 (0) =0
T2 (O):3
z; (0)=3
2y (0) =2
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3. Solve the spring-mass problem in Optional of Section 1, for m; =

mp =1,k =3, kg =2.

4. Solve the two-floor building problem form; =ms =1,k; =3, ks =4

in Optional. Also use y1 (0) =1, y2 (0) =2, y; (0)=v5 (0)=0.

3 -1

5. LetA=[1 1

(4.20)

(@) e4 (b) ginA
(c) et (d)sin At

] . Compute each of the following, using formulas

6. Let f (t)=ao tait Tast? +---. Assume that the series converges

absolutely. Calculate each of the following.

(a) £/ () f" ()
(©) f® ()

_ 12 1
7. Let A= [0 2].

(a) Find e# by summing the series.
(b) Find e”t.
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11.
12.

13.

14.

15.

. Solve ¢/ (t) = [ 1 _; ] y, by using (4.21), where y (0) =

4. Matrix Calculus

-2 1
1
Compute tlim y (t). Does the limit depend on y (0)?

. Compute a formula for £ sinAt and for & cosAt.

10.

(Cayley-Hamilton Theorem) Prove if ¢ (A) is the characteristic poly-
nomial for A, ¢ (A)=0. (Hint: Break this down to Pp (J)P~! =0
and use the formulas.)

Explain why %e'“ can be computed termwise.

Let A be a 2 x 2 matrix with positive eigenvalues. By using functions,
find the solution to y” +Ay =0. (Hint: Look at the corresponding
scalar problem for ideas.)

Let A be an n x n matrix with max |a;;| < m. Show that ag?) <
Y
n*m* for all k > 1.
To solve the differential equation
z™ ta,_z0-D + . =0,

setyy, =x,y2 =20, ... yno1 = 2Dy, =z*=Y. Then, using
then T1 equations, we have

Y1 =Yz

Y2 =3

y;—l =Yn
yb = —Qp_1Yn — - aiy-

This system can be solved by matrix techniques and y; gives the
solution X. Do this technique to solve

" -3z +22 =0

Two tanks of solution are linked as in Figure 4.13.

Initially, there are 100 gallons of solution in each tank. The solution
in tank A contains 50 grams of salt, while there is no salt in tank
B. Water is pumped into tank A at 20 gallons/min from an outside
source. Solution is pumped as shown in the diagram.

Let y1 (t) and y2 (t) denote the grams of salt in tanks A and B,
respectively, at time t.

(a) Model this problem with a system of differential equations.
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20 gal/min of water 5 ggg/mm

25 gal/min

FIGURE 4.13.

(b) Solve the equations in (a).
(c) Compute tlixgoy (1)

(d) Explain what the calculation in (c) says about the amount of
salt in the tanks as ¢ increases.

16. Let f be a function with a Maclaurin series that converges for all 7.
A1 O
Let J=| 0 X 1 |. Show, by summingthe series, that f (Jt)=
0 0 A
(1) 2 5(2)
£ (M) tf l!(,\g t %!()\t)
0 f () [FAdt.12)

0 0 f0u

17. The equation

' 1 -1 _ 2
y—[l 1}y,y(0)—[0]
has solution y= e(1+i)t [ _1: ] + 6(1—i)t [ 1- ] i
(a) Show that the imaginary part of y is 0.

(b) Find the solution in terms of real numbers.

18. Let A be an n x n matrix and b(t) an n x 1vector of continuous
functions.

(a) Show that the solution to

Y (t) = Ay (t) + b(t)
y(0)=c
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is
t
y(t) =ete+ / eAC=")p(r)dr.
0

(Hint: Mimic the variation of parameter technique of scalar dif-
ferential equations.)

(b) Solvey' (t) = [—i 2 ] y(6)+ [ . }

19. (Optional) Find the mathematical model for the three-story building
diagrammed in Figure 4.14.

my

| € k3 —>{

my

<«—k—>|

<€«—k—>

FIGURE 4.14.

20. (MATLAB). Graph the solutionto

0= _5 o]0

x(0)=[}]

(a) By solving and then graphing the solution z (t).
(b) Instepst =0,.1,2,...,asin Example 4.12.

21. (MATLAB) Solve using the eigenvalue-eigenvector formula.
i (t) =a ()  +2=x2 (1)

2 (t) =221(t) Tz (t)

zh(t) = 2o (t)  +2z3(2)
I (O) =10

z2 (0) = -8

z3(0) = 0
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Normed Vector Spaces

In previous chapters we used the standard definition of distance, dg, on
Euclidean n-space. In this chapter, we extend this work by defining various
distances on Euclidean n-space and by defining distance on more general
vector spaces, as well. Why we use various different ways to measure
distance in a vector space will also be explained and shown in various
examples.

5.1 Vector Norms

In this section we show how to define distance in vector spaces in general.
As in Euclidean n-space, this is done by first defining the length of a vector.
Recall that the length of a vector X in R? is

2 = (22 +23)?

To get the general definition of length of a vector (called a norm in this
setting), we use the properties of this length, as given in calculus.

Definition 5.1 Let V be a vector space. Suppose there is a way of as-
signing to each x in V, a nonnegative number, written ||z{|. We call the
assignment function a norm (or vector norm when we want to distinguish
itfrom other norms that appear later in this book), provided that it satisfies
the following properties for all X,y inV and scalars cv.

i. Jz]| >0ifz#0and |0l =0
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i. flaz| = o lj|

iii. [z Tyl < H-"’”"‘Hy” (This property, called the triangular inequality,
generalizes by induction to [fo T--- +z,|| < =]l + .. . Fljz ]| .)

A vector space that has a norm defined on it is called a normed vector
space.

In a normed vector space V we can define distance d between a pair of
vectors (Points may be a better word when talking about distance.) X and
y asthe norm of z —y. (SeeFigure 5.1.)

FIGURE 5.1

In this setting, the distance d is called a metric. This metric is translation
invariant, that is, if a€ V,

d(z+a,y+a)=d(z,y).

Thus, d(z,0) =d(z Taa),ie., the distance from z to 0 is the same as
the distance from x +a to a.

The classical norms on Euclidean n-space follow. Others are included
in the exercises.

Theorem 5.1 Defined for all vectors X in Euclidean n-space, thefollowing
arenom.

(a) ||zl = zn: |zk|, called the 1-norm

n 3
(0) |lzll, = (}: la:klz) , called the 2-norm Note that |||, =dz (z,0).
k=1

(c) l|lzllo, =max {|z1],. .. ,Jzn|}, called the 00-nom

Proof. We prove (@), leaving (b) and (c) as exercises. Since the first
two properties of the definition of a norm are easily verified, we only show
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the third property. For it,

n
lz+ylly = l=e + uxl
k=1

<3 (il + luw)

b= )
= lzel + Y luel
k=1

k=1
= lwl 1+ l|y||1

as required. m

Example 51 Let z =(1,-2,2)*. Then
Helly =11+ -2 +12[ =5
lall, = (12 +(-2)* +2?) =3
el =max{|1} 1-2[,13{} =3.
It is interesting to graph the unit “circles” of these norms in R?.

(a) Tograph Co = {z E R? :||zll, =1} ,we graph ||zll, = 1,o0r |z:| T
lzz] = 1. To do this, in the first quadrant we graph z; Tz, = 1,in the
second quadrant —z +a:2 =1, etc.

The graph of Co = {z ER? :|lz —all, =1}, where a = [g }’ is a

translation of the graph Cy. Both graphs are shown in Figure 5.2, and
they are congruent.

X

A

A 1
D

FIGURE 5.2.
(b) The graph of Cy = {z € R? :||z||, = 1) is shown in Figure 5.3.
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X2

X|

FIGURE 5.3

(c) Thegraph of Cp ={z E R? :|\z||o, =1} is given in Figure 5.4.

FIGURE 5.4.

Note that only the 2-norm is orientation invariant. That is, if we measure
the length of a stick, with one end at the origin, we get the same result
regardless of how the stick is placed. The length of the stick, however, will
change in the 1-norm, and the oc-norm if, say, we tilt it a bit.

It is also interesting to graph the norms as functions of the entries of
the vectors. The graphs of f(z) =||z||, for the various classical norms, are
given in Figure 5.5.

Observe that the only norm showing a smooth surface (sopartial deriva-
tives can be taken everywhere) is the 2-norm. We will show the importance
of this when we look at least-squares problems. Also, note that the graphs
in the previous examples are level curves of these functions.

We might wonder about the necessity of various norms and, thus, various
metrics, To provide an answer we can recall that angles can be measured
by using degrees or radians. However, in calculus, derivative formulas in-
volving the trigonometric functions are given in radians. [If they were done
for degrees, those formulas would be more complicated. In the same way,
often calculationsare more easily done when choosingan appropriatenom.
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”::’2
Sx)=]d Slx)=],

=M.

FIGURE 5.5.

And, in some problems, the information obtained by using one norm can
be better than that obtained by another.

Still, all norms are equivalent in the following sense. Given any norm
11-11‘ there are positive scalars a and 3 such that

adg (z,0) < ||z|| < Bde (z,0)

for all z. Thus ||z|| is small if and only if the entries of = are small. We
will show this for our classical norms.

Theorem 5.2 For all vectors X,
(a') dg (:E’O) < ”xlll < \/’EdE (:L‘, 0) .
(v) dg(z,0) = |z,
Proof. We prove (a), leaving (c) for the reader. For this note that
n n 2
Y el < (Z lmk() :
k=1 k=1
Thus, taking square roots
dg (z,0) < [f=ll; -

And, since by the Cauchy-Schwarz inequality, as given in the exercises,
n n 3 /n b
Y bkl < <Z 12) (Z |zk|2) ,

k=1 k=1 k=1

Izl < Vndg (z,0)
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which yields (a). =

Since dg (zx, zp) = dE (zx — z0,0), We see that if z1,z5 .. . is a sequence
of vectors and x¢ a vector, then for any norm |{-[|, and corresponding « and

B,
adg (Zx, 20) < ||z —o|| < BdE (T, 20) .

Thus, if we establish convergenceto z in any of our norms, we equivalently
have established convergence in the Euclidean distance, and vice versa.
Figure 5.6 and 5.7 shows the convergence of zy, T2, . .. t0 zg using Euclidean
distance and the oo-norm.

E]

FIGURE 5.6.

T2
X

r=1

X

I r=2

FIGURE 5.7.

5.1.1 Optional (Evaluating Models)

Mathematical models are often built to predict or describe some phe-
nomenon. Such models should, when possible, be evaluated. We show
how this can be done on a small social science problem.

Social scientists study people: numbers of people in each age group, job
category, sex, etc. And they study movements of people in various cate-
gories.
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Professional 15 10 3 28
Supervisory 9 35 44 88
Labor 8 55 221 284

1B 10 3

32 100 268

A=] & 35 44

=1 32 100 268

8 55 221
32 100 268

Note that the first row of A gives the percentage of each categories’ sons

that end up as professionals. The second and third row of A have cor-

responding interpretations. Thus, if f is a distribution of fathers in the

categories, then
s =Af

gives the distribution of their sons in the categories. For example in our
data

32 28
f=1100|,s= 88
268 284 |

and Af =s.
What we now do is use this transition matrix to compute the distribution
of the sons’ sons in the categories. For this, we calculate

sons’ sons =AS
25.1 25
853 | ~ | 85
289.6 290
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400

30
90
280

1

5.1.2 MATLAB (VectorNom)

The commands to obtain vector norms are natural: norm(z, 1) provides
|lz|l,, norm(z, 2) provides ||z||,, and norm(z, inf) provides ||z||.,. For more,

type in help nom.
Exercises
1. Let z =(1,1,1)%. Compute ||z|l;, |lz|l,, and [z}l

2. Find the distance between (1,0,1,1)* and (1,1,2,0)* using the
(@ l-norm.  (b) 2-norm.
(c) oo-norm.

3. Let z = (3 -4i,4F3i)*. Find the length of z in the

@) I-norm.  (b) 2-norm.
(c) oo-norm.

4. Let z = (1+2i,2+i)" and y = (1Fi,1-2i)". Find the distance

between X and y in the
(@) I-norm.  (b) 2-norm.
(c) 00-norm.

. Draw the unit ‘circles’ of the I-norm, 2-norm, and 00-norm in R?,
superimposing one upon the others. Using these pictures, decide the
following.
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11

12.
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() If [lofl, < Lis [lzfl, W
(b) If [lz]l o < Lis flzflp < 1
Graph the unit “circles’ of the I-norm and the oco-norm in R3. Is the

‘circle’ for the I-norm similar to a rotation of that of the 00-norm, as
it isin R?? (Hint: Count vertices.)

Prove that if |}-|| is a vector norm,
@) =zl =llzll.  ®) llz —ull =lly —=l .

. Define f: R?2 — R by f(z1,z2) = ||z, where z = (z1,2,)". Find

2L (.’D17$2) and 2L (11'1,.’1:2)-

FED bx2

Place a stick in R? so that one end is at the origin and the other at
(0,1)%. Tilt the stick by % radian. Find the length of the tilted stick
in each of the following.

(a) l-norm (b) 2-norm
(c) oo-norm

n
(Cauchy-Schwarz inequality) Let z,y E R™. Prove that ). zxyx <
k=1

izl lyll, asfollows. (This inequality can be recalled from the calculus
result cos0 = Wﬁfﬂ; by noting that |cosé| < 1.)

2 2 n 2
(2) Show 0 < [lz+ tyl, = [lzl, +2¢ 35 2y + ¢ yll, where ¢ is
k=1

scalar.
2 n
) Phug 6=~} / 5 .
(c) Extend the result to complex scalars showing |zfy| < ||zl liyll, -

Prove Theorem 5.1

(a) Part (b). Hint: Use the Cauchy-Schwarz inequality.
(b) Part (c).

Let z and y be in Euclidean n-space. Use Theorem 5.2 in the follow-
ing.

(a) If ||lz||, < .001, find bounds on ||z||, and [jz|| -
(b) If ||z — yl|, < -001, find bounds on ||z — y|}, and |jz — y[, .
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13

14.

15.
16.

17.

5.2

5. Normed Vector Spaces

Define
lzll, = (z1l? + ... +|zal?)? .

where p is a positive integer. Prove that ||z||,, , called the p-norm, is
a vector norm on Euclidean n-space. (Just verify norm properties (i)
and (ii)).

2 2\
Let dy > 0 and dz > 0. Show that ||z = (d1 |z1|? + da | -] ) ,
called a weighted norm, is a norm on Euclidean n-space.

Prove part (c) of Theorem 5.2.

(Optional) Using MATLAB and eigenvalues and eigenvectors, com-
pute klim AF f. Explain what this vector tells us about the long-run
—00

behavior of the sons’ occupations.

(MATLAB) The population of a small country is placed in categories
0-9 years old, 10-19 years old, . . . The population in the categories
in 1970 was

(82, 330, 506, 525, 425, 431).

The Leslie matrix wes found to be

0 0 .232 .207 .036 O
98 0 O 0 0 0
0 99 0 0 0 0
00 .990 0 0
0 0 O 99 0 0
0 0 O 0 99 0

(a) Compute the population, in the categoriesin 1980 and 1990.
(b) The actual population in 1990 is given by

(187, 81, 330, 506, 524, 424)".

Find the relative (percentage) error between the estimate com-
puted in (a) and the actual population.

Induced Matrix Norms

In various calculating situations, involving vectors and matrices, we need

to pull out A in J|Az||, similar to pulling out a scalar, ||az|| =|al[|z|. The
matrix norm of this section is designed to have that property.

X
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Definition 5.2 Let ||-|| ke a vector norm on Euclidean n-space. Define
the induced matrix norm for an n x n matrix A as

] = maxe 1221

. 5.1
22 Tal (5-1)

(It can be proved that there is a maximum, as well as a minimum value of
f(x) = ﬂﬁﬂ when f is evaluated over all x # 0. Later we wall prove this

for the classical vector norms.)
If A ismx n and we use the same classical vector norm on ||z|} and

lAz|, [|A]|l & also defined by (5.1). (Note that if m # n thenz and Az
are in different vector spaces.)

By the way we defined ||A||, we see that
flAzl] < [IAll flz]

for all z, precisely the property that allows us to pull out A in ||Az||.
On some problems, the following method to calculate {|Af] is useful.

Theorem 5.3 ||A|| = max ||Au]|.

flul=1

Proof. Let T (x) =122l for all x # 0. Then f (z)= I8l =L || Az|| =

|4z and setting w = g2
f(z) = || Au|
= f(u).

Thus, we see that every value off is achieved by some u, ||u|| = 1.
Furthermore, if ||u]] = 1,then setting z = u, we have f(X) = f(u). So
every value achieved by u, |lu]| = 1,is also achieved by an z, z # 0. Thus,
max f(z) = X, fw) =4

the desired result. =

An example calculating the induced matrix norm may now be helpful.

Example 5.2 Let A = [ _? _; ] . Then, using the vector 2-norm
f (z) = || Azll, (5.2)

= \/5:::% — 8z37, T 522,

If |z|l, = 1, 22 t23 =1, soz; =+,/1 - 3. Plugging this into (5.2) and
using calculus, we can show that max f (x) = 3. So ||A)j, =3.
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We now need to show that an induced matrix norm is in fact a norm.

Theorem 5.4 Any induced matrix norm 4s a norm. That is, for any
m x n matrices A and B and for any scalar a,

1. Al > 04 A% 0 and }|of| =
2. |laA|l =|al || All for any scalar a, and
5 |IA+Bll < Al +1IBIl.

In addition, every induced matrix norm has the following properties:
(a) 1]l =1.

(b) | Az}] < ||A]l |z]l, with equality for some z # 0.

(c) |AB|| < |l Al lBJl, assuming the product is defined.

L o .
(d) ”rrhmluAmll fd=ty> If A is nonsingular.

) lAz|| 2 a=ry llzll, provided A is nonsingular.

Proof. We first prove that the induced matrix norm is actually a norm.
For this, we prove properties (2) and (3), leaving property (1)as an exercise.
Pt 1. For (2), using vector norm properties, we have that

lleAl| = max {[(c4) ul
= "mﬁlx lod || Au|

= lof max || Au]

=laf [|A]
For (3), we have that
lA+ Bl = jmax I(A + B) uj|
= max || Au + Bul|

“ mas (14l -+ | Bul)

Au B
< max || Au]|+ max || Bu]

=[lAl+ 1Bl
Rt 2. We now prove three of the remaining properties of the theorem.
For (b), by definition
IIAmII
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Thus, for any X ## 0,

| Az|
All > &——
or
Al llzl = || A=l .

And, the latter inequality holds for all z. Further, equality holds for some
z #0since f (X)= n,’,ﬁﬁ/achievesa maximum at some = # 0.
For (c), since

|AB|| = max |ABz]
=0 ||z
we have by (b)
IAB|| < max 1A=l
w0zl
and again by (b)
1AB] < max JAHIBI izl
T a0 2]
=4l 1Bl

For (d), for any {jzf| = 1,
1=|lz| = ||[A7 Az < ||[A7Y]| ) Az

where equality holds for some = by (b). Thus ]]A_I—TT[ < ||Az|| and since
equality holds for some z,
1
——— = min ||Az
AT = i 14

which is the result desired. m

Since induced matrix norms are norms, the equivalence of norms result
holds. That is, for any induced matrix norm ||-{|, there are positive scalars
« and 3 such that

adg (A,0) < || A € BdEe (A,0)

where dg is the Euclidean distance on matrices. The consequences of this
result are as those for vector norms. For example, if a sequence of matrices
Ay, Ag, ... issuch that

|Ax — Al > 0as k — 0,
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for some matrix A, then
adE (Ak,A) —0ask—0.

So, A, tends to A entrywise.

As you might suspect, computing || A|| by definition can be rather chal-
lenging. Remarkably, however, we can find formulas for a few of the induced
matrix norms.

Theorem 5.5 Let A be anmxn matrix. Using the classical vector norms,
we have the following.

m
(a) For the vector norm ||-|l;, [lAll; = max 3 lakj|, the mazimum abso-
k=1
lute column sum.

(b) For the vector norm ||:{|o0, [|Allee = mgx zn: laik|, the mazimum ab-
K=l

solute row sum.

(c) For the vector norm ||-|lo, [|All, = max [A (AHA)]% where the maz-
imum is taken over the square root of all eigenvalues A (A¥ A) of
AH A, (For completeness we included thisformula here. It #s proved
in Chapter 7.)

Proof. We prove (a). There are two parts.
m

Part 1. We show |4}, < max 3" |ax;|. For this,
k=1

”A"l = nax "AU 1 = ma'x Zalgu] +---4+ ZGm]u]
Hull,=1 llull,=

S jex (Z laxs | gl + -+ lams| MI)
1= =
"“"1—1 (Z (I‘Hj' +---+ lamJ|) |uJ|)

< m?-x(laljl +oo o (amgl) { Yl
j=1

m
=m]a.x(|0.1j| + o+ amjl) = mjaxZIijI :
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m
Part 2. We show there is a u, ||ull, = 1,where ||Au|| = max > Jaksl-
k=1

m

Y lakr)- Then set v =e,.. Using this u,
1

m
For this suppose max | =
PP J kZ=| ;] k=

since ||ull; =1,

m

m
14l 2 l4ully = Jagr] + o+ lame] = > lakr| = max > | lax]
k=1 k=1

Putting the parts together yields the result. m

Example 5.3 Let A = [_g _; } . Then
[lAll; =max {[3]+ [-2| |-1] +(2[}
=max{5,3} =5
lAlle =max {I3] +]-1] |-2| +|2]}
=max {4,4} =4

ll4ll, = max [A (4°4)]*
=max (4.13,.97} rounded to the hundreths place
=4.13.

We conclude this section by showing what induced matrix norms tell us
about a linear transformation,

L(z) = Azx.
If we look at the image of the unit circle,

1. ”rr}ﬁ_xl IIL ()|l = ||All says that the longest vector there has length

Al
2. “n‘x‘in1 (IL (z)|| = ]ﬁ says that the shortest vector there has length
Tij=
ﬂA_l-Tﬁ' (We assume here that A is nonsingular.)
Thus

e ()]

3. o TZT = 4] |A=1||. This number gives us some indication of

how much the image of the circle is distorted.

Example 5.4 Let L (X)= [ :13 ; z. As indicated in the Figure 5.8 and
shown in Chapter 10, the image of the unit circle is an ellipse.
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$ L(x) Ly)

FIGURE 58.
The major axis is an line with the vector [ } ] and the minor axis «n line
with “}
We now find maximum minimum lengths among the image vec-
L2 o2
tors. Since L (T}_Z ]) = jr[jfé , the mazimum length is 4, which
agrees with : 2
|4l = 4.
N2 -2
And, since L ([ 22 ]) =2 [ é ], the minimum length is 2. This
is the same as 2 2
1
A=,

We can convert these remarks into results about approximations. For
this, let w be given and z an approximation of w. Then

1L (w) — L(2)|| < |All llw - 2| (53)

which say that the error between image vectors, || L (w) — L (2)||, isno more
than || A} times the error between w and z, |[w — z|.

Should we want to bound the error independent of scaling, we would use
relative error. The error between w and z, relative to w, is defined as

_lw—2]
Tl

Independence of scaling can be seen in the calculation

1100w — 100z]| _ [jw — 2|
[1100w]| (7
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Note that if

llw — 2|
ffwf

where s is a positive integer, then

lw - 2]l <107 flwl} .

<1077,

Now, 10~* ||w]| moves the decimal in |jw|| to the left s places. Thus, the

first digit of ||w — z|| begins (in the worst case) at the (s 1) — st digit of

lw|l. For example, 103 (12345) = 12.345, whose first digit begins in the

4-th digit of 12345. So z approximates w to within the s-th digit of [jw]l,

the size of w. We will say here that ¢ is an s digit approximation of w.
Using Theorem 5.4,

1L (w) - Ll < [IAl flw — 2|

(0] sy (54
=c(A) "ﬁ
where
c(4) = A [|A7,

c(A) called the condition number of A. Thus the relative error between
image vectors is no greater than ¢(A) times that of the relative error be-
tween the vectors themselves. So ¢ (A)is somewhat like the derivative in
calculus. (The derivative indicates how much change in function values we
might expect from a change in values.)

As given in the exercises, c(A) > 1 for all A. In addition, although
¢(A) can be computed using any induced matrix norm, the sizes of the
corresponding ¢ (A)’s are about the same. For example, it can be shown
that

where ¢y (A),c2 (A), and ¢ (A) are the condition numbers of A with re-
spect to the induced 1, induced 2, and induced co matrix norms, respec-

tively.

5.2.1 Optional (Error in Solving AX =)

For us, a t-digit computer is a computer which rounds or truncates all
numbers to the first ¢ digits of the number. For example, using rounding,
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a 3-digit computer gives
64872 = 64900
and
3291267 = 331.67 =332.

Thus, if a problem is solved on a t-digit computer, the numerical t-digit
solution is in error. For example, suppose we solve, using a 2-digit com-

puter,
2 -1 Ty _ 410
-2 6 o | | 250 |°

Applying Ry + Rz, we get
2 -1 410
0 &5 | 660

Thus, z2 = 5§ =132 = 130 and by back substituting

2z, — (130) = 410
2.’171 = 540
) = 270.

The computed solution (270, 130) can be compared to the actual solution
(271, 132), and we can see that we computed the first 2 digits of the en-
tries of the actual solution accurately. Unfortunately, such accuracy is not
always the case.

Let A be an n x n nonsingular matrix and b an n x 1vector. Consider

Ax =b. (5.5)

It can be reasoned that if (5.5) is solved by, say, Gaussian elimination with
partial pivoting, on a t-digit computer, then the obtained answer £, satisfies

(ATE): =b (5.6)
for some n x n matrix E where

&l —t

Al

(~ denotes approximately). Actually, E depends on n and so for small
problems, the approximation can be better, while on larger problems, it
can be worse. Furthermore, if z is the solution to (5.5),

Il
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So the condition number shows how much affect the change E in (5.6) has
on the solution in (5.5). For example, if t = 7 and ¢ (A) =102 then

_____Ha: — j“‘” ~10% .
1zl

So & need not be a 7 digit approximation of z. We may have lost 2 digits
because of the condition of the problem.

Loosely, if c(A) is small (error magnification is not significant), then
A is called well conditioned. If, on the other hand, c(A) is large (error
magnification is beyond what is desired), then A is called ill-conditioned.
In between, A is called moderately conditioned. (What is significant and
what is tolerable depends on the problem at hand.)

We now look at an example which puts some of the discussion together.

10

Example 5.5 Let A = and b= . We solve Az =

©f8 wfs «fs
o B colen
e e o

<[ o8

b using MATLAB.
Using format long to get about 15 digits (MATLAB calculates in about
15 digits.), we get

1.26923076923075
£=| -3.19999999999993 |,
1.93846153846149
while
P 1.26923076923079
k3 ~3.20000000000000 | .
z=| 3 | ~| 193846153846154
| %
So we can see there is some error.

Now
cond (4,inf) = 1.206666666666643x 103.

All but the leading digit or so of these digits are unimportant (so even if
this computation has lots of its last digits in error, it still gives us what we
want). We note that

c(A) ~ 103
So, we might expect to lose a few digits. Now,

Iz = 2log _ 5 1996 x 10-1¢
llzll oo

~ 1071,
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So we lost about 1 digit. (Our answer was not exactly obtained as a 15-digit
computation.)

Since MATLAB calculations are done in about 15digits, and normally
only the first 5 digits are displayed, unless ¢ (A) is very large, we should
have the answer we want.

From the above, we see that computing ¢ (A) and getting, say, 10°, tells
us about our answer £. If s is large, it is a red flag that the computed
answer may not be a sufficiently close digit approximation of x. (In such
a case, using iterative improvement, as discussed in Chapter 8 can provide
more digits of accuracy.)

5.2.2 MATLAB (Matriz Norms and Condition Numbers)

The commands for computing matrix norms are like those for vector norms,
namely: norm (A,1) for ||Alj;, norm (4,2) for ||All,, norm (A, inf)for
[l All ., norm (A fro’)for ||Al| =de (A0). For more type in help nom.

In addition, we can compute the various condition numbers: cond (A1)
for ¢, (A),cond (A 2) for ca (A) cond (A inf) for co (A). For more type
in help cond.

Exercises
1 Let {m4,...,m,} be a set of real numbers.
(a) F c is a positive number, prove that max {cmy, ... ,em.} =

cmax {my, ... ymr}.

(b) If {ny,...,n} isalso a set of numbers, prove that

max {my + ny,..., M +n,.}

< max{m, ... M} +max{n1,. o et

2. Prove Theorem 5.4,
(a) Property 1. (b) Property a.
(c) Property e.

3. Prove Theorem 5.5, part b.

4 Let A = [‘11 ‘11 ] Prove that ||All, = 5 by maximizing f (z) =

||Az||, over all X, ||z]|, = 1.

5. Using the formulas in Theorem 5.5, compute both ||4]|, and || Al|,
for
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1 1 -3 ) ; 1424
(a) A=|2 0 -5 |. (b A=[ S
-1 4 —9 3—4i 6
1 -1 3 2
(C)A: 4 -1 0 _3].

6. Using the formula for Theorem 5.5, compute || 4], for
@ A=]|1 2]. (b)A=[1—z 1+2]
1
| 1

1 2 1447 1414
1 11
1 11"
~l10
7. Let A= [2 1].

(a) Graph Cy in the 1-norm.
(b) Graph the image of Cy under L (z) = Az. (Note that L maps
edges to edges.)

(c) Compute ||Al|, from your sketch.
(d) Compute || Af|; by the formula in Theorem 5.5.

1
8. Repeat Exercise 7 for A = [ ? 3 ] and the co-norm.

9. Let A= [1 0].

(0 A=

2 1

(a) Find the grid view of L (z)=Az.

and 2]

(b) Using the 1-norm, find the distance between [ 9

1
1
. 1 2
and the distance between L ([ 1 D and L ([ 9 D

(c) Compute ||A||, and verify (5.3).
(d) Compute c; (A) and verify (5.4).

10. Let A be an n x n matrix and ||-|| an induced matrix norm. Prove
that

|| A%|| < Al for all k.
11. Let A be an n x n matrix. Prove that
2dle < 14l < VRNl
Also prove that
2 4llp < Al < VA IAIE-
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12. Prove using any induced matrix norm, that for nonsingular matrices,
(a) c(4)>1. (b) c(I)=1.
(c) c(A)=c(A1). (d) c(AB) <c(A)c(B).

13. Let A be a nonsingular matrix and suppose that As =bh.
(a) If Ay =c, show that

e — 15—l
— <L c(A) ——.
e =@

(b) If 4 is the computed solution and »r =h — A&, show that

iz —yll firl
— < c(A) .
EI AT
Explain what this means.
14. Find s and y in B? such that [z — y{l, > 100 but 15z < .01.
(Hint: It may help to work from drawings.)

15. Let z = [-’;l Ly = [yl - f =z —yll, < 107% then |z —uif <
2

Y2
107t fori =1,2. If %ﬁ‘llm < 107, is it true that xl; i « 10"t for
all i? =

16. Concerning relative error,

(a) Suppose 1%32‘—;%’-1 < 1073 for some scalar z. Prove that z differs
from 123.4in the 4th digit of 123.4 (counting digits from the
left).

(b) Sometimes we say ‘loosely’ that 123.4 and s agree in the first 3
digits. To see why this can be wrong, note that
[1.000 — .999|
1

Does .999 ‘differ’ from 1.000 in the 4th digit? (Remember there
are 2 representations of 1 in decimal notation, namely, 1 and

<1073

.999...)
() If
]
3
<10-8
2 <1077,
3
2 e - 2

show that [ 3 ] and z differ in the 4th digit of [ 3 ]“
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17. Let A be a 2 x 2 matrix and L(z) = Az. How should w and e be
placed in R? so that

(a) IIL (w) = L(2)llz = [|4llz llw = 2|5
(b) LEfte = o () B,

18. (Optional) Sometimes, in getting data for a mathematical model, we
can only get 3 or 4 digits (with reasonable accuracy). Suppose the

model is

Az =b

111 123
A=11 2 4| andb=| 866 | .
1 389 869

In the following problems, use MATLAB.

where

(a) Solve Az =b.
(b) Set
1.004 0.999 1.003

A= 0998 2004 3.995 |.
0995 3.004 8.995

(Perhaps A is the actual data and A the rounded data.) Solve
Az =b and compare to the answer in (a).

(c) If our mathematical model is a 3-digit approximation, should we
accept the 15-digit answer given by MATLAB?

19. (MATLAB) Let z = (-1,1)* andy = (1,1)". Then ||z —yll, =2. Let
L (2)= (1) i ] z where € = .4. The grid view of L is below.Note

in Figure 5.9 that L(’I)J"ZL ’:)" increases ast — 0. Since

ILG) - L@, Iz =l
—zen SeWTE,

it follows that ¢ (A)is increasing as well. (That ¢z (A) is large and
that A is close to being singular are linked, as we will show in Chapter
7.)

Using the idea above, and MATLAB, find a 2 x 2 positive matrix
with ¢z (A) > 1000.
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z L Yy

-———y-

[
- vemsenecadcrennnce -

FIGURE 5.9.
5.3 Some Special Norms

In this section, we give two special matrix norms that axe also useful. For
the first of these, recall that the formula for the matrix norm induced from
the vector 2-norm is a bit complicated to compute (by hand). However,
when we need it (pulling A out of the 2-norm), we can usually use the
Frobenius nom,

m n é
Al F = (ZZI%F) :
i=1 j=1

Note that [|All =d& (A,0).

1 3

Example 5.6 Let A = [ 2 _4

] . Then

3
lAlle = (1-17 +131 + {2 +-4P)
= (30)* =5.48 rounded to 3 digits.

The proof that this is a norm is exactly the same as that of the vector
2-norm.
We link the Frobenius norm to the induced matrix norm ||-J|, as follows.

‘Theorem 5.6 Let A be anm x n matrix. Then
(a) | Az|l; < |Allg Iz,
(®) Al < 1Al -
Further, if B is an n x r matriz, then

(¢) |1ABlg < || Al 1Bl 5-
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Proof. We prove (a) leaving (b) and (c) as exercises. By direct calcula-
tion,

i
m 2\ ?

- (3

9 =1

n

||Am||2 = @ikTk
1

k=

-

n
and by the Cauchy-Schwarz inequality, applied to kzl ik Tk,

< (i (2 |am12) (ilmkV))% - (iilamlz nmné)%

i=1 \k=1 k=1 i=1 k=1
m n 3

< (ZZI%F) lzlly < Al llzly
i=1 k=1

which verifies (a). ®

Concluding, the Frobenius norm is not an induced matrix norm for any
vector norm. For square matrices, all such norms have the property that
(1]} = 1;however, ||I|| ¢ =n3. Still, it is easy to calculate and useful.

The second norm we give is another induced matrix norm and also turns
out to very useful. To defineit, let R be an n x n nonsingular matrix. For
any vector norm ||-|| on Euclidean n-space, define the vector R-norm as

Izl = | Rz .

The proof that ||-|| 5 is a vector norm is left as an exercise.

Example 5.7 Let R= [ 11 ] using the vector 1-norm,

0 2

= |&1 + z2| + |222] .

A ol
lellp = 1Rzl ={[ : 2]
1

3]

Now the matrix norm induced by vector norm ||-|| ; is, by definition,

Azl g
Al p = max ———=.
H ”R 720 ”x”R

So,

=@te t2-2/=7.
R

This matrix norm can be computed from the matrix norm induced by |[-].
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Theorem 5.7 Ij ||| is a vector norm and |}-|z the corresponding vector
R-norm, then the induced matrix norm satisfies

14l = | RAR?|
for any n x n matrix A.

Proof. By definition,

Al = maxlAi”i

s#0 ||z|| g
_ o IRAZ]
s#0 |[Rzl|

Setting y = Rz and noting that ||RAz|| = ||RAR™'y||, we have

__||rAR|
14l = max == 0
= ||RAR|],

the desired result. m

An example follows.

0
1

Example 5.8 Given the co-vector norm and R = [ ; ], then

4l = |RART|,

Thus, if A= 11 ! J, then

0 2

10 1 -1 10
=12 30 3] 1]
[ o]
3 -1 ]
=4.

3 ol

To conclude this section, we show how norms can be used to bound
eigenvalues.

For any n x n matrix A, we define the spectral radius of A, denoted p (A),
by

p(A) =max|}|

where the maximum is over all eigenvalues A of A.
As shown below, any induced matrix norm bounds the spectral radius.
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Theorem 5.8 Let A be an n x n matrix and ||-]| any vector norm. Then

p(A) THIAl

where }| 4|| is the induced matrix norm of A.

Proof. Let A be an eigenvalued A. Then
Ax =Xz
for some eigenvector X. Thus,
Azl =l Az|
and by using the properties,
ALzl 1Al -
And since x # 0,
AL < (1Al
Thus, since A was arbitrary,
p(A) < |IA]l.
The result follows. =

We demonstate the theorem with an example.

1 1
-1 1
and 1 —1i. Further, ||A]l, = 4|l = 2, while || A|l, = 1.4142. So {|A],
provides the best estimate of p (Ai‘ﬁere. (See Figure 5.10)

Example 5.9 Let A = [ Then the eigenvalues of A are 1+i

Actually, as can be seen in Figure 5.9, for a given n x n matrix, and any
positive scalar e, there is ‘some’ norm equal to, or close to, the spectral
radius.

Theorem 5.9 Let A be an n x n matriz and e a positive scalar. Then
there is an induced matrix norm ||| such that

p(4) < Al < p(A) +e.

Proof. The first inequality has already been shown, so we need only
argue the second. By Theorem 3.7, there is a nonsingular matrix P such
that

PlAP = J,
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e

FIGURE 5.10.

where J, is the Jordan formaf A with the 1’s on the superdiagonal replaced
by €. Now,

Al p-: = ||P7 AP,

— el
<p(4)+e,

the required bound. =

A special case of the theorem follows.

Corollary 5.1 Let A be an n x n matriz where all eigenvalues A, [A| =
p{A), are on 1 x 1 Jordan blocks of the Jordan form of A. Then there
exists an induced matriz n o m ||-|| such that

Al =p(A).

Proof. Note that in the proof of Theorem 3.7, ¢’s in J. only occur in
rows containing eigenvalues X where |A|] < p(A4). Thus E can be chosen
sufficiently small such that ||Je|l.,, =p (A). Hence ||A||p-1 =p(A). m

And, as a consequence, we have a norm proof of the following.
Corollary 5.2 If A isan n x n matrix and p (4) <1, then klim AF =0.

—00
Proof. Choose E > 0 suchthat p(A) +e < 1. Then, using the theorem,

let |l| be an induced matrix norm such that [|A[| < p (A)+E.
Since

4% < 141,
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for all &, klim [|A%{| =0. Thus, by the equivalence of norms, we have that
lim A*=0. m

k—o0

One of the important uses for norms is that they provide rates of con-
vergence for sequences of vectors. For example, consider the sequence gen-
erated by

z(kt1)=Azx(k)+b (5.7)

where A is an n x n matrix and b an n x 1vector. We know that if {|-|| is
an induced matrix norm and ||All < 1,then p(A) < 1,s0 by Neumann’s
formula z (0), z (1), ... converges to, say, . Thus, calculating the limit of
the sides of (5.7), we get

x=Az+b. (5.8)
Subtracting (5.8) from(5.7), we get
zk+1l)—z=A(z(k)—=z).
Thus,
Iz (k +1) —z|| < ||All = (k) - =]l .

(So, if, for example ||A|| = .9, then ||z (k¥ 1) —z]| is no more than .9 of
||z (k) — =], the previous calculation.) And, so the convergence rate of
z (0),z (1),... to z is, using the norm, || A|| per iterate or, overall, using
this norm, the convergence rate is ||A||* after k iterations. Note that by
Theorem 5.9 and Corollary 5.1, we can get this rate to be either p(A) or
slightly more.

5.3.1 Optional (Splitting Techniques)

In this optional, we see how to convert the problem of solving a system of
linear equations into a difference equation.
To see this, let A be an n x n matrix and b an n x 1vector. To solve

Az =b (5.9)

we can use the direct method of Gaussian elimination with partial pivoting.
Of course, due to round off, the numerical answer, say, £, may be incorrect
in the last few digits, an perhaps more, depending on ¢ (A).

Another way to solve (5.9) is by converting it into a difference equation.
To do this, let D =diag(a11,...,ann) and B = A = D. (Thus A is split
into D and B.) Then (5.9) becomes

(B+D)z=b
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or by rearranging
Dz = —-Bz +b.
If D is nonsingular,
¢ =—D"'Bz + Db,

The difference equation arises by setting = (0) as some constant vector
and inductively defining = (1) ,x (2) ,... by

z(kt1)=-D"'Bz (k)t Db (5.10)

Now if A is diagonally dominant (lasi| > |aal +...+ las iz1| Flas i +

|am| for all 4, a situation which often occurs when numerically solving
differential and partial differential equations), then ||[D=B||_, <1. Thus,
the sequence converges to, say, X. Calculating the limit of the sides of
(5.10), we get

¢=-D"'Bz+D '
Rearranging, we have
Az =h.

So X is the solutionto (5.9).
Note that

lz(k+1) -zl < Al llz (k) —=]|-

Thus, if a numerically computed & (K)is in error, then the next & (k + 1)=
A2 (k)+ b satisfies

£k +1) —=|l < [|All |2 (k) — =l

and so the difference ||&(k+ 1) —z| is no more than ||A4]| ||Z (k) — =||.
Thus, even if small errors are made in computing the iterates, « continues
to convergence.

Another feature about iterative methods is that we can continue to com-
pute z (k)’s until we have the desired number of digits of accuracy. To help
understand this remark, we provide an example.

Example 5.10 Let A = [i’ 2 ] and b = [; } We solve Az = b by
splitting. [

[3 0 _[o 2 . _[0 2
Here, D = 0 4]andB— 1 0]. So D-B = % 8]and
1
D'y = [ 3 ] . Since, p (D~'B) =.4082
4

z(kt1)=-D"'Bz ()t D'
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converges at the rate of (r082)’° to the solution to AX =b.

Starting with x (0)= , we have

1
1
z (1) z(2) z(3)
—0.3333 0.1667 | [ 0.0556 |
0.2500 ] [ 05833) | 0.4583 |

0.0278 —0.0093 0.0046
0.5139 0.4931 0.5023

z (7) z (8) _z(9)

—0.0015 | [ 0.0008 ] [ —0.0003 ]
04988 | | 05004 | | 05001 |

T T 53333)]
0.0001 X

0.5001 0.5000

187

And, after the Il-th iterate, all entries have the same digits and so x =

0.0000

0.5000 ] as can be checked.

On larger problems, it may be that the last digit doesn't converge, e.g.,
when the amount of convergence and the amount of error balance. In that
case, we take as the approximate solution the answer to those digits that

do agree.

There are many well-known splitting methods. For example, the point
Jacobi and the Gauss-Seidel methods are two of the better known splitting

methods.

5.3.2 MATLAB (Code for Iterative Solutions)

The MATLAB codes for the calculations in this section follow.

1. Code for Example 5.10

b= _1.;1 :
5ol
z=[1;1];
fork=1:12

z=Bxz+b
end
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2. A More General Code for Iterative Solutions

%
%
%

0

%
%

%

This is z (0).

Used as a counter.
Continues until 14 digit
approximation is reached.

% Thiis keeps z (k) .

Thiis calculates z (kt 1).
Updates the counter.

If we can’t get a 14
digit approximation, we
need to stop somewhere.

y =[1;1]
z =[0;0];
c=1;
while (norm(z — y)/norm(z)
>10A (-14))
y =;
z=Bxz+b
c=c+1
if ¢ > 10000
break
end
end
Exercises
1. Find the Frobenius norm for each matrix.
2 -1 0
(a) A=] -2 3 4
L 0 21
[ q 2—1
®A=]142 2 }
[ 1-14
© 4= ;s ]

2. Prove Theorem 5.6.

(@ Part b. (Hint: Use Part (a) and consider the ratios %Aﬁﬂl.)

(b) Part c.

3. Let R be a nonsingular matrix. Prove that for any vector norm ||-|f,

-l g is @ vector norm.

4. Find ||z|| g for

@s=[ 1]r=[5 1
Cb)x=[_§],R=[3?

5. Find ||A|| 5 for

J and the vector 1-norm.

], and the vector oc-norm.
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11
(a)A=[1 1R

[ (1) f J, and the vector I-norm.

1 2 1 -1
(b) A= [ 1 2 ] R [ 11 }, and the vector oo-norm.

2 |

(a) Find the eigenvalues of A. Plot these in R2.

(b) Using the I-norm and the co-norms, find bounds on the eigenval-

ues. Draw circles of radii {|A[f; and |]A}|, about the origin, and
observe that these circles contain the eigenvalues of A. What

norm gives the better result?

N =

6. LetA:[

1 ¢ . .
Leta=| g | | Findp(a), JAll, and fim (141, - p(4).

(a) Isthe bound p (4) < ||4[l; always a good one?
1 0

(b) LetR = 02| Calculate, using the I-norm to define||-|| 5 ,
oirgs (14l r — £ (A)) -
(c) Can you improve on the bound ||A||p of (b) by using R =
1 07,
0t |’

8. Give an example of a 2 x 2 matrix A such that p (A) =1 and
(@ [Jim A* exists.
(b) Jlim A¥ doesn’t exist.

9. Let A be an n x n matrix. Prove

(@) £ 14l < Al < nllAll,, -
(b) L |All; < J|Allp < nllAll; -
() “eAt“ < ell Al for any induced matrix norm {-{|.

10. For the following difference equations, find z such that z (1),z (2) , ...

convergesto z. What is the rate of convergence, using {|-{|, and |}-|| ..,
for the following?

(a) z(k+1)= [ ; f ]I(k)+[i]
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..6 10 1
) z(k+1)=] 0 5 1j|:z:(k)+ 2}
=0 0 4 1
11. LetD=[(1) 8 . Find a t so that ||A]| -, = || D7'AD|_ <1
@ 4= 1] ® a7 3]

12. (MATLAB) Consider the school problem diagrammed in Figure 5.11.
Provide the mathematical model, = (It +1) = Az (It} +b, for this

process.
i .05 05 ﬂ.os

3000 95 .95 90
. > 8th 9% |}———>

FIGURE 5.11.

(a) Provide the mathematical model, x (I¢ + 1) = Ax (I} Fb, for this

process.
(b) Find the steady state vector z,z = klim z (I(), and explain what
— 00

the entries in this vector mean.

(c) Using the convergence rate, and z (0) = 0, find the smallest I(
such that ||z — z (k)| < (-1)|lz||o, SO the process is within
10% of steady state.

13. (MATLAB) Consider (k1) = Az (k) where

0O 0 .99
A= 0 0 99 ].
[.99 0 0 ]
Find
(a) |14, (&) [4lle
(c) IAll;-

Which of these norms gives the convergence at the best rate?

31 -1 1
14. (MATLAB) Solve | =1 4 2 jx = [2 by splitting as de-
0 2 5 3
scribed in Optional.
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15. (MATLAB) Find, by tinkering, a matrix A such that [[All; <{A]l,.

5.4 Inner Product Norms and Orthogonality

In this section we define a dot-product, called an inner product in this
setting, on vector spaces. We show how to use inner products to define
norms. As with dot products, inner products can also be used to define
orthogonality, and orthogonality can be used as it was in calculus.

To define an inner product, we use the properties of a dot product in
Euclidean 2-space. Recall that for vectors z and ¥ in this space,

-y =141 2202,
or perhaps in different notation

(z,y) =z17 + T2To.

Definition 5.3 Let V be a vector space. Suppose that there is a way of
assigning to each pair of vectorsz and y in V ascalar, written (xy). This
function,(-,-), is an inner product on V provided it satisfies the following
properties for all vectors and all scalars.

i. (z,z) >0z #0 and (0,0) =0
i. (z,9) = (¥, 2)
iii. (az,y) =q(z,y) and (z,cry) =a(z,y)
w. (z,y t2) =(z,y) ¥ (2,2) and (& +v,2) = (2,2) T (v,2)

A vector space V that has an inner product defined on it is called an
inner product space.

Actually the second properties in (iii) and (iv) can be proved from the
remaining given properties. We include them since they are companions
to the first properties.

Some classical inner products and inner product spaces follow.

Example 5.11 On Euclidean n-space, an inner product is
n
(z,y) :Z:l:,—'gj,-. (In the real case, 7 = y;.) (5.11)
i=l
Example 5.12 On m x n matriz space, an inner product is

(A4,B) =" aiby. (5.12)

i=1 j=1
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Example 5.13 On C [a}], define

b
(f.9) = / f ()9 (®) dt. G.13)

This is an inner product.

Note that all of these inner products arise, like the dot product, by
multiplying corresponding entries (second entries conjugated) and summing
those products.

As with dot products, an inner product can be used to determine lengths
of vectors, that is,

]| = (z,2)? |

And, mimicking the proof for the vector 2-norm, we can show that {}-|| is a
norm.
The following example will show how to use this norm in calculating.

Example 5.14 Let A = [(1) —i } . Then, using the inner product of
Example 5.12,
i
Al = (4, 4)?
=(1.1F (-1)(-1D)+0-0+1-1)3
=V3.

, 2 1
Andsz—[3 __2],

awam=la-s1=| 5 3|

S (ERIEEN))
= (17 +(-9 F (-3 +57)
=/23.

Orthogonality of two vectors x and y is defined in the natural way,
namely, if

(zsy) =0

then z and y are orthogonal. (Note that if (z,y) =0, then (y,z) =0, so
the order of x and y isn't important.)

Using orthogonality, we have the Pythagorean theorem for any inner
product space.
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Lemma 5.1 Let V ke aninner product space and z,y E V. If (z,y) =0,
then ||z Tyl|® = |l=li® T lyl|?, as depicted in Figure 5.12.

A
y equivalent to y
xty,
X
FIGURE 5.12.

Proof. Since

lz+yl* = (z+y.z+y)
= |lz|? + (z,9) + (3, %) + fj|®
= ||z|i® + llll®,

we have the result. =

A major use of orthogonality is in calculating coefficients of linear com-
binations of pair-wise orthogonal nonzero vectors. An example of how
follows.

Lemma 5.2 Letq,...,q, ke pairwise orthogonal nonzero vectors an Eu-
clidean n-space. Theng,...,g, are linearly independent.

Proof. Let (84,...,8,) be a solution to the pendent equation for the
vectors ¢i,. .. ,qn. Thus,

B T .- T Bpaa =0.
Now,
(gk, $1a1) + - + (Gks Bntn) = (gr,0).
As given in the exercises, (gg,0) = 0, so we have

By, (gr.qx) =0.

Since (gx,qx) > 0, B, =0. And, since k was arbitrary, 8, =--- =f,, =0.
Thus ¢, . .. ,qn, are linearly independent. m
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Any set of pair-wise orthogonal vectors is called an orthogonal set; while
if, in addition, each vector has length, or norm, 1, the set is called an
orthonormal set.

Orthogonality is often used in closest point (approximation) work. To
show how, we provide a brief review of calculus.

In calculus, we use dot products to find the component of a vector X on

a vector u. (See Figure 5.13.) If c is that component, as given in calculus,

¢ = £9%. Observe that X — cu is orthogonal to  and that cu is the closest-

0
w > 4_)11

FIGURE 5.13.

point in span{u}to X.

Using components, if u; and u are Orthogonal in R3 and z E R?, then
X —e1uy —caug is orthogonal to uy and ug; it is orthogonal to span {uy, us}.
Here ¢; = £2- and ¢z = 2% are the components of X on u; and ug,
respectively. Thus, c¢;u1 +C2u2 is the closest point in span {u;,u2} to X.
(Perhaps making a small 3-D model, Figure 5.14, will help.)

’X

/uz

Cuptcal,y

CHU

>y,

iy

FIGURE 5.14.

We now give this result for any inner product space.

Theorem 5.10 Let V be an inner product space and uy,. .. ,um pairuwise
orthogonal nonzero vectors in V. Let X E V and from it define the corre-
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spondang Fourier sum, using w1, . .. ,%m, as
Ty =cuy + ... +cmum

where the component ¢, of X ONwuy & ¢, = Lzl Thenz—g s s orthogonal

T (uk,uk)”

to each of u1,...,un. (See Figure 5.15.)

x |
Y |
+X '

X-X¢ X=Xg

)
Xg
- xf
Uy
FIGURE 5.15.

Proof. To prove that X — z; is orthogonal to ug, show by direct calcu-
lation that (X—zg,ux) =0. ®

We now apply this theorem to find orthogonal vectors u1,uz,. ..,Um,
which span the same space as given linearly independent vectors z1, ... ,%
To do this, set

Uy = I

u2=:vg—xf=:c2—c1u1

where ¢ = M
(Ul;ul)
U3 = T3 — Ty = T3 — C1U1 — ClUg
I3, U
where € = (m31u1) — ( 3 2)

y €2 — .
(uy,u1) (uz,uz)
In general
U =T —ZTf
=Tk — ClUup — C2U2 — -+ — Cp~1Uk—1
— (T, U1 — Th,Uk—1 3
where ¢; = TS k-1 = é:uk—_)l—; (Sowe can compute all uy’s by

formula.)
That span{u,. .. ,um} ={z1, ... ,zm} is left as an exercise.
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As you may recall from linear algebra, this method is called the Gram-
Schmidt process. An example demonstrating the Gram-Schmidt process
follows.

1 1 1
Example 5.15 Let z; = [1},3:2: [1},and1:3= [0:| Then
1

0 0
1
i.u1=zl= 1 .
1

ii. For up we need to calculate the corresponding z;. Here

2
(IL’Q, ul)u = 2wy

z (’U,l,’l.ﬂ) 1= 3

f =clu1 =

and so

oINS —Co-

U2=z2-—z,=zz—%u1= |: :I . (We can visually check to see

if (u1,u2) =0.)

iii. Togetug, we need tofind the corresponding z,. So

(z3,u1) (3, u2)
T, = C1u + Cug = U2
e (uur)  (uz,up)
3
=dur + due= | 4
3 2 0
1
2
Hence uz = z3 =X, =3 — §u; — dup = —% . Observe that ug
0

is orthogonal to u; and us,.

if A =[x ...x,], then applyingthe Gram-Schmidt process to the columns
of A leads to an important factorization of A, called the QR-factorization,
namely

A=QR (5.14)

where the columns of Q form an orthonormal set and R is an upper trian-
gular matrix. We show how this can be done in an example.
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Example 5.16 Let A =[x zoz3] where the ;’s are given in the previous
example. We use the calculations of the previous example,

Uy =T
Uy =T -2-U
2 =T2 -3
213—23——1u ——1u
3727
Soluing for the zy ’s yields
uy = I

2u+u—a:
31 2 = T2

1u +1u tus =
3H T Su 3 =23.

Writing these equations as a matrix equation, using backward multiplication
on columns, yields

1 2 1
31

[U11L2u,3] lr 0 1 3 = [IL‘1$2£L'3] .
10 01

Now, normalizing the u;’s, we have on the left side

w0 O Jfhml o 0 Jr1# 3
[wuzug] | 0 gy O 0 Jugfl O 01 3
0 0 Ry 0 0 Jusflj[O 0 1
or
w wp wg ]| Ml Flell gl
[nu [ Tzl ||u3u] luall 3 luall | = l212224].
1 0 0 ul

Finally, plugging in the numbers, we get the QR-factorization,

ow“ﬁl

0 & 1| -
0 0 £

2

] v3 2V3 iV3 [111
6 110
100

NN
&J ! %Il"'o: ~

(The method of factoring A = QR given here is not good in numerical
computations involving rounding. In Chapter 8, we give a good method.)

Using components, we now give the closest point (approximation) theo-
rem.
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Theorem 5.11 Let V be aninner product space and w1, ..., U, pairwise
orthogonal vectors an V. Let X E V. Then the closest vector in the sub-
space W =span {uy, ... ,um} t0 X is precisely =g, the Fourier sum using
Ulye vn g Um-

Proof. Letve W _Sincexy; € W soiszy—v. (See Figure5.16.) Thus,
we can write

Ty —v=auy + ...+amum

for some scalars aq, . .. ,am. Since, by the lemma, X —zy is orthogonal to
TX
(fo
v
FIGURE 5.16.

U1,. .. ,Um, Dy direct calculation we can show it is orthogonal to 5 — v.
Thus by the Pythagorean Theorem,

lz = oll* =llz —z¢I* *llzs - vll”.
Rearranging leads to

2
llz —zsl” =flz — v — flzy —vlI* and so
2
lz - 2¢]? < flz —v]?

where equality can hold only if v =xf. Since this inequality holds for all
v E W ,z; is precisely the closest vector in W to x. m

Given a subspace W of Euclidean n-space, Theorem 5.11 can be used to
find a matrix P such that PX is the closest point in W to x, for any X.
This P is called an orthogonal projection matrix.

We find P in R™ since this is the matrix we use most often. (C™ is done
in exactly the same way.) To find P, let uy,... ,u, be an orthonormal
basis (a besis of orthogonal vectors each having length one) for W and
U =[uy,...,us]. Then, we need P to satisfy PX =z; Recall that

zf = (zu)u T F (2 0) ur
Thus by backward multiplication,

(I’ ul)
s ={ur,...,u :
(z,ur)
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Noting (z,w;) =ulz, we have

= (U1 ..., Ur [i :| X

u’r
=U Utz.
Thus,

P =UU"

is the orthogonal projection matrix desired.
An example can help.

1
Example 5.17 Let W be the plane given by z =0. Since a and [0
0
1 1
satisfy this equation, W =span 11,]0 . Note that the basis for
0 0
W is not an orthonormal basis.

Applying Gram-Schmidt to [

O =

1
7 0 } , we have the orthogonal basis
0
given below. ’ [

[ 1
v = 1
0
1
0

715:|
Uy = 75
0

7
Uy = —715 .
0

Now
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and
100
P=UU'=|[01 0.
0 0O
I I
And, since P | zo | = | 22 |, & Is geometrically clear that P projects
T3 0

R® onto the plane W .

5.4.1 Optional (Closest Matrix from Symmetric Matrices)

Sometimes in work we have data which is not precise, perhaps obtained by
measurement or experiment. If it is known that the actual problem involves
a symmetric matrix, the data may only give some close approximation to
it. When this occurs, we can replace the approximate matrix by the closest
symmetric matrix by using Fourier sums. We show how this is done for
2 X 2 matrices.

The 2 x 2 symmetric matrices form a subspace of R*2 of dimension
3. An orthogonal basis for subspace is

BRI

For any A = [ i 2 , We compute its closest symmetric matrix by apply-

ing Theorem 5.11. TNES matrix is
_[10 0 0], btc[0 1
Af‘“[o 0]”[0 1}* 2 [1 0]

= 2
- b
e d

Of course this result can be extended to n x n matrices.

5.4.2 MATLAB (Orth and the Projection Matrix)

MATLAB can be used to find an orthonormal basis for a vector space
spanned by given vectors. And, the orthogonal projection matrix can be
computed from it.

1 1
We do Example 5.17 in MATLAB. Recall, W = span { [ 1 ] , I: 0 } }
0 0

We use the spanning vectors to form a matrix A = [

O =
(=R =R
—
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For the orthonormal basis, use the command orth (A)which gives an
orthonormal basis for the span of the columns of A.
orth(A
6:8887 0.5257
ans = | 6:3287 —0.8507
0 0
The first two columns of this matrix form an orthonormal basis. Note,
however, it is not the basis obtained by Gram-Schmidt. This kind of com-
putation is usually done with a QR decomposition or a singular value de-
composition. (See Chapters 7 and 8.)
Now, for the orthogonal projection matrix we use,

Q =orth(A);

P=Qx+xQ (Q' is the transpose of Q.)
1 00

ans=|0 1 0.
0 0O

This is, as expected, what we obtained in Example 5.17.
For more, type in help orth.

Exercises
1. Find the inner product of each of the following:
@ z= (1’ -1, 1)t Y= (2’07 -l)t .
(b) z=(,1,1-1)", y=(2—34,2,1 +4)".

1 4 4 2 -1 -3
©A=]0 _; 3},B= 1 4 -2

(d) f(t)=t,g(t)=1,wherea=-1and b =1.

2. Find the distance between the vectors in Exercise 1, parts (a), (b),
(¢}, and (d).

3. Decide which pair of vectors are orthogonal.

(a) z =(1,-1)",y =(1,1)"
() z=(1,5, 1=\ »=ri —1+i 1)t
1 1 1
R e
(d) f (t)=cost, g (t)=sint, wherea= -7 and b =7

4. Prove that the expressions in (a) Example 5.11, (b) Example 5.12,
and (c) Example 5.13 are inner products.

5. In the definition of inner product, prove that the second properties
of (iii) and (iv) can be proved from the remaining properties.
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6.
7.

10.

11.

12.

13.

5. Normed Vector Spaces

For any inner product space V ,prove that (0,2) =0 for any X E'V.

In an inner product space, the angle 4, 0 < 6 < =, between two
nonzero vectors z and y satisfies the equation

(z,y)
Nzl lyll”

(Recall here that ||z]|=(z, m)*, and Jlyll = (v, y)’}.) Find the angles
between the following vectors.

cosf =

(@) z =(1, 0) y= (1,1)t Check your answer geometrically.

h\mi(‘l 1 . —f1 090 1)
(c) &= é 11’Y=(8 o

. Normalize the following vectors.

(a) (1,1,1)° () (1t+4,2-30)"

© A=[ _; o i] (d) f(t)=twherea=—1,b=1

Let uy,...,u, be an orthonormal set. Prove that

”alul + - +amum"§ = |(11|2 +oo 4+ Iaml2 .

Apply the Gram-Schmidt process to

@) z1 =(1,1,1)% 23 =(1,1,0)%, z3 =(1,-1,2)".

11 11 01

=1 o]o=[ 1] o[V 1]

() f(t)=1,g(t)=t, h(t)=t%* wherea =0, b=1.

In the Gram-Schmidt process, prove that

(a) Span{$1,$2’$3} =spa.n{u1,u2,u3}.

(b) span{zy,... ,Zm} =span{uy,... ,um}-
Find the orthogonal projection matrix that orthogonally projects

() R? onto the line parametrically described by z, = ¢, zo = ¢
where —oo <t <oo. (Check your work geometrically.)

(b) R3 onto the plane given by z; to, Tz =0

1 1 0
Apply the Gram-Schmidt process to [ -1 }, [0 ], [1 J Ex-

1 1 0
plain geometrically why uz =0.



14.

15.
16.

17.
18.

19.

20.

21

22.
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1 1 1
In span { 11,11 , find the closest vector to .
0 1 3

Find the polynomial of degree 1 (or less) closest to 1+t +¢2, on [0, 1].

Consider the line parametrically described by z; =1, 22 =2t where
—ca<t < oo.

(a) Find the orthogonal projection matrix from R? onto this line.
(b) Use the orthogonal rrojection matrix to compute the closest

point on this line to i ] . (Check your answer geometrically.)

Let P be an orthogonal projection matrix. Show that P? =P.

Find the formula for the orthogonal projection matrix from C” to W
where W has u,, ... ,u, as an orthonormal basis.

Does the set of orthogonal projection matrices, defined on R2, form
a subspace of R2%2?

(Optional). Using Fourier sums, find the closest upper triangular
matrix to [ a b

c d |’
(MATLAB). Use MATLAB to solve the following problem. Let

W C R3 be the vectors in the solution to
z1 T2z9 — 253 =0.

(a) Find an orthonormal basis for W. (Findnull(4) , A =[12 -1].)
(b) Find the corresponding orthogonal projection matrix P.
(c) Use P to find the closest point in W to [1,1,1]".

(d) How close is [1, 1,1)" to W?
(MATLAB). Let L () = Az where A = l: -
(b) Find the orthogonal projection matrix of R® onto range L.

g

1
1
1

—_—_ 0

(@) Find an orthogonal basis for range L.






6
Unitary Similarity

A unitary matrix U is a special matrix, which as a linear transformation
L (z) = UX,preserves figures in the space. The grid view of these trans-
formations shows no shearing nor scaling. They appear as rotations or
reflections of the space. And, since these matrices do not distort figures,
they are excellent for obtaining simple coordinate views of curves, surfaces,
and other geometrical objects. In addition, since these matrices do not
magnify error, they are also important in developing numerical algorithms
which provide good answers.

6.1 Unitary Matrices
This section concerns the Euclidean n-space with inner product
X y) =19, + ...+a:nyn.

(Recall for real numbers, g; =y;.) It is often helpful to write this inner
product as a matrix product,

(z,y) =y"z. (6.1)

In fact, much of what we do in this section can be directly observed by
using (6.1).

We study n x n matrices U such that L(z) = Uz preserves figures
(including lengths and orthogonality). Thinking in terms of the grid view,
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since the columns of U form the axes for the new grid in the range of L,
those columns should form an orthonormal set (ase; and e; did in R?).
Otherwise the geometry is distorted. See Figure 6.1.

- 4 L = x @ q

FIGURE 6.1.

Definition 6.1 An n x n matrix U is unitary if the columns of U/ are
pair-wise orthogonal and length one. If the entries in the matrix are real
numbers, we call the matrix orthogonal, and, as is customary, use Q instead
of U.

Two examples demonstrate what L (x)= QX ,or simply Q ,does to R2.

Example 6.1 (Rotation) Let Q = [ ‘;‘I’sz -ggns g

matriz B orthogonal. The grid view of L (x)=QX is given in Figure 6.2.
This transformation rotates the plane 8 degrees. More generally, the n x n

. By definition, this

FIGURE 6.2.
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matrix
T s

1 0 0]

01 0

0 0 -+- cos§ —sin@ ---0} r

Q=

0 0 --- sind cos@ ---0 s

0 0 .- -1

called a Givens matrix or plane rotation, rotates the z,z,-plane in R",
leaving all other coordinates alone. (In R3, rotating in the z;z2-plane
keeps the z3-azis fized and rotates R about it. In higher dimensions, this
may be a bit hard to imagine.)

. _ [ cos§  siné ]
Example 6.2 (Reflection) Let H = [ sind —cosé | , the only orthog-
. . L cos8 ]
onal matrix, other than that in Example 6.1, with first column sind |-

Thegrid view of L (x)=Qx isgiven inFigure 6.3. 1t is clear that L is not

Y

D L R T

|
L

FIGURE 6.3.

arotation. However, this transformation can be seen as a reflection (flip) of
the plane about the line £ bisecting the z;-azis and the y;-azis. (Perhaps
overlaying a transparency, drawing the axes on it and then reflecting as
described will help.)

Alternately, L can be described as inverting the plane through ¢ so that
each x ends up at its mirror image ' as shown in Figure 6.4. We use this
latter view to find the matrix for this transformation on R™.
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FIGURE 6.4.

For this, let u E R" be such that [Jull, = 1. (In analogy, « will ke the
direction of the inversion.) Define

W ={x:XE R" and (ux)=0}.

(W generalizes . R™ will ke inverted through W.) As given in the exercises,
W is a subspace.

We show how to reflect R™ through W parallel to«. To do this, let P be
the orthogonal projection matrix from R™ onto the line, span {u}. Thus,

P=uut

(Note that P isn x n.) Given x € R™, P X is the projection of X onto the
line determined by u. Thus, the inversion of X through W parallel to u is
the vector =’/ where 2’ =X — 2Pz as shown in an Figure 6.5. From this, we

-2Px

FIGURE 6.5.
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have that
L @=Hz,
where
H=I-2uut (6.2)
reflects R" through W parallel to u.
For example, if we want to reflect R* parallel to v = [ —g ], through
2

W =& :(z,u) =0} =span {[ } ]}, we would use

] Er]

|

The matrix H, as defined in (6.2), is called a Householder matrix .

D=0~

oA

To see how much of matrix space orthogonal matrices comprise, we can
graph a piece of this space from R?*2, which contains the plane rotations.
For this, we look at the 3-dimensipnal subspace of matrices of the form
Jpa Z ] and graph the matrices f g?ﬁg —;1;2 ,0< 6 < 2m, in this

&ce. The graph appears in Figure 6.6.

Actually the orthogonal matrices are on the sphere of radius v/2 about
the origin. But interestingly, they do not constitute all of this space since

(1,1,0,0)* (which correspondsto [ (1) éj) isalsoon this sphere. However,

what we need to see is that the orthogon
of matrix space.
Definition 6.1 can be formulated as a matrix equation.

matrices cover only a small part

Lemma 6.1 Let U be ann x n matrix. ThenU & unitary if and only #f
U satisfies the unitary equation,

UHU =1.
Proof. We argue both implications of the biconditional.
Part a. For the direct implication, suppose U is unitary. Then
ufluy - uflu, :l

ufyy - ufu,

U”U=[
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Orthogonal matrices In 2 x 2 matrx space

FIGURE 6.6.

where the columns of U are uy,. ..,u,. Using (6.1), UHU =1.
Past b. For the converse, suppose U satisfies the unitary equation
UHU = 1. In terms of entries, the equation is

H 10 ...
ufluy - uflu, 0 (6.3)
ul.'_,U;l‘Zl, -_ 0 0 -
wHuy - uflu, 1

where uy,. .. ,u, are the columns of U. Thus, by (6.1), the columns of U
are pair-wise orthogonal and of length one, and so U is unitary. =

An immediate consequence of this theorem is that if U is unitary, then
U-l=UH,

This lemma is usually used to develop results about unitary matrices
rather than to decide if a particular matrix is unitary. We show this in the
results below.

Theorem 6.1 Let T be a triangular matrix that & unitary. ThenT 4s a
diagonal matrix with |tkx] =1 for all K.

Proof. Since T is unitary (and so 7-! =TF), T satisfiesthe equation,

TTH = THT, (6.4)

We now argue the 3 x 3 case, since that argument is easily extended to the
general case. We suppose T is lower triangular.
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Writing out (6-4entrywise, we have

tn 0 O t Em §31-
toar t22 O 0 it ta

ta1 32 133 0 0 ‘33
til ?21 231 tn 0 0
=1 0 & ta tar1 432 0 {.
0 0 a3 ta1 32 133
Comparing the 1,1-entries in the products, we get
tnfn = tuti +Iatoa +iatar or
2
tul? = ltal? + ltal® + sl .

Thus, t21 =t3; =0. Comparing the 2,2-entries, then the 3,3-entries estab-
lishes that T is a diagonal matrix. Finally,since T is unitary, the columns
of T must be length 1and so each |txx| = 1. &

For the arithmetic of unitary matrices, we have the following.
Theorem 6.2 Two properties of unitary matrices follow.

(a) If Uy and Uy are unitary, so is UiUs.

(b) If U is unitary, so is UX.

Proof. We argue Part (a), leaving Part (b) as an exercise.
Let Uy, U, be unitary. Then, checking the unitary equation,

hU)® () =UFUE UL U, =URU, =1 .
Thus, by Lemma 6.1, U1 Uz is unitary. ®

Considering the grid view of L (x)= Uz, we would expect the following
geometric properties.

Theorem 6.3 Let U be an n x n unitary matrix. Thenfor all x and y,
in Euclidean n-space,

(a) Uz, =|lz}jz. (Length is unchanged.)

(b) (Uz,Uy) =(x,y). (If U is an orthogonal matrix then using (a) and
(b), we leave it as an exercise to show that U preserves angles.)

In addition,

(c) |detU{ = 1. (It is known that for a polygonal shape X, the uolume
of AX is|det A| times the volume of X . Thus, under L (x)=Ux, L
preserves volume.)
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Proof. We argue two parts.
Part a. Using Lemma 6.1,

\Uz)3 = Uz)? (Uz) = 27 UHUz = 28z = |z|2.

Thus, ||Uz||, _||ac||2
Part b. ThiSis done asin Part (a). m

Concerning calculation, the norm and condition number of a unitary
matrix are as expected from the grid view. The unit circle is not distorted.

Theorem 6.4 Let U be a unitary matrix. Then||Ull, =1and ¢; (U) = 1.

Proof. Both parts are calculations.

UM, = A, \Uzll,
=1
= max flll, =
c2 (U) = U], "U_lnz = U, |U"|l, = [[U¥]l, =1

using the first calculation and that U# & unitary. m

Recalling Section 2 of Chapter 5, and the Optional there, we see that U
neither magnifies error nor relative error. So, unitary matrices are ideal
for use in numerical computations (where rounding error occurs). An ad-

ditional norm result follows.

Theorem 6.5 Let A be anm x n matriz. Let Uyand Uz be m x m and
N x N unitary matrices, respectively. Then

(a) 101 AD:]l; = | All; -
(b) IU1AUz|lF = [|Allp -

Proof. We argue both parts.
Part a. By definition,

U0 AU, |, = e, U1 AU,z|,
I 2=
1
[(UlAUgm) (U1AU2:c)]
|| Ilz

= max [zAUF A" AUz)?
™ el =1
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and setting y = Uzz and noting that ||yll, = ||U2zlly = ||z||,

1
= max_[y7 A" Ay]?
llyll;=1

— max || Ay
uy||2=1” Il

= [l All, -

Part b. Note that for any m x n matrix B = [b; ... by}, where b; is the
i-th column of B,

1B = ||[Ushs ... Usballl s = Usb1 13 + - + [[Unbmll3
2 2
= |ballZ 4+ + bl = b1 - - Bl = I Bz -

Similarly, looking at rows, |BUz||r = || Bl - So putting together,
1U1AU: || = [|ADz ]l p = | All 7 »

the desired result. ®

6.1.1 Optional (Symmetry)
Orthogonal matrices can be used to describe symmetry in designs. (See

1 5=
U 1

FIGURE 6.7

For example, the letter A has rotational symmetry (rotate 180°) and re-
flectional symmetry (about the x-axis and about the y-axis). The letter
T has reflectional symmetry (about the y -axis). Such symmetries are
sometimes discussed on Sesame Street (a syndicated television series for
children).

Symmetries can be classified using orthogonal matrices. To see this,
consider a square in the plane, as shown in Figure 6.8. Note that the 4

c0s6 —siné

. Nz . o3 L .
rotations [ siné cos6 ].forﬁ =0, 3,m, < leave this figure fixed. And
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FIGURE 6.8.

the 4 reflections

BRIRRIIEE

also leave it fixed. We call this set of rotations and reflections D4 (the
dihedral group of the square). Note that the star in Figure 6.9 has precisely
the same symmetry, namely D4. (It can be shown that if a figure has k

FIGURE 6.9.

reflections of symmetry, then it has k rotations of symmetry, counting the
identity, and we say the symmetry is Dy.)

Not all figures have reflectional symmetry. For example, the letter Z, in

. . 1 0 COST —sinm
Figure 6.10, has only rotational symmetry [ 0 1l L sinm  cosT
Here, we say the symmetry is Cs, indicating there are only 2 rotations from
Z onto Z. Cy is defined similarly.

In nature, symmetry is all over. As an example, a daisy has lots of ro-
tational and reflectional symmetry (in applications, mathematics need not
fit precisely, so there may be some variation from the precise mathematical
description of symmetry.)

In computer graphics, noticing symmetry can save time. For example, if
the Mandelbrot set is graphed, only that part above the x-axis is required,
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]

FIGURE 6.10.

since the set has reflectional symmetry about the xaxis. (Changing the
sign of the second entries of the computed vectors gets the bottom half.)
Thus, the amount of time to graph this set is cut in half. (It could be many
minutes, depending on the computer.)

6.1.2 MATLAB (Code for Picture of Orthogonal Matrices an
2 x 2 Matrix Space)

We graph [ (;?zz _3(')22 ], which is in the 2-dimensional subspace of
P

matrices having the form ‘; _Z ] in the 3-dimensional subspace of ma-

a \/§a
trices having the form [ d 2 ] We identify this subspace with c
d
V2cos@
and graph —sinf | for 0 < 6 < 2n.
sind

Code for Picture of Orthogonal Matrices

theta = linspace(0, 2 * pi, 100);

plot3(sqrt(2)*cos(theta), % Plot3 draws
—sin(theta), sin (theta)) curves in R3
Exercises

1. Compute (z,Y), using y¥ z, for the following.

-1 1
R
1 2
i
(b)x=[1i—i}, yz[z.i_i}
2i 1+2i
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2. Give the grid view of cach.

<a)cz=[2%5 "v}z}
Vi i
(b) @ =I ~2uut where u = { g]

2

3. Give a 2 x 2 orthogonal matrix that does the following.

(@) Rotates the plane 30°
(b) Reflects the plane about the axis y =2z

4. IT_ind the 3 x 3 Householder matrix that reflects &% parallel to u =
0]
[ 0 J What is W?
1

5. Reflect the clock given in Figure 6.11 about the z;-axis. Is the ori-
entation (1-2-3-1 clockwise) still the same?

X2 1

@

X

FIGURE 6.11.

6. Prove that if U is unitary, then

(a) U isnonsingular and (b) U~! =U#,
7. Prove Theorem 6.2, part (b).
8. Prove Theorem 6.3, part (c).

9. Let H be a Householder matrix. Prove each of the following.

(a) H is orthogonal
(b) H=H!
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1 10. Let A be an n xn matrix and Uy, Us be n xn unitary matrices. Prove
¢(U1AU2) =c (A)for the induced 2-norm and the Frobenius norm.

11. Let Q be an n x n orthogonal matrix, and z,%,€ R*. Prove that if
y = QX 4 = Q#, then the angle between y and § is the same as that
between x and .

12. Find 8 such that
[ cos8 —sinf 31 _[5
sine  cosé 4 |7 10}
. Find u (|julj; = 1) so that

o [3]-15)

14. Let U be a unitary matrix. Is it true that [|Ull, =||U||z? (Give an
example if it is false.)

1

w

15. Let Q be the rotation matrix of Example 6.1. Let x = [ :::g ],

. . reoe (8 F 4)
expressed in polar coordinates. Show that QX = | rsin(8 + ¢) |
(Use trigonometry identities.) What does this say that Q does to
R%?

16. Find the matrix F for each flag on the left of Figure 6.12 and Figure
6.13. Then, find an orthogonal matrix Q ,if possible, which rotates
or reflects the plane, bringing the flag on the left to that on the right.
Show your answer is correct by showing plot (QF).

g Pl

(a)
FIGURE 6.12.

17. Prove that if Q is orthogonal, then L (z) = Qz maps a sphere S of
radius r about z (S={z :||z — z||, =r}) into a sphere of radius r
about L(z) .
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(b)
FIGURE 6.13.

18. Prove that the matrices in Example 6.1 and 6.2 are the only 2 x 2
orthogonal matrices.

19. (Optional) Classify the symmetries as Cy, or Dy, for the figures in
Figure 6.14.

NANTOr

FIGURE 6.14.

(a)

(b) What symmetry do you see in a kaleidoscope?
20. (MATLAB) Two parts.

(a) Let P be the matrix for the propeller shown in Figure 6.15. Find
the matrix Q that rotates the propeller % radian. Plot QP to
see the new configuration.

2

InNZ4
v

-2

FIGURE 6.15.
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Find the matrix C for the cube, of side 2, shown in Figure 6.16. (The
center of the cube is at the origin, and the faces are parallel to the planes
determined by the axes.) Rotate the cube % radian in the z;z2-plane and
then £ radian in the 2223-plane. Find the matrix Q that provides this
motion and plot QC.

FIGURE 6.16.

6.2 Schur Decompositions

In Chapter 3, we factored A = PJP~!, where J is a Jordan form, and
in the following chapter we saw some of its uses. In this section we look
at another version of this factorization, the case where we require P to be
unitary.

As shown in the picture in Section 1, unitary matrices comprise a small
part of matrix space so we expect that in such a factorization, we will not
achieve a form as simple as J. To see what we might be able to do, we can
use the Q R factorization (Gram-Schmidt process) to write P = U R where
U is unitary and R upper triangular. Then, substituting,

A=PJP ! =URJR'U".

SinceR, J, and R~! are upper triangular, sois the product RJR~!. Hence,
we can write

A=UTUH

where U is unitary and T = RJR™! is upper triangular. Thus, A is not
only similar to an upper triangular matrix T, it is unitarily similar to T.
And as a consequence of similarity, the eigenvalues of A are on the main
diagonal of T.

In general, if A and B are n x n matrices such that A =UBU¥H for some
unitary matrix U, we say that A and B are unitarily similar. (And if A,
B, and U have real entries, we say A and B are orthogonally similar.)

We intend to show a direct way (without resorting to the Jordan form) of
proving that every square matrix is unitarily similar to an upper triangular
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matrix. To developthis unitary matrix version of Jordan's theorem, we need
the following lemma, which gives a simple way to extend an orthogonal set
to an orthogonal basis.

Lemma 6.2 Let g, ... ,u, ke pair-vise orthogonal nonzero vectors in Eu-
clidean n-space. Then there are vectors ¥r41,. .+ yun Such that uy,. .., u,,
Ury1, .-+ SUn Are€ pair-wise nonzero orthogonal vectors, and thus these vec-
tors form a basis for Euclidean n-space.

Proof. We intend to solve for wy41, ... ,u, ONe at a time.
Consider
uf!
o lz=0. (6.5)
ug!
Since u4,... ,u, are pair-wise orthogonal nonzero vectors, and thus are
linearly independent, {u; . ..u,] has rank r and hence so does
uff
{ul . ur] = e
ull

r

If < n,any echelon form of (6.5) has a free variable, and so there is a
nonzero solution, say 2., t to 65)
Note that since wf 1,4y =0 (uffurss = (urt1,uk)), uk is orthogonal to

ur4q forallk < r. Thuswg,... ,usu-41 are pair-wise orthogonal nonzero
vectors.

Now we continue the procedure to find u,4+2 and then u,r43 until u, is
found. Thuswe obtain n pair-wise orthogonal nonzero vectors. By Lemma
5.2, these vectors give a basis for Euclidean n-space. =

An example of the technique follows.

Example 6.3 Let u; =(1, 1,1)‘. To extend u; to an orthogonal basis, we
solve

uiz =0.
The augmented matriz &
[1 1 1]0]
1
There are two free variables, and a solution isuz = | —1 |. Now solve
0
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The augmented matrix as

Applying —R; + Rz, we have

1 1 1}0
0 -2 —-1]0|"°

Thus with « an arbitrary scalar,

53=a
1

T ——2—a
1

.’171——2—a.

For a =2 (We can choose any nonzero a.), we have

-1
Uz = -1
2

Thus uy,uz,u3 forms an orthogonal basis.
If we normalize these vectors, we have

1
3
W 71.
flull, 2
| %
u | Y
(%) 75
lluell 0
- _1 -
Ve
U | _a
||u3| Ve |
2
- 6 -

an orthonormal hasis.

221

Now, to get the idea of how to find a unitary matrix U such that A =

UTUH where T is upper triangular, we look at a small case.

Let A be a 3x 3 matrix. Let X be an eigenvalue for A with corresponding
eigenvector u;, of unit length. Extend u; to u;, ug, ug an orthonormal
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basis. Then, by partitioned and backward multiplication

A [u1u2u3] = [Alul AU2 A’U3]

)\1 Q] o9
= [Uluzual 0 By B
0 7 7

where the a;’s, 8,’s, and ~,’s satisfy Aug = oyuy + B u2 +v,u3 and Aug =
oguy + Boug + Yous. Thus, setting Uy = [uiugus], b = (@), and B =

[ﬂl By

, we have
Y1 T2

M b
U]f{AU1=|: 01 B]’

a start toward the triangular matrix.

Now, we continue with B. Let Az be an eigenvalue of B with v a
corresponding eigenvector of unit length. Extend v; to an orthonormal
basis, say v;, v2. Then

B [’1)11)2] = [Aotn ’02]
:[’Ulv'z]f /hz ﬂ ]

where a and 3 are determined by Bve = av; + Bu,. Setting V = [vyva],
we have

_ /\2 (0%
VHBV—[O ﬂ].

1 0

Now, to get this back to 3 x 3 matrices, set Uz = [ 0V

]. Then

UHUE AUU, = U [ ’})1 g ] Us

R
“ o [vFBVY

AL | BV
= 0 Az « .
010 &8

Setting U = U Uz, a unitary matrix, we have

M| BV
UEBU=|"0 | s «

010 A
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where we set 8 = A3. Using similarity, A1, Ay, and Az are the eigenvalues
o A.
More formally, we have Schur’s Theorem.

Theorem 6.6 Let A be an n x n matrix. Then there is an n x n unitary
matrix U such that

A =UTU",
where T is an upper triangular matriz.

Proof. The proof is done in steps showing how.
Step 1. (Finding U;) Let A be an eigenvalue of A with = a correspond-

ing eigenvector. Set u; = W_IEIE and extend wu; to an orthonormal basis,
u1,U2,. .. U, Dy Lemma 6.2. Set Uy ={ui...u,). Then
A
0 c...cp
AU1 = U1 L.
0

where the entries in column cg, are found by solving
Auk = Ulck.

So, deflating,

A b
Uf AU, = [ 0 B ]
where B is an (n — 1) X (n— 1) matrix. Thus, we have the first row stag-
gered.
Step 2. (Finding Ug) Suppose

UR - UFAU, - Ugq = [ 001 %2 }

where Cy is a (IC — 1)x (IC — 1) upper triangular matrix. Now, repeating
step 1on C, we obtain a unitary matrix W ,such that

|

) o

H _| B
WC'W—I:0

where 3 is a scalar. Set

I 0
w=la ]
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an n x n unitary matrix. Then, deflating (to get a smaller matrix in the
lower right corner),

UF (UL, - UF AUL-- - Ukoy) U = [ Col Wcz?ng ]

which has k staggered rows.

Step 3. (FindingU) Set

U=U;---Up-1.
Then, U is unitary and
URAU =T

an upper triangular matrix. =

A numerical example follows.

[0 -1 2

Example 6.4 LetA=|1 0 0 }. WefindU and T in steps.

Step 1. (Finding Uy) T%e eige \ta ues of A are i,l—i. LetA=1 A
corresponding eigenvector is X = i J, SO uy = 71; . Extending to

3

an orthogonal basis, we have

1 1
V2 V6
Ug = —715 , Uz = 711-5
0 %
and so
1 1 1
i Vi
1 1 1
W=\% "% &
1 0 — 2
3 V6
Deflating we have
1 8 3
UfAlh=[0 0 -V3
0 ¢ 0
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Step 2. (Finding U;) Now

0 —Vv3
C=| x5 0
3
Note[ Tiisan eigenvrlue 7 4 and has a corf spondlng eigenvector
= | —s2
} Thus v = )%' Take vy and set W =
[ 4 - ?
_ . ThusU2=[ 0 0 -3 _2 Then
37 L ] =0 3% 4
2 =i = o
URUEAULWU, = | o i 243 =T
0 0 —1
Step 3. (Finding U') Set
& LG P
U=sUlh=| 3 F+¥8i L2+
1 =8; =2
3 6 2

The proof of Schur's theorem also showsthat if A has real entries and real
eigenvalues, then A is orthogonally similar to a triangular matrix. Even
without the real eigenvalues hypothesis, a real version of Schur's Theorem
can be given.

Corollary 6.1 Let A be an n x n matrix with real entries. Then there is
an orthogonal matrix Q, such that

Tvi T -+ Ty
A=0Q 0 T T, ot
0 0 - T,

where each Ty, 281 x 1 or 2 x 2.

(a) If Trx is 1x 1,Tkx =[A] where X is a real eigenvalue of A.

(0) If Tix is 2 x 2, then its eigenvalues are nonreal, complex conjugate
eigenvalues (A and A) of A.

Proof. Exercise. m
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As we have seen, calculations involvinga diagonal matrix are much easier
than those involving a triangular matrix. Thus we now show when a matrix
is unitarily diagonalizable (unitarily similar to a diagonal matrix).

Let A be an n x n matrix. If

AHA = AAH

then A is called a normal matrix. (Examples of normal matrices include
Hermitian matrices and symmetric matrices.) The simple condition given
above determines precisely those matrices that are unitarily diagonalizable.

Corollary 6.2 Let A be ann x n matrix and A =UH#TU a Schur decom-
position. Then A isnormal if and only 4/ T s diagonal.

Proof. The proof is as in Theorem 6.1, and so it is left as an exercise. m

If A is normal, then we know, by the previous corollary, that A is similar
to a diagonal matrix D. Thus,

A=pPDp™!

where D must be formed from the eigenvalues of A and P the corresponding
eigenvectors,a calculation simplerthan the Schur form technique. Actually,
this P can be adjusted to form a unitary matrix U where

A =UDUH

To do this, suppose p», pr+1, - - . ,Ps are those columns in P that are eigen-
vectors for the eigenvalue A;. Apply the Gram-Schmidt process to these
eigenvectors to obtain u,, ur+1,- -., 4s, an orthonormal set of eigenvectors
for \;. Replace pr,prs1s. +-,0s IN P With ur, upq1,...,us. Doing this for
all eigenvalues of A yields a matrix U. To prove that this U is unitary,
we need only show that if u; and u; belong to different eigenvalues then
(wi, uj) =0.

Lemma 6.3 Let A be annx n normal matrix. Let A and 8 be eigenvalues
of A with corresponding eigenvectors x and y, respectively. WX # 3, then

(z,y) =0.

Proof. Since A is normal, we can factor A = U DU as assured by Corol-

A0 O
lary 6.2. For simplicity, we will now assumen =3 and D = [ 0 A0 } .
0 0 g
(The general argument is an extension of this case.)
Now, if X and y are eigenvectors belonging to A and 3 respectively,

Az = Az, Ay=fy.
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Thus
UHDUz =Ax, UHDUy = By
or, rearranging
DUz =AUz, DUy =pUy.
Set
w=Uz, z=uy.
So we have
Dw =Xw, Dz =0z

This says that the eigenspace (See D above.) for A is span{el,e;} and for
B is span{es}. Thus, we have that

Hy =0.

(w,2) =2
Now,
(Xy) = (U"w,U"2) =(w,2) =0
which is the desired result. m

Below, we give an example of unitarily diagonalizing a symmetric matrix,
using the eigenvalueeigenvector approach.

=

L Here A, =3,

—
m P e

1
Example 6.5 We unitarily diagonalize A = [ 1
1

1
A2 = 0, A3 = 0. Corresponding eigenvectors are = [1 -i, P2 =
1 11
1 1 Tl -1 0| di-
-1, and p3 = 0 |, respectively. SoP = *1 0 -1

0 -1
agonalizes A. Adjusting P to an orthogonal matrix, we apply the Gram-
Schmidt prdtess to the eiggnvectors for A¢, and then to those for A,. This

1 1
v 7 % |
gvesqi = | 7 | = —:175 ,and gz = V8 71, respectively. So
2
7 0 %
1
V2

. And A= QDQ* where D = |:

O
]

S S-S

|

o%ll"

N R N
oo w
oo o
coo
| I—
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We now show that, as seen in the example, symmetric matrices are always
orthogonally similar to a diagonal matrix. (Complex numbers are not
necessary for the factorization.) Todo this, we need to showthat symmetric
matrices have real eigenvalues so that the previous work can be done using
only real numbers. Actually, we can show a bit stronger result.

Lemma 6.4 Let A be an n x n Hermitian matrix. Then each eigenvalue
of A is real.

Proof. Let A be an eigenvalue, and x a corresponding eigenvector, of A.
Then

Ax =Az.

Multiplying through by z# yields

zH Az =gz, (6.6)
Taking the conjugate transpose of both sides, we have

A%z =2z, (6.7)
Since A# = A, (6.7) can be written as

27 Az =Xzf g (6.8)
Now equating the right sides of (6.6) and (6.8) yields

MeHz =2zHz
Recall that z¥z = ||z||3 > 0. Thus,
A=A

This implies A is a real scalar. =

So, we have the desired result below.

Corollary 6.3 Let A be a symmetric matrix. Then A B orthogonally
similar to a diagonal matrix.

Proof. Apply Corollary 6.2 and Lemma 6.4. m

6.2.1 Optional (Motion in Principal Axes)

If we take a spring-mass system, as shown in Figure 8.17,where my =mqy =
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kl l(2

m AW m

FIGURE 6.17.

1,as given in Chapter 4,the positions z; (t)and z2 (t)of the two particles
satisfy

ki +k —k
z"(t)+[ 1__k22 k; ]x(t):o. (6.9)
Notice that the matrix K = [ kl_'; & ;’;2 is symmetric due to the
A2

springs exerting the same force to the left as to the right.

Tosolve (6.9), we orthogonallydiagonalize K , say K = QDQ* where D =
diag(A1, A2) and Q = [q1g2). Plugging QDQ* into (6.9) and rearranging,
we have

y" (1)t Dy (t)=0 (6.10)
where y (t)=Q*z (t)or
QY () =z (). (6.11)

Equation (6.11) can be interpreted as a change of coordinates from those
determined from the basis Y = {q1, 42} to the original vectors. Tradition-
ally, the vectors q; and g are called principal axes for the Y-coordinate
system.

Equation (6.10) describes the motion of the particles with respect to the
Y-coordinates. In this coordinate system we have, from (6.10),

¥y () + A =0
yy (t) T g2 =0.

Solving these equations, we get
y1 () =0 cos (\/T\'It) + B, sin (\/)\—lt)
y2 () = a cos (\/,\—Qt) + By sin (Vst)
Using that

acos (\/Xt) + 3sin (\/;\-t) =7 oS (\/Xt +6)
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where r = /a2 + 42 and § satisfies

m%zg,mwz—g (6.12)
T T

we have

y1 {t) =rycos (\/th + 51)
y2 (t) = racos (\/)Tlt + 62)

where 1, 6; and ro, 8 are given by (6.12). And we see that with respect
to the y;-axis (determined from g;) the motion is like cos (amplitude =r;,
period = 27/+/A;) as it is with the y-axis. Understanding the motion
with respect to these axes gives us some view of y (t) and thus x (t).

To firm up the discussion, we look at an example.

Example 6.6 Let K = [ _g _g ] Then
' TKx=0

can be described, in terms of the principal axes as
y" tDy =0

where A; =4.5616 and A; =0.4384.
For simplicity, suppose y (0)= i ] and y’ (0) =0. Then

y1 (t) =cos (\/xt)

=C0S(2.1358¢) (period =2.9419)

y2 () = cos (\/X;t)

=c0s(0.6621¢) (period = 9.48%).

Thus, ifwe graph (y1(t),y2(£)¢, which is the same asgraphing (z1(t) ,z2(t))5,
we can see its shadow on the y;-azis as 1 (t)and on the yp-azis as yz (t).

In looking at Figure 6.18, we see that y; (t)achieves 1 about three times
from its initial position while y2 (t) achieves it about once (agreeing with
their periods). So, we have some view of what B going on.

To see how intricate the graph is, we look at it fort =0to t =300. (See
Figure 6.19.)
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Graph of solulion in Y-coordinale system

y2=cos{0.66211)
o

Tas A 2.5 [) s 3 15
vi=costz 13581}

FIGURE 6.18.

Graph of solution in Y-coordinate system

y2=cos{0.6621t)

sl |
1.
.5 -1 0.5 0.5 1 15

0
y1=cos(2 1358t)

FIGURE 6.19.

6.2.2 MATLAB (Schur)

For a given n x n matrix A the command for the Schur form T is given by
schur (A). To obtain U and T, use [U,T} = schur (A).If A is normal, T
will be diagonal.

Since MATLAB doesn't provide Jordan forms, if A is defective (or nearly
s0), the Shur factorization can often be used in its place. Numerically, this
factorization can be found rather accurately. We provide an exercise solving
systems of differential equations in this manner.

To see more, type in help schur.
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Code for Graphics of Example 6.5

t = linspace(0, 4 = pi,100);
plot (cos(2.1358%t) ,
cos (0.6621x 1))
hold
plot (1,1,’0)
axis([-1.5 1.5 —1.51.5)) % To get the graph dff the
edges of the picture.

The second picture changes line 1to
t = linspace(0, 300, 600) ;

Exercises
1. Find a unitary matrix U such that U AU is upper triangular.
1 2 0
(@) A= 12] (b>A=[—1[1,]

-2 72 2
© A=| 1 = 1}
3 6 -8

2. Which matrices are normal?

NEHEAH

©Ls] @ Ei”

3. Prove Corollary 6.1 for 4 x 4 matrices. Assume A has no real eigen-

values.

4. Prove

(a) Corollary 6.2.
(b) Lemma 6.3.

5. Unitarily djagonalizq 7 usina eiaenvalues and_eigenvectors.
(a) A=r2 2 1| (b A=r ot
- 0
1 2
112
6. Prove that a unitary matrix is normal.

7. Let A= [ f g ] Find two different Schur decompositions of A.
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8. Find a matrix that is diagonalizable but not unitarily diagonalizable.
9. Prove that if A is normal, so are the following.

(a) A®

(b) UH AU where U is unitary
10. Is the product of two symmetric matrices symmetric?

11. Let T be a triangular matrix which is not diagonal. Show that T is
not normal.

12. Give a direct proof, using the proof of Schur’stheorem as a guide,
that A is unitarily similar to a lower triangular matrix.

13. Prove A is unitarily similar to a lower triangular matrix by using
Schur’s Theorem on A7,

14, For the spring-mass system of Chapter 4, Section 1, let the masses
be m; =1, mo =1 and the spring constants k; =1, k; = 1. Sothe
equation is

" tKx =0. (6.13)
where K = [ 2 ] and z = [ i;gg ]

(a) Find the solution to (6.13).

1
1 -

(b) Adjust the solution so that x (0) = [ 1 ] ,z'(0) = [ |
(c) Draw the position of the masses at time t =1,2, and 3.

cos @ sin @

. ]
(the reflections) is a circle as was the graph of the rotations. Do these
circles intersect in R?%2?

15. (Optional) The graph of the orthogonal matrices

16. (MATLAB) Solve

z=[f 2]:1: (6.14)
x(0)=[}].

(a) Try the eigenvalue-eigenvector approach.
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(b) Use the Shur form and solve

where y = Qtz. Thus
y(0) =Q°z(0) .

(Recall, 2’ (t) = Az(t) T f(t) has solution z(t) = 2(0)e +
e* [, e~ f (1) dr.) Convertthis solution back to that of (6.14).



7
Singular Value Decomposition

In this chapter we show a decomposition of a matrix A (called a singular
value decomposition),

A=UxVvH

where U and V are unitary and £ a diagonal matrix. The way this de-
composition is used (See Figure 7.1.) is often like that for the previous
decompositions. However, the kinds of problems on which a singular value

Problem mvolvm Convert to a
A g > problem involving
z
Convertto a Solution to
solution to problem }eg— problem mvolving
mvolving A o

FIGURE 7.1.

decomposition is used are different from those solved by previous decompo-
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sitions. The problems solved here usually involve maximizingor minimizing
lengths ar distances (which includes approximations), or involve shapes or
figures in geometry.

7.1 Singular Value Decomposition Theorem

In this section, we show how to obtain a singular value decomposition of a
matrix A. To get the idea of how this is done, we first look at the special
case where A is nonsingular.

Since A A is Hermitian, using Schur’s theorem,
VEARAY =D

for some unitary matrix V =[v1...13], where v; is the i-th column of V,
and diagonal matrix D. Recall that D = diag (A1, ..., An) Where the A;'s
are the eigenvalues of A¥ A. Rearranging we have

(AvY¥ (AV)=D. (7.1)

The key idea for the decomposition comes from making the appropriate
observations in (7.1). To do this, recall that for vectors x and v,

y”a::(a:,y).

Thus, (7.1) tells us that the columns of AV are orthogonal, and so AV is
almost orthogonal. And, it says that the square of the length of the i-th
column Aw;, is Xi and so its length is v/X;. Thus setting o; =+/A; for all ¢
and scaling the columns of AV, we have that

U=[i4ﬂ...ﬁ’ﬁ]

g1 On
is unitary. And, we have

AV = [Av; .. . Avy)

SEE vt
o1 o 0 0 -+ op
=UucC.
where & =diag(oy,...,0,). Thus, we have the decomposition,

A=UsVH,
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To develop this work more generally, we proceed &s follows. Let & = {o;]

be an m x n matrix. If o;; =0 for i # 7, we call £ a rectangular diagonal
matrix and write

¥ =diag(oy,...,05)
where s =min{m,n} and o; =o;; for all i.

Example 7.1 As examples of rectangular diagonal matrices, we have the
following.

(a)z=[g y 8] (b)2=[_§ %}
o 31]

The major theorem in this section describes a singular value decomposi-
tion (SVD) of an arbitrary matrix.

Theorem 71 Let A be an m x n matrix and s = min{m,n}. If A has
rank », then

(a) There is an m x m unitary matrix U, an n x n unitary matrix V,
and an m x n diagonal matrix ¥ =diag (o,,. .. ,0,), such that

A =UxVvH
where
01220, >0=0p41=---=0y,
The scalars o1,... ,0, are called singular values and are the square

roots of the nonzero eigenvalues of A¥ A, ordered by size.

(b) The decomposition can be expanded as
A= alulvfl 4 .- +arurv;-|

where, expressed in terms of their columns, U =(u1 ... ¢y} and V =
[’U]_ ‘e .’Un] .

Proof. We prove both parts.

Part a. We give the proof in steps, showing how U, V ,and ¥ are found.

Step 1. (Finding V) Note that A” A is an n x n Hermitian matrix. Let
V be an n x n unitary matrix that diagonalizesthe n x n matrix A7 4, i.e.,

VH (ARA)V =D (7.2)
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where D =diag (A1, ..,Ax) and Ay > Ag > .-+ > A, (Recall Hermitian
matrices have real eigenvalues.) Observe that (7.2) can be written as

Aav)¥av) =D
or setting W = AV,
WHEW =D._

Step 2. (Finding £) Using that w; is the i-th column of W ,we have
A = lew,- = (w,-,w,-) > (0. Thus, A2 2A >20=Ap=-= A
for some integer . Now, let £ be the m x n rectangular diagonal matrix,
¥ =diag(oy, ...,05) where

__{\/A_i'rfA,>0

*7 1 0 otherwise.

Note that these o; are completely determined by the eigenvalues of A¥ A
and thus from A.

Step 3. (Finding U) By (7.2), the columns of AV are pairwise orthog-
onal. (Some of the last columns could be 0.) And the i-th column of AV
has length o;. Normalizing the nonzero columns, we have

Uu; = -l—Av,-
Ji
for all i,i <. Extend uy,. .. ,u, to an orthonormal basis, say,
Uty eve gUpy oney Up
and set
U=[u...um].
Then, using that Av; = o;u; fori <r andthat 6,43 = -+ =0, =0, and
backward multiplication,
AV =UZ
and so
A =UzVH.

Finally, » =rank & =rank A.
Part b. Write

A=USVH =U(01E1) + -+ + (0.E,)) V¥

P

- da— -
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where E; is the m x n matrix having a 1 in the {i-th position and 0’s
elsewhere. So

A=U(@E)VHE +... 4 U(c,E,)VH
:0']_'11,111%-| + ...+0'.9U_,’U£|

= alulv{l + et arurer

This is the desired result. m

An example may help.

- “

Example7.2LetA=[1 11

pansion. We do this in steps.
Step 1. (Finding V) Orthogonally diagonalize AtA Since A*4 =

We find an SVD of A and its ex-

000
Step 2. (Finding £) Since A; = 6,)\2=/\3 =0and A is2x 3, we have

01=\/(§,a2=0,and2=[\é_ 0 g]

Step 3. (FindingU) To do this, compute
0
NE

Extend to an orthonormal basis by setting

1 1
2 ;7579_
11 2 9 2 3 /6

1 11 0 —
11 [111]= 2 2 2 |,wefindV=|7i -F “H&
11 2 2 1 2
6 00 V3 V6

and D=0 0 0

sz[

Sl Sl
o o

1
Set uy = drAv; = [ \{i

1 V2
Lo
Ug = [_%J ThenU = | 2 \/EJ Since
1
2

V2

N

AV=UE, A:UEVt:

1 1 1 t
1 1 Vi V2
vz T2 V6 0 0 1 1 1
[L _1.][ oo] v v -
V2 V2 1 0 _—-2
3 6
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Step 4. For the expansion, we have

1
A=U2V‘=\/6[715“71§ 3 &
V2

A
SEJIERR

2

1
% % %]

V2

In Chapter 3 we gave an expression for || A||, mentioning that we would
prove this later. This proof can now be given.

Corollary 7.1 Let A be an m x n matrix. Then

(@) Al =01, _
(b) c2(A) = || All, || A 1|, =&, when A is n x n and nonsingular.

On
Proof. We prove both parts.

Part a. We prove this part for n x n matrices leaving the general case

as an exercise.

Let A = USV# be a singular value decomposition of A. Recall that
IAll, = ||[UZVH||, =|IZ}l, since U and V# are unitary.

Now,

1=} = max [Tz,
lizll,=1

= max (Zlﬂimilz) < (Zlall |:I:1|)
lzll;= \ F= iz II

=lo max - 1:-2 2 = |0 .

ol o, (}_:n | ) ol

So, |Zll, € o1. Further, since lleifl; = 1, IZ]l; > IZe1ll; = o1. Thus

1p> “2 =01.
Patb. Asin Part (a), we can show that ||A~||, = 2. Thus, putting

together, c (A)=All, |A7|, =& = "

=

Perhaps the best known use of singular value decompositionsis that they
can be used to least-squaressolve problems. To see how, let A be an mx n
matrix and b an m x 1vector, and consider the system of linear equations

Az =h. (7.3)

In many problem, it is known that (7.3) has no solution. In any case, we
can look for a ‘least square’ solution, that is, a vector X such that

| Az — bll, (7.4)
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is the smallest possible. (Thus, the left and right side of (7.3) are as close
as they can be.)

To find a least-squares solution, since multiplying by unitary matrices
doesn’t change lengths, ||Az —bll, = |EVHz — UHb|, for all x, so (7.4)
has the same least-squares solution as

sVHz = UHp.

Thus, simplifying V#z =y and U¥b = c, we least-squares solve

Yy =c
or
a1 =0
Orlr =Cr
O0=crp1
O0=cm.

To get the left and right sides as close as possible, we need

Y1 =a/oy
Yr = Cr/ar
and we assign
Yr41=0
v =0.
(Actually, yr+1,- .. ,¥» could be assigned any values. They are free vari-
ables.)
Thus,
afoy
vig = c,{)a’,

0
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and
/o1

— crfoy
X=V 0

0

Example 7.3 Consider

whereA:[_1 ]and =[ ] NotethatAX:xl[ 1]+

1 -1
To [_; l over all X yields span{ i ] [ ]} and observe in Fig-

ure '7.2 that b is not in this span. So there is no solution to the equation

I
ATt

FIGURE 7.2. 1
Ax =
To least-squares solve this equation, we fagtor A = ULV yielding U =
1 1 L 1
715 715 , U= (2) 3],aﬂdVH= 12 -\25] We multiply
-75 V2 VE VB
h=m"m

through by U# to get
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Simplifying, set y = VHz and solve
Cy =U%b

oT

[ n—|
oW
o o
)
<@

i
—
v it
—

which yields
1
2y = ﬁ
3
0y2 = .ﬁ
1
We set y2 = 0 and by solving, y11= 2‘2. ance, y = { 202 } Thus,
1 andsox =V :ZE = [ }-
VH.’L‘= 73 0 — 21
0

Checking visually, since

Wl =

ue] 4]

we see that AX, marked with an o in the graph, i the closest vector.

Although the SVD approach is a very accurate method (in terms of
computer computations) for finding least-squares solutions, other methods,
such as the QR-decompositions, are often used instead. (They are faster.)

Concluding this section, we show that least-squares solutions can be ob-
tained by solving the classical normal equations.

Theorem 7.2 Let A be an m x n matrix and b an m x 1 vector. The
least-square solutions to

Az =5
can be found by solving the normal equations
A Az = A,

Proof. Let USVH be a singular value decomposition of A. Then, the
least-squares solutions to

Az =b
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are the least-squares solutions to

svHz =UHb. (7.5)
Multiplying through by = yields

rHyyHy —gHyH), (7.6)

} and

o O w
OO
OO O

We now need to make an observation. For it, let ¥ = l:

4
Uy = [ 7 } . Then (7.5) is

5
3 00
6 2 0|VHz=
000

9 0 0 12
0 4 0|VEL=1]14].
000 0

Now getting the sides as close as possible, we observe that the ‘solutions’
to (7.6) are precisely the ‘least-squares solutions’to (7.5).

Now, multiplying (7.6) through by V, which won’t change the solutions,
yields,

and (7.6) is

VveiHysvHz = yxHyHy (7.7)
and inserting U¥ U yields
VEHUHySVH, = vEHUHY

AH Az = AH),

Thus, the solutions to these normal equations are the least-squares solu-
tionsto AX =b. m

Example 7.4 Using the data of the previous example, Example 7.3, we

have
1 -1 2
A=[_1 1]andb=[1].

e

t——

a—
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To least-squares solve
AX =b,
we look at the normal equations
At Az = A%,

ERIIE]

which has solutions. Using Gaussian elimination, we get

[l

where ar is an arbitrry scalar, as the least-squares solutions to Ax =b.
1

or

Fora! = —-};, X = our least-squares solution, with smallest norm,

PN

found in the previous example.

temperature | t; | to | .- | tm
chirps  |ei || - | em

a+ Btn =cm
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.i 4. } +—t
BRI
FIGURE 7.3.
or in matrix form

1 t1 C1

1 (220 Co
Jij

1 t, Cm

(Here, some of the t;’s could be the same.) Now, we want ¢ and 3
so that the difference between the two sides is as small as possible.
Thus, we want (& +6t, —cl)2 +...+ (a+ﬁtm —cm)2 as small as
possible. (Recall that the minimum of a square root can be found by
finding the minimum of the radicand.) This assures us that we are
getting the minimum of the sum of the squared distances between
the line points (ti,a +gt;) and the data points (t;, ;). (See Figure
7.4.) From this we see that we want a least-squares solution to the

(tc)

[ ]
/‘m

FIGURE 7.4.

equation.

. Least-squaresfitting curves: Here we extend the work given in 1 by

looking at data. For this recall that in Chapter 3, Section 1, we saw
how to find a polynomial that fits through data. For example, if the
data is

z]1 2 3 4 5
y|09 42 87 162 245
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we can find a polynomial p, of degree at most 4 ,which passes through
the data. The data and this polynomial are shown in Figure 7.5,the
graph of the polynomial being shown with the dashed curve.

In looking at this polynomial, especially at the ends, we might wonder
if the polynomial describesthe relationship of this data. Perhaps, by
just looking at the data, we might feel that the data, which probably
has some error, is more like a quadratic. Thus, we least-squares fit
a polynomial of degree 2 to this data. Since q (X)=az? Thx ¢ is
the general form for a quadratic, we can least-squares solve for the
coefficients by solving

az? X 4e= gy

a +b 4ec= 09
da +2h 4ec= 42
9 +3b +c= 8.7

16a +4b +c= 16.2
25a +5b +c= 245

MATLAB gives this function by using the command polyfit(z,y, 2),
and using this we find

q (X)=0.9286x% *+0.33486~ 0.3600.

The graph of this polynomial is also in Figure 7.5,and we probably
would agree that this fits the data better than doesp. Of course, in
making such a decision, knowing where the data is from, and a sense
or feel for that problem is helpful.

Graph of least squares fiting cum lanes cumthat fits data

FIGURE 7.5.

3. Space problem: Note that
z+tyt+z=1
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is a subspace of dimension 2 in R*. And, note that (1,1,1)* is not on
this subspace. We want to find the closest point on the subspace to
(1,1,1)". Observe in Figure 7.6 that (1,-1,0)* and (1,0,-1)* span

]

FIGURE 7.6.

the subspace. Thus, we want to find those scalars z; and z2, which
cause the left side of

[ 3] =L 4[]

to be as close to the right side as possible. So, we need to find the
least-squares solution to

1 1 z 1
-1 0 [ 1 ] = 1
o -1]L™ 1
Of course, this problem could also be solved by Fourier sums or by
using the orthogonal projection matrix.

7.1.2 MATLAB (Least-Squares Solutions to AX =)

For the computations used in this section, we can use the following.

1. Least-squares solution to Ax = b where A ism x n and m # n:
to produce a least-squares solution, we can use A\b. We would like
to describe our problems here so that the columns of A are linearly
independent.

2. Singular Value Decomposition: To compute the SV D of a matrix A,
use the command [U, S,V] = sud(4). Recall A =UZV: The S
given is ¥, If all we need is £, the command is svd (A) which gives
the singular values for A.
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Type in help midivide, help svd for further information. It may also
be interesting to check documentation on how SVD is computed. See

Bibliography.
Code for Picture in Optional
T=]11 2 3 4 5 ] ;
Y=1.9 42 87 162 245 ];
p =polyfit(z,y,4);
q =polyfit(z,y,2);
xi =linspace(0, 6, 50) ;
z =polyval(p, XI);
w =polyval(g, xi);
plot(z,y, 'Ozt 2, ,xi, w)

Exercises
1 1] [ 1 .
1. Solve[ 11 ]z— 9 } by using the

(a) SVD approach.
(b) Normal equations approach.
2. Least-squares fit a line through
z|1 2 2
y |1 1 2

3. Write out the system of linear equations whose least-squaressolutions
gives the quadratic (y =az? +bz *c) which least-squares fits

z|0 1 2 4
y|[0 1 3 6°

4. Find the point on the line y =X closest to the point [ f ] using

(a) The least-squares approach.
(b) The orthogonal projection matrix.
(c) The Fourier sum approach.

5. Find an SVD for the following.

11 10
1 1| (b)A=]0 1
11 01
11
11,
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6. Derive the SVD theorem starting with
U(AARYUH =%

and proceed to find V.

7. LetA = [a11 12 ]andb: [2; ] Letz = [i; ] and f (zy,22) =

a1 a2
lAz — &[5

(a) To find the critical points of f, we would solve

)
gmil'(xl,xz) =0
)
z’xf—z(ﬂh,mz) =0.

Show that the solutions X to these equations satisfy
AtAz = A%
(b) Can we do the same thing with ||-{|;? Explain.

8. Let A be an mx n matrix. Suppose U1 ZV{! and U, EVH are singular
value decompositions of A. Is Uy =U,, V1 =W7

9. Let A be an n x n symmetric matrix with eigenvalues A, ... ,A
Prove that the singular values of A are |M1],...,| Al

10. Let A be a Hermitian matrix. Suppose A = UDU¥ is a unitary
diagonalizationof A. Is UDU* an SVD of A?

11. ¥ USV¥ is a singular value decomposition of A, prove that VEHUH
is one for A®. (Thus, we can convert an m x n problem into n x m
problem.)

12. Explain when we can get an SVD using only real numbers.
13. Prove Corollary 7.1,

(a) Part (a) for m x n matrices.

(b) Part (b).

14. Rewrite A = USVH into UDVH by truncating columns of U and
rows of VH, where D = diag(oq,...,0.) iST X r. Here A =

1 10
1 0 1].
211
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15. Prove that the least-squaressolution computed, from (7.3) on, is the
least-squares solution of smallest norm.

16. Let A =UXV# be an SVD of A.

(a) Prove the columnsaof V (called right singular vectors) are eigen-
vectors for A7 A.

(b) Prove the columns of U (called the left singular vectors) are
eigenvectors of AAT,

(c) Show by an example, that if left and right singular vectors of A
are found, U and V¥ formed from these singular vectors, then
UTVH need not be A.

17. (MATLAB) Two parts:

(a) Compute the least-squares solutionsto

1 2 1
i.l1 3 (jz=131].
-1 4 1
A R
111 (*% 11|

(b) Find ghe SVD of

1 -1 92
. d -3
I. 2 3 - [ 0]
L, 3} il. 4 3.1

18. (MATLAB) Consider the data given below.

z|-1 0 1 2 3
y| 9 1 11 39 91

(a) Find the polynomial that passes through this data.
(b) Find the quadratic polynomial that least-squares fits this data.
(c) Plot the graph of both polynomials and the data.

19. (MATLAB) Suppose we want to estimate the value of a spring con-

stant, say, for one of our spring-mass problems. By stretching the
spring and recording the forceto do so, we collect the following data.

fla 8 13 17
dl2 4 6 8

Using Hooke’s Law: Force = spring constant times displacement, use
least-squares and the data above to estimate the value of the spring
constant. (Recall measurements can be in error.)
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7.2 Applications of the SVD Theorem

The SVD theorem is a remarkably strong tool in matrix theory. In this
section, we look at a few additional uses of this theorem. In these appli-

cations we assume that the matrix A has SVD as described in Theorem
7.1.

1. Distance to the closest rank k m x n matrix

Given m and n, define

Rank k = {B : B is an m x n matrix having rankk}.

(Note that Rank K is not a subspace.) Define the distance and relative
distance from an m x n matrix A to Rank k as

d (ARank k)=min||A - B,

B
dre1 (A, Rank k) =min 14 — B,
Al

where the minimums are over all B € Rank K. (We will show minimums
exist.) The result we want follows.

Theorem 7.3 Let A be anm X n matriz of rank r. Then, if k <,
(a) d’(A) Rank k) = Okt1-
(b) dret (A,Rank k) = U_();Jl—_l'

Proof. We prove both parts.
Part a. Note that if B € Rank k, since multiplying by unitary matrices
doesn't change distance,

|4 - Bll, =|luzv* - B,
== -v¥Bv,
=[x -Cl,

where C =UHBV and C € Rank k. Thus
d(A, Rank k) =d(Z, Rank k).
We now break Part (a) into two parts.

i. d(Z,C) 2 o1 for all C E Rank k. To see this, let ¢ E Rank k.
For simplicity of notation, we will assume that first ¥ columns of
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C are linearly independent. Define an (n —k — 1)x n matrix E in
partitioned form, as
E=[0 1]

where listhe (n —k — 1)x (n—k — 1)identity matrix. (Ifn—k—1=
0, E is 0 x n, i.e.it won’t appear in what follows.) Then, since
rank C =k,

c _
rank [E]=k+(n—k—1)_n~1.

Thus there is an z, ||z||, = 1, such that [ g ]x = 0. Note that,
since EX =0, zg49 =-+- =z, = 0.
Now

I = Clly = max [I(E = C)yily 21X - C)zll,

il =1
1
= el = (o3 loal” + -+ oy fowal?)
> ok lzlly =0kt
Thus, since C was chosen arbitrarily, (i) follows.

ii. d(%,C) = ok+1. TO show this, by (i), we need to find only one
C E Rank k such that ||(£ -~ C)|l; = ok+1- For this C, set C =
diag (01,. .. ,0k,0,...,0). Then, as in the exercises, [|[(£ - C)||, =
Ok+1-

Part b. Apply Corollary 7.1, and (a) of this theorem.

Using the theorem, if A is nonsingular, then by (a) the closest singular
matrix to A has rankn — 1and the distance is o,. Also by (b)

1l _on
Co (A) — 01
|4 _ B,
=min —————=
llAll,

where the minimum is over all singular matrices B. Thus

1
—— |A|l, = min ||A - B, .
o (A) “ ”2 ” ”2
This says that over all nonsingular matrices A, such that , say, || 4|, =c,
c is a constant, the matrices which have the larger condition numbers are
closer to being singular, and vice versa.
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2. Moore-Penrose Pseudo-inverse of A

We know that the inverse exists for all nonsingular matrices. Actually,
however, the notion of inverse has been extended to all inatrices (even 0).
We will show how.

The Moore-Penrose pseudo-inverse of an m x n matrix A isan n x m
matrix X such that

i. AXA=A
ii. XAX =X.
iii. AX is Hermitian.
iv. X A is Hermitian.
As we now show, each matrix has precisely one pseudo-inverse.

Lemma 7.1 Let A ke an m x n matrix. Then there 4 a unique n x m
matrix X which satisfies (i) through (iv).

Proof. We prove two parts.
Part a. For the existence, set

X =Vdiag (o7}, ..,074,0,...,0) U .

Then X satisfies (i) through (iv).
Part b. For the uniqueness, suppose X and Y are solutionsto (i) through
(iv). Then

X =XAX =XXHAH =X XHAHYH A = XAXAY
= XAY = XAYAY = A" XHA HyHy _ 4HyHy
=YAY =Y.

Thus X =Y. m

Since A has precisely one pseudo-inverse, we can denote it by . +. And
since, if A is nonsingular, A~ satisfies properties (i) through (iv), we have
that A* = A~!. So the pseudo-inverse extends the notion of the inverse
to all matrices.

To see some use for this generalization, recall that if A is nonsingular,
then

Az =1b
has a solution x = A~15. We show an extended such result for all matrices.

Corollary 7.2 Let AX =b be a system of linear equations where A is an
m X n matrix and b is m x 1 vector. ThenXx = A*b is the least-squares
solution to this equation that has the smallest 2-norm.
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Proof. To least-squares solve Ax = b, we least squares solve V¥ z =
UHb or Cy = UHb where y = VHz. Now note that the least-squares
solutions to Cy =U*#b are precisely the solutions to

stoy =2*tUHb (7.8)
where

Tt =diag (07", ...,071,0,...,0) .

3 00 4
For example, f =] 0 2 0 | and U¥b= | 7 |, then By = U¥b s
0 00 5
3y1 =14
2y2 =7
0 =5,
while ZtZy =%1UHb is
4
y1=§
_7
y2—§
0=0.

Let g be the solution to (7.8) where all free variables are set to 0. Then
T+2§ =y so (7.8) becomes

§ =XTUHp,

Since § =V ## (£ defined by £ = V)

VvHz =x+tUufp
or
2 = vztUuHp
ATb.

Finally, since ||3]|, is the smallest possible solution to (7.8), and ||Z]|, =
l9ll5, IZ]ly is the smallest least-squares solutions to Az = b, the desired
result. m

There are many other uses of the psuedo-inverse.
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3. Computing range and null space
To compute the range and null space for A, recall that
AV =UZ.

By partitioned multiplication on the left and backward multiplying on the
right, we have

A’Ui=0',"u,,'
fori=1,...,7 and

Av; =0, otherwise. (7.9)

Both of our results will be obtained from (7.9). To see this, recall from
Section3 of Chapter 2that, if vy, ... ,v, isa basis for E™ then Avy, ... ,Av,
form a spanning set for the range of A. Thus, the vectors ayuy,. .. ;o ur,
and thus ug,. .. ,u, span the range of A, i. e.,
R(A) =span{uy,... ,ur}
For N(A), suppose Az =0. Then by writing z =ayv; +.. . +a,v., and
noting (7.9), we see that
Az =0y (o1u) T oy (0,u,)
= (q01)wy +. ..+(ar0r) Uy

=0.
Since uy,. ..,u, are linearly independent, ayjo; = 0,...,a,0. = 0 oOr
a1 =0,..,a, =0. Thus, £ =app10r41 T+ Ta,v,. And any vector in

this form is in N(A), so
N(A) =span{vr41,- -+ yUn} -

(Numerically, this is a good way to compute R(A) and N(A).)

As given in Chapter 5, Section 4, if we set Uy = [u; . ..u,] and V, =
[r41...v,], then U U} and V, V4 are orthogonal projection matrices onto
R(A) and N(A), respectively.

Example 7.5 In Ezample 7.2 we showed for A = [ i i } ] that U =
(111
1 1 1
12 - 12 V — ? ___\172 -716 - \/g O 0
1 L V=l T Flhed E=1 4 ol
Vi V2 1 0 —-2

(8

6

L Vv

Thus, we have

R(A) = span {u;} = span { [

NENE

/
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IE

Note that rank A is not a conWinuous function of the entries of A. For

example, let A (¢) = i H2'E and r (¢) =rank A (). The graph of

r (¢) is given in Figure 7.7. Thus T is discontinuous at € = 1.

a lane in B2, and

oSS
5 &) > .-‘éJH

N (A) = span {vg,v3} = span { —

aplane in R3.

4. Computing numerical rank

1

+
¥
(1]

]

FIGURE 7.7.

Because of discontinuity, it can be difficult to compute rank. For exam-
ple, MATLAB says it will ‘approximate’the rank of a matrix.
The singular value decomposition,

A =UzsvH

is often used to estimate rank; a tolerance 6 (estimating what singular
values may actually be 0 but do not appear so due to rounding) is given.
If

0'12"'20'1'>6Zar+1 220,
then the numerical rank is set equal to ». MATLAB uses
6 =tol =max (mpn) .||All, .eps,

where our eps = 2.2204 x 10716 (a MATLAB number which indicates
computations are done in about 15 digits.)



258 7. Singular Value Decomposition

1
As an example, if we defineQ = 715 -\25 , & =diag (100, 10-14) ,
V2 TR
and A = QX@Q?, then MATLAB gives rank 4 = 1. Note that
6 =2 x 100x 2.2204 x 10718

=4.4408 x 1071 > g =10714.
So, rank A was estimated at 1. (Here,we are looking at a rigged problem.)
5. Data compacting

Suppose, for simplicity, we have a 3 x 3 array of pixels which can be lit
to form pictures. (PPelscould be in different colors, but we will use black
and white.) We associate a 3 x 3 matrix A with a;; = 1 if the ij-th pixel
is to be lit and Qs otherwise. An example is below.

1 00
L A=11 00
110
Note, to represent “L,” or any figure in our 3 x 3 array of pixels, we need

to store 9 entries in the array.
The singular value decomposition of A can be written as

A = oiu H+02u2vf
-5 -5
= 185| -5 |[-.924,-.384,0)T.715| -5 |[-.384,~.924,0]
—.707 ~.707
855 .355 0 137 —-.330 0
= | .855 355 0 |+| .137 —330 o0 |.
121 523 0 ~.194 467 0

If we use a simple rounding rule on oyu32§ that entries of .5 and above are
1’s and that those less than .5 are 0’s, o1u1v§’ determines the picture. (It
can be that on larger problems, n x n rather than 3 x 3, oyuvs + ogugvf
may be required to produce the picture, or we may need even more terms.
However, it should be observed that oy > o3 > --- and [lusl, = 1, ||vsll, =
1 for all 7 and j, so we expect to add matrices of smaller size each time.)

Thus to keep L we need only retain o1, u3, and v;.  Counting entries
which we need to form L, we have

1(for o1) *3(for u!) t3(for vff) =7

Of course, this is a reduction of 2 from the original 9 entries we needed to
keep. (Perhaps 22%would be a better view.) However in larger problems,
the savings can be great.
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6. Representations of linear transformations

The SVD gives an interesting view of the linear transformation L (x) =
AX,where A is an mxn real matrix. To seethis, set A =UZVH. Usingthe
columns of U and V, define Z = {uy,...,um} and Y ={vy,...,v,}. Then
Z and Y are orthonormal bases for the codomain R™ and the domain R™
of L, respectively. And, if 2 =[z], and y =|[z],, , we have that

Uz=xand Vy=x

are the change of coordinates from these bases, respectively, to the given
vectors.

We now convert L (z) = AX, so the domain is given in terms of the
coordinates using Y and the codomain given in terms of the coordinates
using Z. To do this, change the coordinates of AX into those for the basis
Z by multiplying them by UH. Thus we have

U Az.

And we change the coordinates of x to those for the basis Y by replacing
z by Vy,getting

UH Avy.
Thus,
UEAVy =UHUSVHVY =Cy.

Hence, in terms of new coordinates in the domain and codomain, (See
Figure 7.8.)

L(y)=ZLy.

Uy

l“l

FIGURE 7.8.

An example may help.
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Example 7.6 (Collapsing of space) Let A = [ 1 g ] An SVD of A is

[ 0.7071 —0.7071

0.7071  0.7071 [31623 0

[ 0.4472 0.8944
—0.8944 0.4472

e V== { B ][ 28]} 2=

0.7071 —0.7071 . .
{[0.7071 07071 are bases for the domain and codomain, re-

spectively. (See Figure 7.9.)

FIGURE 7.9.

In terms of the coordinates of these bases, the transformation is described

as
2] L(y) = 3. 1623 0
29 - 0 y
_ 1 3.1623y,
= 0 )
Thus, the yq-azis is collapsed (orthogonally projecting all points in R? onto

the y1-azis), and the yi-azis is then stretched by 3.1623 and laid on the
! ] ~ 3.1626 (1)].)

0
7.2.1 MATLAB (pinv, null, orth, and rank)

The computations discussed in this section can be done using MATLAB.

Use pinv(4) for the psuedo-inverse of A, null(A) for an orthonormal
basis for the null space of A, and orth(A) for an orthonormal basis for the
range of A.

el-axis. (NotelL
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Exercises
1. What is 0+?
2. In proof of Lemma 7.1, Part b, tell why each statement is true.

3. Compute A* where A is given below.

|

() a=|2 1 (b)A=}1“|
op 0 0 1 O
() A=| 0 o2 0 d A=1]0 1
0 0 0 o }

where o1 and o9 are positive

4._ Prove:
() |f Y. =diag(oy,. ..,an) where 61 > .- Z or >0 =0p41 =
- =0y, then Y* =diag (o7, ... ,o7L,0,. .,0).
(b) If A is nonsingular, then AT = A~1.
(c) ¥ A=UZVH, an SVD, then At =VZ+U#.

5. How near are the following matrices to a singular matrix?

|

@ A=

2 1
1 2
11

) A=|1 0

01

|l )

6. For each of the following matrices,

(a) Find an orthonormal basis for R(A) and N(A), and
(b) Find orthogonal projections on R(A) anceV (A).

2 0 1
A= [ L ] A=|0 11
01 =
_ | .501 499 Lo _— .
7. Let A= [ 499 501 |° If 6, as given in application 4,is .03, what

is the numerical rank of A?

8. Use an SVD approach to represent T in a 3 x 3 array, as done in
application 5.

9. As in application 6, describe what L does.
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10.

12.
13.

14.

15.

16.

Prove ||A||2 =[|A* Al and that c; (A* A) =||A*Al, “A—l (A—l)‘\

7. Singular Value Decomposition
11
(a)L(z)—[l l]z

2 -1 -1
O L@=|3 1 1|
Let A be a2x 2 matrix. Prove that in the F‘robenius norm the closest
unitary matrix to A is Q = UVH where A = USVH is a singular
value decomposition of A. (Note that the proof can be extended to
the n x n case.)

2 =
1| Al12 ||A‘1||§ = ¢ (A)2. What does this say about solving normal
equations numerically?

Prove that if £ =diag(s,0,...,0), then ||IZ||, =]o].

Prove that if oy >0,...,0, >0and z1,...,z, vectors in E”, then
span{ciz1,. .. ,0sZs} =Span{z1,... ,Tn}-
[ 1 1 1 1°
1 -1 10
(MATLAB) LetA=| —o _J 8 .
-1 1 01
1 0 -1 1

(a) Find the distance from A to the rank 1, rank 2, and rank 3
matrices.

(b) Find the pseudo-inverse of A by using the singular value de-
composition of A. Compare your results to that obtained using
pinv(A).

(c) Compute the range and null spaceof A, using an SVD and using
the command orth and null.

(d) Compute rank (A)and rank (A?).
(e) Solve Az =hwhere b =(1,-1,0,1,1, -1]*.

(MATLAB) Is there a matrix A so that rank A # rank A* in MAT-
LAB?

(MATLAB) A ‘house’ is shown below.

co~oo
L a k=)
N k=)
oo~ oo

1
1
1
1
1
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Using the expansion A =ojuvf +-- .+05u5v§, show what the house
looks like for

(a) ouvt.

(b) o1usvt + oougut.

(c) orugvt + oqugth + ozugvh.






8
LU and QR Decompositions

We have already seen that factoring matrices into simpler ones is important
in developing and applying matrix theory. In this chapter we look at fa-
toring an m x n matrix either as LU (where L is a lower triangular matrix
and U a row echelon form) or as QR (where Q is an orthogonal matrix
and R a row echelon form). Both factorizations involve a kind of Gaussian
elimination approach and are highly used in numerical algorithms and soft-
ware, such as MATLAB. Knowing this material also helps us understand
the occasional warnings given with a MATLAB computation.

8.1 The LU Decomposition

Let A be an m x n matrix. An m x m elementary matrix E, belonging to
an elementary operation, is the matrix that produces by premultiplication,
the elementary operation applied to A. Thus

EA=B

where B is obtained by applying the elementary operation directly to A.
For example if m =2, we have the following.

01
R~ R E=[1 0}

a 0
aR E—[O 1]
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Ry +B, E=[ ) ‘1’]

Observe that each elementary matrix is nonsingular and its inverse reverses

the elementary operation defining it. We will show this using the previous
examples.

[ " 0
Ri-R E= (1)(1) El=|, (1)] Ry & R,
(o 0] _ [a~! 0
efr  E=14 | El:_ao 1] o Ry
(1 0] - [ 1 0
aR; + Ry E= o 1 E-l = —a 1] —aRi + R,

Thus, if Gaussian elimination is applied to A to obtain a row echelon form
U, then elementary matrices corresponding to the elementary operations
used, say, Ei,. .., E,, are such that

E,“"EA=U. (8.1)
1 -1 2
Example 81 LetA= |2 0 5 |. Applying Gaussian elimination,
3 5 13
we have
A —2R; + Ry I ’ 1
10 ( 0 -1
Bi=|-2 1 ( 3 8B
0 01
—3R, + Ry , 1 -1 2
1 00 0o 21
Ey = 010 0 8 7
-3 0 1
—4R; T Rs 1 -1 2
1 00 0 2 1 =y
0 -4 1
Now

E3E,EnA=U.
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If no interchange operations are used, then each E, is lower triangular,
so E, ...E; is lower triangular and so is L = (E,-..E;)"". Thus from

(8.1),
A =LU.
If no scalingwas applied (and there need not be) then, remarkably, L can

be computed easily from the multipliers used. (If —aR; +Rj is applied, o
is the multiplier.)  For example, to compute L, note that if

1 00 0 i
Es=|0 10|,E2=| QQO|,E=|-
0 v 1 -3 0 1

oOR -
o= o
-

then [
0 0 0
L=E'E;'E;'=|4 a 0 [m Qa0 Q Q0
1 1| 1
001 B 01 0 v 1

1 00
= |a 1 0].
B v 1

Thus L can be computed by placing the multipliers used in their corre-
sponding positions in L, so there is no need to keep track of the corre-
sponding elementary matrices. (The order here, namely Ef'ES1E;! is
important. The computation of E3'E;'E;! cannot be done in the same
way.) Thus, as shown in the followingexample,computing LU is as efficient
as finding U by Gaussian elimination.

Example 8.2 Using the data from Example 81 and forming L directly
from the multipliers, we have

SO

Interchanges, however, may be required. We give two ways in which this
can happen.
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i. We obtain a form such as

® * % *x *
0 ® * * =
0 0 0 * *
0 0 ® * =«

Now we would need to interchange rows 3 and 4 to continue toward
a row echelon form.

ii. We have, say,
® * * ok x
0 1 * * *
0 1000 * * *
0 * ¥ X %

In numerical calculation, it is known that choosing large pivots, in
general, leads to better results. Thus, at this step we would apply
R; — R3, obtaining a larger pivot.

To see how to proceed when interchangesare used, we make an observa-

tion. Suppose
1 h 2
A= |22 Y2 22

T3 Y3 23

We apply o Ri + Ra, .. Ry + Rs to get

1 0
0 00 1 10 T N1 o2 (82)
= 1 ({ $* 0 0Q|A= g B wg |.
Now we would use R3, Whos}e orresponding elefd ary matrix is
100
C=10 0 1{,whichisnot lower triangular. Note, however, if we
010
apply C first, we have
1 N oA
CA=|z3 y3 z3
T2 Y2 22

and our corresponding elementary operations, eliminating z first, would
then be =2 R, + R3, St 1] + R,. Using the corresponding elementary
matrices, we would now have

l1 Q0 1 Q0 101 nn o2
-—?‘Tf 1 0 0 1 0 CA Va Wa .
0 01 =2 01 O 0 wp

2
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Comparing this result to that of (8.2), we can see that interchange oper-
ations, and their corresponding elementary matrices, can be moved up in
the list of elementary operations done on A. To commute the elementary
matrices, observe that applying cR; T R; and R; « Ry is the same as
applying R; < Ry and cR; T Ry, (i <j <K). Thus, we need only change
the ¢’s in the row positions that might be in row j or row k according to
the interchange. For example, for «R; + R2 and Ry < Rs we have

1007100 1 00][LOOD
[0 01|]a10|=|@a00C||0aQo0O
0 0

010 0 01 a 01
or By «— R3 and aR; + R3.

So, if P, called a permutation matrix, is the product of elementary ma-
trices corresponding to interchange operations (It accumulates all inter-
changes of rows into a single permutation of rows.), we see the following
result.

Theorem 8.1 Let A be an m x n matrix. Then there is a permutation
matrix P such that

PA=LU

where L is lower triangular with 1’s on the main diagonal and U is an
echelon form.

Proof. In applying Gaussian elimination, commute the elementary ma-
trices corresponding to the interchange operation so they are nearest A.
Then we have

E,...-E1Cs.--CLA=U,

where Cs, ... ,Cy are the elementary matrices correspondingto interchange
operations and E, ..., E,y; those corresponding to add operations. Set
P =C, .-- C,, a permutation matrix. Using this

N -1
PA=(E,. - .Es+1> U
= LU

~ -1 -
where L = ,."'Es+1) is lower triangular. Finally, since each £; has

~1
1’s on the main diagonal, so does E; --- E s+ -and (E,. . Ea+~) . n

The form of Gaussian elimination we used to obtain L and U is called
the Doolittle method. (In this method the main diagonal of L consists of
1’s.) If we scale rows to obtain pivots which are 1, the technique is called
the Crout method. (This method produces pivots in U which are 1’s.)
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1 -1 2
Example 83 Let A=) -2 2 1 |. Then
-3 1 3
2R + Ro R 1 -1 2
A 1 00 0 05
EE=1210 -3 1 3
0 01
3R + R3 . 1 1 2
1 00 0 05
E;=1010 0 -2 9
301
Ry « R3 [1 -1 2
100 0 -2 9 -U
C=]001 0 05 -
010
D
CEE\A=T.

Now we need to move C so it is next to A. Here
CE2 = E,C

where Ey is 3R; + R,. (Rows 2 and 3 were interchanged by C so the
elementary matrix is adjusted to show that.) And

CE,=E,C

where E‘; corresponds to 2R; + Rs. (Rows 2 and 3 were interchanged by
C, and E; now needs to apply the addition to row 3.)
So we have

EECA=U
and setting P =C,
PA=LU

~ - \—1
where L = (E2E1) which can also be computed using multipliers, so

100
L=])-310].
-2 0 1
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We now show how the factorization can be used to solve a system of
linear equation, say,

Az =h.
To do this, factor PA =LU. Substitution yields
LUx =Pb.
i. We first find L=1Pb. For this we solve
Ly =Pb

which can be solved by forward substitution. (Solve for y; first, then
Yo, €tc.) This givesy = L1 Pb.

ii. Now we solve Uz = L~*Pb. Knowing y, we can solve for x by solving
Uz =y
by back substitution.

Example 8.4 Solve

i. Solve Ly =b by forward substitution. Here
L0y _ 3
1 1|Y5 2
3
and wegety = —4 |°

ii. Now solve Uz =y by back substitution. Here

o 2= 4]

x=[ ;]

and we get
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8.1.1 Optional (Iterative Improvement in Solving AX =bh)

Let A be a nonsingular matrix. We can solve

Az =b (8.3)
by Gaussian eliminationapplied to the augmented matrix [ Al b] or by using
the LU method. (Both use the same amount of arithmetic.) The LU
method has an advantage, however, when (8.3) needs to be solved for several
different right sides. To show how this can occur, we describe the iterative
improvement method which can be used to solve (8.3).

Suppose we numerically solve (8.3), obtaining E. Thus, we might expect
some nonzero residual

T1 :b—AX—.

(For accuracy, the residual should be computed in double precision, i.e.
using twice as many digits as normal.) We now try to improve our solution
by solving

AX =7, (84)

for a; and adjusting the numerical solution to Z *a;. Note that if a; is
the exact solution to (8.4), then

AT +a1)) =AZ+ Aar=b—ri+r =h

So E +a, would be the exact solution to (8.3). However, we may again
expect some error, say, we get é, instead of a;.
We compute the residual

ro =b—A(Z+a;).
If 5 is not 0, then we would solve
AX =179

for az and adjust to +4, ta,.

It can be shown that, unless ¢ (A)is very large, the sequence E,z+a;,E+
a1 +&2,. .. converges to the solution to (8.3). And, usually, only a few
iterations are required for desired results.

Note that in this process, we solve

Az =b (8.5)
AX =T

If A is factored into LU, each solution can be computed by a forward, and
then a backward substitution, which involves far fewer arithmetic opera-
tions than solving each equation in (8.5) by Gaussian elimination. So here,
the LU method has a distinct advantage.

An example follows.
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982 .573 } and b = [‘.245

Example 8.5 Let A = [ 402 .321 .159

jl. Solving AX =

b in 3-digit arithmetic, by iterative improvement, we get L = [ 4109 (1) ]

982 .573
and U = L 0 087 |
On the first iteration, we have

§’=[2§§}'

-7

We should also add that there is a similar iterative improvement method
for solving least-squares problems.

The second iteration gives

{=1)

T4

which is the exact solution.

8.1.2 MATLAB (lu,[LU] and [LU, F])

MATLAB uses the LU decompositionto solve Ax =h.

The MATLAB command for the LU decompositionfor any square matrix
A is lu(A). To obtain L, U, and P such that PA = LU, use [L,U, F] =
lu (A). Using [L,U] =!u (A)produces PtL (not L) and U. MATLAB calls
PL a ‘psychologically triangular matrix’, i.e., L with the rows permuted.
An example follows.

A=[1 1; 2 31];
[L,U] =11[<A)

511, [2 3
10]’U‘[0 —.5]

Type in help & for more information.

ans: L =

Exercises
ay
1. Let A = | ay | where a; is the k-th row o A. Find the 3 x 3
ag ]

permutation gatrix P such that .

'0.2 .a3

. o .

) a3-\ ) agl
@ PA= |a |. ) PA= |a |.

ap ) as
(c) PA= az | . (d) PA= az

.a’l lal
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ay
.Let A= | as | wherea, isthe k-th row of A. Find the elementary
ag
matrix E such that
ay a)
(a) EA=] a2 |. (b) EA= | a2-2a; |.
3as as

- e
(c) EA= az .
asz — 3a;

@ A=[124| ®)A=[ 20 -0 -1
9 1
1309 32 =2

. For the given matrix A, find the LU decompositior ; }

For the given matrix A, find the LU decomposition with partial piv-
oting.

— = e
DO DD
D =
— N

1 -1 2
(a) A=[—1 1 -2] (b) A=
1 2 0

. Give an example of an elementary matrix for add operation which is

not lower triangular.

. Suppose we know that A has an LU decompositon. Solve for L and

U by first finding the first row of U, then I5;, then the second row of
U, etc.

1 0 3
oarlia] wafi ]

. Show that the two 3 x 3 elementary matrices Correspondingto 2R, +

Ry and 3Ry + R3, don’t commute.

. Show that the two 3 x 3 elementary matrices correspondingto aR; +

R3 and BRy + R3 do commute. (Actually, for a given i, all elementary
matrices correspondingto ax R; T R, commute.)

Let L; and Lq be two 3X 3 lower triangular matrices with 1's on their
main diagonals.

(a) Prove that L L, has 1’s on its main diagonal.
(b) Prove the result for n x n matrices.
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10. Let A be a nonsingular matrix. Suppose LU and LU are two LU
decompositonsof A. Provethat L =L and U =U.

i 0 O
11. Let L= | a1 ls2 0 | beanonsingular matrix. By solving
31 I3 g3

LX =1,
find formulas for the entries of Z~! in terms of those of L.

12. Let E be an mxm elementary matrix correspondingto an elementary
operation. Let E be the matrix obtained from the m x m identity
matrix by applyingthe elementary operationto it. Provethat E =E.

13. Let E be a nonsingular m x m matrix. Let A be an m x n matrix and
b an m x lvector. Provethat AX =h and EAz =Eb have the same
solution set (Loosely, this shows that most any kind of operation,

e.g., «R; T BR; (B # 0) can be applied to a [A b].)

3 1 i 1
14. (MATLAB) LetA=]| —2 4 wml Jandbdb= | _9
0 2 ] 1

(a) Find the LU decomposition of A.

(b) Solve AX =b by using this decomposition.
(c) Solve Az =b by using the command A\ b.
(d) Compare results.

8.2 The QR Decomposition

We can do with Householder matrices what we just did wit, elementary
matrices. Although this work can be done with either real or complex
numbers, we will do the work with real numbers, so we can give geometrical
Views.

Recall that a Householder matrix is defined by

H=1I-2uut

where w is a vector such that Jju|l, = 1. Thus, if u is not of length 1,we
would use the vector “-f“; and obtain

H =1 ———uu

llull3
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As shown in in Figure 8.1, what H does is reflect (or invert) R™ parallel
to » and through the subspace

W={y : (uy) =0}.

g

E

FIGURE 8.1.

For a given vector X, we now need to find a Householder matrix H such
that Hz =+ ||z||, el. (Recall that H isorthogonal and orthogonal matrices
don"t change the length of vectors.) How such an H can be determined is
shown in the following example.

Example 0.6 Let X be a nonzero vector in B2, Notice in Figure 8.2 that
two different choices, |[z||, e and —||z||, 1, are possible.

.’ - +x

FIGURE 8.2

1. For Hz =||z||, el, we use the vector v =x — ||z}|, e, (equivalent to
the arrow from||zfye; to z).
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w1l *
\‘ . . P - N u
.- “— A . +x
Lo : ) 1 >
T 1 1 1]
e -1 ' He K
4.
FIGURE 8.3.
2. For Hz = —||z||, e1, we use the vectoru, u =z +||zi|, ex (equivalent

to the arrow from — ||z||y €1 t0 = in Figure 8.3).

Actually in software, the choice changes depending on z. For numerical
reasons (to obtain better answers), whichever of ||z|l,e1 or —||z|,e1 is
farthest from z, is chosen. For example, in our picture, — ||z, e; would
be chosen. However, for our work, we will simply choose |jz||, e1-

To help recall the expression for u, observe in Figure 8.4 that

z +|lzli; e1
2

is the average of z and ||z||, e1, and = — ||z||, e1 (achange of sign) provides
the orthogonal vector. (Their dot product is 0.)

FIGURE 8.4.

From these remarks we have the following.
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Theorem 8.2 Let x be a nonzero n x 1vector. If x # [|z|l,e1, set u =
z —|lzllyer. Then

2

= - —ud
lull3

and
Hz = ||z, e1.

Proof. A direct calculation. m

We show a numerical example below.

3 3
Example 8.7 Letx =] 0 } . Thenu =x —|jz|,e; = [0 J - [ a
4
—2
0 |. Thus
4

2
H = IF_ " ||2uu

me Q 2—2
=|a oo 0l-2 0 4
- 1| 2| 4
001
(§ 0 %
=01 0
4
| § 0 -}

5
and Hx =10 }.
0

Now, to see how to do a Gaussian elimination process using Householder

matrices, we let
y 1 2
A=|z3 y2 2 |.
3 Ys 23

We find the Householder matrix H, such that

I [1
Hl I = 0
I3 0
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. Then

6L v ow
HA=|0 v ws |.

0 V3 ws

Ty
where {1 = Zz2

r3

2

We now find the Householder matrix H such that

m[a]=15]

where £2 :’ [ v
v3 ] 2. Set
1 0
-} 2]

Then by partitioned multiplication,

6 v ow

H2H1A=H2 0 vy W2 (86)
0 v3 w3

81 v Wy
= 0 22 z22
0 0 z3
which is a row echelon form.

So, if we let R denote the row echelon form and set Q = (H2H1)_1, we
have from (8.6) that

A=QR

where Q is an orthogonal matrix.
More generally, we have the following theorem.

Theorem 8.3 Let A be an m x n matriz. Then, there exists a sequence
of Householder matrices Hy,. .. ,H,, such that

H,---HA=R
where R is a row echelon form. Thus, setting Q = (H, ..-Hl)_l, A=QR.

Proof. If A =0, there is nothing to argue; thus, we assume A # 0. The
proof is now given in steps.

Step 1. (Finding H;) Let b denote the first nonzero column of A. If
b =|b)|5 e1, the first row is staggered and we set A; = A. Otherwise, using



280 8. LU and QR Decompositions

Theorem 8.2, let H; be the Householder matrix such that Hib = |[b]| e;.
Then H; A has its first row staggered. Set A; = H, A.
Step 2. (Finding H;) Suppose Ay has its first & rows staggered. Then

C;y Cy
0 B]

where C; has k staggered rows. If B has all 0 columns, we are through.
Otherwise, let b denote the first nonzero column of B. If b ={|b|| e1, the
(k + 1)st row is staggered, and we set Agy1 = Ak. If b#||b]|e1, let H be
the Householder transformation such that

Hb =||b||5 e1.

o

Setting Hey1= [ é I?T

formation such that if we set

, an m x m matrix, we have a Householder trans-

Hyy1Ak = Ak

then Ax41 has k T 1 staggered rows.

Step 3. (Finding Q) Thus all rows can be staggered and a row echelon
form R achieved. Putting together, if s Householder matrices were used,
then H,---HiA=Rand Q=(H,- -H))™". m

3 10 0]
Example 8.8 LetA=]0 0 9
4 10 -5

use the first column of A. So,

Step 1. (Finding Hy) Tofind Hy, pe
3 20 ¢
x=]0 | and byExample 8.7, Hy=| 0 1 0 ] Now HiA=A; =
4 ¢ 0 -§
5 5
5 14 —4
o o 9
Sep?. (Einti 0 |
tep 2. (Fimding Hy) For Ha we use a9 |- We obtain a Householder

2

01
0].WegetH= [1 O} ,and so Hy =

matriz H where H [g} :[

1 00

8tep; 39 (Finding Q) Putting together, we have HoH1A = HA, =
5 14 -

0 2 3| =R, the row echelon form.

0 0 9
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Finally,
3 o 4
mm:[%O—%,
01 0
so
(g %o
Q=(HH)))=|0 01
4 _3 ¢
5 5
and A =QR.

Recall, pivoting was used in the LU decomposition to get large pivots.
The same can be done in the QR decomposition. For example, if

él v uwn
HA=|0 v w |,

0 V3 W3
we can check the columns | ¥2 | and [ Zz to see which has the greater
3

3
[ w2 ] > V2 ] , then columns 2 and 3 of H, A are inter-
w3 ]l U3 Jil2

changed. If C isthe elementary matrix corresponding to that elementary

operation, then

100 L o w on
C=|001]|,and HHAC=| 0 wy vy |.
010

0 w3 Us

length. If

(When multiplying by C, we can use backward multiplication to see the
result.) Now, we determine our next Householder matrix Hz so that

r; 21 N
H2H1AC = 0 £2 (4] = R (87)
0 0 o3

where £y = . (Had we not interchanged the columns, we would

2
R

AP =QR

E
w3
have had a smaller pivot, namely

Thus, from (8.7) we have

2

where Q = (HyH;)™" and P = C, a permutation matrix. (In general, P
is the product of the accumulated C;’s.)
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The QR decomposition is often used in least-squaressolving a system of
linear equations, say,

Az =b. (8.8)

To find a least-squares solution X, we use the factorization A = QR (or
QRF?*) and substitute this into ( 8.8). We have

QRz =b.

As shown in Chapter 7,this is equivalent to finding least-squares solutions
to

Rz = Q. (8.9)

Now we need to find vectors & so the left side is as close to the right side
of (8.9) as possible. For example, if

12
R=[ra rea
0 O

0

and ¢ = @b, we would find z;’s so the left and right sides of

Ty +rieze = ¢
T2Zy = C2
0 = ¢

are as close as we can make them.

We can’t do anything about the last equation; however, we can get z’s
so that the first two equations are satisfied. And any such x vill be a
least-squares solution to (8.8).

Example 8.9 Find the least-squares solutions to

3z, — 3z =1
5.’L'Q=1
4231—4122:1.
3 -3 1
Here, A= |0 5] andb=]1 [. Now, wing Example 8.7,
4 -4 1
£ 5 5
H=|%0 b | oomA=|8 -5 |=nR
01 -3 0 0
$0
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Further,
3 o 4 7
5 5 5
Q=H'=|01 0| end@b=]|1 |.
4 g -3 1
5 5 5

So the equation we need to least-squares solve is Rz = @Q*b or

5.’1,‘1 - 5.’1,‘2 =

5
5(82 =1
1
0==.
5
The least-squares solution is

!

275

b 12

T

[;.2
orr= Zf ]
5

Note that, for this z, | Az —b]|, =% since we could do nothing with the
last equation.

In finding a QR decomposition, we could also use Givens matrices. The
basic idea for this approach is covered in the exercises.

8.2.1 Optional (QR Algorithm)

The numerical computation of Q and T of the real Schur form is usually

done by the QR algorithm. This algorithm is as important to eigenvalues

and eigenvectors as Gaussian elimination is to systems of linear equations.
The algorithm sets A; = A and iterative factors

Ak = QrRk.
Then sets
Ak+1 = RiQk.
Under reasonable conditions A;, Az, ... converges. Since
Ak+1 = ReQx
= QLQrRiQx

= QL ALQx.
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we see that
Ape1=Qf - QIAQ: - Qx
so, setting
Q=@ Qs
Aeyr = Q1AQ

Thus A1 is orthogonally similar to A. For sufficiently large k, Agy; is
close to a block triangular matrix. Replacing those entries in Ag+1 below
the blocks, which are sufficientlyclose to 0 by 0 yields the computed Schur
form T of A.

The QR algorithm can be used to compute eigenvalues, and correspond-
ing eigenvectorsof A. (This isthe best general such method.) We describe
how this is done.

If T is a real Schur form, its eigenvalues are the eigenvalues of the 1x 1
or 2 x 2 matrices on the main diagonal, which are easy to compute. Thus,
the eigenvaluesof T and hence A are calculated.

Corresponding eigenvectors can be computed as follows. For an eigen-
value A, solve

Ty=Xxy, y#0
or
(T-Ahy=0
for corresponding eigenvectors. Then, for each such eigenvector, since
T=Q'AQ
Q*'AQy =)y
AQy = AQy,

Qy is an eigenvector for A correspondingto A.
As we might expect, this algorithm has been improved (using Hessenberg
matrices and an implicit shift, etc.)
It may be helpful to look at some data. We use the MATLAB program.
A=112; 34
forn=1:5
[Q, B] = gr (4);
A=Rx*Q
end
Notice in the iterates, the 2,1-entries tend to 0, thus we get T.

L. | 52000 1.6000]

0.6000 —0.2000
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[ 5.3796 —0.9562
0.0438 -0.3796

5 5.3718 1.0030]

©0.0030 -0.718
. [ 53723 -0908
* | 0.0002 -03723
5 [ 53723 1.0000

| 00000 -0.3723

We can compare our result to the MATLAB result obtained by using the

command
shur(4) = | 03723 —1.00001

0.0000  5.3723
This is a little different; however, recall that MATLAB uses a more so-
phisticated @ R-alogrithm (implicit shifts, etc.), and that Q and R, in the
QR decomposition, are not unique.

8.2.2 MATLAB (Ax=h, QR, Householder, and Givens)

MATLAB uses the QR decomposition to least-squares solve AX =h.
Comparing the LU decomposition and the QR decomposition, it is known
that the latter requires about twice as much arithmetic to compute. And,
to solve Ax =b, LU with partial pivoting is known to be very satisfactory.
In comparing Householder and Givens, using Givens matrices requires
about twice as much arithmetic as using Householder matrices.
The MATLAB commands for the QR decomposition and Householder
matrices follow.

1. QR decomposition: The MATLAB command for the QR decomposi-
tion of Aisgr (A). Toobtainthe Q and R, use [Q,R] =¢r (A). For
the QR decomposition with column pivoting, use [@, R, F] =¢r (A).
The P here is as in AF =QR. An example follows.

A= [ 1 2, 11 ];
(@, R, F] =qr (4)

o[ —08944 —0.4472 R_[—2.2361 ~1.3416
ans =1 04472 08944 P VT 0 0.4472
1
and P = @ 0

2. Householder matrix: Given a vector z # 0, the command [H,r] =
gr (z) provides a Householder matrix H such that Ha: = % ||zf|, e1.
The r gives £ |zl e1 as shown in the following example.
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z=[ 1; 2 ];
[H, 7] =gr(z)
ans: H — | —0:4472 —0.8944 1
—0.8044  0.4472
_ T2.2361
= ol

3. Givensmatrix: Given a vector x € R?, we can get a Givens matrix G
such that Gz = % ||z||, e; by using [G,r] =planerot(z). For example
z=[1 2 ];
[Gr] = pl[merot (2)

ans: G = 0.4472 0.8944 ]
—0.8944 0.4472
.o [ 2.2361 ]
0 .

Type in help ¢gr for more information.
Exercises

1. For the given A, find the QR decomposition.
3 1 0 31 -1
(a)A=[42] by A=|1 01 0
041 1

2. For the givenlA, find the QR de[o[nposition with column pivoting.
1

(a)A=[ Sl ®a={1-0a0
1 4
1 0 4

3. Givenz # —||zl||, e1, show, using sketches, how to find a Householder
matrix A such that

Hz = —|z||; e1.
31 1
4. Solve | 0 1 |z= | 2 | usingthe QR decomposition.
4 1 1
1 0] [ 2
5.Solve | 1 4 1 | by using the QR decomposition with
1 3

—

=1
column pivoting.

6. Let u be a nonzero vector in B*. Define W = {w : (Wy)=0}. Prove
that W is a subspace of dimensionn — 1.



7.
8.

9.

10.

11.

12.

13.

14.

8.2 The QR Decomposition 287

Explain why a permutation matrix is orthogonal.

Let H be a Householder matrix. Prove that
(a) H* =H.

(b) HH* =H'H =1.

(c) H2 =1.

(d) [ é I?I } is a Householder matrix.
(e) det H = —1.
Let A be an m x n matrix having rank .

(a) Prove that A can be factored
A= QoRyg

where Qo is an m x r matrix with orthonormal columns and Ry
a row echelon form.

(b) Prove that Qo is an orthonormal basis for span{ai,...,a}
where a; is the i-th column of A.

Prove that the QR decomposition, with column pivoting assures that
inR,

frii] > |r22l > ...

Using Exercise 10, prove that if rank A = r, then in partitioned form,

_ | R Ry
= ]

where Ry, is a nonsingular » x = upper triangular matrix.

Let H be a Householder matrix. Prove that H has one eigenvalue
which is —1, all others being 1.

Let A be a nonsingular matrix. Prove that f QR and QR are QR de-
compositions o A, then QQ is a diagonal matrix with main diagonal
composed of 1’s and —1's.

Let A be an n x n real matrix. Using the QR decomposition, prove
Hadamard’s inequality.

|det A| < Hlasllz- .- llanll

Describe what this inequality says about the volume of a paral-
lelepiped in B3 determined from edges a;,a2,as. (A sketch can help
support the description.)
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15.

16.

17.

18.

19.

20.

8. LU and QR Decompositions

Let A = QR,a QR decomposition. Prove that |r;;| = distance from a;
to span{ay, ... ,ai_1} wherea,...,a, arethe columnsof A. (So,
the r;’s give some idea of how close the vectors are to being linearly
independent.)

Twoparts.

sinf  oosé b
Show what trigonometric equation should be solved to find ¢

such that GA:[ ““6”2 ]

(a) Let G = [ cosf —sind 1, a Givens matrix, and z = L:

(b) Explain, for a 3x 3 matrix A ,how to find Q and R using Givens
matrices. (Use as a guide the parallel result for Householder
matrices shown in this section.)

Let Q be an orthogonal matrix. Prove that Q is a product of Givens
matrices (plane rotations) if and only ifdetQ = 1.

Let z E C*, = # 0. Choose 8 such that z, = |z,|e. Define
u =z te?|z||,e; and
2 H
H=1I- muu .

Prove that H is unitary and Hz = —e* ||z||,e;. (This is the House-
holder matrix for complex numbers.)

(MATLAB) Factor the following matrices as QR.
[ -2 4 3
(@ A= 0 5 2
| 7 -16
[ 2-3i i 4+2
(b) A= 0 3-2i -5
| —3+4i 2 ® L
4 -1 2]
(MATLAB) Let A = 3 6 |. Find
o 2 1,
—1
(a) The QR decomposition of A.

(b) orth (A).

Compare (b) and the Q from (a) in light of exercise 9(b).
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1 1
21. (MATLAB) Let W = span{ [1 } ) [O ] } Find the distance
1 1
1
from | 0 | to W
0

(a) Using the QR decomposition and Exercise 15.

(b) Using orth to find the orthogonal projection matrix P from R3 to
W, and computing |le; — Pe||,.

(c) Using least-squareson AX =e; where A = [

— =

1
0 ] , to find X,
1
and computing {|Az — ey]],.
22. (MATLAB) Adjust the program in the MATLAB section and apply

010
the QR algorithmtoA=| -1 0 0 §.
11 2






9

Properties of Eigenvalues and
Eigenvectors

In this chapter we study how small changes in the entries of a matrix affect
the eigenvalues and eigenvectors of that matrix. Such changes occur in
modeling since the matrix in the model is often only an approximation of
the actual one. Further, in numerical computations, usually the answer we
get is (due to rounding) actually the exact answer to a matrix which is close
to the given matrix. So, if matrices close to a given matrix have close eigen-
values and eigenvectors, we would have an ideal situation. Unfortunately,
this is not always the case.

9.1 Continuity of Eigenvalues and Eigenvectors

We have seen that eigenvaluesand eigenvectors are important to calculating
lim A*, solving systems of differential and difference equations, graphics,

Iét—éoo Understanding about eigenvalues and eigenvectors also allows us to
interact with software, such as MATLAB, knowing how to interpret an-
swers.

In this section, we show that eigenvaluesare continuous (in some sense),
and, under certain hypotheses, so are corresponding eigenvectors.

Eigenvalues are roots of ¢ (A) =det (A—Al), the characteristic polyno-
mial of A. To study these roots will require our obtaining formulas for the
coefficients in ¢ (A). For this, let A be an n x n matrix and ¢, ... ,i, any
 integers between 1land n wherei; <-...<i. Define

A, ... yir)
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as the determinant of the submatrix found in rows 4, ... ,i.. and columns
i1,... 4 I A For example, if

-3 & =
00 v N

© ;W
|

then

A (2) =det[5]=
A(1,3) = det[ ,17 g} =9-21=-12and
A(1,2,3) =det [A] =

These A's can be used to calculate the coefficientsin ¢ (A), & shown below.

Lemma 9.1 Let A be an n x n matriz and ¢ (A) = cpA™ Tep1A®t +
-++cg. Then

=( )
= (-1)* ZA(M, < yin—k)
for all K < n, where the sum X is over all 41, ... ,in—t Wheredy < .-- <
Ink.

Proof. We prove this result for a 3 x 3 matrix leaving the general argu-
ment as an exercise. For a 3 x 3 matrix A, with columns a1, az, and ag,
observe that ¢ (A\) =det (A — M) =det [a; — Aey, a2 — Aez, a3 — Xes]. B
using properties of the determinant, we have

@ (A) = det [-Aey, —Aeg, —Aeg] T (det [ay, —Aez, —Aeg, |

+ det [—Aey, ag, — )\63,] + det [—)e1, —Ae2, a3)])

+ det[ /\61,02,a3] det [0«1, —/\62,a3]

+det [al, ag, —Aes] T det [a1, a2, as]

==Xt (A DAFTA QRN TA ()Y

_(Ag Al HATAL,2)N) +A(1,2,3)
+§:A(.)A —-YAG,i) A TA(Q,2,3),

which is the desired result. m

An example follows.

| .
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} . Then

Al)=1,A@2) =5AB)=9so
ca=(-1"1t5t9)=15
A(1,2)= -3, A(L,3) = -12, A(2,3) = -3 so
e =(-1P°(-3-12-3)=18
A(1,2,3) =0, so ¢g=0. Thus,
e\ =caA® tea? terte
=-A3 +150% +18x t0.

o0 O N
© O W

1
Example 9.1 Let A= [ 4
7

Note that from Lemma 9.1 and Theorem 3.8

cg =detA = A;--- A, and
eno1 = (—1)"trace A= (=1)""TF (A + - 4 An)

where A4, ... ,A, are the eigenvalues of A.
We now use this lemma to prove a type of continuity of eigenvalues result,
the Continuous Dependence Theorem.

Theorem 9.1 Let A be an n x n matrix with eignenvalues Aq,. .., An.
Givene > 0, there as a 6 > 0, such that 3 B is an n x n matrix and
|B — All <6 the eigenvalues of B can be arranged, say, 3,,...,8,, such
that

[Xi —B;] <eforalli

(-l can be replaced by any matrix nom.)

Proof. We apply the followingtheorem from mathematical analysis: Let
p (t)=ant™+---+ag, have roots Ay, . .., A,. Givene >0, thereisaé; >0,
such that if ¢ (t)=b,t™+-..+bo and |a; —b;| <& for all %, then the roots
of ¢(t) can be arranged, say, 8,. .., 8,, such that |A; — 3;| <t for all i.

To apply this result to our theorem, given e > 0, take 6 > 0 such that if
I|B — Allg < 6, then

'ZAA (i1, i) = S Bp (i, ,ik)‘ < & for all k.
(Since the determinant is continuous, such a § exists.) m

This theorem assures, in numerical calculations, that if A is given and
if we calculate the eigenvalues of a sequence of matrices 4;, Az, ..., where
lim Ay =A, then Ay, A2, ... have eigenvalues that tend to those of A.

k— o0
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A useful application of this theorem is Gershgorin’s theorem, which gives
a region in the complex plane that includes all eigenvalues of A. This
theorem follows.

Corollary 9.1 Let A be an n x n matrix. Consider the disks D; in the

complex plane determined by graphing the inequalities, involving the vari-
able A,

n
A —aiul <) lail
k=1

k#i
(3" |aix] being the i-th off-diagonal absolute row sum) fori =1,...,n.
i
(a) I/ X is an eigenvalue of A, then X is in D; for some i.

(b) I K is a union ¢f m disks and K is disjoint from all other disks,
then K contains m eigenvalues oj A. (See Figure 9.1.)

D,

D,
D,

FIGURE 9.1.

Proof. There are two parts.
Part a. Since A is an eigenvalue of A, there is a eigenvector z such that

Ax = Ax. (9.1)

Let x; denote the largest, in absoluted u e, entry in z. Then, equating the
i-th entries in (9.1), we have

n

? AikTE = ATi.
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Bringing the a;;z; term to the right side yields

n
E Qi}Tp = (/\ - aii) Z;.
k=1

ki

Taking absolute values, we have

n
Z |aik| |zk| > ‘)\ —a;
k=1

k#i

|3

and dividing by |z,

- k|
E |aik|—k—2 l/\"aiil-
prmy |z:]

k#i

And since l—:—k—l < 1,for all k£, we have

n
> o] > l/\ = @i

k=1
k#i

b

so A E D;.
Part b. Consider

B, =diag(ai1, . ..,as) Tt(A-diag(ai,... a,)).

Note that Bo =diag (a11,- .. ,ans) and that By =A.

Define g(t) =the number of eigenvalues of B; in K. Note that the disks
for B; lie in the corresponding disks for A.

Now suppose g (t)is not continuous on [0, 1], say, not at to. Thus, there
is a sequence t1,t2,. .. converging to to such that g (tx) # g (to) for all .
But this implies that the eigenvalues of By, can’t approach those of B,
providing a contradiction. (See Figure 9.1.) Thus g (t) is constant, which
says that g (0) =g (1). Since By has exactly m eigenvalues in K, so does
By, whichis A. m

010
Example 9.2 Let A= |: -2 5 0 :| . Then

Dy : |A-5]<|-2[+]0] =2
Ds : A-6l<|-1+)1]=2
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D,
1N L
K/l 2 5 6 7] 8
K=DuD
FIGURE 9.2.

The graphs are in Figure 9.2.

The eigenvalues o A are Ay = 0.4384, )\, = 4.5616 (to 5 digits), and
Az =6. We see in the figure that these eigenvalues are covered by D; and
Dy U Ds.

A corollary defining the radius of the disks by norms follows.

Corollary 9.2 Let A = D+ B where D = diag (d1, ... ,&) and B annxn
matriz. Using any of the induced norms ||-||;, ||-|l5, and ||-|| ., consider the
disks D; defined by

|A —di] < || Bl
fori=1,...,n. Thenboth (a) and (b) of Gershgorin’s Theorem hold.

Proof. The proof of this corollary, for induced matrix norms |-, and
||, 1s like that of Geshgorin’s Theorem. For the induced matrix norm
[I-|lg, the proof is more complicated. m

Note that Theorem 9.1 does not imply that eigenvalues axe functions of
the entries of their matrices. (As the entries of a matrix change, so do the
multiplicities of the eigenvalues. A way to describe these eigenvalues as
functions isn’t known.)

For us to obtain a result of this type requires that there be no multiple
eigenvalues. Thus to show eigenvalues as functions, we let A be an nx n ma-
trix with distinct eigenvalues A;, ... ,A.  Let r be a radius which produces
non-intersectingdisks Dy, . .. ,D, about these eigenvalues respectively.

Now we let the entries of A vary, forming the matrix B. Then from re-
sults in function theory, if B is sufficiently close to A (say, |B — Al <e),
then the eigenvalues 34, ... ,8, of B remain in the disks Dy, . .. ,D,. (See
Figure 9.3.) Further, these eigenvalues are both continuous and differen-
tiable.

Continuing, for each eigenvalue 3;, there is an eigenvector z;, of length
1,that is continuous and differentiable.
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D,

D, D,

FIGURE 9.3.

9.1.1 Optional (Eigenvectors and Multiple Eigenvalues)

The eigenvalues of A are continuously dependent on the entries of A (as
given in Theorem 9.1) even when those eigenvalues aren’t described as
functions. There is no such general result for eigenvectors.

Eigenvectors are continuous about matrices that have distinct eigenval-
ues. In the following we show an interesting example, a varient of one given
by J. W. Givens, of what can happen when matrices are close to a matrix
with multiple eigenvalues.

2 in 2
€COS ¢ €SN ¢
AE =

in2 - 2
€sin £ €COS £

Example 9.3 Let

where e is a positive scalar. This matrix has the form

a b
b —a
whose eigenvalues are A =++v/a? +52. Thus the eigenvalues of A, are

A ==e.

Takzng A =&, acorresponding eigenvector (when £ is not a multiple of 27)

is
7. = sin%
€~ | cos2 '

(ThiSvector can be norTaIized, butf<[r simplicity, we leave it as i) Now,

and occur infinitely often. Thus,

0
-1 -2
the eigenvectors ‘wobble’ and do not tend to any vector. So, even though
the eigenvectors are continuous, they are very sensitive to change in the

matrix.

as e — 0, the vectors
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Exercises

1. Compute the characteristic polynomial for
1 2 -1
2 3 1
3 -1 0

2. Write out the general prgof of Lemma 9.1.

by using Lemma 9.1.

11 - 11

. 12 -1 1 2 _

3. Theeigenvaluesd A = 3 o0 21 were calculated as, A, =
1 5 2 4

1.02, A2 = 3.14, A3 = 2.15.,04 = .73. s this correct? (Do not
calculate the eigenvalues of A and compare.)

4. Give one eigenvalue for

T e V2
o o0 o0 |.
i tané 200!

5. Apply Gershgorin’s Theorem to

Is A nonsingular?

6. Let A be an n x n matrix.

(a) Show that the eigenvalues of A and A* are the same.
(b) State Gershgorin’stheorem for eigenvalues of A in terms of col-

umn sums,
211
(c) Determine the eigenvaluesof A = | 0 5 0 |, using Ger-
0 0 6
schgorin’sTheorem. Check A and A°.
2 2 2
(d) Estimate the eigenvaluesof | .1 .5 .1 |, using Gerschgorin’s
d 1 6

disks. Use both row and column sums.



9.2 Perturbation of Eigenvalues and Eigenvectors 299

(e) Compute the eigenvalues of the matrix in (d) using MATLAB.
Plot these in the disks determined by (d).

116 } . Note that one of the

disks contains no eigenvalues. Does this contradict the theorem?

7. Apply Gershgorin’s theoremto A = [

8. Prove Corollary 9.2 for ||-|| ..

9.2 Perturbation of Eigenvalues and Eigenvectors

To perturb means to change slightly. Thus, in this section, we study how
much eigenvaluesand corresponding eigenvectors of an nx n matrix, say, A,
change under small perturbations of the entries of A obtaining, say, A +E.
We should recall from calculus that even if a function (like eigenvalue or
eigenvector functions) is continuous, small changes in the variables can
yield huge changes in the corresponding functional values.

Our first theorem is an eigenvalue result.

Theorem 9.2 Let A be an nx n diagonalizable matrix, say, A = PDF~!,
Let E be an n x n matriz and ||-|| the induced matriz norm ||-li;, ||-|lg, ot

[Nl -
(a) I X is an eigenvalue of A T E,
A =X <c(P)E|
for some eigenvalue X; of A.

(b) Iy K is the union of m of the disks described in (a), and K s disjoint
from all other disks, then K contains m eigenvalues of A.

Proof. Since the proof of (b) is as that in Gershgorin's Theorem, we
only prove part (a).
By hypothesis,

P'AF =D
where D =diag X, ..,An) and Ay,. .. ), the eigenvaluesof A. Thus
P~1(AtE)P =D+ P lEP.
Now, if X is an eigenvalue of A +E, using similarity, it is an eigenvalue of
Dt P-'EF. Applying the Corollary 9.2 to D + P~1EF yields that, for
some J;,
[A =X < HP“EP“
< || PHIPIIEN
=c(P)|IE|,
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the desired result. m

We can think of ¢ (P) here as somewhat like a derivative. Setting A =
X (AT E)and A =X (A) e have

Ai(A+E) - Xi(A)] < c(P)IEY,

somewhat similar to the Mean Value Theorem that we studied in calculus.

Note that if we change the entries in A a bit, say, by adding E where
I|IEll <.01, then we can’t assume the eigenvalues of A+ E are within .01 of
those of A. This would be true if A is normal since in this case we would
have P unitary and then using the induced matrix norm, ||-l;, ¢(P) = 1.
However, if ¢ (P)is larger, the eigenvalues of A +E may be farther away
from those of A than || E|.

Example 9.4 LetA:[g 21] Then)\lzl,/\gzz,P:[(l) } ,
_ 1 -1 ez _ [ 001 0.02
p-l = [ 0 1 and ¢oo (P)=2%2 =4. Now let E = 001 003 |’

so ATE isachange in A of 04 (||E||,, =.04). What we know now is
that the eigenvalues of A T E are within cs (P )| E}l, = .16 of those of A.
Calculating the eigenvalues of A +E , we have A; = 1.0001, A, = 2.0399,
well within out bound.

We now give another perturbation result. This result, concerning both
eigenvaluesand eigenvectors, is obtained by differentiation of the eigenvalue
and eigenvector functions which we described in the previous section. So,
we assume that the eigenvalues Ay, . .. ,A, of A are distinct.

For this work, we let yi,. .. ,y, be left eigenvectors of A, correspond-
ing to Ay, ...,A respectively. We assume these eigenvectors have been
normalized so that their lengths are 1.

In addition, let E be an n x n matrix, ||E|l, = 1,and B =A +tE where
t is a real variable. We take t sufficiently small so that the eigenvalues of
B remain in the disks described in the previous section. It can be shown
from function theory, that for each i, there is a differentiable eigenvector
z; (), =; (0) = z;, and a differentiable eigenvalue X; (t),X; (0) = A;, such
that for sufficiently small t,

(ATLE)Yzi (t)= A; (t)z: (1)

where ||z; (t)||, = 1. (Note X; (t) = B; of the previous section.)
The idea now is to compute A} (0), to see how small changes in t affect
A (D).

Theorem 9.3 Using the above notations,
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(a) AL (0) =% and

(b} Ifl‘i (t)= 61 (t)’l!l + .. +6n (t)X, (51 (t)= 1), then

y; Ex;

8. (0) = —L—"—
;0 (N = Aj) y;z;
for all j # a.

Proof. We prove both parts.
Part a. Expanding

(ATiE)z; (t)= X (t) z:i (t)

we have

Az; () FtEz; ()= A () (1)
Differentiating

AL (t)F Bz, (tyFeEa, (t)= X (s (1)F A (L) (2)
Setting t =0 yields
AX(0)F Ez; = X; (0)z: (0)F X (0)zf (0).

Rearranging leads to

(A= XI)z; (0) = X; (0)z; — Ez;.
Multiplying through by y;, we have

0= ; (0)yiz; — yi Ex;.

Thus

: YiTi

Part b. Now, note that for any j,
yizi (1)=6; (tyixi.
SO

6; (1) = L% )

YiZj

Since z; (t)is differentiable, so is 8, (t).

301

(9.2)
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Multiplying (9.2) through by y;, using the Principle of Biothogonality,

and that
x: (0) :5'1 (0).’1:1 + . +5;1 (O)xn
yields
(A =X) ;65 (0)z; = —y; Ex; when j # .
D
'E.’L"
8 (0) = —L=Ti
i@ A =25 yixj
the result desired. m
Note that
Ex;|
X (0)] = Eed,
| ( )l |yi$i|

Then by the Cauchy-Schwarz inequality,
lyally | Bl
lysz:
< lillz 1B, llz:lly
lylzll

|X: (0)] <

<2
8

where

a = |yizi| .

(Observe that since |y;z;| < [lzill; llwill, = 1,0< s < 1.)
We call & the condition number for A;. Using (9.3), we interpret =

(9.3)

like

the derlvatlve in calculus, if s; is close to 0, A; is ill-conditioned. (SmaII

changes in A can lead to much larger changes in Xi.) And if s; is close to

1,; is well conditioned. (Small changes in A lead to small changesin A,)
Geometry can help us see when + is large. (); is ill-conditioned.) Note

from Figure 9.4 that

|cos 8] = |y;x;|

= 8;.
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X

DA

Yi

FIGURE 9.4.

vi b
(hiill conditioned) (»; well conditioned)

FIGURE 9.5.

So s; is the absolute value of the cosine of the angle between z; and yt.
Thus if the left and right eigenvectors (left eigenvector transposed) of A;
are nearly orthogonal (s; is near 0), then sl is large, and the condition
number is large. If the left and right eigenvectors of A; are nearly parallel
(s; is near 1}, then sl isnear 1, 1 being the best possible condition number.

Since a normal matrix (This includes symmetric and Hermitian matri-
ces.) is orthogonally diagonalizable, as given in the exercises, z; = y¢ for
all ¢ and so its eigenvalues are well conditioned. (This sometimes prompts
the remark that matrices which have ill-conditioned eigenvalues are non-
normal.) (See Figure 9.5.)

Similar to our analysis of eigenvalues, the numbers

1 1 1
M= Xils” o=l 7 A = Al s

(9.4)

(where the expression ﬁ];- is omitted) indicate the sensitivity of the
coefficientsof z; (t)to smallchangesint in A+tE. Thus, if A has distinct,
well-separated eigenvalues and -81— is not too large, then the eigenvectors
z; (t)have well-conditioned coefficients.
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Example 9.5 Let A = [ 3 g

]. ThenA; =5, 2 = 1 with corresponding
1 1

right eigenvectors, normalized, z; = [ 42 ],:1:2 = 715 ] and left
2 V2

eigenvectors y; = [715, 55], Y2 = [715, —715] .

(a) The condition numbers for the eigenvalues are

i A _5’ T |1/11$1 =
i Ay =2 _slz- = Iyzttzl =

Thus for a small t, the eigenvalues of A +tE will differfrom those
of A by about t, at most. (Note that A is symmetric.)

(b) For the condition of eigenvectors, we look at two parts. Note that

So the eigenvectors have well-conditioned coefficients.

9.2.1 Optional (Pictures of Eigenvalue and Eigenvector
Sensitivity)

In this optional, we show the sensitivity of eigenvalues and eigenvectors in
terms of pictures. To do this, we need some preliminary work.

It is known that if a matrix A has an ill-conditioned eigenvalue (L is
large for some i), then A is close to a matrix having multiple elgenvalues.
(The converse is not true.) So if a matrix has close eigenvalues, it is a
signal that eigenvalues and eigenvectors could be ill conditioned.

We now look at two examples showing this, one for eigenvalues and the
other for eigenvectors.

Example 9.6 For eigenvalues we let A = [ i Il) ] Then A\ =1+ Ve
and Ay = 1—+/bc give the eigenvalues of A. As a function of b and c, the
graph of A; is shrwn in Figure 9.6. We use the Frobenius norm on R2x2

11) « (b, c)* preserves distance. Note that near the
b and c azes (b or c is small), the partial derivatives of A are very large.
So we know that small changes inb or c (nTr the axes) can cause much

so the matching

1 ©

larger changes in Ay. For example, for A= o0 |

], the eigenvalues
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Graph of sigenvaluss of A

s-axis

FIGURE 9.6.

are Ay = 1.0000, A2 = 1.0000. But for A = 1300 '00101 ], we have
A1 = 1.3162, A2 = 0.6838. So a change of .0001 in A (||E||, =.0001),
changed Ay from 1.000 to 1.3162 and A2 from 1.0000 to 0.6838. (This was
somewhat predictable since the eigenvalues were close. Close eigenvalues
are a red flag.)

Observe also that when b = ¢, A; doesn't change much for changes in,
say, b. As we know, this is true for symmetric matrices an general (even
when eigenvalues are close).

. 1 0 1t
Example 9.7 For eigenvectors, we IetA_[ 0 11 ] and A (t)= [ £ 11 },
01

soE=|:1 0

}. The eigenvalues of A (¢) are given by

M Ao = S

“~

2.1 + /.01 + 4¢2 2.1 — /.01 + 4¢2
- 2
The corresponding eigenvector, normalized to length 1, for Ay is
2t
T = [ 14/ 0142 ]
d

where d = (862 +.02 +.2//01 f}j%

Weletx =t, y =2, z = 1430 and graph (z,y,z)" for -1 <t <

1. In the graph, the eigenvector is (y, z)*. Observe in Figure 9.7 that about
t =0 the eigenvector shows a lot of change for small changes int. Thisis
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FIGURE 9.7.
confirmed numerically by computing the eigenvector for several values oft.
t . = _ 0 1
T z ~0.5257 0 0.5259
¥ .. 0.8507 , 1 0.8507
(Note that A has close eigenvalues when t is small, a red flag that indicates
eigenvectors could be ill conditioned.)

9.2.2 MATLAB (Condeig)

MATLAB provides condition numbers for eigenvalues. The command is
condeig. An example follows.
A=[101;273;720];

eig(A)
2.5958
ans = | — 2.5071
" 7.9475
condeiggA)
1.5766
ans = | 1.4399
= 1.1994

If we want eigenvectors (recorded as columns in a matrix), eigenvalues,
and their condition numbers, we use
[V, D, s] =condeig (A)
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1. Code for eigenvalue picture

b = linspace(0, 10, 30) ;
¢ = linspace(0, 10, 30) ;
[b,c] = meshgrid(b,c);
s =1+sqrt(h. ¥¢);
mesh(d, c,s)

grid on

2. Code for eigenvector pictures

t = linspace(—1,1,50) ;

d=8x(t.A2) T.02% 24sqrt(.01 T4 % (t.A 2));
y =2xt./d;

z = .1+sqrt(.01 4% (t. A 2)))./d;

plot3(t, y, 2)

grid on

For more information, type in help condeig. Also for the graphs, type in
help plot3.

Exercises

12 1
1. LetA—[1 2].

(a) Factor A =PDF~! and compute cw (P).

(b) E = [ 1 ] find coo (P) | Ell .

(c) Plotthe eigenvaluesdf A in k2. Draw circlesof radius ceo (P) | Bl
about the eigenvalues.

(d) Find, and plot in (c), the eigenvalues of A +E.

1 0 ag=[1 1
2. Repeat Exercise 1for A=|1000 1.1 | *™*® = [a1 a |

HER!
3.LetA—[1 3]

(a) UsingE = [ 1 g ],compute X; (0), fori =1, 2, using Theorem
9.3 (a). 0
(b) Repeat (a) for E = [ (1) 8 ]

4. Repeat Exercise 3 for A = [ 1000 ]

1
0 4
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5. For the matrix given in Exercise 3,

(a) Find -sl; for A\;. Explain what this means in terms (9.3).

(b) Find |A1 — Ag|- Using (9.4), explain what ma—l means in
terms of the condition of the coefficients of z;.

(c) Repeat (a) for As;.
(d) Repeat (b) for ;.

6. Repeat Exercise 5 for the matrix in Example 4.

7. Let A be an n x n normal matrix with distinct eigenvalues. Prove
that if y; is a left eigenvector, for the eigenvalue A; of A, then 3! is a
right eigenvector belonging to that eigenvalue.

8. (MATLAB) Let
2 1
A= |3 -1
2 -5

(a) Find the eigenvalues of A.
(b) Find % fori =1,2, and 3.

(c) Make some conclusion from (b).

9. (MKTLAB) Find a 3 x 3 matrix, with ;‘- > 100, for some ¢. (Use

theory to see where to look.)
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Hermitian and Positive Definite
Matrices

As we will see, Hermitian matrices (In the real case we are talking about
symmetric matrices.) arise in mathematical models of mechanical systems,
in Hermitian forms, and in optimization. (There are many other areas as
well.) In this chapter we look at several results about Hermitian matrices
which are useful in these areas.

10.1 Positive Definite Matrices

As we have seen, a Hermitian can be diagonalized by a unitary matrix. By
using a special class of Hermitian matrices, the positive definite Hermitian
matrices, we show in this section how two matrices can be simultaneously
diagonalized in a special way.

A Hermitian matrix A is positive definite if all of the eigenvalues o A
are positive. And if A has all nonnegative eigenvalues, we use the words
positive semidefinite. (If — Ais positive definite, we call A negative definite
and if - Ais positive semidefinite, we call A negative semidefinite.) Positive
definite matrices can be factored in a special way.

Lemma 10.1 Let A be annxn matrix. Then A is Hermatian and positive
definite ifand only if there is an n x n nonsingular matriz R such that

A =RRH,

(I} A is symmetric, R is real, and we have A = RR*.)
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Proof. We prove the biconditional in two parts.
Part a. If A is Hermitian and positive definite, we can factor

A =UDU#

where U is a unitary matrix and D = diag(Xs, .. ,\,) where each X; >
0. Define D3 = diag(v/A1,- .. ,v/An) and set R = UD?, a nonsingular
matrix. Then

A =RRH,

Part b. f A =RRH then A is clearly Hermitian. To show that A is
positive definite, we proceed as follows.

Suppose A is an eigenvalue of A. Then Ax = Az for some eigenvector X.
Since A = RR¥,

RRHz =z
Thus
¥ RRHz = \z¥Hy
|R% ][, =X ll=ll;-

Since R is nonsingular, so is R¥ (det Rf =detR # 0) and thus Rz # 0.

Hence ||RH:c||§ >0. Since ||z[2 > 0, it follows that A > 0. As A was an
arbitrarily chosen eigenvalue, A is positive definite. m

Example 10.1 Let A = [i’ ;

and corresponding eigenvgctors (of length 1) are given by Ay =4, Ay =2,

2 —y2 .
and u; = ﬁ , Ug = & . Thus, A is positive definite. Now
2 2

, a symmetric matriz. The eigenvalues



10.1 Positive Definite Matrices 311

Adjusting the proof slightly, we can show that an n x n matrix A is
Hermitian and positive semidefinite if and only if A = RR¥ for somenxn
matrix R.

Note that if S=R¥, then

A=5Hg

so which matrix in the factorization has the superscript H doesn’t matter.
From this lemma we can produce a simpler factorization, the Choleski’s
decomposition.

Corollary 10.1 Let A be an nX n matrix which is Hermitian and positive
definite. Then

A=THT
where T is an upper triangular matrix.
Proof. Using Lemma 10.1, factor
A =845

Now factor S =U7T, where U is unitary and T upper triangular. (UT found
from the Gram-Schmidtprocess, i.e. the QR factorization.) By substitution

A=UT)" (UT)
=THT,

which is Choleski’s decomposition. m

Note that the lemma (or corollary)also implies that if A is Hermitian and
positive definite, and B is a nonsingular matrix, then B AB is Hermitian
and positive definite. (To see this, factor A = R¥ R and substitute to get
BHAB = BHRERB = (RB)Y (RB).)

We can now show how two Hermitian matrices can be simultaneously
factored into diagonal matrices.

Theorem 10.1 Let A and B be nx n Hermitian matrices with B positive
definite. Then there is an n x n nonsingular matrix P such that

PHBp =| and PPY4AP =D

where D =diag(A1,. .. ,A)  Further, if A is also positive definite, D has
a positive main diagonal.
Finally, if A and B are real, so is P.

Proof. The proof outlines the method to find P.
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Step 1. (Find R.) Asin Lemma 10.1,find R such that
B =RRH.

Note that R=B (RH) ™" =1,
Step 2. (FindU.) Set

C=R1'A(RY)™
a Hermitian matrix. Thus, we can find a unitary matrix U such that
UHcU =D, or
UHRA(RF)'U =D,
Step 3. (Find P.) Set
P=(rRY)"'U.
Then
PHBF =UHR™' (RR¥) (RY)'U =1
and
PHAF =UHRA(RY)"'U =UHCU =D.
Thus, P has the required properties. =

Finally, if A is positive definite, so is P# AP, so D has a positive main
diagonal.

Example 10.2 Let A = [_f -

steps of the proof of the theorem.
Step 1. (Finding R) Factoring

B=RRt=[

4 0

]andB:[0 4

]. We follow the

o N
N O

on=[31].

Step 2. ( Finéing U) Set

I

—

O o=
N O~
| I
—

!

— N

|

N =
—
—
Qo wi=
N O
| I )
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Orthogonally diagonalizing C', we have

11
U=[12 ?]andD:[
vz 2

Step 3. (Finding P) Set

Simultaneous diagonalizationof positive definite Hermitian matrices arises
in simplifyingquadratic forms, say, g1 (z) = z*Az and ¢z (z) = z* Bz (which
represent, say, kinetic and potential energies). It is also sometimesused to
solve systems of differential equations of the form

Mz" (1)t Kx (t)=0 (10.2)

O h=
wlw O
—

P=(R)'U=

| —— |
O~
o= O
[hy '
o N
i
—

44

4

as in the spring-mass, building, etc. problems. The simultaneous reduction
here (usingy (t)=P~1z (t) )yields

y" (tyF Dy (t)=0.
These equations are easily solved for y (t)and then
z(t) = Py(t)
=n)prt+- +yn () pn

where y (t)= (y1 (t),... ,yn (1) )nd p; is the i-th column of P. We will
show such an approach in Optional. Now, however, we want to observe
that (10.1) is equivalent to

" (tyF MKz (t)=0.

If M~1K is diagonalizable,we can solve this problem as described in Chap-
ter 4.
We need the following.

Corollary 10.2 Let A and B be n x n Hermitian matrices with B positive
definite. ThenB~A is diagonalizable. And if A ispositive definite, B~' A
has positive eigenvalues.

Proof. From the theorem, there is a nonsingular matrix P such that

PEBP =1 (10.2)
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PEAF =D. (10.3)

Takingthe inverse of the matrices in (10.2) and multiplying sidesto those
of the equation in (10.3), we have

P—IB—l (PH)_I PHAF = I D
or
P~1B-1AF = D.

Thus, B~1 A is diagonalizable.

Finally, if A is positive definite, then so is P AF and thus by (10.3), D
has a positive diagonal. And using similarity, B—*A has positive eigenval-
ues. m

In Chapter 4, we derived a formula for the solutions to
" (t)TAX (t)=0 (10.4)

where A is a 2 x 2 diagonalizable matrix with positive eigenvalues.
The formulais

X(t) = (al cosv/ At +ﬂ1 sin \/—):t) p1 (10.5)
+ (a2 cos /3t By sin Vat) pa

where A; and A, are the eigenvalues of A having correspondingeigenvectors
p1 and pa, respectively.
An example applying this formula follows.

Example 10.3 We solve the spring-mass problem given by the equation

1_0],, [ 4 -1]
T + z=0.
[0% [ -1 1

This system s equivalent to

a:”+[(1) g] 4 -1 z=0.

[ -1 1]
10[4—1_[4_1.. . o
Now[0 4] -1 1} =1 _4 4] i diagonalizable with D =
6 0 11
[0 2}andP=[_2 2]. Thus

20 = (o cosA t+ﬂlsmAt>[ L ] +(azcostit +aysintit) [ : }
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If the problem has initial conditions, say,

co-[3]

v0= 5

we compute coefficients to satisfy these. From
z(0) =0 [ _;]+a2[; },

we get a; =2, ag =3. And from
m'(0)=\/6ﬂ1[_;}+\/§ﬁ2[é]-

We find 8, =+/6 and 8, =v2. So

z(t) = (2cosx/6+ \/ésin\/f-it) [ _1 ] + (3cosﬂt+\/§sin\/§t) [

2

DN =

315

|

10.1.1 Optional (Solving the Motion of a Building Problem)
A building as diagramed in Figure 10.1, can show some motion if displaced

from vertical.

my

<€«—k—>»

€—k—>»

FIGURE 10.1.

The mathematical model for this building was derived in Chapter 4 as

d2
M-dt—2y(t) +Ky(t) =0
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where M = ["81 122 ] and K = [k1_4’-c:2 _:22 ] It can be shown

that M and K are symmetric and positive definite.
We now demonstrate how to use Theorem 10.1 to solve this equation. A
particular example follows.

Example 10.4 Consider the building dram in Figure 10.2.Then M =

FIGURE 10.2.

‘L; (%) and K = [_i’ _i ] Using MATLAB and the algorithm in
e MA£LAB section, we found
p= -0.7071 -0.7070
- 14142 -1.4142

N o
[

Thus using (10.5),

z(t) = (al cosv/Art T8, sin \/:\:t) p1
+ (02 €08/ Aat T By sin \/Afz?t) D2

= (enems (V) + mysin (60)) | TV |

+ (ag cos (\/§t) + [4sin (\/.Q.t)) :2471(1)3,% 1

Now suppose at t = 0 the building is erect, so z; (0)=0 and z; (0
With a gust of wind, we have 2} (0)=1 and z5 (0) =1. Plugging in
we have

)=0.
t=0,

z (0) = a1p1 + a2p2
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or
0=a1p; + azpy.

Solving yields oy = ag =0.
Now

2’ (0) = B, v/ A1p1 + Bav/Aspa.

Solving

[ 1] =8v/mim +02vamn,

we get 3, =—.01443 and 8, = —0.7500.
Thus, the subsequent motion of the building B

2 (t) = B/ Ap1 + /Bape

~ ' -0.7071
= —0.1443sin (\/Et) 1.4142 1

. ~0.7071 1
- 0.7500sin (v/2¢) [ 14140 L

317

A graph depicting the building whent =1 can be obtained by calculating

05890
(1) = [ 09175 ] .

Thus we have the shape shown in Figure 10.3.

FIGURE 10.3.
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10.1.2 MATLAB (Code for Computing P)

The commands for finding P, such that P*BF = I and P*tAF =D, as
described in Theorem 10.1, follow.
L =chol(B) ; % Gives the Cholesky decomposition
of B as LL* where L is lower
triangular.
C =inv(L)xA=xinv (L");
[Q.™ EEgchur (C);
P=inv(L")xQ
D=PxA*P
(MATLAB calculations may not agree entrywise with hand calculations
since the factorizations RR* and QD@Q* are not unique.)
See the exercises for a few problems on which to use this algorithm.

Exercises

1. Factor A as RR?
2

@ |3 2] o [}

2. Prove that A is Hermitian and positive semidefinite if and only if
A = RR¥ for some matrix R.

o
WP

3. Using Exercise 2, factor [i i } as RRY,

4. Prove that if A is an n x n positive semidefinite Hermitian matrix,
then so is B AB where B is an n x n matrix.

5. Find a matrix P that diagonalized "'both"
11 1 2
A=[1 2]’3‘[2 4]‘
Is P an orthogonal matrix? Are the columns of P orthogonal?

6. Solve[i ;]x"i[; i]z=0wherex(0)=[8]andx’(0)=

[ g ] (Use the results ef Exersise §.)

2 0] . 1 2 _ .
7. Solve [ 0 4 ]x + [ 9 4 ]a:—O using Corollary 10.2.

8. Solve the spring-mass problem in Figure 10.4 using Corollary 10.2.

9. Twoparts.
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FIGURE 10.4.
(a) Prove that A1,...,A (called generalized eigenvalues) of Theo-
rem 10.1can be found by solving det (AB — A) =0.
(b) Prove that the columns p; of P in Theorem 10.1, called gener-
alized eigenvectors, can be computed by solving
(MB-—A)z=0

for m; linearly independent vectors, where A; has multiplicity
m;, and then by applying Gram-Schmidt to these using the inner
product (z,y) =y Bz.

1 0 1 1
1 3 -1 | and B=|2 2 -1 .
10. (MATLAB) Let A= | 0 -1 2 1 -1 0

Use the algorithm in Optional to find the matrix P described in
Theorem 10.1.

11. (MATLAB) Solve the building problem for the building in Figure
10.5 where initially =, (0) = 1, «{ (0) =0, z2 (0) = 1,25 (0) = 0.
Draw the building when ¢t =5.

«— k—> m, =1

«—k—> m=2

FIGURE 10.5.
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10.2 Special Eigenvalue Results on Hermitian
Matrices

In this section, we look at several eigenvalue results about Hermitian ma-
trices. To do this, we define a special function called a Hermitian form.
Let A be an n x n Hermitian matrix. Define a Hermitian form h as

h:C"—>C
where
h(z) =z Az.

If a =% Az, then & = o = (zH Az)" =zH Az =a. Thus the value of
a Hermitian form is always real. If A is symmetric and we let q denote h
restricted to R™, that is

g:R"— R
q(z) =z'Az,
we call g a quadratic form.

Hermitian and quadratic forms arise in representations of potential and
kinetic energy in a system. Using Lagrange's equation and energy expres-
sions, mathematical models of the system can be derived. In addition,
these forms are used to develop numerical methods for computing eigen-
values, as well as in solving optimization problems for functions of several
variables.

We first give a description of Hermitian forms, obtaining some view df

the shapes of their graphs. To do this, let A be an n x n Hermitian matrix.
Then we can factor A as

A =UDUH

for some unitary matrix U = [y .. .us] Where u is the k-th column of U,
and diagonal matrix D =daag (A1,...,A  We assume these eigenvalues
are arranged in D so that

AM2A 2. 2A (10.6)
Now
h(z) =z Az =2 (UDUH)z = (UHx)H D (U¥z).
Setting y = U¥z, and defining hy (y)=y¥ Dy, we have
h(z) =y" Dy 20.7)
=My’ +-- F Ayl
=hy (y).
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To seewhat this equation means geometricallyin R*,set Y ={uy,. .. ,un}.
Then the equation

X =Uy
converts the y coordinates of x into Xx. Thus

q(z) =gy (y)

says that ¢ (X)can be graphed by graphing gy (y) in the Y-coordinate
system.
We show an example.

Example 10.5 Let A= 3 = ]

4 0 = 1=
ThenD:[ U= | s
0 2 3

The graph of
qg(z)= ot Ax = 31?% +2x129 + 3:1:%,

is an Figure 10.6. The graph of

Graph of q(x)

FIGURE 10.6.
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av (y) =y' Dy =4dy? + 242,

using the Y-coordinate system is in Figure 10.7.
Note that both graphs are identical when the axes of the Y-coordinate
systems are rotated —% radian, showing them relative to the axes in R2.
The use of hy (y) to derive information about A (z) can be seen in the
following theorem.

FIGURE 10.7.

Theorem 10.2 Let h(z) = 2 Az be a Hermitian form. Then A is a
positive definite Hermitian matriz if and only if h (x)> 0, for all x, except
atx =0.

Proof. Follows from (10.7). m

We now give a sequence of results about the eigenvalues of Hermitian
matrices. In Rayleigh’s Principle, we show how the smallest and largest
eigenvalues of a Hermitian matrix can be found from Hermitian form.

Theorem 10.3 Let h(x)=z" Az be a Hermitian form. Then

max h(z)=A;, min h(z)= A
max h@) =X, min h(z) = A

where A\; and A are the largest and smallest, respectively, eigenvalues of
A. Further, the maximum and minimum values of h are achieved at »; and
un, the eigenvectors of length 1 corresponding to A; and A respectively.
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Proof. We prove the maximum result.
Part a. We show that if ||z||, = 1,then h (z) < A;. Tosee this, by (10.7),

h(z) =hy (v),
z and y related by z = Uy. Thus
h(z) = y" Dy
=Mlwl® + -+ A [y
<h (l+-- + lval?)
=M [l

2
I

Since ||z|l, = 1 and U is unitary, |ly||, = [Uz]l, = ||lz|l; = 1. So

Part b. We show there is an z, ||z||, = 1,such that ~ (z)=A;. For this,
lety =e;. Thenz =Ue; (Z=wu1) and

h(z) = hy (y) = A1,

the desired result m

A result extending Rayleigh’s Principle, namely Courant’s Minimax The-
orem, shows how each eigenvalue of a Hermitian matrix can be found using
expressions like those of Rayleigh. This work is rather intricate, a bit
more than what is intended in this text. However, we will state a useful
consequence of Courant’swork, the Inclusion Principle, without proof.

Theorem 10.4 Let A be ann x n Hermitian matriz and B the (n— 1)x
(n— 1) submatriz of A obtained by deleting its last row and last column.
If the eigenvalues of A and B are indexed such that, Ay > --- > A and
By > ...2 Bn_1, respectively, then

A1 Zﬁ12/\22,522...25n—12/\n.

An example demonstrating the Inclusion Principle follows.

2
Example 106 Let A= | 1L Then, the eigenvalues of A are
3

S W

1

2

3
given by Ay =6, Ay =1, 3 = -3
B1 =3, B, =1. Observe that

, While the eigenvalues of B are given by

A 2Bzl Bz Al
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Using the Inclusion Principle, we can give a test for positive definite
Hermitian matrices.

Theorem 10.5 Let A be an n x n Hermitian matrix. Let A, be the sub-
matrix in the first k rows and columns of A. Then A ispositive definite i
and only i det A, >0 for all k.

Proof. We prove both parts of this biconditional.

Part a. We show that if A is positive definite, then det A, > 0 for all
k. For this, let z = (z;,. .. ,z,0,...,0) EC". Then, since A is positive
definite

T

(Z1,-. 1 k) Ak [

=z Az > 0.
Tk

Since this holds for all such z’s, with equality only when x = 0, Ay is
positive definite, and thus all its eigenvalues are positive. Since det Ay is
the product of the eigenvalues of Ag, det Ax > 0.

Part b. We show that if det A, >0 for all k, then A is positive definite.
Here, we use inductionon n. If Ais 1x 1,then the result is obvious. Thus,
suppose the result holds for all n,n <k. Now let A be an k x k Hermitian
matrix satisfying the hypothesis of this part.

Since Ai_; is Hermitian and satisfies the hypothesis of this part, we
have by the induction hypothesis that Ax_; is positive definite and thus

its eigenvalues, say, 8;,...,8,_, are all positive. Now, by the Inclusion
Principle, if A1, ... ,Ax are the eigenvalues of A, then using the notation of
(10.6),

/\1 2,81 Z Zﬂk_l Zl\k-
Thus, Ag—1,. .. ,A; are positive. Sincedet A >0anddetA =A; .-+ Ag1 Ak,
it follows that Ay > 0 as well. Thus, A is positive definite. m
We demonstrate the theorem with an example.

Example 10.7 Let K = [kl t:’;’ —IIZ where k; > 0 and &k, > 0.

ThendetK; =k; Tk, > 0 and detK = kyka > 0. Thus, K is positive
definite.

The final result of this section is an interesting result about linear trans-
formations. For this result, we work with real numbers.
Recall that if A is symmetric, then we can factor A as

A =QDQ*
where Q ={g1 .. .¢»} is orthogonal and D =diag(\;,...,A  And

Az =c
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can be graphed by graphing
v'Dy =c,
where Qy =X, in the coordinatesdetermined by the basis Y ={gi,... ,gn}.
The graph in these coordinates is
Alyf +.o+ /\nyﬁ =C.

if A, >0,...,), >0and c >0, the graph of this equation is an ellipsoid.
Thus, if A is positive definite symmetric and ¢ > 0, then the graph of

zt Az =c¢

is an ellipsoid.
Our theorem now follows.

Theorem 10.6 Let A ke an n x n nonsingular matrix. Then L (x)=Ax
maps ellipsoids to ellipsoids.

Proof. We argue this theorem in two parts.

Part a. We show that the image of an ellipsoid is on an ellipsoid. To
do this, let E be an ellipsoid. Then E is the graph of =Bz =c where B
is a positive definite symmetric matrix and c a positive scalar. Since B is
positive definite, B = R*R for some nonsingular matrix R.

Let x € E. Then

x*R*Rz = C. (10.8)
Now let L (x)=y. Then A~'y =x. Substitution into (10.8) leads to
vt (A7) R'RA Yy =, (10.9)

Since (A1) RERA-! = (RA~1)" (RA™"), this matrix is positive definite
symmetric. Thus, y is on the ellipsoid defined by (10.9).

Part b. We show the image of the ellipsoid E is all of the ellipsoid defined
by (10.9). For this let y be on the ellipsoid defined by (10.9). We need to
show there is an z € E such that L(z) =y. This part will be left as an
exercise. m

An example showing a consequence of this theorem follows.

Example 10.8 Let L{z) = Az where A = [ % ;

unit circle into an ellipse. By Rayleigh’s Principle,

Then L maps the

max ||L(z)|, = max (ztA‘Aa:)é

lizll,=1 llzll;=1

3

= ( max a:tA2a:)
flxll=1

= A1, the largest eigenvalue of A.
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And the value is achieved at u;, a corresponding eigenvector of unit length.
Thus, L (u;) B the major axis of the image ellipse.
Similarly, the length of the minor axis is Az, the smallest eigenvalue of

A and is achieved at L (u2), ug a corresponding eigenvector of unit length.
Thus, L (u2) is the minor axis of the eliipse.

1 1
Since Ay =3, w3 = _VZ‘ and L(u) =3 ? and since Ay = 1,
V2 2
_1 _a
Uy = M2 | and L(ug) = 175 , we see the image ellipse in Figure
1N O ﬁ %

FIGURE 10.8.

10.2.1 Optional (Optimization)

In elementary calculus, we saw that if f (x)was a function of one variable,
and zg a critical point, then ' (zo) > 0 implied the critical point was at a
local minimum while 7 (zg) < 0 assured a local maximum. We outline a

corresponding such test for a function f(z,y) of two variables. (It can be
extended to more variables.)

If (zo, o) is a critical point of f(z,y),then

%f (z0,0) =0

‘(%f (zo0,%0) = 0.
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Thus writing f(z,y) in a series about (g, ¥o) , we have f (x,y) = f (zo,%0)+

%(m—mo,y—yg)H[ z:zg ] + R(z,y) where
2 2
H= 'g?g' (zo, %0) 79%5% (x0, %0)
= % oy
-Bz%y (1"0, yO) Fyé ('TO) yO)

is called the Hessian of f(z,y) at (zo,y0). Under rather mild conditions
on f, H is symmetric.

If H is positive definite, which we can easily check by Theorem 10.5, then

r—To
= —Zo,Y — H ? >0
o@9) = (- my - H [ 5750
except when £ = zo and y = . And it can be shown that ¢ (z,y) >
R (z,y) for (z.,y) close to (not equal) (zo,%0). So f(z,y) — f(2o,%0) =
q(z,y) T R(z,y) > 0 for all such (z,y), and thus f(ze, %) is a local
minimum of f. (See Figure 10.9.)

FIGURE 10.9.

If H is negative definite, then f (zo, yo) is a local maximum.
We give an example.

Example 109 Let f (z,y) =222 T2y +3y% -6z — 13y t6.
i. Wefind the critical points off.
Setting the partial derivatives off equal to 0, we have
4 +y -6 =0
r 16y -13 =0.
or

4r+y=26
z 4 6y = 13.

The solution to these equations is (1,2)".
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d. We decide ¢/ f has a local maximum or local minimum at (1,2)¢.

To do this, we calculate the Hessian of T at (1,2)°. We get
2 2
He 662;,4 (12) S35 (1,2)
=% 12 & 12
_ [ 4 1
11 6]

L

which is positive definite. Thus, there is a local minimum ut (1, 2)°

Exercises
1. Graph by changing coordinates using the basis Y that provides the

eigenvalue description.
(@) 522 t2zizy t523 =5 (b) 22 t2mz, ta2=1

. Graph by using the basis Y that provides the eigenvalue description.

Describe each shape.

(@) ¢q(z1,22) =4z? + 22,7, T4232
(b) q(z1,%2) =2% +4z122 +23

Using the hypothesis of Rayleigh’s Principle, prove that ' min1 h(z) =

Zllg=
An.
2
2
2

- Decide which matrices are positive definite.

g 121 31
® |7 1] (b)hi; @ |13

31 2
. Demonstrate the Inclusion Principle for { 1. 3 2
2 2 2
. Let L(z) = [g g z. Then L maps the unit circle in R? into an

ellipse in R2. Find the ellipse as in Example 10.8.

. Prove that the sum of two n x n positive definite matrices is positive

definite.

. Give the details for the proof of Theorem 10.2.

. Let A be a 3 x 3 Hermitian matrix where a;; = 0. Prove that A

has a nonnegative and a nonpositive eigenvalue. (Hint: Apply the
Inclusion Principle to A;, A2, and A where Ay is the submatrix of A
in the first k rows and Kk columns of A.)



10.

11.

12.

13.

14.
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Let A be an n x n positive definite Hermitian matrix. Prove that the
submatrix in rows 2,...,n — 1 and columns 2,... ,n — 1 is positive
definite. (Actually,any submatrix sharingthe same rows and columns
of A is positive definite.)

Let A be an » x n positive definite Hermitian matrix. Suppose we
can obtain an echelon form E by only applying the add operation
aR; +RJ~ where ¢ < j. Prove that A is positive definite if and only
if the entries on the main diagonal of E are positive.

(Optional) Let
f(z,y) =42 + 2z + 442 +4y +2.

(a) Find the critical points o f.

(b) Analyze the critical points to see if they yield local maximum
or local minimum values of f.

(Optional) Repeat Exercise 12(b) for

f (z,y) =sinz *cosy tzy
for the critical point (0, 0).
(MATLAB) Graph and describe each shape.

(a) g (z)=x*Az where A =

1
(b) g (2)=c'Az where A= | » > ]

-3 1
(©) g(z) =z*Az where A=| 1 -3 ]






11
Graphics and Topology

In this chapter we will show how matrices can be used in computer graphics
and, to some extent, how special pieces (nonsingular matrices, diagonaliz-
able matrices, etc.) of matrix space can be viewed. So in some sense, both
topics deal with pictures.

11.1 Two Projection Matrices

In this section we study two special maps: the projection map and the
perspective projection map, which are maps from R™ into R". We first
develop the projection map.

Recall that we have defined and used the orthogonal projection matrix.
This matrix projected Euclidean n-space orthogonally onto a subspace of
itself. We now extend this notion to allow projections at various angles.

Definition 11.1 Let P be an n x n matrix. I P is similar to a diagonal
matrix D (thus, P = RDR-! for some n x n matrix R) whose main diag-
onal consists of §’s and 1’s, then P is called a projection (or idempotent)
matrix.

To give a grid view of L(z) = PX we start by letting Y ={r1,... ,mn},
wherery, ... ,r, are the columns of R, a basis for Euclidean n-space. Recall
that Y determines axes for the Y-coordinate system and that R = [r; .. .7y}
converts coordinates,

Fy=:13,
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where y is the coordinate vector of X in the Y-coordinate system.
Now, in the Y-coordinate system Ly (y) =.Dy igjasily seen as a pro-

jection of the space. For example, Ly (y) = [ = =y projects R? onto

1 00

the y;-axis, parallel to the ys-axis; while Ly (y) = [ 010 } projects
000

R3into the y, yo-plane parallel to y3. (See Figure 11.1.)

FIGURE 11.1.

To link L (z) =PX and Ly (y) = Dy, we need a theorem whose proof is
described in Chapter 3, Section 3.

Theorem 11.1 Let P be a projection matrix with P = RDR"'and R =
[rr-..rn). IfY = {r1,...,ra}, then Ly (y) = Dy in the Y-coordinate
system gives the same map as L(z) = PX.

The theorem makes clear that a projection matrix P behaves as does
D, using axes determined from Y. To help clarify the theorem, we give an
example.

Example 11.1 LetP = [

[ALCIEN

e[ ]le el 1]

LA

] . Then we can factor

SoD = [ (1) g ] Now L (x)= Px, described naturally, is the same as
Ly, (y) = Dy in the Y-coordinate system, where Y = {[ f } , [ é ]}

2

Note Ly projects onto the y, -azis (determined from 1

}) parallel to the
y2-azis (determined from [ ; ] ). See Figure 11.2.

Another example may help.
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X2 Y2

FIGURE 11.2.

to construct a projection that collapses

. Wetake a vector on the line, say,

Example 11.2 Suppose we want
k

R? into the line y =x parallel to

1
[1 } Then set

[}

Now R = [0 1]andP=RDR‘1= [i 8]. And, L(z) = Px is the

0

1
0
1

11
desired projection. See Figure 11.3.

ik

| v

FIGURE 11.3.

It is possible to tell if P is a projection matrix without factoring.
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Theorem 11.2 P & a projection matrix if and only if P2 = P. (This
says L (L{z)) = P(Pz) =Px =L{z).)

Proof. The direct implication is proved by setting P = RDR~! and
showing P2 = P. Thus we need only argue the converse.
Suppose

P? =P. (11.1)

Factor P, by Jordan’s theorem, so
P=RJR™

where J is a Jordan form for P. Substituting into (11.1), and simplifying
yields

JEP=J.
Since J is block diagonal,

JE=J, (11.2)

for each Jordan block J of J. Viewing the main diagonals of these blocks,
we see from (11.2) that any eigenvalue A must satisfy

A=)

so A = 1or 0. And, all Jordan blocks must be 1 x 1. (If not, view the
1, 2-entry for a contradiction) Thus P is similar to a diagonal matrix with
main diagonal entries 0’s and 1's. m

Notice in the examples that the projections there axe “slanted.” As you
might expect, “orthogonal” projections require the basis Y ,and thus the
matrix R, to be orthogonal.

Definition 11.2 A projection matrix P 4s an orthogonal projection if P =
QDQ?* for some orthogonal matrix Q and D a diagonal matrix whose main
diagonal consists of 0’s and 1’s.

We can also tell, without factoring, if P is an orthogonal projection.

Theorem 11.3 Let P be a projection matrix. Then P is an orthogonal
projection if and only if Pt =P.

Proof. The proofis left as an exercise with the followinghint: If Pt = P,
Pis normal. m

The second kind of projection map we consider is the perspective pro-
jection map. In this kind of map, Euclidean n-space is projected toward a
‘pointat infinity.” (Think of looking at railroad tracks to see how lines are
intended to go.)
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Definition 11.3 An (nt1)x (nt 1) matriz A is called a perspective
projection matrix if it can be partitioned

b

1

A= [ % 0 } or A= [
As a use for this matrix, note that the difference equation

ot

1

where B is an n x n matrix.
Try1 = Bzp +b (11.3)

[mkfl]z[g lf“ﬁk] (11.4)

The cTnvergence of (11.4) depends on the eigenvalues and Jordan blocks

can be written

B b
AFA=19 1

the spectrum of a matrix C, namely,

. Concerning the eigenvalues of A, we use the notion of

o (C)={X : X is an eigenvalue of C}.
The following lemma is easily proved.
Lemma 11.1 If A is a perspective projection matrix then
o (A) =0 (B)U{1}

Perspective projection matrices also arise in graphics. In art, a painter
might hold up his thumb to help envision a vanishing point behind the can-
vas. The drawing diminishes the back (top, bottom, and sides) to provide
perspective. A draftsman will do this by perhaps initially establishing a
vanishing point for a drawing, perhaps putting a point in the upper right
corner of the drafting paper. (See Figure 11.4.)

The same results can be achieved in computer graphics using mathe-
matics. \We project to the xy-plane (our canvas). However, since we are
projecting, rather than drawing, the point we need is in front of the object.
(So we get the eye view.) We label the axes as in Figure 11.5.

Wke choose a vanishing point e, e = (0,0,d)t on the z-axis and use it to

x
obtain perspective. To calculate where e places the pointp,p = [ Y } y in
4

the xy-plane, say, at [ ;* ] , We use the line determined by e and p, namely

ap+ (1-a)e (11.5)



336 11. Graphics and Topology

FIGURE 11.4.

FIGURE 11.5.

where -00 <ea <oo. We choose « SO that z =0, i.e.
azt(l-a)d=0.

Solving yields
_d
Td-z°
Now, using this « in (11.5), we have that
* = _d_:z:
d-=z
. d
v = d-2?
Note that
1 0 010 z
0 1 010 v | _
0 0 0]0 z |
0 0 —3]1 1

(11.6)
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Thus, if we dsfine = on those vectors in B* with nonzero last entry, such
that = normalizes the vector to have last entry 1,then we have

dx

T d—z (I:*

vy o _ | g o1 ¥

T 0 - oz 10
d—

g 1 1

(Vectors that are scalar multiples of each other are said to have homoge-
neous coordinates. Hence, # maps vectors into vectors with homogeneous
coordinates and having last entry 1.)Putting together, if

10 0 0
01 0 0
A4=100 0 o
00 -3 1

then the perspective projection map = o A maps vectors into the zy-plane
with the perspective of a vanishing point at e, a distance d from the origin.

11.1.1 Optional (Drawing Pictures Using Projection Maps)

In this optional we will draw a box to be viewed on a computer screen. We
do this with a perspective projection map and a projection map.

Part a. Perspective projection.

The eye view we take of the box is from a vertex, say, f, to the farthest
vertex, say, h, from f. Thus we place the line through h and f on the
z-axis so that f is at (0,0,3)" and h at (0,0,1)". So the vertices of the box
that we view are

a=(-2,0,3)"
b=(-2,-2,3)
c=(0,~2,3)
d=(2,0,1)
e=(2,2,1)
f=(0,0,3)

g =(0,2,1)°.

(This box is not a cube.) To outline the box, we intend to draw the edges
in the following sequence:

a-b-c-d-ef-c~-f-a-g-e.
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Listingthe X,y, and z coordinates of this sequence, we have the following.
z=[-2,-2,0,2,200,0,-2,0,2];
y= [03 _2» -2, 0, 2’ 07 —2y 070’2)2];
2=03,3,3,1, 1,3,3, 3,3,1,1];
Now we position our eye at e =(0,0, 10), so d = 10.
d =10;
Computing our perspective projection on the zy-plane, we have
s =dx ones(1,11) ;
zl=dxz./(s—2);
yl=dxy./(s - 2);
Now, plotting in the xy-plane
w = zeros (1,11) ;
plot3(z1,y1,w)
To view the picture from the z-axis, we use the following. -

view (0,90) % Tilts axes so that the z-axis points
toward us.

axis equal % Puts tick marks so they are equal.

axis off % Removes appearence of axes.

The picture is below in Figure 11.6.

Parspecive projscion of box

FIGURE 11.6.

Of course, if we increase d, the back square will appear to increase in
size, so this can be adjusted to suit the viewer.

Part b. Projection.

To contrast, suppose we simply project our box on the zy-plane. We use
X, y, and w from the previous program. And, we add
plot3(z, y, w)
view (0, 90)
axis equal
axis off
The picture is in Figure 11.7.
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Projection of box

FIGURE 11.7.

Notice that in this picture, the back square appears larger than the front
square. However, measurement shows they are the same.

Perspective is important in drawing. Our eyes expect it. And when it
is missing, we see (perceive) a distortion.

Exercises

1. Find P that projects R? onto the line y =2z parallel to (1,1)t.

2. Find P that projects R3 onto the plane z Ty +z:=0 parallel to
(1,1,0)%.

3. Find the orthogonal projection of R? onto plane x ty +:z=0.

4. 1s P = [ } i ] a projection matrix?

1
5. Find P that projects B3 onto the line x =t | 1 | (parametrically
1
described), and parallel to the xy-plane. (All points project parallel
to the xy-plane.)

6. Find the projection of R* onto the z;z,-plane parallel to the plane
xy Txg Ty Txy =0.

7. Prove that if Q =[¢1 ...q,] b an » x r matrix whose columns form
an orthonormal set, then QQ? is an orthogonal projection of R™ onto
span{qi,-. .. ,gr}. (Writeinthe form RDR™1.)

8. Prove Theorem 11.3.

9. Prove Lemma 11.1.

10. Find the perspective projection map into B2 using the vanishing point

(0,0,6)".
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11. Let d be the vanishing point of a projective projection map into R2.
If d increases, what would happen to the picture of a house?

12. (MATLAB)

(a) Find the perspective projection matrix P that projects R3 into
R? with vanishing point e = (0,0, 20)".

(b) Change the box in Optional into a cube. Use P to project the
cube into R2.

(c) Does the picture “look right”? If not, how should the vanishing
point be changed? (Art, even on computers requires experience
and sense.)

11.2 Manifolds and Topological Sets

In working with matrices, it is very helpful to have some sense or feel for
the special sets of matrices: the nonsingular matrices as well as the matrices
that have distinct eigenvalues. As shown in Chapter 5, Section 2, a matrix
relatively close to singular matrices has a large condition number, c(A).
And, as given in Chapter 9, Section 2, if a matrix is close to matrices
with multiple eigenvalues, that matrix might have large eigenvalue and
eigenvector condition numbers. In this section, we provide results intended
to give that sense. Most of the work is based on the following definition.

Definition 11.4 The concepts described below concern the set of m x n
matrices with matrix norm |-||. Let e >0 and A an m x n matrix. A
ball B about A of radius e is defined as

B ={B:B is anm x n matriz and ||B — A|| <e}.
Let K be a set of m x n matrices.

i. K is open if for each Ae K there is some ball B about A such that
B cK.

ii. Kis closed if whenever A1, A;,., are in K and the sequence converges
to some A, called a limit point of K, then AeK.

It is left an exercise to show that the compliment of an open set is closed
and vice versa.

Open sets K are important since sufficiently small errors made in esti-
mating or calculating an AeK results in a matrix in K. Not always so in
closed sets. However, in closed sets K, limits of convergent sequences in
K must be in K.

Two special closed and open sets of matrices follow.
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Theorem 11.4 In the space of n x N matrices,
(a) The set of singular matrices is closed.

(b) The set of nonsingular matrices is open.

Proof. There are two parts.

Part a. The determinant is a continuous function. Hence if A1, A2, ...
is a sequence of singular matrices which converge to A, then detA =
lim det A, = I|m 0 =0. Thus A is singular. Hence, the set of singular

k—oo

matrices is closed
Part b. Since the set of nonsingular matrices is the compliment of the
set of singular matrices, the result follows. =

Results concerning diagonalizable matrices follow.

Theorem 11.5 In the space of N x N matrices,

(a) The set of matrices that have multiple eigenvalues (at least one eigen-
value of multiplicity 2 or more) is closed.

(b) The set of matrices that have distinct eigenvalues is open.

Proof. There two parts.

Part a. Let A;, As,... be a sequence of matrices which have multiple
eigenvalues. Suppose the sequence converges to A. By the continuous
dependence of eigenvalues, A cannot have distinct eigenvalues since if A
had distinct eigenvalues, we could find small nonintersecting disks, say,
of radius e, about them. But then, for some é, if ||Ax ~ A, < 6, the
eigenvalues of A, would have to be within e of those of A. Thus, the set
of matrices that have multiple eigenvalues is closed.

Part b. Left as exercise. m

Continuing with the definition,

iii. K is dense if for each matrix A in the space, and each scalar e > 0,
the ball about A of radius £ contains a matrix from K.

Thus, any matrix can be approximated arbitrarily close using matrices
in a dense set. Two such sets of matrices follow.

Theorem 11.6 In the space of n x n matrices,
(a) The set of matrices with distinct eigenvalues is dense.

(b) The set of nonsingular matrices is dense.
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Proof. There are two parts.
Part a. Let Abe an n x n matrix. Write

A=PJF!
where J is the Jordan form of A. Let
6 =min |)\, - ’\JI

where the minimum is over all distinct eigenvalues A;, A; of A. Let e be a
variable, 0 <e < £. Define

D =diag (¢, 2,.. . ,ne).
And set
B=P(J+D)P
Note that B has distinct eigenvalues for all e and that
€1‘1_1;1})3 = A.

Thus, there are matrices with distinct eigenvaluesarbitrarily close to A.
Part b. This part is similar to Part a. (Note, nonsingular is equivalent
to nonzero eigenvalues.) ®

We might mention that neither the nonsingular matrices nor the matrices
with distinct eigenvalues are convex sets, so they don't have a convex set
dimension. Intuitively, however, it is nice to have some notion of dimension
of the sets we studied. Thus, we will need an extended definition for
dimension. And, we will do this only for the real numbers.

For some intuition on this, let X be a nonempty subset of m x n matrices.
We will say the X has dimension K if at each A € X, there is an open set
containing A which looks something like an open set in R*. (Say we can
lay an open set in R* one-to-one, on the open set containing A.) So around
any point in X, it looks like R¥. (See Figure 11.8.)

For a mathematical description, let X be a nonempty subset of m x n
matrices. Using the matrix norm ||-|| =, we can define ball, open and closed
setsin X (rather than in the whole set of m x n matrices) as we did in the
space of m x n matrices. And using the vector norm |[-||,, we can define
those same notions in R

Now suppose that at each A E X there is an open set W (open in X)
containing A, an open set V in R*, and a function f.

f: VoW

which is



11.2 Manifolds and Topological Sets 343

FIGURE 11.8.

1. One-to-one and onto, and such that both
2. fand £~ are continuous.

Then we say that X B a k-manifold. And, we add, all k-manifolds are
assigned the dimension k.
Giving some dimension to nonsingular matrices, we have the following.

Theorem 11.7 Let U be the set of n x n nonsingular matrices. Then U
is an n%-manifold.

Proof. Define f : R* — R*™<" by

aiy...0in
f(alla-"’alnaa211"‘7a2n)~-'aa’n17-")a'nn):‘ .

Qnl ...0nn

Then f is one-to-one and onto.

Let V = f~1(U).(That is, V = {z : f (X)E U}.) To show that V
is open, let z E V. Then f(z) € U. Since U is open, there is a ball
B (f(z),r) about f (z)of radius r such that

B(f(z),r) U

If B(z,r) is the ball about z of radius r in R*, then f : B (z,r) —
B (f(z) ,r). Thus, it follows that B(z,r) C V. As z wes arbitrarily
chosen, V is open.

Finally, it is clear (checkingto see if z, — x, then f (zx) — f{z) and if
By — B, then f=1(B;) — f~' (B)Xhat f and f~! are continuous. Thus,
U is an n%-manifold. m

As an additional result we have the following.

Theorem 11.8 The set of n x n matrices, having distinct eigenvalues, is
an n2-manifold.

Proof. Exercise. m
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11.2.1 Optional (Rank k Matrices)

In this optional we look at special subsets of m x n matrices having various
rank conditions. The first of these is Rank > k defined by

Rank > £ = {A: rank A > k}.
We show two properties about the set.
Theorem 11.9 In the space of m x n matrices,
(a) Rank > k is an open set, and
(b) Rank > k is an mn-manifold.

Proof. There are two parts.

Part a. Let A € Rank > k. Then A has a k x k submatrix C such that
C is nonsingular. To simplify the argument, we will suppose that C'is in
the upper left corner of A.

Let U denote the set of the K x k nonsingular matrices. Since U is open,
there is a ball about C of radius r such that

B(C,r)CU.

Now note that if R is an n x n matrix and S the submatrix in the k x k
upper left corner of R ,then

lA-Rllp<r
implies that
iC - S|p <
Thus, if
REB(A4,r)

then SE B(C,r), and so S is nonsingular. From this it follows that all
matrices in B (A,r) have rank at least K. Thus

B(A,r) C Rank > k

and so, Rank > k is open.
Part b. Mimicking the proof of Theorem 12.7yields this result. m

From this theorem it follows that, using that the compliment of an open
set is closed,

Rank < k ={A:rank 4 < k}
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is a closed set.
An additional result concerns

Rankk ={A :rank A =I(}.
This set is neither open nor closed in R™*"™. However, Rankk is a manifold.
Theorem 11.10 Rankk is a k2 +10 (n = I¢) ¥k (m = 1() manifold.

Proof. We will prove this theorem for Il =2 and 3 x 3 matrices. The
extension to the general case will be clear.

Let A E Rank2 and suppose that the 2 x 2 nonsingular submatrix C in
A is in the upper left corner. Then, partitioning A, we have

- [5h]

T «

where z is a 1x 2 vector,y a 2x 1vector, and a ascalar. If C ={[e1eg] , 1
and ez the columns of C, then

y =16 +a2cz

a
for some scalars a;and 2. And, if A= | ay |,where a1, ag, and as are
as
the rows of A, then ag =v,a4 +7204 for some scalars v; and ;.
Now, set f : R® — R3%3 py

f (c11, e12, 021, €22, 01, 2,71, 7o) =
c11 c12 a1c11 + agcia
C21 C22 a)c21 + aiaCy2

( T1c11+ Y1C12+ 7 (111 + oaci2) +
YoC21 YoC22 Yo (1021 + 2€22)
Let V = f~! (Rank2). Then
f:V — Rank?2

is one-to-one and continuous. Also, f~! is continuous. Thus, Rank2 is a
4+2(3-2)*2(3 - 2)-manifold. u

From this theorem, we get a view of the n x n singular matrices. This
set can be seen as the union of Rankk sets for k < n. And, since Rank k
is a k2 T2k (n— k)-manifold, we see the singular matrices as a union of
manifolds, the largest dimension of which is n2 — 1 obtained by the set
Rank (n - 1).
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Exercises

1.

Write out the definitions for ball, open, close, and dense sets in

(a) X ,asubset of m x n matrices.
(b) R*.

Show that the set of 2 x 2 matrices is a 4-manifold.

3. Show that the set of 2 x 2 symmetric matrices is a 3-manifold,

10.

11.

. Show that the orthogonal matrices in the 2 x 2 matrices form a man-

ifold of dim 1.

Prove that the compliment of an open set in R™*"™ is closed and vice
versa.

. Explain why Theorem 11.5, part (b) is true.

Show that &2 T 2k n—1I0) where 1 € Il < n— 1is largest when
k=n-1 And, at K =n -1, this value is n? = 1. (Hint: Use
f(z) =2 — 2z (n — ) and apply calculus techniques.)

. Prove that the set d n x n orthogonal matrices is closed.

Prove Theorem 11.6, part b.

Prove Theorem 11.8.

(MATLAB) LetS= {A A= [Z _,,l; where a,b,c ER }. Graph

all rank 1 matrices in Ssuch that a > 5and b=a+cover 1<a< 10,
1< c< 10.



Appendix A: MATLAB

In this appendix, we go over some of the basics of the MATLAB software
package. More appears, as it is needed, in the text.

Numbers: The arithmetic operations for numbers, as with calculators,
are ¥, -, *, and /.
. . 1 2 3 .
Matrices: To enter a matrix, say A=1| 4 5 6 | type in
A= [ 1 2 3 456 ]
The semicolon indicates the beginning of a new row. If we don't want the
matrix to appear on the screen, we can use a semicolon at the end of the

command, as in
A=[1 2 3 4 5 6];

Arithmetic: i A and B have been entered, we can do arithmetic with
them by using the commands

A+B,A-8

A*B for the matrix product
axA for the scalar product
inv(A) for A-!

A\b for the solutionto AX =bh
AA?2 for A2

A for A transpose

Sometimes we need an element-wise operation. Placing a period in front
of the operation provides that result.



348 MATLAB

A\B gives |2
A A2 gives ‘3?_;
Functions: MATLAB provides a large list of functions of matrices. These
functions provide us with numerical calculationsthat would require a great
deal of time if done by hand. For example, if A has been entered, we can
get

rref(A) for the reduced row echelon form

det (A),rank (4),...

Probably, some good advice is, if we want something, say rank A, type

in what seems natural. Usually, this is correct.

Graphics: We break this up into two parts.

Part 1. 2-D Graphics. To plot a function, say f (t) jit is required that
we decide at what points we want to see the graph. We enter these points
by indicating where the interval is to start, where it is to end, and the
number of points desired in the interval. For example, since the variable
ist,

t =linspace(0,1,5) givest = [0,5, $» 3, 1)
Now to plot f (t),we use

plot(t, f (t))-
MATLAB will connect the points

©.f0) (fE) G.f(3) &f(@3) @rQ)
with segments. (Remember,t is a matrix so if f (t)= £2, we would write
plot(¢,t. A 2).)

Curves described parametrically can be graphed in the same way. For

example

plot(¢t. A 2,1.A 5)
graphs (t2,¢%) over our interval.

Part 2. 3-D Graphics. To plot a function, say f (s,t),we need two
intervals
s =linspace(—1,3,100) ;
t =linspace(2, 6, 100) ;
Now to get the grid on which we will plot f (s,t) ,we use
[st]=meshgrid(s, t) ;
Thus, [s#] provides the matrix of points in s x t, all ordered pairs (s;, ;)
where s; isin sand ¢; is in L.
To graph f (s,t), we can use
mesh(s, ¢, f (s, t))
which plots (s,t, f (s,t) )and connects with rectangular-like sheets.
Curves can be graphed using plot3 as in
plot3(t,t.A 2,t.A5)



MATLAB 349

Sometimes we need to put more than one graph on the screen. To su-
perimpose graphs, use the command hold after the first graphing command
has been entered.

Programming: Calculations which are iterative (a sequence of calcula-
tions) can done using for loops, while loops and perhaps incorporating ¢
statements. We briefly go over each of these.

Part 1. For loop. If a calculationneedsto be done forsayn=1,2,...,r,
we can do them by using a program such as
forn=1:r
calculation
end
As an example, to add the first ten natural numbers, we would use
S=0;
forn=1:10
S=S5+n
end
(If you do not want S printed on each pass through the loop, end it with
a semicolon. Then add S after end as in end, S.

Part 2. While loop. The whale loop works with a relation, such as > or
>, which is a bit different from the for loop. In general, we use
while (relation)
calculation
end
For example, to add the first ten natural numbers, we might have
S=0;
c=1;
while c < 11
S=85+g¢g
c=c+1;
end, S

Part 3. If and else. Sometimes, a decision needs to be made which de-
termines our next calculation. And, often this occurs within a loop. For
example, if we want an upper triangular matrix of 1’s we can use
A =zeros(3,3) ;
fori=1:3
forj=1:3
ifi<y
A(i,5) =1;
end
end
end
A bit more complicated example use else as well.
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A=[1 -2 0, 3 0 -4 0 -1 2];
fori=1:3
forj=1:3
if A(i,j)>0
A(4,J) =1
elseif A (i,7) <0
A(ihj): -1;
else
A(,5) >0
end
end
end

Help: If assistance is needed with a command, type in help and the name
of the command as in help det.



Answers to Selected Exercises

Chapter 1

2.

10.

11.

21.

(@) zFw=(atc)T(bFTdi=(atc)-(btd)i =a-bitc-di =

Zt+w

(b) [—a2 ai +(12]

[ b Aepa Asps |

(a) Using the first column of T, and backward multiplication, show

that the first column of X is (t;}',0, O)t. Continue to the second
column.

(a) In arithmetic, if ab =ac,thena(b-c)=0. Soifa# 0,b-c=0
or b =c. The missing arithmetic property is: nonzero constants have
inverses.

Note that det Adet B = 1, (Show this.) so det A # 0. Thus, A~!
exists. Solve for B.

(a) Show (A=1)™" satisfies the inverse equation for A=! so it’s the
inverse of A~1.
(b) Use induction on m.

If B = adjA, then b;; =c¢;; = (—1)"*7det A;;. Now argue that
det A;; is rational.
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c11 €21 C31 b
22,z = a?i—; Cil2 C22 C32 bz S0

€13 €23 C33 b3

1
T = oA (brcrr Fbacoy + bacar)
1 by arz A3
= —det b2 age
det A [ bs aa

24. detA =(~1)}a; ...or det E where t =number of interchanges used
and where a; R; was used T times. Explain why the last row of E is
0. (Note: The determinant section follows the section on systems.
However, the determinant results used here could have preceded that
section. And thus our use of determinant results here to prove a
systems result is legitimate.)

Chapter 2, Section 1
1. () Use the identity (-1+1) =0 and so (-1+t1)z = Os. Now
simplify.
3. (a) (iii) 0t? +0t + 0 which can also be written as 0.
(iv) z where z (t)=0 for all t.

8. Let z € W. Since W is closed under scalar multiplication, 0z € W..
SinceOx =0,0e W.

11. Let S be the subspace. If S# {0}, letz € S,z # 0. Thenaz € Sfor
all scalars a. So S contains a line through the origin. If S contains
nothing else, Sis that line. Continue.

13. (@) Choose an arbitrary vector, say (a,b,c,)’ in R%. Show that
o1 (1,1,00 tay (1, -2, -1)* tas (-1,2,2)" = (ab, ) has a solution

18. (a) Letx,y e UNW . Thenx e U andy € U. SinceU is a subspace,
s+yeU. Similarly,z+ye W. Thus,z2+yeUnNW.
Chapter 2, Section 2
3. Rearrange the pendent equation a; u+as (u +v)+a3 (u +v +w) =0

and set the coefficients of u, v, and w to 0. (Explain why this can be
done.) Now solve that system of equations for ai,az,a3. Give the

conclusion.

5. Let S ={zi, ... ,z,} be linearly independent. By reindexing, if nec-
essary, let § ={r1,. .. ,z,} be the chosen subset of S. Now suppose
S is linearly dependent and (6,, ... ,8,) a nontrivial solution to its

pendent equation. Extend to a nontrivial solution to the pendent
equation for S.



13.

14.
16.
18.

19.

20.

21.
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. Consider af (tYFBg (t)=0. Differentiation yields af(t} B¢’ (t)=

0. Thus,

[f(t) g(t)Ha} [0]
flf@e) ¢@ B8 |={0].
o if there is a single ¢ such that W (f (t),g (t))# 0, for that t,
f@ g
@) ¢@®
If z,y € N(A), then Az =0and Ay =0. Thus, A(z+y) =0 and
SOz +y EN(A).
Let {z1,... ,z,} be a basis for V. Consider a;131 + - .. T amym =0.
Write each y; as a linear combination of z,...,z, and substitute

these into the equation. Rearrange, set coefficients of the z;’s to 0.
Note the number of solutions here.

(a) dimW =3

] is nonsingular. That is enough to show a =8 =0.

Try y =€ and determine r soy works.

Remove vectors, one at a time, from the set until no dependent vectors
are left. Explain why this set is a basis.

(@) Let (84,8,) be a solution to the pendent equation. So 8,z; +
Baz2 = 0. f B, # 0, we can solve for zz showing zo E span {z;}.
Thus 8, =0. Now we have 8,z; =0. Sincez, is linearly independent
ﬂl = 0

Suppose S ={z,,. ..,z,} is linearly dependent. Then some vector,
say Zn, in S is dependent, so span S\ {z»,} =spanS. Continue to a
contradiction to dimV =n.

(c) Let z,y beinthe parallelepiped. Thenz =a;2,+- - -+, z,, and
y =B+ -+ By, Where 0 < ag, B, < 1. Thus,az+(1 —a)y =
(g +(1—-a)B))z1+ -+ (@aan + (1 — a)B,) z,. Note that 0 <
aog T(1Ta)B, <aT(l-a)=1. Sothe parallelepiped is convex.

Chapter 2, Section 3

1.

W sern=s([ D00 ) =[S0

_ [1'1 + 22, YL+ 2y
= +
2z) — x9 2y, —¥2

_ [ (21 + 222) + (y1 + 292) ]
(221 — 22) + 2y1 — ¥2)

=L(z)+ L(y).

© LUEGO+a@)=(O)+g@®) +(F @) +9()

= O+FO)+ @O +9@)=LFE)+L(g(t).
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3. L rotates the z,-axis counter clockwise a bit and the 22-axis clockwise
a little, stretching both.

_ Ty —z2 |\ _ | (z1—22) + (z2+1)
7. LyoLy(z1,22) = Ly <[ za+1 ]) - [ (x1—z2) — (z2+ 1)
.'1:1+1
— 1 21 _2(!:2—1
2 1
9. (a)A=[1 2].
13. Tryy =at Tb. Plug in and determine a and b.

15. Suppose (8, ... ,B,) is a solution to the pendent equation for
L(z1),...,L(za).

Then B,L(z1) t .-+t B,L(za) =0 0r L(Byzr+-.F B,2n) =0
SincelL isone-to-one, B;z1+ - +B 2, =0. ThusB, =...=4, =0,
and so L{z1) ,...,L (z,) are linearly independent.

16. Lio Ly (z Ty) = L1 (La (2) T Lo (v)) = L1 (L2 (2)) + Ly (L2 (v)) =
L1 OL2 (.’L‘) +L1 OL2 (y)

Chapter 3, Section 1

2. Let E be an echelon form of A obtained by interchange and add
operations. ThendetA = (—1)t det E and sincedet A =0,detE =0.
Thus, E has a row of 0's and hence there is a free variable in the
solution to Az =0. (There are other proofs as well.)

4. Arguing by contradiction, suppose z1,. .. ,X,, ; is linearly dependent
for each i. Show that this means u; € span{z,... ,z.} for each i.
IfzEV, 2z =0y, T - ta,u, for somescalars ay,...,a,. Show
z E span{zy,. ., ,z,}, and explain why V C span {zi,. .. ,z-}. But
this means dimV =r, r < n, a contradiction.

9. No. Find an A and B such that rank (A*B) # rank 4 *rank B.
10. Look at 3 x 3 matrices with lots of 0’s.
Chapter 3, Section 2
3. Define A= PDFE-1L.
4. Find different sets of eigenvectorsfor P.
7. Use that if A=PDF~!, A—X|=P(D-XI) P~! and that
rank (A = XI) =rank (D — AI).
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8. Suppose A has a real eigenvalue A. Then As = Az. But, A rotates
while X stretched, etc.

11. A diagonal matrix.

12. (a) Let (X)) = det(A=IL). If (A1) = 0 and A; is a com-
plex number, then 0 = @ (A1) = det (A —XI) =det (A-MI) =
¢ (A1). Now note that (A; —X) (A1 — ) is a real polynomial. So

w(A) /(A1 =) (:\1 — A) is a real polynomial, namely
e1(A) =3 =A)- .- (A —A).

Continue, by working with ¢, (A), to see that complex conjugate
eigenvalues pair up. And, put everything together.

Chapter 3, Section 3

1. (a) Can't diagonalize. The eigenvalues are Ay =2, A; =2, but the
corresponding eigenspace has dimension 1. So, we can't find linearly
independent eigenvectors py, p2 to forma nonsingular P.

4. Note that P~*A = DP~. Then p;A = Mp; where p; is the i-th
row of P~1. So, the rows of P~ will give left eigenvectors.

5. No. Find a counter example.
7. Show det (A— X1) =det (4% — X1) by using det B =det Bt.

9. If A = PBP~! and As = As, PBP~'z = Az. Rearrange this to
B (P~!z) =A (P~ 'z). Conclude.

10. If Alissingular Az =0 has a nontrivial solution, say y. Then Ay = Oy
so 0 is an eigenvalue of A. The converse still needs to be argued.

11. Note that [ o I

] has an inverse.

Chapter 3, Section 4

2 1 0 2 00
L@ [020(1020]
00 3 00 3

cor-(14] o[ )

3. There are 2 linearly independent eigenvectors for A (from the 1,1 and
3,3entries of J). So dim (eigenspace for A) = 2.

4. Solve AP =PB for P.
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8. Use (A=A)p; =0and (A =X)px = ;.

9. FindRsuchthatA=R[(2) 1}R‘1 Then
2
o Tet 0][2 e|[€ 0] oy
A‘R[o 1”02 [o 1]R'

el 0
Thus, P=R| 0 11V}

13. f A= PJE}, A~ =PJ-'P~1, S0 A-! is similar to J~!. Con-
clude.

Chapter 4, Section 1
i - B L @] _ |1 (k) k)
5 Jim (e 8) = Jim (o + 4] = | (o )|
= [kl_if{.‘o o + Jim bg'c)} = [ai; + bij] = A+ B.

8. Suppose f is continuous. Let A E R? and A;, Az, . .. be a sequence

- _ _{ 1 (4)
that converges to A. Then kl_l.Tof (Ax) =f (A)= [ £2(4) ] Also,

‘ iR, ¢ () _
lim f (Ag) = | FpRe ,so both f; and f, are continuous at
k—oa L f2 (A)

A. Since A was chosen arbitrarily, f; and f2 are continuous in R2,
(The converse still needs to be proved.)

tlina (2t-1) limet )
3 = - - 1
9 (@) limA() lim 557 k'+o'q0} = [ 0 0] = 4(0)

Thus A (t) is continuous at t =0.
14. myzy = —kyzy +k2 (x2 —x1)
mazy = —k2 (T2 —x1) — ka2
15. Same as in Optional.

Chapter 4, Section 2
v pmat=pma([ 2 3118 0]
Sl R
m (. -1
|

=[-8 004

. ~Ip—-3l0
i Lo 11
—
\/

>

[\

oo
oo
—_
| ——

|
R Lo U o o
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1 1
(a) z=aq;2* [ 1 ] + apd* { 1 ]

n
(a) aqd® [ T a ] (The vector could be any eigenvector for A =4.)

Substitute PDF~! for A and proceed as in the introduction to this
section.

Chapter 4, Section 3

12.

13.

. (@) T =qqet [i ] + age-3t [_i ] (The choice of eigenvectors

can be different.)

Ly (t) =e? [i ]

Find the Taylor series for sinT. Replace 7 by At. Then differentiate
termwise.

y(t) = sin (VA2) [ ] + cos (VAL) [ By ] Define V7, etc.

If

n
k then AF! = AAF so al(-fﬂ) =3 airag;) <
=

Z m (nm) . (The proof by inductionwould still need a formal write-

up.)

Chapter 5, Section 1

5.

10.

11.

12.

(a) Yes (b) no. Find z’s that support these answers.

(@) llz ttyl® =(z tty,z +ty) = (z,z) T2t (z,y) > (4,v). Sub-
stitute ||z = (z, ) ,(x,y) = Z TkYk-

@ llz+yls = (z+yz+y) = llzlz + (@) + (:2)

2 2 2
12 < N2l + 2 il Nyl + Il = (o3 + Iyll3) Now take the
square root of both sides for the triangle inequality.

(a) llzll, < |lzll; so [lz]l; < .001.
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Chapter 5, Section 2

1

11.

16.

(a) Let m, =max{m,...,m,}, then my < m, for all k so em;, <
cms. Thus,

max {¢my, ..., cm,} = cm,.
(b) Let n, = max{ni,... ,n,} and m; = max{m,,...,m,}. Con-
tinue.
(b) (|l = max ||[z|| = max ||z|| = 1.

ll=ll=1 fl=i=1

(a) Plot Ax for X = ey, —e;,eq,—ez. (The vertices of Cy.) and
connect with edges.

(b) Graph tAe;, £Aez, and connect with segments.
1 2 -1
o e[ ])-=(E DL
1] [2
1 2
n n n % n %
Use that ) |axj| = Y 1|axj| < (Z 12) (E |a/kj|2) by the
k=1 k=1 k=1 k=1

n
Cauchy-Schwarz inequality. Now, if [[Afl; = 3~ |a,|,
k=1

1

=4,
1

=2,
1

1
n 2
Al < VA (z nakjlz) < ValAlL.
k=1

. (d) c(4B) =||4B] |[(4B) "] = 14BIl||B-* 47

< IANIBI B |A~H] = NAI A= IBI | B=*{| = (A)e(B)

- (3) Notethatx =A-'pandy =A~c. Sollz —y|| < [|A7|| b —¢]|-

*[to=cll

T— A
Also 4] lz]l > bl So llzll > i Thus Il < ey
(a) UB.4-z| <1073 (123.4) = .1234. So X = 123.4+ a number
less than .1234. So x differs from 123.4by a number starting in the

fourth digit of 123.4. (Multiplying by 10~3 shifts the decimal 3 places
to the left, causing a number which starts in the 4th digit of 123.4.)

Chapter 5, Section 3

2.

(b) Write out the expressions for ||AB|| and || Al || B}l  and com-
pare.
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. For the triangle inequality, ||z + y|lp = |R (z + y)|| = |[Rz + Ry|| <

|| Rz]| + [|Ryl| (since ||-[| is a norm) = ||zf| g + [ll 5-

. (a) The eigenvalues are 4, —1.

o [3]

(@ x=(I-4)""==% [g 3] i ] = [llg%] using Neu-

mann’s formula. Rate, using the I-norm, is [|A[ =.3%.
pter 5, Section 4
For Example 5.10:
(D Ifz # 0, then (z,2) =z1F1 4+ +Tnn =T+ - +|zal* > 0
since some z; # 0.
(2) (:c,y) =11+ Taln = 1T+ + YnZn
=mT1+- -+ ynIn = (y,z).
@) (ez,y) =(az) i T+ F(0zn) Gn = e(mn + ... Fzafn) =
a(z,y) .

. For (iii): (z,ay) = (ay,z) by (2), = a(y,z) by (3), =@ (y,z) =

a(z,y) by (2).

. (0,z) =(0z,z) =0(z,z) =0. Give reasons.

Nearus + ...+amum||§ =(aru1 Tt omum, 0rug + ... T amum)

= @ (U1, u1) + 4 Ul (s ) = |a1]* + -+ + ||’ . Give
reasons.

1 1

First apply Gram-Schmidt to [ 1 } , [ 1 J to get u1,u2. Then use
0

the corresponding Fourier sum.

1
(a) The line is span{ }} Souyy = [ 725 } and P = yyuf =
[ VB

P2 =(UUY)(UU?) =UIUt =UU*. Give reasons.

entnen|—=

SN\
e

[3,3 =>4, 1( X}



360

19.

ANswers

No. Show.

Chapter 6, Section 1

6.

10.

11.

13.

16.
17.

(a) The columns of U form a linearly independent set so U is non-
singular. (There are other ways of showing this.)

(b) Since U is nonsingular and U¥U = 1, we can multiply this
equation, on the right, by U~* to get U¥ =U"!,

Apply Theorem 6.5.

Cos of the angle between z,y is ﬁ% Write out the equivalent

expression for Qz, Qy. Then manipulate one of these to the other.

Leta = % ([Z + [(5) D , the average of the vectors. Since we

want to reflect about span{a},take u to be orthogonal to a.

(b) Under rotations or reflectionsthe flag points away from the origin.

Let S ={L(2):z € S}. Prove|[L (z)- L (2)] =r, forall L (z)€ S.
(This proves L : § — S.) And prove that if |Jw — L (z)|| =, then
w = L (z) for some x where iz — z|| ==. (Thisproves onto.)

Chapter 6, Section 2

10.

11

1 —_—
. ()@= [ 7,5 ﬁli } . (There could beothers.) T = [
22

o w

0 )

. LetA(z ty) = (atpi)(z tiy). Then Az =az—-py, Ay = Bz+oy.

Thus L (z) = Az maps span{z,y} — span{z,y}. Apply Gram-

Schmidt to z,y to get uj,u2. Then Au; = rju; T raup, Aus =

siup T sous. So Afugug) = [ugug) [:1 51 Extend ujug to an
2

orthonormal basis for R* say u;, 212,213,214. Set Q = [uyusugu4] and
show AQ =QT

Let z,y be Iinearly[independent vectors which are not orthogonal.

Let P =[zy} ,D = ((; ?3 ] where o # . Form A= PDP~!. (A

particular such example will be fine.)
No. An example still needs to be given.

Argue by contradiction. Use that TTH =THT.
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Chapter 7, Section 1

1. There are infinitely many solutions.

2. If the equation of the line is mx +b =y, solve

2m +b =1
2m +b =2

4. (b) The line is span{ [} ]} So, P =

1
715][
V2

1 1
2 V2 |. And the closest point is P [? 3
Vi ] =2 ]
2
8. No.
9. Since A*A = A? and the eigenvalues of A2 are A%, ... ,A2, it follows

that o1 = /A2 = A1, ..., 0m = /A2 = |An).
16. (@) AHAV = VEHUHUTZVHEV =VEHY, so A7 Av; = o2v; for all

a

Chapter 7, Section 2

1. 0 since it satisfies the eTation (i)-(iv) of a pselaudo-inverse.

Sisk-

EHIEEINER]

4. Show the matrix satisfies (i)-(iv) of a pseudo-inverse.
5. (a) 1.
7. 1. The supporting work must still be given.
9 1 _4
9. (a) L{y) = gl]whereZ=Y={[715 25]} So L
2 V2

collapses (projects) R? into the y;-axis and then doubles this axis
and sends to the z;-axis.

3. A*=| ¥ &
2

10. Change the problem to finding the closest orthogonal matrix Q to .
Then show, by looking at the terms in [|@Q — ||z, that such a matrix
is |. (Thisis the idea. Organization is still required.)

11. It says that the condition number is squared, perhaps doubling the
number of additional digits in error when we solve the normal equa-
tions A*Azx = Atb.
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Chapter 8, Section 1

1.

11.

12.

© P=I

— OO
ooRr
e o

|

. (a)

o O =
O =

100 1
110 3
1 21 2

.Use3R2+RlsoE=[(1) f]

(a)
1 0 2 4 1 0 2 4 2 4
[* *Hx *]’ [em 1”0 x]=[4 11]
0 O 1 0 O
. (a) Just multiply [ 1 0} [ by 1 0 } (See why it
£3; €3 1 by f3p 1
works.)

(b) From Chapter 1,we know that the product of two lower triangular
matrices is lower triangular. Now, if £ = [€k1 ... &kk—1 10...0] and
w=1[0...01841;...8n;]"-..

Use the first row of L to find the first row of X . Continue.

elA
Note that A = | --- |. Now apply an elementary operation and

e A
see what happens with the e; A rows.

Chapter 8, Section 2

6.

8.

(w,u) =0iswywy+- - -+upw, = 0 or in augmented form [u, ...un|0].
So, there are n — 1 free variables and so dimW =n — 1.

(c) I u has length 1,

HH' = (1-2uw)’ (1-2uut)
= | —4uut Tuutuu?
= | —4uvt T4uu! (Noteuwtu = 1)
l.
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11. The QR dTomposition,with partial pivoting, produces an R of the

_ | Bux Bz
form F = 0 0
gular. Sincerank A =rank (QR) =rank R, R;; must be r x 7.

where Ry is upper triangular and nonsin-

12. Note that Hu = ~» so —1is an eigenvaluedf H. And, since Aw =w
forallw € W ,and dimW =n -1, there are n —1linearly independent
eigenvectors, say wy, ... ,wn~-1 for the eigenvalue 1.

14. Use |det A| = |det (QR)| = |det Qdet R| = |det R| = |r11 -+ Tnnl.
Since a; = Qr; where a; and r; are the i-th columns of A and R,
respectively, ||aill; = |Qrill; =||7:|| = |ril. Now, put together.

15. Note that a; =Ti1:q1 + - +'r,-,-q,-, SO a; — (r,-lql + . +r,~,,~_1qi_1) =
riigi.- Now, using @*A =R (sogLa; =), show that ;11 +...+
Tii—1¢i—1 1S the Fourier sum for a, and thus the closest vector in
span{ai,...,a;_1} to a;. Finish.

17. Apply Givens matrices to Q to obtain an upper triangular matrix
R where 711 > 0,... ,7p—1,n—1 > 0. Now R must be orthogonal so
R is diagonal with r1; = 1,...,7p—1n—1 = 1land rnr, = %1. Since
the determinant of a Givens matrix is 1, detQ =detR =711 - ..7pn.
Finish.

Chapter 9, Section 1
3. Check the trace.
5. Yes

n
6. (b) {A —aul < Y laki] ,etc.
k

Chapter 9, Section 2
3. (a) A (0) =.5.
5. (@ + =1 So|x(0<1

Chapter 10, Section 1

-

SRS Ed
S(ERIIV(FMIESJ)
:RRtwhereR:[} g]
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0 4
9. (a) Using Theorem 10.1, the following equations are equivalent.
det (AB — A)
det (\(P#)” P2 - (PF)T' DPY) = 0
det ((P”’)‘1 (XI = D) P“) =0
det(AI—-D) = 0
The last equation has solutions Ay, . .. ,An.
Chapter 10, Section 2
4. Use Theorem 10.5.

.18 0 L
8. The model is ]){' + _1 i ] x =0.
4 1

I
o

6. The eigenvaluesare T and 1 with corresponding orthonormal eigen-

1 1
vectors { ? ] and _715 ],respectively. So, for the image ellipse,

% V2
1 1
the major axisis 5 [ ? , and the minor axisis 1 [ 715 . Sketch
vz V2
from this.

7. Let A and B be the two positive definite matrices. Then h(z) =
zH (A+B)x = z# Az +2H Bz > 0 with equali:LI)_/ only when x = 0.
Thus, A+ B is positive definite. (Now show A T B is Hermitian.)

11 Observe that by applying these elementary operations, det Ay =
det E), where Ej is the K x k submatrix in the upper left corner
of E. Tell why.

Chapter 11, Section 1

1
2. A basis for the plane is | -1 ] , [
0

1 1 0
5. A basis for the lineis | 1 |, for the plane is [0 [1 ] Set
1

110 1 00
R=|10 1|andD=]|0 0 0 | and P=RDR™.
1 00 000
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7. Try extendingqs ... ,¢- t0 g1, ... ,g» @northonormal basis. Set Q =
lq1,-..,qr]. Then,

QQ' =QDQ*
where D =diag (1,...,1,0,...,0) where there are r 1’s in D.
Chapter 11, Section 2
1. (a) Let Ae X. A ball B of radius £ about A is

B={B:BEXand ||B - A| <t}.

3. Use f(ab,c) = [‘; b

clear), Ie|[(gl,b1tc1)(r,b2,c2)- ..— (ab,c). Then the [qage se-

To show f is continuous (it should be

guence is l. lc’l 222 22 J ,» .. Which converges to |
2
Since f (ab,¢) :][ (; Ic) ], f is continuous, etc.
4 Use f(0)= | <8 58] gor0 < <ar andw <6 <3r. This

covers the Givens matrices. Now do the Householder matrices.

8. Let @1,Q3,... be a sequence of orthogonal matrices that converge
to A. Then

QLQk =1.
Taking the limit gives
APA =1,

So, A is orthogonal. Hence, the set of orthogonal matrices is closed.
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I-norm

norm, 158
2-norm

norm, 158

absolute value, 3
add, 12
addition, 4
adjoint

adjoint of A, 19
affine space, 40
augmented matrix, 14, 47
axis, 48

back substitution, 12
backward multiplication, 6
basis, 48

blocks, 10

Cauchy-Schwarz inequality, 161
characteristic equation, 87
characteristic polynomial, 87
classical norms, 158

closed, 340

closest matrix, 200

closest rank k matrix, 252

cofactor, 15

complex numbers, 1

complex vector space, 29

computing Numerical Rank, 257

computing range and null space,
256

condition number, 173, 302

conjugate, 2, 9

conjugate transpose, 9

continuous, 122

convex sets, 53

coordinates for x, 49

Cramer’'s Rule, 19

Crout method, 269

data compacting, 258
demographic, 135
dense, 341
determinant, 15
diagonal, 7

diagonal matrix, 7
diagonalizable, 87
dimension, 50
dominant term, 132



Doolittle method, 269

eigenspace, 91

eigenvalues, 88

eigenvector, 90
element-wise operation, 347
equal, 5

equivalent, 161

Euclidean distance, 117
Euclidean space, 33

forward multiplication, 6
Fourier sum, 195

free variables, 12
Frobenius norm, 180
function space, 34

Gauss-Jordan, 14
Gaussian elimination, 12
geometric vector, 31
Givens matrix, 207
Gram-Schmidt process, 196
grid view, 60

Hadamard’s inequality, 287
Hermitian, 10

Hermitian form, 320
Hermitian matrix, 228
Householder matrix, 209

i-th row expansion, 16
identity matrix, 7
ill-conditioned

error, 175
induced norm

norms, 167
infinity norm

norm, 158
, 158
inner product, 191
interchange, 12
inverse, 9
inverse equation, 9
iterative improvement, 272

j-th column expansion, 16

Index

Jordan blocks, 109
Jordan form, 108

kernel
null space
N (L), 65

left eigenvector, 102

Leslie matrix
population matrix, 136

limit point, 340

line, 33

linear, 58

linear combination, 37

linear manifolds, 40

linearly dependent, 44

linearly independent, 44

lower triangular, 7

main diagonal entries, 7
matrix, 3

matrix space, 33

minor, 15

negative definite, 309
negative semidefinite, 309
Neumann’s formula, 120
nonsingular, 9
norm

normed space, 157
normal matrix

matrix, 226
normed space, 158
null space

kernel

N (L), 65

null space of A, 51

N (4), 51

one norm, 158
open, 340
optimization, 326
orthogonal, 192, 206

orthogonal projection matrix, 198

orthogonal set, 194
orthogonally similar, 219
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orthonormal set, 194

parallelepiped, 53

partial sums, 119

partitioned arithmetic, 11

pendent equation, 44

perspective projection map, 331,
334

perspective projection matrix, 335

pivot variables, 12

pivots, 12

plane rotation, 207

plot X, 63

positive definite, 309

positive semidefinite, 309

projection map, 331

pseudo-inverse of A, 254

pyramid, 53

Pythagorean theorem, 192

QR-factorization, 196
guadratic form, 320

range, 62

rank A, 76

real vector space, 29

real version of Schur's Theorem,
225

rectangular diagonal matrix

matrix, 237

reduced row echelon form, 14

reflection, 207

reflectional symmetry, 213

residual, 272

right eigenvector, 102

rotation, 206

rotational symmetry, 213

row echelon form, 12

rref, 14

scalar multiplication, 5
scalars, 29

scale, 12

Schur’s Theorem, 223
segment, 33

sequence converges to 4y, 118
sequence d m x n matrices, 117
series, 119

similar, 88
singular, 9
singular value decomposition (SVD),
237
singular values, 237
size, 4
span
span of S, 37

spectral radius, 182
spring-mass problems, 124
square, 4
square matrix, 7
submatrices, 10
SvD

singular value decomposition,

237

symmetric, 10
symmetry, 213
systems of linear equations, 8

tournament, 20
transformations, 58
translation, 58
transpose, 9
triangular, 7
trivial space, 31
two norm, 158

unit vector, 4

e, 4
unitarily similar, 219
unitary, 206

unitary equation, 209
upper triangular, 7

Vandermonde matrix
matrix, 81
vector, 4
vector norm, 157
vector space
real vector space
complex vector space, 29
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vectors
vector space, 29

well conditioned
error, 175

Y-coordinate system, 321






