
Ergonomics & Human Factors / Human–Computer Interaction

ISBN: 978-1-4822-3389-6

9 781482 233896

90000

K22974

w w w . c r c p r e s s . c o m

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Although life continues to become increasingly embedded with interactive
computing services that make our lives easier, human–computer interaction
(HCI) has not been given the attention it deserves in the education of software
developers at the undergraduate level. Most entry-level HCI textbooks are
structured around high-level concepts and are not directly tied to the software
development process.

Filling this need, Human–Computer Interaction: Fundamentals and
Practice supplies an accessible introduction to the entire cycle of HCI de-
sign and implementation—explaining the core HCI concepts behind each
step. Designed around the overall development cycle for an interactive soft-
ware product, it starts off by covering the fundamentals behind HCI.

The text then quickly goes into the applications of this knowledge. Including
forming the HCI requirements, modeling the interaction process, designing
the interface, implementing the resulting design, and evaluating the imple-
mented product.

Although this textbook is suitable for undergraduate students of computer
science and information technology, it is accessible enough to be understood
by those with minimal programming knowledge. Supplying readers with a
firm foundation in the main HCI principles, the book provides a working
knowledge of HCI-oriented software development.

The core content of this book is based on the introductory HCI course (advanced
junior or senior-level undergraduate) that the author has been teaching at Korea
University for the past eight years. The book includes access to figure slides
as well as source code for the example applications used throughout the text.

Human–Computer
Interaction

Fundamentals and Practice

Gerard Jounghyun Kim

H
U

M
A

N
–C

O
M

P
U

T
E

R
 IN

T
E

R
A

C
T

IO
N

K
im

K22974 mech rev2.indd 1 1/7/15 10:38 AM

Human–Computer
Interaction

Fundamentals and Practice

Human–Computer
Interaction

Fundamentals and Practice

Gerard Jounghyun Kim

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20141208

International Standard Book Number-13: 978-1-4822-3390-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface ix
about the author xiii

chaPter 1 IntroductIon 1
1.1 What HCI Is and Why It Is Important 1
1.2 Principles of HCI 3

1.2.1 “Know Thy User” 3
1.2.2 Understand the Task 6
1.2.3 Reduce Memory Load 7
1.2.4 Strive for Consistency 7
1.2.5 Remind Users and Refresh Their Memory 8
1.2.6 Prevent Errors/Reversal of Action 9
1.2.7 Naturalness 10

1.3 Summary 11
References 12

chaPter 2 SPecIfIc hcI GuIdelIneS 13
2.1 Guideline Categories 13
2.2 Examples of HCI Guidelines 15

2.2.1 Visual Display Layout (General HCI Design) 15
2.2.2 Information Structuring and Navigation

(General HCI Design) 16
2.2.3 Taking User Input (General HCI Design) 18
2.2.4 Users with Disability (User Type) 20
2.2.5 Mobile Device (Platform Type) 21
2.2.6 Icons for Apple iOS and Fonts for Windows

XP (Vendor) 23

vi Contents

2.2.7 “Earcon” Design for Aural Interface (Modality) 24
2.2.8 Cell Phones (or Making Calls) in

Automobiles (Task) 24
2.2.9 E-Commerce (Application) 25

2.3 Summary 26
References 27

chaPter 3 human factorS aS hcI theorIeS 29
3.1 Human Information Processing 29

3.1.1 Task Modeling and Human Problem-
Solving Model 30

3.1.2 Human Reaction and Prediction of
Cognitive Performance 32

3.2 Sensation and Perception of Information 37
3.2.1 Visual 38
3.2.2 Aural 44
3.2.3 Tactile and Haptic 47
3.2.4 Multimodal Interaction 52

3.3 Human Body Ergonomics (Motor Capabilities) 53
3.3.1 Fitts’s Law 53
3.3.2 Motor Control 55

3.4 Others 56
3.5 Summary 56
References 57

chaPter 4 hcI deSIGn 59
4.1 The Overall Design Process 59
4.2 Interface Selection Options 61

4.2.1 Hardware Platforms 61
4.2.2 Software Interface Components 65

4.3 Wire-Framing 72
4.4 “Naïve” Design Example: No Sheets 1.0 73

4.4.1 Requirements Analysis 73
4.4.2 User Analysis 74
4.4.3 Making a Scenario and Task Modeling 75
4.4.4 Interface Selection and Consolidation 78

4.5 Summary 81
References 82

chaPter 5 uSer Interface layer 83
5.1 Understanding the UI Layer and Its Execution Framework 83
5.2 Input and Output at the Low Level 84
5.3 Processing the Input and Generating Output 85

5.3.1 Events, UI Objects, and Event Handlers 85
5.3.2 Event-Driven Program Structure 90
5.3.3 Output 91

5.4 Summary 92
Reference 93

viiContents

chaPter 6 uI develoPment toolkIt 95
6.1 User Interface Toolkit 95
6.2 Java AWT UI Toolkit 96
6.3 Android UI Execution Framework and Toolkit 101
6.4 Examples: iOS UIKit Framework and Toolkit 106
6.5 Summary 110
References 111

chaPter 7 InteractIve SyStem develoPment
framework 113
7.1 Model, View, and Controller (MVC) 113

7.1.1 Model 114
7.1.2 View 114
7.1.3 Controller 115
7.1.4 View/Controller 115

7.2 Example of MVC Implementation 1: Simple Bank
Application 116

7.3 Example of MVC Implementation 2: No Sheets 118
7.4 Summary 119
References 120

chaPter 8 uSer Interface evaluatIon 121
8.1 Evaluation Criteria 121
8.2 Evaluation Methods 124

8.2.1 Focus Interview/Enactment/Observation Study 125
8.2.2 Expert Heuristic Evaluation 127
8.2.3 Measurement 130
8.2.4 Safety and Ethics in Evaluation 133

8.3 Summary 134
References 135

chaPter 9 future of hcI 137
9.1 Non-WIMP/Natural/Multimodal Interfaces 139

9.1.1 Language Understanding 140
9.1.2 Gestures 142
9.1.3 Image Recognition and Understanding 148
9.1.4 Multimodal Interaction 149

9.2 Mobile and Handheld Interaction 153
9.3 High-End Cloud Service and Multimodal Client

Interaction 154
9.4 Natural/Immersive/Experiential Interaction 157
9.5 Mixed and Augmented Reality 158
9.6 Others 159
9.7 Summary 161
References 161

ix

Preface

Human–computer interaction (HCI) is becoming ever more impor-
tant in interactive software. Such software has long been evaluated in
terms of the availability and breadth of its functions and its algorith-
mic efficiency. While such a developer’s perspective is still somewhat
valid, it has become difficult to differentiate among similar software
components from such an aspect given the amazing computing per-
formance of today’s hardware and the spread of algorithmic knowl-
edge and systems development know-how. Thus software quality is
increasingly judged from the users’ external point of view in terms of
their expectations, satisfaction, and experience. This external view
or user experience may be defined in many ways, but it is most obvi-
ous that it has quite a lot to do with how the software users interact
with it and, hence, its design. HCI will become even more critical
as everything around us becomes digital and unknowingly embed-
ded with interactive computing services that make our everyday lives
more exciting, efficient, and convenient.

Therefore, software (at least software that is highly interactive and
targeted for a high number of users) must now be developed with HCI
as one of its higher priorities. However, at the undergraduate level, it
is still often the case that HCI is not given the attention it deserves
in the education of future software developers. Most entry-level HCI
textbooks are structured around high-level concepts and guidelines

x PrefaCe

and are not directly tied to the software development process. Some
of these books may offer design patterns, but students at the under-
graduate level might still find it puzzling as to how HCI fits in with
their basic software development knowledge. In fact, most of the HCI
concepts and guidelines are fairly commonsense or very easy to com-
prehend. (After all, how difficult would it be to make one understand
that users are important?) But it is in the practice and within the con-
text of actual development that one has to make the difficult choices
to produce highly usable interactive software.

Following this line of thinking, this book was designed around
the overall development cycle for an interactive software product. It
starts with the required basic HCI knowledge, which is kept as com-
pact as possible by including only the basic essentials (Chapters 1–3).
The intention is to convey the spirit of HCI rather than a long list
of compiled knowledge. The book then moves into the application
of this knowledge by iteratively forming the HCI requirements and
modeling the interaction process (Chapter 4), designing the interface
(Chapter 4), implementing the resulting design (Chapters 5–7), and
finally evaluating the implemented product (Chapter 8). The book is
targeted mainly at undergraduate students of computer science and
information technology (IT), but it is easy enough to be taken up by
readers in other fields. Some knowledge of computers and program-
ming would be desirable, but it is not absolutely necessary. (Those not
interested in the detailed aspects of implementation can skip some of
Chapters 5–7.)

The core content of the book is based on the introductory under-
graduate HCI course (advanced junior or senior level) that I have
taught since 2006 at Korea University. The following table shows how
one might structure a similar course using this book (or pace oneself
for self-teaching).

Lecture
Weeks 1–2 Chapters 1–2: Introduction, HCI principles, and guidelines
Weeks 3–5 Chapter 3: Cognitive science, GOMS, human factors

Homework 1:
• Application of HCI principles/guidelines
• GOMS exercise

Weeks 6–8 Chapter 4: HCI design

xiPrefaCe

Homework 2:
• Project proposal (Part 1): Functional and UI requirements, user analysis, etc.
• Design of the app (Part 2): Interaction model, scenario, storyboards, basic

interface design, and wire-framing
• Short presentation

Week 9 Midterm exam (Chapters 1–4)
Weeks 10–11 Chapters 5–7: Implementation issues

Homework 3:
• First implementation of project (using the MVC model)
• Presentation (MVC structure) and working demo 1

Weeks 12–13 Chapter 8: Evaluation
Weeks 14–15 Chapter 9: Future of HCI

Homework 4:
• Self-heuristic evaluation for the project
• Carry out and receive peer review for other projects and one’s own project
• Redesigning/reimplementation of the project app
• Presentation of “before” and “after” and working demo 2

Week 15/16 Final exam

The PowerPoint lecture slides and the source code for the example
application used in this book (“No Sheets 1.0,” also downloadable
through Google Play) are available through the publisher’s resource
website (see http://www.crcpress.com/product/isbn/9781482233896).
I sincerely hope that the book will help readers to develop and acquire
an HCI mindset as an important step to becoming a capable IT pro-
fessional in the field.

The completion of this book was possible only with the greatest
help and understanding from many people. My first thanks go to
my graduate students at the Digital Experience Laboratory at Korea
University (Youngsun, Youngwon, Changhyun, Jong-gil, Sang-yong,
Jae-dong, Myong-hee, and Euijae). They helped me with proofread-
ing, drawing figures, formatting, and many other tasks in the midst
of research, projects, classes, and all the other things that make up
the life of a graduate student. My dear colleagues in the HCI com-
munity have also given me much valuable feedback regarding the
content and structure of the book. In particular, I thank Prof. Jee-in
Kim, Dr. Gun Lee, Prof. Woontak Woo, Prof. Jinwoo Kim, Prof.
Jongwon Lee, Prof. Jong-il Park, Prof. Seokhee Jeon, Prof. Si-Jung
Kim, Dr. Ungyeon Yang, Prof. Junho Kim, Prof. Chang-Guen
Song, Prof. Jin-seok Seo, Prof. Sookjin Kim, Prof. Junho Choi, and
Prof. Mincheol Hwang. I am very grateful for the support of the

xii PrefaCe

KRF-funded Engineering Center of Kwangwoon University (head:
Professor Eunsoo Kim). CRC Press has been very patient and prompt
with assistance for all my writing problems, not to mention seeing the
value in publishing this book. Finally, I thank my wife Sooah, my
parents, and my children (Andrew and Ellen) for their understanding
and just for being there!

xiii

About the Author

Gerard “Gerry” Jounghyun Kim earned his bachelor’s in electri-
cal and computer engineering at Carnegie Mellon University and his
master’s and PhD at the University of Southern California. He started
his academic career at POSTECH in 1996 after a short post at the
U.S. National Institute of Standards and Technology as a National
Research Council postdoctoral fellow. In 2006, he moved to Korea
University. Since 1996, he has conducted research in the field of HCI,
including virtual and mixed reality, mobile interaction, and multi-
modal interaction. Dr. Kim has written more than 100 articles in
international and domestic journals and conferences, and he is the
author of Designing Virtual Reality Systems (Springer, 2005).

1

1
IntroductIon

1.1 What HCI Is and Why It Is Important

Human–computer interaction (HCI) is a cross-disciplinary area (e.g.,
engineering, psychology, ergonomics, design) that deals with the theory,
design, implementation, and evaluation of the ways that humans use and
interact with computing devices. Interaction is a concept to be distinguished
from another similar term, interface. Roughly speaking, interaction refers
to an abstract model by which humans interact with the computing device
for a given task, and an interface is a choice of technical realization (hard-
ware or software) of such a given interaction model. Thus, the letter I in
HCI refers to both interaction and interface, encompassing the abstract
model and the technological methodology (Figure 1.1).

HCI has become much more important in recent years as comput-
ers (and embedded devices) have become commonplace in almost all
facets of our lives. Aside from merely making the necessary compu-
tational functionalities available, the early focus of HCI has been in
how to design interaction and implement interfaces for high usability.
The term high usability means that the resulting interfaces are easy to

System

Software Hardware
Window

Metaphor
Widget

Monitor
Mouse

Keyboard...
...

...

Navigation, Selection,
Manipulation, Data Entry

Interface

Interaction Model

Task Sequence, Context,
Hierarchy, Level of

Detail, etc.

Figure 1.1 The distinguishing concepts of interaction (model) and interface.

2 Human–ComPuter InteraCtIon

use, efficient for the task, ensure safety, and lead to a correct comple-
tion of the task. Usable and efficient interaction with the computing
device in turn translates to higher productivity.

The simple aesthetic appeal of interfaces (while satisfying the need
for usability) is now a critical added requirement for commercial suc-
cess as well. The family of distinctly designed Apple® products is a
good example. Apple products are attractive and have created a multi-
tude of faithful followers even though their functionality may be vir-
tually equal to their competitors. In this context, the concept of user
experience (UX) has lately become a buzzword, a notion that not only
encompasses the functional completeness, high usability, and aesthetic
appeal of the interactive artifact, but also its seamless integration into
one’s lifestyle or even creating a new one around it (Figure 1.2).

A less acknowledged fact is how HCI has had a huge impact in the his-
tory of computing and changed our daily lives. It was probably the inven-
tion (or rediscovery) of the mouse that was the linchpin in the personal

Share pictures/videos

Edit pictures/videos

Take pictures/videos
Manage

pictures/videos

Voice activation

(a) (b)

(c) (d)

Figure 1.2 Goals of human–computer interaction (HCI): (a) functional completeness (Apple
iPhone 5s, http://www.apple.com/iphone-5s), (b) high usability (Microsoft® Pixelsense, http://blogs.
msdn.com/b/pixelsense), (c) aesthetic appeal (Apple iPhone 5s), and (d) compelling user experience
(UX) (Microsoft Kinect, http://www.xbox.com/ko-KR/Kinect).

3IntroduCtIon

computer revolution, making the operation of a computer intuitive and
much easier than the previous system of keyboard commands. The spread-
sheet interface made business computing a huge success. The Internet phe-
nomenon could not have happened without the web-browser interface.
Smartphones, with their touch-oriented interfaces, have nearly replaced
the previous generation of feature phones. Body-based and action-ori-
ented interfaces are now introducing new ways to play and enjoy computer
games. HCI still continues to redefine how we view, absorb, exchange,
create, and manipulate information to our advantage (Figure 1.3).

1.2 Principles of HCI

Despite its importance, good HCI design is generally difficult, mainly
because it is a multiobjective task that involves simultaneous consider-
ation of many things, such as the types of users, characteristics of the
tasks, capabilities and cost of the devices, lack of objective or exact quan-
titative evaluation measures, and changing technologies, to name just a
few. A considerable knowledge in many different fields is required. Over
the relatively young history of HCI, researchers and developers in the
field have accumulated and established basic principles for good HCI
design in hopes of achieving some of the main objectives (as a whole) that
were laid out in the previous section. These HCI principles are general,
fundamental, and commonsensical, applicable to almost any HCI design
situation. Here, we provide a short review of the main HCI principles.

1.2.1 “Know Thy User”

The foremost creed in HCI is to devise interaction and interfaces around
the target users. This overall concept was well captured by the phrase,

Figure 1.3 The evolution of interfaces in the course of the history of computing (i.e., terminal and
keyboard, graphic user interface and mouse, and handheld and touch-based interface). (Courtesy of
Cox, J., https://www.flickr.com/photos/15587432@N02/3281139507, Melbourne, FL.)

4 Human–ComPuter InteraCtIon

“Know thy user,” coined by Hansen [1] in 1971, even though the so-
called user-centered design approach has become a buzzword only in
recent years. This principle simply states that the interaction and interface
should cater to the needs and capabilities of the target user of the system
in design. However, as easy as this sounds, it is more often the case that
the HCI designers and implementers proceed without a full understand-
ing of the user, for example, by just guessing and pretending to know
and be able to predict how the representative user might respond to one’s
design. Ideally, comprehensive information (e.g., age, gender, education
level, social status, computing experience, cultural background) about the
representative target user should be collected and analyzed to determine
their probable preferences, tendencies, capabilities (physical and mental),
and skill levels. Such information can be used to properly model interac-
tion and pick the right interface solution for the target users.

Consider a situation where a developer is working to change an inter-
face, supposedly to achieve higher usability. However, we might need
to remember that while young adults are extremely adept at and open
to adopting new interfaces, older generations are much less so. Here is
another example. Males are generally known to be better than females
in terms of spatial ability and, as such, one might consider such a fact
in employing three-dimensional (3-D) user interfaces. However, other
studies point to females majoring in engineering and science to possess
an equivalent level of spatial ability as their male counterparts [2]. So
sometimes, conventional wisdom alone may not be sufficient to war-
rant proper interface design. These examples illustrate that there are a
great many aspects that need to be considered in this regard. If a direct
field study is not feasible, an experienced and humble HCI designer
will at least try to leverage the vast knowledge available from cognitive
psychology, ergonomics, and anthropomorphic data to assess the capa-
bilities and characteristics of the target user group. Figure 1.4 shows
examples of user-centered designs of web pages for kids and the elderly.

A related (or perhaps even opposing) notion to the user-centered
design is the concept of “universal usability,” which roughly promotes
“humane” interfaces that cater to a wide (rather than a specific) range
of users, i.e., across age groups, skill levels, cultural backgrounds, and
disability levels. Such a notion has become almost required in our
advanced multicultural societies. However, as wonderful as it sounds,
it is generally very difficult to achieve this with a single interface.

5IntroduCtIon

Usually, universal usability is achieved by justifying the investment
required to build separate interfaces for distinct user groups. For
example, in advanced countries, many government web pages are now
legally required to provide interfaces in different languages and for
color-blind and visually challenged users (Figure 1.5). Many inter-
active systems provide both menu-driven commands for novices and
keyboard-based hot keys for experts (Figure 1.6).

(a) (b)

Figure 1.4 Examples of user-centered designs of web pages for (a) kids (courtesy of Junior Naver,
http://jr.naver.com), and (b) the elderly (courtesy of SilverNet News, http://www.silvernews.or.kr).

(a) (b)

Figure 1.5 Two different interfaces to achieve universal usability (one in Korean and the other in
English). (From the Korean Ministry of Health and Welfare, http://english.mw.go.kr/front_eng/index.jsp.)

Figure 1.6 An interface providing both menus (for novice users) and hot keys (for expert users).

6 Human–ComPuter InteraCtIon

1.2.2 Understand the Task

Another almost-commonsensical principle is to base HCI design on
the understanding of the task. The term task refers to the job to be
accomplished by the user through the use of the interactive system. In
fact, understanding the task at hand is closely related to the interac-
tion modeling and user analysis. It really boils down to identifying
the sequence and structure of subtasks at an abstraction level appro-
priate for the typical user within the larger application context. Take
the subtask (for a larger application) for “changing the Wi-Fi connec-
tion access point” for a smartphone. For an expert user experienced
in computer networks, the task might be modeled with detailed steps,
asking the user to select from a pool of available nearby access points
based on their characteristics such as the signal strength, bandwidth,
security level, and so forth. On the other hand, for a casual user, the
subtask might only involve entering a password for the automatically
selected access point (Figure 1.7).

Note again that the task (or, equivalently, the interaction) model
must ideally come from the user. Different users will have different
mental models of the task at hand, and this must be reflected in the
structure of the interface to simplify implementation for all users. We
will study the process of task/interaction modeling in Chapter 2 in
more detail. However, it is not always the case that modeling interac-
tion after the user is the most efficient approach. One must remem-
ber that humans are very adaptive and, as such, a nonuser-based

Invoke
Internet Browser

Invoke Internet
Browser

Wireless LAN
Setup

Select Access
Point (AP)

Enter Password

Enter Password

Show AP
Characteristics

(Signal strength, Bandwidth,
Security level, etc.)

(a) Novice

(b) Expert

Figure 1.7 Two interaction models at different levels of detail for the task of “connecting to the
Internet from a smartphone,” depending on the user type.

7IntroduCtIon

task/interaction model may sometimes be developed based solely on
the general human capacity.

1.2.3 Reduce Memory Load

Designing interaction with as little memory load as possible is a principle
that also has a theoretical basis. Humans are certainly more efficient in
carrying out tasks that require less memory burden, long or short term.
Keeping the user’s short-term memory load light is of particular impor-
tance with regard to the interface’s role as a quick and easy guidance
to the completion of the task. The capacity of the human’s short-term
memory (STM) is about 5–9 chunks of information (or items meaning-
ful with respect to the task), famously known as the “magic number”
[3]. Light memory burden also leads to less erroneous behavior. This
fact is well applied to interface design, for instance, in keeping the num-
ber of menu items or depth to less than this amount to maintain good
user awareness of the ongoing task or in providing reminders and status
information continuously throughout the interaction (Figure 1.8).

1.2.4 Strive for Consistency

In the longer term, one way to unburden the memory load is to keep
consistency [4]. This applies to (a) both within an application and across

Figure 1.8 Interfaces designed for minimal short-term memory: (a) a menu system with fewer than
10 items (left) and (b) categorization by colors, areas, icons, and labels. Badges are used to display
status information such as the current weather (see circled portions) and number of unread mails as a
constant reminder. (From Microsoft®, Microsoft Metro interface, http://www.microsoft.com.)

8 Human–ComPuter InteraCtIon

different applications and (b) both the interaction model and inter-
face implementation. For instance, the user is likely to get confused
and exhibit erroneous responses if the same subtask is involved, at dif-
ferent times, for different interaction steps or interface methods. Note
that the exact same subtasks may appear across different applications as
well. Aside from being able to remember what to do, consistency and
familiarity also lead to higher acceptability and preference. One way the
Microsoft Windows®–based applications maintain their competitive-
ness is by promoting consistent and familiar interfaces (Figure 1.9).

1.2.5 Remind Users and Refresh Their Memory

Any significant task will involve the use of memory, so another good
strategy is to employ interfaces that give continuous reminders of
important information and thereby refresh the user’s memory. The
human memory dissipates information quite quickly, and this is espe-
cially true when switching tasks in multitasking situations (which is a

(a)

(b)

Figure 1.9 (a) A consistent look of the interface within an application (a game called Subway
Surfers, https://play.google.com/store/apps/details?id=com.kiloo.subwaysurf) and (b) a consistent
interface between Microsoft PowerPoint and Word.

9IntroduCtIon

very prevalent form of interaction these days). In fact, research shows
that our brain internally rehearses information encoding during mul-
titasking [5]. Even a single task may proceed in different contextual
spans. For instance, in an online shopping application, one might cycle
through the entry of different types of information: item selection,
delivery options, address, credit card number, number of items, etc. To
maintain the user’s awareness of the situation and further elicit cor-
rect responses, informative, momentary, or continuous feedback will
refresh the user’s memory and help the user complete the task easily.

One particular type of informative feedback (aside from the cur-
rent status) is the reaffirmation of the user action to signal the closure
of a larger process [6]. An example might be not only explicitly con-
firming the safe receipt of a credit card number, but also signaling
that the book order is complete (and “closed”). Such a closure will
bring satisfaction by matching the user’s mental picture of the ongo-
ing interactive process (Figure 1.10).

1.2.6 Prevent Errors/Reversal of Action

While supporting a quick completion of the task is important, error-
free operation is equally important [6]. As such, the interaction and
interface should be designed to avoid confusion and mental overload.
Naturally, all of the aforementioned principles apply here. In addi-
tion, one effective technique is to present or solicit only the relevant
information/action as required at a given time. Inactive menu items
are good examples of such a technique. Also, having the system
require the user to choose from possibilities (e.g., menu system) is

Figure 1.10 Reaffirming the user’s action (i.e., credit card number correctly and securely
entered) and a larger interactive process (i.e., the book purchase is complete).

10 Human–ComPuter InteraCtIon

generally a safer approach than to rely on recall (e.g., direct text input)
(Figure 1.11).

Despite employing some of the principles and techniques described
here, there is always a chance that the user will make mistakes. Thus,
a very obvious but easy-to-forget feature is to allow an easy reversal of
action. This puts the user into a comfortable state and increases user
satisfaction as well (Figure 1.12).

1.2.7 Naturalness

The final major HCI principle is to favor “natural” interaction and
interfaces. Naturalness refers to a trait that is reflective of various oper-
ations in our everyday life. For instance, a perfect HCI may one day
be realized when a natural language–based conversational interface
is possible, because this is the prevalent way that humans communi-
cate. However, it can be tricky to directly translate real-life styles and
modes of interaction to and for interaction with a computer. Perhaps
a better approach is to model interaction “metaphorically” to the real-
life counterpart, extracting the conceptual and abstract essence of the
task. For instance, Figure 1.13 shows an interface called the ARCBall
[7] for rotating an object in 3-D space using a mouse (2-D device). In

Figure 1.11 Preventing errors by presenting only the relevant information at a given time (inactive
menu items) and making selections rather than enforcing recall or full manual input specification.

Figure 1.12 Making the user comfortable by always allowing an easy reversal of action.

11IntroduCtIon

order to rotate, the selected object is overlaid with and enclosed by a
transparent sphere, and the user drags on the surface of the sphere to
rotate the object inside. One might consider this rotation technique
to be metaphoric because it abstracts the interaction object into the
shape of a sphere, the most rotational object we know.

A natural or metaphoric interface (assuming that the metaphor is
not contrived) will also have affordance, a property (or additional cues)
that appeals to our innate perception and cognition, thus making it
so intuitive that the interface would require almost no learning [4]. In
the example of the ARCBall, the spherical shape of the rotator GUI
may be regarded to exhibit a high level of affordance, requiring no
explanation as to how to rotate the object.

1.3 Summary

In this chapter, I have introduced the field of HCI, namely its objec-
tive and importance. We also have reviewed some of the main high-
level principles of HCI and presented some relevant examples. These
principles are often based on or are just manifestations of deeper theo-
ries in cognitive science and ergonomics. However, they are trans-
formed into more detailed and directly usable guidelines when put
into actual practice for the specific purpose of designing an effective
interface. In Chapters 2 and 3, we take a look at these guidelines and

x-axis

z-axis

y-axis

Figure 1.13 ARCBall: 3-D object rotation by using the sphere metaphor. It is also very intuitive
with a high level of affordance. (From Shoemake, K., Graphics Interface, 92, 151–156, 1992 [7].)

12 Human–ComPuter InteraCtIon

theories, respectively, as they are essential knowledge required for the
HCI design process, which we will begin to address in Chapter 4.

References
 1. Hansen, Wilfred J. 1971. User engineering principles for interactive sys-

tems. In AFIPS ’71 (Fall) Proceedings of the November 16–18, 1971, Fall
Joint Computer Conference, 523–32. New York: ACM.

 2. Eisenberg, Theodore A., and Robert L. McGinty. 1977. On spatial visu-
alization in college students. Journal of Psychology 95 (1): 99–104.

 3. Miller, George A. 1956. The magical number seven, plus or minus two:
Some limits on our capacity for processing information. Psychological
Review 63 (2): 81–97.

 4. Norman, Donald A. 2002. The design of everyday things. New York: First
Basic Paperback. (Orig. pub. 1988 as Psychology of everyday things. New
York: Basic Books.)

 5. Salvucci, Dario D., and Neils A. Taatgen. 2010. The multitasking mind.
Oxford, UK: Oxford University Press.

 6. Shneiderman, Ben, and Catherine Plaisant. 2004. Designing the user inter-
face: Strategies for effective human–computer interaction. 4th ed. Boston:
Addison Wesley.

 7. Shoemake, Ken. 1992. ARCBALL: A user interface for specifying three-
dimensional orientation using a mouse. Graphics Interface 92:151–56.

13

2
SpecIfIc HcI GuIdelIneS

2.1 Guideline Categories

While principles are very general and applicable to wide areas and
aspects of human–computer interaction (HCI) design, guidelines
tend to be more specific. Table 2.1 shows major criteria and areas for
which specific guidelines can be of help in HCI design. For instance,
in the criterion of “user type,” there could be further specific guide-
lines for specific age groups or gender.

Many guidelines in the categories listed in Table 2.1 have been put
forth by a number of HCI researchers, practitioners, and organizations
over the years and are considered to be reasonably objective. There is
even an international standard; the International Organization for
Standardization (ISO) 9241 document guides the ergonomics aspects
of HCI designs, with topics covering visual display, physical input
devices, workplace/environment ergonomics, and tactile/haptic inter-
actions [1]. Broadly, we might divide the guidelines into two catego-
ries: (a) domain specific (i.e., specific to user, platform, etc.) and (b)
of general HCI design. Note that these guidelines can be relevant
and common across the different categories shown in Table 2.1. For
example, guidelines for e-commerce application might also address
different general HCI design issues such as display layout, how to
solicit input, how to promote vendor-specific styles, and how to target
for a particular user group.

Even though guidelines are much more specific than the principles,
it is still not very clear how to reflect them into the HCI design in
a concrete and consistent manner. In this regard, Tidwell has com-
piled many user interface (UI) design patterns in the form of guide-
lines [2]. Tidwell’s guidelines address many categories of the “general
HCI design” issues (see Table 2.1) such as display layout, information

14 Human–ComPuter InteraCtIon

structure and navigation, as well as data entry and even aesthetic aspects.
Each guideline illustrates specific UI examples with exact descriptions
of what it is and what it does and why and when it should be used. Such
design patterns are of great help during actual HCI design.

It is not possible to list and explain all the guidelines that exist for
all the various areas. Despite differences in the specifics, most of them

Table 2.1 Examples of Criteria/Categories for HCI Guidelines

CRITERIA MAIN CATEGORIES EXAMPLES

User type Age/generation
Disability/accessibility
Gender
Consumer group
Occupation
Culture/country

Kids, elders, visually challenged,
baby boomers, students, parents,
East Asians, athletes, etc.

Platform/system setup Mobile/handheld
Desktop
Large display/virtual reality
Embedded
Public installation
Operating system/network

Smartphone, padlike device,
desktop, kiosk, embedded OS,
cloud based, navigation systems,
personal game players, MP3
players, e-book, etc.

Vendors/organizations Private
Public
Design style/identity

NASA, Korea University, Android™,
iOS, Windows® XP, etc.

Interface style/
modality/technology

WIMP
Non-WIMP
3-D
Multimodal

Voice/aural, gesture, single/
multitouch, tactile/haptic,
multimodal, menu driven, GUI/
widgets, visual perception, etc.

Task/operational
context

Location/place
Time
Noise/lighting
Bodily constraints

Office, outdoor, road/street, home,
automobile, subway, classroom,
eyes free, hands free,
handedness, etc.

Applications Game
Media/information
Electronic commerce
Design/editing
Social network service

General HCI design Display layout
Information structure/navigation
Soliciting input
Information/output visualization
Design process and practices
User experience
General aesthetics

a WIMP is an acronym for windows, icon, mouse, and pointer, which represents the conventional
desktop interface.

15sPeCIfIC HCI GuIdelInes

are commonly shared and equivalent or can be understood in terms of
the higher level principles. Here we present a few examples.

2.2 Examples of HCI Guidelines

2.2.1 Visual Display Layout (General HCI Design)

One of the main focuses in many design guidelines is on the display
(page) layout. This problem concerns organizing and allotting relevant
information (both the content and UI elements) in one visible screen
or scrollable page. Generally, the display layout should be such that it
is organized according to the information content (e.g., importance,
sequence, functionality), is sized manageably (e.g., divided into proper
sections), is attention grabbing, and is visually pleasing (e.g., aligned
and with restricted use of colors). Table 2.2 is a summarized guideline
for web-page layout put forth by the U.S. Department of Health and
Human Services (HHS) for the US government [3].

Table 2.2 Examples of Guidelines for Government Web Page Layout

GUIDELINES EXPLANATION

Avoid cluttered displays Create pages that are not considered cluttered by users
Place important items

consistently
Put important, clickable items in the same locations and closer to

the top of the page, where their location can be better estimated
Place important items at top

center
Put the most important items at the top center of the web page to

facilitate users finding the information
Structure for easy

comparison
Structure pages so that items can be easily compared when users

must analyze those items to discern similarities, differences,
trends, and relationships

Establish level of
importance

Establish a high-to-low level of importance for information and
infuse this approach throughout each page on the website

Optimize display density To facilitate finding target information on a page, create pages
that are not too crowded with items of information

Align items on a page Visually align page elements, either vertically or horizontally
Set appropriate page

lengths
Make page-length decisions that support the primary use of the

web page
Choose appropriate line

lengths
If reading speed is most important, use longer line lengths

(75–100 characters per line); if acceptance of the website is
most important, use shorter line lengths (50 characters per line)

Use frames when functions
must remain accessible

Use frames when certain functions must remain visible on the
screen as the user accesses other information on the site

Source: Leavitt, M. O., and Shneiderman, B., Research-Based Web Design and Usability Guidelines,
U.S. Department of Health and Human Services, Washington, DC, 2006 [3].

16 Human–ComPuter InteraCtIon

2.2.2 Information Structuring and Navigation (General HCI Design)

A single display is often not sufficient to encompass all of the required
information content or to control the UI for a given application.
Thus, structuring the information and making it easy to move (or
navigate) among the various items becomes a very important issue
for high usability. Structuring information content and controlling
the interface for the purpose of HCI is closely related to the prin-
ciple of understanding the task (Section 1.2.2). By understanding the
task, we identify the sequence of subtasks and actions, and each task
will be associated with information either for making input or for the
resulting output. The task structure, action sequence, and associated
content organization will dictate the interaction flow and its fluidity.
In this way, only the right amount of information or control will be
available at the right time.

Aside from such internal structure, it is also important to provide
external means and the right UI for fast and easy navigation. Fast and
easy navigation means enabling the user to find the needed action
(e.g., menu item) and information quickly (Figure 2.1). Here, we
introduce a summarized guideline for the design of an easily navi-
gated interface from Leavitt and Shneiderman [3].

Figure 2.1 An example of a site map for a website. (From Korea University, http://www.korea.
ac.kr. With permission.)

17sPeCIfIC HCI GuIdelInes

Navigation refers to the method used to find information within a Web
site. A navigation page is used primarily to help users locate and link to
destination pages. A Web site’s navigation scheme and features should
allow users to find and access information effectively and efficiently.
When possible, this means designers should keep navigation-only pages
short. Designers should include site maps, and provide effective feed-
back on the user’s location within the site. . . .

. . . To facilitate navigation, designers should differentiate and group
navigation elements and use appropriate menu types. It is also important
to use descriptive tab labels, provide a clickable list of page contents on
long pages, and add “glosses” where they will help users select the correct
link. In well-designed sites, users do not get trapped in dead-end pages.

As a more concrete example, we illustrate two design patterns from
Tidwell [2]. Note that as design patterns, very specific uses of UI ele-
ments are suggested addressing the concerned issue (Figures 2.2 and 2.3).

What:

Put two side-by-side panels on the interface. In the first, show a
set of items that the user can select at will; in the other, show
the content of the selected item.

Use when:

You’re presenting a list of objects, categories, or even actions. . . . You
want the user to see the overall structure of the list. . . .

Physically, the display you work with is large enough to show two
separate panels at once. . . .

Figure 2.2 The use of a two-panel selector, a design pattern for information structuring and
facilitated navigation. (Adapted from Tidwell, J., Designing Interfaces, 2nd ed., O’Reilly Media,
Sebastopol, California, 2010 [2].)

18 Human–ComPuter InteraCtIon

What:

Show each of the application’s pages within a single window.
As a user drills down through a menu of options, or into an
object’s details, replace the window contents completely with
the new page.

Use when:

Your application consists of many pages or panels of content for
the user to navigate through. . . . For a device with tight space
restrictions, . . . you may have a complexity limit. Your users
[also] may not be habitual computer users—having many
application windows open at once may confuse them.

2.2.3 Taking User Input (General HCI Design)

Clever designs for taking user input (e.g., raw information or system
commands) can improve the overall performance, in terms of both
time and accuracy, for highly interactive systems. Modern inter-
faces employ graphical user interface (GUI) elements (e.g., window,
text box, button, menu, forms, dialog box, icon), support techniques

Figure 2.3 The use of one-window drilldown as a design pattern for content organization and
fast navigation. (Adapted from Tidwell, J., Designing Interfaces, 2nd ed., O’Reilly Media, Sebastopol,
California, 2010 [2].)

19sPeCIfIC HCI GuIdelInes

(e.g., autocompletion, deactivating irrelevant options, voice recogni-
tion), and devices (e.g., mouse, touch screen) to obtain user input in
different ways. It is up to the UI designer to compose these input
methods for the best performance with respect to the design con-
straints (e.g., user type, task characteristics, operating environment,
etc.). Figure 2.4 is a collection of guidelines for use in applying these
input methods to facilitate data entry [4].

 1. Consistency of data-entry transactions: Similar sequences of
actions should be used under all conditions (similar delimit-
ers, abbreviations, etc.)

 2. Minimal input actions by user: Fewer input actions means greater
operator productivity. Make proper use of single-key commands,
mouse selection, auto-completion features, and automatic cursor
placement rather than typing/pressing in the full alphanumeric
input. Selection from a list (e.g., by a menu or by mutually exclu-
sive radio buttons) also reduces possibilities of error. Avoid switch-
ing between the keyboard and the mouse. Use default values.

 3. Minimal memory load on users: When doing data entry,
use menus and button choices so that users do not have to

Figure 2.4 Display layout and user interfaces for facilitated date entry: Selection menus,
default values, and structured forms are used to reduce errors. (From Smith, S. L., and Mosier, J. N.,
Guidelines for Designing User Interface Software, Mitre Corporation, Bedford, MA, 1986 [4].)

20 Human–ComPuter InteraCtIon

remember a lengthy list of codes and complex syntactic com-
mand strings.

 4. Compatibility of data entry with data display: The format of
data-entry information should be linked closely to the format
of displayed information (i.e., what you see is what you get).

 5. Clear and effective labeling of buttons and data-entry fields:
Use consistent labeling. Distinguish between required and
optional data entry. Place labels close to the data-entry field.

 6. Match and place the sequence of data-entry and selection fields in a
natural scanning and hand-movement direction (e.g., top to bot-
tom, left to right).

 7. Do not place semantically opposing entry/selection options close
together: For example, do not place “save” and “undo” buttons
close together. Such a placement is likely to produce frequent
erroneous input.

 8. Design of form and dialog boxes: Most visual-display layout
guidelines also apply to the design of form and dialog boxes.

Note that most of these guidelines apply only when using mouse/
keyboard-driven GUI elements. Situations become more complicated
when other forms of input are also used, such as touch, gesture, three-
dimensional (3-D) selection, and voice. There are separate guidelines
for incorporating such input modalities.

2.2.4 Users with Disability (User Type)

The W3C has led the Web Accessibility Initiative and published the
Web Content Accessibility Guidelines (WCAG) 2.0 [5]. It explains how
to make web content more accessible to people with disabilities. Web
content generally refers to the information in a web page or web appli-
cation, including text, images, forms, sounds, and such (Figure 2.5).
The following is a summary of the guidelines:

 1. Perceivable
 A. Provide text alternatives for nontext content.
 B. Provide captions and other alternatives for multimedia.
 C. Create content that can be presented in different ways,

including by assistive technologies, without losing meaning.
 D. Make it easier for users to see and hear content.

21sPeCIfIC HCI GuIdelInes

 2. Operable
 A. Make all functionality available from a keyboard.
 B. Give users enough time to read and use content.
 C. Do not use content that causes seizures.
 D. Help users navigate and find content.
 3. Understandable
 A. Make text readable and understandable.
 B. Make content appear and operate in predictable ways.
 C. Help users avoid and correct mistakes.
 4. Robust
 A. Maximize compatibility with current and future user tools.

2.2.5 Mobile Device (Platform Type)

Recently, with the spread of smartphones, usability and user experi-
ence of mobile devices and applications has become even more impor-
tant. Many conventional principles equally apply to mobile networked
devices (Figure 2.6), but the following are more specific and impor-
tant, as summarized by Tidwell [2]:

 1. Fast status information (especially with regard to network
connection and services)

 2. Minimize typing and leverage on varied input hardware
(e.g., buttons, touch, voice, handwriting recognition, virtual
keyboard, etc.)

 3. Fierce task focus (for less confusion in a highly dense infor-
mation space)

Changing the font size and contrast

Figure 2.5 Adjustment feature for visually challenged users. The colors of the background and
foreground text can be changed.

22 Human–ComPuter InteraCtIon

 4. Large hit targets (for easy and correct selection and
manipulation)

 5. Efficient use of screen space (with condensed information)

Following is a similar set of guidelines available from the Nokia
developer’s home page [6]:

 1. Enable shortcuts (e.g., hot keys) for frequently used functions
 2. Keep the user informed of his or her actions
 3. Follow the device’s (vendor’s) interface patterns (positioning

of the buttons and menus).

Figure 2.7 shows another design pattern put forth by Google® for
the Android mobile interface [7]. It concerns the limited and differ-
ent sizes of a family of handheld devices (i.e., smartphones, padlike
devices, mobile Internet devices, netbooks) and more specifically

(a) (b)

Figure 2.6 Comparison of two mobile game interfaces (the initial entry screen): (a) information
and object density is needlessly high and distracting (left), (b) simple and minimal layout, and object
sizes fitted to ergonomic usage (right). (From http://www.withhive.com.)

Figure 2.7 Android design guideline promoting the use of list views and detailed views (multiple
panels) to efficiently use the screen size of mobile devices. (From Google, Multi-Pane Layouts, 2013,
http://developer.android.com/design/patterns/multi-pane-layouts.html.)

23sPeCIfIC HCI GuIdelInes

suggests the use of “panels” as a way to achieve usability under such
hardware constraints.

Make sure that your app consistently provides a balanced and aestheti-
cally pleasing layout by adjusting its content to varying screen sizes and
orientations. . . .

. . . Panels are a great way for your app to achieve this. They allow
you to combine multiple views into one compound view when a lot of
horizontal screen real estate is available and by splitting them up when
less space is available.

2.2.6 Icons for Apple® iOS and Fonts for Windows® XP (Vendor)

Major vendors publish style guides for user-interaction elements to be
used for applications running on their platform. For instance, Apple
has published a design guideline document [8] that details how appli-
cation icons should be designed and stylized:

 1. Try to balance eye appeal and clarity of meaning in your icon
so that it is rich and beautiful and clearly conveys the essence
of your app’s purpose.

 2. Investigate how your choice of image and color might be
interpreted by people from different cultures.

 3. Create different sizes of your app icon for different devices.
For iPhone and iPod touch, both of these sizes are required:
(a) iPhone: 57 × 57 pixels and 114 × 114 pixels (high resolu-
tion) and (b) iPad: 72 × 72 pixels and 144 × 144 (high resolu-
tion). When iOS displays the app icon on the home screen of
a device, it automatically adds the following visual effects: (a)
rounded corners, (b) drop shadow, and (c) reflective shine.

Another example is the suggested choice of fonts/sizes for Windows
XP or applications based on it [9]. These guidelines promote organi-
zational styling and its identity and, ultimately, its consistency in user
interfaces.

 1. Franklin Gothic is used only for text over 14-point size. It is
used for headers and should never be used for body text.

 2. Tahoma is used as the system’s default font. Tahoma should
be used at 8-, 9-, or 11-point sizes.

24 Human–ComPuter InteraCtIon

 3. Verdana (bold, 8 point) is used only for title bars of tear-off/
floating palettes.

 4. Trebuchet MS (bold, 10 point) is used only for the title bars of
Windows (Figure 2.8).

2.2.7 “Earcon” Design for Aural Interface (Modality)

Blattner, Sumikawa, and Greenberg [10] have suggested a few guide-
lines for designing “auditory” analog-to-visual icons. Similar to visual
icons, which must capture the underlying meaning (for whatever it
is trying to represent) and draw attention for easy recognition, ear-
cons should be designed to be intuitive. They suggest three types of
earcons, namely, those that are (a) symbolic, (b) nomic, and (c) meta-
phoric. Symbolic earcons rely on social convention such as applause for
approval; nomic ones are physical such as a door slam; and metaphori-
cal ones are based on capturing the similarities such as a falling pitch
for a falling object [10]. Aural feedback (including earcons) involves
a careful choice of sound-related parameters such as the amplitude/
loudness, frequency/pitch, timbre, and duration. We take a more in-
depth look at the aural modality in Chapter 3.

2.2.8 Cell Phones (or Making Calls) in Automobiles (Task)

Green et al. [11] have categorically outlined interface guidelines for
automobiles and vehicles whose interfaces are nowadays mostly elec-
tronic and computer controlled, as seen in Table 2.3. The categories
include design guidelines for manual control, spoken input and out-
put, visual and auditory display, navigation guide, and cell phone con-
sideration, to name just a few (Figure 2.9).

Figure 2.8 An example of Trebuchet font used for a window title bar. (From Microsoft®,
Windows XP Design Guidelines, 2002, http://msdn.microsoft.com/en-us/library/windows/hardware/
gg463466.aspx [10].)

25sPeCIfIC HCI GuIdelInes

2.2.9 E-Commerce (Application)

Kalsbeek [12] has collected and formulated very extensive, detailed,
and structured HCI guidelines for e-commerce applications. A total
of 404 guidelines structured in four groups (general, input/output
forms, UI elements, and checkout process) are given and applied to
several real systems for validation and evaluation. The following is a
guideline under the checkout-process section concerning the steps of
a subtask (the checkout process).

Check-out should start at the shopping cart, followed by the gift options
or shipping method, the shipping address, the billing address, payment
information, order review and finally an order summary. . . . Then the

Figure 2.9 Phone interface for automobiles.

Table 2.3 Samples of Guidelines for Car Phone Interfaces in Vehicles

SUBCATEGORIES GUIDELINE

Basic Car phones should operate like phones people have at home. The use of send
to make a connection and power to turn a phone on and off are notable
inconsistencies.

Voice dialog Verbal commands and button labels should use the same terms. Commands
of interest include dial, store, recall, and clear. This is an instance of the
consistency principle.

Manual dialing The store and recall buttons, used for similar functions, should be adjacent to
each other. This is an instance of the grouping principle.

Source: Green, P., Levison, W., Paelke, G., and Serafin, C. Suggested Human Factors Design
Guidelines for Driver Information Systems, Technical Report UMTRI-93-21, Transportation
Research Institute, University of Michigan, Ann Arbor, 1993 [11].

26 Human–ComPuter InteraCtIon

site displays a confirmation page and gives customers the option to reg-
ister. The checkout process is linear.

Figure 2.10 shows the status information (circled) shown in the
process of a book purchase at Amazon.com.

2.3 Summary

While most of the guidelines—specific or general—seem quite
straightforward and are easy to understand, incorporating them in
actual design and implementation is very difficult. Many guidelines
are still at quite a high level, similar to the HCI principles, and leave
the developer wondering how to actually apply them in practice.
Another reason is that there are just too many different aspects to
consider (especially for a large-scale system). Sometimes, the guide-
lines can even be in conflict with each other, which requires priori-
tizing on the part of the designer. For instance, it can be difficult to
give contrast to an item for highlighting its importance when one is
restricted to using certain colors, e.g., for a corporate identity pur-
pose. Another example might be when attempting to introduce a new
interface technology (e.g., touch gestures). While the new interface
may have been proven effective in the laboratory, it still may require
significant familiarizing and training on the part of the user. It is
often the case that external constraints such as monetary and human
resources restrict sound HCI practice.

Figure 2.10 Status information (circled) shown in the process of a book purchase at Amazon.com.

27sPeCIfIC HCI GuIdelInes

There is no straight answer to how such conflicts can be managed
and how to incorporate all the requirements simultaneously, particu-
larly under stringent external constraints. One must realize that all
designs involve compromises and tradeoffs. Experienced designers
understand the ultimate benefit and cost for practicing sound HCI
design. In spite of the acknowledged aspect of “black art” to HCI
design (in which good judgments are made by experienced develop-
ers), the HCI guidelines still help greatly to ensure overall usability
and performance. In Chapter 3, we will study cognitive and ergo-
nomic knowledge (more theoretical), which, along with the principles
and guidelines we have learned so far (more experiential), will be
applied to HCI design.

References
 1. Wikipedia. 2013. ISO 9241. http://en.wikipedia.org/wiki/ISO_9241.
 2. Tidwell, Jennifer. 2010. Designing interfaces. 2nd ed. Sebastopol, CA:

O’Reilly Media.
 3. Leavitt, Michael O., and Ben Shneiderman. 2006. Research-based web

design and usability guidelines. Washington, DC: US Department of
Health and Human Services.

 4. Smith, Sidney L., and Jane N. Mosier. 1986. Guidelines for designing user
interface software. Bedford, MA: Mitre Corporation.

 5. Caldwell, Ben, Michael Cooper, Loretta G. Reid, and Gregg Vanderheiden,
eds. 2010. Web content accessibility guidelines (WCAG) 2.0. W3C. http://
www.w3.org/WAI/GL/WCAG20/.

 6. Nokia. 2012. Guidelines for mobile interface design. http://www.
developer.nokia.com/Community/Wiki/Guidelines_for_Mobile_
Interface_Design.

 7. Android. 2013. Multi-pane layouts. http://developer.android.com/
design/patterns/multi-pane-layouts.html.

 8. Apple. 2014. iOS human interface guidelines. http://developer.apple.
com/library/ios/documentation/userexperience/conceptual/mobilehig/
MobileHIG.pdf.

 9. Microsoft (Windows XP Design Team). 2001. Windows XP visual
guidelines. Microsoft Corporation.

 10. Blattner, Meera M., Denise A. Sumikawa, and Robert M. Greenberg.
1989. Earcons and icons: Their structure and common design principles.
Human–Computer Interaction 4 (1): 11–44.

 11. Green, Paul, William Levison, Gretchen Paelke, and Colleen Serafin.
1993. Suggested human factors design guidelines for driver information
systems. Technical Report UMTRI-93-21. Ann Arbor: University of
Michigan, Transportation Research Institute.

28 Human–ComPuter InteraCtIon

 12. Kalsbeek, Maarten. 2012. Interface and interaction design patterns for
e-commerce checkouts. Master’s thesis, University of Twente. http://
essay.utwente.nl/62507/.

29

3
Human factorS aS

HcI tHeorIeS

3.1 Human Information Processing

Any effort to design an effective interface for human–computer inter-
action (HCI) requires two basic elements: an understanding of (a)
computer factors (software/hardware) and (b) human behavior. We
will look at the computer aspects of HCI design in the second part
of this book. In this chapter, we take a brief look at some of the basic
human factors that constrict the extent of this interaction.

In Chapters 1 and 2, we studied two bodies of knowledge for HCI
design, namely (a) high-level and abstract principles and (b) specific
HCI guidelines. To practice user-centered design by following these
principles and guidelines, the interface requirements must often be
investigated, solicited, derived, and understood directly from the tar-
get users through focus interviews and surveys. However, it is also
possible to obtain a fairly good understanding of the target user from
knowledge of human factors. As the main underlying theory for HCI,
human factors can largely be divided into: (a) cognitive science, which
explains the human’s capability and model of conscious processing
of high-level information and (b) ergonomics, which elucidates how
raw external stimulation signals are accepted by our five senses, are
processed up to the preattentive level, and are later acted upon in the
outer world through the motor organs. Human-factors knowledge
will particularly help us design HCI in the following ways.

• Task/interaction modeling: Formulate the steps for how humans
might interact to solve and carry out a given task/problem and
derive the interaction model. A careful HCI designer would

30 Human–ComPuter InteraCtIon

not neglect to obtain this model by direct observation of the
users themselves, but the designer’s knowledge in cognitive
science will help greatly in developing the model.

• Prediction, assessment, and evaluation of interactive behavior:
Understand and predict how humans might react mentally
to various information-presentation and input-solicitation
methods as a basis for interface selection. Also, evaluate inter-
action models and interface implementations and explain or
predict their performance and usability.

3.1.1 Task Modeling and Human Problem-Solving Model

The HCI principle of task/interaction modeling was helpful in under-
standing the tasks required to accomplish the ultimate goal of the
interactive system. For instance, a goal of a word-processing system
might be to produce a nice-looking document as easily as possible. In
more abstract terms, this whole process of interaction could be viewed
as a human attempting to solve a “problem” and applying certain
“actions” on “objects” to arrive at a final “solution.” Cognitive science
has investigated the ways in which humans solve problems, and such a
model can help HCI designers analyze the task and base the interac-
tion model or interface structure around this innate problem-solving
process. Thus for a smaller problem of “fixing the font,” the action
could be a “menu item selection” applied to a “highlighted text.” There
are several “human problem-solving” models that are put forth by a
number of researchers, but most of them can be collectively summa-
rized as depicted in Figure 3.1. This problem-solving process epito-
mizes the overall information-processing model. In general, human
problem-solving or information-processing efforts consist of these
important parts:

• Sensation, which senses external information (e.g., visual, aural,
haptic), and Perception, which interprets and extracts basic
meanings of the external information. (As a lower level part of
the information-processing chain [more ergonomic], we take a
closer look at these and how they relate to HCI in Section 3.2.)

• Memory, which stores momentary and short-term infor-
mation or long-term knowledge. This knowledge includes

31Human faCtors as HCI tHeorIes

information about the external world, procedures, rules, rela-
tions, schemas, candidates of actions to apply, the current
objective (e.g., accomplishing the interactive task success-
fully), the plan of action, etc.

• Decision maker/executor, which formulates and revises a “plan,”
then decides what to do based on the various knowledge in
the memory, and finally acts it out by commanding the motor
system (e.g., to click the mouse left button).

Figure 3.1b shows the overall process in a flowchart. Once a prob-
lem is defined and identified as one that needs to be solved (simply by
the user’s intention), it is established as the top goal. Then a hierarchi-
cal plan (Figure 3.2) is formulated by refining the goal into a number
of subgoals. A number of actions or subtasks are identified in the hope
of solving the individual subgoals considering the external situation.
By enacting the series of these subtasks to solve the subgoals, the top
goal is eventually accomplished. Note that enacting the subtasks does
not guarantee their successful completion (i.e., they may fail). Thus
the whole process is repeated by observing the resulting situation and
revising and restoring the plan.

Information

De�ne a problem

Gather knowledge

Consider possible
actions

Create plan

Execute plan

Observe results

(a) (b)

Repeat process

(problem not solved...)

Problem solved
(Terminate process)

Sensation

Perception

Decision

Action

Short term
(Working
Memory)

Long term
Memory

Figure 3.1 (a) The overall human problem-solving model and process and (b) a more detailed
view of the “decision maker/executor.”

32 Human–ComPuter InteraCtIon

Figure 3.2 shows an example of a hierarchical task plan (equiva-
lent to hierarchical goal structure) illustrating how the simple task of
changing the font of a text could be solved, i.e., what kinds of basic
tasks would be needed. Note that in a general hierarchical task model,
certain subtasks need to be applied in series, and some may need to
be applied concurrently. One can readily appreciate from the simple
example in Figure 3.2 how an interactive task model can be hierar-
chically refined and can serve as a basis for the interface structure.
Note that, based on this model, we could “select” interfaces to realize
each subtask in the bottom of the hierarchy, which illustrates the crux
of the HCI design process. The interaction model must represent as
much as possible what the user has in mind, especially what the user
expects must be done (the mental model) in order to accomplish the
overall task. This way, the user will be “in tune” with the resulting
interactive application. The interface selection should be done based
on ergonomics, user preference, and other requirements or constraints.
Finally, the subtask structure can lend itself to the menu structure,
and the actions and objects to which the actions apply can serve as the
basis for an object-class diagram (for an object-oriented interactive
software implementation).

3.1.2 Human Reaction and Prediction of Cognitive Performance

We can also, to some degree, predict how humans will react and
perform in response to a particular human interface design. We can

Change font of
“Hello” to Times-

Roman

Select text
(“Hello”)

Designate starting point
of the text

(Put cursor to the left of
letter “H”)

Designate the whole text
(Drag to the right of

letter “o”)

Activate
command list
(Bring up the

pop-up menu)

Choose
“Change Font”

command
(Choose menu

item)

Choose
“Times-Roman”
(Choose menu

item)

Change font to
Times-Roman

Figure 3.2 An example of a hierarchical task model of changing a font for a short text. Note that
a specific interface may be chosen to accomplish the subtasks in the bottom.

33Human faCtors as HCI tHeorIes

consider two aspects of human performance: one that is cognitive and
the other ergonomic. In the remainder of this section and in Section
3.2, we focus on the cognitive aspects. Ergonomic aspects are dis-
cussed in Section 3.3.

Norman and Draper [1] spoke of the “gulf of execution/evaluation,”
which explains how users can be left bewildered (and not perform
very well) when an interactive system does not offer certain actions or
does not result in a state as expected by the user (Figure 3.3). Such a
phenomenon would be a result of an interface based on an ill-modeled
interaction. A user, when solving a problem or using an interactive
system to do so, will first form a mental model that is mostly equiva-
lent to the hierarchical “action” plan for the task (see Section 3.1.1).
The mismatch between the user’s mental model and the task model
employed by the interactive system creates the “gulf.” On the other
hand, when the task model and interface structure of the interactive
system maps well to the expected mental model of the user, the task
performance will be very fluid.

Memory capacity also influences the interactive performance
greatly. As shown in Figure 3.1, there are largely two types of memory
in the human cognitive system: the short term and the long term. The
short-term memory is also sometimes known as the working memory,
in the sense that it contains (changing) memory elements meaning-
ful for the task at hand (or chunks). Humans are known to remember
about eight chunks of memory lasting only a very short amount of
time [2]. This means that an interface cannot rely on the human’s

Figure 3.3 Gulf of execution and evaluation: the gap between the expected and actual.

34 Human–ComPuter InteraCtIon

short-term memory beyond this capacity for fast operation. Imagine
an interface with a large number of options or menu items. The user
would have to rescan the available options a number of times to make
the final selection. In an online purchasing system, the user might
not be able to remember all of the relevant information such as items
purchased, delivery options, credit card chosen, billing address, usage
of discount cards, etc. (Figure 3.4). Thus such information will have
to be presented to the user from time to time to refresh one’s memory
and ensure that no errors are made.

Retrieving information from the long-term memory is a difficult
and relatively time-consuming task. Therefore, if an interactive system
(e.g., targeted even for experts) requires expert-level knowledge, it needs
to be displayed so as to at least elicit “recognition” (among a number of
options) of it rather than completely relying on recall from scratch.

Memory-related performance issues are also important in multi-
tasking. Many modern computing settings offer multitasking envi-
ronments. It is known that when the user switches from one task to
another, a “context switch” occurs in the brain, which means that the
working memory content is replaced (and stored back into the long-
term memory) with chunks relevant for the switched task (such as
the state of the task up to that moment). This process can bring about
overall degradation in task performance in many respects [3]. For an
individual application to help itself in its use during multitasking, it
can assist the user’s context-switch process by capturing the context

Figure 3.4 A snapshot of an online shopping process that does not display superfluous user
status that can lead to anxiety, uncertainty, and erroneous response.

35Human faCtors as HCI tHeorIes

information during its suspension, and by later displaying, reminding,
and highlighting the information upon resumption (Figure 3.5).

3.1.2.1 Predictive Performance Assessment: GOMS Many important cog-
nitive activities have been analyzed in terms of their typical approxi-
mate process time, e.g., for single-chunk retrieval from the short-term
memory, encoding (memorizing) of information into the long-term
memory, responding to a visual stimulus and interpreting its content,
etc. [4–6]. Based on these figures and a task-sequence model, one
might be able to quantitatively estimate the time taken to complete a
given task and, therefore, make an evaluation with regard to the origi-
nal performance requirements. Tables 3.1 and 3.2 illustrate such an
example based on the framework called GOMS (Goals, Operators,
Methods, and Selection) [7].

Task Context Information

Figure 3.5 Reminding the user of the context for multitasking for fast application switching (top
part of the figure).

36 Human–ComPuter InteraCtIon

The GOMS evaluation methodology starts by the same hierarchi-
cal task modeling we have described in Section 3.1. Once a sequence
of subtasks is derived, one might map a specific operator in Table 3.1
(or, in other words, interface) to each of the subtasks. With the pre-
established performance measures (Table 3.1), the total time of task
performance can be easily calculated by summing the task times of
the whole set of subtasks. Different operator mappings can be tried
comparatively in terms of their performance. The original GOMS
model was developed mainly for the desktop computing environ-
ment, with performance figures for mouse clicks, keyboard input,

Table 3.1 Estimates of Time Taken for Typical Desktop Computer Operations from GOMS

TYPE OF OPERATION TIME ESTIMATE

K: Keyboard input Expert: 0.12 s
Average: 0.20 s
Novice: 1.2 s

T(n): Type n characters 280 × n ms
P: Point with mouse to something on the display 1100 ms
B: Press or release mouse button 100 ms
BB: Click a mouse button (press and release) 200 ms
H: Home hands, either to the keyboard or mouse 400 ms
M: Thinking what to do (mental operator) 1200 ms

(can change)
W(t): Waiting for the system (to respond) t ms

Source: Card, S. K., Moran, T. P., and Newell, A., The Model Human Processor: An Engineering
Model of Human Performance, in Handbook of Human Perception, vol. 2, Cognitive
Processes and Performance, ed. K. R. Boff, L. Kauffman, and J. P. Thomas, 1–35,
John Wiley and Sons, New York, 1986 [7].

Table 3.2 Estimates of Time Taken for Two Task Models of “Deleting a File”

DELETING A FILE

DESIGN 1 DESIGN 2a

 1. Point to file icon P 1. Point to file icon P
 2. Click mouse button BB 2. Click mouse button BB
 3. Point to file menu P 3. Move hand to keyboard M
 4. Press and hold mouse button B 4. Hit command key: command-T KK
 5. Point to DELETE item P 5. Move hand back to mouse H
 6. Release mouse button B
 7. Point to original window P

Total time = 4.8 s Total time = 2.66 s

Note: The total time is computed by adding the corresponding figures in Table 3.1.
a Design 2 is the “expert” version that uses a hot key [7].

37Human faCtors as HCI tHeorIes

hand movement, and mental operators (Table 3.1). Even though this
model was created nearly 30 years ago, the figures are still amazingly
valid. (While computer technologies have advanced much since then,
humans’ capabilities have remained mostly the same.) GOMS models
for other computing environments have been proposed as well [8].

Table 3.1 shows different performance measures for various task
operators or interfaces [7]. Table 3.2 shows two designs of the main
task of “file deletion.” Each design is decomposed in a slightly different
manner and with operators mapped to the individual subtasks, result-
ing in different total times of operation (the first in 4.8 s and the second
in 2.7 s). GOMS is quite simple in that it can only evaluate in terms of
the task performance, while there are many other criteria by which an
HCI design should be evaluated. Moreover, among the operators, the
mental operator approximates the time taken for “momentary thought
or memory retrieval” in between motor tasks (like mouse clicks).
Obviously, there can be some inaccuracies introduced in the use of the
mental operators during the interaction modeling process.*

3.2 Sensation and Perception of Information

The previous section explained the value and usage of the knowledge
of cognitive and high-level information processing to HCI design.
We now shift our focus to raw information processing. First we look
at the input side (i.e., the human sensory system). Humans are known
to have at least five senses. Among them, those that would be relevant
to HCI (at least for now) are the modalities of visual, aural, haptic
(force feedback), and tactile sensation. Taking external stimulation or
raw sensory information (sometimes computer generated) and then
processing it for perception is the first part in any human–computer
interaction. Naturally, the information must be supplied in a fashion
that is amenable to human consumption, that is, within the bounds of
a human’s perceptual capabilities.

Another aspect of sensation and perception is attention, that is,
how to make the user selectively (consciously or otherwise) tune in to
a particular part of the information or stimulation. Highly attentive

* The developers of GOMS do outline a strategy for when to properly use the mental
operators for a correct task modeling and performance prediction [7].

38 Human–ComPuter InteraCtIon

information can be used for alerts, reminders, highlighting of pri-
oritized/structured information, guidance, etc. Note that attention
must occur and be modulated within awareness of the larger task(s).
While we might tune in to certain important information, we often
still need to have an understanding, albeit approximate, of the other
activities or concurrent tasks, such as in multitasking or parallel pro-
cessing of information.

In the following discussion, we examine the processes of sensa-
tion and perception in the four major modalities and the associated
human capabilities in this regard. Just as cognitive science was useful
in interaction and task modeling, this knowledge is essential in sound
interface selection and design.

3.2.1 Visual

Visual modality is by far the most important information medium.
Over 40% of the human brain is said to be involved with the process-
ing of visual information. As already mentioned, the parameters of
the visual interface design and display system will have to conform to
the capacity and characteristics of the human visual system. In this
section, we review some of the important properties of the human
visual system and their implications for interface design. First we take
a look at a typical visual interaction situation as shown in Figure 3.6.

3.2.1.1 Visual and Display Parameters
• Field of view (FOV): This is the angle subtended by the visible

area by the human user in the horizontal or vertical direction.
The shaded area in Figure 3.6 illustrates the horizontal field
of view. The human FOV is nearly 180° in both the horizon-
tal and vertical directions.

• Viewing distance: This the perpendicular distance to the sur-
face of the display. Viewing distance (dotted line in Figure 3.6)
may change with user movements. However, one might be
able to define a nominal and typical viewing distance for a
given task or operating environment.

• Display field of view: This is the angle subtended by the dis-
play area from a particular viewing distance. Note that for the
same fixed display area, the display FOV will be different at

39Human faCtors as HCI tHeorIes

different viewing distances. In Figure 3.6, the display FOV
is denoted with the dashed line. The display offers different
fields of view, depending on the viewing distance (dotted line
in the middle).

• Pixel: A display system is typically composed of an array of
small rectangular areas called pixels.

• Display resolution: This is the number of pixels in the horizon-
tal and vertical directions for a fixed area.

• Visual acuity: In effect, this is the resolution perceivable by
the human eye from a fixed distance. This is also synonymous
with the power of sight, which is different for different people
and age groups.

These human visual and display parameters need to be matched
as much as possible to provide a comfortable and effective visual dis-
play environment, for instance, display FOV to human FOV, display
resolution/object size to visual acuity, and so forth (Figure 3.7). Note
that the display FOV is more important than the absolute size of
the display. A distant large display can have the same display FOV
as a close small display, even though it may incur different viewing
experiences. If possible, it is desirable to choose the most economical
display, not necessarily the biggest or the one with the highest resolu-
tion, with respect to the requirement of the task and the typical user
characteristics.

Figure 3.6 A user viewing a display system. The shaded area illustrates the horizontal field of
view (shown to be much less than the actual for illustration purpose), while the dashed line is the
same as offered by the display. The display offers different fields of view depending on the viewing
distance (dotted line in the middle). The oval shape in the display represents the approximate area
for which high details are perceived through the corresponding foveal area in the user eyes.

40 Human–ComPuter InteraCtIon

3.2.1.2 Detail and Peripheral Vision The human eye contains two types
of cells that react to light intensities in different ways. The cones, which
are responsible for color and detail recognition, are distributed heav-
ily in the center of the retina (back of the eyeball), which subtends
about 5° in the human FOV and roughly establishes the area of focus.
The oval region in Figure 3.6 shows the corresponding region in the
display for which details can be perceived through these cells. On
the other hand, the rods are distributed mainly in the periphery of
the retina and are responsible for motion detection and less detailed
peripheral vision. While details may not be sensed, the rods contrib-
ute to our awareness of the surrounding environment.

Differently from that of human perception, most displays have
uniform resolution. However, if the object details can be adjusted
depending on where the user is looking or based on what the user
may be interested in (Figure 3.8a), the overall rendering of the image
can be made more economical or to doubly emphasize certain objects
relative to others in their neighborhood (e.g., detail contrast). We may
assess the utility of a large, very-high-resolution display system such as
the one shown in Figure 3.9. From a nominal viewing distance, only

Viewing location (average)

Viewing
distance
(average)

Display siz
e

Smallest
perceivable pixel
(determined by
visual acuity)

Figure 3.7 The display system parameters: display size, resolution, pixel determined by the
user’s visual acuity, and viewing location.

41Human faCtors as HCI tHeorIes

a small portion of the large display will correspond to the foveal area.
Thus, while viewing one portion, the other major parts of the large-
display resolution could go to “waste” (unless used by multiple users at
once, as in an IMAX theater). Consequently, it can be argued that it
is more economical to use a smaller high-resolution display placed at a
close distance. Interestingly, Microsoft Research recently introduced
a display system called the Illumiroom [9] in which a high-resolution
display is used in the middle, and a wide low-resolution projection and
peripheral display provides high immersion (Figure 3.8b).

(a) (b)

Figure 3.8 (a) An ideal display that would provide relatively higher resolution in the area of the
user’s focus; (b) a large immersive display as realized by a high-resolution monitor in the middle-
and lower-resolution projection in the periphery. (From Microsoft® Research, CHI 2013: An Immersive
Event (Illusions create an immersive experience), 2013, http://research.microsoft.com/en-us/news/
features/chi2013-042913.aspx [9].)

Figure 3.9 A large, tiled, high-resolution display. Is it really worth the cost? (From Ni, T., Schmidt,
G. S., Staadt, O. G., Livingston, M. A., Ball, R., and May, R. A., Proceedings of IEEE Virtual Reality
Conference, IEEE, Piscataway, NJ, 2006, pp. 223–236 [10].)

42 Human–ComPuter InteraCtIon

3.2.1.3 Color, Brightness, and Contrast Other important properties and
attributes of visual quality are brightness, color, and contrast.

• Brightness: The amount of light energy emitted by the object
(or as perceived by the human).

• Color: Human response to different wavelengths of light,
namely for those corresponding to red, green, blue, and their
mixtures. A color can be specified by the composure of the
amounts contributed by the three fundamental colors and also
by hue (particular wavelength), saturation (relative difference
in the major wavelength and the rest in the light), and bright-
ness value (total amount of the light energy) (Figure 3.10).

• Contrast: Relative difference in brightness or color between
two visual objects. Contrast in brightness is measured in
terms of the difference or ratio of the amounts of light ener-
gies between two or more objects. The recommended ratio of
the foreground to background brightness contrast is at least
3:1. Color contrast is defined in terms of differences or ratios
in the dimensions of hue and saturation. It is said that the
brightness contrast is more effective for detail perception than
the color contrast (Figure 3.11).

3.2.1.4 Pre-Attentive Features and High-Level Diagrammatic Semantics
Detail, color, brightness, and contrast are all very-low-level raw
visual properties. Before all these low-level-part features are finally

Energy

Energy of dominant wavelength

Hue (dominant wavelength)

Wavelength

Saturation

Brightness (total light energy)

Energy of white light

Figure 3.10 Color specification by hue (particular/dominant wavelength), saturation (relative dif-
ference in the major wavelength and the rest), and value/brightness (total amount of the light energy).

43Human faCtors as HCI tHeorIes

consolidated for conscious recognition (of a larger object) through the
visual information processing pipeline, pre-attentive features might
be used to attract our attention. Pre-attentive features are compos-
ite, primitive, and intermediate visual elements that are automatically
recognized before entering our consciousness, typically within 10 ms
after entering the sensory system [12]. These features may rely on the
relative differences in color, size, shape, orientation, depth, texture,
motion, etc. Figure 3.12 shows several examples and how they can be
used collectively to form and design effective graphic icons.

At a more conscious level, humans may universally recognize certain
high-level complex geometric shapes and properties as a whole and
understand the underlying concepts. Figure 3.13 shows examples of such
universally accepted (across different cultures) geometric diagrams with

0 1 2 3 4 5 0 1 2 3 4 5

Figure 3.11 Coding of information in a map (e.g., temperature levels) using contrast in bright-
ness (left) and color (right). (From Hemer, M. A., Fan, Y., Mori, N., Semedo, A., and Wang, X. L., Nature
Climate Change, 3, 471–476, 2013 [11].)

Red: Enemy
Blue: Friendly
Green: Unknown
Icons: Aircraft (triangle), Infantry (circle), Tanks (rectangle)

Figure 3.12 Examples of preattentive features for attention focus based on differences in size,
shape, and orientation (left) and application to icon design (right). (From Ware, C., Information
Visualization: Perception for Design, 3rd ed., Morgan Kaufmann, Waltham, MA, 2012 [12].)

44 Human–ComPuter InteraCtIon

the connotation of, e.g., connection/relation, dependency, causality,
inclusion, hierarchy/structure, flow/process, etc.

3.2.2 Aural

Next to the visual, the aural modality (sound) is perhaps the most
prevalent mode for information feedback. The actual form of sound
feedback can be roughly divided into three types: (a) simple beep-
like sounds, (b) short symbolic sound bytes known as earcons (e.g., the
paper-crunching sound when a file is inserted into the trashcan
for deletion), and (c) relatively longer “as is” sound feedback that is
replayed from recordings or synthesis. As we did for the visual modal-
ity, we will first go over some important parameters of the human
aural capacity and the corresponding aural display parameters.

3.2.2.1 Aural Display Parameters
• Intensity (amplitude) refers to the amount of sound energy and

is synonymous with the more familiar term, volume. Intensity

Diagram Meaning

Relation/Path
between Objects

Types/Strength of
Relations

Inclusion, Structure,
Hierarchy

Order, Causality,
Flow, Process,
Dependency

Figure 3.13 Examples of diagrams/shapes/objects/figures with universal semantics. (From
Ware, C., Information Visualization: Perception for Design, 3rd ed., Morgan Kaufmann, Waltham, MA,
2012 [12].)

45Human faCtors as HCI tHeorIes

is often measured in the units of decibels (dB), a logarithmic
scale of sound energy, where 0 dB corresponds to the lowest
level of audible sound and about 130 dB is the highest. It is
instructive to know the decibel levels of different sounds as a
guideline in setting the nominal volume for the sound feed-
back (Table 3.3).

• Sound can be viewed as containing or being composed of
a number of sinusoidal waves with different frequencies and
corresponding amplitudes. The dominant frequency compo-
nents determine various characteristics of sounds such as the
pitch (e.g., low or high key), timbre (e.g., which instrument),
and even directionality (where is the sound coming from?).
Humans can hear sound waves with frequency values between
about 20 and 20,000 Hz [13].

• Phase refers to the time differences among sound waves that
emanate from the same source. Phase differences occur, for
example, because our left and right ears may have slightly
different distances to the sound source and, as such, phase
differences are also known to contribute to the perception of
spatialized sound such as stereo.

When using aural feedback, it is important for the designer to set
these fundamental parameters properly. A general recommendation is
that the sound signal should be between 50 and 5000 Hz and com-
posed of at least four prominent harmonic frequency components (fre-
quencies that are integer multiples of one another), each within the
range of 1000–4000 Hz [14]. Aural feedback is more commonly used
in intermittent alarms. However, overly loud (i.e., needlessly high

Table 3.3 Examples of Different Sounds and Their
Typical Intensity Levels in Decibels

INTENSITY
(DB) DESCRIPTION

0 Weakest sound audible
30 Whisper
50 Office environment
60 Normal conversation

110 Rock band
130 Pain threshold

46 Human–ComPuter InteraCtIon

amplitude) alarms are known to rather startle the user and lower the
usability. Instead, other techniques can be used to attract attention
and convey urgency by such aural feedback techniques as repetition,
variations in frequency and volume, and gradual and aural contrast
to the background ambient sound (e.g., in amplitude and frequency).

3.2.2.2 Other Characteristics of Sound as Interaction Feedback We fur-
ther point out a few differences of aural feedback from the visual.
First, sound is effectively omnidirectional. For this reason, sound
is most often used to attract and direct a user’s attention. However,
as already mentioned, it can also be a nuisance as a task interrupter
(e.g., a momentary loss of context) by the startle effect. Making use
of contrast is possible with sound as well. For instance, auditory feed-
back would require a 15–30-dB difference from the ambient noise to
be heard effectively. Differentiated frequency components can be used
to convey certain information.

Continuous sound is somewhat more subject to becoming habituated
(e.g., elevator background music) than stimulation with other modal-
ities. In general, only one aural aspect can be interpreted at a time.
That is, it is difficult to make out the aural content when the sound is
jumbled/masked with multiple sources. Humans do possess an ability
to tune in to a particular part of the sound (e.g., string section in a sym-
phony); however, this requires much concentration and effort.

3.2.2.3 Aural Modality as Input Method So far, the aural modality has
been explained only in the context of passive feedback. As for using it
actively as a means for input to interactive systems, two major methods
are: (a) keyword recognition and (b) natural language understanding.

Isolated-word-recognition technology (for enacting simple com-
mands) has become very robust lately. In most cases, it still requires
speaker-specific training or a relatively quiet background. Another
related difficulty with voice input is the “segmentation” problem,
i.e., how to segment out, from a stream of continuous voice input or
background noise, the portion that corresponds to the actual command.
As such, many voice input systems operate in an explicit mode or state.
For example, the user has to press a button to activate the voice recog-
nition (and enter into the recognition mode/state) and then speak the
command into the microphone. (This also relieves the computational

47Human faCtors as HCI tHeorIes

burden of having to run the voice-recognition process in the background
if the system did not know when the command was to be heard.) The
need to switch to the voice-command mode is still quite a nuisance to
the ordinary user. Thus, voice input is much more effective in situations
where, for example, hands are totally occupied or where modes are not
necessary because there is very little background noise or because there
is no mixture of conversation with the voice commands.

Machine understanding of long sentences and natural-language-
based commands is still very computationally difficult and demanding.
While not quite practical for everyday user-interface input methods,
language-understanding technology is advancing fast, as demonstrated
recently by the Apple® Siri [15] and IBM® Watson [16], where
high-quality natural-language-understanding services are offered by
the cloud (Figure 3.14). Captured segments of voice/text-input sen-
tences can be sent to these cloud servers for very fast and near-real-time
response. With the spread of smart-media client devices that might
be computationally light yet equipped with a sleuth of sensors, such a
cloud-based natural-language interaction (combined with intelligence)
will revolutionize the way we interact with computers in the near future.

3.2.3 Tactile and Haptic

Interfaces with tactile and haptic feedback, while not yet very wide-
spread, are starting to appear in limited forms. To be precise, the term

Figure 3.14 A high-quality natural-language-based interaction through the cloud. The smart-
media client devices would send the captured sentence (in voice or text), and a correct and intel-
ligent response is given back in real time. (From http://www.research.att.com/project/WATSON.)

48 Human–ComPuter InteraCtIon

haptic is defined to be the modality that takes advantage of touch by
applying forces, vibrations, or motions to the user [17]. Thus haptic
refers to both the sensation of force feedback as well as touch (tactile).
For convenience, we will use the term haptic to refer to the modal-
ity for sensing force and kinesthetic feedback through our joints and
muscles (even though any force feedback practically requires contact
through the skin) and the term tactile for sensing different types of
touch (e.g., texture, light pressure/contact, pain, vibration, and even
temperature) through our skin.

3.2.3.1 Tactile Display Parameters
• Tactile resolution: The skin sensitivity to physical objects is dif-

ferent over the human body. The fingertip is one of the most
sensitive areas and is frequently used for HCI purpose. The
fingertip can sense objects as small as 40 μm in size [18].

• Vibration frequency: Rapid movement such as vibration is
mostly sensed by the Pacinian corpuscle, which is known to
have a signal-response range of 100–300 Hz. Vibration fre-
quency of about 250 Hz is said to be the optimal for comfort-
able perception [16].

• Pressure threshold: The lightest amount of pressure humans
can sense is said to be about 1000 N/m2. For a fingertip,
this amounts to about 0.02 N for the fingertip area [19]. The
maximum threshold is difficult to measure, because when the
force/torque gets large enough, the kinesthetic senses start to
operate, and this threshold will greatly depend on the physi-
cal condition of the user (e.g., strong vs. weak user).

As mentioned previously, there are many types of tactile stimula-
tion, such as texture, pressure, vibration, and even temperature. For
the purposes of HCI, the following parameters are deemed important,
and the same goes for the display system providing the tactile-based
feedback. Physical tactile sensation is felt by a combination of skin
cells and nerves tuned for particular types of stimulation, e.g., the
Meissner’s corpuscle for slight pressure or slow pushing (stimulation
signal frequency of 3–40 Hz), Merkel cells for flutter and textured/
protrusion surfaces (0.3–3 Hz), the Pacinian corpuscle for more rapid

49Human faCtors as HCI tHeorIes

vibratory stimulation (10–500 Hz), and Ruffini endings for skin
stretch (Figure 3.15).

While there are many research prototypes and commercial tactile
display devices, the most practical one is the vibration motor, mostly
applied in a single actuator configuration. Most vibration motors do
not offer separate controllability for amplitude and frequency. In addi-
tion, most vibrators are not in direct contact with the stimulation tar-
get (e.g., the hand), making the signal somewhat muffled through the
casing. Thus additional care is needed to set the right parameter values
for the best effects under the circumstances.

Another way to realize vibratory tactile display is to use thin and
light piezoelectric materials that exhibit vibration responses according
to the amounts of electric potential supplied. Due to their flat form
factor, such materials can be embedded, for instance, into flat touch
screens. Sometimes sound speakers can be used to generate indirect
vibratory feedback with high controllability (responding to wide
ranges of amplitude and frequency signals) (Figure 3.16).

3.2.3.2 Haptic and Haptic Display Parameters Along with tactile feed-
back, haptic feedback adds a more apparent physical dimension to
interaction. Force feedback and movement is felt by the cells and

Free nerve
ending

Meissner’s
corpuscle

Pacinians
corpuscle

Ru�ni
ending

Hair follicle
nerve ending

Merkel's
disk

Figure 3.15 Cells and nerves in the skin. (From Proprioception, Intl. Encyclopedia of Rehabilitation,
http://cirrie.buffalo.edu/encyclopedia/en/article/337.)

50 Human–ComPuter InteraCtIon

nerves in our muscles and joints. For instance, the muscle spindle/
tendon takes the inertial load, and Pacinian/Ruffini/Golgi receptors
sense the joint movements, pressure, and torque. The activation force
for the joints is between 0.5 to 2.5 mN [20]. However, we can under-
stand that this range would vary according to the user’s age, gender,
strength, size, weight, and so forth. Note that haptic devices are both
input and output devices at the same time. (We briefly discuss this
issue of haptic input in the next section in the context of human body
ergonomics.)

The simplest form of a haptic device is a simple electromagnetic
latch that is often used in game controllers. It generates a sudden
inertial movement and slowly repositions itself for repeated usage.
Normally, the user holds on to the device, and inertial forces are deliv-
ered in the direction relative to the game controller. Such a device
is not appropriate for fast-occurring interaction (e.g., successive gun
shots) or for displaying a continuously sustained force (e.g., leaning
against a wall).

More-complicated haptic devices are in the form of a robotic kine-
matic chain, either fixed on the ground or worn on the body. As a kine-
matic chain, such devices offer higher degrees of freedom and finer force
control (Figure 3.17). For the grounded device, the user interacts with
the tip of the robotic chain through which a force feedback is delivered.
The sensors in the joints of the device make it possible to track the tip
(interaction point) within the three-dimensional (3-D) operating space.

(a) (b)

(c) (d)

Figure 3.16 Left: Various actuators used for tactile feedback: (a) miniature speaker, (b) minia-
ture electromagnet/latch, (c) piezoelectric strip, (d) microvibratory motors. Right: tactile array with
multiple actuators. (From KU Leuven, Tactile Feedback, 2010, https://www.mech.kuleuven.be/en/
pma/research/ras/researchtopics/tactfb.html [21].)

51Human faCtors as HCI tHeorIes

Using a similar control structure, body-worn devices transfer force with
its mechanism directly attached to the body.

Important haptic display parameters are (a) the degrees of freedom
(the number of directions in which force or torque be can displayed),
(b) the force range (should be at least greater than 0.5mN), (c) operating/
interaction range (how much movement is allowed through the device),
and (d) stability (how stable the supplied force is felt to be). Stability
is in fact a by-product of the proper sampling period, which refers to
the time taken to sense the current amount of force at the interaction
point and then determine whether the target value has been reached
and reinforce it (a process that repeats until a target equilibrium force
is reached at the interaction point). The ideal sampling period is about
1000 Hz, and when the sampling period falls under a certain value,
the robotic mechanism exhibits instability (e.g., exhibited in the form
of vibration) and thus lower usability. The dilemma is that provid-
ing a high sampling rate requires a heavy computation load, not only
in updating the output force, but also in physical simulation (e.g., to
check if the 3-D cursor has hit any virtual object). Therefore, a careful
“satisficing” solution is needed to balance the level of the haptic device
performance and the user experience (Figure 3.18).

In general, due to their mechanical nature, “robotic” haptic devices
are not yet very practical. They tend to be heavy, clunky, dangerous,
and take up a large volume. The cost is very high, often with only a
small operating range, force range, or limited degrees of freedom. In
many cases, simpler devices, such as one-directional latches or vibra-
tors, are used in combination with visual and aural feedback to enrich
the user experience.

(a) (b)

Figure 3.17 Two types of haptic systems: (a) grounded and (b) body worn.

52 Human–ComPuter InteraCtIon

3.2.4 Multimodal Interaction

Conventional interfaces have been mostly visually oriented. However,
for various reasons, multimodal interfaces are gaining popularity with
the ubiquity of multimedia devices. By employing more than one
modality, interfaces can become more effective in a number of ways,
depending on how they are configured [22]. Here are some represen-
tative examples.

• Complementary: Different modalities can assume different
roles and act in a complementary fashion to achieve specific
interaction objectives. For example, an aural feedback can sig-
nify the arrival of a phone call while the visual displays the
caller’s name.

• Redundant: Different modality input methods or feedback
can be used to ensure a reliable achievement of the interaction
objective. For instance, the ring of a phone call can be simulta-
neously aural and tactile to strengthen the pick-up probability.

• Alternative: Providing users with alternative ways to interact
gives people more choices. For instance, a phone call can be
made either by touching a button or by speaking the callee’s
name, thereby promoting convenience and usability.

For multimodal interfaces to be effective, each feedback must
be properly synchronized and consistent in its representation. For

Degree of freedom Force output

Operating range

Stability
Sampling period

Figure 3.18 Important parameters for a haptic display system.

53Human faCtors as HCI tHeorIes

instance, to signify a button touch, the visual highlighting and beep
sound effect must occur within a short time (e.g., less than 200 ms)
to be recognized as one consistent event. The representation must be
coordinated between the two: In the previous example, if there is
one highlighting, then there should also be one corresponding beep.
When inconsistent, the interpretation of the feedback can be confus-
ing, or only the dominant modality will be recognized.

3.3 Human Body Ergonomics (Motor Capabilities)

So far, we have mostly talked about human cognitive and perceptual
capabilities and how display or input systems must be configured to
match them. In this section, we briefly look at ergonomics aspects. To
be precise, ergonomics is a discipline focused on making products and
interfaces comfortable and efficient. Thus, broadly speaking, it encom-
passes mental and perceptual issues, although in this book, we restrict
the term to mean ways to design interfaces or interaction devices for
comfort and high performance according to the physical mechanics of
the human body. For HCI, we focus on the human motor capabilities
that are used to make input interaction. We start with Fitts’s law and
human motor control.

3.3.1 Fitts’s Law

Fitts’s law [23] is a model of human movement that predicts the time
required to rapidly move to a target area as a function of the distance to
and the size of the target. The movement task’s Index of Difficulty (ID)
can be quantified in terms of the required information amount, i.e., in
the number of bits. From the main equation in Figure 3.19, the actual
time to complete the movement task is predicted using a simple linear
equation, where movement time, MT, is a linear function of ID.

 MT = a + b * ID and ID = log(A/W + 1)

where A and B are coefficients specific to a given task.
Thus, to reiterate, ID represents an abstract notion of difficulty of

the task, while MT is an actual prediction value for a particular task.
The values for coefficients a and b are obtained by taking samples

54 Human–ComPuter InteraCtIon

of the performance and mathematically deriving them by regression
(Figure 3.20).

Note that the original Fitts’s law was created for interaction with
everyday objects (in the context of operation in factory assembly lines)
rather than for computer interfaces. Researchers have applied the con-
cept of Fitts’s law to computer interfaces and have found that the same
principle applies. For instance, as shown in Figure 3.21, the task of
“dragging an icon into a trashcan icon” using a mouse can be assessed
using Fitts’s law [25]. Many other computer interactive tasks can be

1.4

1.35A (cm)

16.4
16.4
16.4
24.6
24.6
24.6

2.46
4.92
7.38
2.46
4.92
7.38

6.6666
3.3333
2.2222

10
5

3.3333
Average

STD

1.2455
1.0951
1.059

1.3213
1.2153
1.1522
1.1814
0.0895

W (cm) ID (bits) MT (sec)

1.3

1.25

1.15

M
T

(s
ec

)

1.05
2 3 4 5 6

ID (bits)
MT = 0.811 + 0.149 log2 (+ 1)

7 8 9 10

1.1

1.2

A
W

Figure 3.20 Deriving the actual movement time by fitting based on samples of performance
data. (From MacKenzie, I. S., Human–Computer Interaction, 7(1), 91–139, 1992 [24].)

Target Distance
A

Index of di
culty
ID = log(A/W+1)

Movement time
MT = a + blog (+ 1)

Target Size
W

A
W

A = {2, 4, 6, 8} (mm)
W= {0. 25, 0.5, 1, 2} (mm)
ID = {1, 2, 3, 4, 5} (bits)

Figure 3.19 Illustration of Fitts’s law. (From MacKenzie, I. S., Human–Computer Interaction, 7(1),
91–139, 1992 [24].)

55Human faCtors as HCI tHeorIes

modeled similarly, and several revised Fitts’s laws (e.g., for desktop
computer interface, mobile interface) have been derived as well [24].

3.3.2 Motor Control

Perhaps the most prevalent form of input is made by the movements of
our arms, hands, and fingers for keyboard and mouse input. Berard et
al. have reported that there was a significant drop in human motor con-
trol performance below a certain spatial-resolution threshold [18]. For
instance, while the actual performance is dependent on the form factor
of the device used and the mode of operation, the mouse is operable
with a spatial resolution on the order of thousands of dpi (dots per inch)
or ≈0.020 mm, while the resolution for a 3-D stylus in the hundreds.

In addition to discrete-event input methods (e.g., buttons), modern
user interfaces make heavy use of continuous input methods in the
two-dimensional (2-D) space (e.g., mouse, touch screen) and increas-
ingly in the 3-D space (e.g., haptic, Wii-mote). While the human
capabilities will determine the achievable accuracy in such input
methods, the control-display (C/D) ratio is often adjusted. C/D ratio

Figure 3.21 Applying Fitts’s law to a computer interface (dragging a file icon into the trash-
can icon). (From MacKenzie, I. S., Movement Time Prediction in Human–Computer Interfaces, in
Proceedings of the Conference on Graphics Interface ’92, Morgan Kaufman, San Francisco, 1992,
pp. 140–150 [25].)

56 Human–ComPuter InteraCtIon

refers to the ratio of the movement in the control device (e.g., mouse)
to that in the display (e.g., cursor). If the C/D ratio is low, the sen-
sitivity of the control is high and, therefore, travel time across the
display will be fast. If the C/D/ ratio is high, sensitivity is low and,
therefore, the fine-adjust time will be relatively fast.

Obviously, humans will exhibit different motor-control perfor-
mances with different devices, as already demonstrated with the two
types of device mentioned previously (e.g., mouse vs. 3-D stylus). The
mouse and 3-D stylus, for instance, belong to what is called the isomet-
ric devices, where the movement of the device directly translates to the
movement in the display (or virtual space). Nonisometric devices are
those that control the movement in the display in principle with some-
thing else such as force, thus possibly with no movement input at all.

Control accuracy for touch interface presents a different problem.
Despite our fine motor-control capability of submillimeter perfor-
mance—and with recent touch screens offering higher than 4096-dpi
resolution—it is the size of the fingertip contact (unless using a stylus
pen), 0.3–0.7 cm, that makes it hard to make selection for relatively
small objects. Even larger objects, once selected, are not easy to con-
trol if the touch screen is held by another hand or arm (i.e., unstable).

3.4 Others

There are many cognitive, perceptual, and ergonomic issues that have
been left out. Due to the limited scope of this book, we only identify
some of the issues for the reader to investigate further:

• Learning and adaptation
• Modalities other than the “big three” (visual/aural/haptic-

tactile), such as gestures, facial expression, brain waves,
physiological signals (electromyogram, heart rate, skin con-
ductance), gaze, etc.

• Aesthetics and emotion
• Multitasking

3.5 Summary

In this chapter, we have reviewed the essence of human factors,
including sensation, perception, information processing, and Fitts’s

57Human faCtors as HCI tHeorIes

law, as the foremost underlying theory for the design of interfaces
for human–computer interaction. By the very principle of “Know thy
user,” it is clear that the HCI designer must have a basic understand-
ing of these areas so that any interface will suit the user’s most basic
mental, perceptual, and ergonomic capabilities. We can also readily
see that many of the HCI principles discussed previously in this book
naturally derive from these underlying theories.

References
 1. Norman, Donald A., and Stephen W. Draper. 1986. User centered system

design: New perspectives on human-computer interaction. Boca Raton, FL:
CRC Press.

 2. Miller, George A. 1956. The magical number seven, plus or minus two:
Some limits on our capacity for processing information. Psychological
Review 63 (2): 81.

 3. Marois, Rene, and Jason Ivanoff. 2005. Capacity limits of information
processing in the brain. Trends in cognitive sciences 9 (6): 296–305.

 4. Anderson, J. R., D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y.
Oin. 2004. An integrated theory of the mind. Psychological Review 111
(4): 1036–60.

 5. Polk, T. A., and C. M. Seifert. 2002. Cognitive modeling. Cambridge, MA:
MIT Press.

 6. Salvucci, D. D., and N. A. Taatgen. 2008. Threaded cognition: An inte-
grated theory of concurrent multitasking. Psychological Review 130 (1):
101–30.

 7. Card, Stuart K., Thomas P. Moran, and Allen Newell. 1986. The model
human processor: An engineering model of human performance. In
Handbook of human perception. Vol. 2, Cognitive processes and performance,
ed. K. R. Boff, L. Kauffman, and J. P. Thomas, 1–35. New York: John
Wiley and Sons.

 8. Schulz, Trenton. 2008. Using the keystroke-level model to evaluate
mobile phones. In Public systems in the future: Possibilities, challenges, and
pitfalls, Proceedings of the 31st Information Systems Research Seminar
(IRIS31). Åre, Sweden.

 9. Microsoft Research. 2013. CHI 2013: An immersive event (Illusions
create an immersive experience). http://research.microsoft.com/en-us/
news/features/chi2013-042913.aspx.

 10. Ni, Tao, Greg S. Schmidt, Oliver G. Staadt, Mark A. Livingston, Robert
Ball, and Richard May. 2006. A survey of large high-resolution display
technologies, techniques, and applications. In Proceedings of IEEE Virtual
Reality Conference, 223–36. Piscataway, NJ: IEEE.

58 Human–ComPuter InteraCtIon

 11. Hemer, Mark A., Yalin Fan, Nobuhito Mori, Alvaro Semedo, and Xiaolan
L. Wang. 2013. Projected changes in wave climate from a multi-model
ensemble mark, Nature Climate Change 3:471–76.

 12. Ware, C. 2012. Information visualization: Perception for Design. 3rd ed.
Waltham, MA: Morgan Kaufmann.

 13. Olson, Harry Ferdinand. 1967. Music, physics and engineering. Mineola,
NY: Dover Publications.

 14. Bregman, Albert S. 1994. Auditory scene analysis: The perceptual organiza-
tion of sound. Cambridge, MA: MIT Press, A Bradford Book.

 15. Apple. 2014. iOS7. http://www.apple.com/ios/siri.
 16. Ferrucci, David. 2010. Building Watson. IBM Research. http://www.

whitehouse.gov/sites/default/files/ibm_watson.pdf.
 17. Wikipedia. 2014. Haptics. http://en.wikipedia.org/wiki/Haptic.
 18. Bérard, François, Guangyu Wang, and Jeremy R. Cooperstock. 2011.

On the limits of the human motor control precision: The search for a
device’s human resolution. In Human-Computer Interaction–INTERACT,
107–22. Berlin/Heidelberg: Springer.

 19. Patel Prachi. 2010. Synthetic skin sensitive to the lightest touch.
http://spectrum.ieee.org/biomedical/bionics/synthetic-skin-sensitive-
to-the-lightest-touch.

 20. Jones, Lynette A. 2000. Kinesthetic sensing. In Proceedings of Workshop on
Human and Machine Haptics, 1–10. Cambridge, MA: MIT Press.

 21. KU Leuven. 2010. Tactile feedback. https://www.mech.kuleuven.be/en/
pma/research/ras/researchtopics/tactfb.html.

 22. Reeves, L. M., J. Lai, J. A. Larson, S. Oviatt, T. S. Balaji, S. Buisine, P.
Collings, et al. 2004. Guidelines for multimodal user interface design.
Communications of the ACM 47 (1): 57–59.

 23. Fitts, Paul M. 1954. The information capacity of the human motor sys-
tem in controlling the amplitude of movement. Journal of Experimental
Psychology 47 (6): 381.

 24. MacKenzie, I. Scott. 1992. Movement time prediction in human-computer
interfaces. In Proceedings of the Conference on Graphics Interface ’92, 140–
50. San Francisco: Morgan Kaufman.

 25. MacKenzie, I. Scott. 1992. Fitts’ law as a research and design tool in
human-computer interaction. Human-Computer Interaction 7 (1): 91–139.

59

4
HcI deSIGn

4.1 The Overall Design Process

In the first three chapters, we have studied notable principles, guide-
lines, and theories for the design of interfaces for human–computer
interaction (HCI). In this book, HCI design is an integral part of
a larger software design (and its architectural development) and is
defined as the process of establishing the basic framework for user
interaction (UI), which includes the following iterative steps and
activities. HCI design includes all of the preparatory activities
required to develop an interactive software product that will provide
a high level of usability and a good user experience when it is actually
implemented. We illustrate these four iterative steps using a concrete
example after a short explanation of the respective steps (Figure 4.1).

• Requirements analysis: Any software design starts with a
careful analysis of the functional requirements. For interac-
tive software with a focus on the user experience, we take a
particular look at functions that are to be activated directly
by the user through interaction (functional-task requirements)
and functions that are important in realizing certain aspects
of the user experience (functional-UI requirements), even
though these may not be directly activated by the user. One
such example is an automatic functional feature of adjust-
ing the display resolution of a streamed video based on the
network traffic. It is not always possible to computationally
separate major functions from those for the user interface.
That is, certain functions actually have direct UI objectives.
Finally, we identify nonfunctional UI requirements, which are
UI features (rather than computational functions) that are not
directly related to accomplishing the main application task.

60 Human–ComPuter InteraCtIon

For instance, requiring a certain font size or type according to
a corporate guideline may not be a critical functional require-
ment, but a purely HCI requirement feature.

• User analysis: As we have emphasized previously, a user analy-
sis is an essential step in HCI design. The results of the user
analysis will be reflected back to the requirements, and this
could identify additional UI requirements (functional or non-
functional). It is simply a process to reinforce the original
requirements analysis to further accommodate the potential
users in a more complete way. For instance, a particular age
group might necessitate certain interaction features such as a
large font size and high contrast, or there might be need for a
functional UI feature to adjust the scrolling speed.

• Scenario and task modeling: Equally important to user analy-
sis is task analysis and modeling. This is the crux of interac-
tion modeling: identifying the application task structure and
the sequential relationships between the different elements.
With a crude task model, we can also start to draw a more
detailed scenario or storyboard to envision how the system
would be used and to assess both the appropriateness of the
task model and the feasibility of the given requirements.
Again, one can regard this simply as an iterative process to
refine the original rough requirements. Through the process
of storyboarding, a rough visual profile of the interface can be
sketched. Furthermore, the storyboard will serve as another

HCI Design

User
Analysis

Task
Analysis

Requirements

Scenario/
Storyboard Implementation/

Testing

Object-Class
Diagram

Message
Diagram

• Development library
• Envisioning

• Functional
• Functional – Task
• Functional – UI
• Nonfunctional – UI

• Rough appearance
• Interface selection • Programming

• Evaluation

Figure 4.1 The overall iterative HCI design process (as a precursor to implementation).

61HCI desIGn

helpful medium in selecting the actual software or hardware
interface. It will also serve as a starting point for drawing the
object-class diagram, message diagrams, and the use cases for
preliminary implementation and programming.

• Interface selection and consolidation: For each of the subtasks
and scenes in the storyboard—particularly software interface
components (e.g., widgets), interaction technique (e.g., voice
recognition), and hardware (sensors, actuators, buttons, dis-
play, etc.)—choices will be made. The chosen individual
interface components need to be consolidated into a practical
package, because not all of these interface components may
be available on a working platform (e.g., Android™-based
smartphone, desktop PC, mp3 player). Certain choices will
have to be retracted in the interest of employing a particu-
lar interaction platform. For instance, for a particular sub-
task and application context, the designer might have chosen
voice recognition to be the most fitting interaction technique.
However, if the required platform does not support a voice
sensor or network access to the remote recognition server, an
alternative will have to be devised. Such concessions can be
made for many reasons besides platform requirements, such as
due to constraints in budget, time, personnel, etc.

Before we go through a concrete example of HCI design, we first
review possible and representative interfaces (hardware and software)
to choose from in the following section.

4.2 Interface Selection Options

4.2.1 Hardware Platforms

Different interactions and subtasks may require various individual
devices (sensors and displays). We take a look at the hardware options
in terms of the larger computing platforms, which are composed of
the usual devices. The choice of a design configuration for the hard-
ware interaction platform is largely determined by the characteristics
of the task/application that necessitates a certain operating environ-
ment. Therefore, the different platforms listed here are suited for and
reflect various operating environments:

62 Human–ComPuter InteraCtIon

• Desktop (stationary): Monitor (typical size: 17–42 in.; reso-
lution: 1280 × 1012 or higher); keyboard, mouse, speakers/
headphones (microphone) (Figure 4.2)
Suited for: Office-related tasks, time-consuming/serious

tasks, multitasking
• Smartphones/handhelds (mobile): LCD screen (typical size:

3.5–5 in., resolution: 720 × 1280 or higher, weight ≈ 120
g), buttons, touch screen, speaker/headphones, microphone,
camera, sensors (acceleration, tilt, light, gyro, proximity, com-
pass, barometer), vibrators, mini “qwerty” keyboard
Suited for: Simple and short tasks, special-purpose tasks

• Tablet/pads (mobile): LCD screen (typical size: 7–10 in., reso-
lution: 720 × 1280 or higher, weight ≈ 700 g), buttons, touch
screen, speaker/headphones, microphone, camera, vibrators,
sensors (acceleration, tilt, light, gyro, proximity, compass,
barometer)
Suited for: Simple, mobile, and short tasks, but those that

require a relatively large screen (e.g., a sales pitch; see
Figure 4.3)

• Embedded (stationary/mobile): LCD/LED screen (typical
size: less than 3–5 in., resolution: low), buttons, special sen-
sors, and output devices (touch screen, speaker, microphone,
special sensors); embedded devices may be mobile or station-
ary and offer only very limited interaction for a few simple
functionalities (Figure 4.4)

Figure 4.2 A basic desktop operating platform.

63HCI desIGn

Suited for: Special tasks and situations where interaction and
computations are needed on the spot (e.g., printer, rice
cooker, mp3 player, personal media player)

• TV/consoles (stationary): LCD/LED screen (typical size: >42
in., resolution: HD), button-based remote control, speaker,
microphone, game controller, special sensors, peripherals
(camera, wireless keyboard, Wii mote–like device [1], depth
sensor such as Kinect [2, 3]) (Figure 4.5)
Suited for: TV-centric tasks, limited interaction, tasks that

need privacy (e.g., wild-gesture-based games in the liv-
ing room)

• Kiosks/installations (stationary): LCD screen (typical size:
10–13 in., resolution: low to medium), buttons, speaker, touch

Figure 4.3 Making sales with padlike devices leveraging on their mobility and relatively large
screen size.

(a) (b)

Figure 4.4 Embedded interaction platform: (a) mobile and (b) stationary.

64 Human–ComPuter InteraCtIon

screen, special sensors, peripherals (microphone, camera,
RFID/credit-card reader, heavy-duty keyboard) (Figure 4.6)
Suited for: Public users and installations, limited interaction,

short series of selection tasks, monitoring tasks
• Virtual reality (stationary): Large-surround and high-resolution

projection screen/head-mounted display/stereoscopic display,
3-D tracking sensors, 3-D sound system, haptic/tactile dis-
play, special sensors, peripherals (microphone, camera, depth
sensors, glove) (Figure 4.7)
Suited for: Spatial training, tele-experience and tele-presence,

immersive entertainment
• Free form (stationary and mobile): Special-purpose hardware

platforms consisting of a customized configuration of indi-
vidual devices best suited for a given task (when cost is not the

Figure 4.5 TV/console interaction environment (Xbox LIVE, http://www.xbox.com/ko-KR/Live/
what-is-live?xr=shellnav).

Desktop

Wall-mount

Standalone

Figure 4.6 Various kiosk/installation types of interaction platform.

65HCI desIGn

biggest factor). (There are many such custom-designed inter-
faces, such as those shown in Figure 4.8.)

4.2.2 Software Interface Components

Most of these software components are quite well known and familiar
to most of the readers, so we only highlight important issues to con-
sider in the interface selection.

Figure 4.7 Virtual-reality interaction platform (Visbox, http://www.visbox.com/imgs/viscube-
hd.html).

(a) (b)

(c) (d) (e)

Figure 4.8 Examples of special-purpose interfaces (from top left, counterclockwise): (a) pen tab-
let (Genius, KYE Systems G-Pen, http://www.geniusnet.com/wSite/ct?xItem=16835&ctNode=174),
(b) a glass-type see-through heads-up display (Google® Glass, http://www.google.com/glass), (c)
camera-integrated scuba gear (Liquid Image Scuba, http://www.liquidimageco.com/collections/
scuba), (d) special military helmet for tactical command and control (Defensereview, http://www.
defensereview.com; photo credit: David Crane), (e) multitouch tabletop platform for multiple users
(Samsung MultiTouch Display, http://www.samsung.com/sec/news/presskit/hf).

66 Human–ComPuter InteraCtIon

• Windows/layers: Modern desktop computer interfaces are
designed around windows, which are visual output channels
and abstractions for individual computational processes. For a
single application, a number of subtasks may be needed concur-
rently and thus must be interfaced through multiple windows.
One window among the many (or task) would be “active,” and
this window becomes “focused” by placing the mouse cur-
sor over it or by an explicit click. For relatively large displays,
overlapping windows may be used. However, as the display
size decreases (e.g., mobile devices), nonoverlapping layers (a
full-screen window) may be used in which individual layers
are activated in turn by “flipping” through them (e.g., flicking
movements on touch screens) (Figure 4.9).

 While multiple overlapped windows have been tradition-
ally used for relatively large desktop platforms and layers for
smaller devices, with the recent trend and requirement of
“multiple device and single-user experience,” the Windows®
Metro–style interface has unified the two [4]. Even on the
desktop, the Metro style presents individual applications on
the full screen without marked borders, but instead offers new
convenient means for sharing data with other applications and
switching between the applications or tasks (Figure 4.10).
Other important detailed considerations for a window (for
supporting interaction for a subtask) might be its size, interior
layout, and management method (e.g., activation, deactiva-
tion, suspension).

Figure 4.9 The hallmark of modern desktop user interfaces: multiple overlapping windows (left)
and nonoverlapping layers for smaller displays (right).

67HCI desIGn

• Icons: Interactable objects may be visually represented as a
compact and small pictogram such as an icon (and similarly as
an “earcon” for the aural modality). Clickable icons are sim-
ple and intuitive (Figure 4.11). As a compact representation
designed for facilitated interaction, icons must be designed to
be as informative or distinctive as possible despite their small
size and compactness.

 The recent Windows Metro–style interface has introduced
a new type of icon called a tile that can dynamically change its
look with useful information associated with what the icon is
supposed to represent [5]. For instance, the e-mail application
icon dynamically shows the number of new unread e-mails
(Figure 4.10).

• Menus: Menus allow activations of commands and tasks through
selection (recognition) rather than recall. Typical menus are

Figure 4.10 The Microsoft® Metro–style interface that unifies the mobile and desktop
interaction.

Figure 4.11 (Left) Obscure Google Chrome browser icon design (difficult to tell at a glance what
the icon represents) vs. (right) informative icon design for the Angry Birds application (the visual
imagery of an “angry bird” is well captured).

68 Human–ComPuter InteraCtIon

organized as a one-dimensional list or a two-dimensional (2-D)
array of items (represented in text or as icons/earcons).

 Selection of a menu item involves three subtasks: (a) acti-
vating the menu and laying out the items (if not already acti-
vated by default), (b) visually scanning and moving through
the items (and scrolling if the display space is not sufficient to
contain and show the whole menu of items at once), and (c)
choosing the wanted item. All of these subtasks are realized
by making discrete inputs, e.g., by mouse click, screen touch,
button push, voice command, etc.

 Menus (i.e., lists of items) may be presented in a variety of
styles and mechanisms, as seen in Figure 4.12. Some of the
most popular ones are shown in Figure 4.13: the pull-down,
pop-up, toolbars, tabs, scroll menu, 2-D array of icons, but-
tons, check boxes, hot keys, etc. Table 4.1 shows how to best
use these different types of menus.

(a)

(c)

(d)

(b)

(e)

Figure 4.12 Different styles of menus 1: (a) pull down, (b) pop up, (c) 2-D application bar, (d) 1-D
toolbar, and (e) tabs. (From Petzold, C., Microsoft XNA Framework Edition: Programming Windows
Phone 7, Microsoft Press, 2010 [4].)

69HCI desIGn

 The menu items are usually subtasks to be invoked or the target
interaction objects for certain tasks to be operated upon. In either
case, it is clear that the menu must be organized, categorized,
and structured (typically hierarchically) according to the task and
the associated objects. At each level of the menu, the number of
items should be managed to be ideally below the “magic num-
ber 8” (the limit of our short-term memory, discussed in Section
3.1.2) [6]. However, it may not always be possible to achieve

Table 4.1 Where to Use Different Menu Styles

MENU TYPE USAGE

Pull down Top level (main) categorical menu
Pop up Object specific, context specific
Toolbar Functional/operational tasks
Tabs File folder metaphor (categorical menu)
Scroll menu Long menu (many menu items)
2-D array/Image maps Identification of items by icons (vs. by long names) or pictures
Buttons/Hyperlinks Short menu (few choices)
Check boxes/Radio buttons Multiple choice/exclusive choice
Hot keys For expert users
Aural menu Telemarketing and for use by the disabled

(a) (b)

(c) (d)

Figure 4.13 Different styles of menus 2: (a) buttons, (b) check boxes and radio buttons, (c) slider
menu, (d) image map.

70 Human–ComPuter InteraCtIon

such a design or model. If long menus are inescapable, the items
should at least be laid out in a systematic manner, e.g., in the
order of their frequency, importance, alphabetic sequence, etc.

• Direct interaction: The mouse/touch-based interaction is
strongly tied to the concept of direct and visual interaction.
Before the mouse era, the HCI was mostly in the form of key-
board inputting of text commands. The mouse made it possible
for users to apply a direct metaphoric “touch” upon the target
objects (which are visually and metaphorically represented as
concrete objects with the icons) rather than “commanding”
the operating system (via keyboard input) to indirectly invoke
the job. In addition to this virtual “touch” for simple enact-
ment, the direct and visual interaction has further extended
to direct manipulation, e.g., moving and gesturing with the
cursor against the target interaction objects. “Dragging and
dropping,” “cutting and pasting,” and “rubber banding” are
typical examples of these extensions.

• GUI components: Software interaction objects are mostly visual.
We have already discussed the windows, icons, menus, and
mouse/pointer-based interactions, which are the essential ele-
ments for the graphical user interface (GUI), also sometimes
referred to as the WIMP (window, icon, mouse, and pointer)
[7]. The term WIMP is deliberately chosen for its negative
connotation to emphasize its contrast with a newer upcom-
ing generation of user interfaces (such as voice/language and
gesture based). However, WIMP interfaces have greatly con-
tributed to the mass proliferation of computer technologies.
In Chapter 5, we will take a more systematic look at the GUI
components as part of implementation knowledge. For now,
in considering interface options, it suffices to understand the
following representative GUI components, aside from those
for discrete selection (WIMP), for soliciting input from a user
in a convenient way (Figure 4.14):
• Text box: Used for making short/medium alphanumeric input
• Toolbar: A small group of frequently used icons/functions

organized horizontally or vertically for a quick direct access
• Forms: Mixture of menus, buttons, and text boxes for long

thematic input

71HCI desIGn

• Dialog/combo boxes: Mixture of menus, buttons, and text
boxes for short mixed-mode input

• 3-D interface (in 2-D interaction input space): Standard GUI
elements that are operated and presented in the 2-D space,
i.e., they are controlled by a mouse or touch screen and laid
out on a 2-D screen. However, 2-D control in a 3-D applica-
tion is often not sufficient (e.g., 3-D games). The mismatch
in the degrees of freedom brings about fatigue and incon-
venience (Figure 4.15). For this reason, non-WIMP–based
interfaces such as 3D motion gestures are gaining popularity.

 Aside from a task such as 3-D games and navigation, it is
also possible to organize the 2-D-operated GUI elements in
3-D virtual space. It is not clear whether such an interface
brings about any particular advantages because, despite the
added dimension, the occlusion due to overlap will remain,
as the interface is viewed from only one direction (into the
screen). In fact, the user can be burdened with the added

(a)

(b)

(c)

(d)

Figure 4.14 GUI interface components: (a) form, (b) toolbar, (c) dialog box, (d) combo box.

72 Human–ComPuter InteraCtIon

control if one needs to place or manipulate GUI objects in
three dimensions. However, it is sometimes employed anyway
in 3-D games for aesthetic reasons and the “wow” factor.

• Other (non-WIMP) interfaces: The WIMP interface is syn-
onymous with the GUI. It has been a huge success since its
introduction in the early 1980s, when it revolutionized com-
puter operations. Thanks to continuing advances in interface
technologies (e.g., voice recognition, language understand-
ing, gesture recognition, 3-D tracking) and changes in the
computing environment (e.g., personal to ubiquitous, sensors
everywhere)—new interfaces are starting to making their
way into our everyday lives. In addition, the cloud-computing
environment has enabled running computationally expen-
sive interface algorithms, which non-WIMP interfaces often
require, over less powerful (e.g., mobile) devices against large
service populations. Chapters 7–9 in this book take a look at
some basic implementation issues for these new non-WIMP
interfaces.

4.3 Wire-Framing

The interaction modeling and interface options can be put together
concretely using the so-called wire-framing process. Wire-framing
originated from making rough specifications for website page design
and resembles scenarios or storyboards. Usually, wire-frames look like
page schematics or screen blueprints, which serve as a visual guide

(a) (b)

Figure 4.15 3-D interface in 2-D interaction input space (e.g., mouse) for (a) 3-D task such
as spatial navigation (SecondLife, http://secondlife.wikia.com/wiki/User_Interface) and (b) 2-D
GUI elements laid out in 3-D space (EpicGames Scaleform GFx, https://udn.epicgames.com/Three/
Scaleform.html) (mainly for futuristic “wow” factor).

73HCI desIGn

that represents the skeletal framework of a website or interface [8].
It depicts the page layout or arrangement of the UI objects and how
they respond to each other. Wireframes can be pencil drawings or
sketches on a whiteboard, or they can be produced by means of a
broad array of free or commercial software applications. Figure 4.16
shows such a wire-framing tool. Wireframes produced by these tools
can be simulated to show interface behavior, and depending on the
tools, the interface logic can be exported for actual code implementa-
tion (but usually not). Note that there are tools that allow the user to
visually specify UI elements and their configuration and then auto-
matically generate code. Regardless of which type of tool is used, it
is important that the design and implementation stages be separated.
Through wire-framing, the developer can specify and flesh out the
kinds of information displayed, the range of functions available, and
their priorities, alternatives, and interaction flow.

4.4 “Naïve” Design Example: No Sheets 1.0

4.4.1 Requirements Analysis

To illustrate the HCI design process more concretely, we will go
through the design of a simple interactive smartphone (Android) appli-
cation, called No Sheets. The main purpose of this application is to use
the smartphone to present sheet music,* thereby eliminating the need
to handle paper sheet music (Figure 4.17). An initial requirements list
may look something like the one in Table 4.2. Note that this again

* Sheet music is a written recording of music which is transcribed in music notation.

Figure 4.16 An example of a wire-framing tool (FluidUI, https://www.fluidui.com). Designing the
content of a screen (left) and overall interaction behavior, e.g., how screens switch upon interaction
(right).

74 Human–ComPuter InteraCtIon

would be part of any software development process. Here, we focus
more on the HCI-related requirements for the sake of brevity.

4.4.2 User Analysis

The typical user for No Sheets is a smartphone owner and novice/
intermediate piano player (perhaps someone who wants to show off
their musical skill at a piano bar) (Figure 4.18). Since a smartphone is

Score Chords

Figure 4.17 No Sheets: Replacing paper sheet music with the smartphone. No more flying pages;
no more awkward flipping and page searching.

Table 4.2 Initial Requirements for No Sheets

 1. Use the smartphone to present transcribed music like “sheet music.” Transcription includes only
those for basic accompaniment like the chord information (key and type such as C# dom7), beat
information (e.g., second beat in the measure).

 2. Eliminate the need to carry and manage physical sheet music. Store music transcription files
using a simple file format.

 3. Help the user effectively accompany the music by timed and effective presentation of musical
information (e.g., paced according to a preset tempo).

 4. Help the user effectively practice the accompaniment and sing along through flexible control
(e.g., forward, review, home buttons).

 5. Help user sing along by showing the lyrics and beats in a timed fashion.

75HCI desIGn

used, we would have to expect a reasonable power of sight for a typical
usage (e.g., a viewing distance of about 50 cm subtending a letter of
±1 cm). There does not seem to be a particular consideration for a
particular age group or gender. However, there may be a consensus on
how the chord/music information should be displayed (e.g., portrait
vs. landscape, information layout and locations of the control buttons,
color-coding method, up-down scrolling vs. left-right paging, etc.). A
very minimal user analysis (that of the developer himself) resulted in
(naïve first trial) interface requirements as shown in Table 4.3. Note
that, for now, most of the requirements or choices are rather arbitrary
without clear justifications. A revised design based on a more careful
user analysis/evaluation is presented in Chapter 8.

4.4.3 Making a Scenario and Task Modeling

Based on the short requirements in Table 4.3, we derive a hierarchical
simple task model as shown in the following list and in Figure 4.19.
Each task is to be activated directly by the user through an interface.

• Select song: Select the song to view

~50 cm

Text: ~1 cm

Figure 4.18 A typical usage situation for No Sheets.

76 Human–ComPuter InteraCtIon

• Select tempo: Set the tempo of the paging
• Show timed music information: Show the current/next chord/

beat/lyric
• Play/Pause: Activate/deactivate the paging
• Fast-forward: Manually move forward to a particular point

in the song
• Review: Manually move backward to a particular point

in the song
• Show instruction: Show the instruction as to how to use the

system
• Set preferences: Set preferences for information display and

others

“No Sheets”

Select Song Select Tempo
Show Timed

Music
Information

Play/Pause

+: Forward

–: Review

Show
Instruction

Set
Preference

Show SW
Information

Figure 4.19 A simple task model for No Sheets. The top-level application has six subtasks (select
song, select tempo, etc.), and the third subtask (show music info) has yet other subtasks: play/
pause, fast-forward, and review.

Table 4.3 User Interface Requirements from a Very Minimal User Analysis

Display mode Portrait
Layout Top: Song title

Middle: Chord – Beat – Lyrics
Bottom: Control buttons

Paging Left to right
Current chord/music info in the left
Next chord/music info in the right

Colors Current chord: Yellow with blue background
Next chord: Reversed
Buttons: Red
Background: Black

77HCI desIGn

• Show software information: Show version number and devel-
oper information

The subtasks, as actions to be taken by the user, can be viewed com-
putationally as action events or, reversely, as states that are activated
according to the action events. Figure 4.20 shows a possible state-
transition diagram for No Sheets. Through such a perspective, one
can identify the precedence relationship among the subtasks. From the
top main menu (middle of the figure), the user is allowed to set/select/
change/view the preference, tempo, song, and software information.
The user is also able to play and view the timed display of the musical
information, but only after a song has been chosen (indicated by the
dashed arrow). While the timed music information is displayed, the
user can concurrently—the four states (or equivalently actions) in the
transparent box in the right are concurrent—play/stop, move forward,
and move backward. Such a model can serve as a rough starting point
for defining the overall software architecture for No Sheets.

A storyboard is then drawn based on the task model to further
envision its usage and possible interface choices. (A storyboard con-
sists of graphic illustrations organized in sequence and is often used
to previsualize motion picture, animation, and interactive experi-
ences.) There is no fixed format, but each illustration usually includes
a depiction of the important steps in the interaction, annotated with a
description of important aspects (e.g., possible interface choice, oper-
ational constraints and any special consideration needed, and usage
contexts). Figures 4.21–4.25 show the initial storyboards for No
Sheets, illustrating the motivational context, a typical usage scenario
and sequences, and rough mobile interface sketches.

Set Preference
(Check Box)

Show SW
Information
(List Items)

Show Timed Music
Information

(Moving Text)

Play/Pause

+: Forward

–: Review

“No Sheets”
(Main Menu)

Select Song
(Song Menu)

Select Tempo
(Radio Buttons)

Figure 4.20 A possible state-transition diagram for No Sheets.

78 Human–ComPuter InteraCtIon

4.4.4 Interface Selection and Consolidation

We end this exercise by finalizing the choice of particular interfaces
for the individual subtasks. Table 4.4 shows the final decision and jus-
tifications. It is very important that we try to adhere to the HCI prin-
ciples, guidelines, and theories to justify and prioritize our decision.
Note that we have started with the requirement that the application is
to be deployed on a smartphone (the interface platform). Again, our

... want to show o� my piano
skills ... but don’t have my
notes handy ...
oh yeah! my smartphone ...

Figure 4.21 Motivational context for No Sheets.

• Select song
• Select temp
• Play (Show chords)
• Show instruction
from a main menu/

screen touch

No Sheets

Select Song

Select Tempo

Play

Instruction

Figure 4.22 A typical usage scene 1: The top-level menu.

79HCI desIGn

initial choice will purposely not be well thought out, just to illustrate
that a naïve and hurried choice would expose the application to be at
high risk of eventually failing in terms of usability and user experi-
ence, even if it computationally satisfies the required functionalities.

• Select song
• Select temp
• Play (Show chords)
• Show instruction

• Scroll and select by touch
• Finish by selection, OK, return button

from a main menu/
screen touch

Figure 4.23 A typical usage scene 2: Interface looks for three subtasks (e.g., song selection,
tempo selection, and showing instruction).

Initial Play View Hey Jude in C

C

- -

4

G
Information
view

Control
buttons

7

2

Don’t makeHey Jude

– Play +

Play View (in paging)
(activated by pressing play button)

Fast forward during play
(activated by pressing + button)

Review during play
(activated by pressing - button)

Beep and vibration
at beats

Figure 4.24 A typical usage scene 3: Interface looks during “play” and the three concurrently
activatable subtasks (play/pause, move forward, and move backward).

80 Human–ComPuter InteraCtIon

Hey Jude in C

Select Song

Select Tempo

C

6

2

preludePlay

– FIN

Returning/Quitting

+Instruction

No Sheets

Figure 4.25 A typical usage scene 4: Moving between views/stages and quitting the application
by using the standard Android menu button interface.

Table 4.4 Initial Finalization of the Interface Design Choice for No Sheets

SUBTASK INTERFACE DESIGN CHOICE JUSTIFICATION

Invoking main
functions

• Touch menu
• Menu items in red

• Familiar interface
• Catch attention

Selecting/changing
song

• Scrolling menu
• Return to main menu upon

selection

• There may be many songs

Selecting/changing
tempo

• Scrolling radio buttons
• Return to main menu by OK

button

• Only one tempo is chosen at a
given time

Showing instruction • Show a one page/screen
image with condensed
instructional content

• Present condensed content

Playing/pause (view) • Show progress bar on top
• Control interface in the bottom
• Provide sound beeps and

vibration for first and second
beat

• Color-code different types of
information

• Show status
• Familiar interface
• Use multimodal feedback for

redundancy

Moving forward (+) • Forward button on the right • Cultural consideration (moving
from left to right)

• Show status through progress bar
Moving backward (−) • Backward button on the left • Cultural consideration (moving

from left to right)
• Show status through progress bar

Quitting • Use platform button • Use platform (e.g., Android)
guideline

81HCI desIGn

This will become more apparent as we evaluate the initial prototype
and revise our requirements and design for No Sheets 2.0 (presented
in Chapter 8). Figure 4.26, based on the use of a commercial wire-
framing tool, shows the final interface look and the interaction flow.

4.5 Summary

In this chapter, we have described the design process for interactive
applications, focusing on modeling of the interaction and selection of
the interface. The discussion started with a requirements analysis and
its continued refinement through user research and application-task
modeling. Then, we drew up a storyboard and carefully considered dif-
ferent options for particular interfaces by applying any relevant HCI
principles, guidelines, and theories. The overall process was illustrated
with a specific example design process for a simple application. It
roughly followed the aforementioned process, but it did so (purpose-
fully) in a hurried and simplistic fashion, leaving much potential for
later improvement. Nevertheless, this exercise emphasizes that the
design process is going to be unavoidably iterative, because it is not usu-
ally possible to have the provisions for all usage possibilities. This is why
an evaluation is another necessary step in a sound HCI design cycle,
even if a significant effort is thought to have gone into the initial design
and prototyping. In the next chapters, we first look at issues involved
with taking the design into actual implementation. The implemented
prototype (or final version) must then be evaluated in real situations for
future continued iterative improvement, extension, and refinement.

Figure 4.26 Initial design wireframe for No Sheets 1.0 using a wire-framing tool. Left: Icons
and GUI elements in the menu in the left can be dragged onto the right to design the interface layer.
Right: Navigation among the design layers can be defined as well (indicated by the arrows).

82 Human–ComPuter InteraCtIon

References
 1. Nintendo. 2013. Wii. http://web.archive.org/web/20080212080618/

http://wii.nintendo.com/controller.jsp.
 2. Freedman, Barak, Alexander Shpunt, Meir Machline, and Yoel Arieli.

2010. Depth mapping using projected patterns. U.S. Patent 12/522,171.
Filed Apr. 2, 2008, and issued May 13, 2010.

 3. Microsoft. 2014. Kinect for XBox. http://www.xbox.com/en-us/kinect/.
 4. Petzold, Charles. 2010. Programming Windows Phone 7: Microsoft XNA

framework edition. Redmond, WA: Microsoft Press.
 5. Freeman, Adam. 2012. Metro revealed: Building Windows 8 apps with

HTML5 and JavaScript. New York: Apress Media.
 6. Miller, George A. 1956. The magical number seven, plus or minus two:

Some limits on our capacity for processing information. Psychological
Review 63 (2): 81.

 7. Van Dam, Andries. 1997. Post-WIMP user interfaces. Communications of
the ACM 40 (2): 63–67.

 8. Brown, Dan M. 2010. Communicating design: Developing web site docu-
mentation for design and planning. Berkeley, CA: New Riders.

83

5
uSer Interface layer

5.1 Understanding the UI Layer and Its Execution Framework

Interactive applications are implemented and executed using the user
interface (UI) software layers (collectively the UI layer). The UI layer
refers to a set of software that operates above the core operating sys-
tem (and underneath the application). It encapsulates and exposes sys-
tem functions for

• Fluid input and output (I/O)
• Facilitation of development of I/O functionalities (in the

form of an application programming interface/library [API]
or toolkit)

• Run-time management of graphical applications and UI ele-
ments often manifested as windows or graphical user inter-
face (GUI) elements (in the form of separate application often
called the window manager)

Since most interfaces are graphical, the UI layer uses a two- or
three-dimensional (2-D or 3-D) graphical system based on which
GUI elements are implemented (lower part of Figure 5.1). Thus, to
summarize, the UI layer is largely composed of (a) an API for creat-
ing and managing the user interface elements (e.g., windows, buttons,
menus) and (b) a window manager to allow users to operate and man-
age the applications through its own user interfaces.

Figure 5.1 illustrates the UI layer as part of the system software
in many computing platforms. The user interacts with the window/
GUI-based applications using various input and output devices. At
the same time, aside from the general applications, the user inter-
acts with the computer and manages multiple application windows/
tasks (e.g., resizing, focusing, cutting and pasting, etc.) using the

84 Human–ComPuter InteraCtIon

(background running) window manager. The window manager is
regarded as both an application and API. User applications are devel-
oped using the APIs that represent abstracted I/O-related function-
alities of the UI layer, such as those for window managing (resizing,
iconifying, dragging, copy and paste, etc.), GUI elements and wid-
gets (windows, menus, buttons, etc.), and basic windowing (creat-
ing/destroying window, deactivating window, etc.). These APIs are
abstracted from the even lower-level APIs for 2-D/3-D graphics and
the operating system. Note that the architecture described here can be
equally applied to nonwindow-based systems, such as those for layer-
based systems* (e.g., mobile phones). Through such an architecture
and abstraction, it becomes much easier to develop and implement
interactive applications and their user interfaces.

5.2 Input and Output at the Low Level

At the lowest level, inputs and outputs are handled by the interrupt
mechanism of the system software (operating system). An interrupt is
a signal to the processor indicating that an event (usually an I/O event)

* The term layer refers to a full-screen interaction space, often used in small-display
computing platforms. Multiple layers (representing multiple interactive processes)
are possible. On smartphones, the layers are visible one at a time and can be switched
by the use of swiping gestures on the touch screen.

UI Software Layer

Window Manager System/API

GUI API (Toolkit)

Windowing API

Application

Input
Devices

Display
Devices

Application

Application

Graphics API (Core) Operating System

Figure 5.1 User interface software layer for a window-based multitasking UI.

85user InterfaCe layer

has occurred and must be handled. An interrupt signal is interpreted
so that the address of its handler procedure can be looked up and exe-
cuted while suspending the ongoing process for a moment. After the
handler procedure is finished, the suspended process resumes again.
An arrival of an interrupt is checked at a very fast rate as part of
the processor execution cycle. In practice, this means that the proces-
sor is always listening to the incoming events, ready to serve them as
needed. The interrupt mechanism is often contrasted to polling (also
known as busy waiting). In polling, the processor (rather than the I/O
device) initiates input or output. In order to carry out I/O tasks, the
processor enters a loop, continually checking the I/O device status to
see whether it is ready, and incrementally accomplishes the I/O task.
This form of an I/O is deficient in supporting asynchronous user-
driven (anytime) I/O and wastes CPU time by blocking other non-
I/O processes to move on.

At a higher level, the I/O operation is often described in terms of
events and event handlers, which is in fact an abstraction of the lower-
level interrupt mechanism. This is generally called the event-driven
architecture in which programs are developed in terms of events (such
as mouse clicks, gestures, keyboard input, etc.) and their correspond-
ing handlers. Such information can be captured in the form of a table
and used for efficient execution. Figure 5.2 shows the rather compli-
cated interrupt mechanism abstracted into the form of a simple event-
handler table.

5.3 Processing the Input and Generating Output

5.3.1 Events, UI Objects, and Event Handlers

The diagram in Figure 5.1 is the nominal software architecture for
developing interactive computing systems. How does it work exactly?
In other words, how is the user/device input processed, and how does
the application (with the help of the UI layer) generate output? Central
to its overall interworking are events, UI objects, and event handlers.

The most basic UI object in today’s visually oriented UI system
would be the window (or layer). A window is a rectangular portion of
the screen associated with a given application that is used as a space
and channel for interacting with the application. Other UI objects

86 Human–ComPuter InteraCtIon

include buttons, menus, icons, forms, dialog boxes, text boxes, and so
forth. These are often referred to as GUI objects or widgets. Most typi-
cally, GUI-based interactive applications would have a top window
that includes all other UI objects or widgets that are logically and/
or spatially subordinate to it (Figure 5.3). With the current operating
systems mostly supporting concurrency, separate windows/widgets
for concurrent applications can coexist, overlapping with one another
so that they can be switched to the current focus. That is, when there
are multiple windows (and one mouse/keyboard), the user carries out
an action to designate the active or current window in focus to which
the input events will be channeled. Two major methods for focusing
are (a) click-to-type and (b) move-to-type. In the former, the user has
to explicitly click on the window before making input into it (regard-
less of the mouse position, the last object that was clicked on will
be the one in focus), and in the latter, the window over which the
mouse cursor hovers becomes the focus. The move-to-type method
is generally regarded as less convenient because of the likelihood of
unintended focus change due to accidental mouse movements.

Interrupt
signals Memory

read

Jump address

1 Handler 1 address

2 Handler 2 address

3 Handler 3 address

1 Handler 1 address

2 Handler 2 address

3 Handler 3 address

Handler TableEvent Id

Index
(addr)

Memory
Content

Memory

Interrupt Handler
Address Table

Priority
Handling

Compute
Index into
Interrupt

Handler Table

Processor

Devices

Abstraction

... ...

... ...

Figure 5.2 Complex interrupt mechanism abstracted as an event-handler table.

87user InterfaCe layer

While not all UI layers are modeled and implemented in an object-
oriented fashion, many recent ones are. Thus we can think of generic
or abstract object classes for a window and other UI objects and wid-
gets as being organized hierarchically (Figure 5.4). Moreover, we can
designate the background screen space as the default root system win-
dow (which becomes automatically activated upon system start) onto
which children application windows and GUI elements (e.g., icons,
menus) are placed. The background also naturally becomes the top
window for the window manager process.

Whether it is the root (background) window, application (top) win-
dow, or GUI widget, as an interaction channel or object, it will receive
input from a user through input devices such as the keyboard, mouse,
etc. The physical input from the user/devices is converted into an event
(e.g., by the device drivers and operating system), which is simply data
containing information about the user’s intent or action. Aside from
the event value itself (e.g., which key was pressed), an event usually
contains additional information such as its type, a time stamp, the
window to which it was directed, and screen coordinates (e.g., in the
case of an event activated by a mouse or a stylus). These events are put
into a queue by the operating system (or the windowing system) and
dispatched (or dequeued), e.g., according to the current focus (to be

Figure 5.3 Root (background) window activated by default upon system start and also serving
as the top window for the window manager process.

88 Human–ComPuter InteraCtIon

directed to the target program or process), to invoke its corresponding
handler.

Note that an event does not necessarily correspond exactly just to
an individual physical input. The stream of raw inputs may be filtered
and processed to form/find meaningful input sequences from the cur-
rent context. For instance, a sequence of raw inputs may form a mean-
ingful event such as a double-click command, keyboard commands
with modifiers (e.g., ctrl-alt-del), and mouse enter/exit commands
(e.g., detection of mouse cursor leaving a particular window).

Figure 5.5 shows the two-tier event-queuing system in greater
detail. There is the system-level event-queuing system that dispatches
the events at the top application level. Each application or process also
typically manages its own event queue, dispatching them to its own
UI objects. The proper event is captured by the UI object as it tra-
verses down the application’s hierarchical UI structure, e.g., from top
to bottom. Figures 5.4 and 5.5 illustrate this process. Then the event

Event 76
Event 75

Top Window
(Address Book)

Add
Dialog Box

Textbox 1

Textbox 2

Textbox 1
Handler

Textbox 2
Handler

Top Window
Mouse Left

Button
Handler

Event 74

Application
Event Queue

File Menu

Edit Menu

Figure 5.4 Event being dispatched to the right UI object handler for a given application (organized
as a set of UI objects and associated event handlers in a hierarchical manner) from the application-
event queue.

89user InterfaCe layer

handler (also sometimes called the callback function) associated with
the UI object is activated in response to the event that is captured.

The events do not necessarily have to be generated externally by the
interaction devices; indeed, sometimes they are generated internally
for special purposes (these are sometimes called the pseudo-events).
For instance, when a window is resized, in addition to the resizing
event itself, the internal content of the window must be redrawn, and
the same goes for the other windows occluded or newly revealed by
the resized window. Special pseudo-events are enqueued and con-
veyed to the respective applications/windows. In the case of resiz-
ing/hiding/activating and redrawing of windows, it is the individual
application’s responsibility, rather than the window manager’s, to
update its display contents, because only the respective applications
have the knowledge of how to update their content. Thus a special
redraw pseudo-event is sent to the application with information about
which region is to be updated (Figure 5.6). The window content might
need to be redrawn not because of the window management com-
mands such as resizing and window activation, but due to the needs
of the application itself, which can generate special pseudo-events for
redrawing parts of its own window. More generally, UI objects can

System
Event Queue

Window
Manager

Event 100
Type: Mouse click

(Root Window)

Application 1
(Window 1)

Event 76

Event 75

Event 74

Application 2
(Window 2)

Application
Event Queue

Dispatched
according to
current “focus”

Value: Left button
Time: 05:12:54
Window 1

–
–
–
–

Event 99
Type: Mouse click
Value: Right button
Time: 05:12:57
Root Window

–
–
–
–

Event 98
Type: Mouse move
Value: 100 100
Time: 05:12:56
Window 2

–
–
–
–

Figure 5.5 Event queuing at the top application level.

90 Human–ComPuter InteraCtIon

generate pseudo-events for creating chain effects. For example, when
a scroll bar is moved, both the window content and the scroll bar posi-
tion have to be updated [1].

5.3.2 Event-Driven Program Structure

Based on what we have discussed so far, the event-driven program
structure generally takes the form of the structure depicted in
Figure 5.7. The first initialization part of the program creates the nec-
essary UI objects for the application and declares the event-handler
functions and procedures for the created UI objects. Then the pro-
gram enters a loop that automatically keeps removing an event from
the application event queue and invoking the corresponding handler
(i.e., dispatching the event). The development environment often
hides this part of the program so that the developer does not have to
worry about such system-level implementations. However, depend-

Area to be
renewed and redrawnSystem

Event Queue

Window 1

Window 1
Redraw
Handler

Event 105
Type: Redraw
Value: (100 100) (300 300)
Time: 05:12:54
Window 1

–
–
–
–

Figure 5.6 Exposing a window and redrawing it by enqueuing a special redraw event with the
update area information. The event is matched to a proper redraw handler for the given application.

91user InterfaCe layer

ing on the development toolkits (see Chapter 6), the user may have to
explicitly program this part as well.

5.3.3 Output

Interactive behavior that is purely computational will simply be car-
ried out by executing the event-handler procedure. However, response
to an event or application behavior is often manifested by explicit

Figure 5.7 Event-driven program structure: UI object creation and event-handler setup followed
by the event-processing loop either provided by the underlying programming environment system/
operating system (above) or by explicit user programming (below).

92 Human–ComPuter InteraCtIon

visual, aural, and haptic/tactile output as well. In many cases, the
event handlers only compute for the response behavior and for needed
changes in data or new output in a chosen modality (e.g., visual, aural,
haptic, tactile, etc.). A separate step for refreshing the display based
on the changed screen data is called as the last part of the event-
processing loop. Analogous processes will be called for sending com-
mands to output devices of other modalities as well (see the last line
in Figure 5.7). Sometimes, with multimodal output, the outputs in
different modalities need to be synchronized (e.g., output visual and
aural feedback at the same, or nearly the same, time). However, not
many interactive programming frameworks or toolkits offer provi-
sions for such a situation.

While internal computation takes relatively little time (in most
cases), processing and sending the new/changed data to the display
devices can take a significant amount of time. For instance, a heavy
use of 3-D graphic objects can be computationally expensive (e.g., on
a mobile device without a graphics subsystem), and this can become a
bottleneck in the event-processing loop, thereby reducing interactiv-
ity. Thus sometimes rendering and sensing parts can be separated into
independent threads and processed at different rates to ensure real-
time interactivity.

5.4 Summary

In this chapter, we looked at the inner workings of the general under-
lying software structure (UI layer or UI execution framework) on
which interactive programs operate. Most UI frameworks operate in
similar ways according to an event-driven structure. The hardware
input devices generate events that are conveyed to the software inter-
faces (i.e., UI objects), and they are processed to produce output by the
event-handling codes. The UI layer sitting above the operating system
(OS) provides the computational framework for such an event-driven
processing model and makes useful abstractions of the lower OS details
for easier and intuitive interactive software and interface development.
The next chapters introduce toolkits and development frameworks that
make the interface development even more convenient and faster.

93user InterfaCe layer

Reference
 1. Olsen, Dan. 1998. Developing user interfaces: Interactive technologies. San

Francisco, CA: Morgan Kaufman.

95

6
uI development toolkIt

Now that we have the basic understanding of how the user-interactive
(UI) software operates with events (most of them predefined and some-
times newly defined by the user), UI objects, and event handlers, the
next question will be: “What are the programming constructs that allow
us to specify these for actual implementation of a working interactive
program?” As was mentioned in the early part of Chapter 4 and as
illustrated in Figure 5.1, interactive programs and their interfaces are
often developed using UI development toolkits. To be more precise,
interfaces are developed using the UI toolkits and the core application
logics using conventional programming languages. Obviously, the UI
toolkits are closely related to the UI execution framework (Chapter 5)
upon which the resulting interactive program would be running.

In the larger scheme of things, we can also think of a UI develop-
ment framework (Chapter 7) as a methodology for the interactive pro-
gram development as a whole. One such example might be a modular
approach, where the core computational and interface parts are devel-
oped separately and combined in a flexible manner. This allows the
concept of plugging in different interfaces for the same model com-
putation and thus easier maintenance of the overall program. We first
take a look at the UI toolkit.

6.1 User Interface Toolkit

The UI toolkit is a library of precomposed UI objects (which would
include event handlers) and a predefined set of events that are defined
and composed from the lower-level UI software layer or the UI
execution framework. The UI toolkit abstracts the system details
of handling events and, as such, programming for interactive soft-
ware becomes easier and more convenient. The UI object often takes
the form of a manipulable graphical object, often called a widget

96 Human–ComPuter InteraCtIon

(i.e., window gadget). A typical widget set includes menus, buttons,
text boxes, images, etc. We have already examined typical widgets
and UI objects in Chapter 4, which showed that widgets may be sin-
gular or composite (made up of several UI objects). The use of a toolkit
also promotes the creation of an interface with a consistent look, feel,
and mechanism. Here, we take a closer look at the toolkits through
three examples. In particular, we examine how events are defined,
how UI objects are created, how event handlers are specified, and how
the interface (developed this way) is combined with the core func-
tional part of the application.

6.2 Java AWT UI Toolkit

Java, as an object-oriented language, offers a library of object classes
called the AWT (Abstract Window Toolkit), which are classes useful
for creating two-dimensional (2-D) UI and graphical objects [1]. The
component is the most bare and abstract UI class from which other vari-
ant UI objects derive. Descendants (subclasses) from the component
class include window, button, canvas, label, etc. The window class has
further subclasses, such as frame and dialog. Each class has basic meth-
ods. For example, a window has methods for resizing, adding subele-
ments, setting its layout, moving to a new location, showing or hiding,
etc. Figure 6.1 shows the overall UI object hierarchy and an example of
the codes for creating a frame (a window with a menu bar) and setting
some of its properties by the calling of such methods.

The Java AWT is not just a library of object classes for program-
ming, but also a part of the UI execution framework for Java that han-
dles a (large) subset of interaction events (called the AWTEvents). In
general, the interaction events are sent to Java programs, where they
are captured, abstracted, and stored as EventObjects. The AWTEvents
are descendants of the EventObjects that cover most of the useful UI
events (such as mouse clicks, keyboard input, etc.). The AWT frame-
work will map the AWTEvent to the corresponding AWT UI object.
There are two ways for the UI object to handle the events.

The first is by overriding the (predefined) callback methods of the
interactive applet object for the events. Table 6.1 shows the AWTEvent
types and the corresponding callback methods that can be overridden
for customized event handling. Figure 6.2 shows a code example for

97uI develoPment toolkIt

Object Component

Button

Frame

/* create a frame, a window with a menu bar */
my_frame = new Frame(“my frame”);

my_frame.show();
my_frame.resize(...);

/* display it */
/* resize it */

/* create a menu bar */
menuBar mb = new MenuBar();

/* set the menubar for the frame */
my_frame.setMenuBar(mb);
. . .

DialogWindow

ScrollPane

Panel

TextField

TextArea

MenuBar

Menu PopupMenu

Checkbox
MenuItem

MenuItem

Applist

FileDialog
Label

Checkbox

Container

List

Choice

Text
Component

Scrollbar

Canvas

MenuComponent

Figure 6.1 The class hierarchy of UI objects (top) and creating a window and setting some of its
properties through calling its class-specific methods (bottom).

Table 6.1 AWTEvent Types and Corresponding Overridable Callback Functions

AWTEVENT TYPE CALLBACK FUNCTION

mouseDown mouseDown (Event evt, int x, int y)
mouseUp mouseUp (Event evt, int x, int y)
mouseEnter mouseEnter (Event evt, int x, int y)
mouseExit mouseExit (Event evt, int x, int y)
mouseDrag mouseDrag (Event evt, int x, int y)
gotFocus gotFocus (Event evt, Object x)
lostFocus lostFocus (Event evt, Object x)
keyDown keyDown (Event evt, int key)
keyUp keyUp (Event evt, int key)
action Action (Event evt, Object x)

98 Human–ComPuter InteraCtIon

reacting to various mouse events and redrawing the given interac-
tive applet. Note that each event handler must return a Boolean value
(true or false), indicating whether the event should be made available
to other event handlers. If, however, the event cannot be processed for
some reason, the event handler may return false to signal that other
components should process it.

As a second mechanism for implementing reactive behaviors to vari-
ous events, the individual AWT UI object is to be registered with an
event listener that waits for and responds to the corresponding event.
The event handlers in Java AWT are known as the listeners.* As its
name suggests, it is a background process that listens for the associated
events for a given UI object and responds to them. It is an abstraction of
the event-processing loop we have previously discussed in this section,

* To be precise, a listener is differentiated from a simple callback function because it is
a process that waits for and reacts to the associated event, while a callback function
is just the procedure that reacts to the event.

Figure 6.2 An interactive applet with callbacks for mouse events. When the mouse click is
entered, the applet draws an object at the click position. When the mouse moves, the whole applet
is repainted and a new cursor is drawn at the newly moved position.

99uI develoPment toolkIt

assigned to a UI component for each of various input events. Thus the
listeners must be registered for various events that can be taken up by
the given UI object. As a single UI object may be composed of several
basic components and potentially receive many different types of input
events, listeners for each of them will have to be coded and registered.
Such a UI object is modeled as a collection of listeners through the Java
implementation-interface construct (Figure 6.3).

Let’s go back and take a look at the event-component hierarchy
(Figure 6.4). Table 6.2 shows more-detailed descriptions of some of
the various events. All the events derive from an abstract EventObject
and offer basic methods for retrieving the object associated with the
event and accessing the event type and identification (ID). Descendant

Java.util.EventListener

ActionListener

AdjustmentListener

ComponentListener ComponentAdapter

ContainerAdapter

FocusAdapter

KeyAdapter

MouseAdapter

MouseMotionAdapter

WindowAdapter

ContainertListener

FocusListener

InputMethodListener

ItemListener

KeyListener

MouseListener

MouseMotionListener

TextListener

WindowListener

Figure 6.3 The event-listener interface hierarchy in Java AWT.

Java.awt.AWTEvent

ActionEvent

FocusEvent

InputEvent
KeyEvent

MouseEvent
PaintEvent

WindowEvent

ContainerEvent

AdjustmentEvent

TextEvent

ItemEvent

ComponentEvent

InputMethodEvent

Figure 6.4 The event-component hierarchy in Java AWT.

100 Human–ComPuter InteraCtIon

event classes possess additional specific attributes and associated
methods for accessing the values. For instance, the KeyEvent has
a method called getkeyChar that returns the value of the keyboard
input; the MouseEvent has methods called getPoint() and getClick-
Count() that return the screen-position data at which the mouse event
occurred and the number of clicks. For more detailed information, the
reader is referred to the reference manual for Java AWT [1].

Just like the event-component hierarchy, the event-listener interface
is also structured correspondingly, as seen in Figure 6.3. A UI object,
possibly composed of several basic UI components, is designated to
react to different events by associating the corresponding listeners with
the UI object by the interface-implementation construct. That is, the
UI object is declared to implement the various necessary listeners, and
in the object-initialization phase, the specific components are created
and listeners are registered. The class definition will thus include the
implementation of the methods for the registered listeners. The named
methods for the various listeners are illustrated in Table 6.3.

An example of a UI object as an event-listener implementation
with some of its associated methods is shown in Figure 6.5. That is,
my_UI_object is declared as an extension of an applet and at the same
time as an implementation of two listeners (reacting to three types
of events): the ActionEvent, and MouseEvent. It also has two button
components created in the init(). Two listeners are also registered to
each of the buttons (b1 and b2) in the same init() method. A descrip-
tion of the method implementations follows.

Table 6.2 Java AWT Event Description and Examples

EVENT CLASS DESCRIPTION/EXAMPLES

ActionEvent Button press, double-click on an item, selection of a menu item
AdjustmentEventa Scroll bar movement
ComponentEvent Hiding/revealing a component, component movement, and resizing
FocusEvent Component gaining or losing a focus
KeyEvent Keyboard input
ItemEvent Checkbox selection/deselection, menu item selection
MouseEvent Mouse button, mouse moving, mouse dragging, mouse focus
TextEvent Text entry
WindowEvent Window opening and closing, window activation/deactivation, window

iconification/deiconification

a See http://docs.oracle.com/javase/6/docs/api/java/awt/event/AWTEventListenerProxy.html.

101uI develoPment toolkIt

6.3 Android™ UI Execution Framework and Toolkit

The user programming environment and execution model for Android
(even though at the low level, the operating system is derived from
Linux) is based on Java [2]. As such, the Android event-processing
model and programming toolkit structure are mostly the same as those
of Java (or more specifically Java AWT), except that the Android UI
toolkit, in addition to the programmatic method, includes a declara-
tive one for specifying the UI and defining its behaviors.

Events in Android can take a variety of different forms, but they
are usually generated in response to bare and raw external actions,
such as touch and button input. Multiple or composite higher-level
events may also be internally recognized and generated, such as touch
gestures (e.g., flick, swipe) or virtual-keyboard inputs. The Android
framework maintains an event queue into which events are placed

Table 6.3 Events, Corresponding Listener Interfaces, and Derived Methods in Java AWT

EVENT CLASS
CORRESPONDING LISTENER
DESCRIPTION SAMPLES OF DERIVED METHODS

ActionEvent ActionListener actionPerformed
AdjustmentEvent AdjustmentListener adjustmentValueChanged
ComponentEvent ComponentListener componentHidden

componentMoved
componentResized

FocusEvent FocusListener focusGained
focusLost

KeyEvent KeyListener keyPressed
keyReleased
keyTyped

ItemEvent ItemListener itemStateChanged
MouseEvent MouseListener mouseClicked

mouseEntered
mouseExited
mousePressed
mouseReleased

MouseMotionEvent MouseMotionListener mouseDragged
mouseMoved

WindowEvent WindowListener windowOpened
windowClosed
windowActivated
windowDeactivated
windowDeiconified
windowIconified

102 Human–ComPuter InteraCtIon

as they occur. Events are then removed from the queue on a first-in,
first-out (FIFO) basis. In the case of an input event such as a touch on
the screen, the event is passed to the View object (the UI object classes
in Android derive from what is called the View object), either by the
location on the screen where the touch took place or by the current
focus. In addition to the event notification, the view is also passed a
range of information (depending on the event type) about the nature
of the event, such as the coordinates of the point of contact between
the user’s fingertip and the screen.

Similar to the case of Java AWT, there are two major ways to
define the reactive behavior to these events. The first is to override the
default callback methods (Figure 6.6), similar to those in Table 6.3
for Java AWT, of the View interactive class object for various typical
input events.

My_UI_object

b1

ActionListener

ActionPerformed

MouseEventListener

MouseClicked

b2

Figure 6.5 A UI object specification with event listeners using the Java AWT.

103uI develoPment toolkIt

The second method is to associate an event listener with the View
object. The Android View class, from which all UI components are
derived, contains a range of event-listener interfaces, each of which
contains an abstract declaration for a callback method. In order to
respond to an event of a particular type, a view must register the appro-
priate event listener and implement the corresponding callback. For
example, if a button is to respond to a mouse-click event (equivalent to
the user touching and releasing the button view as though clicking on
a physical button), it must both register the View.OnClickListener event
listener (via a call to the target view’s Set.OnClickListener() method)
and implement the corresponding onClick() callback method. In the
event that a click event is detected on the screen at the location of the
button view, the Android framework will call the onClick() method
of that view when that event is removed from the event queue. It
is, of course, within the implementation of the onClick() callback
method that any tasks should be performed or other methods called
in response to the button click.

Figures 6.7–6.9 show three different (but in effect equivalent) ways
to register and implement an event listener:

Figure 6.6 Overriding the default View methods such as the onTouchEvent and onKeyDown for
defining interactive behaviors for the UI object My_View to the touch event and (virtual) keyboard
inputs in the Android UI toolkit.

104 Human–ComPuter InteraCtIon

Figure 6.8 In this example, My_Activity creates MyView class by implementing the View.
OnTouchListener and instantiates a MyView object vw. The listener is registered by calling the Set.
OnTouchListener on itself.

Figure 6.7 MyActivity creates a View object, called myView, and redefines MyTouchListenerClass
by extending the View.OnTouchListener. Then an instance of MyTouchListenerClass—my_touchLis-
tener—is created and registered to the listener for myView.

105uI develoPment toolkIt

 1. Implementing the event listener itself and associating it with
the View object (which is often part of the Android Activity
object, Figure 6.7)

 2. Having the View object implement the event listener
(Figure 6.8)

 3. Having the topmost Activity object (which houses various view
objects as its parts) implement the event listener (Figure 6.9).

As already mentioned, the Android UI framework also provides a
declarative method for specifying the UI. That is, the form of the UI
can be “declared” using a markup language (Figure 6.10). Through
a development tool such as Eclipse [3], the UI can be built through
direct graphical manipulation as well. Thus, in summary, there are
three methods of UI development: (a) the usual programmatic way,
(b) a declarative way, and (c) a graphical way. In Eclipse, the de facto
development tool for Android applications, any methods can be used,
and the three methods can even be used simultaneously. Figure 6.10
shows the declarative UI specification (main.xml file) for the No
Sheets application designed in Chapter 4 through one of the subwin-
dows in Eclipse.

The corresponding UI can be displayed in graphic form and be
manipulated as shown in Figure 6.11. When a UI component is
added or deleted or when an attribute value changes, such actions
are reflected back to the respective representations, either graphic or
declarative. The figures show that the UI screen is composed of an
image and several buttons. The declarative specification names the

Figure 6.9 In this example, My_Activity implements the View.OnTouchListener and thus includes
and overrides the onTouch handler.

106 Human–ComPuter InteraCtIon

event handler and other attribute values for the components in more
exact terms. The handler code is implemented in the corresponding
programmatic representation (Figure 6.12).

6.4 Example: iOS UIKit Framework and Toolkit

There are three major types of discrete events for iOS: multitouch,
motion, and remote control (discrete events from external devices,
such as remote-controlled headphones) [4]. The iOS generates low-
level events when users touch “views” of an application. The applica-
tion sends these discrete events as UIEvent objects, as defined by the
UIKit framework, to the view (i.e., specific UI component) on which
the touches occurred. The view analyzes the touch event and responds
to them. Touch events can be combined to represent higher-level ges-
tures such as flicks and swipes. The given application uses the UIKit
classes for gesture recognition and responding to such recognized
events. For continuous streams of sensor data such as those from

Figure 6.10 An example of a declarative specification of the UI for the No Sheets application
(Chapter 4). The declarative specification is saved in an XML file with element constructs for UI
components such as image, buttons, etc. Note that the file names the elements (for later referral in
the program) and that one of the attributes of the UI object is the UI handler name (e.g., the encircled
load_file).

107uI develoPment toolkIt

Figure 6.11 An example of a graphical specification of the UI for the No Sheets application
(Chapter 4). The graphically displayed UI is consistent with the corresponding declarative represen-
tation (saved in the file main.xml).

Figure 6.12 An example of a programmatic specification of the UI for the No Sheets application
(Chapter 4). The figure shows the code implementation for the UI handlers (e.g., load_file) defined
in the declarative specification.

108 Human–ComPuter InteraCtIon

accelerometers or gyroscopes, a separate Core Motion framework is
used. Nevertheless, the mechanism is still similar in the sense that
that sensor data, abstract event, or recognized event is conveyed from
iOS to the application and then to the particular view according to
the hierarchical structure of the application UI (Figure 6.13).

When users touch the screen of a device, iOS recognizes the set of
touches and packages them in a UIEvent object and places it in the
active application’s event queue. If the system interprets the shaking of
the device as a motion event, an object representing that event is also
placed in the application’s event queue. The singleton UIApplication
object managing the application takes an event from the top of the
queue and dispatches it for handling. Typically, it sends the event to
the application’s key window (the window currently in focus for user
events), and the window object representing that window sends the
event to an initial object for handling (Figure 6.14).

That object is different for touch events and motion events. For touch
events, the window object uses hit testing and the “responder” chain
to find the view to receive the touch event. In hit testing, a window
calls hitTest:withEvent: on the topmost view of the view hierarchy; this
method proceeds by recursively calling pointInside:withEvent: on each
view in the view hierarchy that returns a yes, proceeding down the
hierarchy until it finds the subview within whose bounds the touch
took place. That view becomes the hit-test view. If the hit-test view
cannot handle the event, the event travels up the responder chain until
the system finds a view that can handle it. For Motion and Remote
Control events, the window object sends each shaking-motion or
remote-control event to the first responder for handling. Although the

Window

View 1

View 2

View 2

Button 2

Button 1 Label 1

Label 2Image 2

View 1

Window

View 3

View 3B2

L2

B1

L1

I2

Figure 6.13 iOS UIKit A UI object hierarchy example.

109uI develoPment toolkIt

hit-test view and the first responder are often the same view object,
they do not have to be the same. The UIApplication object and each
UIWindow object dispatch events in the sendEvent: method.

A responder object is an object that can respond to events and
handle them. UIResponder is the base class for all responder objects,
also known simply as responders. It defines the programmatic inter-
face not only for event handling, but for common responder behav-
ior. UIApplication, UIView, and all UIKit classes that descend from
UIView (including UIWindow) inherit directly or indirectly from
UIResponder, and thus their instances are responder objects. The first
responder is the responder object in an application (usually a UIView
object) that is designated to be the first recipient of events other than
touch events. A UIWindow object sends the first responder these
events in messages, giving it the first shot at handling them.

If the first responder or the hit-test view does not handle an event,
UIKit may pass the event to the next responder in the responder chain to
see if it can handle it. The responder chain is a linked series of responder
objects along which an event is passed. It allows responder objects to
transfer responsibility for handling an event to other, higher-level
objects. An event proceeds up the responder chain as the application

NSObject

UIResponder

UIApplication UIView
ControllerUIView

UILabel UIImageView UIControl UIWindow UIScrollView

UIButton UISlider UISwitch UITextField

Figure 6.14 iOS UI event responder (handler) object class hierarchy. (From IOS Developers Library,
iOS UIKit Framework Reference, 2013, https://developer.apple.com/library/ios/documentation/
UIKit/Reference/UIKit_Framework/_index.html [4].)

110 Human–ComPuter InteraCtIon

looks for an object capable of handling the event (Figure 6.15). Because
the hit-test view is also a responder object, an application may also take
advantage of the responder chain when handling touch events. The
responder chain consists of a series of next responders (each returned
by the nextResponder method) in the sequence. The response behavior
itself is implemented by the responder objects (i.e., the UI components
such as the window, button, slider, etc.).

6.5 Summary

In this chapter, we reviewed three examples of UI toolkits, namely,
those for Java3D, Android, and iOS. There are certainly many other
UI toolkits; however, most of them are similar in their structures and
basic underlying mechanisms. As you have seen, some UI toolkits
include visual prototyping tools and declarative specification syn-
tax as well, which make it even more convenient for developers to
implement user interfaces. In general, the use of UI toolkits promotes

iOS

Events
(Touch, Motion, Remote Control, etc.)

UIKit
Event Abstraction
Event Recognition

View Object
(First responder)

View Object
(next responder)

App App

UIEvents

UIEvents

UIEvents

UIEvents
UIResponder

Method

Raw Input

Figure 6.15 The event-processing flow and the event-driven object behavior structure. The user
input is captured, abstracted, and recognized by the UIKit framework and queued into the proper
application view objects (or responders), which implement the particular response behaviors using
the UIResponder methods.

111uI develoPment toolkIt

standardization, familiarity, ease of use, fast implementation, and
consistency for a given platform.

References
 1. Oracle. 2013. Abstract Window Toolkit. http://docs.oracle.com/javase/7/

docs/api/java/awt/package-summary.html.
 2. Google Developer. 2013. User interface. http://developer.android.com/

guide/topics/ui/index.html.
 3. Eclipse. 2013. http://www.eclipse.org/.
 4. IOS Developer Library. 2013. iOS UIKit Framework Reference. https://

developer.apple.com/library/ios/documentation/UIKit/Reference/
UIKit_Framework/_index.html.

113

7
InteractIve SyStem

development framework

So far, we have only focused on the user interface (UI) objects and
their behavior. Obviously, a complete application consists not only
of UI objects, but those for the core functions of the application as
well. How do we effectively develop the larger interactive programs
with two such parts (i.e., UI and internal functional core)? For this,
it is a good idea to follow an established development framework
or methodology suited for highly interactive systems [1]. A develop-
ment framework refers to a modular approach for interactive program
development where the core computational and interface parts are
developed in a modularized fashion and combined in a flexible man-
ner. Such a development framework is often based on the UI toolkit,
which provides the abstraction for the interface parts. For one, the
framework allows the concept of plugging in different interfaces for
the same model computation and easier maintenance of the overall
program. In addition, such a practice also promotes the productivity
as well as easier and less costly postmaintenance. MVC (model, view,
and controller) is one such major framework.

7.1 Model, View, and Controller (MVC)

The MVC approach was first proposed as a computational architecture
for interactive programs (rather than a methodology) by the designers
of the programming language called SmallTalk, which is one of the
first object-oriented and modular languages [2]. The modular nature
of the MVC architecture naturally shaped the interactive program
development style or methodology. With the MVC framework, the
application is divided into three parts: (a) model, (b) view, and (c)
controller, as illustrated in Figure 7.1.

114 Human–ComPuter InteraCtIon

7.1.1 Model

The model part of the application corresponds to the computation
(e.g., realized as objects) that deals with the underlying problem or
main information or data of the application. For all practical pur-
poses, once in place, a model of the application tends to be stable
and unchanging. For instance, in an interactive banking application,
the model will be parts of the program that maintain the balance,
compute the interest, make wire transfers, etc. The model has no
knowledge of how the central information will be presented to the
user (output/presentation) or how the transactions (input) are made.

7.1.2 View

The view part of the application corresponds to the implementation
for output and presentation of data. In modern GUI-based interfaces,
the implementation will typically consist of widgets. For instance,
views might be windows and widgets that display the list of transac-
tions and the balance of a given account in a banking application, or
they might play a background audio clip depending on the score level
for a game. As a whole, there may be multiple views for a single appli-
cation (or model). For instance, there could be different view imple-
mentations for different display platforms or user groups (e.g., 17-in.
monitor, 10-in. LCD, HD resolution display, display with vibrotactile
output device, young users, elderly users). Note that the output display
does not necessarily have to be visual.

Anytime the model is changed, the view of that model must be
notified so that it can change the visual representation of the model on
the output display. The region/portion of the screen/display that is no

Model

View
Notify

Request
Which view

object in focus?
�e view object
in focus

Controller

Figure 7.1 The MVC architecture for interactive applications.

115InteraCtIve system develoPment framework

longer consistent with the model is said to be damaged. Oftentimes,
it is too tedious to update just the damaged part of the display upon
change of information in the model. The practical approach is to
redraw the entire content of the smallest widget that encompasses the
damaged region or redraw the entire window.

7.1.3 Controller

The controller part of the application corresponds to the implementation
for manipulating the view (in order to ultimately manipulate the inter-
nal model). It takes external inputs from the user and then interprets
and relays them to the model. The controller thus practically takes care
of the input part of the interaction. It uses the underlying UI execution
framework or operating system to achieve this purpose (while the view
is mostly independent from the operating system or platform).

In Chapter 6, we studied the mechanism of the UI execution
framework in terms of how it identifies and maps the raw user input to
the object in focus. In order to find the object in focus (i.e., the visual
object that is to be manipulated on behalf of the model), the controller
must communicate with the view objects. In addition, the control-
ler sometimes might also change the content of the display without
changing the model. For instance, if the user wanted to simply change
the color of a button (e.g., for UI customization purpose), the control-
ler can directly communicate with the view to achieve this effect.

Once the object in focus is identified, the corresponding event han-
dler would be invoked. The controller will only relay a query or mes-
sage for a certain change or manipulation to happen to the model
rather than actually making the change itself.

7.1.4 View/Controller

In many application architectures, the view and controller may be
merged into one module or object because they are so tightly related to
each other. For instance, a UI button object will be defined by attribute
parameters such as its size, label, and color as well as the event handler
that invokes the methods on the model for change or manipulation.

The MVC architecture or development methodology makes it
much easier, particularly for large-scale systems, to quickly explore

116 Human–ComPuter InteraCtIon

and implement and modify various user interfaces (view/controller)
for the same core functional model. This is based on a famous soft-
ware engineering principle: the separation of concern.

7.2 Example of MVC Implementation 1: Simple Bank Application

We illustrate a very simple object-oriented implementation for an
interactive banking application. In this simple application, the model
maintains the balance for a user who can make deposits or withdraw-
als through a computer UI. Figure 7.2 shows the overall structure of
the application according to the MVC architecture.

In Figure 7.2, as for the model part, a class called Account main-
tains the customer name, balance, and two views/controllers (one
for displaying the balance and realizing the UI for making deposits,
and the other for withdrawal). The model has two core methods for
maintaining the correct balance when a deposit (Account::Deposit) or
withdrawal (Account::Withdrawal) is made. These two methods use
the Notify_depositVC and Notify_withdrawalVC to notify the corre-
sponding view to update the balance in the display.

Model

Account
Name

Balance
Deposit_ViewController

Withdraw_ViewController

DepositViewController

WithdrawViewController

Void Deposit (amount)
Void Withdraw (amount)

Notify_depositVC (amount)
NotifyWithdrawVC (amount)

virtual:
Init_ui_display();

Handle_ui_event (event_type, input)
Update_ui_display (new_balance);

AccountViewController

Account

View/Controller

UIObject

Figure 7.2 An overall MVC-based implementation (class diagram) for a simple interactive bank-
ing application.

117InteraCtIve system develoPment framework

In this particular example, the View and Controller parts are
merged into one class, called the AccountViewController, which has
a pointer to the corresponding model object (as the recipient of the
notifications and model change queries). This class is a subclass of a
more general UIObject that is capable of housing constituent widgets
and reactive behavior to external input. It is also the superclass for
subclasses, the DepositViewController and WithdrawalViewController,
which implement the two views/controllers for the given model.

The subclasses, among others, implement three important virtual
methods: Init_ui_display, Update_ui_display, and Handle_ui_event
(Figure 7.2). Each of these is responsible for creating and initializ-
ing the display and UI objects within the view/controller, updating
the display (invoked by the notification method from the model, as
seen in Figure 7.3) and handling the user input. Figure 7.4 shows
the Handle_ui_event method of the DepositViewController that inter-
prets the user input (e.g., textual input of digits into integers) and
invokes the model method, for example, to make a deposit by calling
my_model->Deposit(deposit_amount). Understand that this will even-
tually change the model, and the view/controller will be notified to
change its display (e.g., to show the proper amount of balance after
the deposit). Although not shown, the WithdrawalViewController
would be coded in a similar manner.

Figure 7.3 Three important virtual methods for the class Account (the Model).

118 Human–ComPuter InteraCtIon

7.3 Example of MVC Implementation 2: No Sheets

As a second example, we will illustrate parts of the implementation
code for the No Sheets application introduced in Chapter 4, as shown
in Figure 7.5. The core of the model is music information, a list-based
data structure that contains the chord information for a piece of music
that is read from a user-selected file. Aside from the music informa-
tion itself, there may be other model variables such as the music file
name, tempo value, etc. Thus, the model information is updated by
and read from the view/controller objects.

The view/controller is composed of several Activity (screen inter-
face) objects. The SmartChordActivity represents the main front-end
interface, which allows the user to apply certain major actions such
as selecting/loading the music file, selecting the tempo, playing the
chosen music file, and other miscellaneous functions. It will access

Figure 7.4 The DepositViewController class and its method, Handle_ui_event.

119InteraCtIve system develoPment framework

information from the model—for instance, the name of the current
file and current tempo—and show them in the interface. FileActivity
represents the file-selection interface screen, which presents the user
with a list of available music files. The user makes a selection, and the
FileActivity will construct the internal chord-event list and update the
model. Likewise, TempoActivity allows the user to select the tempo
and update the model accordingly. Finally, the PlayActivity accesses
the event-list data structure of the model and presents the musical
information at a given tempo (no model updating is carried out).

7.4 Summary

In this chapter, we have studied one interactive application develop-
ment methodology called the MVC, which is based on the principle of
the separation between the UI and core computational functionalities

View/Controller

Model

Music Information

String FileName

List<String>EventList

SmartChordActivity

FileActivity

- Set up front end interface
- Show status (current �le, tempo, ...)

- Select �le
- Read �le

- Set up model data structure

TempoActivity

- Select tempo

PlayActivity
- Read model data structure and

show chord information

Int Tempo

Figure 7.5 The MVC-based program structure for the No Sheets application introduced in
Chapter 4.

120 Human–ComPuter InteraCtIon

of a given application. Such a separation of concerns allows for the
two to be mixed and matched (for exploring different combinations
of a proper set of functions and corresponding UIs) and lends itself
to easier code maintenance. However, sometimes it is not very clear
whether a given application can be cleanly separated into two parts,
namely, the core function and UI. For example, suppose one is to
implement several different “views” for different user groups for the
same banking application, and yet another view for changing and
selecting the views themselves. In this situation, it seems that the
change-of-view functionality is one of the core functions and features
of the application, yet in theory, the “view change” seems to belong to
the View rather than the Model.

References
 1. Olsen, Dan. 1998. Developing user interfaces: Interactive technologies. San

Francisco, CA: Morgan Kaufman.
 2. Krasner, Glenn E., and Stephen T. Pope. 1988. A cookbook for using the

model-view controller user interface paradigm in SmallTalk-80. Journal
of Object-Oriented Programming 1 (3): 26–49.

121

8
uSer Interface evaluatIon

The last remaining part in the cycle of UI interactive software devel-
opment is the evaluation stage. Even if the developers may have
strived to adhere to various HCI principles, guidelines, and rules
and have applied the latest toolkits and implementation methodolo-
gies, the resulting UI or software is most probably not problem-free.
Frequently, careful considerations in interaction and interface design
may not even have been carried out in the first place. Aside from the
fact that there may be things that the developer failed to oversee or
consider, the overall development process was to be a gradual refine-
ment process to begin with, where the next refinement stages would
be based on the evaluation results of the previous rounds. In this
chapter, we will present several methods and examples of evaluation
for user interfaces.

8.1 Evaluation Criteria

When evaluating the interaction model and interface, there are largely
two criteria. One is the usability and the other is user experience (UX).
Simply put, usability refers to the ease of use and learnability of the
user interface (we come back to UX later in this section) [1]. Usability
can be measured in two ways, quantitatively or qualitatively.

Quantitative assessment often involves task-performance measure-
ments. That is, we assume that an interface is “easy to use and learn”
(good usability) if the subject (or a reasonable pool of subjects) is able
to show some (absolute) minimum user performance on typical appli-
cation tasks. The assessment of a given new interface is better made in
a comparative fashion against some nominal or conventional interface
(in terms of relative performance edge). Popular choices of such per-
formance measures are task completion time, task completion amount
in a unit time (e.g., score), and task error rate. For example, suppose

122 Human–ComPuter InteraCtIon

we would like to test a new motion-based interface for a smartphone
game. We could have a pool of subjects play the game, using both
the conventional touch-based interface and also the newly proposed
motion-based one. We could compare the score and assess the com-
parative effectiveness of the new interface. The underlying assumption
is that task performance is closely correlated to the usability (ease of
use and learnability). However, such an assumption is quite arguable.
In other words, task-performance measures, while quantitative, only
reveal the aspect of efficiency (or merely the aspect of ease of use) and
not necessarily the entire usability. The aspect of learnability should
be and can be assessed in a more explicit way by measuring the time
and effort (e.g., memory) for users to learn the interface. The problem
is that it is difficult to gather a homogeneous pool of subjects with
similar backgrounds (in order to make the evaluation fair). Measuring
the learnability is generally likely to introduce much more biasing
factors such as differences due to educational/experiential/cultural
background, age, gender, etc. Finally, quantitative measurements in
practice cannot be applied to all the possible tasks for a given applica-
tion and interface. Usually, a very few representative tasks are chosen
for evaluation. This sometimes makes the evaluation only partial.

To complement the shortcomings of the quantitative evaluation,
qualitative evaluations often are conducted together with the quantita-
tive analysis. In most cases, quantitative evaluations amount to con-
ducting a usability survey, posing usability-related questions to a pool
of subjects after having them experience the interface. A usability sur-
vey often includes questions involving the ease of use, ease of learning,
fatigue, simple preference, and other questions specific to the given
interface. NASA TLX (Task Load Index, Figure 8.1) and the IBM
Usability Questionnaire (Figure 8.2) are examples of the often-used
semi-standard questionnaires for this purpose [2, 3, 4].

User experience (UX) is the other important aspect of interface
evaluation. There is no precise definition for UX. It is generally
accepted that the notion of user experience is “total” in the sense
that it is not just about the interface, but also something about the
whole product/application and even extends to the product family
(such as the Apple® products or MS Office). It is also deeply related
to the user’s emotions and perceptions that result from the use or
anticipated use of the application (through the given interface) [4].

123user InterfaCe evaluatIon

Such an affective response is very much dependent on the context of
use. Thus UX evaluation involves a more comprehensive assessment
on the emotional response, under a variety of usage contexts and
across a family of products/applications/interfaces (see Figure 8.3).
A distinction can be made between usability methods, which have
the objective of improving human performance, and user experience
methods, which have the objective of improving user satisfaction by
achieving both the pragmatic and hedonic goals [5]. Note that the
notion of UX includes usability, i.e., high UX usually translates to
high usability and high emotional attachment.

Mental Demand How mentally demanding was the task?

Very Low Very High

Physical Demand How physically demanding was the task?

Very Low Very High

Temporal Demand How hurried or rushed was the
pace of the task?

Very Low Very High

Very Low Very High

Performance How successful were you in accomplishing
what you were asked to do?

Perfect Failure

E�ort How hard did you have to work to accomplish
your level of performance?

Very Low Very High

Frustration How insecure, discouraged, irritated, stressed,
and annoyed were you?

Figure 8.1 Excerpts from the NASA TLX Usability Questionnaire. The NASA Task Load Index
method assesses the workload on a seven-point scale. Increments of high, medium, and low esti-
mates for each point result in 21 gradations on the scale. (From Hart, S. G., Land, S., and Lowell, E.,
Human Mental Workload, 1(3), 139–83, 1988 [2]; NASA, NASA Task Load Index, 2013, http://human-
systems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf [3].)

124 Human–ComPuter InteraCtIon

8.2 Evaluation Methods

Whether it is for the user experience or more narrow usability, or
whether for the qualitative feelings or quantitative performance, there
is a variety of evaluation methods. A given method may be general and
applicable to many different situations and objectives, or it may be more
specific and fitting for a particular criterion or usage situation. Overall,
an evaluation method can be characterized by the following factors:

1. Overall, I am satis�ed with how easy it is to use this system.
Strongly Agree Strongly Disagree
Comments: 1 2 3 4 5 6 7

2. It was simple to use this system.
Strongly Agree 1 2 3 4 5 6 7 Strongly Disagree
Comments:

3. I could e�ectively complete the tasks and scenarios using the system.
Strongly Agree 1 2 3 4 5 6 7 Strongly Disagree
Comments:

4. I was able to complete the tasks and scenarios quickly using this system.
Strongly Agree 1 2 3 4 5 6 7 Strongly Disagree
Comments:

Figure 8.2 Excerpts from the IBM Usability Questionnaire for computer systems. (From Lewis,
J. R., International Journal of Human–Computer Interaction, 7(1), 57–78, 1995 [6].)

User Experience

Interaction

Value,
Emotion/A�ect,
Expectation,
Prior experience,
Physical �tness,
Personality,
Motivation,
Skill,
Age, etc.

Time pressure, Gender, Trend,
Rules, Language, Norm,
Standards, Religion, etc.

Time, Place,
Weather,

Public/Private usage, etc.
Peer pressure,

Social status,
Social obligations, etc.

Usability,
Function,

Size, Weight,
Preference,

Satisfaction,
Aesthetics,

Reputation,
Adaptability,
Mobility, etc.

User Product

Context of
Usage

Cultural Factor
Social Factor

Figure 8.3 Various aspects to be considered in totality for assessing user experience (UX).

125user InterfaCe evaluatIon

• Timing of analysis (e.g., throughout the application develop-
ment stage: early, middle, late/after)

• Type and number of evaluators (e.g., several HCI experts vs.
hundreds of domain users)

• Formality (e.g., controlled experiment or quick and informal
assessment)

• Place of the evaluation (laboratory vs. in situ field testing)

8.2.1 Focus Interview/Enactment/Observation Study

One of the easiest and most straightforward evaluation methods is to
simply interview the actual/potential users and observe their interac-
tion behavior, either with the finished product or through a simulated
run. The interview can be conducted in a simple question-and-answer
form, and can involve an actual usage of the given system/interface.
Depending on the stage of the development at which the evaluation
takes place, the application or interface may not be ready for such a
full-fledged test drive. Thus, a simple paper/digital mock-up may be
used so that a particular usage scenario may be enacted for use during
a subsequent interview (Figure 8.4). While mock-ups provide a tan-
gible product and thus an improved feel for the system/interface (vs. a
mere rough paper sketch) at an early stage of the development, impor-
tant interactive features may not have been implemented as yet. In
this case, a Wizard of Oz [7] type of testing is often employed, where a
human administrator fakes the system response “behind the curtain.”
User-interaction behaviors during the test trials or simulation runs are
recorded or videotaped for more detailed postanalysis.

The interview is often focused on particular user groups (e.g., elderly)
or on the features of the system/interface (e.g., information layout) to

Figure 8.4 Interviewing a subject upon simulating the usage of the interface with a mock-up.

126 Human–ComPuter InteraCtIon

save time. One particular interviewing technique is called the cogni-
tive walkthrough in which the subject (or expert) is asked to “speak
aloud” his thought process (Figure 8.5). In this case, the technique
is focused on identifying any gap between the interaction model of
the system and that of the user. We can deduce that cognitive walk-
throughs are fit for evaluation at a relatively earlier stage of design,
namely interaction modeling or interface selection (vs. specific inter-
face design). Another notable variation of the actual usage-based test-
ing is the “Can you break this?” type of testing in which the subject
is given the mission to explicitly expose interface problems, e.g., by
demonstrating interface flaws and interface-design-related bugs.

Note that the interview/simulation method, due to its simplicity,
can be used not only for evaluation, but also for interaction modeling
and exploration of alternatives at the early design stage. In Chapters
3 and 4, we have already seen design tools such as storyboards, wire-
framing, and GOMS (Goals, Operators, Methods, and Selection),
which can be used in conjunction with users or experts for simultane-
ous analysis and design. The user interviewing/observation technique,
being somewhat free-form, is easy to administer but is not structured
to be comprehensive. Table 8.1 summarizes the characteristics of the
interview/simulation/observation approach.

Figure 8.5 A cognitive walkthrough with the interviewer.

127user InterfaCe evaluatIon

8.2.2 Expert Heuristic Evaluation

Expert heuristic evaluation is very similar to the interview method.
The difference is that the evaluators are HCI experts and that the
analysis is carried out against a preprepared HCI guideline, hence
the term heuristics. For instance, the guideline can be general or more
specific (Chapter 2) with respect to application genre (e.g., for games),
cognitive/ergonomic load, corporate UI design style (e.g., Android™
UI guideline), etc. The directions or particular themes of the heuris-
tics are chosen by the underwriter. The following lists Nielsen’s ten
general UI heuristics [8]. Note that these guidelines are almost the
same as the general principles/guidelines introduced in Chapters 1
and 2 and used for interaction/interface design.

 1. Visibility of system status: The system should always keep users
informed about what is going on, through appropriate feed-
back within reasonable time.

 2. Match between system and the real world: The system should
speak the users’ language, with words, phrases, and con-
cepts familiar to the user, rather than system-oriented terms.
Follow real-world conventions, making information appear in
a natural and logical order.

 3. User control and freedom: Users often choose system functions
by mistake and will need a clearly marked “emergency exit”
to leave the unwanted state without having to go through an
extended dialogue. Support undo and redo.

Table 8.1 Summary: Interview, Usage, and Observation Method

Evaluators/size Actual users/medium sized (10–15)
Type of evaluators Focused (e.g., by expertise, age group, gender)
Formality Usually informal (not controlled experiment)
Timing and objectives STAGE OBJECTIVE ENACTMENT METHOD

Early Interaction model and flow Mock-up/ Wizard of Oz
Middle Interface selection Mock-up/ Wizard of Oz

Partial simulation
Late/after Interface design issues (look

and feel such as aesthetics,
color, contrast, font size, icon
location, labeling, layout, etc.)

Simulation
Actual system

Note: Free form is easy to administer, but it is not structured or comprehensive.

128 Human–ComPuter InteraCtIon

 4. Consistency and standards: Users should not have to wonder
whether different words, situations, or actions mean the same
thing. Follow platform conventions.

 5. Error prevention: Even better than good error messages is a
careful design that prevents a problem from occurring in the
first place. Either eliminate error-prone conditions or check
for them and present users with a confirmation option before
they commit to the action.

 6. Recognition rather than recall: Minimize the user’s memory
load by making objects, actions, and options visible. The user
should not have to remember information from one part of
the dialogue to another. Instructions for use of the system
should be visible or easily retrievable whenever appropriate.

 7. Flexibility and efficiency of use: Accelerators—unseen by the
novice user—may often speed up the interaction for the expert
user such that the system can cater to both inexperienced and
experienced users. Allow users to tailor frequent actions.

 8. Aesthetic and minimalist design: Dialogues should not contain
information that is irrelevant or rarely needed. Every extra
unit of information in a dialogue competes with the relevant
units of information and diminishes their relative visibility.

 9. Help users recognize, diagnose, and recover from errors: Error
messages should be expressed in plain language (no error
codes), precisely indicate the problem, and constructively
suggest a solution.

 10. Help and documentation: Even though it is better if the sys-
tem can be used without documentation, it may be necessary
to provide help and documentation. Any such information
should be easy to search, be focused on the user’s task, list
concrete steps to be carried out, and not be too large.

In the far left and middle columns of Table 8.2, we show evalua-
tion heuristics specifically derived for evaluating the initial design of No
Sheets (done in Chapter 4). The heuristics were derived by the developer
who identified, among very many possibilities, the more important prin-
ciples and guidelines to follow for this particular application. The right
column shows partial results of applying these evaluation heuristics. In

129user InterfaCe evaluatIon

this way, the evaluation was carried out efficiently by a third-party HCI
expert by paying particular attention to those heuristics.

The expert heuristic evaluation is one of the most popular methods
of UI evaluation because it is quick and dirty and relatively cost effec-
tive (Table 8.3). Only a few (typically three to five) UI and domain
experts are typically brought in to evaluate the UI implementation in

Table 8.2 Evaluation Heuristics Derived Specifically for Evaluating “No Sheets” and Its
Application Results

HEURISTIC SPECIFICS (EXAMPLES) EVALUATION RESULTS (PARTIAL)

System status Does the user understand what is
going on as the song is played
(e.g., part of the song is being
played, current operation)?

While playing, the tempo and
whether it is being played,
fast-forwarded, or reviewed, is not
clearly shown.

Display layout Is the information laid out and
positioned properly (e.g., chords,
beat, lyrics)? Is the color-coding
and icon design proper for fast
recognition?

The colors are too raw (tiring to the
eyes). Landscape mode is preferred
(vs. portrait). The icon designs for
fast-forward and review are not
familiar.

Interaction/
Contents model

Are all the essential
functionalities available for this
application? Are the necessary
functions accessible and is
information displayed at
different interaction points?

Tempo control, fast-forward, and
review are not possible during play.
Information per measures is
needed.

Ergonomic
consideration/User
characteristics/
Operating
environment

Assess readability, color contrast,
and GUI object size. Also assess
if easily operable in a typical/
various usage situation (for
piano, guitar, etc.)

A better color contrast is needed
between different types of
information. Provision is needed
for long lyrics. Landscape mode is
more desirable.

Input/Output
method

Assess interface methods:
conveying the beat (beat number,
sound), setting the tempo,
selecting the song, etc.

Beat sound is too high pitched.
Suggest dragging for fast-forward
and review functions.

Consistency/
Standards

Evaluate consistency with actual
sheet music and Android design
guideline.

A more common choice or design of
icons is needed.

Prevention of errors Is the interaction modeled or
designed such that it minimizes
error? Is it possible to easily
undo?

Explicitly deactivate the play button
when there is no song selected.

Aesthetics Evaluate simplicity and overall
attractiveness.

Mostly simple except for using too
much primary colors.

Help Is there sufficient help and guides
for the beginner?

Need more detailed guide and
introduction.

130 Human–ComPuter InteraCtIon

the late stage of the development or even against a finished product.
The disadvantage of the expert review is that the feedback from the
user is absent, as the HCI expert may not understand the needs of the
actual users. On the other hand, the small size of the evaluator pool is
compensated by the expertise of the participants.

8.2.3 Measurement

In contrast to interviews and observation, measurement meth-
ods attempt to indirectly quantify the goodness of the interaction/
interface design with a score through representative task performance
(quantitative) or quantified answers from carefully prepared subjective
surveys (qualitative).

Typical indicators for quantitative task performance are the task
completion time, score (or amount of task performance in unit time),
and errors (produced in unit time). For example, for a mobile game,
a representative task might be to “invoke the given game, log in, and
reach the main screen.” Another example task, for No Sheets, would
be to “invoke the application, load the music file, and set the tempo”
(Figure 8.6). Task-performance measurement is only meaningful
when compared to the nominal/reference case. Thus, two measure-
ments must be made between the nominal and the new design, and
statistical analysis is then applied to derive any meaningful and sig-
nificant differences between the two measurements (Figure 8.7). To

Table 8.3 Summary of the Expert Review Method

Evaluators/size HCI experts/small sized (3–5)
Type of evaluators Focused (experts on application-specific HCI rules, corporate-specific

design style, user ergonomics, etc.), interface consistency
Formality Usually informal (not controlled experiment)
Timing and objectives STAGE OBJECTIVE ENACTMENT METHOD

Middle Interface selection Scenarios
Storyboards
Interaction model

Late/after Interface design issues (look and
feel such as aesthetics, color,
contrast, font size, icon
location, labeling, layout, etc.)

Simulation
Actual system

Note: Easy and quick, but prior heuristics are assumed to exist, and no actual user feedback is
reflected.

131user InterfaCe evaluatIon

Collision Time15 300

200

100

0

Se
c

10

5

0

�
e N

um
be

r o
f C

ol
lis

io
ns

Trial
1

Trial
2

Trial
3

Trial
1

Trial
2

Trial
3

KeyBoard

G-Bar

KeyBoard

G-Bar

Figure 8.7 A case of a task-performance measurement: (1) nominal: a game interface using a
keyboard, and (2) new: a game interface using a new controller. Task completion time for navigating
a maze is measured using the respective interfaces and then compared to indirectly assess the ease
of interaction.

Figure 8.6 The initial (left) and redesigned (right) “play” activity/layer for No Sheets: The new
design after evaluation uses a landscape mode and fewer primary colors. The icons for fast-forward
and review are changed to the conventional style, and the current tempo is shown on top.

132 Human–ComPuter InteraCtIon

minimize bias or variation, it is generally accepted that it is feasible to
gather a sufficiently homogeneous yet relatively small subject pool for
physical/cognitive task-performance measurement.

On the other hand, numerical scores can also be obtained from sur-
veys. Surveys are used because many aspects of usability or user expe-
rience are based on user perception, which is not directly measurable.
However, answers to user-perception qualities are highly variable and
much more susceptible to bias by the users’ intrinsic backgrounds.
A few provisions can be made to reduce such biases, for example by
using a large number of subjects (e.g., more than 30 people), using an
odd-leveled (5 or 7) answer scale (also known as the Likert scale [9]
so that there is always a middle-level answer, and carefully wording
and explaining the survey questions for clarity and understanding
(more guidelines in Table 8.4). Even though the result of the survey
is a numerical score, the nature of the measurement is still qualitative
because survey questions usually deal with user-perception qualities.
Similarly to the task-performance case, a comparative survey against
the nominal case is recommended.

Both types of measurement experiments can optionally be run
over a long period of time, especially when memory performance and
familiarity with the task is involved. For instance, to assess the ease
of learning an interface, the task performance can be measured over
weeks to see how quickly the user recalls how to operate the interface
and produce higher performance.
Table 8.4 Guidelines for a Good Survey

Minimize the number of
questions

Too many questions results in fatigue and hence unreliable responses.

Use an odd-level scale of five
or seven (or Likert Scale)

Research has shown odd answer levels with mid value with five or
seven levels produces the best results.

Use consistent polarity Negative responses correspond to Level 1 and positive to Level 7
and consistently so throughout the survey.

Make questions compact and
understandable

Questions should be clear and easy to understand. If difficult to
convey the meaning of the question in compact form, the
administrator should verbally explain.

Give subjects compensation Without compensation, subjects will not do their best or perform
the given task reliably.

Categorize the questions For easier understanding and good flow, questions of the same nature
should be grouped and answered in block, e.g., answer “ease of use”
related questions, then “ease of learning,” and so on.

133user InterfaCe evaluatIon

Another variation is with the place of the evaluation. When test-
ing with the finished product, it is best to conduct the usage test at
the actual place of usage, outside the laboratory (e.g., at the office, at
home, on the street, etc.). However, as expected, it is often very dif-
ficult to conduct the measurement or testing at the actual place of
interaction. Even when it is possible, there are many uncontrollable
factors that might affect the outcome of the testing (e.g., having to
test in front of other people). To isolate and prevent these possible
biases, the testing is often conducted in a laboratory setting as well,
with a carefully selected pool of homogeneous subjects.

With the advent of smartphones and their ubiquity, in situ field
testing is gaining great popularity [10]. Applications can collect user
interaction information in the background upon particular interaction
events, and this information can then be analyzed in a batch pro-
cess. While the same danger exists with respect to the environmental
biases, these can be often mitigated by the high number of subjects
(e.g., users of smartphones and apps). Some research has shown that
there is very little difference in the analysis/evaluation results between
the controlled laboratory studies and the in situ field studies [11].
However, this result depends on the nature of the applications (espe-
cially those for which typical usage situations cannot easily be re-cre-
ated in the laboratory) [12].

In fact, in addition to the need to carefully construct the survey,
measurement experiments require meticulous operational logistics
to be as fair and bias free as possible, starting from the recruitment,
screening, and pretraining of the subjects, compensation for and
obtaining the consent of the subjects, choosing the right independent
and dependent variables, and applying the right statistical analysis
methods to the resulting data. The details of such design of experi-
ments (DEX) are beyond the scope of this book, and we refer you to
the related literature. Despite the higher reliability of the evaluation
results, a significant amount of effort is needed to prepare and admin-
ister the measurement interface evaluation method (Table 8.5).

8.2.4 Safety and Ethics in Evaluation

Most HCI evaluation involves simple interviews and or carrying out
simple tasks using paper mock-ups, simulation systems, or prototypes.

134 Human–ComPuter InteraCtIon

Thus, safety problems rarely occur. However, precautions are still
needed. For example, even interviews can become long and time con-
suming, causing the subject to feel much fatigue. Some seemingly
harmless tasks may bring about unexpected harmful effects, both
physically and mentally. Therefore, evaluations must be conducted on
volunteers who have signed consent forms. Even with signed consents,
the subjects have the right to discontinue the evaluation task at any
time. The purpose and the procedure should be sufficiently explained
and made understood to the subjects prior to any experiments. Many
organizations run what is called the Institutional Review Board
(IRB), which reviews the proposed evaluative experiments to ascer-
tain safety and the rights of the subjects. It is best to consult or obtain
permission from the IRB when there is even a small doubt of some
kind of effect to the subjects during the experiments.

8.3 Summary

We have looked at various methods for evaluating the interface at
different stages in the development process. As already emphasized,
even though all the required provisions and knowledge may have been
put to use to create the initial versions of the UI, many compromises
may be made during the actual implementation, resulting in a product
somewhat different from what was originally intended at the design
stage. It is also quite possible that during the course of the develop-
ment, the requirements simply change. This is why the explicit evalu-
ation step is a must and, in fact, the whole design-implement-evaluate

Table 8.5 Summary of the Measurement Method

Evaluators/sample size Potential or typical users/medium to large size (10 to 50 or more)
Type of evaluators Balanced and homogeneous pool of subjects (users of the system—

gender, age, educational background, relevant skills, etc.)
Formality Can be a formally controlled experiment or an informal assessment
Place Laboratory or in situ field
Timing and objectives STAGE OBJECTIVE ENACTMENT METHOD

Late/after Interface design issues (look
and feel, such as aesthetics,
color, contrast, font size,
icon location, labeling,
layout, etc.)

Simulation
Actual system

Note: More reliable results, but generally time consuming to prepare and conduct the process.

135user InterfaCe evaluatIon

cycle must ideally be repeated at least a few times until a stable result
is obtained.

References
 1. Wikipedia. 2014. Usability. http://en.wikipedia.org/wiki/Usability.
 2. Hart, Sandra G., Steve Land, and E. Lowell. 1988. Development of

NASA-TLX (Task Load Index): Results of empirical and theoretical
research. Human Mental Workload 1 (3): 139–83.

 3. NASA. 2013. NASA Task Load Index. http://humansystems.arc.nasa.
gov/groups/tlx/downloads/TLXScale.pdf.

 4. ISO. 2009. Ergonomics of human system interaction—Part 210: Human-
centred design for interactive systems. ISO DIS 9241-210:2010. Geneva,
Switzerland: International Organization for Standardization.

 5. Bevan, N. 2008. UX, Usability and ISO standards. Paper presented
at Values, Value and Worth workshop, CHI 2008, Florence, Italy.
http://www.cs.tut.fi/ihte/CHI08_workshop/papers/Bevan_UXEM_
CHI08_06April08.pdf.

 6. Lewis, James R. 1995. IBM computer usability satisfaction question-
naires: Psychometric evaluation and instructions for use. International
Journal of Human–Computer Interaction 7 (1): 57–78.

 7. Wikipedia. 2013. Wizard of Oz experiment. http://en.wikipedia.org/
wiki/Wizard_of_Oz_experiment.

 8. Nielsen, Jakob. 1994. Enhancing the explanatory power of usability heu-
ristics. In Proceedings of the SIGCHI conference on human factors in comput-
ing systems, 152–58. New York: ACM Press.

 9. Likert, Rensis. 1932. A technique for the measurement of atti-
tudes. Archives of Psychology 22 (140): 1–55.

 10. Rowley, D. E. 1994. Usability testing in the field: Bringing the laboratory
to the user. In Proceedings of the SIGCHI conference on human factors in
computing systems, 252–57. New York: ACM Press.

 11. Kaikkonen, A., T. Kallio, A. Kekalainen, A. Kankainen, and M. Cankar.
2005. Usability testing of mobile applications: A comparison between
laboratory and field testing. Journal of Usability Studies 1 (1): 4–16.

 12. Kjeldskov, J., M. B. Skov, B. S. Als, and R. T. Høegh. 2004. Is it worth
the hassle? Exploring the added value of evaluating the usability of
context-aware mobile systems in the field. Lecture Notes in Computing
Science 3160:61–73.

137

9
future of HcI

Human–computer interaction (HCI) has contributed much to the
advancement of computing and its spread into our everyday living. The
prevalent type of interface up to the late twentieth century was the
so-called WIMP (windows, icon, mouse, pointer) and graphical user
interface (GUI) for the stationary desktop computing environment.
This was a huge improvement over its predecessor, the keyboard-input
command-oriented interface. Much innovation has been made on the
two-dimensional (2-D)-oriented desktop interface since it was first
introduced in the early 1980s. These include ergonomic mouse and
keyboard design, hypertext and web interface, user interface tool-
kits, extension of the Fitts’s law, interaction modeling, and evalua-
tion methodologies. If you look more closely, the innovation in HCI
has always followed or been accompanied by an advancement of the
hardware and software platforms. Even though the original concept
of the mouse and graphical user interface was actually devised in the
late 1960s by Doug Engelbart, it was not until the early 1980s that
the hardware and software technology (not to mention the possibility
of personal computing as hardware prices became much more afford-
able) was mature enough to accommodate the use of a mouse and the
GUI (Figure 9.1).

This line of thought can give us a good glimpse into the future of
HCI based on the fast-changing trends in computing platforms. Here
are four major new computing platforms that have emerged in the
past 10 years:

• Mobile and handheld platform: (exemplified by the smartphones)
which we can carry around to compute and communicate

• Ubiquitous platform: in which everyday objects are embedded
with interactive computing/networking devices and services

• Natural and immersive computing/sensing/display platform: that
provides near-realistic services and experiences

138 Human–ComPuter InteraCtIon

• Cloud computing platform: that provides high-quality interac-
tive services (based on its heavy-duty ultraserver-level com-
puting power) with real-time response (based on the fast
network service)

In the case of the cloud computing platform, the typical user will not
interact directly with the system where the application resides (some-
where in the cloud), but through the client computer or device, such as
the everyday desktop computers and mobile devices. Despite the tre-
mendous growth in the computing power of desktop and even mobile
units, these stand-alone machines are not usually sufficient for such
high-end interactive and intelligent services as image recognition, lan-
guage understanding, context-based reasoning, and agentlike behavior.
Note that these so-called client devices (for the cloud) are becoming
increasingly richer in their sensing, display, and network capabilities.
In essence, the cloud is taking up the role of the Model and the cli-
ent View/Controller, where there can be many View/Controllers for
different types of clients (e.g., desktops, pads, smartphones). This can
be viewed as a way to improve the user experience (UX) by providing
high-quality services in real time and having specialized interaction cli-
ents focused on usability that are easily deployed (due to their lightness
and mobility). For such an envisioned future, it will be necessary to
develop middleware solutions that will manage the seamless connection
between the Model and one of many possible client View/Controllers.

Figure 9.1 Keyboard-input command-oriented interface compared to the WIMP- and GUI-based
interfaces (1980–1990).

139future of HCI

On the other hand, in terms of hardware, we expect that the
mobile and ubiquitous platforms will accelerate and further drive the
integration of embedded computers, sensors, and sensor networks
into everyday objects (as is the goal of the Internet of Things*). Touch
technology is the main interaction mode for mobile and embedded/
ubiquitous computers and devices, and this technology will become
more refined as it evolves to accommodate multitouch, proximity
touch (hovering), and touch-haptic feedback.

The interaction styles of the mobile/embedded vs. natural/realistic/
immersive interfaces can be understood in terms of people’s natural
dichotomous desires: one for simple and fast operations in a dynamic
environment and the other for a rich and experiential interaction in a
more stable, relaxed environment. These two desires are in tune with
the lifestyle in the coming ages as we become more affluent and cul-
turally richer. Virtual and mixed reality, multimodal interfaces are in
the forefront of the experiential interaction technologies.

Finally, as we have indicated in Chapter 8, in pursuit of the mystical
UX, more interfaces are becoming affective, calling out to our emo-
tional side. It is difficult to define what constitutes an affective interface.
It could be something as simple as an emphasis on the aesthetics. It
could mean personalization and adaptation catering to the user’s unique
and changing tastes and needs. However, the latter still remains a tech-
nological challenge, as it requires intelligent sensing and robust recog-
nition of contexts, user emotions, and subtle intent—a very difficult
task even for humans themselves. However, the machine–intelligence
technology continues to make almost unimaginable leaps, as demon-
strated by the recent IBM Watson computer that has beaten a human
champion in the quiz-show contest Jeopardy [1]. In the following sec-
tions, we take a closer look at these promising HCI technologies, many
of which are in an active stage of research (Figure 9.2).

9.1 Non-WIMP/Natural/Multimodal Interfaces

In Chapter 4, we studied the process of HCI design, and after con-
sidering various requirements, user characteristics, and operating

* Internet of Things (IoT) refers to a concept where everyday objects are embedded with
Internet capability so that the object information can be accessed and controlled.

140 Human–ComPuter InteraCtIon

constraints, we found that the available interface choices were limited,
as we had to consolidate different possible solutions according to the
restrictions imposed by the practical limitations of the computing plat-
forms available today (e.g., WIMP for desktop and touch-based for
smartphones). However, the future will bring the development of many
different computing platforms, and we are bound to have more choices,
including non-WIMP-type of interfaces that will provide more natural
and multimodal interfaces. One of the main reasons these non-WIMP
interfaces have not yet made it into the mainstream, despite the appar-
ent need, is the lack of robustness and accuracy, or from another per-
spective, the relatively large amount of computation required to achieve
them. However, the situation is changing due to continued technologi-
cal innovation and the emergence of the cloud computing infrastruc-
ture. In the light of this trend, we now review and assess the future of
these HCI technologies one by one, including language understanding,
gesture recognition, image recognition, and multimodal interaction.

9.1.1 Language Understanding

The talking computer interface is undoubtedly the holy grail of HCI.
Language understanding can be largely divided into two processes.
The first is recognizing the individual words, and the second is making

New Sensors
Displays

Sensor Network

Ubiquitous

Cloud/Interaction Client

Simple and Fast
A�ective/Personal

High-End Interaction
Big Data and

Personalization
Cloud-Client
Middleware

Experiential/Multimodal

Mixed/Virtual
Reality

Natural UI

Mobile Interface

Figure 9.2 Four emerging computing platforms and associated HCI technologies to pay atten-
tion to in the next 10 years: high-quality cloud service and ubiquitous and mobile interaction clients,
experiential and natural user interfaces.

141future of HCI

sense out of the sentence, which is composed of a sequence of rec-
ognized words (usually known as natural language understanding).
Surely word recognition (which could be spoken, written, or printed)
is the prerequisite to the sentence understanding. (Here we focus
only on the spoken word or voice recognition.) Voice-recognition
performance and its practicality are dependent on the target number
of words to be recognized, the number of speakers, the level of the
noise in the usage environment, and the need for any special devices
(e.g., noise-canceling microphone). The current state of the art seems
to be (a) over 95% recognition rate (individual words) for (b) at least
millions of words and more than 30 languages (c) in real time (through
the high-performance cloud) (d) without speaker-specific training (by
age, gender, dialects) (e) in a midlevel noisy environment (e.g., office
with ambient noise of around 30–40 dB) and (f) with the words spo-
ken relatively closely to cheap noise-canceling microphones or soft-
ware [2]. Such a state of the art seems to be quite sufficient for a more
widespread presence of voice recognition in our current lives, but it is
not so except for special situations of disability support or for operat-
ing constraints in which both hands are occupied. One main reason
seems to be that the users are less tolerant to the 2%–3% of incor-
rect recognition performance, even though humans themselves do
not possess 100% word-recognition capability. Another reason might
have to do with the segmentation problem. Often, voice recognition
requires a mode during which the input is given in an explicit way,
because otherwise it is quite difficult to separate and segregate the
actual voice input from the rest (noise, normal conversation) within
the stream of voice. The entrance into this mode will typically involve
simple additional actions, such as a button push/release. However,
users take this to be a significant nuisance in usage.

One way to overcome this problem is to rely more on multimo-
dality. To eliminate the segmentation problem, the voice input can
be accompanied by certain other modal actions, such as a gesture/
posture and lip movements within a given context so that it is distin-
guished from noise, other people’s speech, or unrelated conversation.
We will discuss this multimodal integration in Section 9.1.4.

While isolated word recognition is approaching a nearly 100%
accuracy rate, when trying to understand a whole sentence, individual
words need to be recognized from a continuous stream of words. By a

142 Human–ComPuter InteraCtIon

simple calculation, we can easily see that recognizing a sentence with
five words, with each word having a recognition rate of 90%, will
yield a success rate of only 0.95 = 0.59 success rate. Add the problem
of extracting the meaning of the whole sentence, and now we have an
even lower success rate in the correct natural language understanding.

Despite these difficulties, due to its huge potential, great efforts are con-
tinually being made to improve the situation. The recent cases of Apple®
Siri [3] and IBM® Watson [1] illustrate the bright future we have with
regard to voice/language understanding. Apple Siri understands continu-
ously spoken words and understands them with higher accuracy by incor-
porating the contextual knowledge of mobile device usage. IBM Watson
showcased a very fast understanding of the questions asked in natural
language in its bout with the human champion (however, the questions
were asked in text, not in voice). While the computer used in the quiz
contest was a near supercomputer-level server, IBM is developing a more
compact and lighter version specialized to a specific and practical domain
such as medical expert systems and IPTV (Internet protocol television)
interaction [4]. AT&T provides a similar voice/language-understanding
architecture for mobile phone usage, as shown in Figure 9.3.

9.1.2 Gestures

Gestures play a very important role in human communication, in many
cases unknowingly. Gestures alone can convey meaning, or they can
function in a supplemental role in other modes of communication.
Consequently, the objective of incorporating gestures into human-
computer interaction is a natural outcome. While there may be many
User speaks to the

Mobile App
Mobile App captures the audio input
and sends it to the WATSON server

�e WATSON server sends back the
recognition results �e WATSON server carries out

the recognition computation
and extracts the meaning and

associated data

Figure 9.3 Voice/language-understanding service by the AT&T Watson cloud engine. (From
AT&T Labs Research, http://www.research.att.com/articles/featured_stories/2012_07/201207_
WATSON_API_announce.html?fbid=RexEym_weSd.)

143future of HCI

different types of gestures either from the human’s perspective (e.g., sup-
plementary pointing vs. symbolic) or from the technological viewpoint
(e.g., static posture vs. moving hand gestures), perhaps the most rep-
resentative one is the movement of the hand(s). Hands/arms are used
often for deictic gestures (e.g., pointing) in verbal communication. For
the hearing-impaired, the hands are used to express sign language.

To interpret gestures, the gesture itself, whether it is a static posture
or involves movement of limb(s), must be captured over time. This is
generally called motion tracking and can involve a variety of sensors that
are targeted for many different body parts. Here we illustrate the state
of the art by first looking at the problem of hand tracking. Good exam-
ples of two-dimensional (2-D) hand/finger tracking are the ones using
the mouse and touch screen. These technologies are quite mature and
highly accurate, helped by the fact that the tracked target (hand/finger)
is in direct contact with the devices. In the case of the mouse, the user
has to hold the device, and this is a source of nuisance, especially if the
user is to express 2-D gestures rather than just using it freely to control
the position of the cursor. This explains why mouse-driven 2-D ges-
tures have not been accepted by users, their application being limited so
far to just a few games [5]. On the other hand, simple 2-D gestures on
the touch screen, such as swipes and flicks, are quite popular.

With the advent of ubiquitous and embedded computing, which
in many cases will not be able to offer sufficient area/space for 2-D
touch input, understanding of aerial gestures in the 3-D space, which
is actually closer to how humans enact gestures in real life and under-
stand by vision, will become important. Tracking of 3-D motion of
body parts or moving objects is a challenging technological task. The
“inside-out” method requires the user to hold (e.g., 3-D mouse, Wii-
mote) or attach a sensor to the target body part or object (e.g., hand,
head), with both options being perceived as being cumbersome and
inconvenient (Figure 9.4). These sensors operate based on a vari-
ety of underlying mechanisms such as detecting the phase differ-
ences in electromagnetic waves, inertial dead reckoning with gyros/
acceleration sensors, triangulation with ultrasonic waves, etc. The
“outside-in” method requires an installation of the sensor in the envi-
ronment, external to the user’s body. Using the camera or depth sen-
sors (e.g., Microsoft® Kinect) are examples of the outside-in method.
Since the user is free of any devices on one’s body, the movement and

144 Human–ComPuter InteraCtIon

gestures become and feel more natural, comfortable, and convenient.
However, with the sensors being remote, the tracking accuracy is rela-
tively lower than it is for the inside-out methods.

In recent years, camera-based tracking has become a very attrac-
tive solution because of innovations in computer-vision technologies
and algorithms (e.g., improved accuracy and faster speed), lowered
cost and ubiquity of the technology (virtually all smartphones, desk-
tops, laptops, and even smart TVs are equipped with very good cam-
eras), ever-improving processing power (e.g., CPU, GPU, multimedia
processing chips), the availability of standard and free computer-
vision/object-recognition/motion-tracking libraries (OpenCV* and
OpenNI†), and the ease of their programming (processing language).

There are still some restrictions. For example, performance of cam-
era-based tracking is susceptible to environmental lighting condition
(Figure 9.5). For highly robust tracking, markers (e.g., passive objects
that are easily and robustly detectable by computer-vision algorithms)
are used, which makes the situation similar to using the inside-out

* Open Source Computer Vision (OpenCV), http://opencv.org/.
† OpenNI, the standard framework for 3-D sensing, http://www.openni.org/.

3-D Mouse

Figure 9.4 Examples of inside-out type (handheld) of sensors (3-D mouse; see 3-D Mouse
and Head Tracker Technical Reference Manual, http://www.logitech.com) for 3-D motion tracking
and interaction. (From SpaceControl 3D Maus Ball, http://www.spacecontrol-industries.de/14.
html?&L=2Valentinheun 6D.)

145future of HCI

method. Examples of markers include objects with high-contrast geo-
metric patterns, colored objects, and infrared LEDs.

The inexpensive depth sensors introduced in the market recently
have revolutionized the applicability, robustness, and practicality of
the outside-in gesture and motion-based interaction. For example,
the Microsoft Xbox game platform uses both a color camera and
a depth sensor (originally developed by PrimeSense) and can track
the whole-body skeleton motion (e.g., up to more than 10 joints) of
multiple users without any devices worn on the body (Figure 9.6).
It was originally intended for motion-based whole-body games, and

Figure 9.5 Camera-based motion-tracking examples (for face, hand, marker, and whole body).

Figure 9.6 Whole-body skeletonal tracking using the Kinect depth sensor (left) and its applica-
tion to motion-based games (right).

146 Human–ComPuter InteraCtIon

now its application has been extended to environment reconstruction
(i.e., scanning objects in the environment to derive computer models),
motion capture, and many others. The smaller, miniaturized proto-
type (with comparable resolution and performance) for mobile devices
has already been developed [6] (Figure 9.7).

With all this said, it seems that the major hurdle has been elimi-
nated on our road to more widespread use of motion-based interac-
tion. Yet there still remains one more problem, which is again the
same “segmentation” problem that was associated with voice recog-
nition. Similarly, it is a difficult problem to segment the meaningful
gestures out of the continuous-motion tracking data. Figure 9.8 illus-
trates the problem and its difficulty. Again, many current motion-
gesture systems rely on operating in a particular mode (e.g., applying
the gesture while pressing a button, or being in a particular state).
However, this defeats the very purpose of the bare hand and truly
outside-in sensing. Plus, as already stated, this additional step in
the interaction, having to enter the gesture-input mode, lowers the
usability dramatically. Innovative algorithms such as those based on

Figure 9.7 Prototype miniature depth sensor mountable on mobile devices. (From Engadget,
PrimeSense demonstrates Capri 3D sensor on Nexus 10, 2013, http://www.engadget.com/2013/05/15/
primesense-demonstrates-capri-3d-sensor [6].)

Motion
Tracking Segmentation Recognition

“Gesture #3”

Figure 9.8 Three major steps in gesture recognition: (1) motion tracking, (2) segmentation
(using the monitoring through the “sliding window” into the tracking data stream), and (3) recogni-
tion given the tracking data segment.

147future of HCI

the concept of “sliding windows” (continuously monitoring a fixed or
variable length of motion stream for the existence of a meaningful
gesture) may be able to solve this problem.

The segmentation problem is more challenging for gesture recogni-
tion because, in the case of voice recognition, the background noise
may be low and the detectable spoken inputs intermittent, meaning
that the voice-recognition mode can be automatically activated by
sound detection (e.g., sound intensity is greater than some thresh-
old). Touch gesture is the same. In most cases, it is natural to expect
touches only when a command is actually needed. Thus a touch sim-
ply signals the start of the gesture input mode. As for 3-D motion
gestures, users usually continually move, and only part of it may be
gestural commands that need to be extracted. Again, as we have indi-
cated, multimodal interaction can partly solve this problem. Finally,
in terms of usage, while motion-based interaction may be experiential
and realistic, one must remember that it is easily tiring.

So far, we have mostly explained our point using hand or bodily
motion and discussed potential difficulties in its detection and recog-
nition. Another special case of using gestures is that of using fingers.
Due to the current resolution of the sensors and the relative size of
fingers against the larger human body, it is not very easy to detect
the subtle articulation of the fingers. Again, with the current trends
in new sensor development and declining cost, this will not be such
a big problem in the near future. Depth sensors specialized for finger
tracking are already appearing in the market (e.g., Leap Motion [7]).
In fact, finger tracking used to be handled in the inside-out fashion by
employing glove-type sensors. Wearing gloves and interacting with
a computer turned out to be very cumbersome, with low usability.
More importantly, regardless of the type of sensors used, it is not
clear how valuable finger-based interaction might be in improving the
UX. In real life, fingers are mostly used for grasping and rarely as ges-
tures (except for the special case of sign language). Even finger-touch
gestures (for touch-screen interaction) are not that many (e.g., swipe,
flick, pinch). It may be possible to define many finger-based gestures
once detailed finger tracking is technologically feasible, but its util-
ity is questionable (Figure 9.9). Electromyogram (EMG) sensors are
newly used to recognize motion gestures. EMG sensors can approxi-
mately detect the amount of joint movement. Figure 9.10 shows a

148 Human–ComPuter InteraCtIon

wristband type of EMG sensor with which a user is making a gun-
triggering gesture in a first-person shooting game.

9.1.3 Image Recognition and Understanding

Image recognition or understanding is perhaps a lesser used technol-
ogy in HCI, especially for rapidly paced and highly frequent interac-
tion in which the use of mouse/touch/voice input is more common. For
instance, the most typical use for face recognition might be for initial
authentication (as part of a log-in procedure). Object image recogni-
tion might be used in an information search process as an alternative

Figure 9.9 Finger-based interaction using the Leap Motion. (From Leap Motion, Leap Motion
Controller, 2014, http://www.leapmotion.com [7]).

Figure 9.10 Wristband type of EMG sensor for simple gesture recognition (http://www.thalmic.com).

149future of HCI

to the usual keyword text-driven approach, e.g., when the name of the
object is not known or when it happens to be more convenient to take
the photo than typing in or voicing the input. Rather, the underlying
technology of image recognition is more meaningful as an impor-
tant part of object motion tracking (e.g., face/eye recognition for gaze
tracking, human body recognition for skeleton tracking, and object/
marker recognition for visual augmentation and spatial registration).

Lately, image understanding has become even more important,
as the core technology for mixed and augmented reality (MAR) has
attracted much interest. MAR is the technology for augmenting our
environment with useful information (Figure 9.11). With the spread
of smartphones equipped with high-resolution cameras, GPUs, and
light and fashionable see-through projection glasses (not to mention
near 2-GHz processing power), MAR has started to find its way into
mainstream usage and may soon revolutionize the way we interact
with everyday objects. Moreover, with the cloud infrastructure, the
MAR service can become even more robust and high quality. Finally,
image recognition can also assume a very important supplemen-
tary role in multimodal interaction. It can be used to extract affect
properties (e.g., facial expression), disambiguation of spoken words
(e.g., deictic gestures), and lip movements). See Figures 9.12 and 9.13.

9.1.4 Multimodal Interaction

Throughout this chapter, I have alluded to the need for multimodal
interaction on many occasions. Even though machine recognition
rates in most modalities are approaching 100% (with the help of the

(a) (b) (c)

Figure 9.11 Image recognition for (a) face, (b) object/marker (Sony Smart AR, http://www.sony.
net/SonyInfo/News/Press/201105/11-058E), and (c) hand and their applications for motion tracking
and augmented reality.

150 Human–ComPuter InteraCtIon

cloud–client platform), the usability is not as high as we might expect
because of a variety of operational restrictions (e.g., ambient noise
level, camera/sensor field of view, interaction distance, line of sight,
etc.). To reiterate, this is where multimodal interaction can be of great
help. In this vein, multimodal interaction has been an active field
of research in academia beginning with the first pioneering system,
called “put that there,” developed by Bolt et al. at MIT in the early
1980s [8]. Since then, various ways of combining multiple modalities
for effective interaction have been devised (Figure 9.14). Although
we have already outlined them in Chapter 3, we list them again here.

“Put �at �ere”

Figure 9.12 Bolt’s pioneering “put that there” system. The target object of interest is identified
from voice and deictic gestures. (From Bolt, R.A., Proceedings of ACM SIGGRAPH, Association for
Computing Machinery, New York, 1980, pp. 262–270 [8].)

Figure 9.13 Applying image understating to information search and augmentation on a wear-
able display device (Google® Glass, https://plus.google.com).

151future of HCI

• Composed : In this scheme, for a set of subtasks (which together
satisfy a larger task), we assign the most appropriate modal-
ity to each task. Thus each modality takes up a different role
in the interaction. The “put that there” system was one such
example, where the voice was used to understand the action
command (verb) and the deictic gesture to identify the target
object (pronoun). By “most appropriate” we assume and mean
that a certain modality is most fitting and natural for a certain
type of action. For instance, in a game application, it can be
argued that various settings (e.g., selection of the character,
weapon, sound options, etc.) can be accomplished with voice
or touch interaction for the highest efficiency, while the game
itself is played using action gestures for the experience. Note
that multimodal interaction does not necessarily mean that dif-
ferent modal interactions occur simultaneously.

• Alternative: In this scheme, as the name suggests, multiple
modal interaction techniques are used for the same subtask
independently. The choice is made purely by user preference
or by the operational situation. When dialing in a regular
situation, one might use the touch interaction, while during
driving, voice interaction can be used instead. This way the
usability is improved by catering to the user’s preferences and
needs (Figure 9.15).

• Redundant: In the redundant scheme, many modalities are
used together (simultaneously or not) for the same task (input
or output). As an interaction method, it makes the act of

Figure 9.14 Multimodal interaction in games (left) using the buttons for setting selection,
and (right) action gestures for the game play itself (Microsoft Kinect, http://www.xbox.com/en-us/
kinect; Nintendo® Wii, http://www.nintendo.com/wiiu/features).

152 Human–ComPuter InteraCtIon

conveying the intent or information much more robust by
combining those of the individual. For instance, an indication
of an incoming phone call can use all three modalities: visual,
aural, and tactile (vibration). With all three modalities in play,
the user is less likely to miss a phone call (Figure 9.16).

Another advantage of multimodal interaction is that, to some
degree, parallel interaction is possible. We often find people multi-
tasking in different modalities, e.g., walking, listening to music, and
texting. The extent of this ability is still a research question. However,
it seems quite certain that for this to happen (in an effective and

Figure 9.15 Alternative multimodal interfaces in the vehicle navigation systems (touch and voice).
(From Finedrive, http://www.fine-drive.com.)

“Ring
Ring ~~”

ZZZ ~

Figure 9.16 Redundant multimodal output for an incoming phone call using visual, aural, and
tactile modalities.

153future of HCI

meaningful way), the (multi)tasks must be independent of each other.
If each modal interaction shares a common resource, it can be dif-
ficult to multitask concurrently (e.g., listening to music, interpreting
the words, and dancing to it).

Thus, designing for multimodal interaction requires careful con-
siderations of things like modality appropriateness (for the task),
cognitive resource usage, synchronization (e.g., multiple modalities
perceived as one event when temporally synchronized with a short
amount of time), balance (e.g., one modality is not relatively dominat-
ing over another), and consistency (e.g., providing consistent informa-
tion content between simultaneous multimodal input/output).

9.2 Mobile and Handheld Interaction

It goes without saying that smartphones have now almost replaced
the PC, at least in terms of casual computing and even as a big part
of business computing. As such, the importance of usability and UX
for mobile and handheld interaction is even higher than ever. It is also
interesting that the mobile device, as represented by the smartphones,
is a focal point toward which the two notable future trends are con-
verging: (a) multimodal interaction (with all the on-mobile sensors
and displays) and (b) cloud-based services (through high-speed wire-
less communication).

In this context, more research is needed in the ergonomic aspects
of multimodal interaction for the active (e.g., while moving), dynamic
(e.g., frequently changing operating environment), and multitasking
lifestyle. At least one notable trend in the mobile interaction is the simple
and quick approach (vs. the rich experiential approach). It is not surpris-
ing that people would prefer the simple and quick interfaces in the midst
of the modern hectic lifestyle, even for entertainment applications such
as games. Many recent successful mobile games are those that are called
“casual,” in which a single game play session lasts only about a min-
ute with single-touch operation and almost no learning required. On
the other hand, home-based computing platforms (e.g., game consoles,
smart TV, desktop), which would be used in a more relaxed atmosphere,
are becoming more natural, immersive, and experiential (Figure 9.17).

As part of the cloud, and to supplement and complement the on-
mobile sensors, one particular service to take note of is the sensor network

154 Human–ComPuter InteraCtIon

service, i.e., a network of sensors in the environment collectively provid-
ing certain services mediated through the cloud. For example, sensor
networks can help the mobile client infer the context of usage (e.g., loca-
tion/area, lighting condition, time, number of people in the vicinity,
outdoor/indoor) and provide UX at the personalized level (Figure 9.18).

9.3 High-End Cloud Service: Multimodal Client Interaction

Many interaction technologies require artificial intelligence (AI).
After all, recognizing spoken words, sentences, images, and gestures
are hallmarks of human intelligence. Advanced AI generally requires
large databases, long off-line learning processes, and often heavy online

(a) (b)

Figure 9.17 Two bipolar directions in future interaction style: (a) “simple and quick” mobile/
handhelds and (b) rich and experiential stationary platforms at home. (From LG Smart TV, http://
www.lg.com/tw/smart-tvs.)

Figure 9.18 Indoor tracking of mobile devices/users using a Wifi sensor network.

155future of HCI

computation (for real-time responses). High-performance servers cou-
pled with mobile clients that handle the fast input data capture and
transfer offer an attractive solution. For example, Qualcomm® Vuforia™
[5] is a cloud-based solution for image recognition that can be used for a
variety of interactive services such as augmented reality and image-based
search. To develop an interactive image-based service, the developer first
registers images of target objects to be recognized in the server ahead of
time. These input target images are trained off-line on the server so that
they can be recognized well from different viewpoints at different scales
and lighting conditions. The mobile application captures an arbitrary
image and sends it to the server built with references to the target images
of interests. The recognition computation is carried out on the server,
with the results sent back to the mobile application for further process-
ing (e.g., augmentation on the screen), all in real time (Figure 9.19).

Such a division of computational labor is reminiscent of the old time-
shared computing scheme. The implication is that such a framework
is readily applicable for a variety of HCI-related computations such as
context-based reasoning, multimodal integration, user characteristics
deduction, large-scale and multi-user tracking, usage pattern analy-
sis, client platform adaptation, crowd-sourcing and big data gathering,
environment sampling methods, etc. Figures 9.20 and 9.21 illustrate
the future vision, in which a middleware installed both at the cloud
and the client mediate the seamless integration between the two. For
instance, the client can register itself with the cloud with information

Upload and register target image

Mobile App
(Capture Image) Image Data Base

Request

Result

Recognition Engine

Vuforia Cloud

Vuforia
Client Engine

Figure 9.19 A cloud-based image-recognition service from Qualcomm Vuforia. (From Qualcomm
Vuforia, https://developer.vuforia.com/resources/dev-guide/getting-started.)

156 Human–ComPuter InteraCtIon

Cloud/Server

Data �ow

Interaction
environment

Standalone
device

Processor
Sensor
Display
Smart media
device

Figure 9.20 The middleware between the cloud and interaction client will enable the vision of
“one application–many devices” without separate platform-specific implementations.

Server

Multimodal
Input

Integration

Client sensors

Interaction
Manager

and
Event

Mapper

Application

Multimodal
Output

Integration

Client displays

Output

WIMP/
Touch

Gesture/
Motion

Voice

Visual Aural Tactile/
Haptic

Face/Phy.
signals

Context
Understanding

Device speci­c
Adaptation and

Conversion

Figure 9.21 Middleware architecture for supporting the cloud–client application platform.

157future of HCI

of its sensing and display capabilities. Interactions of the applications
in the server can be described and coded only in abstract terms and
communicated to the client for actual realization based on the known
capabilities of the client device. This way, different models and types of
devices can use the same cloud applications and services with interac-
tion customized for users and their particular devices.

9.4 Natural/Immersive/Experiential Interaction

Today’s home-computing environment is fast changing with the
evolution of the television. The “smart” TVs are no different than a
high-performance computer with a network connection. Moreover,
smart TVs in the living room serve as the center of entertainment,
and they are becoming more and more “high-fidelity,” e.g., PC-level
computing power, more than a 42-in. screen with UHD (ultra-high
definition) resolution and stereoscopy, 5.1 surround sound, sensors
(camera, depth sensor, microphone, etc.), and fiber-optic/land-line
network connection. The recent successes of the Microsoft Kinect
and Nintendo Wii games attest to this future trend. Thus we can even
expect things like haptic sofas, living-room table computing, and sim-
ple olfactory displays. The applications will eventually extend, initially
from entertainments, to immersive teleconferencing for home offices
and VR (virtual reality)-based training and education (Figure 9.22).

Figure 9.22 VR-based home entertainment system. (From Xbox Kinect, http://www.xbox.com/
ko-KR/Kinect/School.)

158 Human–ComPuter InteraCtIon

Critical to such a future vision will be the VR/immersive/natural UI–
based content-production pipeline, starting with content-authoring
tools. Such tools with capabilities beyond just game development or
multimedia editing are already starting to appear (Figure 9.23).

9.5 Mixed and Augmented Reality

Mixed and augmented reality is yet another interaction medium
receiving lots of hype these days. Mixed and augmented reality
refers to the medium in which the representations of the real and
virtual are mixed in some proportion (the term Virtuality or Mixed
Reality Continuum was coined accordingly [9]; see Figure 9.24). For
example, content with mostly real objects and only a small portion
of the virtual is called augmented reality, while the reverse is called
the augmented virtuality. MAR requires a few core technologies,
namely object recognition and tracking (Sections 9.1.2 and 9.1.3).
This is required to spatially register the augmentation right next to
the object targeted for augmentation. A looser form of MAR simply

Figure 9.23 An authoring system for immersive and natural UI-based contents (Unity3D). (From
Unity3d, Unity Korea, http://www.unity3d.com.)

159future of HCI

augments the information anywhere on the screen. A Google Glass
type of application is such an example, where information is pro-
jected on the see-through glass at a fixed position (top right corner of
the visual field). MAR can improve the usability and UX in interact-
ing with everyday objects because the associated information resides
and is displayed at the same location, with the possibility of instant
recognition and access.

9.6 Others

We have briefly looked at several promising technologies and future
trends for HCI (in this very subjective view by the author). There are
certainly others (which have actually been touted as interfaces of the
next generation), which I have not cared to advocate due to various
perspectives of my own. I will briefly go over them here before wrap-
ping up this book.

• Wearable computing and interaction: The smartphone, while
almost undetachable from many users, is not a true form
of wearable computer. The concept of a wearable computer
started from the idea of embedding computers and interac-
tion devices into clothes and things we wear (e.g., hats, belts,
shoes, glasses). This integration of “wears” and computing
devices has not advanced as much as expected during the last
decades in terms of both technology and usability. Even the

Mixed Reality Continuum

Physical
Reality

Virtual
RealityAugmented

Virtuality
(Physical < Virtual)

Augmented
Reality

(Physical < Virtual)

Figure 9.24 Mixed reality/virtuality continuum [10]. A spectrum is formed according to the rela-
tive proportion of the real and virtual representations in the content. At the extremes of the con-
tinuum, there is the completely real environment and the purely virtual environment.

160 Human–ComPuter InteraCtIon

Google Glass concept is facing practical problems such as
its weight, power, and privacy issues. It is still questionable
whether computer elements need to be interwoven into our
“wears” (except for very special applications).

• Interaction based on physiological signals: Much research has
been conducted in ways to take advantage of our physiological
signals such as brain waves, EMG (electromyography), ECG
(electrocardiography), and EEG (electroencephalography). It
seems very difficult to extract human intention in a useful
and major way for HCI from these raw signals. This line of
research will probably focus on the HCI for disabled people.

• Eye/gaze tracking and interaction: HCI is deeply connected
with the line of sight. When interacting, we mostly tend to
look at the target interaction object. Tracking of the line of
sight is often done by tracking the head direction, rather than
the eyeballs themselves. In many cases, it is safe to assume
that the front head direction is the direction the eyes are
looking. There are not too many applications in which the
exact eyeball/gaze direction is so important (except maybe for
gaze analysis).

• Facial/emotion based input: Affective interfaces based on aes-
thetic look and feel and on more humane output feedback
may be important and emerging techniques for improving
UX. However, as an input method, it seems we have a long
way to go. Input based on user emotion (e.g., facial expres-
sion, tone of voice, particular gestures) is very difficult even
for humans themselves, and thus would be very difficult to be
used as a robust means of interaction.

• Finger-based interaction: As explained in Section 9.1.2, finger-
based interaction has been pursued through the use of gloves.
Depth-based sensing has recently allowed finger tracking and
interaction without the inconvenience of having to wear a glove.
Again, not too many applications can be found where finger-
based interaction can be applied in a natural way. Contrived fin-
ger gestures can be used, but they generally incur low usability.

• 3-D/stereoscopic GUI: Interacting by manipulating 3-D GUIs
(in stereo) has been depicted in many science fiction mov-
ies. However, there are not many computer tasks that require

161future of HCI

precise 3-D motions. Most system commands are easier with
voice or the familiar 2-D cursor control.

• Context-based interaction: Similar to the case with the emo-
tion-based input, inferring “context” in hopes of adapting
to the operational situation at hand or of personalizing the
interface to the user is very difficult. The true user intent is
not always clearly manifested explicitly and capturable/inter-
pretable by the sensors and AI.

9.7 Summary

The utility of software and digital content will increasingly depend on
HCI capabilities and less on the core functionalities of conventional
computer hardware. The HCI issue is becoming more challenging
as the number of computing platforms proliferates to accommodate
the evolving usage situations (e.g., home, office, mobile, sales, vehi-
cles, military, etc.). Design of the HCI interface will continue to play
a significant role as the influence of the standard desktop platform
declines. Better design of HCI interfaces will give everyone better
access to available services, intelligence, and knowledge. We will have
power at our fingertips.

References
 1. IBM. 2014. IBM Watson. http://www-03.ibm.com/innovation/us/

watson/.
 2. Wikipedia. 2014. Google voice search. http://en.wikipedia.org/wiki/

Google_Voice_Search.
 3. Apple. 2013. iOS 7, Siri. http://www.apple.com/kr/ios/siri/.
 4. AT&T Labs Research. 2014. AT&T WATSON(SM) Speech Technologies.

http://www.research.att.com/projects/WATSON/?fbid=j6ZWSYBnql4.
 5. Electronic Arts. 2014. Black and White 2: Battle of the gods. http://

www.ea.com/black-and-white-2-battle-of-the-gods.
 6 Engadget. 2013. PrimeSense demonstrates Capri 3D Sensor on Nexus 10.

http://www.engadget.com/2013/05/15/primesense-demonstrates-capri-
3d-sensor.

 7. Leap Motion. 2014. Leap Motion controller. http://www.leapmotion.
com.

 8. Bolt, Richard A. 1980. Put-that-there: Voice and gesture at the graph-
ics interface. In Proceedings of ACM SIGGRAPH, 262–70. New York:
Association for Computing Machinery.

162 Human–ComPuter InteraCtIon

 9. Milgram, Paul, H. Takemura, A. Utsumi, and F. Kishino. 1995.
Augmented reality: A class of displays on the reality–virtuality contin-
uum. In Proceedings of the International Society for Optics and Photonics for
Industrial Applications, 283–92. Bellingham, WA: SPIE.

 10. Wikipedia. 2014. Reality–virtuality continuum. http://en.wikipedia.org/
wiki/Reality%E2%80%93virtuality__continuum.

Ergonomics & Human Factors / Human–Computer Interaction

ISBN: 978-1-4822-3389-6

9 781482 233896

90000

K22974

w w w . c r c p r e s s . c o m

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Although life continues to become increasingly embedded with interactive
computing services that make our lives easier, human–computer interaction
(HCI) has not been given the attention it deserves in the education of software
developers at the undergraduate level. Most entry-level HCI textbooks are
structured around high-level concepts and are not directly tied to the software
development process.

Filling this need, Human–Computer Interaction: Fundamentals and
Practice supplies an accessible introduction to the entire cycle of HCI de-
sign and implementation—explaining the core HCI concepts behind each
step. Designed around the overall development cycle for an interactive soft-
ware product, it starts off by covering the fundamentals behind HCI.

The text then quickly goes into the applications of this knowledge. Including
forming the HCI requirements, modeling the interaction process, designing
the interface, implementing the resulting design, and evaluating the imple-
mented product.

Although this textbook is suitable for undergraduate students of computer
science and information technology, it is accessible enough to be understood
by those with minimal programming knowledge. Supplying readers with a
firm foundation in the main HCI principles, the book provides a working
knowledge of HCI-oriented software development.

The core content of this book is based on the introductory HCI course (advanced
junior or senior-level undergraduate) that the author has been teaching at Korea
University for the past eight years. The book includes access to figure slides
as well as source code for the example applications used throughout the text.

Human–Computer
Interaction

Fundamentals and Practice

Gerard Jounghyun Kim

H
U

M
A

N
–C

O
M

P
U

T
E

R
 IN

T
E

R
A

C
T

IO
N

K
im

K22974 mech rev2.indd 1 1/7/15 10:38 AM

	Front Cover
	Contents
	Preface
	About the Author
	Chapter 1: Introduction
	Chapter 2: Specific HCI Guidelines
	Chapter 3: Human Factors as HCI Theories
	Chapter 4: HCI Design
	Chapter 5: User Interface Layer
	Chapter 6: UI Development Toolkit
	Chapter 7: Interactive System Development Framework
	Chapter 8: User Interface Evaluation
	Chapter 9: Future of HCI
	Back Cover

		2015-04-12T05:27:25+0000
	Preflight Ticket Signature

